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Abstract—In this paper we investigate distributed localization
of an intruder in wireless sensor networks (WSNs), in which the
sensor nodes (SNs) censor their transmission to the fusion center
(FC). The SNs locally detect the intruder and send their decision
only if it is positive. The FC, on the other hand, uses those
binary data to localize the intruder. We present the censored
maximum likelihood (cML) localization algorithm, Furthermore,
we derive two computationally simple localization algorithms, the
quadratic approximate ML (QAML) and the linear approximate
ML (LAML). The performance of the ML-based algorithms
significantly outperforms the heuristics-based algorithms, such as
the centroid method (CM) and the center of maximum enclosing
rectangle (CMER), as the simulation results show.

Index Terms—Wireless sensor networks, distributed localiza-
tion, censoring, binary data.

I. INTRODUCTION

Localization is an important application of wireless sensor
networks (WSNs), especially for intrusion detection [1]. Dis-
tributed localization is well suited for WSN of the prevalent
applications in WSNs, such as civilian [2], [3] and military [4]
applications. However, due to limited resource nature of the
WSNs [5], passive sensing is usually preferred in WSNs. In
such case, the sensing modalities might be energy-based [6]
or time-difference of arrival (TDOA) [7] for example. Further-
more, quantized [8] or even binary data [9] are transmitted to
preserve transmission power and bandwidth.

Maximum likelihood (ML) localization of an acoustic
source was studied in [10], in which energy-based analog
transmitted data where used. Projection on convex sets method
was adopted in [11] to localize the energy source. ML was also
used in [12] to localize a diffusive source. A robust distributed
detection and localization algorithm was developed in [13].
Joint detection and localization based on local decisions was
considered in [14] via the generalized likelihood ratio test
(GLRT). Whereas target detection and localization in clustered
WSN was investigated in [15]. Quantized data were used
in [16] for distributed localization in WSNs, where GLRT
was adopted. Heuristic localization algorithms, which avoid
complicated computation required by the ML, can be also used
seamlessly with binary data. The center of maximum enclosing
rectangle (CMER) and maximum enclosing circle (CMEC) al-

gorithms were proposed for uniformly and randomly deployed
WSNs respectively [17], [18].

In this paper, we propose the censored ML (cML) local-
ization, which only uses positive binary decisions. However,
in order to reduce the required computational complexity
required by the cML, we propose a quadratic approximate ML
(QAML) and a linear approximate ML (LAML) localization
algorithms, which show promising results.

The remainder of the paper is organized as follows. Section
II lays down the notation used in the paper. In addition
to introducing the system model adopted here. Section III
presents distributed localization algorithms in censored WSNs.
Simulation results are presented in Section IV. Finally, the
paper is concluded by Section V.

II. SYSTEM MODEL

This section firstly introduces the mathematical notion used
in the paper. Then the system model of the WSN and dis-
tributed localization is presented.

Notation: Generally, upper-case symbols refer to random
variables whereas lower-case symbols refer to deterministic
variables. Bold notation refers to vectors. Calligraphic symbols
refer to sets.

Consider a WSN consisting of M of SNs uniformly de-
ployed in a sensing field F ∈ R2. The SNs are located on
a grid in F with coordinates xi for i = 1, · · · ,M . The SNs
report to a FC located at the origin without loss of generality.

The WSN is tasked with the detection of any intruders
entering the sensing field. Such an intruder has a power of
Pt located at xt ∈ F . Each SN samples the sensing field thus
acquiring the signal [19]:

H0 : Si = Vi (1)
H1 : Si = ai(xt) + Vi (2)

where H0,H1 are the null hypothesis, alternative hypothesis
respectively, and Vi is the sensing noise, which is normally
distributed with variance σ2

s , i.e., Vi ∼ N (0, σ2
s) and

ai(xt) =

√
Pt

max(d0, di)
(3)

di = ‖xi − xt‖ (4)



where d0 is the SN reference distance, after which the intruder
power follows the inverse-square law. Note that the sensing
SNR here is defined as SNRs = Pt/σ

2
s .

Each SN locally detects the presence of the intruder via
a local detector. This can be thought of as a single bit
quantization of the measured data. We adopt a simple slicer
as the SN’s local detection defined for the ith SN as

Ii =

{
1, Si ≥ γ
0, Si < γ

(5)

where γ is the local threshold. The local detection probability
at ith SN then becomes

Pd,i(xt) = P {Ii = 1;H1} = Q

(
γ − ai(xt)

σs

)
(6)

whereas the local false alarm probability is

Pfa = P {Ii = 1;H0} = Q

(
γ

σs

)
(7)

where Q(·) is the Q-function defined as

Q(x) =

∫ ∞
x

e−
t2

2 dt. (8)

Although the detection and false alarm probabilities defined
in (6) and (7) are usually used in clairvoyant detectors, in
which the intruder’s parameters are assumed to be known,
they are also applicable in the case they are not [16]. Where
an energy detector is used to produce the data in (1) and (2).
The central limit theorem guarantees the Gaussian distribution
of the collected data when the number of samples is adequately
large.

The SNs censor there transmission in order to save power.
Only the positive decision is sent to the CH. To do so, the SNs
use on-off-keying (OOK) to send their decisions to the FC. The
communication channel is assumed to be ideal. The received
binary data at the FC is used to localize the intruder. Note,
however, that some SNs might falsely detect an intruder under
H1, which is known as the spurious detection problem [20].
This occurs in far SNs from the intruder, where the sensed
signal is weak and is dominated by noise that triggers the
false alarm.

III. DISTRIBUTED LOCALIZATION WITH BINARY DATA

In this section we discuss the maximum likelihood esti-
mation (MLE) of the intruder’s location using the complete
and censored binary decisions. Then we introduce the approx-
imated censored MLE algorithm.

A. Maximum Likelihood Estimation
Firstly, we present MLE of the intruder’s location using

all the available binary data, i.e., positive and negative local
decisions. This will serve as a benchmark for the other
algorithms.

The likelihood function under H1 of the all the local
decisions is given by

l(I0, · · · , IM ) =

M∏
i=1

Pd,i(xt)
Ii(1− Pd,i(xt))

(1−Ii) (9)

and consequently the log-likelihood function (LLF) reads as

LML(xt) = log l(I0, · · · , IM )

=

M∑
i=1

Ii logPd,i(xt) + (1− Ii) log(1− Pd,i(xt)).

(10)

Note that the second term in the summation above repre-
sents the miss-detection occurring in the SNs. However, this
cost function is highly nonlinear and non-convex as evident
in Fig. 1a. The intruder is localized by finding the maximizing
the the log-likelihood function in (10) with respect to xt. i.e.,

x̂t,ML = argmax
xt

M∑
i=1

Ii logPd,i(xt)

+ (1− Ii) log(1− Pd,i(xt)). (11)

It is clear, however, that the above problem is computation-
ally and numerically challenging, due to having many local
minimums and maximums.

Recall that in censored WSN only SNs with positive local
decisions send their data to the FC. As such only the first
term in (11) is retained. Then the log-likelihood function in
the censored ML (cML) is simpler and has the form

LcML(xt) =

M∑
i=1

Ii logPd,i(xt) (12)

Fig. 1b shows the corresponding log-likelihood function,
which is obviously smoother and hence simpler to handle in
terms of solving the below optimization problem

x̂t,cML = argmax
xt

M∑
i=1

Ii logPd,i(xt). (13)

B. Approximated cMLE

The cMLE problem in (13) is still highly nonlinear, which
becomes evident when closely examining the term

logPd,i(xt) = logQ

(
γ

σs
− ai(xt)

σs

)
(14)

As such, we resort to approximating the term in (14) by
recalling that the Q-function can be approximated by the
following Chernoff upper bound

Q(x) ≈ e− x2

2 (15)

When instrumenting this approximation, we are able to
develop a simpler form of the censored log-likelihood in (12),
which we name as the quadratic approximated ML follows

LQAML(xt) = −
1

2σ2
s

M∑
i=1

Ii (γ − ai(xt))
2

= − 1

2σ2
s

M∑
i=1

Ii
(
γ2 − 2γai(xt) + a2i (xt)

)
(16)



(a) ML localization. (b) Censored ML localization.

(c) Quadratic approximated cML localization. (d) Linear approximated cML localization.

Fig. 1: Log-likelihood functions for the ML-based localization algorithms for 81 SNs, intruder at xt = (12, 15), sensing SNR
SNRs = 20 dB, Pfa = 0.05.

Note that the resulting maximization problem can be for-
mulated as

x̂t,QAML = argmax
xt

M∑
i=1

Ii
(
2γai(xt)− a2i (xt)

)
(17)

since the constant γ2 in the summation in (16) can be ignored.
The LLF is shown in Fig. 1c where it contains several local

minimums located at the detecting SNs, in contrast to the ML
LLF in (10). Nonetheless the cML LLF is smoother than the
QAML and hence it is expected to have a better performance.

The deep minimums in Fig. 1c can be explained by the
quadratic behaviour of the cost function that emphasizes large
values. To mitigate this effect we propose using a linear
function instead of the quadratic one, leading to the linearly

approximated ML (LAML) cost function written as

LLAML(xt) =

M∑
i=1

Ii (ai(xt)− γ) (18)

As expected, Fig. 1d shows shallower maximums and hence
better localization performance achieved by solving the fol-
lowing optimization problem

x̂t,LAML = argmax
xt

M∑
i=1

Ii (ai(xt)− γ) (19)

C. Heuristic Localization Algorithms

As noticed above, MLE-based localization algorithms are
relatively complicated. Hence, several heuristic localization al-
gorithms have been suggested. We briefly discuss the centroid
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Fig. 2: Root mean square errors for an intruder at xt = (12, 15), sensing SNR SNRs = 20 dB, Pfa = 0.05.

method (CM) and the center of maximum enclosing rectangle
method (CMER).

1) CM Localization: The CM localization estimates the
intruder’s location by simply computing the mean coordinates
of the detecting SNs. i.e.,

x̂t,CM =

M∑
i=1

Iixi

M∑
i=1

Ii

(20)

2) CMER Localization: The CMER is implemented in a
uniformly deployed WSN. The intruder’s position is estimated
as the center of a rectangle that encloses the farthest detecting
SNs.

However, both methods are sensitive to the spurious detec-
tion problem since the falsely detecting SNs would bias the
estimate.

IV. SIMULATIONS AND PERFORMANCE ANALYSIS

We simulate a WSN in a field of 50 × 50. The intruder
position (xt) is located at (12,15) units. It has a power of
Pt = 10 and the sensing SNR (SNRs) is 20 dB. The sensing
reference distance is set to d0 = 1 unit. The local probability
of false alarm (Pfa) is 0.05. The WSN is simulated for 1000
Monte Carlo iterations. We simulate the following localization
algorithms: ML in (13), censored ML (cML) in (13), QAML
in (17), LAML in (19), the CM in (20) and the CMER method.
Note that the solutions for QAML and LAML were obtained
through grid search, in which the field was divided into 50
square grids and the estimate is considered to the the grid’s
center.

Fig. 2 shows the root mean square error for intruder’s
localization as the number of the SNs in the network increases.
As predicted earlier, the ML is performance slightly worse
than the cML. Interestingly however, the LAML performance
is almost similar to theat of the optimal ML and the cML. On

the other hand, the QAML performance better than the CM
and CMER but not as good as the other ML-based algorithms,
due to the quadratic behaviour as explained earlier. Another
interesting note that the heuristic algorithms’ performance
do not improve (or worsen in the case of CMER) when
the number of SNs increases, in contrast to the ML-based
algorithms, except for the QAML. This is attributed to the fact
that having more SNs implies having more spurious detection
and hence more estimation bias. Similarly, the QAML seems
to be sensitive to the spurious detection problem.

On the other hand, Fig. 3 demonstrates the localization
performance as a function of the local probability of false
alarm, Pfa. Recall that the local detection threshold is directly
determined by Pfa. It is clear that heuristics-based algorithms
are negatively affected when Pfa increases since spurious
detection increases consequently. In contrast, ML-based al-
gorithms do not show significant change in performance as
Pfa changes. Although an optimal Pfa is noticed. Except
in the case of the QAML algorithm that behaves similar to
the CM and CMER counterparts. This might be explained by
the numerical sensitivity inherit in the quadratic nature of the
algorithm, which leads to the noticed behaviour.

V. CONCLUSIONS AND FUTURE WORK

We have studied distributed localization in censored WSN
using binary transmission. We have derived the censored
maximum likelihood (cML) localization algorithm, in addition
to two approximated versions, the quadratic approximated
ML (QAML) and the linearly approximated ML (LAML)
algorithms, which are simpler computationally. It has been
shown that the cML localization performance is almost reaches
the optimal ML performance and so does the LAML when
increasing the number of SNs. Moreover, the ML-based algo-
rithms are almost insensitive to changes in the local detection
performance (except the QAML), in contrast to the heuristics-
based counterparts. In future works, intruder localization will
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Fig. 3: Root mean square errors for 81 SNs, intruder at xt = (12, 15) and sensing SNR SNRs = 20 dB.

be considered for randomly deployed WSNs. In addition
to investigating potential power savings in the WSN as a
consequence of the optimally choosing the local detection
threshold.
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