
Active Vision-Based Guidance with a Mobile
Device for People with Visual Impairments

by

Jacobus C. Lock

Dissertation presented for the degree of Doctor of Philosophy
in Computer Science in the School of Computer Science at

The University of Lincoln

Supervisor: Dr. N. Bellotto

Co-supervisor: Dr. G. Cielniak

April 2020

The financial assistance of Google Inc. towards this research is hereby acknowledged. Any opinions
expressed in this document are those of the author and can not necessarily be attributed to Google.



Declaration

By submitting this dissertation electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the sole author
thereof (save to the extent explicitly otherwise stated), that reproduction and
publication thereof by The University of Lincoln will not infringe any third
party rights and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

July 1, 2020Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © 2020 The University of Lincoln
All rights reserved.

i



Abstract

Active Vision-Based Guidance with a Mobile Device for
People with Visual Impairments

JC Lock
School of Computer Science,

University of Lincoln,
Brayford Way, Brayford Pool,

Lincoln LN6 7TS, United Kingdom.

Dissertation:
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The aim of this research is to determine whether an active-vision system with
a human-in-the-loop can be implemented to guide a user with visual impair-
ments in finding a target object. Active vision techniques have successfully
been applied to various electro-mechanical object search and exploration sys-
tems to boost their effectiveness at a given task. However, despite the potential
of intelligent visual sensor arrays to enhance a user’s vision capabilities and
alleviate some of the impacts that visual deficiencies have on their day-to-
day lives, active vision techniques with human-in-the-loop remains an open
research topic. In this thesis, an active guidance system is presented, which
uses visual input from an object detector and an initial understanding of a
typical room layout to generate navigation cues that assist a user with visual
impairments in finding a target object. A complete guidance system prototype
is implemented, along with a new audio-based interface and a state-of-the-art
object detector, onto a mobile device and evaluated with a set of users in real
environments. The results show that an active guidance approach performs
well compared to other unguided solutions. This research highlights the po-
tential benefits of the proposed active guidance controller and audio interface,
which could enhance current vision-based guidance systems and travel aids for
people with visual impairments.
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Chapter 1

Introduction

1.1 Motivation
Worn or handheld cameras could potentially enhance or even replace human
vision, which would particularly benefit people with visual impairments (PVI).
Members of this group rely on a number of aids, such as a walking cane and op-
tical character recognition (OCR) devices, to help them navigate and interact
with the world. A mobile device is a good platform to integrate some of these
aids onto, especially with the increasing amount of support for accessibility
from major device and software manufacturers, such as Apple1 and Google2.
The UK’s Royal National Institute of Blind People (RNIB) have also priori-
tised solutions enabling PVI to more effectively use common services, such as
public transport and cellphones (RNIB, 2016). OCRs have already been imple-
mented onto mobile phones and researchers have experimented with a number
of methods to enable low-vision users to exploit existing navigation tools, such
as Google Maps. People with limited or no vision are very adept at navigat-
ing within well-structured and familiar environments, such as their own home,
but have issues with navigating in unfamiliar and dynamic environments (e.g.
a street with pedestrians, a new shop, etc.) (Quinones et al., 2011; Passini
& Proulx, 1988). For unfamiliar environments, they often rely on assistance
from a friend or carer. An estimated half a billion people worldwide live with
mild to severe sight impairments or with total blindness and this number is
expected to drastically rise with the ageing population (Bourne et al., 2017). A
significant amount of people with visual impairments would therefore benefit
from a solution that would allow them to navigate in unknown environments
more independently.

Macro-navigation tools, such as car SatNav systems and Google Maps, have
largely been adapted to use audio signals to guide a user. Indeed, this has been
helpful to people with and without visual impairments. However, replicating

1https://www.apple.com/accessibility/
2https://support.google.com/accessibility/android/answer/6006564?hl=en

1

https://www.apple.com/accessibility/
https://support.google.com/accessibility/android/answer/6006564?hl=en
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such a guidance approach in an indoor environment remains a challenge. One
approach is to augment or effectively replace a user’s vision with a handheld
mobile camera that can tell the user what it is seeing. Such an approach
allows the user to make their own decisions on where to point the device to
find a target object or landmark, based on the device’s feedback. However,
there is immense variance in building and room layouts, which makes this an
inefficient and unreliable method to find the desired object. This is because
without an external guidance component, the user would be forced to randomly
scan an unknown environment with the device camera until the desired object
or landmark falls within the camera’s view. Therefore, the research in this
thesis addresses the need for an automatic mobile guidance system that is able
to use the surroundings’ information to provide a PVI with instructions to
lead them to the target object in a reasonable amount of time.

1.2 Research Problem
The work in this thesis largely contributes to the body of research in active
vision. Aloimonos et al. (1988) and Bajcsy (1988) describe active observers as
agents that are able to control their sensory apparatus such that the readings’
quality are improved. In a computer vision context, this means that a camera
is able to control its own geometric parameters or viewing direction (with
pan/elevation actuators, for example) such that it maximises the information
it gathers and its environmental understanding. Active vision techniques have
been widely implemented in various forms, particularly in the fields of machine
vision and robotics, where a system is tasked with manipulating its sensors to
achieve some task (e.g. object detection and classification, grasping, etc.).

The classic active vision paradigm can be thought of as a simple feedback
control loop, where the controller generates a signal for an electro-mechanical
actuator to manipulate the camera’s orientation and drive its output to some
reference input (see Figure 1.1 for an example of a typical control loop). How-
ever, a challenge arises when the electro-mechanical actuator is replaced with
a human in the loop. In this case, the controller has to generate a signal
to control the human’s actions in addition to the camera’s viewing direction.
A simple analogy is that the human replaces the pan/elevation actuator and
manipulates the camera according to the controller’s output. However, the
added complexity of human-in-the-loop is non-trivial and requires a careful
design of the controller, such that it takes human variability and performance
inconsistencies into account. Furthermore, the actual control signal must be
transmitted to the human through an interface that maximises the amount of
information they can extract from it. The current state-of-the-art does not
provide an adequate answer for the question: “can active vision techniques be
applied to a system with a human in the control loop?”

The research presented in this thesis addresses this question by implement-
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Figure 1.1: A typical feedback control loop, including the reference, error,
control and output signals (r, e, u, y respectively), and the controller (K) ma-
nipulating some process (P ).

ing a vision-based object detection system for a hand-held camera that actively
guides the user towards the desired object. Such a system can be used by peo-
ple with visual impairments to find objects or regions of interest in unknown
indoor environments, such as chairs or doors in an office. In particular, this
research consists of developing an effective audio interface and a controller
that is able to perform vision-based object search with a tablet or smartphone
camera in real-time, and to experimentally evaluate the proposed solutions
with groups of blindfolded participants, as well as participants with visual
impairments.

1.3 Proposed Solution
As shown in Figure 1.2, the solution to the research problem addressed in this
thesis is based on a mobile device with a colour camera and a set of gyro-
scopes and accelerometers that are able to track the device’s 6-dimensional
movements. Furthermore, pan/elevation actuation is performed by a human-
in-the-loop that manipulates the mobile device. While the user points the
device at different locations, camera images are collected to detect and classify
any observed objects. These observations then update an internal model of
the environment, which the system uses to select a new location for the user
to explore, maximising the probability of finding the target object. The coor-
dinates of the new locations are communicated to the user by an audio-based
human-machine interface (HMI). If the target object is not found, the process
is repeated. The internal data flow on the device is presented in Figure 1.3.

The final system includes three separate modules, the first of which is an
audio interface that provides guidance instructions for the user. The second
one is the controller that selects the actual instructions based on the device’s
current orientation and the observed objects. Finally, the object classifier is
responsible for processing camera images and passing object information to the
control module. All of these components, introduced in the following chapters,
are integrated into a single mobile device and run concurrently in real-time.



CHAPTER 1. INTRODUCTION 4

(a)

(b)

Figure 1.2: A visual representation of the proposed system in use (top) and as
a schematic (bottom). The camera provides image data to the mobile device
as it is moved and reorientated by the user, which the device then uses to
generate guidance instructions in real-time. The top image was taken during
an initial set of experiments with blindfolded participants (Lock et al., 2019d).

Figure 1.3: A visual representation of the guidance system’s internal structure
as it is integrated onto a mobile device. The device uses image data to detect
and classify all objects seen by its camera. This information is then used to
generate guidance waypoints, which are translated into instructions for the
user.
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1.4 Research Contributions
This thesis presents several research contributions. The main ones are listed
here.

1. A new audio interface for people with visual impairments that uses spa-
tialised sounds and bone-conduction headphones to provide guidance instruc-
tions without blocking other ambient sounds. The interface’s effectiveness is
demonstrated and evaluated in a set of experiments with a large number of
participants. The solutions and design choices adopted in this research can be
applied to other interfaces that use similar headphones.

2. A new probabilistic controller that generates guidance instructions for
a user with visual impairments to complete an object search task. This con-
troller uses a data-based transition model trained from a large object dataset
to learn the spatial relationships between multiple objects in typical indoor en-
vironments. These inter-object spatial relationships and the method of their
extraction can be used by other researchers to model an indoor environment in
simple terms. The proposed solution was evaluated in simulated and real ob-
ject search scenarios with blindfolded participants and participants with visual
impairments.

3. A fully-functioning pipeline for active visual search that integrates a spa-
tialised audio interface, a probabilistic guidance controller and real-time object
detection to assist people with visual impairments find objects in unknown en-
vironments. The integrated system is implemented on a mobile device and
evaluated against an unguided object detector that resembles other apps cur-
rently available on the market.

4. A final, technical contribution is provided by the source code of the full
guidance system implementation, including the audio interface, the controller
and the vision-based object detector. The app is not available on the Play
store, but can be freely downloaded and compiled to run on any Android
platform3.

1.5 List of Publications
The research presented in this thesis generated the following peer-reviewed
publications:

3https://github.com/yassiezar/POMDPObjectSearch
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J. C. Lock, G. Cielniak and N. Bellotto (2017). A Portable Navigation System
with an Adaptive Multimodal Interface for the Blind. In: Proceedings of the
AAAI Spring Symposium, p395 — 400. AAAI.

J. C. Lock, I. D. Gilchrist, G. Cielniak and N. Bellotto (2019). Bone-Conduction
Audio Interface to Guide People with Visual Impairments. In: Proceedings of
the International Conference on Smart City and Informization, p542 — 553.
Springer.

J. C. Lock, G. Cielniak and N. Bellotto (2019). Active Object Search with
a Mobile Device for People with Visual Impairments. In: Proceedings of the
International Conference on Computer Vision Theory and Applications (VIS-
APP), p476 — 485. Springer.

J. C. Lock, A. G. Tramontano, S. Ghidoni and N. Bellotto (2019). ActiVis:
Mobile Object Detection and Active Guidance for People with Visual Impair-
ments. In: Proceedings of the International Conference on Image Analysis and
Processing (ICIAP), p649 — 660. Springer.

J. C. Lock, I. D. Gilchrist, G. Cielniak and N. Bellotto (2020). Experimental
Analysis of a Spatialised Audio Interface for People with Visual Impairments.
Submitted to ACM Transaction on Accessible Computing (accepted, pending
revisions).

M. Terreran, A.G. Tramontano, J.C. Lock, S. Ghidoni and N. Bellotto (2020).
Real-time Object Detection using Deep Learning for helping People with Vi-
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1.6 Thesis Layout
The remainder of this thesis is organised as follows.

First, Chapter 2 describes the state-of-the-art in mobile guidance systems,
active vision techniques, and their implementations. Various principles, con-
cepts and frameworks used in subsequent chapters, such as Markov Decision
Processes (MDP) and object detection algorithms, are also introduced here.

Chapter 3 then introduces the overall system design, including the specific
concepts and ideas that the proposed solution is based on. The various mod-
ules, as well as a high-level representation of the active vision system with
human-in-the-loop, are also discussed.

Following this, Chapter 4 presents the audio interface that communicates
the guidance instructions to the users. This interface uses a set of bone-
conduction headphones that do not interfere with ambient sound to accommo-
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date users with visual impairments who rely on the latter. The audio interface’s
implementation is followed by a set of experiments conducted with blindfolded
and visually impaired participants to evaluate its performance.

In Chapter 5, an MDP-based controller, which guides a human by actively
generating suitable instructions, is introduced. The proof-of-concept devel-
oped in this chapter simulates an object detector with a QR code scanner and
generates guidance instructions to guide a user to find a target object, repre-
sented by a QR code. The controller is implemented on a mobile phone and
evaluated with a set of user-based experiments.

A full implementation of the active vision system that includes the audio
interface, an improved guidance controller and a real object detector, is dis-
cussed in Chapter 6. The design of this complete guidance system is explained
and then implemented in an Android app. It is finally evaluated with a set of
experiments to determine its effectiveness in assisting blindfolded and visually
impaired participants in an object-search task.

The thesis concludes with Chapter 7, which summarises the research con-
tributions and their current limitations. Open research questions and possible
avenues for future research are also discussed.



Chapter 2

Relevant Work

Much research has been done in the past regarding different guidance systems
for people with visual impairments, as well as different human-machine in-
terfaces and active vision strategies. Furthermore, different AI-based decision
algorithms and object detection networks have become well-established in the
literature and are suitable for the work conducted in this research. This chap-
ter presents the state-of-the-art in these areas, providing a detailed review of
the literature in the first three sections on electronic travel aids, their user
interfaces and relevant active vision systems, followed by an overview of some
AI concepts and methods used in later chapters of this thesis.

2.1 Electronic Travel Aids
Navigation aids are a common tool for people with visual impairments to help
them navigate through the world more independently and increase their au-
tonomy. The white walking cane has become a near universal aid to provide
early warning of upcoming obstacles within the user’s vicinity. With improve-
ments to embedded sensors and digital technology, researchers have proposed
newer solutions for safer navigation and obstacle avoidance experiences by
implementing electronic alternatives — so-called electronic travel aids (ETA).

A simple ETA solution consists of installing electronic or visual markers
in the environment, and then use a device that can easily find and extract
useful information from those markers. Information such as the distance to
a dangerous object (e.g. open manhole), the direction to different locations,
and upcoming changes to the environment (e.g. stairs) could be very useful to
people with visual impairments. Many different types of markers have been
proposed and tested, including Bluetooth (Kim et al., 2016; Ahmetovic et al.,
2016), RFID (Faria et al., 2010; Ramón et al., 2012; Willis & Helal, 2005)
and visual markers, which includes both 2D barcodes (Iannizzotto et al., 2005;
Nicholson et al., 2009) and colour markers (Coughlan et al., 2006; Al-Khalifa,
H.S., 2008). All of these are available as stickers and can quickly be applied in

8
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(a) (b)

Figure 2.1: An example of a colour marker described by Coughlan et al. (2006)
(left) and similar markers being used in an experiment (right) (Manduchi &
Coughlan, 2014).

different locations (see Figure 2.1 for examples of vision-based colour markers).
Bluetooth and RFID markers work well beyond the range of a typical walking
cane and are suitable for passive applications where a user is informed of a
nearby marker’s content without actively prompting it. Conversely, barcodes
and visual markers need to be in a camera’s line-of-sight, making it harder to
use. However, all of these systems suffer from the same issue of maintenance:
while it is easy to label the environment with these simple markers, it is time-
consuming and potentially costly to manually update and replace them when
their information becomes out of date. This issue is amplified for very dynamic
environments.

Early attempts at improving the existing guidance systems for people with
visual impairments involved equipping the walking cane with an array of sen-
sors that can detect upcoming obstacles and either warn or help the user to
avoid them. For example, the GuideCane and BatCane proposed by Borenstein
& Ulrich (1997) (see Figure 2.2a), and Hersh & Johnson (2008), respectively,
are wheeled canes equipped with sonars that scan the front of the device for
oncoming obstacles. The GuideCane is also equipped with a set of motor con-
trollers that turns the cane’s wheels to avoid such obstacles. The Drishti sys-
tem, implemented by Ran et al. (2004) (shown in Figure 2.2b), and the iSonar,
proposed by Vorapatratorn & Nambunmee (2014), are two other worn systems
using embedded sonars to detect and warn the user of upcoming obstacles. All
of these systems performed quite well in their experimental settings, but their
bulkiness have proven to be major hurdles for large-scale adoption. This issue
is evident in the surveys conducted by Golledge et al. (2004) and Yusif et al.
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(a) (b)

Figure 2.2: Pictures of the GuideCane (Borenstein & Ulrich, 1997) (left) and
the Drishti prototype (Ran et al., 2004) (right).

(2016), which show that people with visual impairments are concerned about
“social stigma”. Indeed, they “strongly agree” that, even if a system worked
well, they would not use it if it affected their public appearance (Golledge
et al., 2004).

An interesting and more recent approach to ETAs has been the use of
mobile phones as walking canes to perform sensing and warning tasks. For
example, the virtual cane concept proposed by Vera et al. (2014) replaces the
walking cane with a laser pointer and a smartphone. In this case, the laser
pointer acts as a walking cane and the mobile device vibrates depending on the
distance to the pointed at obstacle. This distance is calculated as a function
of the time the reflected laser beam takes to reach the mobile phone’s camera.
Mocanu et al. (2016) proposes a device that combines a mobile phone and
its camera with a sonar. The resulting object detection device is able to not
only detect any oncoming obstacles, but also robustly classify objects and
appropriately warn the user of potential danger (e.g. slow moving pedestrian
requires less intense warning compared to a fast moving car). These recent
mobile device-based systems are a step in the right direction for ETAs, when
compared to their bulky predecessors. However, they still only provide basic
obstacle avoidance functionality and are unable to guide a user towards a pre-
selected destination or location.

Other researchers have improved upon previous designs by exploiting prior
knowledge of the environment to not only improve obstacle detection, but
also provide intelligent guidance instructions to a destination that potentially
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avoids obstacles entirely. Indeed, an updated version of the Drishti system
uses GPS to direct a user along a predefined side walk (Ran et al., 2004). A
simple solution to track a user is to equip them with an inertial measurement
unit (IMU) and compass. This movement can then be used to localise the user
within a predefined indoor or outdoor map that may be pre-programmed to
contain all of the environment’s landmarks, features and potential obstacles.
The system proposed by Hesch & Roumeliotis (2010) uses a set of WiiMotes
and their built-in IMUs and infrared sensors to localise the user, while the
TANIA system proposed by David et al. (2014) uses a dedicated IMU sen-
sor to do the same. The former is able to scan for familiar corridor corners
(used to correct drift), while the latter is able to detect changes to the user’s
movement (e.g. walking, stumbling, etc.) and adjust the position estimate
accordingly. This process is similar to the one used in the system of Apos-
tolopoulos et al. (2012), where the authors used a mobile phone’s built-in IMU
to localise a user, while continuously adjusting for the user’s step length to
minimise drifting errors. It is also capable of generating the shortest path to
the target destination and guide the user accordingly. These systems use in-
novative processes to maximise usability in terms of cost, complexity and size,
while minimising localisation errors caused by sensor drift. However, these
solutions are bound to known and mapped environments and it is unclear how
they can be applied in unknown ones.

A possibly more robust solution is to use visual data from the sensor
array to build a map of the environment in real-time, which the guidance
system can use to generate navigation instructions. The works by Sáez & Es-
colano (2008), Rodríguez et al. (2012) (pictured in Figure 2.3a), Schwarze et al.
(2015), Pradeep et al. (2010), and Katz et al. (2012) (showed in Figure 2.3b)
all use so-called simultaneous localisation and mapping (SLAM) techniques to
build a 3D map of the environment, which is used to generate instructions for
the user to safely move through it. The authors of these works report encour-
aging results, although their experiments did not include a sufficient number
of participants. Lee & Medioni (2015), instead, conducted a set of experiments
with both blindfolded and visually impaired participants. In addition to build-
ing a 3D map of the environment with no prior information, their proposed
system creates a 2D probabilistic occupancy map for efficient traversability
analysis and path planning. In their experiments with four participants with
visual impairments, they report a 47% improvement to the participants’ mo-
bility when the guidance system was used alongside a white cane, suggesting
that a hybrid solution could be useful. These vision-based systems are poten-
tially helpful in unknown and dynamic environments, but it is not clear how
scalable such solutions are for mapping and storing many different areas.

A different approach to the guidance problem is to implement an efficient
object or landmark-detection system, which acts as the user’s eyes and helps
to identify the user’s current location (e.g. which room). This feedback can
also be used to provide guidance instructions based on the relative position of
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(a) (b)

Figure 2.3: Images of the SLAM-based guidance systems from Rodríguez et al.
(2012) (left) and Katz et al. (2012) (right).

an object. For example, the systems from Schauerte et al. (2012), Tian et al.
(2013), and Ou et al. (2020) use a number of different object detection tech-
niques to classify various landmarks and objects, such as doors, pedestrian
crossings, stairs, etc., and provide their relative positions through different
feedback modalities. Although their results are promising, they lack substan-
tial experimental data of participants with visual impairments. Vázquez &
Steinfeld (2012), instead, have conducted experiments with a reasonable num-
ber of participants with visual impairments, testing a system that helps them
take ‘good’ pictures with a camera using audio guidance signals. Their results
with participants with healthy eyesight, as well as partially and totally blind
participants, showed a strong improvement when guided by audio tones and
vocal instructions. The Headlock system, presented by Fiannaca et al. (2014),
uses feature detection algorithms to search for known landmarks in an indoor
environment (e.g. door) and then guides the user towards them using audio
cues. It is designed for the Google Glass platform and used alongside a white
cane that is used to detect any immediate floor-level obstacles. These audio
cues are continuously updated as a function of the user’s heading to minimise
veering from the optimal path. Compared to using a white cane only, the
authors found that participants were able to find a doorway faster and with
less veering. Indeed, when using only the cane, the participants relied the wall
to lead them to the door, as opposed to moving directly to the latter with the
Headlock guidance system. The VizWiz::LocateIt system from Bigham et al.
(2010) uses a different approach. Instead of performing object detection on the
device, the user sends a picture of the work area to an external Amazon Me-
chanical Turk worker, who visually searches for the target object. The worker
then sends instructions to the blind user on how to reach the target object.
In their experiments, the authors found that participants managed to find the
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correct objects in approximately 92s, which is similar to the performance of a
barcode-based approach used as baseline.

The strengths of object detection-based guidance systems are numerous.
Firstly, they can be implemented onto modern mobile and wearable devices,
requiring minimal additional hardware (e.g. a set of headphones) to guide a
user. Secondly, object detection is an active research topic in computer vision
and it is likely that performance and efficiency of these algorithms will increase
over time. Furthermore, no modification or annotation of the user’s environ-
ment are required, as long as the key objects are clearly visible. Indeed, Kun-
hoth et al. (2019) found that their object detector-based guidance approach
outperformed a Bluetooth marker-based approach by more than 30%. How-
ever, the major drawback to all of the systems described here are that they
are passive and rely on the user to find the target object with the camera,
before they can actually be guided towards it. This process could potentially
be improved by using other non-target objects as an additional input to the
guidance system, but further research into such systems is needed.

2.2 Human-Machine Interfaces for ETAs
An important part of any system involving human interaction is an effective
human-machine interface (HMI). In the case of a guidance system for people
with visual impairments, an HMI will be responsible for generating simple
signals that a user can easily and accurately interpret to execute an action
and move in the right direction. Popular feedback media are vibration, sound
and voice commands, each with their own set of advantages and drawbacks.

Two surveys were conducted by Golledge et al. (2004), and Arditi & Tian
(2013) to gauge the HMI media preferences of people with visual impairments.
In particular, Golledge et al. (2004) found that their participants had a strong
preference for vocal feedback, followed by tonal feedback and then vibration.
They also prefer non-covering or single headphones (e.g. a single in-ear head-
phone) instead of headphones that fully cover their ears. In the other sur-
vey, Arditi & Tian (2013) found a similar strong preference for vocal feedback,
followed by tonal and vibration feedback. They also show that people prefer
to prompt the system for feedback, rather than receiving constant feedback.

Many of the ETAs discussed in Section 2.1 have implemented some form
HMI using either one or a combination of vibration, tonal and vocal feed-
back media. For example, the systems from Mocanu et al. (2016), Chessa
et al. (2016) and Kanwal et al. (2015) rely on vocal feedback, while the ones
from Schwarze et al. (2015), Rodríguez et al. (2012) and Katz et al. (2010)
use pure audio signals (see Figure 2.4 for images of the systems proposed
by Kanwal et al. (2015), and Schwarze et al. (2015)). Instead, the systems
from Rivera-Rubio et al. (2015), Lee & Medioni (2015) and Xiao et al. (2015)
use vibro-tactile haptic feedback. All of these works have shown that their
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guidance systems, including their HMIs, are capable of guiding a participant
to a target location. However, given the survey results from Golledge et al.
(2004), and Arditi & Tian (2013), vibro-tactile feedback is not a desirable
modality and requires a significant amount of extra hardware to achieve a
reasonable level of guidance resolution. Vocal feedback seems to be the best
modality among the three. However, guiding a person to a small target object
would require high-resolution guidance instructions and many device adjust-
ments, creating significant cognitive load for the user. In this regard, tonal
feedback would be more desirable, given its reduced level of cognitive effort
compared to vocal feedback (Klatzky et al., 2006), although some care must be
taken to avoid unpleasant tones and listener fatigue. Furthermore, these tones
may be less obvious to understand than vocal commands, so some training
would be required to work effectively. One extreme example is ‘The Voice’,
a system that uses a set of sinusoidal sound waves with different frequencies
and amplitudes to translate camera images and requires more than 15 hours of
training to be used effectively (Ward & Meijer, 2010). However, totally blind
users, who have used the system for long periods of time, have been able to
perceive depth, edges, movement and even colour.

To reduce the amount of time required to use an assistive system effectively,
researchers have investigated more intuitive methods that convey guidance in-
structions via simple audio tones. One possibility is to apply a head-related
transfer function (HRTF) to spatialise an audio signal (Xie, 2013). In other
words, a monaural sinusoidal audio wave can be mathematically transformed
into a binaural signal, making a listener believe that the sound originates from
some arbitrary 3D position. This position is fully controlled by the HRTF pa-
rameters, exploiting humans’ natural hearing pathways and mechanisms (more
details can be found in Section 4.2). However, each person’s hearing charac-
teristics are unique, which makes it difficult to create a truly generic HRTF
with consistent localisation performance. Nevertheless, there are widely used
models, such as the MIT’s KEMAR mannequin (Gardner & Martin, 1995),
that are based on a generic human frame and over-ear headphones. Sev-
eral researchers, such as Geronazzo et al. (2016), Wilson et al. (2007), Katz
et al. (2010), and Blum et al. (2013), have implemented some of these spa-
tialisation techniques in their interfaces to provide the user with navigation
waypoints, with good results when applied to over-ear headphones or external
speakers. However, deviating from the aforementioned HRTF constraints can
significantly affect the performance of these interfaces. Indeed, research has
showed that different playback devices, including in-ear and bone-conduction
headphones, lead to diminished localisation performance compared to over-ear
headphones (Schonstein et al., 2008; Stanley & Walker, 2006). This prob-
lem seem mostly limited to the elevation dimension (i.e. vertical direction), as
stated by Stanley & Walker (2006), who show that an interface with bone-
conduction headphones and a well-tuned HRTF can achieve similar results to
the over-ear solution.



CHAPTER 2. RELEVANT WORK 15

(a)

(b)

Figure 2.4: Figures of the guidance system prototypes used in the works
by Kanwal et al. (2015) (top) and Schwarze et al. (2015) (bottom), includ-
ing their feedback devices (headphones).

2.3 Active Vision Systems
An active vision system is one where the observer is able to adjust its sensors
to gather more information or to maximise its understanding of the environ-
ment (Bajcsy et al., 2018). This is a well-understood and common occurrence
in biological systems (Findlay et al., 2003), where, for example, a human would
determine their current location by moving their head and eyes to maximise the
visual information and match it against known or familiar locations. Similarly,
researchers in computer vision and robotics have incorporated some of these
techniques into electro-mechanical and digital systems that change the view of
a perception agent in order to gather more environmental information (Chen
et al., 2011), for object detection and tracking tasks, for example.

Object detectors often rely on dividing an input image into smaller win-
dows, searching for as many objects as possible in these smaller search spaces
(more details in Section 2.4.3) until the target object is found. Researchers
in active vision, however, have tried more efficient object search strategies for
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the window selection and proposal scheme. Such an active search strategy
was implemented by Gonzalez-Garcia et al. (2015). In their work, each of the
objects detected in a window is used, alongside the current window’s position,
by a purpose-built classifier that outputs the most likely location containing
the target object. The next window is then sampled from this location. With
this approach, they report a significant reduction in the number of windows
that need to be processed compared to a random window sampling approach.
Caicedo & Lazebnik (2015) proposes a similar active search strategy, but their
system uses a Markov Decision Process (MDP) to select the next best win-
dow, achieving significant improvements in terms of precision and recall. The
state-of-the-art Faster R-CNN network (Ren et al., 2015) also uses an active
strategy based on a separate neural network to select windows, although they
require a large number of window proposals to achieve good results.

These active object search strategies have proven useful when used on still
images and have subsequently also been applied to electro-mechanical plat-
forms that capture video data and manipulate their viewing parameters to
maximise the information it gathers. Such systems include cameras manipu-
lated by simple pan-tilt servos (Giefing et al., 1992), which can possibly be
implemented on more complex robotic platforms with high degrees of freedom
(DoF). For example, the systems proposed by Radmard & Croft (2017) manip-
ulates a camera attached to a static robotic arm with 7 DoF to collect visual
information. Rasolzadeh et al. (2010), instead, use static stereo cameras with
a robotic arm that manipulates the object to maximise the visual informa-
tion it gathers, such as colour, object shape, etc. (also known as interactive
perception).

Active vision-based search processes have also been implemented on fully
mobile (i.e. wheeled) robot platforms by Shubina & Tsotsos (2010), Aydemir
et al. (2013) and Ye et al. (2018a,b), for example. These robots can traverse
a 3D indoor environment while searching for a target object placed in an un-
known location. Each of these systems use different methods to generate the
optimal actions to reach the target object, including neural networks that gen-
erate navigation policies (Ye et al., 2018a,b), search space optimisation (Shu-
bina & Tsotsos, 2010) and probabilistic search methods using partially ob-
servable MDP (POMDP) models (Aydemir et al., 2013). All the robots were
tested either in simulation or in real experiments. Shubina & Tsotsos (2010)
showed that their optimisation process leads to a high success rate (91%) and
low search time for finding the target object when partial information about
the object’s location is provided (e.g. on top of a table). With their POMDP-
based system, Aydemir et al. (2013) reports clear improvement in a searching
task, compared to the greedy policy, and is almost comparable to a normal
human search. The difference between the human and the POMDP search per-
formance is reduced even further when additional semantic information about
the environment is provided to the system. Similar conclusions were reached
by Ye et al. (2018a,b), significantly improving their robots’ search capabilities
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with a neural network that generates opportune action policies.
All of these works implemented active search systems on complex electro-

mechanical platforms, reporting significant improvements compared to passive
approaches. However, as highlighted by Bajcsy et al. (2018), the question of
whether such techniques can be useful for systems including human interac-
tions remains an open research area.

2.4 Background Concepts and Methods
Various well-established tools and frameworks are used for this research to im-
plement an active vision guidance system. This section introduces some state-
of-the-art AI and computer vision methods for decision-making and object
classification, respectively. Some of these concepts are used and implemented
in Chapter 4, Chapter 5 and Chapter 6.

2.4.1 Markov Decision Processes

A Markov decision Process (MDP) is a mathematical framework that models
an agent’s decision-making process where the outcomes are partly random and
affected by the agent’s actions. The agent’s goal is to reach some target state,
maximising the total utility during the state transitions that take place during
this process (Puterman, 2014).

MDPs are an extension of Markov Chains, which describe a stochastic
sequence of state transitions where the next state transition depends only
on the current and previous states. However, MDPs also include actions,
which model the agent’s transition choices and rewards, giving the agent some
motivation to execute a specific action. A typical MDP is modelled by the
tuple 〈S,A,T,R〉, where S is a finite set of states the agent can reach, A is
a finite set of actions it can execute from a state s ∈ S. T is an S ×A × S
transition matrix that contains the probability of transitioning from state s
to state s′ after executing action a ∈ A. This matrix is constrained by the
agent’s environment (e.g. the agent cannot move through a wall). Finally, R
is an S × A reward matrix that determines the reward (or punishment) an
agent receives for executing action a when transitioning from state s to s′.

After the MDP’s parameters have been determined — typically heuristi-
cally or through experimentation — it can be used to produce the optimal set
of actions for an agent to reach a goal state, sg, from any initial state, s0. A
state-action mapping scheme that leads the agent to the goal state is known
as a policy, π. The optimal policy, π∗, maximises the cumulative reward the
agent receives while traversing from s0 to sg. The R and T matrices are par-
ticularly important to find a good policy, since a policy generated with a weak
R (a not sufficiently motivated agent) or malformed T (a badly modelled en-
vironment) may not converge to an optimum or not reach sg at all. Figure 2.5
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Figure 2.5: A figure depicting an example of a recycling example robot (Sutton
& Barto, 1998, p. 69). It can transition between two high and low battery
states with probabilities paramaterised by α and β, while being rewarded for
each action it takes (search, wait, recharge or flat).

shows an example MDP (Sutton & Barto, 1998) that models a recycling robot,
which can either be in a high or low battery state, and can execute a search,
wait or recharge action. The transitions probabilities depend on the param-
eters α and β, and the rewards by rwait, rsearch, rrecharge and rflat (−3 in the
figure). The optimal policy π∗ will be highly influenced by these parameters,
since the robot is more likely to execute a recharge action if there is a high
probability that the battery runs flat and if the penalty for it is harsh.

The policy π∗ can be determined using dynamic programming techniques
(Bellman, 1957) by maximising the agent’s expected long-term cumulative re-
ward. There are a number of algorithms that are able to solve MDPs and find
π∗, including value iteration (Bellman, 1957), policy iteration (Howard, 1960),
Q-Learning (Watkins, 1989) and state-action-reward-state-action (SARSA)
(Rummery & Niranjan, 1994). For example, the value iteration algorithm
solves an MDP by calculating the discounted cumulative reward that the agent
can expect to receive when starting from state s0. It then assigns a so-called
value V (s) for each state s it reaches:

V (s) =
∑
s′

Tπ(s)(s, s
′)(Rπ(s)(s, s

′) + γV (s′)), (2.4.1)

where γ ∈ [0, 1.0] is a weighting factor that prioritises long-term or short-term
reward and is typically set close to 1.0 to prioritise long-term reward. The
policy π∗ can then be determined by selecting the action that maximises a
state’s value:

π∗(s) = argmax
a

∑
s′

T(s, a, s′)R(s, a, s′) + γV (s′), (2.4.2)
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In many cases, however, the environment is difficult to explicitly model, so
T is determined by experimentation or simulation, leading to so-called “model-
free” algorithms. Q-Learning is a popular reinforcement learning algorithm
that ‘learns’ T through iteration. In this process, each state-action pair is
given a quality score, Q, as defined by

Qnew(st, at) = (1− α)Q(st, at) + α(rt+1 + γmax
a
Q(st+1, a)), (2.4.3)

which is iteratively updated with the action that maximises the next state’s
expected quality. α is the learning rate, which determines the weight of new
values added to the previous quality score. After enough iterations, a state-
action pair’s quality, or Q-value, approaches its optimal value and can then be
added to π∗.

The SARSA algorithm is another model-free alternative to the value itera-
tion algorithm. While similar to Q-Learning, it differers in how it updates its
Q-value at each training iteration. Specifically, Q-Learning is known as an “off-
policy” process, which refers to the fact that for each Q-value update during
the training process, the agent selects an action that maximises the expected
future value. Instead, the on-policy approach updates the Q-value based on
the policy learned up to that point and can only select the action given by
π(s). This difference is shown in the update step of the SARSA algorithm,
where the maximum lookup operation is replaced by at+1:

Qnew(st, at) = (1− α)Q(st, at) + α(rt+1 + γQ(st+1, at+1)). (2.4.4)

Under the same conditions, the main practical difference between on- and
off-policy training is the speed at which they converge to the optimal policy,
with Q-Learning typically being faster. However, the SARSA algorithm is
preferable in cases where the agent’s performance during the training process
is important, or if the problem requires a more exploratory learning approach.
To illustrate this point, consider the example from Sutton & Barto (1998) in
Figure 2.6, where a battery-powered robot is placed on a cliff’s edge and tasked
with reaching the other side without falling. Each grid cell represents a state
that the robot can reach by moving either up, down, left or right towards the
goal cell, G, trying to minimise energy consumption. With a negative reward
punishing each movement and falling off of the cliff (−1 and −100, respec-
tively), Q-Learning produces the optimal, shortest route that traverses the
cliff as closely as possible. Instead, SARSA generates a safer path that reaches
the goal further away from the cliff, but with a longer route. Naively, it would
seem that Q-Learning outperforms SARSA. However, in many real-world ap-
plication, for example with an expensive robot, the safer route produced by
SARSA seems preferable.
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Figure 2.6: An example of an MDP modelling a simple robot moving around
a cliff’s edge (Sutton & Barto, 1998, p. 132). Here R is the negative reward
given for moving one square or falling off of the cliff. S and G are the initial
and goal states, respectively.

2.4.2 Partially Observable Markov Decision Process

MDP models operate under the assumption that the agent’s state is perfectly
observable. This assumption is convenient for simulated systems and simple
applications, but not to model real systems with sensors and actuators that
are affected by noise and errors. An agent can therefore never be certain about
its true current state. To compensate for the reality of imperfect sensors and
state observations, an MDP model can be replaced with a partially observable
MDP (POMDP), represented by the tuple 〈S,A,T,R,Z,O〉. Since the true
state cannot directly be measured, it introduces observation set, Z, and an
S×A×Z observability function O, which contains the probability of making
observation ζ ∈ Z after the agent executes action a from state s.

The addition of uncertainty to the model is non-trivial, since the agent’s
actual state is no longer known, unless it is tracked from the start of the
process, violating the Markov assumption and making the problem intractable.
However, if the state size is known, it is possible to restructure a POMDP to
resemble an MDP, which can be solved using existing and well-understood
methods, such as value iteration. In particular, a POMDP can be reduced
to an MDP by adding a new belief meta-state that maintains a probability
distribution over all the states, effectively tracking the state history over time.
For such a belief-MDP, the current state can be inferred from the probabilistic
belief state, b, which is updated for every discrete observation as follows:

b′(s′) =

O(s′, a, ζ)
∑
s∈S

T(s, a, s′)b(s)

ν(ζ, a, b)
, (2.4.5)
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where ν is the normalisation factor

ν(ζ, a, b) =
∑
s′∈S

O(s′, a, ζ)
∑
s∈S

T(s, a, s′)b(s). (2.4.6)

A belief-MDP is given by the tuple 〈B,A, τ, ρ〉, where B is a set of belief
states over the underlying POMDP’s states (b ∈ B), A are the actions from
the underlying POMDP, τ is the belief state transition function and ρ is the
reward function over the belief states (Sutton & Barto, 1998). The functions
τ and ρ are derived from the base POMDP parameters using

τ(b, a, b′) =
∑
ζ∈Z

ν(ζ, a, b) (2.4.7)

and

ρ(b, a) =
∑
s∈S

b(s)R(s, a). (2.4.8)

After a POMDP has been transformed into its equivalent belief-MDP, it
looks similar to a normal MDP, since the belief state is now fully observable.
However, a key difference between the two is that a belief-MDP has a prob-
abilistic policy, as opposed to the deterministic policy produced by a normal
MDP (i.e. each state has exactly one optimal action assigned to it).

Existing solutions for MDPs can be used to solve POMDPs transformed
into their equivalent belief-MDPs, but need to be modified to account for
random belief states and actions. For example, the value iteration algorithm
can be modified to find the optimal sequence of actions, given some initial
belief state, by using

π∗ = argmax
π

∞∑
t=0

γtE[R(st, at), b0,π]. (2.4.9)

This provides an exact solution to the belief-MDP, assigning a unique action
to each state. However, this is a computationally expensive process and often
impractical for solving POMDPs with a sizeable state-space. In such cases,
approximate solutions, such as point-based value iteration (PBVI) (Pineau
et al., 2003), are more practical. Examples include the works by Boger et al.
(2005) and Hoey et al. (2010), who implemented a POMDP-based controller to
assist people with dementia to wash their hands. Their work showed promising
results and indicates that this decision making approach can be used to guide
users in performing a sequence of tasks to complete a specific task.

2.4.3 Object Detection and Classification

An important goal in computer vision is to autonomously detect objects of
a certain class within a digital image. Historically, this research has focused



CHAPTER 2. RELEVANT WORK 22

on solutions that detect a single or a few classes well, such as human faces
and pedestrians (Zhang & Zhang, 2010). However, more recent developments
in computing power, dataset availability and algorithms have contributed to
the development of more sophisticated methods for detecting multiple dif-
ferent, and potentially unrelated, object classes (Borji et al., 2014). A major
breakthrough in this effort was the work by Krizhevsky et al. (2012), which in-
troduced the concept of Deep Convolutional Neural Networks (DCNN), called
‘AlexNet’. Since this publication, many other deep-learning networks have
been proposed, such as R-CNN (Ren et al., 2015), YOLO (Redmon et al.,
2016) and ResNet (Szegedy et al., 2017), and great progress has been made in
terms of detection speed and accuracy.

The aforementioned works use different techniques and processes to ex-
tract information from an input image. However, each of these processes can
approximately be described by the following three steps:

1. Region Selection – In this step, the algorithm determines areas of in-
terest within an image in an attempt to separate objects from the background.
The entire image is scanned (potentially many times), since an object can ap-
pear in any location with different sizes and visual features (e.g. colour). These
regions are marked by multiple windows with different aspect ratios (known
as a “multiscale sliding windows” process). This is a computationally intensive
process, given the sheer number of possible object positions and locations that
need to be marked. However, several techniques have been proposed to achieve
more reasonable computation performance (Ren et al., 2015).

2. Feature Extraction – After some areas of interest have been extracted
from the input image, the algorithm starts searching for actual objects. To do
this, it extracts a set of features from each region to provide a robust represen-
tation of the latter. Objects can be described by the classic SIFT (Lowe, 2004),
HOG (Dalal & Triggs, 2005) or Haar-like (Lienhart & Maydt, 2002) feature
descriptors. However, many DCNN architectures uses their own descriptors
learned from large datasets, which do not need to be manually designed.

3. Classification – In this third and final step, a classifier, such as an
SVM (Cortes & Vapnik, 1995) or another DCNN, uses the feature set for each
window and matches it against a set of learned features. This is then used as
output for the object classifier, which provides both the region and the label
of the object located within an image.

Most deep network-based object detectors can be described as either single
or two-stage detection models, the major difference being how they perform
the region selection step described above. Two-staged models, such as R-
CNN (Girshick et al., 2014), follows a process similar to the three-step one
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Figure 2.7: The network diagrams of the SSD (top) and YOLO (bottom)
networks (Liu et al., 2016).

described above, using an external region proposal network to find regions
of interest. These networks achieve high accuracy levels, but their complex
structure is computationally expensive and difficult to train, since two separate
networks need to be optimised simultaneously (Liu et al., 2018). Conversely,
single-stage models consist of a single, fully enclosed network that performs
region selection, feature extraction and classification. Models such as SSD (Liu
et al., 2016) paired with MobileNet (Howard et al., 2017) are less accurate
than some two-stage models, but typically have significantly lower computing
requirements (see Figure 2.7 for diagrams comparing the SSD and YOLO
networks). This makes the latter an attractive option for low-powered devices,
such as the mobile devices used in this thesis.

2.5 Conclusion
In this chapter, an extensive review of the state-of-the-art of ETAs, HMIs
and Active Vision is presented. A number of shortcomings in the body of
knowledge were identified. These include the limited number of participants
with visual impairments typically used in experiments, the lack of research
into bone-conduction headphones with navigation tasks, and the challenges
of an active vision system with human-in-the-loop. Furthermore, a number of
relevant methods and tools were introduced to provide background information
on MDPs, POMDPs, and object detection systems. While the latter are not
the topic of this research, they are useful to understand some of the concepts
presented in the following chapters.



Chapter 3

Active Guidance System Design

This thesis attempts to determine whether it is possible to use active vision
techniques with a human in the system loop. The issue of accessibility for
people with vision impairments (PVI) is used as a platform and use-case for
this investigation. In particular, an object detection and searching aid is im-
plemented that will benefit PVI within unknown environments. Such a system
could be a significant boon for increasing PVI’s independence and for enabling
them to play a more active role in modern society (RNIB, 2016). There are
systems available (academic and commercial) that are able to find and guide
a person towards a target object, but these typically use a passive detection
approach that relies on chance for the target object to fall within a sensor’s
range (Bigham et al., 2010; Schauerte et al., 2012). The research in this thesis
attempts to address this problem by implementing a complete object detec-
tion and guidance system, that actively guides a user to a target object, which
is not necessarily within a sensor’s range. Such a system draws knowledge
from the fields of human-machine interfacing (HMI), active vision and mobile
computing.

This chapter describes the overall design of the proposed guidance system
and its individual components. It begins with a description and a conceptual
design of the system in Section 3.1 and Section 3.2 respectively, followed by
descriptions of the proposed subsystems in Section 3.3 and Section 3.4. The
chapter concludes in Section 3.5 with a summary of the proposed design so-
lutions, which are presented in detail and evaluated in the coming chapters.
Part of the solutions proposed in this chapter was previously published as a
conference paper (Lock et al., 2017).

3.1 System Description
This research investigates a new concept of active vision with human-in-the-
loop, building an active object search and guidance system for PVI. The fi-
nal system should be fully mobile and should not require any additional ex-
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Figure 3.1: An illustration showing the differences between the air- and bone-
conduction pathways2.

pensive hardware or data connections to external services via the internet,
for example. These design choices address the issue of low acceptance ob-
served among PVI towards existing commercial guidance systems Arditi &
Tian (2013); Golledge et al. (2004). The reason for the indifference PVI typ-
ically display towards existing solutions, often preferring the simple walking
cane instead, can be attributed to these systems’ clunkiness and price, often
being a costly advertisement of the users’ disability, rather than an effective
guidance aid (Golledge et al., 2004). Furthermore, existing commercial prod-
ucts are often prohibitively expensive, with a walking cane augmented with
a sonar costing as much as £590 (e.g. the GuideCane (Borenstein & Ulrich,
1997) and the UltraCane1 at the time of writing).

For these reasons, the guidance system proposed in this thesis will be based
on a mobile phone or a small tablet which are common personal devices nowa-
days and will therefore not make the user stand out from the crowd. The only
additional hardware requirement is a set of inexpensive bone-conduction head-
phones to transmit the guidance instructions to the users. Typical over-ear
headphones conduct sound via air vibrations that are carried to the cochlea
(the inner ear) via the ear canal and ear drums. Bone-conduction headphones,
however, are placed on the user’s cheekbones (or elsewhere on their head) and
conduct sound through the skull directly into their cochlea and therefore do not
impede a user’s normal, air-conducted hearing function. Figure 3.1 illustrates
the differences between the two audio signal transmission media.

Specifically, an Asus Zenphone AR3 handsets and a Sandstone Tango de-
velopment kit (each pictured in Figure 3.2 and Figure 3.3) were used to develop
the guidance system prototypes. Both of these devices are equipped with a

1www.ultracane.com/
2help.aftershokz.com/hc/en-us/articles/115002337953-How-They-Work
3www.asus.com/Phone/ZenFone-AR-ZS571KL/

www.ultracane.com/
help.aftershokz.com/hc/en-us/articles/115002337953-How-They-Work
www.asus.com/Phone/ZenFone-AR-ZS571KL/
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Figure 3.2: The latest Tango and ARCore compatible device from Asus: the
Zenphone AR.

Figure 3.3: The original Tango developer’s kit tablet device.

Figure 3.4: The AfterShokz bone-conduction headphones used in this project.

set of depth-perception cameras and are enabled with Google’s experimental
Tango SDK4 and its more recent ARCore5 toolkit, which provide sophisticated
tracking and depth perception APIs. In addition, a pair of AfterShokz Sportz
Titanium6 bone-conduction headphones, pictured in Figure 3.4, were used to
develop and evaluate the proposed guidance interface.

4en.wikipedia.org/wiki/Tango_(platform)
5developers.google.com/ar
6https://aftershokz.com/collections/wired/products/sportz-titanium

en.wikipedia.org/wiki/Tango_(platform)
developers.google.com/ar
https://aftershokz.com/collections/wired/products/sportz-titanium


CHAPTER 3. ACTIVE GUIDANCE SYSTEM DESIGN 27

Figure 3.5: A high-level block diagram representation of the guidance system.

3.2 Active Guidance
The proposed system is based on one of the aforementioned devices, e.g. a
tablet or mobile phone, and will have access to their onboard hardware, in-
cluding inertial measurement units (IMU) and high-resolution cameras. The
system will take a user’s desired object as input and will output instructions
to guide them towards it. In this setup, the user forms a central component
of the guidance system, acting as the manipulator that adjusts the device’s
viewing angle, and is therefore included in the control loop.

A high-level representation of the proposed guidance system is given in
Figure 3.5. Conceptually, this is similar to the classical closed-loop control
problem shown in Figure 1.1, where the difference between the desired and
actual output of the process is used to generate a signal that controls the
process state. For the guidance system, the process tries to drive the output,
y, to the goal (a target object), r, by using active vision concepts to generate
the control signal, u. However, instead of an electro-mechanical servo, u is
driving a human user, represented by the block H. The latter transforms u to
the signal u∗ (i.e. the actual camera manipulation), reflecting the variability
between different users in perceiving different sensory stimuli. Therefore, it is
important to design the HMI, G, and the controller K ’s signal, p, such that u
tracks u∗ as closely as possible. As the user interprets u∗ and manipulates the
camera sensor, P, the difference, e, between the current and desired states, as
well as the controller output, change accordingly.

The challenge in designing a good guidance system for the proposed task
is two-fold. Firstly, K must be independent of the environment and the user,
meaning that objects can be placed in different unknown positions, and po-
tentially large divergences between u and u∗ by different user behaviours must
be handled appropriately. Secondly, the HMI must provide clear and easily
interpretable instructions that will allow the user to execute the correct action
and move the device to the intended position, as instructed by the guidance
system. These considerations are taken into account in the initial design of
the audio interface and the controller, as discussed in the following chapters.
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3.3 Human-Machine Interface Module
This section describes the HMI module, specifically motivating the design
choices that were made to implement an active guidance system for PVI, and
the different aspects that may affect its performance.

3.3.1 Feedback Modality

The purpose of the guidance system presented in this thesis is to generate
navigation instructions and to effectively and accurately communicate them
to a user with visual impairments. Traditional navigation systems, such as
Google Maps and GPS devices, use a simple 2D topographic map of the user’s
surroundings and overlay it with the recommended route, providing periodic
vocal instructions to supplement the visual data. In this case, a non-visual
interface should be implemented for the guidance system to accommodate the
needs of this research’s intended audience of people with visual impairments.
In particular, the guidance is limited to two dimensions, in the lateral (pan
angle) and median (elevation angle) planes, since only the direction of an object
is considered, and not its distance from the user.

Common solutions are haptic, audio and vocal feedback Flores et al. (2015);
Marston et al. (2019) and haptic feedback via vibration signals were originally
considered. To avoid additional hardware requirements, the mobile device’s
on-board vibration actuators could be used. However, these actuators are
not sufficient to transmit directional guidance instructions. Vocal instruc-
tions use discrete, turn-by-turn guidance signals that are well-suited for macro-
navigation tasks, such as navigating to a certain building in a city using Google
Maps, for example. However, for a search task focussed on the user’s imme-
diate surroundings (i.e. a micro-navigation search task as described by Petrie
et al. (1997)), an adjustable audio signal is a more appropriate feedback mode,
given the increased guidance resolution it provides. The advantage of audio
over vocal feedback for a micro-navigation task is further highlighted by re-
searchers that recorded users’ general dissatisfaction when vocal feedback is
used for such a task (Arditi & Tian, 2013; Lewis et al., 2015; Golledge et al.,
2004). Furthermore, this feedback mode has the added benefit of requiring
little additional hardware to transmit high-bandwidth information and is also
flexible enough to better suit users’ preferences. Audio feedback was therefore
selected as the feedback medium for this research.

3.3.2 Audio Interface Design

Audio signals can be split into two separate channels (e.g. one each for the pan
and elevation dimensions) and transmitted via the same device, minimising the
risk of overwhelming the user. The audio cues can be manipulated to transmit
different data in many ways, including adjusting the signal’s spectral signature,
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amplitude and periodic behaviour (beeping or a continuous tone). When an
audio signal is transmitted via a set of speakers or headsets, it can also be
transformed to mimic the characteristics of a natural, external sound source,
thereby tricking the brain into believing the sound is being played from some
arbitrary position. Such a transformation can be done using a head-related
transfer function (HRTF) and a pair of stereo headsets or speakers. In this
thesis, the guidance interface has been designed to spatialise the audio signal
in both the pan and elevation dimensions, thereby giving the user an external
reference point users can localise and search for. This approach was inspired
by the ‘earcons’ concept described by Frauenberger & Noisterig (2003), which
involved so-called virtual audio realities (the audio-based version of more well-
known virtual reality concepts). Spatialised audio signals are well-suited to
the task, displaying similar levels of performance to vocal feedback, but with
less cognitive load and higher resolution (Klatzky et al., 2006). However, since
bone-conduction signals bypass the outer ear structure, it does not perform
well in the elevation dimension. A simple linear adjustment to the signal’s
pitch as a function of the elevation angle is therefore proposed instead. The
pan angle can still be conveyed by transforming the audio signal with an
HRTF, and indeed it has been found that this dimension is unaffected by
using bone-conduction headphones (Schonstein et al., 2008; MacDonald et al.,
2006; Stanley & Walker, 2006). The proposed audio interface is discussed in
detail and evaluated in Chapter 4.

3.4 Guidance Control Module
In addition to the audio interface, the guidance system must generate step-
by-step instructions that, when executed, will move the user from an initial to
the final target position. For example, commercial guidance systems (Garmin,
Google Maps, etc.) use GPS technology to localise a user on a road map and
generate discrete navigation instructions that are a function of the user’s cur-
rent position and the target destination. Navigation instructions are typically
triggered by significant events, such as when the user reaches the end of a road
or a landmark. A chain of such events forms a set of waypoints that will lead
the user to their desired destination. The key challenge here is to generate
the optimal guidance instruction every time the user reaches a new waypoint.
In this research, the destination is an object instead of a physical location.
The goal of the guidance system is therefore to generate the optimal set of
instructions so that the user points a camera towards the target object with
the least amount of effort, i.e. the fewest possible waypoints.

With the stochastic, discrete and chain-like sequence of states and actions
(e.g. ‘go right when at the fountain’), the problem can be modelled as a Markov
Chain and solved as a Markov decision process (MDP). An MDP is a control
process and mathematical framework for modelling the decision-making pro-
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Table 3.1: A summary of the design choices made for the proposed guidance
system.

Component Selected Item or Framework Motivation

Hardware Asus Zenphone AR, Tango
Developer Kit

Project Tango/ARCore com-
patibility, small form-factor,
available libraries, drivers and
documentation, familiarity

Hardware AfterShokz bone-conduction
headphones

Low cost, non-interference
with ambient sounds, com-
pact form-factor

Interface 2D Audio signals Low cognitive load, flexibility,
favourable hardware require-
ments

Guidance PO/MDP-based controller Suitability for a sequential
search task, well-established
algorithms and modelling
methods, flexibility

cess of Markov systems where the decision outcome is either fully or partly
under the control of the decision-making agent. A Markov system has the so-
called Markov property, which refers to the memoryless nature of a stochastic
process, meaning that the system’s next state is only dependant on the current
state and not any state that preceded it. However, an MDP assumes that all
of the states are fully observable by the agent, i.e. the agent knows with 100%
certainty its current state at any given moment. Of course this is a naive as-
sumption given that sensors are imperfect and contain errors. This issue can
be addressed with a partially observable MDP (POMDP), which includes a so-
called observation matrix that compensates for sensor noise and other errors.
Section 2.4.1 and Section 2.4.2 explain how MDPs and POMDPs are modelled
and discuss popular algorithms to make complex decisions with them.

In this research, the guidance control module’s objective is to take the
camera’s view as input and generate guidance instructions for the user to point
the camera towards the target object. An MDP- or POMDP-based solution
was devised to provide such discrete guidance instructions, and evaluated on
a mobile device. These implementations and experiments are presented in
Chapter 5 and Chapter 6 for the MDP and POMDP models respectively.

3.5 Conclusion
This chapter laid out the general system design, introducing the individual sub-
components that will form the core of the active guidance solution. These are
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the audio interface that communicates the guidance instructions to the user,
and the control module that is responsible for generating such instructions.
Some key design choices were introduced in this chapter, which are summarised
in Table 3.1. Subsequent chapters discuss these components in greater detail.
In particular, Chapter 4 presents the audio-based guidance interface for people
with visual impairments, while Chapter 5 proposes the MDP-based controller
used for active visual search, and Chapter 6 discusses the final POMDP-based
guidance system for object search in a real-world scenario.



Chapter 4

Audio-based User Interface

As discussed in Chapter 3, traditional visual guidance interfaces are not suit-
able for this research’s target demographic of people with visual impairments
(PVI). An audio-based interface was therefore implemented to accommodate
the largest number of people while minimising the cognitive load and effort
required by the user. This human-machine interface (HMI) should be effec-
tive in guiding a person to the target with reasonable accuracy and time, be
non-intrusive, and not overwhelm the user’s senses or otherwise confuse them.

Humans are naturally able to determine the 3D position of a sound source
and by exploiting this ability, real-time guidance instructions can be inter-
preted without posing a significant cognitive load (Klatzky et al., 2006). A
sound source can be spatialised by adjusting a tone’s intensity (distance), spec-
tral signature (elevation angle), time delay and level differences (pan angle). In
this case, only the pan and elevation positions are transmitted to guide them
to point the camera towards a target object or visual feature. However, the
bone-conduction headphones used in this research bypass the outer ear struc-
ture and their spectral profile can therefore not be properly interpreted. The
target’s elevation angle can be conveyed by adjusting the tone’s pitch instead,
as explained in the next sections.

This chapter discusses the design and implementation of this new audio
interface for a mobile assistive device in Section 4.1 and Section 4.2. A set of
experiments were carried out to test its efficacy at directing a user towards a
point in space, which are discussed in Section 4.3, with their results presented
in Section 4.4. Finally, Section 4.5 concludes the chapter, discussing the results
and how the interface will be used in the coming chapters. Parts of the research
work presented in this chapter was published in a conference paper (Lock et al.,
2019b) and submitted to a journal (Lock et al., 2019c).

32
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Figure 4.1: A person with visual impairments during an experiment. The
hardware components used are shown, along with the reference coordinate
system used to describe the angular adjustments required to point the camera
(denoted by its surface normal C) at a target.

4.1 Hardware Components
The work for this chapter is based on a mobile Android device (the Google
Project Tango tablet pictured in Figure 3.3 and Figure 4.1). As a result, the
HMI is limited to input/output options, drivers and libraries that are available
to this operating system.

A set of bone-conduction headphones are used as the audio transmission
medium. These headphones are placed on a user’s cheekbones and conduct
the audio signals into the inner ear through the skull, instead of the auricle
(the outer part of the ear) like typical over-ear headphones. This has the
benefit of allowing the user access to ambient sounds and does not impede a
user’s ability to detect oncoming vehicles and people, for example (Lichenstein
et al., 2012). Alternative headphones that allow ambient noise to pass through,
such as open-back headphones, still interfere with the incoming sound and
were therefore disregarded. A set of AfterShokz bone-conduction headphones,
pictured in Figure 3.4, were ultimately used.
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4.2 Audio Interface Design
Humans can localise a sound source in three dimensions by considering cues
recorded in one ear (monaural cues) and comparing cues received at both
ears (binaural cues) (Blauert, 1997, 1969). Binaural cues include inter-aural
time and level differences (ITD and ILD respectively) that help to determine a
source’s location on the lateral plane. ITD is the perceived time delay between
the signal reaching both ears, while the ILD is the perceived volume difference
in the signal. For example, a sound that comes from an individual’s right
will hit the right ear first with a slightly higher volume compared to the left
ear. Monaural cues are produced by the interaction between the sound signal
and the listener’s anatomy (e.g. head, shoulders, outer ear) which modifies the
signal’s spectral profile before it enters the ear canal. When the modified audio
signal finally enters the inner ear, the user is able to subconsciously analyse
the frequency response and accurately determine the position of the sound
source on the median plane. The distance to the source is simply derived as
the intensity, or volume, of the source, i.e. a louder sound would appear closer
to the user than a softer one.

These cues can be artificially generated with a head-related transfer func-
tion (HRTF) and played back to the user to simulate sounds originating at
different locations. However, given the limitations of bone-conduction in con-
veying a spatialised audio signal’s elevation component’(discussed in more de-
tail in Section 3.3.2), a simple linear adjustment to the signal’s pitch as a
function of the elevation angle is proposed instead to convey the target’s ele-
vation angle. The pan angle can still be conveyed by applying an HRTF to the
audio signal, since this dimension is unaffected by the use of bone-conduction
headphones (Schonstein et al., 2008; MacDonald et al., 2006; Stanley &Walker,
2006).

A schematic of the proposed audio interface, adapted from block G in Fig-
ure 3.5, is shown in Figure 4.2. The target’s pose, p, enters the interface
module, from which the pan and elevation angles are extracted and sent to
separate transformation modules. The elevation angle is sent to the signal
generator w, which selects the correct pitch and generates the audio signal
as a pure sine wave. This audio wave is then sent an HRTF block and spa-
tialised using the pan angle value. The details of the pan and elevation angle
transmission mechanisms are discussed in detail next.

4.2.1 Pan

The audio signal is based on a pure sinusoidal wave, transformed using an
HRTF. People typically have trouble localising a tone without a sufficiently
rich spectral profile. However, the ITD and ILD are the dominant perception
mechanisms in this dimension and are independent of the tone’s spectral sig-
nature, while the elevation angle is given through a different mechanism. This
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Figure 4.2: A schematic of the different components of the proposed audio
interface. The target’s elevation angle (θ) is extracted from the pose signal, p,
sent from the controller and is used by the signal generator w to generate an
audio wave with the correct pitch, after which it is spatialised with an HRTF
and the target’s pan angle, φ.

is the reason why perception accuracy in the pan dimension is largely unaf-
fected by headphone choice. A pure sine wave is therefore suitable to convey
the target’s pan angle. The default HRTF provided by the OpenAL library1,
based on the MIT’s KEMAR dataset (Hiebert, 2005), was applied to the audio
signal to spatialise its source according to the user and target’s poses.

4.2.2 Elevation

Applying a generic HRTF to an audio signal that is played back via bone-
conduction headphones is not very effective in conveying a sound source’s
elevation angle (MacDonald et al., 2006; Schonstein et al., 2008). To compen-
sate for this, the target’s elevation is communicated to the user by adjusting
the tone’s pitch (i.e. the sine wave’s frequency) as a function of its elevation
angle relative to the camera’s surface normal (the angle θ and vector C in
Figure 4.1, respectively). When the camera vector is at the correct elevation
(i.e. θ = 0), the tone’s pitch is set to the reference frequency, whereas the pitch
(i.e. the audio wave’s frequency) is increased and decreased when the target
is above or below the camera vector, respectively. This high/low assignment
scheme is motivated by humans’ natural association of high-pitched sounds
with elevated sound sources, and low-pitched sounds with source’s below an
individual’s ear (Pratt, 1930; Blauert, 1997). An octave- and semitone-based
function is used to adjust the tone’s pitch to ensure perceptible changes while
keeping the timbre almost constant (Shepard, 1964).

The pitch is updated at a rate of 10 Hz as the user moves the device.
It changes as a linear function of the elevation angle between the camera
surface normal and the target (see Figure 4.3) and the gradient is determined
by setting the angle and pitch limits. For the interface, the field of view is
limited to a range of ±90°, or [−π

2
, π
2
] radians, in both the pan and elevation

dimensions. After practical tests with the interface, the reference pitch that
1https://www.openal.org/
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Figure 4.3: One of the pitch gain function used to convey the target’s elevation
angle. Note the logarithmic scale of the frequency axis.

the audio interface emits when the camera vector is on-target is set to 512 Hz,
which is comfortably audible and allows for a large number of upper and lower
pitch limits to be selected. These pitch limits are set at a predefined number
of octaves above and below the reference pitch that indicates the camera is
at the correct elevation. For example, upper and lower limits of one octave
around this reference point means doubling the reference frequency to reach
the upper limit and halving it to reach the lower limit, leading to upper and
lower frequency bounds of 1024 Hz and 256 Hz respectively.

4.3 Experiments
A set of experiments were conducted to evaluate the interface and determine
how effective it is in a pointing task where the user adjusts the pan and
elevation angles of a camera to search for a target. Furthermore, a set of
pre-screening experiments were also conducted to characterise each partici-
pant’s hearing and determine their perception limits in the respective audio
dimensions. This section describes each of these experiments and their data
generation and capturing processes.

4.3.1 Interface Implementation

A diagram of the experimental system pipeline is shown in Figure 4.4, where
the arrows indicate the direction of information flow. When the user taps
anywhere on the device’s screen, a new virtual target is generated and its
coordinates are sent to the audio generation module, along with the device’s
current position and orientation. The audio generator then produces a tone
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Figure 4.4: A diagram of the individual system components and their commu-
nication pipelines. F indicates a feedback signal and P a pose signal.

based on the difference between the device camera’s viewing direction and
the target’s position. The tone is sent to the audio output channel, which
plays it back to the user. The user is not explicitly informed when they have
successfully found a target and have to instead rely on the audio signal and
their subjective judgement determine whether they are on target or not. A
WiFi recording module is constantly monitoring the device’s pose, the targets’
positions and the audio pitch and records it all in a remotely stored datafile.

4.3.2 Participant Characterisation

A preliminary set of experiments were conducted to characterise the partici-
pants’ hearing characteristics. The measured characteristics were each partic-
ipant’s audio localisation ability on the lateral plane, as well as their ability to
discriminate between tones with different frequencies. These results will pro-
vide context to the subsequent target search experiment as well as additional
insight on any possible biases or limitations.

Lateral Sound Localisation

This experiment was conducted to evaluate the participants’ abilities to de-
termine the lateral direction a sound is coming from. To do this, a continuous
512 Hz sinusoidal tone, transformed with an HRTF to place it to the partici-
pant’s left or right, was played through the bone-conduction headphones. The
participant then had to select the direction the sound came from. OpenAL’s
default HRTF (Hiebert, 2005) was used to perform the signal transformation.
The longer the experiment lasted and the more correct guesses the partici-
pant made, the closer the source moved to the centre-front of the participant,
making it increasingly harder to localise.

For this progressive increase in difficulty, a ‘2-up, 1-down’ step process
was used (Wetherill & Levitt, 1965; Levitt, 1971), meaning that for every two
correct answers, the distance to the centre was halved. Conversely, the task
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became easier for each incorrect answer by doubling the sound source’s distance
from the centre. Furthermore, two different step sequences, one starting at a
large angular distance (45°) from the user’s front and the other at the minimum
distance (approximately 1°), was used, giving an ‘easy’ and a ‘hard’ progression
respectively. The terminating condition for the experiment was when the two
sequences converged to a direction within two intervals of one another for three
consecutive guesses. For example, the experiment terminated when one step
sequence was positioned at 11.25° and the other between 2.8° or 45° for three
consecutive guesses. This gave an angular distance band where the participant
is capable of localising the sound source. Each participant performed this
experiment three times.

Pitch Discrimination

Being able to differentiate between different sounds’ pitches (i.e. the ability
to tell if one tone is higher or lower pitched than another) is an important
mechanism for this interface. The following experiment was conducted to
determine how well the participants can perform this task. These results are
also used to find any potential hidden biases among the participant population
and provide additional context to other experimental results.

Two pure sinusoidal tones with different frequencies were played to the
participant through bone-conduction headphones. They had to select whether
they perceived the second tone as higher or lower pitched than the first tone.
The first tone was randomly generated, while the second tone was generated
by adding or subtracting some value from the first one. These values were a
function of the participant’s performance. Similar to the sound localisation
experiment, a ‘2-up, 1-down’ step process was used: for every two consecutive
correct answers, the pitch difference between the tones was halved, while it
was doubled for every incorrect answer. Two step sequences were again used
here, with one initialised with a large pitch difference (fh = 29 = 512 Hz)
between the tones and the other with a small difference (fl = 21 = 2 Hz). The
termination condition was when the two-step sequences were within one octave
of each other (i.e. log2

fh
fl

= 2) for three consecutive answers. For example, the
experiment would terminate when one step sequence was set to 64 Hz and the
other between 32 Hz or 128 Hz for three consecutive guesses. Pitch differences
were measured in semitones, which can be obtained with the relation

∆f = 12 log2

f0
f1
, (4.3.1)

where f0 and f1 are the frequencies of the first and second tone respectively.
Each participant performed this experiment twice.
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4.3.3 Target Search

To test the interface’s effectiveness at guiding the user in a pointing task,
a set of experiments were conducted to capture the difference between the
targets’ actual and perceived angular positions. The participants were given
a Tango tablet running an app that implements the experimental setup in
Figure 4.4. The app generates a set of virtual targets and presented them
to each participant through the audio interface, one at a time. The targets
were set at a constant distance from the participant and their pan and elevation
angles were uniformly generated across the four quadrants of the pan-elevation
plane to avoid clustering. Each target’s angular position was adjusted and
communicated in real-time as the participant points the device around. When
the participants were confident that the device was on-target, i.e. hearing the
audio front-on at 512 Hz, they tapped the screen, marking the location and
generating the next target. The targets’ positions were all set relative to the
device’s coordinate system, which was tracked using the Tango hardware and
localisation API. A total of 28 targets were generated per participant.

Part of this experiment’s goal is to evaluate how changing the gradient
of the pitch function (visualised in Figure 4.3) affects target acquisition per-
formance, e.g. does a steeper pitch gain as a function of the elevation angle
improve accuracy or decrease the search time? Pitch limits of one, two and
three octaves above and below the neutral tone were then set for the so-called
lo, med and hi pitch gradient settings, respectively. The pitch limits are given
by the following intervals:

flo ∈ [256 Hz, 1024 Hz]

fmed ∈ [128 Hz, 2048 Hz]

fhi ∈ [64 Hz, 4096 Hz].

(4.3.2)

After 28 targets were marked, the experiment run was ended and the pitch
gain rate was changed. The entire process was repeated two more times, giving
a total of three experiment runs for the three different pitch gains and 84 tar-
gets per participant. Furthermore, to minimise any speed-accuracy trade-offs
and suppress any competitive tendencies among the participants, they were
asked to approach the experiment as naturally as possible and avoid empha-
sising time or accuracy. The order in which the pitch gain was changed for each
participant was randomised in order to minimise any learning effects. Prior to
the experiment, the participants were allowed to familiarise themselves with
the interface and its behaviour by pointing the camera in different directions
and hearing what the 512 Hz on-target tone sounds like.

4.3.4 Performance Metrics

Two different metrics are used to compare the three different pitch gradient
settings: the acquisition accuracy and search time. The accuracy is given by
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the angles φ and θ in Figure 4.1, where small values for each indicate improved
accuracy performance in the pan and elevation dimensions, respectively. The
results are separated between pan and elevation in order to see how the differ-
ent pitch gradients affect a participant’s pointing accuracy.

The performance of the three pitch gradient settings in Equation (4.3.2), in
terms of target finding accuracy and the time it took each participant to find
a target, are also compared. However, since each participant was presented
with a different, randomly generated set of targets, a direct time comparison
is not appropriate. Instead, Fitts’s Law (Fitts, 1954), which is a predictive
model of human movement in a 2D pointing task, can be used to generate
a common performance metric between the settings’ search behaviours using
each settings’ average target estimation error and search time. The trends
predicted by this model have also been observed in works with non-visual and
sound-based pointing tasks (Wu et al., 2010; Marentakis & Brewster, 2006;
Ahmaniemi & Lantz, 2009). To accommodate the uncertain target sizes (the
targets are effectively a single point in space in these experiments) and noisy
data, MacKenzie’s modified version of Fitts’s Law (MacKenzie, 1992), is used
in this analysis to determine the time performance. Both of these methods
state that there is a relationship between the time it takes to find a target
and the ratio between the distance to the target and its width, i.e. its so-called
‘index of difficulty’. It also provides an ‘index of performance’ that can be used
as a metric to compare the results between the three pitch gradient settings
in Equation (4.3.2).

Fitts’s Law is given by the following equation:

t = a+ bID, (4.3.3)

where t is the time it takes to find a target, a and b are constants determined
through regression and is ID the target’s index of difficulty, given as a loga-
rithmic ratio between the distance to the target and its width. In this case,
the targets have no width, since they are points in space, and MacKenzie’s
modified form for ID is therefore used instead. Here, ID is given by

ID = log2

(
θd
we

+ 1

)
, (4.3.4)

where θd is the angular distance between subsequent target centres and we is
the targets’ effective angular width (Welford, 1968). This effective width is
given by

we = σ
√

2πe = 4.133σ, (4.3.5)

where σ is the standard deviation of the error data, taken as the angular
difference between the participant’s target selection and its actual angular
position. Finally, Fitts’s index of performance, IP , can be calculated using
the relation
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Table 4.1: A summary of the participant demographics.

Group G1 Group G2

Gender [M/F] 10/32 7/3
Age [years] 20± 2 61± 17
Degree of Vision Impairment N/A 7 totally blind, 3 with

very limited light per-
ception

Experience with ETAs None None

IP =
ID

t
. (4.3.6)

4.3.5 Experiment Procedure

Two groups of participants were recruited for the experiments on a volunteer
basis. Group G1 consisted of 42 undergraduate students (10 male, 32, female)
with normal eyesight who were blindfolded for the experiments (mean age:
20 ± 2 years). Group G2 contained 10 people (7 male, 3 female) with severe
visual impairments (mean age: 61 ± 17 years). Of the latter group, 3 are
congenitally blind, while the rest were classified as severely sight impaired
later in life. Of these, 3 participants still have limited light perception with no
ability to reliably discern shapes and objects (the rest had no light perception).
Nevertheless, they were asked to close their eyes during the experiment. None
of the participants reported any significant prior experience with electronic
navigation aids and none had any hearing or other disabilities that could have
influenced their performance in the experiments. These demographics are
summarised in Table 4.1.

Each participant performed three sets of experiments each, with the two
characterisation experiments preceding the final target-search experiment. Both
groups were given some time before the target search experiment to familiarise
themselves with the system, the audio signal’s behaviour and the 512 Hz on-
level tone. Furthermore, to minimise any potential speed/accuracy biases, we
asked the participants to focus on finding the targets without worrying about
the time it took to complete the task.

4.4 Results
This section contains the results collected during the experiments. Each ex-
periment’s results are first presented and analysed individually, and then sum-
marised and discussed together in the last section.
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Figure 4.5: Histograms of all of the participants’ guesses of the tone locations.
Each bin shows the correct and incorrect guesses.

4.4.1 Characterisation of Sound Localisation

Figure 4.5 shows the results captured from the sound localisation experiment
in which the participants had to select the direction (left or right) where the
tone was played from. This histogram plot was generated by summing the
number of correct and incorrect guesses for each participant. The 2-up-1-
down experiment procedure used here led to an unequal distribution on total
guesses for each participant, since some participants reached the equilibrium
faster than others. The data were therefore normalised for each participant
before being normalised for the total number of participants to avoid unfairly
weighting the participants with more guesses.

It can be seen that the vast majority of guesses for both groups were correct.
For Group G1, most of the errors were made at the minimum distance from
the centre, i.e. the most difficult to guess correctly, which is the expected
behaviour. This indicates that the participants in G1 consistently progressed
through the distance intervals and it can therefore be concluded they had
little difficulty determining the correct sound direction. The seemingly higher
proportion of incorrect guesses for Group G2 could be an artefact from the
smaller sample size compared to Group G1.

Group G2 also displays a concentration of erroneous guesses in the centre
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Figure 4.6: Histograms of all of the participants’ guesses of which tone was
higher pitched. Each bin shows the correct and incorrect guesses.

interval. However, it also shows more errors in other distance intervals and a
more even progression towards the centre. This could indicate that, instead
of terminating the experiment as described in Section 4.3.2, there was more
switching back and forth between the three central intervals.

These results show that both participant groups are capable of determining
a sound source’s location with a reasonable level of consistency and accuracy.
Indeed, these results are in line with previous literature (Schonstein et al., 2008;
MacDonald et al., 2006; Stanley & Walker, 2006), confirming that humans are
very adept at localising a sound source, particularly on the lateral plane.

4.4.2 Characterisation of Pitch Discrimination

The results of the pitch discrimination experiment are shown in Figure 4.6,
where the bar plots show the proportion of correct and incorrect guesses while
choosing which tone was higher pitched for different tone difference intervals.
This plot was generated in a similar way to that of Figure 4.5, where the
total number of correct and incorrect guesses were normalised for each partic-
ipant and then normalised across the number of participants. For Group G1,
it is observed that the guesses are normally spread around the 0 semitone-
difference interval and the highest proportion of incorrect guesses occur in
the [−0.25, 0.25] semitone-difference interval. The guesses from Group G2 are
more concentrated around the centre and the majority of incorrect guesses also
occur in the [−0.25, 0.25] semitone-difference interval.

Assuming these differences are normally spread, a cumulative distribution
function (CDF) is fit over each participant’s set of results for their correct
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Figure 4.7: Distributions of the median cut-off frequency thresholds along with
the median 75% cut-off thresholds.

guesses. Each CDF’s parameters are then used to determine a frequency cut-
off threshold where the participant could no longer reliably tell tones apart,
which is set to contain 75% of each participant’s correct guesses. The median
of these threshold values can then be used to estimate the frequency difference
at which the entire participant population can no longer tell the difference
between two tones. It can also be used to improve the interface’s pitch gain
profile (e.g. Figure 4.3) and performance. Figure 4.7 shows the threshold dis-
tribution, along with the median value, which was found to be approximately
0.4 semitones for each group. Figure 4.8 contains histograms of the cut-off
frequency thresholds for each setting, which show that the results for each
respective setting can be grouped together.

4.4.3 Target Search

The results from the target search experiment are shown in the 2D histograms
in Figure 4.9, where the angular errors in the pan and elevation dimensions
are plotted against each other. A set of box-plots of the errors are also given
in Figure 4.10 for each audio setting. The results are summarised in Table 4.2.

The Shapiro-Wilk test for normality reveals that none of these distribu-
tions are normally spread. Therefore the Pearson test is used to investigate
the correlation between the actual target locations and participants’ selected
locations. These results are included in Table 4.2. The Pearson correlation
scores for Group G1 indicate a moderate to strong positive correlation between
the target and the selected locations (rpan ∈ [0.72, 0.77], p < 0.001; relevation ∈
[0.36, 0.49], p < 0.001), showing that both the pan and elevation cues gener-



CHAPTER 4. AUDIO-BASED USER INTERFACE 45

Figure 4.8: Histogram distributions of the participants’ 75% cut-off thresholds.
The linear Hz scale is used here to more clearly show the separation between
the three settings.

Table 4.2: The average target acquisition error in the pan and elevation di-
mensions for each participant group, as well as their correlation scores.

Setting Mean Angle
Error [rad]

Mean Absolute
Angle Error
[rad]

Pearson Corre-
lation

G1

lo −0.02±0.37 0.25± 0.27 0.75, p < 0.001
Pan med −0.01±0.37 0.26± 0.27 0.77, p < 0.001

hi −0.03±0.39 0.26± 0.29 0.72, p < 0.001
lo −0.12±0.51 0.42± 0.31 0.36, p < 0.001

Elevation med −0.11±0.41 0.44± 0.24 0.49, p < 0.001
hi −0.15±0.44 0.36± 0.29 0.48, p < 0.001

G2

lo −0.01±0.37 0.48± 0.31 0.10, p = 0.03
Pan med 0.04± 0.53 0.45± 0.27 0.13, p = 0.01

hi 0.03± 0.48 0.36± 0.22 0.21, p < 0.001
lo −0.30±0.59 0.49± 0.39 0.03, p = 0.48

Elevation med −0.42±0.45 0.42± 0.33 0.31, p < 0.001
hi −0.37±0.43 0.36± 0.32 0.40, p < 0.001
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Figure 4.9: Distributions of the angular errors in the pan and elevation dimen-
sions for the three different pitch gradient settings.
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Figure 4.10: Box-plots of the median pan and elevation errors for each setting.

ally worked as expected. However, the correlation scores for Group G2 are
significantly weaker, with a pan angle correlation of rpan ∈ [0.1, 0.21], p < 0.03.
With the exception of the lo setting (plo = 0.48), the elevation correlation is
generally stronger, with relevation ∈ [0.31, 0.40], p < 0.001.

The repeated-measures procedure that was used for these experiments re-
quires the data for each participant to be grouped together for each setting.
The medians of these data groupings are then used as individual samples that
represent an individual participant’s performance for each setting. Figure 4.10
shows these median data collected from each participant as a set of box-plots,
while Figure 4.11 shows the collection of absolute errors.

The box-plots in Figure 4.10 show that the error in the pan dimension
is approximately centred around 0 rad for both groups, with some divergence
between the groups for the different settings. However, using the Friedman test
for repeated measures on the medians of absolute errors, these divergences are
found to not be significant (pG1 = 0.17, pG2 = 0.09), showing that spatial
perception and accuracy are not affected by changes in the tone’s pitch. This
is further demonstrated by the box-plots in Figure 4.11, which demonstrate
relatively consistent error levels in the pan dimension for both groups and
across all three settings.

Regarding the errors in the elevation dimension, shown in Figure 4.10 for
Group G1, a narrowing distribution is observed between the lo, med and hi
settings respectively, as well as a median error gradually approaching 0 rad.
A similar trend is observed for Group G2, but the improvement across the
settings are more subtle and not as linear as for Group G1. Figure 4.11 shows
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Figure 4.11: Distributions of the absolute angular errors in the pan and eleva-
tion dimensions for the three different pitch gradient settings.

a clearer improvement, i.e. errors approaching 0 rad, for the elevation data
between the three settings in both groups, with the hi setting producing the
smallest error in both cases. Further analysis of the medians of the absolute
elevation error with the Friedman test reveals that the results for the different
settings are significantly different from one another only in Group G1 (pG1 =
0.002, pG2 = 0.32).

A post-hoc analysis using the Wilcoxon signed rank test, with a Holm-
Bonferroni correction applied to the commonly used 0.05 threshold, was used
to investigate the setting relationships more closely. This analysis reveals that
there is a significant difference between the errors generated by the lo and
med settings, as well as the lo and hi settings, for Group G1 (plo−med =
0.003, plo−hi < 0.001), showing that the lo setting clearly produces the highest
error. However, it is not clear which of the med and hi settings are best for
Group G1. Based on the current data, it is impossible to conclude which
setting produces the smallest angular error for Group G2, but this may be
caused by the relatively small sample size for each setting. It is also noted
that there is a significant negative error bias in the elevation error data for
all of the settings and both groups, possibly caused by a cognitive constraint
introduced by the floor, below which the participants believed a target could
not appear. A similar trend was observed by Stanley & Walker (2006). Since
this bias seems to be constant, it could easily be removed by adjusting its
frequency parameters to shift the bias upwards by some offset.

The average absolute pan errors from Group G1 falls within the ranges ob-
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Table 4.3: A summary of the p-values for the comparisons between the different
settings’ and groups’ error data in both the pan and elevation dimensions.

Pan Elevation

lo p = 0.18 p = 0.90
med p = 0.86 p = 0.34
hi p = 0.28 p = 0.38

served by MacDonald et al. (2006) and Schonstein et al. (2008) of [0.16, 0.38]
radians and [0.17, 0.26] radians, respectively. Indeed, the errors for each setting
fall within the latter, more conservative range. However, Group G2 demon-
strates a wider spread in their error data and higher average error than G1
([0.25, 0.26] vs. [0.36, 0.48] radians). The results from Katz & Picinali (2011)
and Zwiers et al. (2001) reported a similar trend.

The elevation estimation performance for both groups deteriorated when
compared to their pan estimation results, which is expected given previous
experimental results on human audition (Barfield et al., 1997). The mean
absolute error ranges for of two groups are [0.36, 0.44] radians and [0.36, 0.49]
radians for Groups G1 and G2 respectively. These results are more similar
than the pan results are. Comparing these results to those from Schonstein
et al. (2008) for bone-conduction headphones with a signal spatialised in the
elevation dimension, this method increases the performance by approximately
57–144% for group G1 and 41–105% for group G2. Indeed, the performance
is comparable to that of open-back and high-quality in-ear headphones.

Comparing the distributions for each setting between the two groups with
the Kruskal-Wallis test for non-parametric data, it can be seen that the dif-
ferences between the distributions for all three settings are not significantly
different for either group and for both pan and elevation (the p-values are
summarised in Table 4.3). These results confirm that the performance of the
blindfolded participants and those with severe vision impairments are statis-
tically similar, and that groups from a different population can reasonably
be expected to produce similar errors, under similar experimental conditions.
Consequently, it is concluded that the hi setting, which generates the smallest
elevation error, is the best audio pitch level to guide a user in a pointing task,
and that the pan error is completely independent of such setting choice.

4.4.4 Time to Target

To investigate if the interface generates a Fitts-like response from the par-
ticipants, the time to find the target as a function of the targets’ indices of
difficulty, as defined by Equation (4.3.4), is plotted. The data are binned in
intervals of the effective target width (we) as given by Equation (4.3.5) and are
plotted for each gradient setting. A logarithmic line is fitted through the bins’
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Figure 4.12: Plots showing the Fitts relationship between the time it took the
participants to find a target and as a function of the target’s index of difficulty.

median values by regression and all the results are presented in Figure 4.12.
For Group G1, a Fitts relationship can be observed and the logarithmic line

of best fit closely approximates the median values of the binned data for all
three settings. This is confirmed by strong Pearson correlation scores for each
setting (rlo = 0.76, plo = 0.045; rmed = 0.96, pmed < 0.001; rhi = 0.86, phi =
0.013). Regarding Group G2, larger spreads for each binned dataset are ob-
served, indicating less consistency in the time-to-target results for participants
with severe vision impairments. This could be due to each participant’s result
being taken as a single datum and to the smaller population size in Group G2.
Nevertheless, the lines of best fit for the med and hi settings exhibit strong
Pearson correlation scores (rmed = 0.88, pmed = 0.008; rhi = 0.84, pmed =
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Figure 4.13: Box plots showing the participants’ indices of performance.

0.017), while the results for the lo setting does not produce a statistically
significant correlation (rlo = 0.08, plo = 0.85).

These results allows for the indices of performance to be calculated by
Equation (4.3.6), and plotted for each setting in Figure 4.13. Their results are
summarised in Table 4.4. For Group G1, there is a fairly consistent level of
performance between the three settings, with lo producing the highest indices
of performance overall (i.e. the participants found the targets with the smallest
error in the least about of time). This is supported by the results from the
Friedman test, showing that there is a significant difference in performance
between the settings (p < 0.001), as well as post-hoc Wilcoxon tests with
Holm-Bonferroni corrections, which show that the lo setting is significantly
different to the med and hi settings (plo−med < 0.001, plo−hi < 0.001). The med
and hi, instead, are not significantly different from each other (pmed−hi = 0.85).
The results for Group G2 show generally lower and inconsistent indices of
performance for each setting, which is expected given the increased times to
target observed in Figure 4.12. Again, from the Friedman test, the lo setting
produces the highest performance by a large margin (p < 0.001), compared
to the med, setting with the Wilcoxon test with Holm-Bonferroni corrections
(plo−med = 0.01), followed by the hi and med settings’ results, respectively.
This seems to indicate that, for both groups, the lo setting produces the highest
level of performance, followed by the hi setting.

Figure 4.13 shows a significant difference between the indices of perfor-
mance for each group’s respective settings, with G2 producing significantly
lower indices of performance. This is further supported by the Kruskal-Wallis
test, revealing that each setting’s distribution is indeed significantly different
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Table 4.4: The average target acquisition error in the pan and elevation di-
mensions for each participant group.

Setting Mean IP

lo 0.056± 0.005
G1 med 0.053± 0.008

hi 0.051± 0.007
lo 0.034± 0.009

G2 med 0.014± 0.002
hi 0.022± 0.006

from its counterpart in the other group (plo < 0.001, pmed < 0.001, phi < 0.001).
The difference between the blindfolded group and the group with severe vision
impairments seems to indicate that the latter require significantly more time
to find the target. However, it is unclear whether there is a systematic cause
or simply a difference in search strategy between the two groups, e.g. G2 may
prefer, on average, a slower and more methodical approach.

4.4.5 Discussion

The results for the accuracy and time performance with the proposed audio
interface shows an interesting contrast. That is, the hi pitch setting produces
the lowest target acquisition error, followed by the med and lo settings respec-
tively. However, this trend is almost completely reversed in the time-to-target
results from the Fitts model, where the lo setting gives the highest level of
performance, followed by the hi and med settings, respectively. Since Fitts’s
model takes the angular error into account, one might reasonably expect that
the results for both datasets would follow a similar trend. However, the Fitts
model does not account for changing stimuli and different movement strategies.
It is therefore hypothesised that the reason for this divergence in performance
is due to the increased resolution of the hi setting, which allows for finer ad-
justments of the device’s orientation, getting it closer to the correct target,
but at the cost of a higher average time-to-target. This seems to indicate
a speed/accuracy trade-off in finding the targets. With the Fitts model dis-
cussed here, future versions of the audio interface can be modified to prioritise
different metrics and produce the desired output.

Regarding target acquisition, the progressive improvement from the lo, med
and hi settings (see Table 4.2) seems to indicate that that simply increasing
the pitch gradient will lead to better target-pointing performance. However,
Figure 4.8 shows that the frequency difference between the ‘on-target’ tone and
the selected on in the hi setting is approaching the cut-off frequency of Group
G1, indicating an inflection point where increasing the gradient reduces the
final performance. Indeed, the participants from Group G2 seem to go beyond
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this threshold and reach a saturation point where they can no longer reliably
distinguish different tones.

A final observation is that there seems to be a general performance differ-
ence between the groups, with the blindfolded group outperforming the group
with visual impairments. The data do not make it clear why there is such
a difference, but it can be hypothesised that the demographic differences be-
tween the groups, particularly the median age difference, may have had an
effect. Indeed, it does not seem unreasonable that the more elderly members
of Group G2 may have been less familiar with the mobile technology that
was used in these experiments, which may have hampered their performance.
However, more data are required to determine whether the observed perfor-
mance differences are an artefact of the demographic differences between the
sample groups, or whether there is an underlying difference in the way people
with visual impairments localise sound.

4.5 Conclusion
This chapter investigated the implementation and use of a new spatialised au-
dio interface with varying pitch to guide a user with severe visual impairments
during a target pointing task. It was found that the blindfolded participants
and those with severe visual impairments performed similarly in localising
sound sources and differentiating between different tones. It was also found
that both groups are able to find a randomly generated, uniformly distributed
set of virtual targets with similar levels of accuracy. However, the blindfolded
group outperformed the other in terms of mean time-to-target. Different pitch
gradient settings (Equation (4.3.2)) were also tested and it was found that
the user performance in the pan dimension, based on spatialised cues, is inde-
pendent of such settings. Moreover, a speed/accuracy trade-off between the
settings was noticed, where a higher pitch setting produces a smaller angular
error, but at the cost of reducing the time performance (i.e. more time to reach
the target). These results, together with a Fitts’s Law analysis of the audio
interface, provide a useful baseline to improve and refine the latter in future
applications, prioritising speed or accuracy to produce the desired output.

In this case, the experiments determined that the hi setting produces the
best results in terms of accuracy and search time. In conclusion, with these
results, the audio interface block G of Figure 3.5 is validated and is ready to
be integrated in the guidance system presented in Chapter 6.



Chapter 5

Visual Target Search

In addition to the audio interface described in Chapter 4, the guidance system
generates instructions for the user based on the device’s current location and
state. These instructions are used to guide the user towards a target object.
To achieve this, an intelligent sensor and control module are implemented
using techniques and ideas from active vision, drawing inspiration from the
exploratory work by Bellotto (2013). Regarding active vision, Bajcsy et al.
(2018) state that

An agent is an active perceiver if it knows why it wishes to sense,
and then chooses what to perceive, and determines how, when and
where to achieve that perception.

Active vision enables an electro-mechanical system to intelligently gather use-
ful visual information on its environment in order to efficiently accomplish a
task. In this research, the guidance control module is an active perception
agent (as referred to in the quote above) that gathers and processes informa-
tion about its environment and generates the optimal guidance instructions for
the user. This control problem was schematically introduced in Figure 3.5, in
which the guidance control module, K, acts as the agent. Its internal structure
is illustrated in more detail in Figure 5.1. The controller K uses sensor feed-
back from various sources to determine the system’s current state, s, which
allows it to select an action, a, that determines where to generate a guidance
waypoint. The details of these components are discussed and described in
more detail in later sections.

This chapter provides an in-depth analysis and evaluation of the active vi-
sion controller responsible for generating guidance instructions. The chapter
begins with a discussion on the controller’s framework in Section 5.1. Sec-
tion 5.2 then explains the controller’s design and the procedure it uses to
generate the guidance path. This is followed by the experiments that were
conducted to evaluate the controller in Section 5.3, including a description
on the controller implementation. The results are presented and discussed in

54
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Figure 5.1: A diagram of the internal structure of the proposed controller. The
mobile phone tracks the state parameters, which are used to derive the state
s. The latter is used to determine the optimal action a from the policy file and
to generate a waypoint location. This location is sent to the audio interface
as the input signal p.

Section 5.4. Finally, Section 5.5 concludes the chapter with a short summary
and conclusion. Part of the work presented in this chapter has been published
in a conference paper (Lock et al., 2019a).

5.1 Active Vision System
The closed-loop system in Figure 3.5 is conceptually similar to other classical
control problems, where the difference between the desired and actual state of
a process is used to generate a control signal that changes the process itself.
In this case, the reference, r, is the object the user wishes to capture with the
mobile device’s camera. The goal of the control block, K, is to generate human
interpretable instructions, u, to guide the user towards the target object. The
process to be controlled involves a human, H, who interprets an instruction
and executes a physical action, u∗, to actually manipulate the device’s camera,
P . A new observation, y, from the camera is then fed back to the loop and
the error, e, is updated accordingly.

This chapter focusses in particular on the implementation of the control
module K. Two important points are considered in the design of this con-
troller. Firstly, K must be scenario-agnostic, meaning that objects can be
placed in different unknown positions without affecting search performance.
Secondly, since each person can interpret the instruction u differently (i.e.
different transformation block H), the controller must be robust enough to
handle incorrect interpretations. For example, one person might interpret and
execute an ‘UP’ instruction correctly (i.e. u w u∗), while another might not.
This risk can be mitigated by the use of clear and simple instructions.
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5.2 Human Control Module
Actual guidance is done by generating a set of waypoints, one after another,
which need to be observed by the device camera, tracing a path that should
eventually lead to the target object. The true position of the target object is
initially unknown to the system, so it should guide the user towards its most
likely locations to find it. These locations are based on an internal knowledge
of the spatial relationships between objects (e.g. a computer monitor is more
likely to be on top of a desk than below it). The path to the most likely
object position is generated one waypoint at a time and is updated after every
non-target object observation captured by the camera, or after re-orientation
of the latter beyond a certain angle. The discrete transitions and probabilistic
nature of the problem is well-suited to be structured as a Markov decision
process (MDP) and can be solved using existing solutions for MDPs. In the
subsequent sub-sections, the structure of the MDP, its parameters, how it is
solved and how its output is used to guide a user are described.

5.2.1 MDP For Human Control

As explained in Section 2.4.1, an MDP is a mathematical framework that
models the decision-making process of an agent, minimising some cost func-
tion while attempting to reach some goal state (Bellman, 1957). For each
discrete time step, the agent finds itself in a state s and may execute any ac-
tion, a, that is available to it. This transitions the agent into a new state, s′,
where it is rewarded or penalised by some scalar value, r. The cumulative re-
ward — the total reward the agent receives from the environment for entering
different states en route to the goal state — is the cost function that the agent
is optimising for. With an MDP, it is crucial to structure the reward function
appropriately so the agent avoids failure states and efficiently transitions to-
wards the goal state. Solving an MDP produces a so-called policy that maps
any state to an optimal action.

These principles are applied to the proposed guidance system to take the
camera’s view from an initial state to the target state (i.e. a camera view
containing the target object) and minimising the effort required by the user.
The policy is used by the agent (the guidance controller in this case) to generate
the waypoint positions. To illustrate this process with an example, consider
the scene in Figure 5.2 which contains a number of simple, distinct object
observations in the red boxes, including the target observation (the mug in the
bottom-left). The agent should guide the user towards the latter by inferring
the current state and executing the correct actions, i.e. generating waypoints
that lead the user to the target object. As the camera points to new waypoints
and gathers more information on the environment, the guidance controller is
able to direct the user toward the target position and terminate the search as
soon as it is reached.
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Figure 5.2: An example action policy generated by an MDP to guide the user
in pointing the camera from a random starting object (e.g. monitor) to a target
object (mug).

Formally, an MDP is represented by the tuple 〈S,A,T,R, γ〉, where S
is a set of possible agent states, A is a set of actions an agent can take in
any given state, T is a set of state transition probabilities that define the
probability of going from state s to state s′ after executing action a ∈ A,
with s, s′ ∈ S. R is the function that defines the reward, r ∈ R, the agent
receives for reaching state s′ after executing action a in state s. The scalar
γ is a discount factor which prioritises immediate over long-term rewards.
The following sections describe how each of these parameters are defined for
implementing the guidance system controller.

States

The state is a combination of parameters that define the agent’s world and
influences its decision process. The state vector, s, is defined as s = 〈o, n, v〉,
where o is the object currently within the camera’s view, n is the number
of waypoints that have been generated since the search started, and v is a
binary variable that tracks whether a waypoint has been generated in the
same position before. o is received from the output in the feedback loop in
Figure 5.1, while v and n are tracked with the device’s on-board sensors. n is
simply incremented for each new waypoint that is generated, while v is set to
either true or false, depending on whether the device has explored a specific
region before (v is initialised to false).
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Table 5.1: The MDP’s reward function values.

r(o = otarget) 10000
r(v = true) -10
r(n > nmax) -10
otherwise r(·) -1

Actions

For any state, there is an optimal action that will maximise the agent’s cu-
mulative reward. In this case, the action is the direction of the next waypoint
relative to the device’s current viewing direction, and is given by the set in A:

A = {UP,DOWN,LEFT,RIGHT} (5.2.1)

The example in Figure 5.2 shows the linear actions that the MDP can generate.
An action is considered completed, and therefore a new state reached, when
the camera has rotated past a predefined angle or a new object is detected.

State Transitions

The state transition matrix, T, defines the probability of the agent moving
from state s to state s′ after executing action a, i.e. the probability of observing
object o′ after object o due to a pan or elevation rotation of the camera beyond
an angular threshold. Therefore, T represents the spatial relationships between
the different objects in the environment model. These spatial relationships are
learned from a dataset during an initial training process, which is discussed in
more detail in Section 5.2.2.

Reward Function

The reward function, R, defines the immediate reward, r, that the agent re-
ceives after transitioning from state s to state s′. The agent’s goal is to max-
imise its cumulative reward and R is therefore an important design parameter
for producing an effective policy. In order to encourage the agent to find the
target object as fast as possible, a relatively large positive reward should be
assigned for successfully reaching the goal state, and a smaller negative one in
any other case.

The reward function is hand-crafted and the parameters were empirically
selected. These values are listed in Table 5.1. The rewards punishes the
agent for every waypoint it generates that does not lead to the target object
and becomes increasingly negatives when a waypoint threshold is exceeded
(n > nmax) or when a waypoint is generated in the same position more than
once (v = true) during the same search. Conversely, a significant positive
reward is given when the target object and goal state are reached.
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5.2.2 Policy Generation

MDPs can be solved to determine the optimal state-action mapping, or pol-
icy. This is generated through an iterative training process, where the agent is
allowed to explore the entire state-action space and incrementally improve its
decision function to reach the target state, maximising its cumulative reward.
In this particular setup, the agent is unaware of the environment. That is,
the transition probabilities and reward function are not known to the agent,
but is learned through interaction with the environment during the aforemen-
tioned iterative learning process. Well-understood methods to solve MDPs and
produce the optimal policy are available, with prominent solutions including
Q-Learning (Watkins & Dayan, 1992), Value Iteration (Bellman, 1957) and
State-Action-Reward-State-Action (SARSA) (Rummery & Niranjan, 1994).

In this implementation of the MDP controller, 8 objects are initially en-
coded, including a ‘nothing’ instance indicating that nothing of note is ob-
served. In particular, this implementation considers a simple office desk sce-
nario that contains the objects given by Ω:

o ∈ Ω = {monitor,mouse, keyboard, window,
mug, stationary, desk, nothing}.

(5.2.2)

The spatial relationships between the objects in Ω were extracted from
the OpenImage dataset (Kuznetsova et al., 2018), which consists of 1.74M im-
ages with 14.6M manually drawn and labelled bounding boxes around objects
(see Figure 5.3 for two examples from the dataset). Pixel coordinates of the
bounding boxes are provided with the dataset. Iterating over all the images
that contain two or more of the objects in Ω and using the bounding box coor-
dinates for each object in the image, it was possible to extract their positional
relationship in terms of the basic linear directions specified in A. The total
number of instances for each position can then be normalised by the total
number of instances between the objects to provide a probability distribution
for each object combination (e.g. a desk is below, above, to the left and right
of a keyboard in 5%, 75%, 10%, 10% instances respectively). The relatively
simple action space compensates for the dataset’s lack of absolute position in-
formation (e.g. it is only possible to determine that object 1 is above object 2,
but not how far above), while maintaining the desired property of generating
clear and simple user instructions.

This dataset is primarily aimed towards researchers to benchmark their ob-
ject detection and classification algorithms, so the absolute distances between
the objects in the scene are not included. Furthermore, camera perspective in-
formation and absolute object dimensions were not available for this dataset,
so it was not possible to estimate objects’ locations. While distance infor-
mation is not required in this case, it would be beneficial in allowing future
iterations of the controller to provide not only a pointing direction, but also to
what extent the pointing adjustment should be made (e.g. look left 20°). At
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the time this research was conducted, an appropriately rich dataset contain-
ing the absolute positions of different objects relative to one another was not
available.

Figure 5.4 shows the spatial relationship of a subset of Ω (desk, keyboard
and mouse) in terms of the probability of finding a certain object after execut-
ing an action. For example, when the agent is in state s = 〈o = mouse, n, v〉
and is searching for object otarget = keyboard, there is a strong probability
that the latter is on the mouse’s LEFT . The MDP of course considers all of
the objects’ spatial relationships when generating the optimal policy.

The agent’s goal state is defined as any state where s = 〈o = otarget, n, v〉,
which gives a total of 14 terminal states for a specific object target, assuming
n = 1 (7×2, ‘nothing’ cannot be a goal). The target can be found in a location
that has been marked as searched before or has not been searched at all (i.e.
v = true|false), thereby doubling the total number of possible terminal states
beyond the original 7. Each potential target object has its own unique policy
file since each of them define different terminal states.

The MDP is set to generate a maximum of 11 (inclusive) waypoints before
being punished (i.e. nmax = 11). For this particular setup, 11 grid cells is
the longest possible route from the initial state to the goal state (more details
about the grid are given in Section 5.2.3). More than 11 waypoints may be
required or generated during the transition to the target state, but the MDP
considers 11 as the maximum threshold, after which the agent starts receiving
additional punishment. Is is also convenient for maintaining a manageable
state-space size and to simplify the reward function. Consequently, the MDP
has a total of 154 reachable states (kstates = 11× 7× 2).

The Q-Learning algorithm was initially used to generate the optimal poli-
cies. Unfortunately, the lack of absolute spatial information in the OpenImage
dataset generates ambiguities (e.g. a coffee mug is roughly equally likely be on
the left or right hand side of a computer monitor) which led to the Q-Learning
algorithm not converging in a reasonable amount of time. The SARSA algo-
rithm was therefore used instead, since it was found that its on-policy design
and more exploratory approach led to a close-to-optimal policy being found. It
has an additional exploration parameter, α, used during training to control the
agent’s exploration vs. exploitation behaviour. This is an important parameter
for training, since too much exploration may cause the model not to converge,
or do so very slowly. However, too little exploration may cause the model to
get stuck in a local minima. A careful balance must be struck between these
two training strategies. Having direct control over α makes it easier to find
a good policy, although this is not guaranteed to be optimal (Rummery &
Niranjan, 1994).

The MDP is trained until it converges to the optimal, or close-to-optimal,
policy for a maximum of approximately 17 million episodes. The parameter α
maximises the exploration focus when it is set to 1 and exploitation when set
to 0. For this solution, α is set to the exponential function



CHAPTER 5. VISUAL TARGET SEARCH 61

Figure 5.3: Two examples of an office environment taken from the OpenImage
dataset. Both images contain some objects in Ω (Kuznetsova et al., 2018).
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Figure 5.4: Examples of the spatial relationships between the desk, keyboard
and mouse objects. Each square corresponds to the probability of executing
an action (top square for UP , left square for LEFT , etc.)

α = exp
( −i

10 kstates

)
− 0.001, (5.2.3)

which was heuristically selected as a function of the number of training episodes,
i. It is initialised with a high exploration value, exponentially decreasing to
switch focus to exploitation as training progresses. Finally, the parameter γ is
set to a constant 0.95 to prioritise long-term cumulative rewards over short-
term ones. The SARSA algorithm used here is implemented in the AI-Toolbox
library1.

The MDP has a relatively small state-action space, so a set of 7 policies
(one for each object) were generated in a reasonable amount of time. However,
it should be noted that due to the state size’s multiplicative nature, adjusting
the angle interval between waypoint positions or adding more actions or objects
can easily lead to an intractable state-space size, where different assumptions
or training algorithms might be required to generate a policy.

1https://github.com/Svalorzen/AI-Toolbox

https://github.com/Svalorzen/AI-Toolbox
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Figure 5.5: A figure showing the 6 × 6 grid that simulates the controller’s
world. Notice the state variables n and v being set as the controller guides
the user across the grid (v for each square is set to false until a waypoint is
generated in that square).

5.2.3 Waypoint Generation

The system uses a 6×6 discretised and wrapped radial grid to enable the way-
point tracing and generation processes. The grid spans 120° (approximately
2.1 rad) in the pan and elevation dimensions, giving a resolution of 20° (appro-
priately 0.35 rad) per grid cell, and wraps around the user in a semi-cylindrical
fashion. Wrapping the grid (i.e. if the location of a waypoint exceeds the 120°
limit, the same waypoint is moved to the opposite side of the grid) effectively
limits the search space to a 120°×120° area. With the 6×6 grid, 11 waypoints
(indexing from 1) is the longest possible direct route that can guide the user
towards a target object, as shown in Figure 5.5. Note also the state variable
v being set to true as the controller guides the user across the grid.

An action sampled from the policy is converted by the system into a new
search waypoint centred on a cell of the radial grid (e.g. an ‘UP ’ action will
generate a waypoint one grid cell above the camera’s current orientation). Note
that this cell is not part of the MDP’s state and the grid is only used to dis-
cretise the camera’s pan-elevation movements to guarantee minimum angular
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variation between subsequent actions, which ensures reliable state transitions
with reasonable movement sizes. Also, the policy actions, and waypoints by
extension, are relative to the current camera’s pan-elevation orientation. The
audio interface can then then transform use the waypoint’s location to guid-
ance instructions (i.e. u in Figure 3.5).

5.3 Experiments
The controller was implemented on a mobile device and a set of experiments
were conducted to evaluate the proposed MDP-based guidance controller’s per-
formance. This section describes the initial system’s implementation details,
as well as the experiments that were conducted with it.

5.3.1 Controller Implementation

The MDP guidance controller and policies were integrated into an Android
app (see Figure 5.6 for a screenshot) on an Asus ZenPhone AR smartphone2

running Android 7.0 with Google’s augmented reality toolkit ARCore3, which
provides the device’s 3D pose. No further software or hardware modifications
were required. This app is responsible for generating the guidance instructions
and estimating the pose of the camera sensor (K and P blocks in Figure 3.5)
in real-time. Knowing the camera’s pose allows the app to infer the current
state and sample the next optimal action from the policy.

The system determines the state values for n (number of waypoints gener-
ated so far) and v (waypoint already visited or not) described in Section 5.2
by recording the previous search and waypoint locations. The camera provides
the ID of the object currently within view, which is assigned to the state vari-
able o. For these experiments, a real object detector was not used. Instead,
the objects were simulated with 7 different QR codes, one for each object class,
and a camera-based QR code scanner from Android’s machine learning API4.
This simplification guarantees full observability of the state and allows the ex-
periments to focus on the performance of the MDP-based guidance controller.
Moreover, to speed up processing and avoid scanning multiple QR codes simul-
taneously, only the central 300× 300 pixel area of the camera’s frame is used
to scan for codes. This choice also defines the precision required in pointing
the camera towards the object (see the white box in Figure 5.6).

In a real application for people with visual impairments, a waypoint’s po-
sition would be communicated to the user by the audio interface described in
Chapter 4. However, since the scope of these experiments is mainly to evalu-
ate the control algorithm and not the interface (evaluate K and not G), the

2https://www.asus.com/Phone/ZenFone-AR-ZS571KL/Tech-Specs/
3developers.google.com/ar/
4https://developers.google.com/ml-kit/

https://www.asus.com/Phone/ZenFone-AR-ZS571KL/Tech-Specs/
developers.google.com/ar/
https://developers.google.com/ml-kit/
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Figure 5.6: A screenshot of the Android app with the guidance controller
implemented. The interface shows the QR code scanner area, as well as an
example of the visual instructions used to guide a user towards a waypoint.

app provides guidance instructions with four on-screen arrows (see Figure 5.6).
This visual interface is helpful for debugging and for the experimental evalua-
tion of the controller (in Chapter 6, it will be replaced with the audio interface).

5.3.2 Experiment Design

The goal of the experiments is to determine the feasibility and effectiveness of
the MDP controller that guides users in pointing the mobile device’s camera
towards a target object (i.e. a QR code). As explained in Section 5.3.1, this
phase of the research focusses on the active vision controller, and not the
human’s performance in a real object-search task. Therefore, the experiments
include visual markers and instructions and were performed by people with
healthy eyesight. The experimental environment mimicked a typical office
desk layout, containing 7 different objects (i.e. QR codes), one of which was
selected as the target for each experiment run. See Figure 5.7a for a picture of
the actual experiment scenario and the environment it simulates in Figure 5.7b.

For each experiment, the participant was placed approximately 1 m from
the closest barcode and was asked to remain on the same spot during the
experiment. The participant started the experiment by pressing a button on
the app, which then guided the user towards the target object. Since the
participants were allowed to use the device’s display, the target was randomly
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(a)

(b)

Figure 5.7: A picture of the environment used for the experiments and a
schematic grid representation of the environment. Each QR code in (a) repre-
sents an object that corresponds to the schematic in (b).
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selected by the app without informing the participant what they were search-
ing for, at least until the object was found. This prevented the participants
from learning the objects’ locations between subsequent experiment runs by
associating QR codes to them.

To avoid pointing at uncluttered edges of the search space, where the sys-
tem had difficulty guiding the user back to the centre, a waypoint-limit of 15
was set. A search run therefore ended when the participant either success-
fully found the target object by pointing the device camera to it and scanning
the barcode, or exceeded the 15-waypoint limit. After this, the participant
restarted from the central position, selecting a new random target object and
repeated the experiment.

Each participant performed 10 searches per object, giving a total of 70
searches recorded per participant. A total of 12 different participants were
recruited, none having any disabilities or handicaps that could affect their
performance. This gives a dataset with a total of 840 samples.

5.4 Results
Four metrics are used to evaluate the system’s performance for the exper-
iments: the number of waypoints to the target, the target acquisition rate
(TAR), the total time it took to find a target object and the total linear and
angular device displacement for each search. The results for each individual
participant is presented in Table 5.2 and Table 5.3, which include the mean
performances for the entire participant group. A number of simulations were
also performed in an environment mimicking the experiment setup with a vir-
tual agent that perfectly executes the policy (i.e u = u∗). This provides a
baseline measurement to compare some of the experimental results. The TAR
and the number of waypoints to target results for the simulation are included
in Table 5.2. However, the simulation does not include the time delay and the
time to target is therefore not included (a computer simulation will of course
execute a command faster than a human). Number of waypoints, TAR, time
to target and device displacement results are discussed in more detail in the
following sub-sections.

5.4.1 Number of Waypoints to Target

The number of waypoints represents the total waypoints that were generated
by the system to guide the participant to the target object. It gives an indica-
tion of system performance, where less waypoints means more efficient target
acquisition. Figure 5.8 illustrates the cumulative distribution of the number
of waypoints to the target for all participants. Approximately 75% of searches
ended with the target object successfully found with 15 waypoints or less.
Furthermore, Figure 5.8 shows that the majority of targets were found with
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Table 5.2: A table containing each participant’s results for the TAR, median
number of waypoints and median time to target, including the group’s means
for each of these metrics. Results for a simulated ‘perfect’ participant are also
included.

Participant Num. Waypoints TAR [%] Time [s]

s1 5 79 6.41
s2 6.5 73 10.2
s3 4 80 7.88
s4 5 78 9.96
s5 7 70 13.7
s6 15 52 15.3
s7 10 64 10.6
s8 3.5 89 9.42
s9 3 82 9.65
s10 11.5 57 21
s11 5 91 9.98
s12 5 79 9.95

Participant Means 6.7 ± 3.5 74 ± 11 11.2 ± 3.71
Simulation 3.8 99.7 —

Table 5.3: A table containing the results for the mean device displacement
that was recorded during the target search experiments. This includes the
participant group’s mean values.

Participant Pan [rad] Elevation [rad] Linear [m]

s1 1.27 1.05 0.36
s2 1.28 1.46 0.18
s3 0.81 0.47 0.24
s4 0.98 0.94 0.37
s5 1.10 0.95 0.20
s6 1.93 2.17 0.11
s7 0.64 0.59 0.10
s8 0.79 0.76 0.16
s9 1.03 0.95 0.36
s10 1.31 1.40 0.47
s11 0.79 0.52 0.18
s12 1.42 1.23 0.30

Participant Means 1.11 ± 0.34 1.04 ± 0.46 0.25 ± 0.11
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Figure 5.8: The cumulative distribution of the participants’ number of way-
points generated to find a target object.

less than 6 waypoints, which is equal to the width and height of the grid cell
environment. This indicates that the majority of targets were found without
needing to explore the entire search environment.

5.4.2 Target Acquisition Rate

The TAR measures the proportion of searches where each participant success-
fully found the target object within the 15 waypoint limit. Such a measure
gives an indication of how effective the system is at directing a user towards the
desired object within a reasonable waypoint threshold. Table 5.2 shows that
the inter-participant spread (σ = 11%) is fairly significant, perhaps indicating
that the participant’s search behaviour affects the overall target acquisition
performance. However, with a mean TAR of 74%, it is clear that the system
successfully finds the target object during the majority of searches.

Figure 5.9 shows the TAR for each individual target object in Ω. There
are variations to the TAR for different objects, with the QR codes represent-
ing physically smaller objects being the hardest to find. Most failure cases
were typically caused by the system entering a no-recovery state where the
user was directed into dead-space with no spatial information (e.g. ceiling or
wall section). In this case the system could not observe useful clues to in-
telligently guide the user. Possible improvements for future versions of the
algorithm would be to implement some fall-back method that can detect a
no-recovery state (e.g. exceeding a set number of steps/time without any new
object observation) and guide the user back to a position to restart the search.

It should be noted that the 15-waypoint threshold selection may affect the
TAR performance measure. However, given the gradual tapering off in the
TAR observed in Figure 5.8 and the fact that many searches ended in unre-
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Figure 5.9: The TAR for each of the objects within Ω.

coverable fail-states, it is unlikely that the threshold applies a positive per-
formance bias. Indeed, it is instead more likely that increasing the threshold
would only increase the TAR, eventually reaching 100%. A waypoint thresh-
old, that triggers a reset of the guidance system, would be useful to avoid
getting stuck in areas with little to no visual features.

5.4.3 Time to Target

The time to target indicates how fast the participants were guided toward a
target object. In this case, only successful searches are included. A cumulative
distribution of the search times is shown in Figure 5.10. The distribution of
these results has a mean of 11.4s and standard deviation of 4.01s, as shown
in Table 5.2. Furthermore, Figure 5.10 indicates that the majority of targets
were found in less than 15s. In comparison to the remotely-assisted VizWiz
system (Bigham et al., 2010) (mean 92s, standard deviation 37.7s), these re-
sults look very encouraging, although there might be variations in the case of
participants with visual impairments.

5.4.4 Mean Device Displacement

The mean device displacement is a measure that indicates the total radial
and linear movement of the device between subsequent target searches. Less
angular and linear displacement indicates reduced physical exertion from the
participant, which is a desirable outcome. The mean pan, elevation and linear
displacement per target search are given in Table 5.3 and shown in Figure 5.11.
Each dimension’s mean value is 1.11 rad, 1.04 rad and 0.25 m for the pan,
elevation and linear displacements respectively.
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Figure 5.10: The cumulative distribution of the participants’ time taken to
find a target object.

Figure 5.11: Box plots of the mean angular and linear displacements for the
target search experiment.
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In Figure 5.11, it can be seen that the mean pan displacement has a greater
spread than the elevation dimension’s results. This is expected, given that the
object layout for the experiment is wider than it is tall (5 consecutive grid cells
in the pan dimension vs. 4 in the elevation, see Figure 5.7b). Furthermore, the
mean angular device displacement is well below the experiment environment’s
angular height and width of 2.1 rad (approximately 120°) each, which is an
encouraging result. At this stage of the research, the significance of the linear
displacement result is less clear, since there is no baseline to compare it to.
However, it will prove useful for future comparisons against an updated active
guidance system in Chapter 6.

5.4.5 Discussion

The results shown in Figure 5.8 show that approximately 75% of all the target
searches ended with the participant finding the target object using at most
15 waypoints. Furthermore, the majority of the targets were found within 15s
of the search start. On average, approximately 7 waypoints were generated
per search, while the device was moved 0.25 m and rotated by approximately
1.11 rad and 1.04 rad in the pan and elevation dimensions respectively. These
results are comparable to existing research works (Bigham et al., 2010) and
therefore validated the proposed guidance approach.

5.5 Conclusion
This chapter proposed and evaluated a new MDP-based system to guide a
person towards a target object with no prior knowledge of the environment,
using a mobile device camera. The MDP guidance controller uses the spa-
tial relationships between objects, learned from the OpenImages dataset, to
generate waypoints where the target object is most likely to be located. A
successful policy was generated for this MDP using the SARSA algorithm and
applied by the guidance controller to generate the optimal waypoint based on
the camera’s current and past viewing locations, as well as any observed ob-
jects. The system was implemented on an Android mobile phone and tested
with several participants to determine its effectiveness.

The work presented in this chapter serves as an initial investigation into
whether an MDP can effectively generate guidance instructions. A set of exper-
iments with a simplified guidance interface and simulated object detector (QR
code scanner) were conducted and indeed, the results show that the proposed
solution produces effective guidance instructions, comparable in performance
to similar existing systems. However, further work is needed to assist users
with visual impairments in more realistic scenarios, where a real object detec-
tor and the audio interface are to be used. These aspects are investigated in
the next chapter.



Chapter 6

Mobile Guidance System for
Object Detection

The goal of this research is to determine whether a mobile guidance system
with human-in-the-loop can effectively guide a person with visual impairments
(PVI) to find target object object. To this end, an updated diagram of the pro-
posed guidance system is shown in Figure 6.1. This includes a guidance control
module and human-machine interface that communicates audio instructions,
respectively. Both of these sub-components were designed, implemented and
evaluated in Chapter 4 and Chapter 5.

The active guidance control module introduced in Chapter 5 is based on a
Markov decision process (MDP) framework that assumes perfect state observ-
ability. In other words, it assumes that the sensor’s inputs contain no noise or
errors and that the agent (the guidance controller in this case) can perfectly
estimate its state. This initial controller was implemented and tested with
QR codes and a QR code scanner. Of course, to be a true guidance system,
the QR codes and scanner must be replaced with real objects and an object
detector. However, the perfect state observability assumption will no longer
hold true when a real object detector is used, given that they are prone to
detection and classification errors (represented by the signal ε in Figure 6.1).
A vast amount of research focuses on reducing these errors, some of which are

Figure 6.1: The system control loop, including the HMI, guidance controller
and feedback noise, ε.

73
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discussed in Chapter 2, but it is outside the scope of this thesis.
In this chapter, the existing MDP-based guidance controller is extended and

updated to take sensor noise (i.e. object detection errors) into account. This is
done in Section 6.1, after which the new, improved controller is integrated into
a full Android app for a mobile phone, along with the bone-conduction audio
interface and a state-of-the-art object detector in Section 6.2. The complete
guidance system is then evaluated through experimentation with blindfolded
and visually impaired participants in Section 6.3. This is followed by the
experiment results, as well as a discussion on their significance in Section 6.4,
before the chapter is concluded with a short summary and final remarks in
Section 6.5. Part of the work presented in this chapter has been published in
a conference paper (Lock et al., 2019d). The source code used to create the
app, object detector and audio interface has also been made freely available
to the public1.

6.1 Extending the Human Control Module
In this chapter, a computer vision-based object detector is integrated into
the guidance system to replace the QR code scanner that was used previously.
However, these detectors introduce noise and errors into the feedback loop that
the controller must take into account during the waypoint generation process.
In Figure 6.1, the object detector’s error, ε, is added to the feedback loop as
a noise signal that influences K’s output.

To take this additional error into account, the MDP implemented in Chap-
ter 5 is replaced by a partially observable MDP (POMDP, described in more
detail in Section 2.4.2). POMDPs attempt to minimise some cost function by
executing the optimal action in any given state, to reach a certain goal state.
The cost is defined by a POMDP’s reward function, which it tries to maximise.
During a training process, an agent can learn the optimal action to take for any
reachable state and produce a policy that captures this information. These
principles are applied to the guidance controller to take the camera’s view from
some initial state to the target state, while minimising the effort required by
the user. To do this, the POMDP controller follows a process similar to the
MDP-based controller, using a grid- and waypoint-based guidance strategy to
discretise the world and generate user instructions. The guidance controller
uses the POMDP policy to select the next waypoint. Since the controller does
not initially know the target object’s true position, this waypoint is placed in
a location that maximises the probability of the user pointing to it, moving
increasingly closer to the target object. The audio interface uses this waypoint
location to generate guidance instructions for the user to point the camera.

This guidance system shares many similarities with the previously-imple-
mented MDP-based controller. However, the major differences here are the

1https://github.com/yassiezar/POMDPObjectSearch

https://github.com/yassiezar/POMDPObjectSearch
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use of a real object detector and a new POMDP implementation that removes
the perfect state observability assumption. The following sub-sections describe
how the previous MDP is replaced by the POMDP and how it was trained and
implemented in the final active guidance system.

6.1.1 POMDP for Human Control

A POMDP model is described by the tuple 〈S,A,T,R,Z,O,b, γ〉. Similar
to an MDP, S represents a finite set of discrete states, A is a set of discrete
actions, T is a matrix containing the probabilities of transitioning from state
s to state s′ (where s, s′ ∈ S) after executing action a ∈ A, and r ∈ R is
the reward the agent receives for executing a and reaching s′. The major
difference between MDPs and POMDPs are the additional Z and O matrices.
These elements respectively define the possible observations and their emission
probabilities after transitioning to state s′ with action a. Finally, b is the belief
vector containing the state probability distribution and γ is a discount factor
that prioritises long-term over short-term rewards, which affects the model’s
convergence rate.

As described in Section 2.4.2, a POMDP maintains a probability distribu-
tion over all the possible states. However, given its continuous nature, deter-
mining, updating and tracking this distribution can become computationally
expensive and potentially intractable for moderately-sized state-spaces. The
states must therefore be carefully selected to avoid unsolvable problems. If
the model is well-designed, however, the POMDP can be transformed into an
equivalent, so-called ‘belief-MDP’, where the probability distribution is trans-
formed into a quasi-state parameter, called the ‘belief’. This new state is fully
observable by the agent at any time step. Note that the belief state reflects
the agent’s best guess about its current state, not necessarily its true state.

The possible states, actions and their transition probabilities are the same
as the MDP in Chapter 5. However, new reward function and observation
probabilities have to be implemented for this POMDP.

Reward Function

A similar rationale to Chapter 5 was used for designing the reward function
for the POMDP. Specifically, the agent is punished for any action that does
not lead the user to the target (progressively increasing the punishment after
some threshold) and for leading the user to the same location more than once.
The reward values were empirically determined, similar to the initial MDP
implementation (see Table 6.1). In the new POMDP, the penalty given for
every waypoint that does not lead to the target was significantly increased in
order to make the model more reactive.
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Table 6.1: The reward function for the POMDP model.

Reward condition Reward

r(o = otarget) 10000
r(v = true) -75
r(n > nmax) -75
otherwise r(·) -100

Observations

The quantities ζ ∈ Z represent the observations that an agent can make from
state s. An observation in this context can simply be considered as a sensor
reading. Since the only reading for this controller comes from the object de-
tector, the observation is ζ = 〈o〉, where o ∈ Ω is one of the possible objects
that are detectable by the system.

The observation matrix, O, defines the probability of the agent making
observation ζ after it has transitioned to state s′ with action a. For example,
a perfect, zero-noise sensor would produce an observation ζ = 〈o′〉, where o′ is
the true object in state s′. Of course, this ideal case rarely applies in reality
and the entries in the observation matrix encapsulates this uncertainty.

For the current implementation, the values in O were determined from
the detection and classification errors of the object detector, as evaluated
by Tramontano (2019). The implementation and performance evaluation of
the detector are summarised in Section 6.2.

6.1.2 Policy Generation

The POMDP’s optimal policy — which contains the optimal state-action map-
ping — is determined through an iterative training procedure where the agent
is allowed to explore the entire state-action space. During this training pro-
cess, the agent explores the state-space and iteratively improves the policy
such that it maximises the cumulative reward it receives. For the current im-
plementation, 16 objects were encoded into the POMDP, including a ‘nothing’
instance for cases where the camera does not observe anything of interest:

Ω = {nothing,monitor, keyboard,mouse, desk, laptop,mug, window,
couch, lamp, backpack, chair, plant, telephone, whiteboard, door}.

(6.1.1)

A 6×6 grid, similar to the one implemented in Chapter 5, was used to discretise
the agent’s world and simplify the state tracking and transition processes. The
maximum number of waypoints, nmax, is also set to 11, which is the longest
traversable path of waypoints in the 6 × 6 grid. When nmax is exceeded, the
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agent is penalised for every additional waypoint generated that does not lead
to the target object, as defined by the reward function in Table 6.1. This
results in a total of 352 reachable states (kstates = 16× 11× 2), with any state
containing the target object being a terminal state (15× 2 = 30 in this case).
The number of terminal states is double the number of objects, because the
latter can be found in locations that the camera has visited before, but failed
to detect the target object.

Since the belief vector is fully observable by the agent, the problem be-
comes a belief-MDP and can be solved with the existing solutions described in
Section 2.4.2. However, given the belief vector’s continuous nature and the po-
tentially infinite state-observation combinations, finding an exact policy within
a reasonable amount of time and with a practical file size is often not very ef-
ficient. Indeed, this was the case even for the current moderately-sized state
space, ruling out the Value Iteration algorithm. Approximate algorithms are
a viable alternative that offers a reasonable and potentially optimal solution
for the POMDP considered here. In this case, the Point-Based Value Iteration
(PBVI) (Pineau et al., 2003) algorithm is used2. The PBVI algorithm is based
on the familiar Value Iteration algorithm, but it tracks and updates only the
values of a smaller representative subset of belief points. Using this algorithm,
a total of 15 policies were generated, one for each object given in Ω.

6.2 Object Detector
A state-of-the-art object detector (Tramontano, 2019; Terreran et al., 2020)
was implemented and integrated into the guidance system to provide the con-
troller with object observations. This was designed specifically for mobile
devices, which typically have limited computing power. Furthermore, the de-
tector works with (near) real-time processing performance and enables the
implementation of a useful guidance system.

The image-based object recognition system uses SSD-Lite, which is a state-
of-the-art single-stage object detection and classification network based on
the SSD architecture and implements MobileNetV2 (Sandler et al., 2018). It
is a lightweight network specifically designed for mobile platforms, requiring
relatively little memory to perform inference tasks. The increased computation
efficiency from the SSD-Lite architecture is a product of a novel depth-wise
separable convolution procedure, which reduces the total number of model
parameters without affecting its effective depth when compared to a model
that uses normal convolution operations (e.g. the standard SSD network). The
reduced number of parameters does affect the model’s classification accuracy,
however. In their work, Tramontano (2019) compared initial implementations
of SSD-Lite, Tiny-DSOD and YOLOv3 on a mobile platform and found that
SSD-Lite outperformed YOLOv3 and Tiny-DSOD in terms of classification

2AI-Toolbox library implementation: https://github.com/Svalorzen/AI-Toolbox

https://github.com/Svalorzen/AI-Toolbox
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accuracy and frame rate. For example, with their initial implementations, the
YOLOv3 only achieved 2 frames per second, compared to SSD-Lite’s 25, and
Tiny-DSOD achieved a mAP of 6.3%, compared to SSD-Lite’s 16 (this has
since been fine-tuned to achieve a mAP of 33% on a subset of the OpenImage
dataset (Terreran et al., 2020)).

The model was trained with a total of 10,000 objects per class in Ω. Train-
ing with a smaller subset of object classes would make the model substantially
smaller, speeding up object inference and increasing overall frames-per-second
performance. However, this comes at the cost of generality. Each training
sample was taken from the OpenImages dataset (Kuznetsova et al., 2018),
with a 60–20–20% split for training, validation and testing, respectively.

After the object detector was trained, its performance was further tested
on a self-made ‘office’ dataset in order to evaluate its performance in a real
environment that more accurately represents the experimental scenario for the
guidance system. To generate this dataset, pictures of the 15 objects in Ω were
taken with the mobile phone’s built-in camera. One instance was considered for
each object class, e.g. the same laptop was used in all of the ‘laptop’ pictures,
within a generic office environment. However, the pictures were taken from
different perspectives, orientations and positions to simulate the challenges of
detecting objects using a hand-held mobile camera.

Firstly, pictures were taken from three different points of view (see Fig-
ure 6.2), selected within the office environment to capture typical positions
that the guidance system may be used from (e.g. from the door, from behind a
desk, etc.). Then, for each point of view, pictures of the object were taken from
various body-related positions to simulate different use-cases, such as when the
mobile phone is held at pelvis, chest or head height. Finally, for each point of
view and camera position, three different device orientations were adopted to
simulate different device-holding habits. These orientations are −45°, 0° and
45°, as measured from the vertical axis. This test set therefore includes 27
pictures per object, for a grand total of 405 images.

The POMDP’s observation matrix, O, was populated by the probability of
the object detector correctly classifying a given object (taken as the number of
correct classifications over the total number of samples in the reduced OpenIm-
ages set). The object detector was then converted into an Android-compatible
Tensorflow-Lite3 (TF-Lite) model. TF-Lite models are approximately equiva-
lent to full TensorFlow models, but have been optimised specifically for object
inference on mobile platforms and is compatible with the latest versions of
Android. The TF-Lite API has the added benefit of being modular with re-
gard to the TF-Lite model, which means that a new object detector can be
implemented by simply loading a different pre-trained model file. This model
was finally integrated into the mobile device, providing the POMDP guidance
controller with object observations at approximately 20 frames per second.

3https://www.tensorflow.org/lite/
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Figure 6.2: A sample of the ‘office’ dataset, showing pictures taken from two
different points of view (Tramontano, 2019).

Figure 6.3: The internal pipeline of the guidance system showing the flow of
information. The camera captures image data, which the object detector uses
to produce a list of detected objects. The guidance controller then generates a
waypoint, which the audio interface uses to generate an audio signal to guide
the user.

Figure 6.3 shows the object detector’s internal structure, including the Mo-
bileNetV2 and SSD-Lite models enclosed in a TF-Lite package and where it is
implemented in the app pipeline.
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6.3 Experiments
The proposed active guidance system was implemented onto a mobile phone
and evaluated with a set of experiments with blindfolded and visually impaired
participants to gather performance data. In the following sub-sections, the
details of the guidance system’s implementation are discussed along with the
experiment design.

6.3.1 Guidance System Implementation

A complete active guidance system was implemented by integrating the audio
interface described in Chapter 4, with the object detector and POMDP guid-
ance controller presented in this chapter. The audio interface conveys a target
location using a spatialised audio signal and varying pitch through a set of
bone-conduction headphones. The hi pitch gradient was used for its desirable
performance characteristics (see Section 4.4). The waypoints are generated
using the same approach used in Chapter 5, where the environment is discre-
tised into a 6×6 grid to simplify the state estimation and waypoint generation
processes. Target waypoints are generated at the centre of each grid cell, and
in this case represent a 35° angular rotation, giving a 210° field of view. Mov-
ing into a new cell and reaching the waypoint triggers the generation of a new
waypoint. The object detector discussed in Section 6.2 was implemented into a
TF-Lite model. Its detection parameters were empirically tweaked to achieve
the desired object detection and guidance characteristics.

These components were integrated and implemented in an Android app
(the full data pipeline can be seen in Figure 6.3) for the Asus ZenPhone AR,
using the ARCore API to track the device’s pose. No further software was
required for this app and the only additional hardware used is the set of After-
Shokz bone-conduction headphones to transmit audio signals without blocking
ambient noises (see Figure 3.4 for a picture). All the tasks (object detection,
action lookup, guidance signal generation, etc.) were performed by the mobile
device in real-time. The different components were integrated alongside each
other as separate modules that interact with one another through standard
communication pipelines implemented in the Android framework. This mod-
ular approach allows for modifications to be made to individual components,
without affecting the overall system’s functionality. For example, the object
detection model can be replaced by any other TFLite-compatible model file
and the app will start up and use the new model without any other modifica-
tions. A detailed class diagram of the full guidance system implementation can
be found in Appendix B, which shows how the different components interact
with one another.
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(a) (b)

Figure 6.4: Graphical representations of the environment layouts used in the
guided and unguided experiments.

6.3.2 Experiment Design

To evaluate the complete system’s effectiveness in guiding a PVI towards a tar-
get object, a set of experiments were conducted in a static environment. Addi-
tional experiments with an unguided version of the system provide a baseline
for the active guidance results.

The environments for each experiment, guided and unguided, were mod-
elled on a typical office scenario and care was taken to randomise layouts and
object placements. If the same objects were present in both sets, they were
placed in different positions. However, some of the larger, static objects (e.g.
door, desk, etc.) appeared in both experiments. Note that the same policy for
a given object can be used across both environments. The objects in the ex-
periment with the guided version of the object search system are Ωg = {door,
desk, chair, whiteboard, mouse, laptop, backpack, mug}. The objects with the
experiment using the unguided object search system are Ωu = {door, desk,
chair, whiteboard, mouse, monitor, telephone, keyboard}. See Figure 6.4a and
Figure 6.4b for a graphical representation of the guided and unguided experi-
ment environments, respectively.

In total, 16 participants were recruited for these experiments, including
10 blindfolded people recruited mostly from the School of Computer Science
(Group G1, 8M, 2F, 33±12 years). The remaining 6 (Group G2, 6M, 44±6.7)
general member of the public with visual impairments who are classified as
severely sight impaired and legally blind.Of the latter group, 4 are congenitally
blind, while the other 2 lost their sight later in life. These demographics are
summarised in Table 6.2.

A time limit of 45 seconds was set for each experiment run, which ended
either by finding the target object or by reaching the time limit. This limit
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Table 6.2: A summary of the participant demographics.

Group G1 Group G2

Gender [M/F] 8/10 6/0
Age [years] 33± 12 44± 6.7
Degree of Vision Impairment N/A 4 totally blind, 2 with

limited light percep-
tion

Experience with ETAs None None

was set following the results observed in Chapter 5, where more than 95%
of the targets were found within 45 seconds, and limited the total time for
each experiment to approximately one hour. There was one experiment run
per target object, giving 8 experiment runs for each of the guided and the
unguided scenarios.

6.3.3 Guidance System Experiment

In this experiment, the guidance system’s performance at directing a user to
a target object was evaluated. Here, all perception and guidance decisions
are made by the mobile device, with the participant acting as the ‘actuator’,
interpreting control signals from the system and moving the device accordingly
(as shown in Figure 6.1). In this case, the participants were not told what the
target object was, but they were informed that the object was found when
the device vibrated. This helped to focus only on the performance of the
guidance system, reducing possible biases due to user common-sense and a-
priori knowledge of typical object placement locations. An experiment run
ended when the target object was detected by the camera, or the 45 second
time limit was reached. Figure 6.5 shows a participant with impaired vision
participating in one of the experiments.

6.3.4 Baseline System Experiment

For this experiment, an unguided object detector told the user which objects
were within the camera’s view, using vocal feedback, when they tapped the
device’s screen. It was left to the participants to decide how to manipulate
the camera and find the target object without any additional guidance. In
this case, the baseline system is similar to other commercially available apps,
such as SeeingAI4 and TapTapSee5, which only read out the current objects
upon user’s request. However, given these apps’ fundamental differences to the
guidance system, including the lack of control over its object detection process,

4http://www.microsoft.com/en-us/ai/seeing-ai
5http://taptapseeapp.com
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Figure 6.5: A participant with visual impairments during an experiment run.
Note that this participant was congenitally totally blind and was therefore not
blindfolded.

these apps were not suitable to be used as a baseline for these experiments. For
the object search system used here as baseline, the device vibrated when the
target object was detected and correctly classified to inform the participant
that the target was found and concluding the experiment run. Of course, in
this case the participants knew in advance which objects they were looking
for and were therefore able to exploit their prior knowledge of typical object
placements.

6.4 Results
Similar to Chapter 5, a number of important metrics are used to determine
the performance of the guidance and baseline systems. These are the target
acquisition rate (TAR), the time to target and the total device displacement.
Each of the results collected from both experiments (guided and unguided)
and groups are listed in Table 6.3, alongside statistical test scores that describe
the statistical significance of the comparison. The Wilcoxon test is the most
appropriate statistical test to use in this case, given the repeated measures
experiment process used and the non-normal distributions of the data (see
Appendix A for Shapiro-Wilk test results). The commonly used p value of
0.05 was used to evaluate the data’s statistical significance. The following
sub-sections present the results collected according to these metrics.

6.4.1 Target Acquisition Rate

The TAR is a measure of how successful each guidance system is at directing a
participant towards a target. Similar to the values calculated in Chapter 5, the
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Table 6.3: A summary of the experiment results for the blindfolded and blind
participants (Groups G1 and G2, respectively), as well as the two group’s
consolidated results. Except for the TAR, the values listed here are the median
of each participant’s mean.

Test Guided Unguided Wilcoxon
Statistic

G1

TAR [%] 50± 19.7 50± 17 0.68
Time to target [s] 12.4± 7.12 13.9± 6.92 0.44
Pan Displacement [rad] 3.16± 6.1 9.21± 2.6 0.11
Elevation Displacement [rad] 9.29± 6.4 10.8± 2.5 0.11
Linear Displacement [m] 2.42± 1.5 2.60± 0.5 0.51

G2

TAR [%] 41.4± 15.7 26.7± 22.5 0.35
Time to target [s] 11.9± 9.59 10.8± 13.5 0.35
Pan Displacement [rad] 6.22± 6.7 9.12± 4.1 0.60
Elevation Displacement [rad] 12.5± 6.2 13.6± 7.0 0.75
Linear Displacement [m] 2.17± 0.6 2.77± 1.2 0.75

G1 + G2

TAR [%] 44.4± 18.6 37.5± 20.8 0.38
Time to target [s] 12.4± 8.20 13.4± 10.1 0.21
Pan Displacement [rad] 4.21± 6.5 9.21± 3.3 0.11
Elevation Displacement [rad] 8.57± 6.5 11.6± 5.0 0.16
Linear Displacement [m] 2.28± 1.3 2.60± 0.9 0.60

TAR is taken as the proportion of successful object searches completed within
45 seconds. In this case, a high value indicates a large number of targets found.
Figure 6.6 shows the TAR distribution for each experiment and group.

As seen in Table 6.3, the median TAR for Group G1 (blindfolded) is evenly
split between the two experiments (i.e. 50% vs. 50% for the guided and un-
guided experiments, respectively). The results for Group G2 (the legally blind
group) show a more significant improvement of approximately 14.7% in favour
of the guidance system (41.4% vs. 26.7% for the guided and unguided exper-
iments, respectively). However, the Wilcoxon test (F = 6.0, p = 0.35) shows
that this difference is not statistically significant. When considering the re-
sults for the entire sample (G1 + G2 ), the guidance system’s improvement is
recorded as 6.9% (F = 44.5, p = 0.38). The data currently available do not
conclusively show which system is better, given the lack of statistical signif-
icance. However, the results for the guidance system are encouraging, with
moderate improvements in at least one group and increasing significance with
the entire sample.
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Figure 6.6: A set of box plots showing the TAR results for Group G1 and G2
for the guided and baseline experiments. A distribution that contains both
groups is also included.

Figure 6.7: Cumulative distribution functions of the time to target results for
each group and experiment.

6.4.2 Time-to-target

The time it takes to find a target object is an important indicator of sys-
tem performance. These time-to-target results are presented in Figure 6.7,
which shows the cumulative distributions for each group and experiment for
all searches. The results show that the guidance system improved the par-
ticipants’ overall time-to-target performance by a moderate margin. Group
G1 shows a consistent improvement, particularly before 10s, after which it
tapers off and becomes equivalent to the unguided system after 30s. However,
Group G2 shows a more gradual increase in performance as time goes on,
being similar to the unguided system until approximately 12s, at which point
the guidance system starts outperforming the unguided one. For the overall
sample including both groups, the guidance system consistently outperforms
the unguided baseline across the entire timespan.
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Figure 6.8: Box plots of the time to target results for each group and experi-
ment. These distributions include only the cases where participants found the
target objects.

When considering only successful searches where the target was found
within 45 seconds, the performance differences become clearer (see Figure 6.8).
The participants in Group G1 managed to find the targets with a median time
of 12.5s vs. 13.9s for the guided and unguided systems, respectively (Wilcoxon
F = 16.0, p = 0.44). For Group G2, this trend seems reversed with medians of
11.9s vs. 10.8s (F = 6.0, p = 0.35) for the guided and unguided experiments,
respectively. However, there is a large spread in the results, with long tails
to the upper and lower ends of the time scale. This observation, in addition
to the improvement of the combined results for Groups G1 and G2 with the
guidance system (12.4 vs. 13.4, F = 38.0, p = 0.21), suggest that the guided
system could potentially outperform the unguided one even for Group G2, if
a larger sample of participants with visual impairments were available.

6.4.3 Device Displacement

The device’s displacement data indicate the effort required to find each target.
Less displacement is desirable, since it means less physical exertion is required
for the user to find an object. The total displacement in the angular (pan,
elevation) and linear dimensions for each search is given in Figure 6.9.

The box plots for Group G1 show a consistent, albeit non-statistically
significant, reduction in the angular displacement per target search with the
guidance system for both the pan (group medians of 3.16 rad vs. 9.21 rad,
Wilcoxon statistic F = 9.0, p = 0.11) and elevation dimensions (9.29 rad vs.
10.8 rad, Wilcoxon statistic F = 9.0, p = 0.11). There is some improvement in
the linear dimension as well, with median displacements of 2.42 m vs. 2.60 m
(Wilcoxon statistic F = 17.0, p = 0.51). Group G2 ’s displacement perfor-
mance also improved when the guidance system was used (median pan and
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Figure 6.9: Box plots showing the total device displacement in the pan, eleva-
tion and linear dimensions for each search experiment and group.
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elevation displacements of 6.2 rad vs. 9.1 rad and 12.5 rad vs. 13.6 rad for the
guided and unguided experiments, respectively, linear displacement medians
of 2.17 m vs. 2.77 m). The results for the medians of the entire sample with
Groups G1 and G2 combined shows an improvement across all three displace-
ment dimensions. These results are 4.21 rad vs. 9.21 rad, 8.57 rad vs. 11.6 rad,
2.28 m vs. 2.60 m for the pan, elevation and linear dimensions for the guided
and unguided experiments, respectively. Although not statistically significant,
the use of the guidance system shows a general trend of improvement in total
device displacement with respect to the unguided case.

6.4.4 Discussion

The results from these experiments show that, except for the time-to-target
with Group G2, the guidance system performed better than the unguided one
for both groups. These performance differences are not extreme and have
been observed in other works (see Section 4.4 and Passini & Proulx (1988)),
but it is not clear why there are any differences. One possible explanation is
the age difference between the groups and the general level of familiarity and
comfort with mobile technology between the groups (Group G1 was recruited
from a technically qualified population). Considering the entire sample, the
guidance system gives better performance for all the metrics. Unfortunately,
some of these comparisons are not statistically significant, potentially due to
the small sample size caused by the impossibility of recruiting a larger number
of participants with visual impairments. This limitation is further analysed
by considering the effect size and the proportion of improvement shown in
Table 6.4 and discussed next.

Effect size is a quantitative measure of the magnitude of the difference
between two groups, where a larger number indicates a stronger effect from
an external stimulus. In this case, the stimulus is the guidance system that
provides the user with navigation instructions. If the two distributions are
normally spread, the effect size, d, can be determined as follows:

d =
µ1 − µ2√

σ2
1+σ

2
2

2

· κ,

κ =
N − 3

N − 2.25
·
√
N − 2

N
,

(6.4.1)

where µ and σ represent each group’s mean and standard deviation and κ is a
correction factor for small sample sizes (N in this case). However, if the data
are non-normal, then the Wilcoxon test statistic,

d =
F√
N
, (6.4.2)
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Table 6.4: A table containing the results for each metric’s performance com-
parison.

Metric Effect Size Proportion
Improved

G1

TAR −0.10 55.5%
Time 0.68 66.7%
Pan 0.53 88.8%
Elevation 0.44 88.9%
Linear −0.75 44.4%

G2

TAR −0.62 66.7%
Time 0.38 66.7%
Pan 0.21 66.7%
Elevation 0.24 50%
Linear 0.62 50%

G1 + G2

TAR 0.29 60%
Time 0.33 60%
Pan 0.41 80%
Elevation 0.32 73.3%
Linear 0.13 46.7%

is used to calculate the effect size (F is the test statistic value). In the exper-
iments, the effect sizes range from weak (0.1 for Group G1 ’s TAR and G1 +
G2 ’s linear displacement) to strong (0.75 for G1 ’s elevation). The mean effect
sizes for each group is 0.5 and 0.41 for G1 and G2 respectively, while the
entire sample’s mean effect size is 0.31. These values are typically considered
as moderate effect sizes (Keppel, 1991).

In addition, the repeated measures process used for these experiments (i.e.
the same participant performed both the guided and unguided experiment)
allows a simple proportional measure to be used to indicate the significance of
the guidance system’s effect on the performance measures. This proportion is
simply taken as the number of participants that improved their performance
with the guidance system, listed in Table 6.4 (the complete results, including
the normality test results, is given in Appendix A). It can be seen that the
guidance system outperformed the unguided one in 9 out of 10 comparisons
for Groups G1 and G2, and 4 out of 5 for G1 + G2.

These considerations suggest that further experiments with a larger sample
size (which was unfortunately unavailable at the time of this research) could
yield similar, but more statistically significant results. In particular, using the
effect sizes list in Table 6.4 and the power tables generated by Cohen (2013),
a minimum of 20 participants with visual impairments is recommended to
achieve more significant results at the recommended 80% power level.
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6.5 Conclusion
In this chapter, a POMDP-based guidance controller is proposed that im-
proves upon the previous MDP-based solution, which is capable of handling
uncertain state observations. This controller was implemented alongside the
audio interface of Chapter 4 and a state-of-the-art object detector to create
a fully-integrated mobile object search and guidance prototype. This imple-
mentation was evaluated through a set of real object search experiments with
blindfolded participants and PVI. For these experiments, the guidance system
was compared to an unguided one that is functionally similar to apps currently
available on the market. It was shown that the guidance system improved the
participants’ target finding performance, in particular for the group of PVI.
Although a larger sample size would benefit the statistical significance for the
results of future studies.



Chapter 7

Conclusions

This thesis investigated the feasibility and effectiveness of an active vision sys-
tem with human-in-the-loop that guides a user in a pointing task. To address
this research problem, an active guidance system was developed to assist peo-
ple with visual impairments (PVI) in finding objects within an unknown indoor
environment. The system was implemented on a mobile phone, along with a
bone-conduction audio interface and a vision-based object detector. Several
experiments with blindfolded participants and PVI showed that such a solution
compares favourably to approaches used by alternative object search apps that
are currently available for PVI, although further studies with a larger sample
size of PVI would provide more definitive results.

This chapter presents a summary of the research conducted for this thesis,
including the main findings and contributions in Section 7.1. The current
limitations are discussed in Section 7.2, alongside recommendations on how to
address them and potential future research prospects in Section 7.3.

7.1 Summary of Research Contributions
Current ETAs for PVI are typically limited to well-defined and labelled areas
and are often too bulky or unappealing to its target demographic to achieve
significant market penetration. A number of different guidance interfaces have
been implemented, with spatialised audio being particularly suitable given its
relatively high bandwidth, flexibility and reduced cognitive load. Previous
research into active vision has yielded promising results, but existing works in
this area are still relatively sparse.

Two significant limitations identified in the literature are the lack of user
acceptance and generality of current ETAs. In this thesis, an active guidance
system is proposed that attempts to address these issues. User acceptance
issues largely stem from a fear of public ridicule (i.e. ‘standing out from the
crowd’). The proposed system addresses this with a guidance system imple-
mented on a mobile phone, which uses its camera to gather environmental
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information and generate audio instructions. Furthermore, the proposed guid-
ance system is generalised (i.e. useable in different unknown environments),
providing a framework to actively control the behaviour of a person in a chal-
lenging perception task; in this case helping a PVI to find an object. The
proposed system design was published in Lock et al. (2017).

The guidance interface uses audio instructions transmitted via bone-con-
duction headphones. The audio signals are spatialised in the lateral plane to
convey a target location’s pan angle relative to the device, while the elevation
is conveyed by adjusting the tone’s pitch. This new interface was implemented
and its effectiveness evaluated with a set of experiments with a large number
of users, showing good performance with respect to other audio interfaces with
over-ear headphones. The research contributions of this new spatialised au-
dio interface with bone-conduction headphones were published in Lock et al.
(2019b) and accepted, pending revisions, for publication in the ACM Transac-
tion of Accessible Computing journal (Lock et al., 2019c).

An active-vision based guidance controller is proposed that uses the mobile
phone’s camera feed as input and generates guidance instructions that lead to
the target object. An initial version of this guidance system was implemented
with an Markov decision process-based (MDP) controller and tested on objects
simulated by QR codes through a number of user-based experiments. The
research behind this new active controller for visual object search was published
in Lock et al. (2019a).

The guidance system was finally completed by replacing the QR code scan-
ner with a real object detector and by integrating the audio interface. This
required a redesign of the active controller to take into account the uncertainty
of the object observations with a partially observable MDP (POMDP). The
two new components (i.e. object detector and POMDP controller) were inte-
grated alongside the bone-conduction audio interface into an app for mobile
phones. A set of experiments were then conducted with a group of blindfolded
participants and PVI. It was found that the active guidance system gener-
ally performed better than a simple unguided object search. The research
contributions of this guidance system was published in Lock et al. (2019d).

7.2 Current Limitations
The research described in this thesis delivered an active guidance system for
PVI. The evaluation experiments showed that users performed better with the
guidance system than with the unguided one. However, the results lack robust
statistical significance. Further analysis suggests that a larger sample size
could remedy this issue, in particular by repeating the final experiments with
approximately 20 or more PVI. Unfortunately, despite the involvement of and
support from local charity organisations, particularly the South Lincolnshire
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Blind Society1 and the Lincolnshire Sensory Institute2, recruiting significant
numbers of such participants has proven extremely difficult, especially due to
privacy and safety concerns.

The object detector implemented in the guidance system is based on a
state-of-the-art neural network for mobile platforms with limited computing
power. However, while it gave almost real-time detections with adequate clas-
sification performance in a controlled experimental environment, its low pre-
cision is not ideal for real-world applications. This type of object detector is
currently the topic of much research in machine vision and will likely improve
over time. Thanks to the modular design of the proposed solution, these im-
proved detection algorithms could easily be re-integrated into the guidance
system and significantly boost its performance.

7.3 Future Research Opportunities
The guidance system is currently based on a hand-held mobile phone. How-
ever, egocentric wearable camera systems, such as Google Glass3 and Mi-
crosoft’s Hololense4 systems, would also be ideal platforms to implement such
a system (Damen et al., 2016). These systems are worn like glasses and will
therefore free up the user’s hand. Furthermore, they could potentially make
guidance simpler and more intuitive, since all of the instructions are effectively
given relative to the user’s head instead of their hand. However, despite efforts
to make these wearables more discreet and appealing, there are still concerns
about user acceptability, which indeed have hindered their widespread use
among the general public.

In addition to wearable cameras, it would be helpful to improve the au-
dio interface transmitting guidance instructions to a PVI. However, there is a
great deal of variability within this population in terms of level of vision im-
pairment, ranging from limited light perception to complete blindness, which
naturally leads to different needs from the guidance interface. It would there-
fore be helpful to have a configurable interface that allows the user to select,
for example, the sine wave used in this research or a richer, more natural
one, such as a musical instrument. An interesting evolution of these improve-
ments would be to automate the entire interface configuration process. For
example, if the guidance system was able to record and automatically evalu-
ate its performance over time, it could change its own interface parameters to
reach some optimal configuration. The Fitts’s Law relationship discussed in
Chapter 4 provides a good performance metric and can therefore be used to
optimise such a co-adaptation process. A possible scenario would be a person

1http://www.blind-society.org.uk/
2http://www.lincolnshiresensoryservices.org.uk/
3https://www.google.com/glass/start/
4https://www.microsoft.com/en-us/hololens

http://www.blind-society.org.uk/
http://www.lincolnshiresensoryservices.org.uk/
https://www.google.com/glass/start/
https://www.microsoft.com/en-us/hololens
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with extreme near-sightedness who can find nearby objects: in this case the
interface could gradually reduce the guidance intensity as the user gets closer
to them. This concept of co-adaptation would extend the idea originally pro-
posed by Gallina et al. (2015) and apply it to active mobile technologies, such
as the one presented in this thesis.

Finally, the existing object detector and POMDP models could be im-
proved to include a larger number of objects and tested in a dynamic envi-
ronment with moving people or objects. It would also be useful to integrate
an additional classifier to recognise the current location based on all of the
objects found during a search session. This could provide the initial POMDP
with supplementary meta-observations to refine its state estimation and subse-
quent decisions. For example, if the guidance controller believes it is currently
in a kitchen, it would be able to more reliably disregard incorrect object clas-
sifications, such as a car (unlikely to appear in a kitchen). This would provide
the guidance system with a high level, context-based mechanism for object
detection, making it more effective and robust in different environments.
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Table A.1: A table containing the full set of results for the experiments con-
ducted in Chapter 6.

Metric Shapiro-Wilk Effect Size Proportion
Improved

G1

TAR G : F = 0.92, p = 0.42 −0.10 55.5%
U : F = 0.85, p = 0.08

Time G : F = 0.96, p = 0.89
0.68 66.7%

U : F = 0.89, p = 0.19

Pan G : F = 0.71, p = 0.002
0.53 88.8%

U : F = 0.86, p = 0.12

Elevation G : F = 0.69, p = 0.001
0.44 88.9%

U : F = 0.93, p = 0.48

Linear G : F = 0.87, p = 0.23 −0.75 44.4%
U : F = 0.95, p = 0.79

G2

TAR G : F = 0.92, p = 0.52 −0.62 66.7%
U : F = 0.93, p = 0.64

Time G : F = 0.87, p = 0.21
0.38 66.7%

U : F = 0.78, p = 0.04

Pan G : F = 0.76, p = 0.02
0.21 66.7%

U : F = 0.95, p = 0.74

Elevation G : F = 0.87, p = 0.23
0.24 50%

U : F = 0.95, p = 0.79

Linear G : F = 0.81, p = 0.07
0.62 50%

U : F = 0.91, p = 0.45

G1 + G2

TAR G : F = 0.96, p = 0.72
0.29 60%

U : F = 0.88, p = 0.05

Time G : F = 0.94, p = 0.48
0.33 60%

U : F = 0.83, p = 0.009

Pan G : F = 0.75, p < 0.001
0.41 80%

U : F = 0.96, p = 0.73

Elevation G : F = 0.78, p = 0.002
0.32 73.3%

U : F = 0.88, p = 0.04

Linear G : F = 0.78, p = 0.002
0.13 46.7%

U : F = 0.88, p = 0.04
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Figure B.1: A class diagram of the object search guidance system as it is
implemented in an Android app.
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Figure B.2: A diagram of the Metrics module responsible for recording the
device’s and targets’ pose information.
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Figure B.3: A diagram of the sound generation module, responsible for gener-
ating the audio-based guidance signals.
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Figure B.4: A diagram of the module responsible for looking up the optimal
action to execute from the policy file.
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Figure B.5: A diagram of the module that collects the visual information from
the device’s camera.
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Figure B.6: A diagram of the object detection module that extracts object
information from a still image collected from the camera.
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