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Abstract

The weighted variant of k-Means (Wk-Means), which assigns values to features based on their
relevance, is a well-known approach to address the shortcoming of k-Means with data contain-
ing noisy and irrelevant features. This research aims first to explore how feature weighting can
be used for feature selection, second to investigate the performance of Minkowski weighted k-
Means (MWk-Means), and its intelligent variant, on datasets defined in different p-norms, and
third to address the problem of missing values with a weighted variant of k-Means. A partial
distance approach is used to address the problem of missing values for weighted variant of k-
Means.

Anomalous clustering has been successfully used to detect natural clusters and initialize cen-
troids in k-means type algorithms. Similarly, extensive work has been carried out on using
feature weights to rescale features under Minkowski Lp metrics for p ≥ 1. In this thesis, as-
pects from both of these approaches enable feature weights to be detected based on natural clus-
ters present in the training data, but the clusters are not limited to spherical shape. Two meth-
ods, mean-FSFW and max-FSFW, are developed as further extensions of intelligent Minkowski
Weighted k-Means(iMWk-Means), where feature weights are used as indices for feature selection
with no requirement for user-specified parameters.

The proposed feature selection methods are able to significantly reduce the number of noisy fea-
tures. These methods are further extended to mean-FSFWextPD and max-FSFWextPD to address
missing values and are found to be better alternatives than existing imputation methods.

The effect of feature weighting on clustering of dataset defined in varying p-norms is further
explored in the thesis. An algorithm that translates a dataset into different p-norms has been
proposed. The capability of MWk-Means to read true shapes of clusters defined in different p-
norms is explored.

To address the problem of missing feature values in weighted variant of k-Means, different
missing-value imputation methods are tested. The MWk-Means and its intelligent variant are
further extended to incorporate the partial distance approach, specifically to address the prob-
lem of missing values.

All these methods are tested in both synthetic and real-world datasets against three models of
noise - noisy feature added, feature blurring and cluster-wise feature blurring - where appli-
cable. These noises are generated from Gaussian and uniform distribution with three different
strength of noise, i.e., no noise, half noise and full noise

Overall, results demonstrate that feature weighting can improve feature selection. The partial-
distance approach, with feature weights, is effective at ignoring missing values, and cluster
retrieval in various p-norm spaces is effective.
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Chapter 1

Introduction

1.1 Introduction and Objective

The amount of data stored and processed by modern computers is increasing exponentially with
advances in technologies and storage capacity. These huge amounts of data, also known as big
data, grow not only in the number of instances, but also feature space, as more information
about each data instance can be captured than before. Although this growth in feature space in-
creases the amount of information known about the data, not all acquired features will have the
same contribution to the information required when trying to understand the data. for example,
information about the colour of a vehicle will not affect our understanding of its speed of motion.

A variant of k-Means, weighted k-Means(Wk-Means), is one of the approaches where bias is
added to features in the form of feature weighting to minimize the influence of noisy and irrele-
vant features. Basically, the weighted variant of k-Means bases feature weights on the dispersion
of features within clusters. In addition to the feature weighting approach, the Minkowski vari-
ant of weighted k-Means, MWk-Means, uses Minkowski metric for similarity measurement and
is able to retrieve clusters other than those of a spherical shape. One of the research areas consid-
ered here is to take advantage of these two approaches and derive automated feature selection
procedures so that clustering structures are preserved, and noisy and irrelevant features are re-
moved after feature selection [2].

Missing values, which are inherent in the data collection process, are a common problem in data
pre-processing. The two most common practices to address missing values in data mining are
deletion of instances containing missing values and imputation of missing values, usually with
the corresponding feature’s average value [3]. Deletion of instances containing missing values
results in loss of information, whereas feature average imputation decreases its feature’s diver-
sity. The missing value problem can be addressed implicitly by modifying a data processing
algorithm so that it can handle missing values. In clustering algorithms, modifying the distance
metric by its partial variant has been attempted to address the missing value problem. In this
thesis, we examine the impact of using a partial distance approach in the weighted variant of
k-Means. Similarly, MWk-Means is modified to incorporate partial distance within its similarity
measurement framework.

Based on the three major areas of the research highlighted above, this thesis addresses the fol-
lowing questions

(I) Feature weighting as an index for feature selection

a) Can feature weighting be used as a tool for feature selection?

b) Can this approach be used to identify and remove different types of noisy features?

(II) Effect of missing values in the weighted variant of k-Means
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a) How do different imputation methods affect the performance of weighted variant of
k-Means?

b) Can the partial distance approach be used in the weighted variant of k-Means to ad-
dress missing values?

c) Can the partial distance approach be effectively applied to feature selection techniques
based on feature weighting?

(III) Effect of clustering in different p-norms

a) Is it possible to translate a dataset defined in one p-norm to another p-norm and reverse
the process?

b) Is feature weighting still effective to find clustering in the dataset, defined in different
p-norms?

c) Is Minkowski metric still effective to find clustering in the dataset, defined in different
p-norms?

d) Can feature selection based on feature weighting be effective with datasets in different
p-norms?

1.2 Contribution

Feature weighting and Minkowski metrics are used in this thesis to explore three areas of clus-
tering analysis: feature selection, addressing missing values and data in different p-norms using
a weighted variant of k-Means. These areas of research are explained in Chapters 5, 6, and 7
respectively. Chapter 8 consists of results from the extended experiments which combine two or
more of these areas. In general, the contributions are:

• Feature selection

– Reviewed different feature selection algorithms.
– Evaluated the proposed algorithms based on cluster recovery, the number of original

features selected and the number of noisy features selected.
– Demonstrated that the proposed feature selection algorithms performed better than

other feature selection algorithms.
– Highlighted how the distance coefficient(p) contributed to the performance of the

proposed feature selection algorithms.
– Evaluated the performance of the proposed feature selection algorithms in different

classifiers.

• Missing values.

– Reviewed different approaches used to handle missing values in clustering analysis.
– Explored the effectiveness of different imputation methods for the weighted variant

of k-Means.
– Modified Wk-Means, iWk-Means and MWk-Means to incorporate partial distance met-

ric within them to address missing values.
– Demonstrated the impact of using partial distance in the weighted variant of k-Means.

• Working with data in different p-norms

– Defined a translation process to move data from one pold-norm to a second pnew-norm.
– Explored the effectiveness of Minkowski metric and feature weighting for cluster

analysis of data in different p-norms.
– Explored the performance of the proposed feature selection algorithms in Lp space.
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1.3 Scope

Three major scopes of this research are:

• Feature selection based on feature weighting addresses problems typical in big-data prob-
lems where instances are represented with large numbers of dimensions (known as the
"curse of dimensionality").

• The partial distance approach provides a better alternative to imputation methods in k-
Means type algorithms. This enables different data analysis tools to avoid the imputation
of false values.

• The procedure to create the Gaussian mixed models in Lp space provides a new tool, en-
abling the data scientist to create a range of synthetic datasets.

1.4 Thesis Structure

Chapters in this thesis are structured as literature review, methodologies, and datasets are cov-
ered in Chapters 2 and 3 respectively; all purposed algorithms and methodologies are presented
in Chapter 4; Chapters 5, 6, and 7 cover the three areas of research as mentioned in contribu-
tion; Chapter 8 consists of extended research which combines these three areas of research; and
finally, the thesis is concluded with outcomes and discussions for further expansion in Chapter 9.

Chapter 2 covers a literature review on different approaches used in clustering analysis which
includes the development of k-Means type algorithms and different feature selection algorithms.
In this Chapter, we observed different approaches which are used to address feature weighting,
find the number of clusters and initialize centroids in k-Means type algorithms. Literature on
different feature selection algorithms based on cluster analysis is also studied.

In Chapter 3, different tools and methods used in this thesis are introduced and their mathemati-
cal models are explained. This chapter covers different metrics for similarity measurement, data
standardisation, the optimization problem in different variants of k-Means, feature weighting
principle and its use in cluster analysis, cluster validation indices, feature selection algorithms,
pattern and mechanism of missing values, different imputation methods and partial distance ap-
proach for missing values; and p-norm. A short description of synthetic and real-world dataset,
and different types of noise used in the experiments are presented in this chapter. This chapter
also includes all proposed algorithms and novel approaches conducted in this thesis.

The Chapter 4 introduces all proposed methods, whereas, in Chapter 5, consists the experimen-
tal results from the proposed feature selection algorithms . The performance of these feature
selection algorithms is evaluated based on cluster recovery and the number of original features
retrieved with noisy features against three other feature selection algorithms.

The performance of different imputation methods to address missing values in k-Means type
algorithms is observed in Chapter 6. This chapter also introduces the partial distance approach
in the k-Means type algorithms.

Chapter 7 introduces different parameters of clustering analysis and explores the performance of
the k-Means type algorithm in p-norms. This chapter explains the proposed methods for trans-
forming data from p1-norm to p2-norm and analyses the performance of Minkowski weighted
k-Means, MWk-Means in different p-norms.
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Chapter 8 combines the three areas of research where results from extended experiments includ-
ing the performance of the purposed feature selection algorithms in a large dataset, their effect
on different classifiers, and Lp space are presented and analysed.

Chapter 9 concludes the contributions of this thesis. Limitations of the proposed algorithms and
further research areas are discussed in this chapter.



5

Chapter 2

Literature Review

Clustering is a basic tool in data-preprocessing where “like" items are grouped together and
“unlike" are separated from each other. The clusters help disclose fundamental structures in the
data such as the characteristic of objects and their relationships. Clustering is a form of unsu-
pervised learning where information is extracted based on the hidden structure of data. This is
in contrast to supervised learning which aims to create a classifier model with the help of class
labels. Clustering has been used in different data processing applications such as data mining,
bioinformatics [4, 5, 6], image processing, numerical taxonomy [7], factor analysis [8], pattern
recognition [9], web mining [10, 11, 12, 13, 14, 15] etc. Some of the earliest work in clustering in-
cludes grouping for quantitative analysis of the tribal cultures by Driver and Krobber [16] where
groups of people are formed based on similarity. In their work, people are ranked “higher" or
“lower" based on similarities they possess for tribes, and classes are derived using these ranked
values.

2.1 Topology of Clustering Algorithm

Sneath and Sokla [7] have broadly divided clustering algorithms into two categories: hierar-
chical and non-hierarchical. The major distinction between hierarchical and non-hierarchical
clustering lies in their methods and structures. In hierarchical methods, clusters form a nested
tree (dendrogram) where a parent-child structure preserves the relationship between the clus-
ters. A dendrogram helps to visualize the building process of the clusters and can be used to
obtain any required number of clusters. Hierarchical clustering is more often used to study tax-
onomies in biological, and social and behavioural science [15].

FIGURE 2.1: Topology of clustering algorithms

Hierarchical clustering can be further divided into agglomerative and divisive, based on the way
they are created. In the case of agglomerative, each element is considered as a singleton cluster
at bottom level (leaves) and a nested tree is formed by repetitive merging of the clusters until the
complete dataset is recovered at the root. In divisive methods, the direction of cluster building
is reversed, starting at the root with the complete dataset and carrying out repetitive divisions
of clusters to children clusters until singleton clusters (leaves) are formed at the bottom end.
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The non-hierarchical, also called partitional, clustering techniques are more common in engi-
neering where a dataset is divided into multiple partitions which can be either overlapping or
non-overlapping. In the case of overlapping partitions, a dataset is partitioned into clusters such
that a single object can belong to multiple clusters with a degree of belonging, mik, also called a
membership function, whereas in non-overlapping partitions, an object belongs to only one par-
tition at a time. Overlapping clustering can be viewed as a generalization of non-overlapping
clustering where membership function mik can either be 0 or 1.

Different partition based clustering algorithms have been put forward in the literature [17, 18].
For example, [17] has listed four methods: k-Means variant, Exchange, Seriation, and Graph Par-
titioning. k-Means, also called the moving centres, was originally developed by MacQueen [19]
and a variant of k-Means, ISO-DATA (Iterative Self-Organizing Data Analysis Techniques) was
put forward by Ball and Hall [20]. In addition to the basic k-Means algorithm, ISO-DATA breaks
down the largest cluster or merges too close clusters once the moving centres, i.e. centroids,
are saturated. Moving centres and agglomerative type clustering algorithms have been used in
different statistical packages, including BMDP, SPSS and SAS.

2.2 Clustering Algorithms

A clustering algorithm aims to partition a dataset Y, composed of n entities yi ∈ RV , into K ho-
mogeneous clusters where the feature space V = {v1, v2, ..., vM} consists of M features. Partition
based clustering produces K disjoint clusters S = {S1, S2, ..., SK} so that Si ∩ Sj = ∅ for i 6= j.
Fuzzy c-Mean, also called soft clustering is a generalization of k-Means. Unlike k-means where
an element belongs to a single cluster a time, in fuzzy c-Means an elements partially belongs to
all clusters as defined by the membership function mik such that ∑K

k=1 = 1.

A hierarchical clustering algorithm (e.g. Wards [21]) generates a dendrogram of clusters as well
as additional information regarding the relationship between clusters. In hierarchical clustering,
an entity yi can be assigned to more than one cluster as long as they are at different levels in the
dendrogram. Through the dendrogram, relationships between the clusters at each level can be
derived. DENsity based CLUstEring (DENCLUE) [22], a density based clustering algorithm, is
a better alternative to partitional based clustering which works on segmentation-based object
categorization.

This research will focus on three main areas of clustering- feature selection, handling missing
values, and analysis of clustering in a dataset defined in different p-norms other than 2-norms.
Two most popular feature selection algorithms from Mitra et al. [23] and Deng Cai et al. [24]
are based on similarity index and required parameter tuning which is not possible under totally
unsupervised conditions. Since these are based on similarity index and try to peak most unique
features, the addition of noisy features or blurring features with making them unique is likely
to be selected. The cluster-based feature selection method put forward by Renato et al. [25],
used feature weighting to cluster feature (instead of entities) but the selection of features from
the cluster of features so formed are based on Mitra feature similarity index. Therefore, it again
inherited the problem of uniqueness with noisy features. This thesis aims to overcome the prob-
lem by using only feature weighing in the sole for identifying the true features.

k-Means and its variants provide a basis of clustering algorithms and are easy to understand. In
addition, there are a large number of research articles on k-Means and its variants in the area of
concern. Moreover, due to the primitive nature of k-Means type algorithms, the finding can be
easily practiced in other types of clustering. Therefore, this research will initially focus on the
variants of k-Means.
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2.2.1 k-Means

According to Cormack, clusters must maintain homogeneity within themselves and heterogene-
ity between clusters [26]. To satisfy the definition different authors tried to minimize within-
cluster variation [27, 28, 29]. k-Means, one of the initial algorithms which fit in this category,
was independently developed by Sebestyen [20] and MacQueen [19]. Because of its simplicity,
easy of implementation and speed, k-Means soon became popular and has been used in different
areas of data mining, such as cluster analysis [30, 27], multivariate analysis [31], pattern recog-
nition [9], etc.

k-Means does have some shortcoming such as: (i) the value of K, number of clusters, has to be
known beforehand; (ii) it may get trapped in local minima; (iii) it is biased towards spherical
clusters; (iv) it provides no resistance against noisy or irrelevant features. This thesis is particu-
larly focused on weaknesses (ii), (iii), and(iv).

In generic k-Means, initially K centroids are chosen at random and dataset is recursively par-
titioned to minimize within-cluster variation. During each iteration, centroids are reallocated
to the center of the gravity of the corresponding clusters. Therefore, the performance of the
k-Means depends on initial location of centroids, leading to the shortcoming (ii). Similarly, k-
Means uses Euclidean distance as a similarity measurement which inherits bias towards spheri-
cal clusters. k-Means treats each feature equally, however, different features may have different
degrees of relevance, for example a noisy or redundant feature has no contribution towards
clustering and therefore can be considered as a feature with zero degree of relevance.

2.2.2 Initialization of Centroids

The performance of k-Means is highly influenced by the location of the initial centroids. There-
fore, the algorithm is not always guaranteed to find the global optimum [32, 19] and its con-
vergence depends on how well the initial centroids are chosen [33, 34]. One of the alternatives
to avoid trapping in local maxima is to repetitively run k-Means with different centroids and
accept the best solution [35, 27]. This can be practically impossible to find global optimum [6]
since there are always chance to have a large number of local optima.

In some software packages [36], datasets are initially partitioned into K disjoint sets and initial
centroids are defined as the mean of these partitions. Pk-Means [37], k-Means with a partition
based cluster initialization method, first divides each feature into K equi-sized partitions and
then one of the partitions, which is not selected earlier, is chosen randomly from each feature. A
random value is drawn from the selected partition for each feature which gives one of the initial
centroids. This process is repeated for remaining K-1 initial centroids.

Some deterministic methods for initialization of centroids have been put forward by different
authors. For example, Astrahan [38] proposes a deterministic method which first finds the num-
ber of neighbouring points falling within the radius of a pre-defined distance d1 for all entities.
The entity with the highest number of neighbours is chosen as the first initial centroid. The next
entity with maximum number of neighbours and at least d2 distance from the first initial cen-
troid is chosen as the second initial centroid. And the process is repeated until K initial centroids
are derived.

Many researchers [39, 40] have followed Milligan’s [41] approach of using hierarchical cluster-
ing, like Ward’s method [42], for initialization of the centroids. Constrained k-Means [43], a
semi-supervised k-Means, uses the labelled examples to draw initial centroids for the k-Means.
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k-Means++ [44], a variant of k-Means, uses a probability based “D2 weighting" method for ini-
tialization of centroids in k-Means. The convergence of k-Means++ is much faster than classical
k-Means [44] and is popular in different literatures [45, 46, 47].

2.3 Dimension Reduction

Dimension reduction is a common pre-processing step in data analysis. There are different rea-
sons for this, including: (i) helps to save processing time; (ii) reduces the disk space required to
process and store data; (iii) allows to create more meaningful visualisation aids; and (iv) reduces
issues raised by the curse of dimensionality [48, 49, 50, 51]. More importantly, it helps to get rid of
redundant or irrelevant noisy features which may be misleading in further decision processing.

FIGURE 2.2: Taxonomy of dimension reduction [1].

Generally speaking, there are two main classes of methods for dimension reduction: feature se-
lection and feature extraction as shown in Figure 2.2. Feature selection can be further classified
as filters and wrappers methods whereas feature abstraction can be carried out based on perfor-
mance measures, transformation or number of new features. Feature selection attempts to find
the smallest subset of relevant features, according to a given criterion. Feature selection meth-
ods do not alter the features themselves, preserving their original meaning to the user. Feature
extraction attempts to reduce the dimensionality of data sets by combining features. The origi-
nal features and their meaning to the user are usually lost during this process although feature
extraction aims to minimise the loss of information.

2.3.1 Feature Selection

The main objective of feature selection algorithms is to determine a proper subset V ′ ⊂ V, so
that describing an entity yi ∈ Y over feature subspace V ′ instead of V does not lead to loss of in-
formation. Feature selection has a long history (see for instance [52, 53, 54, 55, 56] and references
therein). However, this tends to be for algorithms following the supervised learning framework
which requires labelled data.

Feature selection algorithms basically consist of two major components: feature search - find-
ing the subset of features and feature evaluation - evaluation of feature/feature subset based on
predefined criterion [57]. Sequential search like sequential forward/backward selection, bidi-
rectional selection [58, 59] have been practised in different literatures. Most of these sequential
search are based on greedy techniques and hence cannot guarantee an optimal solution [57]. To
avoid becoming trapped in local maxima, some authors have used random searching methods
like genetic algorithms and random mutation hill climbing [60, 61]. Once the feature search is
completed, irrelevant or redundant features are removed and “informative" features are selected



2.3. Dimension Reduction 9

from the feature search space based on some feature criterion functions. In filter approach, fea-
ture evaluation is purely based on the data itself whereas in case of wrapper, selection of the
features is based on how informative the particular feature is for the chosen clustering algo-
rithm. Addition of extra steps makes the wrapper approach comparatively slower than filter
approach but maximizes the information. However, it is limited to the inbuilt cluster evaluation
algorithm.

Some Common Practice in Feature Selection

A forward selection technique, proposed by Fowlkes et al. [62], is able to find a subset of “mean-
ingful" features for complete linkage hierarchical clustering but can be extended to k-Means
type partition clustering methods as well. In cluster analysis of market segment, Carmone et
al. [63] explored how the selection of the “best" subset is important, as “noisy" features can be
misleading. The proposed feature selection algorithm, the Heuristic Identification of Noisy Vari-
ables(HINoV) [63], is based on the assumption that the adjusted rand index (RAND) is larger for
“true" features and smaller for “masking" features. HINoV is found to be effective for k-Means
cluster analysis of data-based market segments. Brusco et al. [63] discovered that HINoV is
not always effective: it is more informal and subjective as it requires interpretation of a screen
plot. Moreover, HINoV assumption is not always valid since there can be high-degree of cor-
relation between the masking variables and multiple sets of true cluster structure can persist in
a single dataset. Brusco et al. address these problems with a new ARI-based variable selection
heuristic, VS-KM, which builds on the basis of Carmone et al. [63] and Fowlkes et al. [62] for
partitional based algorithms like k-Means. VS-KM works in a forward-selection manner by us-
ing between-cluster and sum-of-square information as suggested by Fowlkers et al [62]. VS-KM
is tested with 2200 datasets with known configuration by Monte Carlo testing and it has been
empirically demonstrated as effective in identifying “informative" variables.

Dash et al. [64] used entropy base feature ranking method to remove irrelevant and redun-
dant features from 17 different real-world datasets containing both continuous and nominal
data types. In their experiment, they have used a sequential backward selection algorithm for
searching “informative" features and shown that the performance of their method is almost close
to the supervised feature ranking method, RELIEF [65].

Vandenbroucke et al. [66] used a competitive learning algorithm based on colour texture fea-
ture to find the most “informative" colour texture feature for soccer image segmentation. The
competitive learning scheme first derives candidate features based on their contribution to the
junction function derived from the intra-cluster compactness and between-cluster dispersion.
The most “informative" features are then selected from the candidate features using the corre-
lation coefficient between the junction function and the candidate features. The performance of
this approach is found to be much closer to the supervised method considered.

For large datasets, both in size and feature space, Mitra et al. [23] developed an unsupervised
feature selection algorithm based on feature similarity measurement called maximum informa-
tion compression index. The algorithm recursively divides the feature space into ‘K’ groups
under KNN principle and the feature with the most compact neighbours are selected based on
the compression index. The algorithm is much faster than its counterparts as it does not require
feature search.

In recent years, spectral/spare learning has become popular in unsupervised feature selection.
Multi-cluster feature selection, MCFS [24], is one of the earliest multivariate feature selection
algorithm based on the spectral learning model. MCFS first detects the cluster structure using
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spectral analysis [67] then the usefulness of each feature per cluster is derived using l1-norm
regularization [68]. The features with the highest coefficient are selected as the representative
features.

Regularized self-representation, the RSR model is proposed by Zhu et al. [48] as a new spare
learning model for unsupervised feature selection based on assumption that informative fea-
tures can be presented or used as a linear combination of relevant features. RSR model used
l2,1-norm to characterize the representation matrix and the features with highest weight are se-
lected as the representation feature. The extended version of RSR [69] uses l2,p-norm to a derive
representative matrix. Other related works on self-representation models are graph regular-
ized non-negative self representation(GRNSR) [70], dual self-representation, manifold regular-
ization(DSRMR) [71] etc.

Semi-Supervised Feature Selection

With the popularity of constraints/semi-supervised clustering [72, 73, 74, 75], different researchers
have attempted to utilize partially available class labels or other constraints for feature selection.
These techniques are mostly found in practice for filter methods [76, 77, 78] and most of these
algorithms use some sort of score function like variance, Laplacian, Fisher, Constraint, etc. The
semi-supervised filter feature, SRFS [77], is one of the frameworks that first derives relevant
features by removing irrelevant and redundant features using mutual (entropy) information.
Directed acyclic graph (DAG) is then constructed using the relevant features and then partition
the graph into clusters based on the Markov blanket [79]. Finally, representative features from
each cluster are derived.

2.4 Feature Weighting

Feature weighting is a generalization of feature selection [80]. In feature weighting, weight wv,
is assigned to the feature v ∈ V based on its relevance. Feature selection can be modelled
with feature weight by adding a constant that the weight value wv is either 1 (selected) or 0
(not selected). In most algorithms,the weight values wv ∈ (0, 1) sum to 1, i.e. ∑v∈V wv = 1
whereas some algorithms may assign different feature weight values based on cluster wkv such
that ∑v∈V wkv = 1 where k = 1, 2, ..., K is the number of clusters.
Sneath and Sokal in [7] discussed weighting factors in clustering and disclosed that some fea-
tures are more significant than others. Fowlkers et al. [62] proposed an algorithm that con-
sidered the importance of features in clustering. The algorithm performs feature selection and
feature subset evaluation in three steps: forward selection, backward elimination and guiding
feature selection. Desarbo et al. [81] have proposed a new variant of k-Means, SYNCLUS, SYN-
thesized CLUStering which extends k-Means such that different degrees of relevance of features
are considered while clustering. SYNCLUS, in addition to k-Means parameters (number of clus-
ters and initial seeds i.e. centroids), requires two more parameters – information about the fea-
tures grouping and initial feature weights in each group. The work has been extended to find
optimal feature weighting for ultrametric and additive tree fitting [82, 83]. Desarbo and Maha-
jan [84] have extended this concept to constraints clustering where feature relevance is reflected
with the linear transformation of the features.

Modha and Spangler [85] presented a framework that integrates multiple heterogeneous fea-
tures in the k-Means. The extended variant of k-Means, convex k-Means clusters objects based
on symmetric “distortion" between two objects along the feature vectors. The distortion between
two entities is measured as

Dw(yi, yj) = ∑
v∈V

Dv(yiv − yjv) (2.1)
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where the dispersion Dv depends on the feature space.

Dv(yiv, yjv) =

{
(yiv − yjv)

T(yiv − yjv) for Euclidean feature sapce
2(1− (yT

ivyjv) for Spherical feature space
(2.2)

The convex k-Means replaces the similarity measurement of the classical k-Means by the weighted
distortion and optimizes it using convex formulation. The feature weighting ("distortion") is al-
tered in each iteration so that the average within-cluster dispersion is minimized and the average
between-cluster dispersion is maximized. The objective function is to minimize the criterion:

F(S, C, w) = ∑
k∈K

∑
v∈V

Dw(yi − ck) (2.3)

Chang et al. [86] introduced an extension of k-Means, feature weighted k-Means(AWK), which
considers that a feature can have different degrees of relevance in different clusters. AWK as-
signs a cluster-based feature weighting wvk for a feature v ∈ V in cluster Sk ∈ S. AWK tries to
optimize

F(S, C, w) =
K

∑
k=1

∑
i∈Sk

∑
v∈V

wβ
kvd(yiv, ckv) (2.4)

the weighting coefficient, β > 1 and the similarity metric is

d(yiv, ckv) =


|yiv − ckv|2 for numerical data,
1 for categorical data with yiv = ckv,
0 for categorical data with yiv 6= ckv

(2.5)

The feature weighting wvk is initially set to 1/|V|. The cost function F(S,C,w) is minimized by
partially optimization of S, C and w.

A new variant of weighted k-Means, Wk-Means was proposed by Huang et al. [87] which is
basically AWK discussed earlier except a single weight wv is assigned to a feature v ∈ V instead
of cluster-based weights. Therefore, the objective function 2.4 is modified to

F(S, C, w) =
K

∑
k=1

∑
i∈Sk

∑
v∈V

wβ
v d(yiv, ckv) (2.6)

The objective function above is minimized by optimizing S, C, and w as in AWK and the feature
weight wv in each iteration which is calculated by

wv =


1

∑u∈V
Dv
Du

(1−β) if Dv 6= 0,

0 otherwise
(2.7)

where the dispersion of feature v ∈ V is calculated as the sum of dispersion of the feature within
all clusters,

Dv =
K

∑
k=1

∑
i∈Sk

d(yiv, ckv) (2.8)

Huang et al. [10] extended this method to consider feature weighting per cluster and have
shown that feature weighting can be used as an index for feature selection.
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Sparsity is a well-documented problem in high-dimensional data. The concept of sub-space clus-
tering has been covered by different authors to deal with this problem [88, 89, 90] where clus-
tering information is retrieved from subspaces of features instead of whole feature space. Jing
et al [91] proposed an entropy weighting k-Means, EWk-Means, to deal with the data sparsity
problem in weighted k-Means. The EWk-Means aims to minimize the within-cluster dispersion
and maximize the negative weight entropy by adding weighted entropy in Wk-Means objective
function. The objective function for EWk-Means is:

F(S, C, w) =
K

∑
k=1

[∑
i∈Sk

∑
v∈V

wkv(yiv − ckv)
2 + γ ∑

v∈V
wkvlogwkv] (2.9)

where wkv weight of the entropy of feature v in the cluster Sk is given by

wkv =
exp

−Div
γ

∑j∈V exp
−Dkj

γ

(2.10)

and the dispersion of the feature v ∈ V is the sum of dispersion of entities y ∈ Sk within the
cluster Sk i.e. Dkv = ∑i∈Sk

(yiv − ckv)
2.

The Euclidean metric which is used to measure the dissimilarity in Wk-Means, originally pro-
posed by Huang et al. [10, 87], is further extended to Minkowski metric by Renato et al. [92].
This algorithm is further discussed in the next chapter.

2.5 Missing Values

The problem of missing values in data mining has been usually studied based on location i.e.
where they occur and their relationship with known values. The study of missing values is based
on the location usually refers as missing pattern, whereas their study based on the relationship
is termed as a missing mechanism. Roderick et al. in their well-known book “Statistical anal-
ysis with missing data" [93] have categorized five missing patterns- monotonous, univariate,
multivariate, file matching, factor analysis and general, and three missing mechanisms- missing
completely at random (MCAR), missing at random (MAR) and not missing at random (NMAR).

Some of the earlier practices of statisticians to handle missing values are expectation-maximization,
EM [94] and multiple imputation [95, 96]. These methods are theoretically correct but their as-
sumption about the distribution of data is unsubstantiated. Moreover, they have very low con-
vergence and their performance is highly influenced by the percentage of missing values [97].

Other common traditional methods of dealing with missing values are:- listwise (or case) dele-
tion, pairwise deletion, and substitution by some values. Listwise (or case) deletion, where
the entire data entities or the data features containing the missing values are deleted, is the most
common approach and by default is integrated in most of the statistical tools. However, this trig-
gers a huge loss of information [98]. Although pairwise deletion has some advantages over list-
wise deletion, the correlation matrix that is created to find appropriate pairs has a sub-sampling
problem and cannot be reversed [98]. Replacing the missing values by a constant value, like the
feature mean [98], mode, class or conceptual mean, or 0, etc. has advantages over the deletion
approach as no information is lost. But these methods do not consider feature variation, the
relationship between the features and whether the original data can be lost [99].
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One of the methods that take the variation of data into account is to replace the missing value
with the nearest neighbour imputation, NN-impute [100, 101] and its modified variant ’K’ near-
est neighbour imputation, kNN-Impute [102]. kNN-impute, find k nearest neighbours of the
entities containing that have missing values based on the clean dataset and then replace the
missing values with the mean of the feature values of these k neighbours. One of the drawbacks
of the kNN-impute is that it ignores the correlation between features. To address this problem,
Wang and Fu Dong [103] introduced a weighted variant of kNN-impute, WkNN-impute. The
WkNN-impute uses a vector regression model to derive weights of the known features with
respect to feature with missing values and integrate the feature weights with kNN-impute to
predict the missing value. The complete case kNN-impute(CCkNN-impute) only considers the
clean (complete) entities to predict missing values. CCkNN-impute also has a problem that it
becomes ineffective if most of entities have missing values [104] . To address this problem, Jason
and Taghi [105] have proposed an incomplete case kNN-impute (ICkNN-impute) which is also
considered the partially missing entities to predict the missing values. ICkNN-impute has better
performance than CCkNN-impute, especially when the dataset contain a large number of miss-
ing values.

Olga et al. [106] have used singular value decomposition-based imputation methods, SVD-
impute, to predict missing values in DNA microarrays. SVD-impute derives mutually orthog-
onal patterns using singular value decomposition. These patterns are then linearly combined
to approximate the missing values. Trond et al. [107] have used the least square-based impu-
tation method, LS-impute, where correlations between entities are used as a prediction model.
LS-impute uses the correlation between entities and considers weighted average of several re-
gression estimation to predict the missing values. Local least-square imputation, LLS-impute
[108], an extension of LS-impute, explores the local similarity structure of a dataset. LLS-impute
selects K similar genes using L2-norm or Pearson correlation and approximate missing values
by least-square optimization. Other popular variants of regression-based imputation models
used in different literatures are: Gaussian mixed cluster imputation, GMC-impute [109]- data is
modelled by Normal distribution and missing values are imputed by EM algorithm; projection
onto the convex set, POCS [110]- based on least square estimation but uses constraints/ prior
knowledge about the missing values to guide the estimation process; robust least square impu-
tation with principal components, RLSP [111]- addresses the problem of outliers in LS-impute
by considering l1-norm instead of l2-norm or Pearson correlation.

To predict missing feature values, B.M. Patil et al [112] had proposed a new method based on
K-Means clustering. The new method is called CMIWD, Clustering Method Imputation with
weighted distance which imputes a missing value of an entity as a function of centroid and
nearest neighbour. CMIWD works in two phases: first divides the dataset into K clusters and
then replaces the missing values. To cluster the data, CMIWD categorizes features into two sets:
reference features and non-reference features. The feature that has known values for all enti-
ties is called the reference feature and the feature with missing values for at least one entity is
called the non-reference feature. A data entity with all reference features is a complete entity. In
the first phase, CMIWD divides a dataset into K distinct clusters using K-Means seeded with K
centroids randomly chosen from the complete data entities. CMIWD uses a modified distance
function, which only considers the reference features to calculate the distance between a cen-
troid and a data entity. The modified distance function helps to assign the incomplete entities to
the appropriate cluster. In the second phase, for each missing feature value, CMIWD finds the
nearest neighbour among the complete data entities within the same cluster. The distance be-
tween the nearest neighbour and the missing entity is calculated based on the reference feature.
The distance is called the weight. The missing feature value is then replaced by the mean of the
centroid and the weight.
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2.6 Lp Norm

Vlachos et al. [113] explored the use of Euclidean distance as a similarity metric for mobile
object trajectories, and found that it yielded a large number of outliers. They proposed a flexi-
ble sigmoid matching function, which was found to be superior than the Lp metric. However,
their work only explored values of p between 0.1 to 2. The research also failed to model the
Lp space for the trajectories. Ankita Vimal et al. [114] have used four different distance mea-
sures other than Euclidean, and have tested on synthetic datasets generated using Syndeca [115]
and one real-world dataset of cricket [116]. They have highlighted the necessary to further ex-
tend the work on different datasets using different distance measures and clustering algorithms.
Endre Pap et al. [117] derived a generalization of Lp space as a pseudo-Lp space framework
and showed the importance of using the Lp space in different clustering applications, like fuzzy
systems. Fair (K,p)-Means [118], an extension of low-cost fair k-means clustering, works un-
der an Lp-norm objective function. The performance of Fair (K,p)-means was tested with four
real-world datasets - bank, census, creditcard, and census1990 - from UCI machine learning
repository [119]. Vincent et al. [120] have derived a theory of approximation of k-means and
k-median for four cases of Lp metrics - L0, L1, L2 and L∞. However, its optimization is only
derived in Euclidean plane. Minkowski metric-based fuzzy Granular classification methods are
effective in classification of imbalanced (skewed) datasets [121].The multiple geometric shapes,
provided by Minkowski space, are able to extract the key features from imbalanced datasets.
These information granular are able to capture important characteristic of data from both ma-
jority and minority clusters and hence are effective in classification of imbalance datasets. In the
recent work, Vincent et al. [122] have provided a new coreset framework for clustering which
simultaneously minimized the closest center problem for (k,p)-clustering problem, where k is
the number of centers in p-metric space.

Many datasets, both synthetic and real world, have been used throughout the literature. The
measurement of similarities in real-world data are hard to model as the notion of these mea-
sures are domain specific. Therefore, to observe the performance of an algorithm in a particular
Lp space, researchers have to consider synthetic datasets where the notion of similarity can be
controlled. SynDECA [115] - a tool to generate synthetic datasets for cluster evaluation - pro-
vides control over the density, radius and number of clusters. The interface can also generate
different shape clusters - circular, ellipse, rectangle, square or irregular. However, it does not
provide a control over selection of a particular Lp space or notion of similarities. The synthetic
data generator interface developed by Pei and Zaiane [123], provides features to control different
parameters of clusters such as number of data points, number of clusters, distribution of clus-
ters, density level and complexity of clusters. But, like SynDECA, this tool is also inappropriate
for cluster analysis in Lp space as it does not have an interface to control similarity measurement.
The GSTD interface [124], a tool kit to generate synthetic datasets based on spatiotemporal in-
formation, and IBM’s QUEST [125], inherit similar problems and so are not suitable for cluster
analysis in Lp space. In a latest literature, Kalke et al. [126] have shown that p-generalized polar
method can be used to simulate p-generalized Gaussian distribution.
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Chapter 3

Tools, Techniques and Methodologies

In this chapter, different tools, techniques, and methodologies, such as distance metrics, feature
weighting, feature selection, k-Means variant, etc. which are used in the thesis, are discussed
in detail. Different distance metrics used in different literature for similarity measurement in
clustering are explained in section 4.1. In section 3.3, two different methods for data standard-
ization are detailed. Feature weighting principle and using them as a feature rescaling factor are
explored in section 3.4. Different variants of k- ranging from generic to Minkowski variant pre-
sented in section 3.5. The mathematical models of clustering validation indexes used during the
research are explained in section 3.6. Similarly, section 3.8 has covered the pattern and mecha-
nism of missing values and different techniques used in data mining to addressed them. Finally,
techniques used in this thesis for conversion of the dataset in different p-norms are studied in
section 4.3

3.1 Similarity Measurement

Clustering refers to the grouping of elements based on their similarity where similar or more
“like" items are kept together and dissimilar or more “unlike" items are kept apart. This is
achieved by maximizing intra-cluster similarities and minimizing inter-cluster similarities. As
clustering algorithms aim to group similar entities together, some sort of measurement of simi-
larity is required. Mathematically, the similarity is measured based on distance metrics. There-
fore, the way that similarity in a particular clustering algorithm is defined is crucial in shaping
the performance of the algorithm.

In general, two elements xi and xj are referred to be similar if they are relatively close, i.e. their
distance d(xi, xj) is relatively low. Some popular distance metrics used in literature are:

• Manhattan distance, which is also called as city-block or L1-distance, is the sum of differ-
ences between two data points along all the feature spaces v ∈ V and is given by:

dMan(xi, xj) = ∑
v∈V
|xiv − xjv| (3.1)

The median of all data points within a cluster defines a centroid of the cluster when
the Manhattan distance matrix is used as similarity measurement. k-Means produces
diamond-shaped clusters in 2-norms when Manhattan distance is used as a similarity met-
ric.

• Euclidean distance between two data points xi and xj is the length of a line segment be-
tween the points in the Euclidean space and is defined as:

dEud(xi, xj) = 2

√
∑

v∈V
(xiv − xjv)2 (3.2)
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When Euclidean distance is used as similarity measurement, the centroid of the cluster
so formed is given by the mean of all data points within the cluster and the cluster has
spherical shape.

• Chebyshev distance, also known as chessboard distance is the maximum difference be-
tween two data points along with feature space v ∈ V and is defined by:

dChe(xi, xj) = max
v∈V
|xiv − xjv| (3.3)

Under the Chebyshev distance matrix, the cluster so formed will has a rectangle shape and

its centroid is given by |xiv+xjv|
2

• The Minkowski distance, the generalization of Euclidean distance and Manhattan dis-
tance, between two data points xi and xj in Lp norm space is given by:

dMink(xi, xj) = p

√√√√ M

∑
j=1
|xj − xj|p (3.4)

where, p is the distance coefficient range from 0 to ∞ which defines the shape of clusters
from star to rectangle respectively.

FIGURE 3.1: Different shapes of clusters, in two dimensions, defined by dis-
tance coefficient p, are displayed in 2-norm. Each cluster has a spherical shape
in the particular p-norm i.e. data points lying on the circumference of the clus-
ter are equidistant from its centroid. This figure is taken from the public domain

https://en.wikipedia.org/wiki/Minkowski_distance

Three special cases represented by Minkowski distance, dMink for different value of p are:
p=1, Manhattan Distance
p=2, Euclidean Distance
p→ ∞, Chebyshev Distance

3.2 p-Norms and Lp space

A Norm is a function that maps a real or complex vector space to a non-negative real number in
a way that conforms to some properties typical of a distance measure. The mapping describes
the length, size or extent of the object from its origin. The most common norm, 2-norm also
called the Euclidean distance, defines the square root of the inner product of a vector with itself.
The space which is defined by using the particular p-norm is called the Lp space.

3.3 Data Standardization

Data standardization is a basic data-preprocessing step that helps to control variability especially
when values of variables lie in a larger range or have greater data variability[127]. Z-score is the
traditional method of data standardization where data distribution is translated to zero mean
with unit variance and is given by:

xiv =
xiv − µv

σv
(3.5)
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Milligan et al. have studied the effect of eight different data standardization methods in cluster
recovery and concluded that the range-based methods are better than Z-score to preserve group
structure[128]. Range-based methods transform feature values between user-defined ranges;
usually between -1 to 1 or 0 to 1. In the range-based method, feature variability is preserved but
the range of data dispersion is bounded with a specific range.

xiv =
xiv −minn

i=1xiv

maxn
i=1xiv −minn

i=1xiv
(3.6)

Schaffer and Green [129] and Stoddard’s [130] derived a conclusion that any kind of standardiza-
tion eliminates between-cluster variability. This conclusion was derived based on UCI datasets
[131], true dataset configurations were unknown and hence cannot apply to all datasets [132].
Similar research by Steinley [132] supports Milligan and Cooper’s research and found that range
standardization has better results in k-Means.

In a later development, Mohamad and Usman [127] demonstrated that for the infectious dis-
eases dataset, k-Means had better performance with Z-score standardization compared to min-
max and decimal scaling, whereas Kamarul et al. [133] found range-based methods were more
effective than Z-score standardization in k-Means for processing of Malaysia’s population and
housing census data.

3.4 Feature Weighting

Feature weighting is a technique assigning some values to features, based on their significance.
Feature weighting takes into account that different attributes may have different degree of rele-
vance [83, 134, 135] and shows an excellent ability for cluster recovery. The degree of relevance,
also called its weighting factor(wv), is used to rescale the attributes. The weighting factor wv of
a feature v defined in the feature space V = {v1, v2, ..., vm} for a dataset Y = {yiv} with n entities
is given by

wv =
1

∑|V|u=1[
Dv
Du

]
1

β−1
(3.7)

where, dispersion of feature v, Dv is an average dispersion of entities yi from its centroid ck in
cluster Sk, and it is calculated as

Dv =
K

∑
k=1

|Sk |

∑
i=1

(yiv − ckv)
2 (3.8)

Feature weighting is inversely proportional to the feature variance: lower the variance, higher
the weight. In case of cluster based feature weighting, feature weighting factor wkv is given by
its relevance within the particular cluster Sk

wkv =
1

∑|V|u=1[
Dkv
Dku

]
1

β−1
(3.9)

where, the dispersion of feature v in cluster Sk, Dkv is

Dkv =
|Sk |

∑
i=1

(yiv − ckv)
2 (3.10)
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FIGURE 3.2: A clus-
ter of data points which
have higher dispersion
along x-axis than y-axis
is created using the GUI
where + and * represent
data points and cen-

troids respectively.

FIGURE 3.3: Two dif-
ferent clusters- red and
green are created using
the GUI. Red cluster has
data points with higher
dispersion along x-axis
whereas green cluster
has data points with
higher dispersion along

y-axis.

MATLAB based GUI, shown in the figure above, is created to study the relationship between
feature dispersion and their weight with respect to the whole dataset and clusters. This GUI
allows a user to enter data points and create multiple clusters in two dimensions and calculate
their centroids, dispersion, and weights.

Example 1: Feature weighting in whole dataset

In Figure 3.2, using the designed GUI, a dataset is created by adding six data points. This dataset
is defined in feature space V = {v1, v2} corresponding to the x-axis and y-axis. The dispersion
of the data set along the x-axis dv1 and y-axis dv2 are 0.4443 and 0.0400 respectively. The result
is quite obvious as entities in the dataset are highly dispersed along the x-axis compared to the
y-axis. Feature weights for the dataset which are calculated by GUI using equation 3.7 are 0.0825
and 0.9175 for v1 and v2 respectively. Hence, it reflects the inverse relation between feature dis-
persion and their weights.

Example 2: Feature weights in two clusters

In figure 3.3, a dataset with two clusters, red and green, is created using the GUI. Data points
in the red cluster have higher dispersion along the x-axis than the y-axis whereas, in the green
cluster data points are more scattered along th e y-axis than the x-axis. The dispersion of data
points along the x-axis in the red cluster, Dred,x−axis = 0.680 is greater than the dispersion of data
points along the x-axis in the green cluster, Dgreen,x−axis = 0.254 and vice-versa in the y-axis,
which shows that dispersion of features has influenced their weight.

In the GUI, feature weighting along the x-axis and y-axis are 0.5100 and 0.4900 overall. Data
points are equally dispersed along both axes when the whole dataset is considered, which is
reflected in their weights.
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3.5 k-Means Algorithms and its Weighting Variant

3.5.1 Generic k-Means

k-Means [20, 19] is the most popular and simple partition-based clustering algorithm. Assume
that a dataset Y has cardinality n i.e. |Y|= n and is defined in a feature space V = {v1, v2, ..., vm}.
k-Means divides the dataset Y into K disjoint sets S = {S1, S2, ....SK}, where

⋃K
i=1 Si = Y and

Si ∩ Sj = ∅ ∀i 6= j. Each of these disjoint sets Sk is a cluster and is uniquely represented by a
data point called a centroid, ck. The objective of k-Means is to minimize the sum of dissimilarity,
F(k) between each entity yi ∈ Sk and its centroid ck, ∀k = 1, 2, ...K.

F(k, C) =
K

∑
k=1

∑
yi∈Sk

d(yi, ck) (3.11)

where, C = c1, c2, ..., cK is the set of all centroids and d is the distance function which measures
the dissimilarity between the entity yi and its centroid ck. In generic k-Means squared Euclidean
distance is used as a dissimilarity measure.

d(yi, ck) = ∑
v∈V

(yiv − ckv)
2 (3.12)

Centroid ck is the centre of the gravity of cluster Sk and is given by:

ck =
∑|Sk |

i=1 yi

|Sk|
(3.13)

Therefore the optimization in 3.11 can be written as

F(k, C) =
K

∑
k=1

∑
yi∈Sk

∑
v∈V

(yiv − ckv)
2 (3.14)

The k-Means criterion in equation ( 3.14) follows three steps for optimization:

1. start with an initial set of centroids C = {c1, c2, ....., ck}

2. assign each entity yi ∈ Y to its corresponding cluster Sk

3. update each centroid ck to its centre of gravity as given by equation 3.13,

4. go to step 2 until convergence.

The complexity of k-Means is defined by O(n|V|Kt), where n is the cardinality of dataset Y, |V|
is the number of features, t is the number of recursive steps k-Means takes to converge and K is
the number of clusters.

3.5.2 ik-Means

Intelligent k-Means, ik-Means is the deterministic version of ik-Means where initial centroids are
chosen using so-called anomalous pattern (AP). The anomalous pattern is a recursive process of
partitioning the dataset into two subsets where the first subset contains points near the grand
mean (called the reference point) and the next subset contains the data point near to the farthest
point from the reference point. The process is recursive on the first sub-set until a stop criterion
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is matched. For details see [11] chapter 3.

Algorithm ik-Means
Input:Y dataset, θ minimum number of elements in a cluster
Output: C centroids

1. let t=1,

2. Yt = Y.

3. Set reference point a = Ȳt, the center of dataset Yt.

4. Find a point in Yt which is farthest from the reference point a, f t = maxyi∈Yt d(yi, a)

5. Fixing one of the centroids a, Run k- for K=2 on Yt with Ct = a, f t as initial centroids such
only f t keep updating until the cluster S f is anomalous in relation to a. This will yield two
clusters Sa and S f corresponding to centroids a and f t

6. if |St| ≥ θ add f t to C

7. set Yt = Yt − S f , removing elements of cluster S f from Yt.

8. if |Yt| ≥ 1, set t=t+1 and got to step 3.

9. Run k- with C and K = |C|

Apart from adding deterministic to k-Means, ik-Means is used to predict cluster tendency and is
successfully applied in different comparative experiments [136].

3.5.3 Wk-Means

The weighted version of k-, Wk-Means, takes into account that different attributes may have
different degrees of relevance [83, 134] and shows an excellent ability for cluster recovery. The
degree of relevance also called the weighting factor (wkv), is used to rescale the attributes and is
given by equation 3.9. The distance function in generic k- 3.11 is modified by weighted distance

dw(yi, ck) = ∑
v∈V

wβ
k,v(yiv − ckv)

2 (3.15)

where, the attribute weighting factor wk,v, given by equation 3.9, is put to the power of the
exponent β to avoid linearity. The centroids in 3.13 modified as

ckv =
∑|Sk |

i=1 wk,v ∗ yi,v

|Sk|
(3.16)

The objective function in equation 3.14 is modified as

F(K, C, w) =
K

∑
k=1

∑
yi∈Sk

∑
v∈V

wβ
k,v(yiv − ckv)

2 (3.17)

3.5.4 MWk-Means

Minkowski Weighted k-Means (MWK-Means) [92, 137] modifies the objective in equation 3.17
where the feature weighting factor β is used as distance coefficient to ensure feature weighting
is used as feature rescaling factor. The distance function in 3.15 is redefined as
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dwβ(yi, ck) = ∑
v∈V

wβ
k,v|yiv − ckv|β (3.18)

Using the equation , the criterion of generic k-Means is modified to obtain criterion for MWk-
Means

F(k, C, w, β) =
K

∑
k=1

∑
yi∈Sk

∑
v∈V

wβ
k,v|yiv − ckv|β (3.19)

The weighting factor wkv, calculated using equation 3.9, ensures that attributes are treated on
the based of their variance: attributes uniformly distributed across clusters get a smaller weight
while those concentrated around cluster get a larger weight [ref]. Apart from attribute weight-
ing, MWk-Means nullifies k-Means bias towards a spherical shape by redefining the dissimilarity
measurement using the Minkowski distance metric.

The iterative optimization is similar to the optimization of the k-Means criterion except for
an extra step of calculation of feature weighting is added and the centroid is replaced by the
Minkowski center.

3.6 Cluster Validity

Cluster validation is an important step in clustering which evaluates the clustering structure
detected by a clustering algorithm. It helps to measure how close the clustering matches with
the internal structure present in the data. This process is complicated as there is no correct label
(unsupervised learning) available, the number of "correct" clusters is unknown in most cases,
cluster structure varies between clustering algorithms and the dataset may have a high level of
noise or "true" random features.

Jain and Dubes [138] have categorized the clustering validation indices into three groups: inter-
nal, external and relative. Internal indices use the information intrinsic in a dataset to evaluate
a clustering structure derived by a clustering algorithm. None of the label information, only
data (i.e. purely unsupervised) is used during the validation process. Whereas, external indices
evaluate the clustering results with respect to pre-specified clusters. Internal indices are usually
used to turn the parameters within the clustering algorithm whereas external indices are used
to validate the performance of the clustering algorithm on the “ground truth".

In this research, Silhouette and Calinkski-Harabasz indices are used as internal indices to au-
tomate the selection of parameters in the proposed algorithms. Whereas, adjusted Rand Index
(ARI) is used as an external index to evaluate the performance of the algorithms considered in
the research by comparing them with the actual clusters.

• Silhouette Index
Silhouette index is a graphical aid method that is developed for the interpretation and vali-
dation of cluster analysis [139]. Silhouette index is found to be effective in many clustering
algorithms where the number of cluster are not known [140, 11]. The Silhouette coefficient
combines both cohesion and separation, and is given by

s(yi) =
b(yi)− a(yi)

max(a(yi), b(yi))
(3.20)

where:

a(yi) is the average dissimilarity of entity yi ∈ Sk and yj : yj ∈ Sk, yi 6= yj and
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b(yi) is the lowest average dissimilarity between yi and yj : yj ∈ Sl , yi ∈ Sk for l 6= k.

• Calinski-Harabasz Index
Calinski-Harabasz Index, commonly known as CH Index, is a “variance ratio criterion"
for evaluating the clusters in a multi-dimensional Euclidean space [141]. CH uses ratio of
between-cluster means (data scatter) and within cluster’s sum of square error (SSE).

CH =
B
W

X
N − K
K− 1

(3.21)

where,

W is the overall within-cluster variance,

B is the overall between-cluster variance,

N is the number of entities and,

K is the number of clusters.

• Adjusted Rand Index
Adjusted Rand index, ARI is an external validation index that compares the resulted clus-
ter with the “ground truth" (known labels) using a confusion matrix. For supervised clas-
sification, ARI is found to be effective for performance measurement and feature selection
[142].

ARI =
yy + nn

NT
(3.22)

where,
yy, nn and NT is defined by the confusion matrix between two partition P1 and P2

NT = N(N−1)
2 = yy + yn + ny + nn, is the total number of pair between P1 and P2

yy = true positive, yn = true negative, ny = false positive and nn = false negative.

3.7 Feature Selection

In this section, four different feature selection algorithms: intelligent k-Means feature selection
(ikFS), feature selection using feature similarity (FSFS), multi-cluster feature selection (MCFS),
and feature selection via feature weighting (FSFW) are discussed in detail.

3.7.1 intelligent K-Means Feature Selection(ikFS)

Intelligent Wk-Means for feature selection(ikFS) [25, 143] aims to cluster features based on their
similarity. Instead of clustering entities, ikFS clusters similar features together and then identi-
fies and removes features that are redundant. During the process, two major factors ikFS has to
address are: (i) identifying the number of clusters of features; and (ii) number of features that can
be selected from a particular cluster. Issue (i) is solved using ik-Means, which not only finds the
appropriate number of clusters of features but also finds the best initial centroids for k-Means.
Selecting most informative features from each cluster of features looks obvious solution for (ii)
and the number of features to be selected in a particular cluster is given by

Fk =
|Sk|
|V| K (3.23)

Where, |SK| is the cardinality of a given cluster of features, |V| is the number of features of the
dataset Y and K is the number of clusters of features. Fk ensures that number of features to be
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selected from a cluster depends on the number of features in the particular cluster. After clus-
tering of features into K clusters, Fk are chosen from Sk based on feature selection using feature
similarity(FSFS) index.

ikFS Algorithm

• transport a given dataset Y so that orginal features become entities.

• standardise the dataset

• find K clusters of features using ik-Means

• from each cluster Sk, select Fk features using FSFS.

3.7.2 Feature Selection using Feature Similarity

Feature selection using feature similarity (FSFS) [23] is one of the most cited unsupervised fea-
ture selection algorithms. It calculates pairwise feature similarities in order to determine a set of
maximally independent features, and then discards those that are considered redundant. This
is the first algorithm in history to use the maximum information compression index, defined
below, in a feature selection scenario.

2λ2(vt, vj) = var(vt) + var(vj)−
√
(var(vt) + var(vj)2 − 4var(vt)var(vj)(1− σ(vt, vj)2),

(3.24)
Where, σ(vt, vj) denotes the Pearson correlation coefficient between vt and vj, and var() repre-
sents the variance of a feature pass as a parameter. The value of λ2 is zero when the features are
linearly dependent, and increases its value as the amount of dependency decreases.

Symbols used in algorithms above,

• mV′ = |V ′| is the cardinality of V ′

• k is the number of nearest neighbours (provided as parameter)

• rk
v′ is dissimilarity between feature v′i and its kth nearest features which is calculated using

the equation( 3.24).

Feature selection using feature similarity (FSFS)

1. select a value for k, subject to k ≤ m− 1.

2. set V ′ ← V.

3. for each v′ ∈ V ′, compute rk
v′ .

4. find the feature v′∗ for which rk
v′∗ is minimum.

5. remove from V ′ the k nearest-neighbours of v′∗.

6. set ε = rk
v′∗ .

7. if k > mV′ go to Step 9.

8. while rk
v′∗ > ε

(a) k = k− 1.
rk

v′∗ = infv′∈V′

(k is decremented by 1, until the kth nearest-neighbour of at least one of the features
in V ′ is less than ε-dissimilar with the feature).
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(b) if k = 1 go to step 9.

9. go to Step 2.

10. return the feature set V ′ as the reduced feature set.

3.7.3 Multi-Cluster Feature Selection

Ranked based feature selection algorithms like FSFS have reduced the computational cost of
finding optimal sets of “true" features, as calculation of scores for each features is independent
of each other. However, since the possible correlations between features are neglected, ranked
based feature selection algorithms can not guarantee the selection of an optimal feature sub-
set. Inspired by recent developments in spectral analysis (manifold learning) [144, 145] and
L1-regularized models for subset selection [146, 147] Cai et al. [24] introduced Multi-Cluster
Feature Selection (MCFS), which uses multiple eigenvectors of graph Laplacian matrix for selec-
tion of “true" features so that multi-cluster structure of the data is preserved.

Multi-cluster feature selection

Inputs:
K- number of clusters;
d-number of selected features;
p- number of nearest neighbours;

Steps

1. Construct a k-nearest-neighbours graph based on spectral clustering.

2. Solve a generalised eigen-problem, leading to the K top eigenvectors with respect to the
smallest eigenvalues*.

3. Solve K L1-regularised regression problems, leading to K sparse coefficient vectors.

4. Compute the MCFS score for each feature.

5. Return the top mV′ features according to their MCFS scores.

Details of each steps from 1-4 are discussed in the original paper [24].

Note*: smallest eigenvalues are chosen in order to maximize the convergence rate in symmetric
metric [148].

3.8 Missing Data

Missing data pattern and missing data mechanism are two fundamental issues that help us to
understand missing values. Missing data pattern observes the location of missing values within
a dataset, whereas missing data mechanism derives the relationship between the missing values
and known values. In this section, the theoretical background of these two approaches and
different methods used to address missing values are explained in detail.

3.8.1 Missing Data Patterns

Missing data patterns indicate the occurrence of missing values. Missing data patterns can be
categorized as univariate and multivariate based on the number of attributes possessing missing
values. In univariate, only one attribute has missing values but in multivariate, there is more



3.8. Missing Data 25

than one attribute with missing values.

Missing-data indicator matrix M = {miv, i = 1, 2, ..., n and v ∈ V} is introduced here to represent
missing data where

miv =

{
1, if attribute value yiv is missing
0, otherwise

It is helpful to sort rows and columns of the given data according to the pattern of missing data
to observe missing data patterns. Entities with missing values are pushed down the table and
the attributes possessing missing values are moved towards the rightmost end of the data table.
Figure 3.4 shows some of the major missing data patterns identified after sorting.

FIGURE 3.4: Examples of missing-data patterns. Rows and columns correspond
to observations and variables respectively. Data rows and columns are sorted ac-

cording to the pattern of missing data.

1. Univariate Missing Pattern
As illustrated in figure 3.4(a) presence of missing values in univariate missing pattern is re-
stricted to only one attribute (rightmost attribute in sorted data table). This is also referred
to as a missing-plot problem where the dependent attribute vm is plotted from given m-1
known attributes, Vknown = {v1, v2, ..., vm−1}. For example, in a survey, there is likely a
trend where all the non-response individuals fail to answer the same question.

2. Multivariate Missing Pattern
In multivariate missing pattern there is more than one attribute with missing values. This
pattern can be generalized to a missing-plot problem as:

• out of m set of attributes, we have at most m-2 known attributes, Vknown = {v1, v2, ..., vm−2}
• there are at least two dependent attributes, vm−1 and vm

• some of the functional values are missing in the dependent attributes

Multivariate missing pattern can be further categorized as:

(a) Multivariate n-patterns
As shown in figure 3.4(b.1), in multivariate n-pattern |Vmissing| ≥ 2 with a constraint
mi,va = 1 =⇒ mi,vb = 1, ∀va, vb ∈ Vmissing.

(b) Monotone Multivariate
In monotone multivariate missing pattern, missing attributes can be sorted in an or-
der such that an entity having missing values in a high order attribute (leftmost)
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and also has missing values in all attributes below the higher order (rightmost) i.e.
mi,va = 1 =⇒ mi,vb = 1, ∀va, vb ∈ Vmissing and a ≤ b as shown in figure 3.4(b.3).

(c) File Matching
One of most common reason of introducing missing values are adding or match-
ing data files(dataset) with some features which are not common among them. For
example, in the figure 3.4(b.4), two dataset Y1 and Y2 are combined where Y1 is de-
fined in feature space V1 = {v1, v2, v3, v4} and Y2 is defined in feature space V2 =
{v1, v2, v3, v5}. In the combined dataset Y = {Y1 ∪Y2} all entities from Y1 have miss-
ing values for feature v5 and all entities from Y2 have all value missing values for
feature v4.

(d) General
If correlation of occurrence of missing values among Vmissing features is not found
then it is categorized as general missing pattern.

3.8.2 Missing-data Mechanism

In the previous section, various patterns of missing data were observed. Another important
aspect on the study of missing values is to find the mechanism that lead to missing data. Miss-
ing data mechanism is characterized by a conditional probability f (M‖Y, θ) for some unknown
parameter θ where Yknown is a complete dataset and M = miv is the missing data indicator.

FIGURE 3.5: Examples of missing data mechanism.
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1. Missing Completely at Random (MCAR)
If the conditional probability f is independent of Y, it is called missing completely at ran-
dom (MCAR). For example, in Figure 3.5(b), some of the values for the attribute salary are
missing randomly i.e. the missingness in salary is independent of values in other attributes
or itself.

2. Missing at Random (MAR)
In missing at random (MAR), missingness is random within itself but range of its occur-
rence is defined by other independent attributes. For example, in the figure 3.5(c) missing-
ness in the attribute salary depends on the values in the attribute gender as only two of the
entities missing salary belong to ‘male’ gender.

3. Not Missing at Random (NMAR)
In not missing at random (NMAR), missingness is a function of values in the attribute
itself. For example, in Figure 3.5(d), all missing values for salary are greater than 2500.

3.8.3 Dealing with Missing Attribute Values

A common solution for missing attribute values is to remove the problematic parts of data i.e.
removing entities (row-wise deletion) or attributes (column-wise deletion) whose values are
missing. This leads to loss of information, hence it is not recommended. There are two preferred
solutions for missing values. The first one is replacing the values with some known values which
is called an imputation method. Another approach is, re-writing data mining algorithms so that
the algorithm either discard missing values or learn somehow to replace missing values based
on the data distribution.

Imputation Methods

In this section, common imputation methods like attribute mean value, kNN imputation, regres-
sion based imputation etc. are discussed.

Attribute Mean Value

One of the easiest approaches to deal with missing values is to replace them by their attribute-
mean, mode, or median calculated over the whole dataset or within the cluster (concept). The
conceptual method requires prior knowledge about clustering (levels). When no clustering in-
formation is provided, conceptual imputation can still be carried out but requires the selection
of an appropriate clustering algorithm to recover clusters before imputation.

k-Nearest Neighbour Techniques

The k-Nearest Neighbour (kNN) technique is based on the nearest neighbours first concept.
kNN based imputation algorithms find K nearest neighbours based on some similarity function,
and then impute missing values with the corresponding attribute mean of K nearest neighbours.
Depending on the selection of neighbours, kNN based imputation algorithms are further cate-
gorized as Complete Case kNN (CC-kNN) and Incomplete Case kNN (IC-kNN). In CC-kNN
imputation, neighbours are selected only from clean or complete dataset whereas in IC-kNN
entities with missing attribute values are also considered as neighbours.

1. Complete Case kNN (CC-kNN)

The Complete Case kNN only considers entities with all known values as a possible can-
didate for nearest neighbours selection. Therefore, CC-kNN divides the dataset into two
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which are- clean dataset and missing dataset. Clean dataset which is also called an ob-
served dataset, consists of entities with all known values, whereas missing dataset consists
of entities with at least one missing value. Missing values in missing dataset are replaced
with the mean of K nearest neighbours from the clean dataset.

FIGURE 3.6: An example set for complete case kNN (CC-kNN) imputation in a
dataset with univariate missing pattern and MCAR missing mechanism to impute

missing values in entity y1

.

In the figure 3.6(b) dataset is first divided into clean dataset [figure 3.6(c)] and missing
dataset [figure 3.6(d)]. To replace the missing values y1,4 in entity y1, dataset Y is first
divided into clean and missing dataset. Then entities in the clean dataset are sorted by
their distance to y1 [figure 3.6(e)] and for k equals to three (given), three nearest neighbours:
{y5, y2, y3} are chosen. And finally, the missing value y1,4 is imputed by the attribute mean
of three neighbours. Here y1,4 is replace by y5,4,y2,4,y3,4

3 → 3+2+2
3 → 2.33.

2. Incomplete Case kNN (IC-kNN)

Unlike complete case kNN, IC-kNN considers all entities as the possible candidates of
nearest neighbours. In the case of univariate missing pattern, the selection of nearest
neighbours is based on only observed attributes. For multivariate missing pattern, ob-
served attributes between two entities are considered for similarity measurement. Since
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the number of missing attributes between entities varies, in multivariate missing pattern,
the similarity measurement is normalized to nullify the biasedness created by number of
missing attributes. The normalization is achieved by dividing the similarity measurement
with the number of observed attributes between entities.

For each missing entity yi ∈ Y (dataset)

(a) Let O be the set of observed attributes in yi

(b) For each missing attribute vj in yi

i. Let T ⊂ Y|∀t ∈ T, tO∪j is observed.
ii. Let C ⊂ T is K nearest neighbours of xi drawn from T based on observed at-

tributes O.
iii. Set yij =

∑c∈C cj
K

FIGURE 3.7: Example of incomplete case kNN, iC-kNN in a dataset with univariate
missing pattern with MCAR missing mechanism.

Using the dataset from figure 3.6(a), new dataset with missing values is created so that its
missing values have multi-variate pattern and MCAR mechanism. One of such instance is de-
fined in the figure 3.7(a). The complete case analysis of the missing dataset has only 10 elements
in a clean dataset. However, there are 12 entities that can be used for imputation of missing
element in y1 for an incomplete case.
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Regression Based Imputation

Regression based imputation methods, an alternative to mean imputation, predict the missing
values based on relation between the observed and missing values. For example, salary of a cus-
tomer in a banking dataset may depend on the age and job status. Based on the observed values
for similar age and job group, the missing (if any) salary of an employee can be predicted. There
are conceptual and non-conceptual regression based imputation method like kNN imputation.

1. Simple Regression

Simple regression (non-conceptual) method divides a dataset into a clean dataset and a
missing dataset so that a clean dataset contains only observed values. For each attribute
from the missing dataset, a regression model is formed based on the clean dataset. Missing
values are then imputed using these regression models.

2. Regression with Cluster

Clustering properties are likely to be preserved in dataset. For example, customer database
of a bank can be grouped based on the attributes like age, gender income or occupation.
Shin et al. [149] use this clustering tendency for estimating the missing values by integrat-
ing clustering and regression techniques together. The proposed method RegressionClus-
ter (RC) [150] first estimates missing values using regression statistic. Once a clean dataset
is recovered, clustered are retrieved from the dataset. Missing values are again recalcu-
lated using the regression statistic within the cluster.

RegressionCluster(RC)

(a) divide the dataset Y into Yclean and Ymissing where Ymissing has all entities from Y with
at least one missing attribute value and Yclean = Y - Ymissing.

(b) using Yclean as a base, recover the missing values in Ymissing using regression method.
Let Y’ be the new imputed dataset.

(c) recovery K clusters S1, S2, ..., Sk from Y’ using appropriate clustering algorithm.

(d) for each cluster Si, the regression analysis in step 1,2 and 3 is applied for imputation
of missing values yij ∈ Ymissing ∩ yi,j using the base Yclean ∩ yi,j.

No Imputation

Imputation method provides an easy solution for missing values. However, replacing original
values may lose the diversity of the dataset, hence yield poor data analysis. For example, re-
placing missing values with attributes mean drives the data distribution towards the predicted
mean.

One of the alternatives of imputation method is to modify algorithms which can handle miss-
ing values implicitly. Some authors replace similarity measurements (distance function) to deal
only with the known values called partial distance. Soft constraint techniques are also used to
penalize the entities with missing values in order to nullify their effect.

In the section below, use of partial distance in different k-Means type algorithms to cluster
dataset with missing values is discussed.

Partial Distance

Partial distance between two entities calculates the distance by considering only the known
attributes among them. The distance is then normalized to compensate for the missing ones.
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Partial distance between two entities yi and yj with mF number of missing attributes and oF
number of observed (known) attributes is given by:

PD(yi, yj) =
oF + mF

oF

√
∑

v∈V
(Distv)2 (3.25)

where,
Distv is the similarity of two entities yi and yj in v attribute

Distv =

{
0 yi,v or yj,v is missing
(yi,v − yj,v) otherwise

(3.26)

Partial distance assigns the average distance of the known attributes to each missing at-
tributes. For example, the partial distance between two vectors [3 nan 4 5 6 ] and [5 6 nan 7 8] is
calculated as: 5

3

√
(3− 5)2 + (5− 7)2 + (6− 8)2

In the example above, nan denotes missing values. Distance between two vectors is cal-
culated using the first, fourth and fifth elements of both vectors. Distance so obtained is then
normalized by the ratio of number of known attributes between two vectors over the total num-
ber of attributes.

k-Means with partial distance (k-MeansPD)

k-Means with partial distance [151], k-MeansPD, replaces the Euclidean distance which is used
to calculate the similarity between centroids and data points by partial distance [equation( 3.25)]
to cope with missing values. This approach cuts off the initial data pre-processing step that
required the imputation of missing values before k-Means is applied. k-MeansPD follows the
same basic steps of k-Means: starts with K random centroids and iteratively updates centroids
to the center of the gravity of the clusters until it reaches predefined termination conditions.
k-MeansPD has three major modifications to the generic k-Means : initialization of centroids,
measurement of similarity between the missing data entities and centroids, and redefining cen-
troids in each iteration.
k-MeansPD divides a dataset into two sets: clean dataset and missing dataset. Initial K cen-
troids are chosen from the clean dataset to avoid missing values. In each iteration, centroids are
replaced by respective clusters’ mean where only the known values are considered.

ckv =
Nk

∑
i=1

oiv ∗ yiv ∗
|Sk|
nOv

, (3.27)

where, nOV is total number of known attribute values for attribute v in cluster SK, given by

nOv =
Nk

∑
i=1

oiv (3.28)

And,

oiv =

{
1, if yiv is known value
0, otherwise

3.9 Dataset

To evaluate the performance of the proposed algorithms, synthetic datasets from the Gaussian
mixed model (GMM), under control parameters and real-world datasets from the UCI repository
are used in this thesis. In addition to this, to observe the resistance of the algorithms against
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noise, three different types of noise based on their distribution, model and type are added in the
UCI and synthetic datasets.

3.9.1 Synthetic Gaussian Distribution

The distribution of data in a real-world dataset is hard to identify. Therefore, to establish a
theoretical understanding of clustering algorithms experiments are conducted with synthetic
datasets generated under a controlled environment. The Gaussian mixed model is a popular
tool used by many researchers to generate clusters [152, 153]. The aim of this section is to in-
troduce different parameters considered while defining the Gaussian mixed model for synthetic
dataset

For standard scenarios, we have generated datasets with a mixed-model Gaussian distribution.
The distribution consists of 12 different configurations: three types of noisy features and four
types of feature space cardinality. The three types of noise are no noise, half noise, and full
noise, and four different cardinalities of the features space: 8, 12, 16, and 20. The distribution
has spherical Gaussian clusters with diagonal covariance matrices of σ2 = 0.5 . To remove biases
we have considered 20 different datasets for each of the four configurations.

TABLE 3.1: The experiment of synthetic mixed-model Gaussian distribution con-
tains 20 different datasets with 1000 data instance in each. The distribution has

spherical Gaussian clusters with diagonal covariance matrices of 0.5

Entities features. Clusters

1000 8 2
1000 12 3
1000 16 4
1000 20 5

3.9.2 Real-world Dataset

Thirteen different real-world datasets are obtained from the popular UCI machine learning
repository. These datasets have both numerical and categorical features, as shown in the table
below.
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TABLE 3.2: Real-world datasets used in our experiments

Original features

DB Name Entitites Cluster Numerical Categorical Total

Australian credit 690 2 6 8 14
Breast cancer 699 2 9 0 9
Car evaluation 1728 4 0 6 6
Ecoli 336 8 7 0 7
Glass 214 6 9 0 9
Heart 270 2 6 7 13
Ionosphere 351 2 33 0 33
Iris 150 3 4 0 4
Soybean 47 4 0 35 35
Teaching Assistant 151 3 1 4 5
Tic Tac Toe 958 2 0 9 9
Wine 178 3 13 0 13
Zoo 101 7 1 15 16

Note:unlike synthetic dataset, there is only one copy of real-world dataset.

Categorical Features to Binary Features

Each categorical feature v with M categories are replaced by M binary features where all the
binary features are set to 0 except the one related to the binary feature is set to 1. For example,
the A4 feature in the Australian credit dataset has three categories- p, g, and gg. The A4 feature
is replaced by three binary features with 0 values initially. To represent the p, the first binary
feature is set to 1 and the rest to 0. Likely, to represent gg value for A4, first two binary features
are set to 0 and the last binary feature corresponding to gg is set to 1.

TABLE 3.3: Australian Credit Dataset

Feature Data Values No. Binary Features Total Features

A1 a,b 2 2
A2 continuous - 1
A3 continuous - 1
A4 p,g,gg 3 3
A5 ff, d, i, k, j, aa, m, c, w, e, q, r, cc, x 14 14
A6 ff, dd, j, bb, v, n, o, h, z 9 9
A7 continuous - 1
A8 t, f 2 2
A9 t, f 2 2
A10 continuous 1
A11 t, f 2 2
A12 s, g, p 3 3
A13 continuous - 1
A14 continuous - 1

Therefore, in total there are 2+1+1+3+14+9+1+2+2+1+2+3+1+1= 43 pre-processed features (ex-
cluding the class feature) in the Australian credit datasets.
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3.9.3 Noise

To test the resistance of our algorithms against noise, we have added noise in the datasets. We
have considered three factors to generate noise: noise strength, noise distribution, and noise
model.

Noise Strength

The strength of noise measures the influence of the noise over the original data. The higher the
strength of noise, the greater the chances of deviation of information from its originality. In this
research we have tested noise strength at three levels:

• no noise
The dataset is the same as the original dataset. Therefore, no synthetic noise is added in
the original dataset.

• half noise
In this category, we try to simulate the effect of noise by adding half the amount of noise
relative to the feature’s cardinality and the model of noise.

• full noise
Here, we try to simulate the effect of noise by doubling the amount of noise relative to half
noise.

The exact amount of noise in half and full noise varies on the distribution and model of noise
we consider.

Noise Distribution

Gaussian and uniform noise are well studied in image processing [154, 155, 156, 157]. In our
research, we have run our simulation in the dataset adding noise generated from Gaussian and
uniform distribution.
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• Uniform Noise
To generate uniform noise, we generate random values in the range (1,100). These values
are the normalize before added to observe dataset.

• Gaussian Noise Gaussian noise is generated using a univariate Gaussian model with mean
0 and standard deviation 1. Again, similar to uniform noise, these noises are also standard-
ized before adding to target dataset.
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Noise Model

Noise present in a dataset can be broadly categorized as class or feature noise [158, 159]. Class
noise refers to the deviation of a class label from its original value. In supervised learning, class
noise present in a training dataset has greater influence over the performance of the classifica-
tion algorithm. However, they have no role in unsupervised learning unless semi-supervised
learning is considered. Therefore, in our experiments, we just deal with the feature noise. There
are three type of feature noise considered in this thesis: added noisy features, feature blure and
cluster based feature blure.

• Noisy Feature Added (NFA): extra noisy features are added in a dataset.

• Feature Blurring (FB): selected number of features are blurred by adding noise.

• Cluster-based Feature Blurring (CFB): selected number of features are blurred by adding
noise but only within a particular cluster.

FIGURE 3.10: Examples of adding noise in dataset.

In sub-figure, Figure 3.10.a, there are four features V1, V2, V3 and V4 in the original dataset.
For half strength of added noise, two noisy features N1 and N2 are added in the dataset resulting
total of six features. In sub-figure Figure 3.10.b, V4 is selected (randomly) and blurred with 50%
of noise N1 for half strength feature blur noise. In sub-figure Figure 3.10.c, cluster c3 is chosen
(randomly) and its feature V4 is blurred with 50% of noise N1.

3.9.4 Noise Configuration

To add noise in a dataset, at first one of the noise distributions: Uniform or Gaussian is chosen.
Then noise strength is fixed- half or full, and finally one of the noise models- noisy feature added
(NFA), feature blurring (FB), or cluster-based feature blurring (CFB) is selected. Therefore, for a
particular dataset, there will be 13 copies of the datasets- 12 with added noise and one without
any noise.



36 Chapter 3. Tools, Techniques and Methodologies

FIGURE 3.11: Noise configuration: there are two noise distributions, two noise
strength and three noise models.

In a dataset Y is defined in a V feature space which have S = S1, S2, ..., Sk clusters. The 13 datasets
given by configuration in Figure 3.11 are:

• d0 No Noise: is the original dataset Y with feature space cardinality |V|.

• d1 Gaussian-half-NAF: there will be |V|2 extra noisy features were generated from the Gaus-
sian mixed-model will be added in the dataset.

• d1 Gaussian-half-FB: random |V|
2 features are chosen and are be blur with noise generated

from the Gaussian mixed-model.

• d2 Gaussian-half-CFB: random |V|
2 features from one of the random cluster Sk are blur with

noisy generated from the Gaussian mixed-model.

• d4 Gaussian-full-NAF: there will be |V| extra noisy features generated from the Gaussian
mixed-model will be added in the dataset.

• d5 Gaussian-full-FB: random |V| features are chosen and are be blur with noise generated
from the Gaussian-mixed model.

• d6 Gaussian-full-CFB: random |V| features from one the random cluster Sk are blur with
noisy generated from the Gaussian-mixed

• d7 Uniform-half-NAF: there will be |V|2 extra noisy features generated from the Uniform
distribution will be added in the dataset.

• d8 Uniform-half-FB: random |V|
2 features are chosen and are be blur with noise generated

from the Uniform distribution.

• d9 Uniform-half-CFB: random |V|
2 features from one of the random cluster Sk are blur with

noisy generated from the Uniform distribution.

• d10 Uniform-full-NAF: there will be |V| extra noisy features generated from the Uniform
distribution will be added in the dataset.
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• d11 Uniform-full-FB: random |V| features are chosen and are be blur with noise generated
from the Uniform distribution.

• d12 Uniform-full-CFB: random |V| features from one of the random cluster Sk are blur with
noisy generated from the Uniform distribution.

3.9.5 Datasets and Noise Configurations for Experiments

Different datasets used in this thesis are:

• Chapter 5 :- [Feature Selection]
Synthetic Datasets - four GMM configurations (as listed in Table 3.1) X 20 copies
UCI datasets- seven UCI datasets (Echoli, Glass, Heart, Iris, Soya, Wine, Zoo)
Noise - thirteen noise configurations (from Figure 3.11).

• Chapter 6 :- [Missing Values]
Synthetic Datasets - four GMM configurations (as listed in Table 3.1) X 20 copies
UCI datasets - seven UCI datasets (Echoli, Glass, Heart, Iris, Soya, Wine, Zoo)
Noise - thirteen noise configurations as listed in Figure 3.11
Percentage Missing - seven missing percentages (1%,10%,15%,20%,25%,30%,35%)
Noise - three Noise configurations (no noise, Half NFA, Full NFA)
Missing Pattern - two missing pattern (Missing Completely at Random and Not Missing
at Random)

• Chapter 7:- [p-norms]

– Validation of proposed Algorithm
Dataset- a GMM cluster in 2D with center (5,10).

– Transformation of Data in different p-norms
Datasets- three GMM clusters with five features
p-norms- copies of each dataset in p-norms [p range from 1.1 to 5, in interval of 0.1]
Noise - three Noise configurations (no noise, Half NFA, Full NFA, from Figure 3.11)

• Chapter 8 :- [Extended Experiments]
Synthetic Datasets - four GMM configurations (as listed in Table 3.1) X 20 copies
UCI datasets- thirteen UCI datasets (as listed in Table 3.2)
Noise - three Noise configurations (no noise, Half NFA, Full NFA from Figure 3.11)
p-norms - copies of each dataset in p-norms [p range from 1.1 to 5, in interval of 0.1]
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Chapter 4

Proposed Algorithms

This chapter contains the important algorithms developed within this thesis. The algorithms are:
the feature-selection algorithm discussed in Chapter 5, the partial-distance measured used in
Chapter 6, and the algorithm to transform data between different p-norms proposed in Chapter
7.

4.1 Feature selection

4.1.1 Feature selection via Feature Weighting

The proposed approach, Feature Selection via Feature Weighting (FSFW), is built on previous
work in feature weighting by using the iMWk-Means as a tool to find feature weights. These fea-
ture weights are then used as an index for feature selection. The cluster based feature weighting,
wkv, discussed earlier in equation 3.9 models the degree of importance of feature v at a cluster
Sk. The proposed method first maps the cluster based feature weighting wkv ∈ [0, 1] to wv ∈ 0, 1
in order to select or deselect a feature v. The key to this mapping is to find a threshold θ so that

wv =

{
1, if wv ≥ θ,
0, if wv < θ.

(4.1)

Two different feature selection methods, mean-FSFW and max-FSFW, are proposed in this the-
sis based on the approach discussed above. The cluster based feature weighting obtained from
iMWk-Means has K weights : wkv, k = 1, 2, ..., K, although each feature v has one applicable
weight (4.1). In the first method, mean-FSFW, wv is set to K−1 ∑K

k=1 wkv whereas in the second
method, max-FSFW, wv is set to max({w1v, w2v, ..., wKv}. In both algorithms, θ is set to m−1 and
wv is set to 0 or 1 using (4.1). Features with wv = 0 are then removed from the data set.

Selection of θ
Let us assume for a dataset, Y, all features are drawn from a truly random and uniform distribu-
tion. This means all features have uniform distribution, i.e. Dkv ≡ c, where c is a constant. The
feature weights are normalized to sum to 1. Therefore each feature weight wkv ≡ 1

m .

Note:
The code for the proposed mean-FSFW and max-FSFW algorithms is available in the repository
at https://bitbucket.org/m-learning/phd/src/master/

4.2 Partial Distance for Handling Missing Values

4.2.1 wk-MeansPD

Weighted K-Means with partial distance(WK-MeansPD)



40 Chapter 4. Proposed Algorithms

Weighted k-Means with partial distance, Wk-MeansPD, uses partial distance to calculate simi-
larity between data entities with missing attribute values. Similar to k-MeansPD, Wk-MeansPD
does not require additional imputation of values and follows the same basic steps as Wk-Means,
with some modifications to address missing values.

An initial K centroids are chosen from a clean dataset in order to avoid missing values in cen-
troids. Centroids in each iteration are updated to the mean of the cluster over known attribute
values. Weights for each iteration are changed based on the dispersions calculated over the
available attribute values. Then, the weighted distance function 3.15, used to calculate the simi-
larity between entities, is replaced with the weighted partial distance.

PDw(Syi ,y)j) =
oF + mF

oF

√√√√wkv

N

∑
j=1

(Distj)2 (4.2)

where, wkv is the weight of the attribute calculated using the concept of partial distance from
equation (3.9).

4.2.2 Minkowski Weighted k-Means with partial distance(MWk-MeansPD)

The Minkowski weighted k-Means with partial distance, MWk-MeansPD, an extension of Wk-
MeansPD to Minkowski space, uses partial distance in Lp norm to calculate the similarity be-
tween two entities with missing attribute values. The “Minkowski centres” [153] that minimise
the sum of the distance of each entity within a cluster to its centroids in Lp norm is calculated
using the partial distance. Other steps remain similar to Wk-MeansPD, as defined in section
4.2.1.

Note:
The code for the proposed Wk-MeansPD, iWk-MeansPD, MWk-MeansPD and iMWk-MeansPD
are available in the repository at
https://bitbucket.org/m-learning/phd/src/master/

4.3 Transformation of Dataset to Different p-norms

By default, the Gaussian mixed model, gmm in MATLAB, uses 2-norm (Euclidean distance) to
produce clusters in the Cartesian coordinate system. In this thesis, a p-norm data transformation
procedure (pNormTransInCartesian), is designed to transform a dataset, which is represented
by Cartesian coordinates, from pold-norm to pnew-norm. The transformation procedure has three
basic steps.

Algorithm 1 pNormTransInCartesian

1. Move the coordinates representation of data points from Cartesian to Polar, see appendix
A.1.

2. Transform the data points from pold-norm to pnew-norm, using algorithm 2 below.

3. Move the coordinates back to Cartesian system.
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The process of transforming data points from 2-norm to p-norms in Cartesian coordinates, val-
idation of the procedure and application of the procedure in GMM clusters, are explained in
detail below.

4.3.1 Transformation of a Dataset from pold-norm to pnew-norm

Transformation of a dataset from pold-norm to pnew-norm in polar coordinates can simply be
done by moving each data point relative to the pole by a ratio of the radii, rnew

rold
, towards polar

axes where, rold and rnew are the radius of the dataset in pold-norm and pnew-norm respectively.
To carry out experiments with synthetic datasets in different p-norms, Gaussian clusters are first
created in 2-norm using the MATLAB built in Gaussian mixed model. These datasets are then
translated to respective p-norms using six steps. This algorithm is explained and validated in
Chapter 7, section 7.2.

Algorithm 2 pold-normTopnew-normInPolar

1. Relocate data center to origin.

2. Relocate all data points to positive plane*.

3. Shrink points towards or expand from the origin.

4. Relocate all data points back to their respective plane.

5. Relocate center of the data points back to its original location.

Note*:
The term positive plane refers to the location where all axes of the coordinates are positive. E.g.
first quadrant in 2D.

Transformation Steps:

a. Relocate data center to origin [see Figure 7.1.b]
Relocation of the center of the cluster to the origin of the coordinate system is obtained by
displacing all data points towards the origin of the coordinates. This displacement is equal
to the vector between the center of the data points and the origin. Mathematically, we can
summarize this step as:

i. center = Minkowski centroid [153] of the data points.

ii. displaced data points = data points - center.

b. Relocate all data points to positive plane [see Figure 7.1.c]

This can be simply achieved by considering only the absolute deviation of a data point from
its axis. The sign of the deviation, SIGN, is saved as it is required to reverse the process in
step d.
SIGN = -1*cluster ≤ 0 + cluster ≥ 0 . cluster in positive plane = abs(displaced cluster).

c. Shrink toward or expand from the origin [see Figure 7.1.d]
Each data point is shrunk toward or expanded from the origin by the ratio of the distance of
the data point from its origin in the two p-norms.

data points in positive plane in pnew-norm = rnew
rold

X data points in positive plane.
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d. Relocate all data points back to their respective plane [see Figure 7.1.e]

To relocate each data point to its original plane, the relocated data points are simply multi-
plied by the SIGN value which is obtained in step b.

data points back to respective quadrant = (data points in positive plane in pnew-norm) * SIGN.

e. Relocate center of the data points back to their original location[see Figure 7.1.f] data points
in pnew-norm = data points back to respective plane + center

Finally, the data points in pnew space are recovered by moving the center of the reshaped data
points from the origin of the coordinates to their original center. This can be achieved by revers-
ing the process which is previously carried out in step a.
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Chapter 5

Feature Selection

Feature selection, one of the major pre-processing techniques in machine learning, helps in
optimizing feature space cardinality by selecting the most informative features. Reduction of
features space by removing redundant and noisy features will help to reduce execution time,
lower storage requirements and fix, curse of dimensionality, problems in data mining algo-
rithms. However, maintaining the important information within the reduced feature space is
a challenging task. In this research, feature weighting is used as a technique to choose the most
representative features for a dataset. The weighted variants of k-Means, derives feature weights
per clusters based on their distribution. Feature weights per cluster can be combined in multiple
ways to derive a common weight for a particular feature over the whole dataset.

In this set of experiments, weights are combined in two ways, i.e. mean feature weight per clus-
ter and maximum feature weight per cluster. The first method is called feature selection based
on mean feature weight within clusters (mean-FSFW) and the second one, feature selection based
on maximum feature weight within clusters(max-FSFW). These two novel feature selection al-
gorithms are derived and tested on both real and synthetic datasets. Experimental results from
these feature selection algorithms are presented and analysed. Aims to be achieved through
these experiments are listed in section 5.1. The experimental set up is discussed in section 5.1.
Results from the experiments are presented in section 5.3 and finally, conclusions from the re-
sults are presented in section 5.4

5.1 Aims

Aims of this experimental sets are:

• To conduct the proposed two feature selection algorithms against other algorithms

Performance of these two weighted based feature selection algorithms is observed against
three existing feature selection algorithms. These three feature selection algorithms are
feature selection based on feature similarity (FSFS), multi-cluster feature selection (MCFS)
and intelligent k-Means feature selection. FSFS and MCFS are the most popular feature
selection algorithms. IKFS uses a feature weighting principle for feature selection which
is similar to our proposed algorithms. These algorithms are compared with k-Means and
intelligent Minkowski weighted k-Means (iMWk-Means) as a benchmark.

• To conduct the comparison in both synthetic and real-world datasets.

Experiments are run on both synthetic and real-world( UCI) datasets. Results from the syn-
thetic datasets show how the proposed algorithms perform under a known configuration
whereas results from real-world datasets help to predict how they behave in a real-world
scenarios.
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• To observe the impact of noise on the performance of algorithms.

Three different types of noise configuration are chosen to observe the performance of these
feature selection algorithms. These noise configurations include two types of noise dis-
tributions such as Gaussian and Uniform, three types of noise model, i.e. adding noisy
features, blurring features with noise and blurring features from a selected cluster with
noise.

• To extend our study on Minkowski space

The proposed algorithm is extended in the Minkowski space where the distance coefficient
(p) varies from 1.1 to 5.0, with interval of 0.1. The main purpose of this extension is to
examine the impact of distance coefficient (p) in feature selection.

5.2 Experimental Set-up

5.2.1 Dataset Set-up

Experiments are run in both synthetic and real-world (UCI) datasets. As mentioned in Chap-
ter 3, Section 3.9, there are thirteen different configurations for the real-world datasets and 4
different configurations for synthetic datasets. The experiments are run twenty times in each
configuration, averaging the results to reduce the impact of random variations, such as the po-
sition of the centroids.

Impacts of noise on the performance of these algorithms are observed by adding noise to the
dataset. As described in Chapter 3, Section 3.9, three levels of noise strength are considered:
no noise, half noise and full noise; two types of noise distribution: Gaussian and Uniform; and
three types of noise model: adding extra noisy features (NFA), blurring features by noise (FB)
and blurring features by noise within a cluster (CFB). Therefore, for each dataset there are two
(noise strength- as no noise is not considered here) times two (noise distribution) times three
(noise model) equals twelve plus one(no noise) replicates of dataset with and without added
noise.

There are four different synthetic dataset configurations with twenty copies of dataset in each
configuration. This gives four (data configurations) times twenty(copies of datasets) times thir-
teen (noise configuration) which equals to 1040 sets of the synthetic dataset. In the real-world
(UCI) datasets there are thirteen datasets times twelve plus one (noise configuration), which is
169 set of real-world dataset for the experiment.

5.2.2 Parameter Tuning

Four feature selection algorithms which are used in these experiments required parameter tun-
ing. FSFS and MCFS required the number of features to be selected in advance. In our proposed
algorithms the value of the the distance coefficient (p) needs to be known in advance. The Sil-
houette index used to tune these parameters. The number of nearest neighbours is another
parameter required to tune MCFS. The number of nearest neighbours is set to five as a default
value, suggested by author[24]. Under the supervised condition (data labels given), the best
combination of selected features in MCFS, FSFS, mean-FSFW and max-FSFW can be found by
matching the data labels obtained from these algorithms. These experiments are named “Best
Case". Achieving the “Best Case" in FSFS, MCFS, mean-FSFW and max-FSFW is practically im-
possible under unsupervised learning. However, “Best Case" can be used as a benchmark.
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Both proposed algorithms use anomalous clustering to find initial centroids. A similar approach
has been used in intelligent k-Means feature selection, IKFS. So, it worthwhile to compare the
proposed algorithms against the IKFS as well.

Performance of the proposed algorithms is also compared against k-Means and intelligent weighted
k-Means (iWk-Means). These two variants of k-Means are used to evaluate whether feature se-
lection makes any improvement in cluster recovery, especially with added noise.

5.3 Result Presentation

Two factors to be considered while displaying the results:

• Organization of Results

• Heading of Table

Two sections below describe how results are organized and how to read the data table.

5.3.1 Organization of Results

Results from the experiments are organised as follow:

1. Results from Synthetic datasets

2. Results from real-world datasets

Simulations on the synthetic datasets with and without noise are executed first. This will
help in observing how the proposed algorithms work under known distributions. Later, simu-
lations are repeated in the UCI datasets.

5.3.2 Results from Synthetic Datasets

Results from the synthetic datasets are further summarized based on three noise configurations:

1. Noise strength

2. Noise distribution

3. Noise model

The results obtained from the synthetic datasets are summarized under three subheadings: noise
strength, noise distribution and noise model.

5.3.3 Organizing from Real-World Datasets

Results from the real-world (UCI) datasets are analysed and presented as in the approach used
earlier with the synthetic datasets. Results from the UCI datasets are summarized base on:

1. Noise strength

2. Noise distribution

3. Noise model
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5.3.4 Table Organization

Columns in each table are divided into two subheadings: configuration and performance mea-
surement. The first subheading, configurations covers one or two columns that contain infor-
mation about the configuration of noise of the dataset. The second subheading, performance
measurement, contains results from nine different algorithms under the selected configuration.

Each table is divided horizontally, into two partitions based on the metric used for the perfor-
mance. Cluster recovery index (ARI Index) is used in the first horizontal partition, whereas the
second horizontal partition measures the performance based on the percentage of feature space
cardinality after feature selection. The best results in the corresponding observations(row) are
indicated in the bold font.

Twenty different datasets are generated for each configuration in synthetic datasets. Each value
in the performance measurement denotes the mean of these readings and the mean of standard
deviation of the 20 datasets, and are separated by “/". Only a single dataset is available in the
real-world (UCI) dataset for each configuration. Therefore, only the mean of the performance
measurements is used.

The first two columns under the cluster recovery subheading contain results from k-Means
and iWk-Means. Since there is no feature selection in these two algorithms, their feature se-
lection reads 100 percent. The third column under the subheading results from the intelligent
k-Means feature selection. The remaining four columns contain results from FSFS and MCFS,
with records from silhouette parameter tuning and the best case (supervised) for each of them.
The last two columns show results from our proposed algorithm “feature selection using fea-
ture weighting (FSFW)"- for mean-FSFW and max-FSFW respectively. The mean-FSFW uses mean
feature weights within clusters as the selection criteria whereas max-FSFW uses the maximum
feature weight along clusters as the feature selection criteria. Headings/sub-headings of tables
are summarised as:

1. Configuration

2. Performance Measurement

(a) benchmark

i. k-Means
ii. iWk-Means

(b) iKFS

(c) FSFS

i. tuning parameter using silhouette index
ii. best case (supervised)

(d) MCFS

i. tuning parameter using silhouette index
ii. best case (supervised)

(e) FSFW

i. mean-FSFW
ii. max-FSFW
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5.3.5 Synthetic Datasets

Four different dataset configurations with 20 datasets per configuration are used in this exper-
iment. These datasets are generated from the mixed model Gaussian distribution (details are
explained in Chapter 3, Section 3.9. The three tables below summarize the results from the syn-
thetic datasets. In the first table, different feature selection algorithms are compared under the
unsupervised condition where the Silhouette index is used for parameter tuning. In the second
table, the best case for each algorithm are compared, whereas in the third table, the effects of the
distance coefficient on the performance of the proposed algorithms are presented.

• Parameter Tuning with Silhouette Index

In table 5.1, the performances of four different feature selection algorithms are compared
with two variants of k-Means (no feature selection) using the ARI index and % of feature
selected.

TABLE 5.1: Comparision of four different feature selection algorithms with orig-
inal var of k-Means and intelligent Minkowski weighted k-Means in synthetic
datasets with and without added noise. Silhoutee index is used for parameter

tuning.

Performance measurement [mean/std] ARI

Without FS With FS

FSFW

k-Means iMWk-Means iKFS FSFS MCFS mean-FSFW max-FSFW

av
g

cl
us

te
r

R
ec

ov
er

y
In

de
x Noise Strength

No 0.974/0.02 0.974/0.03 0.974/0.02 0.183/0.22 0.277/0.24 0.68/0.22 0.915/0.09
Half 0.488/0.07 0.942/0.07 0.485/0.07 0.138/0.16 0.34/0.2 0.685/0.25 0.862/0.15
Full 0.408/0.05 0.867/0.12 0.407/0.05 0.139/0.15 0.322/0.2 0.729/0.23 0.81/0.17

Noise Distribution
Gaussian 0.488/0.04 0.919/0.08 0.487/0.04 0.144/0.16 0.319/0.2 0.685/0.25 0.835/0.16
Uniform 0.407/0.08 0.89/0.11 0.405/0.08 0.133/0.16 0.344/0.2 0.729/0.23 0.837/0.17

Noise Model
NFA 0.906/0.08 0.912/0.11 0.906/0.09 0.126/0.2 0.414/0.16 0.821/0.18 0.958/0.05
FB 0.014/0.01 0.839/0.12 0.013/0.01 0.137/0.17 0.326/0.29 0.629/0.28 0.902/0.14

CFB 0.424/0.09 0.963/0.05 0.42/0.08 0.154/0.1 0.253/0.16 0.672/0.26 0.648/0.29

av
g

%
of

fe
at

ur
e

se
le

ct
ed

Noise Strength
No - - 96.9/4.6 9.9/4.3 9.3/3.9 26.4/14.8 47.5/13.6

Half - - 97.3/4.1 10/4.7 8.3/2.6 29.9/16.1 50.8/13.1
Full - - 94.7/6.3 14.5/9.3 9.1/4.8 32.9/15 54.8/11.8

Noise Distribution
Gaussian - - 96.1/5 12.6/7.5 8.6/3.9 29.4/15.4 51.8/13
Uniform - - 95.9/5.4 12/6.5 8.8/3.5 33.4/15.7 53.8/12

Noise Model
NFA - - 98.9/1.7 5.4/2 4.8/0.2 31.8/13.1 44.6/8
FB - - 91.7/9.7 9.1/3.1 10/4.5 32.7/17.8 60.1/12.5

CFB - - 97.3/4.1 22.3/15.8 11.4/6.3 29.7/15.7 53.7/17

– Noise Strength

In table 5.1, k-Means, iWk-Means and IKFS provide better cluster recovery rate with
ARI Index 0.974 and the deviation between the readings is also least (around 0.03)
when there is no noise in the dataset. However, these observations are obtained un-
der no feature selection in k-Means and iWk-Means whereas IKFS has no contribution
towards the feature selection. IKFS has 96.9% of average features selection. The clos-
est best performance with no noise in the dataset is observed with max-FSFW (ARI
Index 0.915) followed by mean-FSFW (ARI Index 0.68), MCFS (ARI Index 0.277) and
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FSFS (ARI Index 0.183). However, MCFS has the lowest percentage of feature selec-
tion ( 9.3% ), followed by FSFS (9.9%), mean-FSFW (26.4%) and max-FSFW ( 47.5%).

In the case of half noise, iWk-Means performance best (ARI Index 0.942), followed by
max-FSFW (ARI Index 0.862), mean-FSFW (ARI Index 0.685), IKFS (ARI Index 0.485),
MCFS (ARI Index 0.34) and FSFS (ARI Index 0.485). In terms of the percentage of fea-
ture selection, MCFS performance best (8.3%) followed by FSFS (10%), mean-FSFW
(29.9%), max-FSFW (50.8%) and iKFS (97.3%).

In the case of full noise, iWk-Means provides best cluster recovery (ARI Index 8.67),
followed by max-FSFW (ARI Index 0.81), mean-FSFW (ARI Index 0.729), IKFS (ARI
Index 0.407), MCFS (ARI Index 0.322) and FSFS (ARI Index 0.139). Furthermore, ob-
servation with percentage of feature selection shows that MCFS gives the best result
(9.1%) followed closely by FSFS (14.5%), mean-FSFW (32.9%), max-FSFW (54.8%) and
iKFS (94.7%).

Overall, iWk-Means offers better resistance to noise than k-Means. Addition of noise
has decreased the performance of all algorithms with the exception in mean-FSFW
where addition of noise has consistently increased the ARI index from 0.68, 0.685 and
0.729 for no noise, half noise and full noise respectively. However, deviation of the
results (mean standard deviation) of mean-FSFW is relatively higher and is constantly
increasing with noise. It is also observed that MCFS provides the best feature reduc-
tion with almost 90% of dimension reduction is observed, but its cluster recovery (ARI
Index) is comparatively low. FSFS also gives better dimension reduction but cluster
recovery (ARI Index below 0.2). Hence it can not be considered as a choice for noisy
data while IKFS shows no sign of feature space reduction as it stores at least 94% of
features selection. Comparatively, max-FSFW gives the best cluster recovery rate with
at least 0.81 ARI Index and its performance consistently increases with added noise
as the deviation between the iWk-Means diminishes with increase in noise strength.

– Noise Distribution

As stated earlier, performance of algorithms is categorized based on two noise dis-
tribution, i.e. Gaussian and Uniform. max-FSFW gives better cluster recovery (ARI
Index 0.835) among the feature selection algorithms followed by mean-FSFW (ARI In-
dex 0.685), IKFS ( ARI Index 0.487) when noise is generated from Gaussian distribu-
tions. However, MCFS has better dimension reduction (only 8.6% features selected),
closely followed by FSFS (12.6%), mean-FSFW (26.4%), max-FSFW (51.8%) and IKFS
(96.1%). A similar pattern of performance, max-FSFW followed by mean-FSFW, iKFS,
MCFS and FSFS, is observed when noise is generated from Uniform distributions.

FSFS and MCFS provide a high percentage of feature space reduction but low cluster
recovery in both cases. mean-FSFW and max-FSFW both surpass k-Means but cannot
improve over the weighted variant of k-Means (iWk-Means here) in term of cluster
recovery (ARI Index). max-FSFW outperforms mean-FSFW based on cluster recovery
whereas mean-FSFW is able to reduce almost two-thirds of feature space cardinal-
ity. k-Means, iWk-Means, IKFS and FSFS give better cluster recovery when noise is
from Gaussian distributions. Similarly, mean-FSFW,maxFSFS and MCFS provide bet-
ter cluster recovery when datasets have noise from uniform distributions.
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– Noise Model

max-FSFW provides better cluster recovery (ARI Index 0.958) than non feature selec-
tion based algorithms iWk-Means (AIR Index 0.912) and k-Means (ARI Index 0.90,
and feature selection based algorithms IKFS (ARI Index 0.906), mean-FSFW (ARI In-
dex 0.821), MCFS (ARI Index 0.414) and FSFS (ARI Index 0.126) with the “added noisy
feature" noise model. Best feature selection is observed in MCFS (4.8% of total fea-
ture selected), followed by FSFS (5.4% feature selection), mean-FSFW (31.8 % feature
selection), max-FSFW (44.6% features selected) and iKFS ( 98.9% features selected).
However, MCFS and FSFS provide better feature space reduction and their cluster
recovery is relatively low. Unlike other configurations, with noisy features added to
the dataset, IKFS has no contribution to offer feature selection.

Blurring features with noise significantly reduces cluster recovery in k-Means and
IKFS (ARI Index 0.014 and 0.013 respectively) whereas max-FSFW gives the highest
cluster recovery (ARI Index 0.902), followed by iWk-Means (ARI Index 0.839), MCFS
(ARI Index 0.326) and FSFS (ARI Index 0.137). As in earlier cases, MCFS gives best
feature space reduction, followed by FSFS, mean-FSFW and max-FSFW.

Overall, max-FSFW provides best cluster recovery with more than 55% and 40% fea-
ture space reduction when datasets have noisy feature added or feature blurring
whereas MCFS provides best feature reduction rate but is less effective as average
cluster recovery is around 30%.

• Best Case (Supervised Learning)

In table 5.1 above, Silhouette index has been used for tuning parameters in FSFS, MCFS,
mean-FSFW and max-FSFW. In table 5.2 below, the best possible results from each feature
selection algorithm are compared with k-Means and intelligent Minkowski weighted k-
Means, iMWk-Means. As mentioned earlier, best possible cases are obtained under the
assumption that labels are known in advance although it is impossible to achieve the best
cases in the unsupervised environment (through parameter tuning). However, these fig-
ures give an insight into the best performance which can be achieved theoretically by the
particular algorithm .
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TABLE 5.2: Comparison of four different feature selection algorithms with origi-
nal variate of KMeans and intelligent Minkowski Weighted KMeans in synthetic

dataset under the supervised condition (best possible cases).

Performance Measurement [mean/std]

Best Possible Cases

kMean iWKMeans iKFS FSFS MCFS meanFSFW maxFSFW

av
g

cl
us

te
r

R
ec

ov
er

y
In

de
x Noise Strength

No 0.974/0.02 0.974/0.03 0.974/0.02 0.959/0.03 0.971/0.03 0.954/0.04 0.97/0.03
Half 0.488/0.07 0.942/0.07 0.485/0.07 0.83/0.17 0.746/0.2 0.969/0.03 0.935/0.08
Full 0.408/0.05 0.867/0.12 0.407/0.05 0.819/0.19 0.755/0.21 0.969/0.03 0.939/0.08

Noise Distribution

Gaussian 0.488/0.04 0.919/0.08 0.487/0.04 0.838/0.17 0.813/0.17 0.968/0.03 0.958/0.05
Uniform 0.407/0.08 0.89/0.11 0.405/0.08 0.811/0.19 0.688/0.23 0.97/0.03 0.915/0.11

Noise Model

NFA 0.906/0.08 0.912/0.11 0.906/0.09 0.957/0.04 0.911/0.08 0.975/0.03 0.975/0.03
FB 0.014/0.01 0.839/0.12 0.013/0.01 0.724/0.28 0.62/0.33 0.966/0.03 0.966/0.03

CFB 0.424/0.09 0.963/0.05 0.42/0.08 0.791/0.2 0.72/0.2 0.966/0.03 0.869/0.17

av
g

%
of

fe
at

ur
e

se
le

ct
ed

Noise Strength

No - - 96.9/4.6 89/6.4 75.9/11.1 50.1/8.6 62.5/10.5
Half - - 97.3/4.1 68/19.4 53.1/24.7 64.7/11.5 67/14.1
Full - - 94.7/6.3 64.4/21.9 46.5/21.8 62.4/10.9 66.8/12.6

Noise Distribution

Gaussian - - 96.1/5 70.2/19.5 50.5/21.2 62.2/11.4 67.9/13.2
Uniform - - 95.9/5.4 62.3/21.8 49/25.3 64.9/11 65.9/13.4

Noise Model

NFA - - 98.9/1.7 81.7/13.6 64.8/19.6 47.5/6.5 53.3/9.1
FB - - 91.7/9.7 51.4/26.3 31.8/24 72.6/12.9 74.2/11.5

CFB - - 97.3/4.1 65.6/22.2 52.7/26.2 70.5/14.2 73.1/19.4
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– Noise Strength

k-Means, iWk-Means and IKFS provide better cluster recovery (ARI Index 0.974) than
the best possible cases in four of the feature selection algorithms with no noise in the
dataset. In this configuration, mean-FSFW gives the highest feature selection (around
50%), but lowest cluster recovery (ARI Index 0.954). With the addition of half noise,
mean-FSFW has better cluster recovery, with 34% reduction on feature space. mean-
FSFW and max-FSFW has better cluster recovery (best case) than k-Means and iWk-
Means in full noise. In both cases, MCFS gives best feature selection (53.1% and
46.5%) in half and full noise; however it provides the lowest cluster recovery.

– Noise Distribution

mean-FSFW provides best cluster recovery (ARI Index 0.968), followed by mean-FSFW
(ARI Index 0.958) when noise in the datasets are from a Gaussian distribution,. In this
scenario, both mean-FSFW and max-FSFW are able to reduce feature space cardinal-
ity by 30% at least. Best feature space reduction is obtained by MCFS but with the
lowest cluster recovery (ARI Index 0.813). mean-FSFW provides an optimal ARI in-
dex (0.97), followed by max-FSFW and iWk-Means with Uniform distribution. In the
case of noise generated from Gaussian distribution, higher feature space cardinality
is observed in MCFS but with the lowest cluster recovery (ARI Index 0.688).

Noise from Gaussian and Uniform distributions have similar role in the performance
of feature selection algorithms. In general, all algorithms provide better cluster recov-
ery against Gaussian noise but low feature space reduction, except mean-FSFW.

– Noise Model

mean-FSFW shows better cluster recovery(ARI Index 0.975) and a high percentage of
feature space reduction (feature selection 47.5%) when noisy features are added to the
dataset (NFA model). max-FSFW also provides similar cluster recovery as mean-FSFW
but with higher feature selection (53.5%). These two algorithms are closely followed
by FSFS and MCFS, and all four feature selection algorithms have higher cluster re-
covery than k-Means and iMWk-Means.

In the case of feature blurring noise, mean-FSFW and max-FSFW share the highest
cluster recovery (ARI Index 0.966) followed by iWk-Means (ARI Index 0.839), FSFS
(ARI Index 0.724) and MCFS (ARI Index 0.62); however, best feature space reduction
is observed in MCFS (31.8% ).

mean-FSFW gives best cluster recovery (ARI Index 0.966) with cluster based feature
blur; however, percentage of original feature selection is relatively higher (70.5%) than
MCFS (52.7%) and FSFS 65.6%.

• Distance coefficient (p)

In table 5.3 below, performance of mean-FSFW and max-FSFW based on three different val-
ues of distance coefficient (p) is examined. In the first and second case, p selected from a
range of 1.1 to 5 with interval of 0.1 which maximized cluster recovery. Silhouette index
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is used in the first case (unsupervised learning) and cluster information (supervised learn-
ing) is used in second case for the selection of p. In th third case, the distance coefficient is
set to Euclidean and therefore p is set to 2.

TABLE 5.3: Comparision of three values of distance coefficient(p) in the purposed
feature selection algorithms. The performance is evaluated using ARI index and

are carried out in Gaussian mixed-model.

Cluster Recovery (ARI) index [mean/std]

Silhoutee Best Case P equal 2

meanFSFW maxFSFW meanFSFW maxFSFW meanFSFW maxFSFW

C
lu

st
er

R
ec

ov
er

y
(A

R
I)

Noise Strength

No 0.68/0.22 0.915/0.09 0.954/0.04 0.97/0.03 0.94/0.05 0.959/0.04
Half 0.685/0.25 0.862/0.15 0.969/0.03 0.935/0.08 0.958/0.04 0.874/0.12
Full 0.729/0.23 0.81/0.17 0.969/0.03 0.939/0.08 0.958/0.05 0.817/0.17

Noise Distribution

Gaussian 0.685/0.25 0.835/0.16 0.968/0.03 0.958/0.05 0.96/0.04 0.861/0.12
Uniform 0.729/0.23 0.837/0.17 0.97/0.03 0.915/0.11 0.957/0.05 0.83/0.17

Noise Model

NFA 0.821/0.18 0.958/0.05 0.975/0.03 0.975/0.03 0.962/0.05 0.941/0.07
FB 0.629/0.28 0.902/0.14 0.966/0.03 0.966/0.03 0.964/0.03 0.947/0.08

CFB 0.672/0.26 0.648/0.29 0.966/0.03 0.869/0.17 0.949/0.05 0.649/0.28

av
g

%
of

fe
at

ur
e

se
le

ct
ed

Noise Strength

No 26.4/14.8 47.5/13.6 50.1/8.6 62.5/10.5 49/8.2 58.7/8
Half 29.9/16.1 50.8/13.1 64.7/11.5 67/14.1 66.3/5.4 76.2/5.4
Full 32.9/15 54.8/11.8 62.4/10.9 66.8/12.6 69.6/3.6 79.2/4.7

Noise Distribution

Gaussian 29.4/15.4 51.8/13 62.2/11.4 67.9/13.2 65.6/5.2 76.3/5.4
Uniform 33.4/15.7 53.8/12 64.9/11 65.9/13.4 70.2/3.8 79.1/4.7

Noise Model

NFA 31.8/13.1 44.6/8 47.5/6.5 53.3/9.1 51.7/3.3 57.8/5.9
FB 32.7/17.8 60.1/12.5 72.6/12.9 74.2/11.5 87.7/2.8 89.6/2.4

CFB 29.7/15.7 53.7/17 70.5/14.2 73.1/19.4 64.4/7.4 85.7/6.9

– Noise Strength

With no noise added to the dataset it is observed that max-FSFW has better cluster
recovery (ARI Index 0.97) than mean-FSFW (ARI Index=0.954). The performance of
these algorithms in euclidean distance are close to the best cases. Selection of the
distance coefficient using the Silhouette index greatly reduces the performance of
mean-FSFW (ARI Index 0.68), with a high standard deviation (σ 0.22). However, max-
FSFW performance does not deviate greatly (ARI Index 0.915), although dispersion
is slightly higher ( σ 0.09).

mean-FSFW gives better cluster recovery than max-FSFW in the best case (supervised),
with the induction of half and full noise. A similar trend is observed in the perfor-
mance of these algorithms with Euclidean distance. Moreover, selection of the dis-
tance coefficient gives better results with addition of noise using the Silhouette index
in mean-FSFW. However, performance of max-FSFW decreases with the addition of
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noise when the Silhouette index is used for selection the distance coefficient.

Feature space is highly reduced by mean-FSFW to 26.4%, 29.9% and 32.9% with no,
half and full noise when p is selected using the Silhouette index. However, the next
highest reduction is observed in max-FSFW which is increased by around 20% in all
cases. mean-FSFW gives higher percentage of feature space reduction for all kind of
noise strengths for selection of p values.

– Noise Distribution

In both type of noise distribution mean-FSFW gives better cluster recovery and higher
feature space reduction than max-FSFW for the best case and Euclidean distance. Se-
lection of p using the Silhouette index reverses the trend as mean-FSFW provides
lower cluster recovery index with ARI 0.685 and 0.729 compared to mean-FSFW (ARI
0.835 and 0.837) for noise from Gaussian and Uniform distributions respectively. How-
ever, mean-FSFW is better at decreasing the feature space as feature space cardinality
is reduced to 29.4% and 33.4 % compared to max-FSFW where feature space cardinal-
ity is decreased to 51.8% and 53.8 for noise from Gaussian and Uniform distributions
respectively.

Overall, use of the Silhouette index has better reduction of feature space cardinality
for both algorithms, followed by use of Euclidean distance and worst with best case
(supervised)method.

– Noise Model

Both of these algorithms result higher cluster recovery with added noisy features un-
der supervised conditions (ARI Index 0.975). Euclidean distance gives better results
than the Silhouette index in both algorithms with added noise. A similar trend is ob-
served in two other models of noise, feature bluring noise and cluster-based feature.
Blurring noise with higher declination of cluster recovery in mean-FSFW as it dropped
down to 0.629 and 0.672 respectively.

In terms of percentage of feature selection, mean-FSFW has better reduction of feature
space with 31.8%, 32.7% and 29.7% of the feature space in the three noise models us-
ing the Silhouette index. Similarly, max-FSFW produces higher percentage of feature
space reduction when using the Silhouette index.

5.3.6 UCI datasets

Thirteen different UCI datasets are taken from UCI machine learning repository (details of these
data sets are given in Chapter 3, Section 3.9). As with the display of results from synthetic
datasets, the three tables ( 5.1, 5.2, 5.3) below summarize the results from these real-world
datasets. In the first table, feature selection algorithms are compared under the unsupervised
condition where the Silhouette index is used for parameter tuning. In the second table, the best
case for each algorithm is compared, whereas in the third table, the effect of distance coefficient
on the performance of the proposed algorithms are presented.
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Note:
Unlike synthetic datasets, each dataset from UCI repository have different configuration. Per-
formance of k-Means types algorithms is comparatively higher in some dataset whereas too low
in other. Therefore, higher standard deviation is observed when results from different datasets
are combined together.

• Parameter Tuning Using Silhouette Index

In table 5.4 below, the performance of four different feature selection algorithms is com-
pared with k-Means and iMWk-Means (no feature selection) using two metrics: ARI Index
and the percentage of feature space selected.

TABLE 5.4: Comparision of four different feature selection algorithms with origi-
nal variate of kMeans and intelligent Minkowski Weighted KMeans in real-world
dataset with and without added noise where Silhoutee index is used for parameter

tuning.

Performance measurement [mean/std]

Without FS With FS

FSFW

kmeans iWkmeans iKFS FSFS MCFS meanFSFW maxFSFW

av
g

cl
us

te
r

R
ec

ov
er

y
In

de
x Noise Strength

No 0.557/0.31 0.481/0.45 0.553/0.32 0.267/0.32 0.294/0.25 0.449/0.36 0.556/0.38
Half 0.419/0.33 0.472/0.38 0.425/0.33 0.208/0.23 0.291/0.25 0.418/0.35 0.496/0.36
Full 0.339/0.31 0.451/0.37 0.337/0.32 0.195/0.19 0.315/0.26 0.464/0.38 0.492/0.37

Noise Distribution

Gaussian 0.403/0.32 0.458/0.37 0.411/0.32 0.221/0.24 0.293/0.24 0.451/0.36 0.501/0.35
Uniform 0.355/0.33 0.465/0.38 0.352/0.33 0.181/0.17 0.312/0.27 0.431/0.37 0.487/0.38

Noise Model

NFA 0.508/0.31 0.473/0.39 0.509/0.31 0.214/0.22 0.317/0.25 0.459/0.39 0.538/0.37
FB 0.186/0.29 0.397/0.35 0.186/0.29 0.186/0.19 0.331/0.32 0.418/0.36 0.473/0.39

CFB 0.442/0.28 0.514/0.38 0.449/0.28 0.204/0.21 0.26/0.17 0.446/0.36 0.47/0.35

av
g

%
of

fe
at

ur
e

se
le

ct
ed

Noise Strength

No - - 88.2/26.7 19.6/19.3 17.2/24 33.7/14.8 52.9/31.5
Half - - 91.3/19.6 15.8/16.6 12.6/12.6 24.9/15.1 53.2/27.6
Full - - 91.4/16.2 17.2/17.7 13.6/15.7 28.9/18.4 59.6/29.8

Noise Distribution

Gaussian - - 92.2/17.6 16/14.8 11.8/11.5 26/18.5 58.9/31.9
Uniform - - 90.5/18.4 17/19.3 14.5/16.5 27.8/15.2 54/25.4

Noise Model

NFA - - 96.9/7.2 8.6/5.4 6.6/5 22.3/11.6 51.8/25.8
FB - - 86.5/21 16.4/13.8 16/16.3 31.1/20.1 57.4/30.9

CFB - - 90.6/20.8 24.5/23.3 16.9/16.1 27.3/17.1 60.1/29.5

– Noise Strength

In the real-world datasets, k-Means provides best cluster recovery with ARI Index
equal to 0.577 in the case of no noise. A similar performance is achieved in max-FSFW
(ARI Index 0.556) with feature space cardinality reduced to 52.9%. The next best clus-
ter recovery is obtained by IKFS (ARI Index 0.553) although its contribution toward
feature space cardinality is minimal (88.2%). Among the feature selection algorithms,
second best cluster recovery is achieved by mean-FSFW (ARI Index 0.449), with reduc-
tion of feature space cardinality to 33.7%. However, the best feature space reduction
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is observed in MCFS (17.2%) but it provides low cluster recovery (ARI 0.294).

max-FSFW shows a better cluster recovery than k-Means and iMWk-Means with half
and full strength noise as max-FSFW has ARI Indexes equal to 0.496 and 0.492 re-
spectively. In the case of half noise, the second best cluster recovery is observed in
iWk-Means with ARI Index 0.472. Among the feature selection algorithms, mean-
FSFW gives second best results. Moreover, with increasing noise strength, cluster
recovery in all algorithms (with and without feature selection) are decreased except
for mean-FSFW. In terms of reduction of feature space cardinality, MCFS gives better
performance, followed by FSFS, mean-FSFW and max-FSFW.

– Noise Distribution

A similar trend is observed with uniform noise added in the real-world datasets
where max-FSFW provides best cluster recovery with ARI index equals to 0.487%,
followed by mean-FSFW (ARI index 0.431%), with the lowest cluster recovery in FSFS
(ARI index 0.181). In Gaussian noise, max-FSFW has best cluster recovery (ARI 0.501),
followed by iWk-Means (ARI 0.458) and finally FSFS (ARI 0.411). MCFS shows best
reduction of feature space cardinality (8.8%), followed by FSFS(12%). MCFS produces
the best feature reduction for both Gaussian (11.8%) and Uniform (14.5%) noise dis-
tributions, closely followed by FSFS.

As observed in the synthetic datasets, IKFS shows no contribution to reduce feature
space cardinality in real-world datasets. In both types of noise distribution, IKFS only
reduces feature space cardinality by less than 5%.

– Noise Model

max-FSFW provides better cluster recovery (ARI Index 0.958) than k-Means and its
weighted variant Wk-Means with the addition of noisy features. Interestingly, in this
configuration, deviations of the ARI indexes are relatively low as STD of these values
results to 0.05. The next closest performer among the feature selection algorithms is
mean-FSFW with ARI index equals to 0.821; the performance of iKFS is not consid-
ered since it does not contribute to reduction of feature space cardinality. In term of
reduction of feature space cardinality, MCFS provides best result with 4.8% of feature
selection; however, MCFS gives a much lower cluster recovery (ARI Index equals to
0.414) than the maxFSFS.

Feature blurring with noise, max-FSFW provides best cluster recovery with ARI Index
equal to 0.902 followed by the weighted variant of k-Means, Wk-Means. Though FSFS
shows a high percentage of reduction of feature space cardinality, with the average
percentage of feature selection equal to 9.1%, it gives relatively low cluster recovery
(ARI index equals to 0.137) among the three selected feature selection algorithms.

Again, with cluster-based feature blurring noise added, cluster recovery is relatively
lower in max-FSFW than in the previous two noise models and the weighted vari-
ant of k-Means, Wk-Means. In the configuration, mean-FSFW produces better cluster
recovery (average ARI Index equal to 0.672) among the feature selection algorithms
considered. In respect to reduction of feature space cardinality, MCFS provides best
results, with 11.4% of features selected, followed by FSFS, mean-FSFW and max-FSFW.



56 Chapter 5. Feature Selection

Overall, it is concluded that max-FSFW gives best performance (better than k-Means and
Wk-Means) with almost 50% reduction of feature space cardinality when datasets have
added noisy features or feature blurring noise.

• Best Case

In table 5.5 below, the best possible results in the real-world datasets from each feature
selection algorithm are compared with those from k-Means and iWk-Means.

TABLE 5.5: Comparison of four different feature selection algorithms with origi-
nal variate of KMeans and intelligent Minkowski Weighted KMeans in real-world

dataset under the supervised condition (best possible cases).

Performance Measurement (mean/std)

Best Possible Cases

kMean iWKMeans iKFS FSFS MCFS meanFSFW maxFSFW

av
g

cl
us

te
r

R
ec

ov
er

y
In

de
x Noise Strength

No 0.557/0.31 0.481/0.45 0.553/0.32 0.615/0.3 0.614/0.29 0.571/0.39 0.601/0.34
Half 0.419/0.33 0.472/0.38 0.425/0.33 0.55/0.28 0.561/0.28 0.612/0.31 0.578/0.31
Full 0.339/0.31 0.451/0.37 0.337/0.32 0.546/0.27 0.544/0.31 0.612/0.31 0.591/0.31

Noise Distribution

Gaussian 0.403/0.4 0.458/0.46 0.411/0.41 0.575/0.58 0.548/0.55 0.601/0.6 0.576/0.58
Uniform 0.355/0.35 0.465/0.47 0.352/0.35 0.521/0.52 0.557/0.56 0.622/0.62 0.593/0.59

Noise Model

NFA 0.508/0.31 0.473/0.39 0.509/0.31 0.571/0.28 0.585/0.28 0.588/0.35 0.58/0.33
FB 0.186/0.29 0.397/0.35 0.186/0.29 0.491/0.28 0.511/0.34 0.605/0.3 0.581/0.31

CFB 0.442/0.28 0.514/0.38 0.449/0.28 0.582/0.26 0.561/0.26 0.643/0.28 0.592/0.29

av
g

%
of

fe
at

ur
e

se
le

ct
ed

Noise Strength

No - - 88.2/26.7 19.6/10.4 17.2/12.5 33.7/20.4 52.9/15.7
Half - - 91.3/19.6 15.8/10.4 12.6/5.7 24.9/12.3 53.2/24.6
Full - - 91.4/16.2 17.2/10.3 13.6/4.4 28.9/10.2 59.6/20.4

Noise Distribution

Gaussian - - 92.2/15.7 16 11.8/5.6 26/12.4 58.9/24.5
Uniform - - 90.5 17/18.2 14.5/6.7 27.8/10.5 54 /22.3

Noise Model

NFA - - 96.9/7.2 8.6/2.4 6.6/3.4 22.3/12.4 51.8/24.8
FB - - 86.5/21 16.4 16/10.4 31.1 57.4/25.9

CFB - - 90.6/20.8 24.5 16.9/12.5 27.3 60.1/30.6

– Noise Strength

Under supervised learning (cluster label provided), FSFS shows the best cluster re-
covery with average ARI Index equals to 0.615, closely followed by MCFS (avg ARI
Index equals to 0.614) and max-FSFW (avg ARI Index equals to 0.571). Feature se-
lection algorithms show better cluster recovery under supervised learning when no
noise is added in the real-world datasets. In terms of percentage of feature selection,
MCFS has better reduction on feature space cardinality, with 17.2% of features selec-
tion.

mean-FSFW shows best cluster recovery in the case of both half and full added noise,
with average ARI Index equal to 0.612, closely followed by max-FSFW. In the case
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of half and full noise, all feature selection algorithms including MCFS and FSFS pro-
vides better cluster recovery than k-Means and iWk-Means. In terms of reduction of
feature space cardinality, MCFS produces best result for all noise type, followed by
FSFS.

– Noise Distribution

In both Gaussian and Uniform noise distribution, mean-FSFW provides best cluster
recovery, with ARI Indexes reading 0.601 and 0.622 followed by mean-FSFW. In terms
of reduction of feature space cardinality, MCFS produces the best outcome as it is able
to reduce feature space cardinality to 11.8% and 14.5% for noise from Gaussian and
Uniform distribution.

– Noise Model

mean-FSFW shows better cluster recovery in all three types of noise models: added
noisy features, feature-blurring noise and cluster-based feature blur noise. On the
basis of the percentage reduction in feature space cardinality, MCFS gives the best
results, with feature space cardinality reduced to 6.6%, 16% and 16.9% respectively
under the supervised learning environment.

• Distance coefficient

In table 5.6 below, the performance of two proposed algorithms is compared against that
from three methods of selecting the distance coefficient in real-world datasets. In the first
and second cases, p is selected from a range of 1.1 to 5.0 with interval of 0.1, which maxi-
mized cluster recovery. The Silhouette index is used in the first case (unsupervised learn-
ing) and cluster information (supervised learning) is used in the second case for the selec-
tion of the p. In third case, the distance coefficient is set to Euclidean and therefore p is set
to 2.
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TABLE 5.6: Comparision of the purposed feature selection algoirthm with three
different values of distance coefficient(p). The performance is evaluated using ARI

index and are carried out in Gaussian mixed-model.

Cluster Recovery (ARI) index [mean/std]

Silhoutee Best Case P equal 2

meanFSFW maxFSFW meanFSFW maxFSFW meanFSFW maxFSFW

C
lu

st
er

R
ec

ov
er

y
(A

R
I)

Noise Strength

No 0.449/0.36 0.556/0.38 0.571/0.39 0.601/0.34 0.45/0.47 0.535/0.38
Half 0.418/0.35 0.496/0.36 0.612/0.31 0.578/0.31 0.498/0.37 0.512/0.32
Full 0.464/0.38 0.492/0.37 0.612/0.31 0.591/0.31 0.496/0.35 0.476/0.32

Noise Distribution

Gaussian 0.451/0.36 0.501/0.35 0.601/0.32 0.576/0.3 0.499/0.36 0.516/0.31
Uniform 0.431/0.37 0.487/0.38 0.622/0.31 0.593/0.31 0.495/0.36 0.472/0.32

Noise Model

NFA 0.459/0.39 0.538/0.37 0.588/0.35 0.58/0.33 0.495/0.39 0.526/0.33
FB 0.418/0.36 0.473/0.39 0.605/0.3 0.581/0.31 0.511/0.34 0.482/0.32

CFB 0.446/0.36 0.47/0.35 0.643/0.28 0.592/0.29 0.484/0.36 0.473/0.31

av
g

%
of

fe
at

ur
e

se
le

ct
ed

Noise Strength

No 33.7/14.8 52.9/31.5 42.1/15 72.1/29.6 46.1/9.3 76.8/20.3
Half 24.9/15.1 53.2/27.6 49.8/22.9 72.1/24.1 54.4/14.2 82.3/15.6
Full 28.9/18.4 59.6/29.8 56.1/24.5 76/22.9 58/18.2 83.1/15.7

Noise Distribution

Gaussian 26/18.5 58.9/31.9 52/24 77.1/21.7 56.2/18 82.7/14.7
Uniform 27.8/15.2 54/25.4 53.9/23.8 71/25 56.2/14.7 82.7/16.6

Noise Model

NFA 22.3/11.6 51.8/25.8 40.1/15.5 65/21.7 44.5/12.1 77.1/18.2
FB 31.1/20.1 57.4/30.9 63.3/27 75.2/22.2 66.3/15.4 85.1/12.6

CFB 27.3/17.1 60.1/29.5 55.5/21.8 81.9/24.1 57.7/13.7 85.9/14.2
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– Noise Strength

Silhouette index results in better cluster recovery with max-FSFW in all three cases of
noise strength, whereas the performance is reversed in the case of feature space re-
duction. In the best case, max-FSFW provides the better cluster recovery (ARI 0.601)
with no noise, while with added noise mean-FSFW provides better cluster recovery
but mean-FSFW results in better reduction of feature space for all noise strengths.

max-FSFW produces better cluster recovery than mean-FSFW for no and half noise
strengths and max-FSFW gives better cluster recovery for full noise strength when
Euclidean distance is used. In term of feature space reduction, mean-FSFW provides
better result for all cases of noise strength.

– Noise Distribution

In both noise distribution, max-FSFW gives better cluster recovery than mean-FSFW
for the Silhouette index and is reverse in best case. For Euclidean distance, max-FSFW
has better cluster recovery (ARI 0.516), mean-FSFW gives better cluster recovery (ARI
0.495) for Gaussian and Uniform noise distribution.

In term of feature space cardinality, mean-FSFW is able to reduce the feature space
better than mean-FSFW, with best result using the Silhoutte index.

– Noise Model

max-FSFW provides better cluster recovery than mean-FSFW for Silhouette index and
Euclidean distance when noisy features are added to the datasets, and performance
is reversed in the best case. Blurring the feature with noise, FB and CFB, mean-FSFW
provides better cluster recovery than max-FSFW in Silhouette index and Euclidean
distance, and this is reversed in the best case.

In terms of percentages of feature selection, mean-FSFW is able to reduce the feature
space better than max-FSFW, with best result when using the Silhouette index in all
cases of noise model.

5.4 Conclusion

From the above study, the proposed feature weighting based feature selection algorithm appears
outperform the other two feature selection algorithms considered, FSFS and MCFS, in both the
synthetic and real world datasets. IKFS performs worst, with no contribution to feature selec-
tion. Under the supervised condition (best case), mean-FSFW and max-FSFW are both perform
better than the benchmark algorithms, k-Means, and iWk-Means in both the synthetic and real-
world datasets, for all noise configurations . Under the unsupervised condition, mean-FSFW
and max-FSFW provides better cluster recovery than k-Means and iWk-Means when datasets
have noise.

max-FSFW is slightly better than mean-FSFW in term of cluster recovery. However, in terms of
feature space reduction, mean-FSFW is better than max-FSFW. Either mean-FSFW or max-FSFW
can be used as feature selection technique depending on the objectives of the experiment.
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In overall, both the proposed feature selection algorithms found be better in term of reduction
of feature space with maximizing the cluster structure in unsupervised environment. However,
the proposed feature selection algorithms are computationally expensive as they are required to
find appropriate distance coefficients. But this can be overcome under semi-supervised learning
where appropriate distance coefficient can be identified by running few sample tests in a small
dataset.
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Chapter 6

Prediction of Missing Values

Raw data is likely to have missing values[160]. They are the result of technical fault or human
negligence during data collection, data entry or pre-processing period, or lack of availability of
data. Data, collected from experiment or survey might have some data values unobserved. At-
tribute values can be unobserved under various reasons. For example, in a household survey,
an individual might refuse to disclose their income if his/her income is low. In industrial ex-
periments, mechanical failure is one of the main reasons for the loss of data values. Similarly,
respondents may not be able to set their preferred option/s from multiple choice questionable in
the survey. In such scenarios, respondents may refuse to answer the questions. However, most
data processing tools expect dataset to have no missing values.

6.1 Aims

In this chapter, three different approaches: imputation, Column-wise deletion and partial dis-
tance are used to address missing values in k-Means type algorithms. Four different imputation
methods analysed in this experiment are replacing the missing values by: feature average, KNN
imputation, simple regression and cluster-based regression. These methods are tested with
weighted k-Means (Wk-Means) and intelligent weighed k-Means (iWk-Means). Column-wise
deletion approach removes the feature containing missing values before the data are clustered.
In Partial distance approach, the distance metric within the clustering algorithm is modified
to address the missing values. Partial distance has been applied in k-Means and its weighted
variant, Wk-Means. The missing values used in this research are missing completely at ran-
dom (MCAR), and not missing at random (NMAR) mechanism [see section 3.8.2]. Moreover,
the missing values implanted for test purposes are limited to two cases of univariate missing
pattern: missing values in a feature which has highest and lowest correlation with its dataset.
These methods are tested in both real-world datasets from UCI machine learning repository and
synthetic datasets, generated from mixed-model Gaussian distribution.

The aims of this chapter are to observe:

• Different imputation methods in Wk-Means and iWk-Means
In the first half of the chapter, impacts of four different imputation methods on the per-
formance of Wk-Means and iWk-Means is observed. Two of these methods are based on
average imputation: replacing the missing values with an attribute mean and replacing the
missing values by an average of ’k’ nearest values, KNN imputation. Two other remaining
imputation methods are based on values derived by regressions: from the whole dataset
and the cluster to which the missing value belongs.

• The effect of correlation of feature on cluster recovery approaches
In univariate missing pattern missing values are present in only one of the features. The
correlation between features that posses missing values with the other remaining features
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has an impact on the choice of imputation methods. In attempting to find the influence
of correlation, univariate missing patterns are checked with the features that have highest
and lowest correlation with their datasets.

• The impact of two missing mechanisms on cluster recovery approaches
As stated earlier, the experimental datasets have missing values from missing completely
at random (MCA) and not missing at random (NMAR) mechanism. One of the area of this
research is to find how missing values from different mechanisms influence the cluster re-
covery process i.e. performance of Wk-Means and iWk-Means.

• How three common approaches - imputation, column-wise data deletion and partial
distance influence clustering
There are three common practices while dealing with missing values: Imputation, case
deletion and redefining the distance matrix. In this research, we observed how these three
different approaches influence cluster recovery in k-Means and Wk-Means.

6.2 Experimental Set-up

6.2.1 Setting up Dataset

Simulations for the missing values experiment are carried in both synthetic and the real-world
datasets. The synthetic datasets, used earlier in Chapter 5, are used in this chapter. Therefore,
we have four configurations of Gaussian mixed model drawn from feature set V={8, 12,16, 20}
and a set of number of mix component K={2 ,3, 4, 5}. For each configuration we have 20 datasets
and each dataset contains 1000 entities. Configuration of datasets in the real-world varies and
are distinct from each other. Therefore, each dataset from real-world is considered as a unit
configuration. Seven datasets from UCI machine learning repository are used for the real-world
experiment.

6.2.2 Addition of Missing Values

In our experiment, univariate missing patterns in both synthetic and real-world datasets are
used. One of the features is selected based on the linear correlation between the feature and its
dataset. Two cases of correlation which are considered for the selection are:

1. highest correlation,

2. lowest correlation

Note:
For a dataset Y is defined in a feature space V = {v1, v2, v3, v4}, the correlation of a feature, v1
with its dataset, Y is computed as linear correlation between v1 and dataset Yprime=Y-v1 =>
{v2, v3, v4}.

Moreover, we examined two missing mechanism for above cases:

• missing completely at random( MCR) , and

• not missing at random (NMAR).

Two sets of experiments are run for each missing mechanism. For the first set, a feature with
highest correlation with its dataset is chosen and for the second set, the feature with lowest cor-
relation with its dataset are selected.
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In each of the above cases, experiments are conducted with different percentage of missing val-
ues. The missing percentage of data in the feature is set to 5%, 10%, 15%, 20%, 25% , 30% and
35%.

Once the target feature and number of missing entities are derived, the original values are
plugged out from the experimental datasets in random fashion for MCR mechanism. For NMAR,
we randomly plug out values which are greater than the feature mean value. Since we have used
a mean value as an index for NMAR, the maximum number of missing values in NMAR is lim-
ited to number of values greater than the feature mean value.

6.2.3 Selection of Algorithms

In this experiments, three general approaches are observed to deal with missing values:

• Imputation method
Four different Imputation methods: feature average, average of K nearest neighbours, sim-
ple regression and cluster-based regression are tested.

• Removing the feature that have missing values
Another approach to deal with missing value is to remove the feature or entity which has
missing values. In our experiment, we are dealing with only univariate missing values;
therefore to deal with the missing values, we have deleted the feature that contain missing
values

• Partial distance
One of the possible method to avoid imputation for dealing with missing values is to mod-
ify the distance metric inside the algorithm itself. In our experimental set, we modified the
distance matrix so that an average distance from the known feature is considered between
two entities to measure the similarity matrix. The same approach is carried out while op-
erating with centroids: redefining the centroids for the cluster that have missing values
and measuring the similarity between centroids and the entity which has missing value.

A set of experiment for different imputation methods is used the earlier section of this chapter.
A new set of experiment is carried in the later section, to compare three different approaches to
deal with missing values.

6.2.4 Extension to Noise

To observe the effect of noise over the performance of all cases of handling the missing values
as discussed above, we have extended our experiment with addition of m/2 and m numbers
of noisy features. Similar to the chapter 5, noises are drawn from uniform distribution (white
noise).

6.3 Reading Results

All the experimental results are displayed in a tabular form. Two factors need to consider while
reading the results:

• Organization of results

• Heading of tables.

The two sections below explain how results are organised and how to read the data tables.
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6.3.1 Organization of Results

Results from the experiments are grouped into two categories:

• comparison between different imputation methods and

• comparison between different approaches.

For each categories above, there are two tables containing results where missing values are in
the feature with:

• minimum and

• maximum

correlation with its dataset.

In each table, results are further summarised based on:

• dataset configurations,

• percentage of missing values and

• types of added noise.

A horizontal divider is placed along the columns in each table that divides each table into the
three observations listed above.

We have used two set of tables to display results from imputation methods and to compare
results from different approaches.

Results for Imputation Methods

The tables that display results from imputation methods have nine columns. The first column
displays the configuration of the experimental set-up which is either dataset configurations,
percentage of missing values or type of noise. Columns from two to five display ARIs for Wk-
Means which are obtained after replacing the missing values with feature average, mean of
K nearest values, values derived from regression on the whole dataset and the value derived
from regression on the cluster in which the particular entity with missing values belongs to,
respectively. The same pattern is set to display results from iWk-Means from columns six to
nine.

Results from Different Approaches

Tables which are used to evaluate (compare) the partial distance approach with feature mean
imputation and feature removal approach have seven columns. As in earlier case, the first col-
umn contains information about datasets, missing values percentage or noise type. The second
and third columns contain ARIs of k-Means and Wk-Means where missing values are replaced
by the feature average. The fourth and fifth columns contain ARIs of k-Means and Wk-Means
when the feature containing the missing values is removed and finally, the last two columns
have ARIs of k-Means and Wk-Means where distance matrix within the clustering algorithms
are replaced by partial distance.

6.4 Experimental Results

Experimental results, derived from comparison of four different imputation methods and three
different approaches, are explained in 6.4.1 and 6.4.2.
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6.4.1 Imputation of Different Algorithms for Weighted k-Means and Intelligent Weighted
k-Means

Imputation, i.e. replacement of missing value by known value is one of the common approach
for resolving the missing values problem during data pre-processing. Four different imputation
methods: feature average, K-nearest neighbours, simple regression and cluster-based regression
are observed in Wk-Means and iWk-Means . Each of these methods are tested in two differ-
ent missing mechanisms: missing completely at random (MCAR) and not missing at random
(NMAR) mechanism in sub-section 6.4.1 and 6.4.1 respectively.

Missing values with MCAR Mechanism

In this section, missing completely at random mechanism is observed in synthetic and real-
world datasets.

A) Synthetic datasets
For two cases of univariate missing pattern, i.e. missing values in a feature with minimum
correlation and a feature with maximum correlation, experimental results from four Gaus-
sian mixed model configuration with MCAR mechanism are explained in this section.

A.i) Univariate missing pattern with minimum correlation

In table 6.1, ARI values for Wk-Means and iWk-Means are listed from the synthetic
datasets with MCAR missing values in a feature with minimum correlation with its
dataset. Results are categorized based on datasets, percentage of missing values and
noise types.

TABLE 6.1: Comparison of four different imputation methods in Gaussian mixed
model where missing values have MCAR mechanism and are located in a feature

(univariate missing pattern) which has lowest correlation with its dataset.

Wk-Means Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
IN

IM
U

M
C

O
R

R
EL

A
TI

O
N

Dataset three different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.971/0.04 0.971/0.04 0.971/0.04 0.971/0.04 0.197/0.06 0.196/0.05 0.195/0.05 0.195/0.05

1000x12 0.922/0.18 0.922/0.18 0.922/0.18 0.922/0.18 0.372/0.13 0.377/0.13 0.376/0.13 0.378/0.13
1000x16 0.881/0.17 0.881/0.17 0.881/0.17 0.881/0.17 0.624/0.12 0.625/0.12 0.624/0.12 0.625/0.12
1000x20 0.856/0.15 0.856/0.15 0.856/0.15 0.855/0.15 0.85/0.09 0.849/0.09 0.849/0.09 0.848/0.09

Missing % Evaluation based on % of missing values
1 0.911/0.15 0.911/0.15 0.911/0.15 0.911/0.15 0.514/0.27 0.513/0.27 0.513/0.27 0.513/0.27
10 0.905/0.15 0.904/0.16 0.903/0.16 0.903/0.16 0.511/0.27 0.512/0.27 0.511/0.27 0.513/0.27
15 0.905/0.15 0.905/0.15 0.905/0.15 0.905/0.15 0.511/0.27 0.512/0.27 0.511/0.27 0.512/0.27
20 0.905/0.15 0.906/0.15 0.906/0.15 0.906/0.15 0.509/0.27 0.511/0.27 0.512/0.27 0.512/0.27
25 0.91/0.15 0.91/0.15 0.911/0.15 0.91/0.15 0.509/0.27 0.51/0.27 0.51/0.27 0.511/0.27
30 0.909/0.15 0.908/0.15 0.908/0.15 0.908/0.15 0.51/0.27 0.511/0.27 0.51/0.27 0.511/0.27
35 0.908/0.15 0.907/0.15 0.908/0.15 0.907/0.15 0.513/0.26 0.513/0.27 0.509/0.27 0.511/0.27

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.908/0.15 0.907/0.15 0.908/0.15 0.907/0.15 0.511/0.27 0.512/0.27 0.511/0.27 0.512/0.27

Half Noise 0.856/0.23 0.857/0.23 0.856/0.23 0.857/0.23 0.795/0.24 0.796/0.24 0.795/0.24 0.796/0.24
Full Noise 0.821/0.21 0.822/0.21 0.822/0.21 0.823/0.2 0.822/0.18 0.822/0.18 0.822/0.18 0.822/0.18

• Dataset Configuration
Weighted k-Means does not show any difference for the synthetic datasets when
missing values replaced using any of the four algorithms. The average cluster
recovery for four dataset configurations read: 0.971, 0.922, 0.881 and 0.856. How-
ever, increment of the cardinality of feature space decreases performance of Wk-
Means with the same amount for all imputation methods.
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In case of Intelligent Wk-Means, mixed results are observed as no imputation
method shows clearly the best choice. In two dataset configurations with fea-
ture space cardinality of 8 and 20, replacing missing values with feature average
has better cluster recovery in iWk-Means. Likely, KNN imputation method has
shown better cluster recovery for datasets with feature space cardinality 16 and
cluster-based regression shows better cluster recovery in iWk-Means for datasets
with feature space cardinality 12 and 16. Simple regression based imputation
method gives lower performance for iWk-Means.

• Percentage of missing values
In Wk-Means, replacing the missing values with feature average and simple re-
gression don’t follow the trend of changes with respect to the percentage of miss-
ing values. However, replacing the missing values with KNN and cluster-based
regression are comparatively better when the percentage of missing values is
lower for Wk-Means. In case of iWk-Means, none of four methods show any
trend of changes with respect to percentage of missing values.

• Type of noise
With the increment of noisy features, the performance of Wk-Means decreases
for all imputation methods but for IKWMeans performance gets better when the
number of noisy features increase. Wk-Means has better performance when miss-
ing values are replace with feature average or simple regression whereas, cluster-
based regression is best alternative for noisy datasets. Imputation of missing
values with KNN or cluster-based regression is the best choise for intelligent Wk-
Means in any types of noise.

A.ii) Univariate missing pattern with maximum correlation

In table 6.2, four different imputation methods - feature average, KNN, simple re-
gression and cluster-based regression are observed based on their effect on the per-
formance of Wk-Means and Intelligent Weighted k-Means. Experiments are carried
out in synthetic datasets which have mixed-model Gaussian distribution with well
separated Gaussian clusters (cluster covariance equals to 0.5). The missing values
have an univariate missing pattern and are located in the feature which have highest
correlation with its dataset. The missing values are generated using ’missing com-
pletely at random’ mechanism.

We further analysed the results based on dataset configurations, percentages of miss-
ing values and noise types. The best performance of each observation (row-wise) is
highlighted with bold letter. Each entity in the performance represents the average
value of the reading and the standard deviation of the observation separated by for-
ward slash(/).

• Dataset Configurations
Replacing the missing values with a feature average gives better cluster recov-
ery in Wk-Means when the missing value are present in a feature which have
maximum correlation with its dataset. Under this configuration, for datasets,
with smaller feature space cardinality(eight), replacing missing values with KNN
gives better cluster recovery for Wk-Means. Similarly, KNN is the best option to
replace the missing values for intelligent Wk-Means. However, in larger feature
space cardinality (20 ), cluster-based regression method is the best to replace the
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TABLE 6.2: Comparison of four different imputation methods in Gaussian mixed
models where missing values have a MCAR mechanism and are located in a fea-

ture (univariate missing pattern) which has highest correlation with its dataset.

WKMeans Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
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Dataset Three different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.951/0.06 0.954/0.06 0.95/0.06 0.951/0.06 0.164/0.05 0.231/0.07 0.192/0.05 0.218/0.06

1000x12 0.92/0.17 0.918/0.18 0.921/0.17 0.917/0.18 0.334/0.11 0.408/0.12 0.356/0.1 0.402/0.12
1000x16 0.886/0.17 0.884/0.17 0.885/0.17 0.883/0.17 0.576/0.11 0.636/0.12 0.602/0.12 0.635/0.12
1000x20 0.857/0.15 0.856/0.15 0.857/0.15 0.856/0.15 0.834/0.1 0.838/0.09 0.833/0.1 0.844/0.09

Missing % Evaluation based on % of missing values
1 0.904/0.16 0.904/0.16 0.904/0.16 0.904/0.16 0.505/0.27 0.514/0.27 0.512/0.27 0.514/0.27
10 0.907/0.15 0.907/0.15 0.907/0.15 0.905/0.15 0.484/0.27 0.518/0.26 0.503/0.27 0.52/0.26
15 0.906/0.15 0.906/0.15 0.907/0.15 0.905/0.15 0.474/0.27 0.518/0.26 0.497/0.26 0.523/0.26
20 0.904/0.15 0.902/0.15 0.904/0.15 0.901/0.15 0.471/0.27 0.524/0.25 0.493/0.26 0.525/0.26
25 0.902/0.15 0.903/0.15 0.903/0.15 0.9/0.15 0.468/0.27 0.53/0.24 0.49/0.26 0.528/0.25
30 0.901/0.15 0.901/0.15 0.902/0.15 0.899/0.15 0.467/0.27 0.54/0.24 0.488/0.26 0.53/0.25
35 0.901/0.15 0.898/0.15 0.899/0.15 0.897/0.15 0.469/0.27 0.553/0.23 0.486/0.26 0.535/0.25

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.904/0.15 0.903/0.15 0.904/0.15 0.902/0.15 0.477/0.27 0.528/0.25 0.496/0.26 0.525/0.26

Half Noise 0.843/0.24 0.85/0.24 0.852/0.23 0.85/0.23 0.763/0.26 0.793/0.23 0.786/0.24 0.799/0.23
Full Noise 0.809/0.21 0.814/0.21 0.819/0.21 0.818/0.21 0.791/0.21 0.812/0.19 0.814/0.19 0.823/0.18

missing values for intelligent Wk-Means.

• Percentage of missing values
All four imputation methods have a similar effect on the performance of Wk-
Means when the percentage of missing value is relatively low (less than or equal
to 10). Replacing the missing value with a simple regression method is the best
option for Wk-Means when the percentage of missing values is less than or equal
to 30%. In case of relatively large number of missing values(around 35%), feature
average imputation results better cluster recovery for Wk-Means.

For intelligent weighted k-Means, replacing the missing values with cluster-based
regression is a better option when number of missing features are small (less than
20%) whereas, the number of missing values are relatively high in KNN imputa-
tion which is the best option.

• Type of noise
When there are no noisy features in the datasets, feature average and cluster-
based regression are the best imputation methods for Wk-Means. Replacing the
missing values with simple regression is the optimal option for Wk-Means when
noisy features are added. Simple imputation performances best in iWk-Means
with no noisy features in datasets while cluster-based regression method is better
with the additional noisy features.

Classification of performance is based on the percentage missing, no significant trend
is noticed for iWk-Means in case of maximum and minimum correlation. However,
with addition of noisy features, cluster-based regression perform better in Wk-Means
and iWk-Means for both sets of experiment(missing values in maximum and mini-
mum correlated feature).

B) Real-world datasets
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Similar to the synthetic datasets, for two cases of univariate missing pattern discussed
earlier, experimental results from seven different real-world datasets from UCI machine
learning repository are examined with MCAR mechanism in this section.

B.i) Univariate missing pattern with minimum correlation
In table 6.3, four different imputation methods - feature average, KNN, simple re-
gression and cluster-based regression are observed based on their effect on the per-
formance of Wk-Means and iWk-Means in the real-world datasets. For the case study,
missing values are presented for the feature with minimum correlation and its dataset.

TABLE 6.3: Comparison of four different imputation methods in the real-world
datasets where missing values have a MCAR mechanism and are located in a fea-
ture (univariate missing pattern) which has minimum correlation with its dataset.

Wk-Means Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
IN
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dataset Seven different real world databases
Ecoli 0.19/0.19 0.194/0.19 0.205/0.19 0.21/0.2 0.038/0 0.038/0 0.038/0 0.038/0
Glass 0.187/0.05 0.185/0.05 0.186/0.05 0.17/0.05 0.138/0.07 0.138/0.07 0.128/0.06 0.154/0.07
Heart 0.176/0.11 0.176/0.11 0.177/0.11 0.177/0.11 0.176/0 0.176/0 0.176/0 0.176/0

Iris 0.724/0.18 0.718/0.17 0.724/0.15 0.715/0.17 0.618/0.02 0.63/0.02 0.619/0.02 0.631/0.02
Soya 0.63/0.17 0.619/0.18 0.633/0.19 0.645/0.2 0.943/0.06 0.844/0.15 0.927/0.09 0.898/0.12
Wine 0.787/0.05 0.787/0.05 0.79/0.03 0.788/0.05 0.628/0.01 0.63/0.02 0.633/0.02 0.633/0.02
Zoo 0.587/0.16 0.587/0.16 0.586/0.17 0.593/0.15 0.907/0 0.907/0 0.905/0.02 0.899/0.03

Missing % evaluation based on % of missing values
1 0.459/0.28 0.455/0.27 0.459/0.28 0.464/0.28 0.476/0.36 0.465/0.35 0.464/0.35 0.457/0.35
10 0.448/0.28 0.454/0.29 0.457/0.29 0.454/0.3 0.486/0.35 0.48/0.34 0.483/0.35 0.482/0.34
15 0.489/0.3 0.483/0.3 0.475/0.29 0.468/0.29 0.494/0.35 0.476/0.34 0.491/0.35 0.497/0.34
20 0.468/0.29 0.475/0.29 0.476/0.29 0.476/0.3 0.498/0.35 0.481/0.33 0.497/0.35 0.498/0.34
25 0.489/0.29 0.486/0.29 0.489/0.29 0.501/0.3 0.496/0.35 0.486/0.33 0.494/0.35 0.498/0.34
30 0.461/0.28 0.45/0.28 0.476/0.29 0.462/0.28 0.499/0.35 0.479/0.33 0.498/0.35 0.499/0.35
35 0.468/0.3 0.463/0.29 0.469/0.29 0.472/0.3 0.499/0.35 0.495/0.34 0.499/0.34 0.497/0.34

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.469/0.29 0.467/0.29 0.472/0.29 0.471/0.29 0.493/0.35 0.48/0.34 0.489/0.35 0.49/0.34

Half Noise 0.475/0.25 0.483/0.26 0.481/0.25 0.485/0.25 0.475/0.34 0.463/0.33 0.47/0.34 0.452/0.32
Full Noise 0.456/0.25 0.455/0.25 0.46/0.25 0.463/0.25 0.424/0.31 0.401/0.31 0.421/0.31 0.409/0.3

• datasets
Ecoli dataset shows best cluster recovery with 0.21 ARI value for Wk-Means when
missing values are replaced by cluster-based regression. In case of iWk-Means,
ARIs are relatively low (0.038) for all imputation methods.

For the Glass dataset, replacing the missing values with feature average results
better cluster recovery for Wk-Means whereas replacing the missing values with
cluster-based regression has the worst effect. However, for IWKMens, replac-
ing the missing values with cluster-based regression have better cluster recovery
(ARI equals to 0.154).

Regression-based imputation methods show slightly better cluster recovery (ARI
equals to 0.176) in Wk-Means for the Heart dataset. However, in an intelligent
variant, all the imputation methods have same effect.

Wk-Means shows better cluster recovery when missing values are replaced by the
feature average or by simple regression for the Iris dataset. In case of iWk-Means,
cluster-based regression method has better cluster recovery with ARI equal to
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0.631 closely followed by KNN imputation (ARI equals to 0.63), simple regres-
sion (ARI equals to 0.619) and the feature average, ARI equals to 0.618.

The Wine dataset has slightly better cluster recovery from Wk-Means when sim-
ple regression is used as imputation methods. For intelligent variant of Wk-
Means, regression-based imputation methods shows better cluster recovery.

Finally, in the Zoo dataset, cluster-based regression results in better cluster recov-
ery for Wk-Means with ARI equals to 0.593. iWk-Means has better cluster recov-
ery for the dataset when feature average and KNN, used as imputation methods.
Overall, cluster-based regression imputation method results better cluster recov-
ery in both Wk-Means and iWk-Means with best ARIs in four out of seven and
five out of seven respectively.

• Percentages Missing
In the given configuration, it is hard to find the pattern of cluster recovery for
both Wk-Means and iWk-Means with respect to the percentage of missing values.
Feature average and simple regression shows better cluster recovery when per-
centage of missing values is increased in iWk-Means.

• Noise Type
Simple regression yields better cluster recovery for Wk-Means with average ARI
equal to 0.472 and is closely followed by cluster-based regression (average ARI
equal to 0.472), feature average (average ARI equal to 0.469) and KNN (average
ARI equal to 0.467). In intelligent variant, replacing the missing values with fea-
ture average perform better with ARI equal to 0.493 followed by cluster-based
regression, simple regression and KNN with average ARIs equal to 0.49, 0.489
and 0.48 respectively.

With addition of noise, cluster-based regression improved the performance of
Wk-Means; ARIs value for half noise is equal to 0.485 and the average ARI value
for full noise is 0.463. Moreover, addition of noisy features up to 50% ; cardinal-
ity of the feature space improve the performance of Wk-Means in all imputation
methods. In iWk-Means, replacing the missing values with feature average has
better cluster recovery although ARI dropped from 0.493 to 0.424 when full noise
is added to the dataset. Addition of noise has similar effects in other imputation
methods as well for iWk-Means.

B.ii) Univariate missing pattern with maximum correlation
In table 6.4, four different imputation methods - feature average, kNN, simple regres-
sion and cluster-based regression are observed based on their effect on the perfor-
mance of Wk-Means and Intelligent Weighted k-Means on real-world data. For the
case study, missing values are present in the feature with maximum correlation with
its dataset.

• datasets
In the Ecoli dataset, KNN imputation results in better cluster recovery for Wk-
Means and is closely followed by cluster-based regression and then feature aver-
age. For iWk-Means, all four imputation methods have similar effect with zero
deviation (standard deviation equal to 0).



70 Chapter 6. Prediction of Missing Values

TABLE 6.4: Comparison of four different imputation methods in the real-world
(UCI) datasets where missing values have MCAR mechanism and are located in
a feature (univariate missing pattern) which has maximum correlation with its

dataset.

Wk-Means Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
A
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Dataset Seven different real world databases
Ecoli 0.146/0.17 0.244/0.2 0.19/0.17 0.23/0.19 0.038/0 0.038/0 0.038/0 0.038/0
Glass 0.163/0.05 0.165/0.05 0.163/0.05 0.164/0.05 0.076/0.06 0.049/0.05 0.039/0.04 0.031/0.04
Heart 0.182/0.11 0.18/0.11 0.174/0.11 0.174/0.11 0.169/0.02 0.167/0.03 0.176/0 0.176/0

Iris 0.695/0.13 0.732/0.15 0.743/0.16 0.737/0.15 0.589/0.03 0.625/0.02 0.618/0.02 0.618/0.01
Soya 0.62/0.18 0.647/0.19 0.639/0.21 0.627/0.19 0.927/0.1 0.863/0.14 0.94/0.08 0.914/0.1
Wine 0.795/0.1 0.778/0.09 0.781/0.07 0.775/0.08 0.58/0.05 0.618/0.04 0.595/0.05 0.603/0.04
Zoo 0.573/0.15 0.579/0.16 0.561/0.16 0.564/0.16 0.768/0.06 0.79/0.08 0.828/0.09 0.885/0.06

Missing % Evaluation based on % of missing values
1 0.472/0.3 0.473/0.3 0.467/0.3 0.466/0.3 0.457/0.35 0.459/0.35 0.471/0.36 0.465/0.36
10 0.45/0.31 0.463/0.3 0.459/0.3 0.462/0.29 0.438/0.33 0.457/0.35 0.472/0.36 0.463/0.36
15 0.465/0.29 0.492/0.29 0.48/0.3 0.479/0.3 0.451/0.33 0.449/0.33 0.456/0.35 0.471/0.37
20 0.431/0.29 0.462/0.29 0.452/0.3 0.456/0.31 0.451/0.33 0.441/0.32 0.462/0.35 0.465/0.36
25 0.452/0.28 0.483/0.28 0.466/0.29 0.468/0.28 0.454/0.33 0.451/0.33 0.46/0.35 0.47/0.36
30 0.458/0.29 0.481/0.28 0.474/0.29 0.474/0.28 0.451/0.33 0.439/0.32 0.459/0.35 0.466/0.36
35 0.446/0.3 0.471/0.28 0.453/0.29 0.467/0.27 0.444/0.33 0.453/0.34 0.454/0.34 0.464/0.35

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.453/0.29 0.475/0.29 0.464/0.3 0.467/0.29 0.449/0.33 0.45/0.34 0.462/0.35 0.466/0.36

Half Noise 0.462/0.25 0.476/0.25 0.475/0.25 0.474/0.25 0.444/0.33 0.447/0.33 0.455/0.33 0.457/0.33
Full Noise 0.435/0.25 0.447/0.25 0.45/0.25 0.444/0.24 0.395/0.29 0.393/0.3 0.409/0.3 0.405/0.31

Replacing the missing values with KNN provides the best result for Wk-Means in
the Glass dataset with average ARI = 0.165. The next best is cluster-based regres-
sion, followed by simple regression and feature average. For iWk-Means, feature
average results in the best cluster recovery, followed by KNN, simple regression
and cluster-based regression respectively.

In the Heart dataset, feature average is the first choice imputation method with
ARI equal to 0.182 for Wk-Means, while regression-based imputation has the
worst effect for Wk-Means. In contrast, iWk-Means has the best cluster recovery
for regression based imputation with ARIs equal to 0.176 with absolutely zero
deviation for the dataset.

The Iris dataset shows better cluster recovery for Wk-Means with simple regres-
sion and KNN for iWk-Means. In the former, the second best is cluster-based
regression followed by KNN and feature average. Later, the second best is the
regression based imputation method followed by feature average imputation.

KNN is the best imputation method in the Soya dataset for Wk-Means, with av-
erage ARI value to 0.647. For intelligent Wk-Means, replacing the missing values
with simple regression results for the best alternative.

Replacing the missing values with the feature average provides the best cluster
recovery for Wk-Means in the Wine dataset. The dataset has best cluster recovery
when using intelligent Wk-Means for KNN imputation.

In the Zoo dataset, optimal cluster recovery for Wk-Means is obtained with KNN
whereas, for iWk-Means cluster-based regression gives the best cluster recovery.

Overall, KNN is the best imputation methods for Wk-Means in the real-world
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(UCI) dataset. However, a similar conclusion cannot be made for iWk-Means as
KNN, simple regression and cluster-based regression show better results in three,
and feature average in two cases out of seven.

• Percentage Missing
We cannot observe any trend in cluster recovery for Wk-Means when the impact
of the four imputation methods is categorized based on the percentage of missing
values. However, in iWk-Means, when the missing values are less than or equal
to 10%, simple regression results in the best cluster recovery and cluster-based
regression is found to be best as the percentage of missing values is increased
above 10.

• Noise Type
With cardinality of noisy features less than or equal to half of the feature space
cardinality, KNN imputation results in better cluster recovery for Wk-Means and
cluster-based regression results in better cluster recovery for iWk-Means. Simple
regression is the best imputation method for both Wk-Means and intelligent Wk-
Means when the number of noisy feature is increased by more than the half of
the cardinality of the feature space.

Missing values with NMAR Mechanism

In this section, not missing at random(NMAR) mechanism is observed in the synthetic and the
real-world datasets.

A) Synthetic datasets

For two cases of univariate missing pattern i.e. feature with maximum and minimum
correlation, experimental results from four Gaussian mixed model configurations with
NMAR mechanism are explained in this section.

A.i) Univariate missing pattern with minimum correlation

In table 6.5, ARI values for Wk-Means and iWk-Means are listed from the synthetic
datasets where missing values have NMAR mechanism and missing values in a fea-
ture with minimum correlation with its dataset. Results are categorized based on
datasets, percentage of missing values and noise type.

• Dataset Configuration
Four imputation methods have some effect on the performance of Wk-Means
with low feature space cardinality (|V| = 8). However, replacing the missing val-
ues with feature average provides better cluster recovery in low feature space
cardinality for iWk-Means . The next best case in iWk-Means is observed in KNN
followed by cluster-based regression and simple regression.

All imputation methods have the same effect on the performance of Wk-Means in
datasets with larger feature space cardinality (|V| = 20). However, KNN is found
to be the best imputation when cardinality of dataset is relatively higher.
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TABLE 6.5: Comparison of four different imputation methods in Gaussian mixed
models where missing values have a NMAR mechanism and are located in a fea-
ture (univariate missing pattern) which has the lowest correlation with its dataset.

Wk-Means Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
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DataSet Four different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.971/0.04 0.971/0.04 0.971/0.04 0.971/0.04 0.206/0.06 0.202/0.06 0.198/0.06 0.199/0.06
1000x12 0.921/0.18 0.92/0.18 0.921/0.18 0.921/0.18 0.381/0.13 0.381/0.13 0.376/0.13 0.379/0.13
1000x16 0.881/0.17 0.881/0.17 0.882/0.17 0.881/0.17 0.626/0.12 0.625/0.12 0.622/0.12 0.622/0.12
1000x20 0.857/0.15 0.857/0.15 0.857/0.15 0.857/0.15 0.848/0.1 0.849/0.09 0.847/0.09 0.848/0.09

Missing % Evaluation based on % missing values
1 0.909/0.15 0.909/0.15 0.909/0.15 0.909/0.15 0.513/0.27 0.513/0.27 0.513/0.27 0.513/0.27
10 0.906/0.15 0.906/0.16 0.906/0.16 0.906/0.16 0.512/0.27 0.511/0.27 0.51/0.27 0.512/0.27
15 0.908/0.15 0.908/0.15 0.908/0.15 0.908/0.15 0.51/0.27 0.51/0.27 0.509/0.27 0.51/0.27
20 0.906/0.15 0.906/0.15 0.907/0.15 0.906/0.15 0.509/0.27 0.51/0.27 0.509/0.27 0.51/0.27
25 0.906/0.15 0.905/0.16 0.906/0.15 0.905/0.16 0.51/0.27 0.51/0.27 0.509/0.27 0.51/0.27
30 0.91/0.15 0.909/0.15 0.91/0.15 0.91/0.15 0.517/0.26 0.515/0.26 0.509/0.26 0.511/0.27
35 0.906/0.15 0.907/0.15 0.907/0.15 0.907/0.15 0.536/0.25 0.528/0.25 0.516/0.26 0.517/0.26

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.907/0.15 0.907/0.15 0.907/0.15 0.907/0.15 0.515/0.26 0.514/0.27 0.511/0.27 0.512/0.27

Half Noise 0.853/0.23 0.854/0.23 0.854/0.23 0.854/0.23 0.797/0.23 0.797/0.23 0.797/0.23 0.797/0.23
Full Noise 0.818/0.21 0.818/0.21 0.819/0.21 0.82/0.21 0.823/0.18 0.824/0.18 0.824/0.18 0.824/0.18

Wk-Means’s ARIs keep decreasing when cardinality of feature space is increased
in all four imputation methods but with the opposite scenario in iWk-Means.
ARIs for iWk-Means is increased in all imputations with the increase of feature
space cardinality.

• Percentage Missing
Feature average imputation has best result with 30% missing values (average ARI
equals 0.91) and the worst when the missing percentages are 35%, 25% and 20%
respectively for Wk-Means. Wk-Means has the best cluster recovery at 1% and
worst cluster recovery at 25% of missing values when KNN is used as an imputa-
tion. Simple regression imputation offers the best cluster recovery for Wk-Means
when the dataset has 30% of missing values, and the worst cluster recovery at
25% and 10% of missing values. It is likely, cluster-based regression results the
best option for Wk-Means when there are 30% and worst for 25% of missing val-
ues. This shows that none of the imputation methods follow a trend with the
number of missing values for Wk-Means.

In the case of iWk-Means, all of the imputation methods have a similar effect
when the percentage of missing values is relatively low (around 1%). Simple re-
gression is outperformed by the other methods with the increment of missing
values. When the percentage of missing value is around or above 30%, replacing
the missing values with feature average results in better cluster recovery for iWk-
Means.

• Noise Type
When there is no noise in the dataset, all four imputation methods have a similar
effect on the performance of Wk-Means. The average ARI reading of Wk-Means
for all of the imputation methods is 0.907, with standard deviation equal to 0.15.
For iWk-Means, replacing the missing values with feature average outperform
the other imputation methods.
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Feature average is not the best option for either Wk-Means or intelligent Wk-
Means when datasets have noisy features added. Cluster-based regression is the
best imputation method for Wk-Means with full noise type whereas all three im-
putation methods except feature average can be chosen for cluster recovery in
iWk-Means.

A.ii) Univariate missing pattern with maximum correlation
In table 6.6, ARI values for Wk-Means and iWk-Means are listed from the synthetic
datasets where missing values have NMAR mechanism and missing values in a fea-
ture with maximum correlation with its dataset. Results are categorized based on
datasets, percentage of missing values and noise type.

TABLE 6.6: Comparison of four different imputation methods in Gaussian mixed
models where missing values have a NMAR mechanism and are located in a fea-
ture (univariate missing pattern) which has maximum correlation with its dataset.

Wk-Means Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression
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Dataset Four different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.944/0.07 0.943/0.07 0.947/0.07 0.948/0.07 0.191/0.07 0.239/0.08 0.193/0.05 0.208/0.06

1000x12 0.917/0.18 0.913/0.18 0.918/0.18 0.913/0.18 0.361/0.11 0.413/0.11 0.361/0.1 0.388/0.11
1000x16 0.882/0.17 0.877/0.17 0.88/0.17 0.878/0.17 0.591/0.11 0.633/0.11 0.605/0.11 0.628/0.11
1000x20 0.856/0.15 0.853/0.15 0.854/0.15 0.854/0.15 0.837/0.09 0.832/0.09 0.832/0.09 0.839/0.09

Missing % Evaluation based on % of missing values
1 0.907/0.15 0.907/0.15 0.907/0.15 0.907/0.15 0.504/0.26 0.515/0.27 0.513/0.27 0.515/0.27
10 0.907/0.15 0.906/0.15 0.906/0.15 0.906/0.15 0.487/0.27 0.515/0.26 0.5/0.26 0.517/0.26
15 0.898/0.16 0.898/0.16 0.898/0.16 0.898/0.16 0.484/0.27 0.52/0.25 0.498/0.26 0.515/0.26
20 0.9/0.15 0.898/0.15 0.9/0.15 0.899/0.15 0.483/0.27 0.527/0.24 0.494/0.26 0.516/0.26
25 0.897/0.15 0.893/0.16 0.896/0.15 0.895/0.16 0.488/0.26 0.535/0.23 0.494/0.26 0.517/0.26
30 0.897/0.15 0.89/0.15 0.896/0.15 0.893/0.16 0.5/0.25 0.544/0.23 0.492/0.25 0.516/0.25
35 0.892/0.15 0.883/0.16 0.894/0.15 0.889/0.16 0.517/0.25 0.55/0.22 0.493/0.25 0.515/0.25

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.9/0.15 0.897/0.15 0.9/0.15 0.898/0.15 0.495/0.26 0.529/0.24 0.498/0.26 0.516/0.26

Half Noise 0.834/0.25 0.84/0.24 0.843/0.24 0.843/0.24 0.768/0.26 0.784/0.24 0.783/0.24 0.793/0.24
Full Noise 0.797/0.22 0.803/0.22 0.811/0.21 0.811/0.21 0.793/0.21 0.804/0.2 0.809/0.19 0.816/0.19

• Dataset Configuration
Replacing the missing values with cluster-based regression methods results in
better cluster recovery for Wk-Means when the cardinality of feature space is rel-
atively low (|V| = 8). When the cardinality of the feature space is 12, simple
regression outperformed the other three imputation methods. Feature average
is the best method to replace the missing value for Wk-Means when a Gaussian
dataset has higher feature space cardinality, M ≥ 16.

For iWk-Means, KNN imputation is the best method for replacing the missing
values when the feature space cardinality, |V| ≤ 16. For the datasets with higher
feature space cardinality(|V| = 20), cluster-based regression method outperformed
other imputation methods.

• Percentage Missing
When the percentage of missing values is relatively low (around 1%), all four
imputation methods have similar effects on the performance of Wk-Means and
iWk-Means. All imputation methods show the same effect on the performance of
Wk-Means and iWk-Means when the percentage of missing values is equal to or
below 15 except that simple regression worsens the performance of iWk-Means
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when the percentage of missing values is higher than 1%.

In case of a relatively high percentage of missing value, all imputation methods
have a similar effect for Wk-Means except for feature average, which decreases
the performance of Wk-Means. The feature average imputation method results in
better cluster recovery with mean ARI equals to 0.536 and the worst case is ob-
served in simple regression with mean ARI equals to 0.517 for iWk-Means with a
higher percentage of missing values .

• Noise Type
All four imputation methods have a similar effect on the performance of Wk-
Means when datasets is free of noise. However, for iWk-Means, when there is no
noise in the dataset, feature average is the best imputation methods followed by
KNN, cluster-based regression and simple regression.

Feature average imputation methods are outperformed by other imputation meth-
ods in Wk-Means with addition of noisy features. When the number of noisy
features is equal to the cardinality of feature space (full noise), cluster-based re-
gression is the best method for Wk-Means. In the same scenario, for iWk-Means
all imputation methods have similar effects except feature average which is the
worst choice for the given condition.

A) Real-World datasets

In this section, results from two cases of univariate missing pattern with NMAR mecha-
nism in seven real-world datasets are explained.

A.i) Univariate missing pattern with minimum correlation

In table 6.7 below, four different imputation methods- feature average, KNN, sim-
ple regression and cluster-based regression are observed, based on their effect on the
performance of Wk-Means and intelligent weighted k-Means applied to real-world
datasets. For the case study, missing values are present in the feature with minimum
correlation with its dataset.
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TABLE 6.7: Comparison of four different imputation methods in the real-world
datasets where missing values have a NMAR mechanism and are located in a fea-
ture (univariate missing pattern) which has minimum correlation with its dataset.

WKMeans Intelligent WKMeans

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
IN
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N

DataSet Seven different real world database
Ecoli 0.196/0.17 0.196/0.17 0.196/0.17 0.196/0.17 0.038/0 0.038/0 0.038/0 0.038/0
Glass 0.203/0.04 0.202/0.04 0.203/0.04 0.2/0.04 0.155/0.08 0.148/0.09 0.157/0.09 0.121/0.09
Heart 0.186/0.11 0.187/0.11 0.187/0.11 0.187/0.11 0.176/0 0.176/0 0.176/0 0.175/0

Iris 0.772/0.13 0.774/0.13 0.764/0.13 0.768/0.14 0.621/0.01 0.626/0.02 0.611/0.02 0.618/0.02
Soya 0.65/0.19 0.653/0.19 0.644/0.21 0.676/0.21 0.84/0.16 0.859/0.15 0.855/0.14 0.845/0.14
Wine 0.78/0.09 0.787/0.09 0.788/0.09 0.791/0.08 0.642/0.03 0.633/0.03 0.642/0.02 0.642/0.02
Zoo 0.611/0.17 0.616/0.16 0.606/0.17 0.604/0.17 0.906/0 0.906/0 0.906/0 0.906/0

Missing % Evaluation based on % missing values
1 0.464/0.28 0.463/0.28 0.473/0.29 0.481/0.29 0.457/0.35 0.459/0.35 0.46/0.35 0.461/0.35
10 0.507/0.3 0.508/0.3 0.498/0.29 0.499/0.3 0.476/0.33 0.476/0.34 0.485/0.34 0.465/0.36
15 0.479/0.29 0.495/0.29 0.499/0.3 0.504/0.3 0.483/0.34 0.491/0.34 0.483/0.34 0.468/0.34
20 0.482/0.29 0.48/0.29 0.483/0.29 0.48/0.3 0.488/0.34 0.486/0.34 0.484/0.34 0.475/0.34
25 0.501/0.3 0.505/0.29 0.495/0.29 0.498/0.3 0.488/0.33 0.483/0.33 0.487/0.33 0.483/0.33
30 0.479/0.3 0.491/0.31 0.473/0.3 0.489/0.3 0.494/0.33 0.497/0.33 0.497/0.33 0.497/0.33
35 0.487/0.31 0.473/0.3 0.465/0.3 0.474/0.3 0.491/0.33 0.492/0.33 0.488/0.32 0.496/0.33

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.486/0.29 0.488/0.29 0.484/0.29 0.489/0.3 0.483/0.33 0.484/0.34 0.484/0.34 0.478/0.34

Half Noise 0.482/0.25 0.482/0.25 0.483/0.25 0.488/0.26 0.458/0.34 0.461/0.34 0.46/0.34 0.464/0.34
Full Noise 0.469/0.26 0.465/0.26 0.462/0.25 0.466/0.25 0.395/0.31 0.395/0.31 0.394/0.31 0.397/0.31

• Dataset
All four imputation methods show no effect on the performance of Wk-Means
and iWk-Means in Ecoli dataset. The best imputation method for the Glass dataset
are feature average and simple regression for Wk-Means and simple regression
for intelligent Wk-Means.

In the Heart dataset, all four imputation methods except feature average for Wk-
Means and cluster-based regression for intelligent Wk-Means are good options to
replace the missing values. KNN is the best in the Iris dataset for both Wk-Means
and iWk-Means whereas the next best for both algorithms is feature average, fol-
lowed by cluster-based regression.

Cluster-based regression is the best imputation method for Wk-Means and KNN
is the best for iWk-Means in the Soya dataset. The order (descending) of other im-
putation based on performance of Wk-Means is KNN, feature average and simple
regression. Similarly, the order of other imputation methods for intelligent Wk-
Means is simple regression cluster-based regression and feature average.

Wk-Means provides the best cluster recovery in the Wine dataset when the miss-
ing values are replaced by cluster-based regression. However, for iWk-Means, all
three methods of imputation: KNN, simple regression and cluster-based regres-
sion are equally better than feature average.

Feature average is found to be the best imputation method for Wk-Means in the
Zoo dataset, closely followed by cluster-based regression, KNN and simple re-
gression. Furthermore, the cluster-based regression method is the best imputa-
tion for iWk-Means, followed by KNN, feature average and simple regression, in
descending order.

• Percentage Missing
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In the table above, with 1% missing values the cluster-based regression method
provides better cluster recovery for Wk-Means and iWk-Means with average ARI
equal to 0.481 and 0.461 respectively. In case of 30% missing values, KNN is the
best imputation method for Wk-Means and KNN, whereas simple regression and
cluster-based regression are all better options for iWk-Means. And finally feature
average and cluster-based regression are best imputation methods for Wk-Means
and iWk-Means. Cluster-based regression and feature average are found to be
the best imputation methods in Wk-Means for relatively low and high missing
values. However, no such pattern is observed in iWk-Means.

• Noise Type
Cluster-based regression is found to be the best imputation method when the
number of noisy features are below the half of the cardinality of the feature space
for Wk-Means. When the number of noisy features to the cardinality of feature
space feature average is the best imputation method for Wk-Means. In case of
iWk-Means, KNN and simple regression are the best imputation methods when
there is no noisy feature and with the addition of noisy features the cluster-based
regression is found to be best imputation method.

A.ii) Univariate missing pattern with maximum correlation

In table 6.8 below, four different imputation methods:- feature average, kNN, simple
regression and cluster-based regression are observed based on their effect on the per-
formance of Wk-Means and Intelligent Weighted k-Means on real-world data. For the
case study, missing values are present in the feature with minimum correlation with
its dataset.

TABLE 6.8: Comparison of four different imputation methods in the real-world
datasets where missing values have a NMAR mechanism and are located in a fea-
ture (univariate missing pattern) which has maximum correlation with its dataset.

Wk-Means Intelligent Wk-Means

F Avg KNN S Regression C Regression F Avg KNN S Regression C Regression

M
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Dataset Seven different real world databases
Ecoli 0.155/0.19 0.258/0.19 0.247/0.2 0.299/0.18 0.038/0 0.038/0 0.038/0 0.038/0
Glass 0.153/0.04 0.154/0.04 0.16/0.04 0.159/0.04 0.064/0.02 0.07/0.03 0.048/0.04 0.058/0.03
Heart 0.181/0.1 0.183/0.1 0.183/0.09 0.184/0.09 0.145/0.05 0.15/0.05 0.174/0 0.174/0

Iris 0.674/0.15 0.708/0.16 0.734/0.17 0.727/0.17 0.57/0.03 0.62/0.02 0.612/0.02 0.614/0.02
Soya 0.631/0.18 0.635/0.18 0.631/0.16 0.61/0.15 0.832/0.16 0.837/0.16 0.855/0.14 0.858/0.15
Wine 0.802/0.06 0.794/0.07 0.783/0.06 0.786/0.06 0.572/0.04 0.612/0.04 0.584/0.05 0.597/0.04
Zoo 0.573/0.15 0.596/0.16 0.614/0.16 0.63/0.15 0.796/0.07 0.791/0.08 0.884/0.06 0.837/0.08

Missing % Evaluation based on % of missing values
1 0.461/0.29 0.464/0.29 0.483/0.28 0.468/0.28 0.451/0.34 0.456/0.35 0.462/0.35 0.462/0.36
10 0.449/0.28 0.475/0.28 0.47/0.29 0.486/0.29 0.435/0.33 0.443/0.34 0.448/0.34 0.464/0.35
15 0.454/0.3 0.491/0.3 0.495/0.3 0.489/0.29 0.426/0.33 0.433/0.32 0.457/0.35 0.461/0.35
20 0.456/0.28 0.472/0.28 0.477/0.28 0.497/0.27 0.433/0.33 0.44/0.32 0.461/0.35 0.456/0.34
25 0.455/0.29 0.486/0.29 0.477/0.29 0.479/0.28 0.416/0.31 0.45/0.34 0.457/0.34 0.439/0.32
30 0.464/0.3 0.481/0.29 0.474/0.29 0.484/0.27 0.425/0.32 0.445/0.33 0.462/0.35 0.448/0.33
35 0.433/0.29 0.46/0.27 0.475/0.28 0.492/0.28 0.43/0.32 0.45/0.32 0.448/0.34 0.447/0.33

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.453/0.29 0.475/0.29 0.479/0.29 0.485/0.28 0.431/0.33 0.445/0.33 0.456/0.34 0.454/0.34

Half Noise 0.463/0.27 0.476/0.26 0.491/0.26 0.488/0.26 0.424/0.32 0.444/0.33 0.445/0.33 0.442/0.33
Full Noise 0.421/0.26 0.437/0.26 0.458/0.25 0.454/0.25 0.368/0.29 0.384/0.3 0.382/0.3 0.384/0.3

• datasets
For Wk-Means, replacing the missing values with: cluster-based imputation is
found to be best for the Ecoli, Heart and Zoo datasets; simple regression is the
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best for the Glass and Iris datasets; KNN for Soya and feature average for the
Wine dataset. For iWk-Means: the Ecoli dataset has equal effect with all of the
imputation; the Heart dataset gives better results with regression-based imputa-
tion methods, i.e. simple regression and cluster-based regression; the Glass, Iris
and Wine datasets share the best results with KNN imputation; the Zoo dataset
prefers simple regression; and the Iris dataset goes for the cluster-based regres-
sion method.

Overall, cluster-based regression provides the best cluster recovery in most (three
out of seven) datasets for Wk-Means, followed by simple regression (two out of
seven). Whereas, for iWk-Means, simple regression and cluster-based regression
provide best results in three out of seven datasets.

• Percentage Missing
In the table above, with 1% missing values simple regression has better cluster re-
covery for Wk-Means, and regression-based imputation methods such as simple
regression and cluster-based regression are best for iWk-Means. When there are
10% of missing values in the datasets, cluster-based regression is the best imputa-
tion method for Wk-Means and iWk-Means. When the number of missing values
increased to: 15% and 20 %, simple and cluster-based regression; 25%, KNN and
simple regression; 30%, cluster-based and simple regression; and 35%, KNN and
cluster-based regression are the best imputation methods for Wk-Means and iWk-
Means respectively.

Overall, when the number of missing values is very low simple regression is the
best imputation method for Wk-Means and cluster-based regression is the best
imputation method for iWk-Means. Whereas, in case of a relatively high per-
centage of missing values, KNN imputation results in better cluster recovery for
iWk-Means.

• Noise Type
Cluster-based regression and simple regression methods are best for Wk-Means
and iWk-Means respectively when there are no noisy features in the datasets.
With addition of noisy features simple regression is found to be the best imputa-
tion method for Wk-Means. But iWk-Means behaves differently with the number
of noisy features added. For iWk-Means, with addition of noisy features around
half the cardinality of feature space simple regression and when the number of
added noisy features tends towards (around) the cardinality of feature space,
KNN and cluster-based regression are the best imputation methods.

6.4.2 Evaluation of Partial Distance against Different Methods in k-Means and Weighted
k-Means

As we discussed earlier, in this section, the performance of three approaches: imputation, column-
wise deletion and partial distance are observed based on ARIs obtained by k-Means and Wk-
Means. Experiments are carried out with both synthetic and real-world (UCI) datasets, with
two missing mechanisms (MCAR and NMCR), and with two cases of univariate missing pat-
terns: missing values in a feature with maximum correlation and missing values in a feature
with minimum correlation.
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Missing values with MCAR Mechanism

In this section, missing completely at random mechanism is observed in synthetic and the real-
world datasets.

A) Synthetic datasets
For two cases of univariate missing pattern i.e. feature with maximum and minimum cor-
relation, experimental results from four Gaussian mixed model configurations with MCAR
mechanism are explained in this section.

A.i) Univariate missing pattern with minimum correlation

In this section, we analysed the performance of three approaches to deal with miss-
ing values in a Gaussian mixed model. The performance of these approaches are
measured based on ARIs obtained from k-Means and Wk-Means. The missing val-
ues in the experiment have MCAR mechanism and univariate missing pattern with
missing values in a feature with minimum correlation with its dataset. Results are
categorized based on datasets, percentage of missing values and noise type.

TABLE 6.9: Comparison of two difference clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
Gaussian mixed models. The missing values have a MCAR mechanism and are
located in a feature (univariate missing pattern) which has lowest correlation with

its dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means

M
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DataSet Four different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.965/0.05 0.971/0.04 0.965/0.05 0.97/0.04 0.955/0.09 0.97/0.04
1000x12 0.923/0.17 0.919/0.18 0.922/0.18 0.921/0.18 0.924/0.16 0.928/0.17
1000x16 0.886/0.17 0.879/0.17 0.886/0.17 0.877/0.17 0.897/0.16 0.889/0.16
1000x20 0.867/0.15 0.86/0.15 0.866/0.15 0.859/0.15 0.874/0.15 0.867/0.14

Missing % evaluation based on % of missing values
1 0.921/0.18 0.919/0.18 0.92/0.18 0.917/0.18 0.924/0.17 0.919/0.18
10 0.933/0.16 0.931/0.17 0.934/0.16 0.932/0.17 0.928/0.16 0.933/0.16
15 0.928/0.17 0.929/0.17 0.925/0.17 0.924/0.17 0.932/0.16 0.936/0.16
20 0.925/0.17 0.918/0.18 0.923/0.17 0.919/0.18 0.929/0.16 0.927/0.17
25 0.934/0.16 0.933/0.16 0.932/0.16 0.931/0.17 0.922/0.17 0.936/0.16
30 0.921/0.18 0.92/0.18 0.923/0.17 0.924/0.18 0.922/0.16 0.932/0.16
35 0.924/0.17 0.922/0.18 0.923/0.17 0.925/0.17 0.914/0.17 0.931/0.16

Noise Type Performance of the partial distance methods with added uniform noisy features
No Noise 0.926/0.17 0.925/0.17 0.926/0.17 0.925/0.17 0.924/0.16 0.931/0.16

Half Noise 0.833/0.29 0.888/0.2 0.829/0.29 0.886/0.2 0.838/0.28 0.889/0.2
Full Noise 0.823/0.3 0.849/0.21 0.82/0.3 0.861/0.21 0.829/0.29 0.856/0.21

• Dataset Configuration
Wk-Means provides better cluster recovery for all three approaches when the car-
dinality of feature space is low (8). However, with the increase in feature space
cardinality, k-Means is an better alternative for missing values than its weighted
variant in all approaches.
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Feature average imputation method is the best for Wk-Means with average ARI
0.971 when feature space cardinality is low. With increasing in feature space car-
dinality, k-Means with the partial distance has the best cluster recovery and is
closely followed by Wk-Means with partial distance.
Overall, the partial distance approach is better for dealing with missing values
especially in Gaussian datasets with larger feature space cardinality.

• Percentage Missing
k-Means has better results than its weighted variant when missing value are re-
placed with the feature average whatever the percentage of missing values. In
the case of removing the feature containing missing values, k-Means has better
cluster recovery then Wk-Means when the percentage of missing values is less
than or equal to 25%. The partial distance approach clearly favour Wk-Means
over k-Means when the percentage of missing values is greater than or equal to
25%.

With 1% missing values, the partial distance approach gives the best perfor-
mance, i.e. k-Means with partial distance has an average ARI 0.924. When the
percentage of missing values is increased to 10%, column-wise deletion has the
best performance, i.e. k-Means with column-wise gives an average ARI 0.934.
And when the percentage of missing values≥ 20%, the partial distance approach
give the best performance especially for Wk-Means.

• Noise
For all three approaches, k-Means provides better cluster recovery when there is
no noise, while Wk-Means gives better performance in Gaussian clusters with
added noisy features. Moreover, when the numbers of noisy features are up
to half the cardinality of the feature space, the partial distance approach is the
best. But, as the number of added noisy feature increases to the cardinality of the
feature space, removing the feature containing the missing values results in the
best cluster recovery- Wk-Means with feature removal has average ARI equals to
0.861.

A.ii) Univariate missing pattern with maximum correlation
In this section, we analyse the performance of three approaches to deal with missing
values in the Gaussian mixed model. The performance of these approaches is mea-
sured based on ARIs obtained from k-Means and Wk-Means. The missing values in
the experiment have MCAR mechanism and univariate missing pattern with missing
values in a feature with maximum correlation with its dataset.
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TABLE 6.10: Comparison of two different clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
Gaussian mixed models. The missing values have a MCAR mechanism and are
located in a feature (univariate missing pattern) which has maximum correlation

with its dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Four different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.946/0.07 0.951/0.06 0.881/0.12 0.888/0.13 0.779/0.29 0.925/0.1
1000x12 0.924/0.17 0.918/0.18 0.93/0.14 0.925/0.15 0.888/0.18 0.924/0.16
1000x16 0.892/0.17 0.882/0.17 0.899/0.16 0.891/0.17 0.892/0.16 0.891/0.16
1000x20 0.867/0.15 0.86/0.15 0.876/0.15 0.869/0.15 0.876/0.14 0.866/0.15

Missing % Evaluation based on % of missing values
1 0.91/0.15 0.907/0.15 0.899/0.14 0.895/0.15 0.912/0.15 0.907/0.15
10 0.906/0.15 0.903/0.15 0.896/0.14 0.893/0.15 0.906/0.15 0.904/0.15
15 0.909/0.15 0.903/0.15 0.898/0.14 0.895/0.15 0.91/0.14 0.904/0.14
20 0.906/0.15 0.903/0.15 0.896/0.15 0.893/0.15 0.894/0.16 0.902/0.15
25 0.912/0.14 0.906/0.15 0.898/0.14 0.894/0.15 0.858/0.21 0.9/0.14
30 0.905/0.15 0.9/0.15 0.896/0.15 0.894/0.15 0.796/0.26 0.898/0.15
35 0.903/0.15 0.898/0.15 0.892/0.15 0.888/0.15 0.736/0.28 0.893/0.15

Noise Type Performance of the partial distance method with added uniform noisy features
No Noise 0.907/0.15 0.903/0.15 0.897/0.15 0.893/0.15 0.859/0.21 0.901/0.15

Half Noise 0.803/0.33 0.844/0.24 0.703/0.39 0.794/0.29 0.768/0.32 0.828/0.25
Full Noise 0.792/0.33 0.808/0.21 0.678/0.39 0.751/0.26 0.749/0.33 0.777/0.25

• Dataset Configuration
As in the previous case, when the missing values are present in the feature with
maximum correlation, the weighted variant of k-Means provides better results
then k-Means with all three approaches under study when the feature space car-
dinality is low (here, 8). And with the increase in feature space cardinality (here
more than 8), k-Means provides better cluster recovery than its weighted variant.

When the feature space cardinality of relatively low (here 8), Feature average im-
putation is found to be relatively better for Wk-Means with average ARI = 0.951.
With increasing the feature space cardinality, removing the feature containing the
noisy features is found to be the best approach to deal with missing values.

• Percentage Missing
k-Means is found to provide better performance than its weighted variant when
feature average imputation or column-wise deletion of features containing miss-
ing values are used to deal with missing values. In case of partial distance, k-
Means than Wk-Means when the percentage of missing values is equal to or less
than 15%.

Again, in the case of MCAR mechanism, when missing values are in a feature
with maximum correlation, replacing the distance matrix with the partial dis-
tance is a better options when the percentage of missing values are below or equal
to 15%. And as the percentage of missing values rises above 15%, replacing the
missing values with the feature average is the best option for both k-Means and
Wk-Means.
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• Noise
Despite the number of noisy feature added in the Gaussian datasets, the fea-
ture average method performs better than feature removal or partial distance
approach. In particular, k-Means with the feature average imputation method
provides better cluster recovery when the percentage of added noisy features is
relatively low (or zero). With the addition of noisy features, Wk-Means variant
surpasses k-Means in performance.

B) Real-World datasets

Similar to the synthetic datasets, for two cases of univariate missing patterns discussed
earlier, experimental results from seven different real-world datasets from UCI machine
learning repository are examined with MCAR mechanism in this section.

B.i) Univariate missing pattern with minimum correlation

In this section, we analysed the performance of three approaches for dealing with
missing values in seven real-world datasets from the UCI machine learning reposi-
tory. The performance of these approaches is measured based on ARIs obtained from
k-Means and Wk-Means. The missing values in the experiment have MCAR mecha-
nism and univariate missing pattern with missing values in a feature with minimum
correlation with its dataset. The results are categorized based on dataset configura-
tion, percentage of missing values and error type.
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TABLE 6.11: Comparison of two different clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
real-world datasets. The missing values have a MCAR mechanism and are located
in a feature (univariate missing pattern) which has minimum correlation with its

dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Seven different real world databases
Ecoli 0.414/0.06 0.175/0.18 0.414/0.06 0.454/0.11 0.414/0.07 0.245/0.19
Glass 0.182/0.03 0.185/0.05 0.249/0.02 0.216/0.04 0.205/0.04 0.181/0.05
Heart 0.337/0.13 0.18/0.11 0.34/0.13 0.187/0.11 0.315/0.13 0.181/0.11

Iris 0.662/0.12 0.738/0.17 0.732/0.06 0.823/0.09 0.661/0.1 0.767/0.12
Soya 0.802/0.2 0.638/0.18 0.811/0.19 0.63/0.19 0.745/0.2 0.636/0.18
Wine 0.853/0.02 0.784/0.07 0.843/0.02 0.802/0.06 0.838/0.07 0.779/0.1
Zoo 0.662/0.12 0.563/0.18 0.675/0.12 0.556/0.17 0.654/0.14 0.563/0.18

Missing % Evaluation based on % of missing values
1 0.493/0.25 0.419/0.28 0.516/0.25 0.474/0.27 0.496/0.27 0.417/0.28
10 0.508/0.28 0.432/0.31 0.523/0.27 0.479/0.29 0.495/0.27 0.43/0.31
15 0.514/0.27 0.418/0.29 0.537/0.26 0.494/0.28 0.507/0.26 0.439/0.29
20 0.507/0.28 0.431/0.3 0.52/0.27 0.473/0.28 0.493/0.26 0.438/0.3
25 0.516/0.27 0.438/0.3 0.532/0.27 0.476/0.28 0.501/0.27 0.443/0.28
30 0.516/0.28 0.429/0.29 0.536/0.28 0.479/0.28 0.505/0.26 0.457/0.28
35 0.525/0.28 0.431/0.29 0.545/0.28 0.476/0.27 0.502/0.27 0.452/0.28

Error Type Performance of the partial distances with added uniform noisy features
No Noise 0.511/0.27 0.428/0.29 0.53/0.27 0.479/0.28 0.5/0.26 0.44/0.29

Half Noise 0.436/0.29 0.44/0.26 0.434/0.28 0.454/0.25 0.422/0.28 0.441/0.25
Full Noise 0.424/0.29 0.423/0.25 0.422/0.29 0.45/0.25 0.396/0.27 0.428/0.25
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• Dataset
k-Means performs better than Wk-Means in five out of seven datasets when miss-
ing values are replaced with the feature average or the feature containing the
missing values is removed. In the partial distance approach, k-Means performs
better in six datasets compare to only one dataset for Wk-Means.

Again, removal of the feature containing the missing values is found to be the
best approach in six datasets : the Ecoli and Irish datasets performed best with
Wk-Means, and the Glass, Heart, Soya and Zoo datasets has performed best with
k-Means. In contrast, the Wine dataset has best cluster recovery with k-Means
when missing values are replaced with the feature average.

• Percentage Missing
When we categorized performance of k-Means and its weighted variant, Wk-
Means, k-Means has advantages over Wk-Means in all three approaches consid-
ered. Of the three different approaches, feature removal is the best option for the
real-world (UCI) datasets, especially with k-Means.

• Noise
Based on the number of noisy (white noise) features added in the real-world
datasets, k-Means performs better than Wk-Means with feature average imputa-
tion in extreme conditions, i.e. when there are no noisy features or when the num-
ber of noisy features added is equal to the cardinality of the dataset. However,
in case of feature removal or partial distance approaches, Wk-Means method is a
better tool for cluster recovery than k-Means when there are additional noisy(white
noise) features in the dataset along with missing values.

B.ii) Univariate missing pattern with maximum correlation

In this section, the performances of three approaches are analysed when dealing with
missing values in the seven real-world datasets from the UCI machine learning repos-
itory. The performance of these approaches is measured based on ARIs obtained from
k-Means and Wk-Means. The missing values in the experiment have MCAR mecha-
nism and univariate missing pattern with missing values in a feature with maximum
correlation with its dataset.
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TABLE 6.12: Comparison of two different clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
real-world datasets. The missing values have a MCAR mechanism and are located
in a feature (univariate missing pattern) which has maximum correlation with its

dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Seven different real world databases
Ecoli 0.396/0.06 0.133/0.17 0.401/0.07 0.12/0.14 0.58/0.09 0.127/0.19
Glass 0.16/0.03 0.163/0.05 0.157/0.03 0.162/0.05 0.159/0.03 0.164/0.05
Heart 0.333/0.13 0.174/0.12 0.314/0.14 0.161/0.11 0.317/0.13 0.166/0.12

Iris 0.674/0.08 0.713/0.13 0.635/0.09 0.681/0.12 0.58/0.1 0.7/0.08
Soya 0.809/0.2 0.644/0.17 0.801/0.2 0.647/0.17 0.762/0.2 0.641/0.17
Wine 0.863/0.07 0.803/0.08 0.915/0 0.821/0.08 0.77/0.11 0.776/0.09
Zoo 0.654/0.12 0.584/0.16 0.646/0.12 0.562/0.16 0.645/0.13 0.579/0.17

Missing % Evaluation based on % of missing values
1 0.508/0.28 0.439/0.3 0.503/0.29 0.429/0.3 0.489/0.28 0.439/0.3
10 0.509/0.28 0.42/0.31 0.504/0.3 0.414/0.3 0.506/0.27 0.407/0.3
15 0.523/0.29 0.427/0.31 0.522/0.3 0.42/0.3 0.52/0.26 0.418/0.3
20 0.505/0.28 0.428/0.29 0.497/0.29 0.417/0.29 0.498/0.28 0.408/0.29
25 0.502/0.27 0.412/0.29 0.496/0.28 0.402/0.29 0.5/0.25 0.394/0.29
30 0.504/0.28 0.403/0.3 0.497/0.29 0.402/0.3 0.478/0.25 0.395/0.29
35 0.504/0.29 0.423/0.3 0.498/0.3 0.406/0.3 0.475/0.26 0.422/0.3

Noise Type Performance of the partial distance with added uniform noisy features
No Noise 0.508/0.28 0.422/0.3 0.503/0.29 0.413/0.3 0.495/0.26 0.412/0.3

Half Noise 0.435/0.29 0.428/0.26 0.416/0.3 0.389/0.27 0.411/0.27 0.408/0.26
Full Noise 0.423/0.29 0.407/0.26 0.405/0.3 0.372/0.26 0.384/0.26 0.393/0.26
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• Dataset
Feature average imputation is better options for k-Means then its weighted vari-
ate as five out of seven datasets results higher cluster recovery for k-Means when
missing values are replaced with the feature average. The partial distance ap-
proach is better for the Glass datasets. Wk-Means with partial distance has best
cluster recovery among the three approaches, with average ARI 0.164. Replace-
ment of missing value with feature average gives the best cluster recovery: in the
Heart dataset, k-Means has average ARI= 0.333; in the Iris dataset, Wk-Means has
average ARI = 0.713; in the Soya dataset, k-Means has average ARI = 0.809; in the
Wine dataset, k-Means has average ARI = 0.863 and in the Zoo dataset, k-Means
has average ARI = 0.654.

• Percentage Missing In all cases of percentage missing, k-Means have better clus-
ter recovery than Wk-Means. Replacing the missing values with feature average
provides the best results of the three approaches considered, with any number of
missing values.

• Noise Type
The effect of noise favours k-Means against Wk-Means for all three approaches,
except in the single case where partial distance is when the number of added
noisy features is equal to the cardinality of the feature space.

Missing values with NMAR Mechanism

In this section, NMAR mechanism is observed in synthetic and real-world datasets.

A) Synthetic Gaussian Clusters

For two cases of univariate missing pattern i.e. feature with minimum and maximum
correlation, experimental results from four Gaussian mixed model configurations with
NMAR mechanism are explained in this section.

A.i) Univariate Missing Pattern- minimum correlation

In this section, we analyse the performance of three approaches for dealing with miss-
ing values in the Gaussian mixed model. The performances of these approaches are
measured based on ARIs obtained from k-Means and Wk-Means. The missing val-
ues in the experiment have NMAR mechanism and univariate missing pattern with
missing values in a feature with minimum correlation with its dataset. The results are
categorized based on dataset configurations, percentage of missing values and noise
types.
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TABLE 6.13: Comparison of two different clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
Gaussian mixed models. The missing values have a NMAR mechanism and are
located in a feature (univariate missing pattern) which has lowest correlation with

its dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Four different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.965/0.05 0.971/0.04 0.965/0.05 0.97/0.04 0.945/0.11 0.969/0.05
1000x12 0.924/0.17 0.922/0.18 0.925/0.17 0.923/0.18 0.912/0.17 0.928/0.17
1000x16 0.89/0.17 0.884/0.17 0.891/0.17 0.883/0.17 0.883/0.16 0.891/0.16
1000x20 0.863/0.15 0.854/0.15 0.862/0.15 0.854/0.15 0.859/0.14 0.862/0.15

Missing % Evaluation based on % of missing values
1 0.929/0.17 0.928/0.17 0.929/0.17 0.924/0.17 0.922/0.17 0.926/0.17
10 0.924/0.17 0.926/0.17 0.925/0.17 0.923/0.18 0.928/0.16 0.926/0.17
15 0.923/0.17 0.922/0.18 0.924/0.17 0.922/0.18 0.923/0.17 0.927/0.17
20 0.922/0.17 0.92/0.18 0.923/0.17 0.926/0.17 0.93/0.16 0.927/0.17
25 0.926/0.17 0.92/0.18 0.925/0.17 0.926/0.17 0.916/0.16 0.934/0.16
30 0.917/0.18 0.913/0.19 0.92/0.18 0.916/0.18 0.903/0.16 0.923/0.17
35 0.928/0.17 0.923/0.18 0.927/0.17 0.924/0.17 0.86/0.18 0.935/0.16

Noise Type Performance of the partial distance methods with added uniform noisy features
No Noise 0.924/0.17 0.922/0.18 0.925/0.17 0.923/0.18 0.912/0.17 0.928/0.17

Half Noise 0.832/0.29 0.885/0.2 0.829/0.29 0.884/0.2 0.821/0.28 0.885/0.2
Full Noise 0.826/0.3 0.841/0.21 0.822/0.3 0.857/0.21 0.81/0.29 0.848/0.21

• Dataset Configuration
In the case of low feature space cardinality(8), Wk-Means provides better cluster
recovery than k-Means when the missing values are replaced with the feature av-
erage or the feature containing the missing values are removed, and vice versa
as the feature space cardinality is increased. Replacing the distance matrix with
partial distance favours Wk-Means over k-Means in all datasets.

Feature average is found to be best among the three approaches in extreme con-
ditions: Wk-Means with ARI 0.971 and k-Means, with ARI 0.863 for feature space
cardinality equals to 8 and 20.

• Percentage Missing
k-Means performs better than Wk-Means with feature average imputation when
the percentage of missing values is more than or equal to 15. The feature re-
moval approach favours k-Means over Wk-Means for large feature space cardi-
nality(greater than or equal to 30%). Furthermore, partial distance approach is
better for Wk-Means than k-Means when the percentages of missing values is
more than or equal to 25.

Feature average (k-Means with average ARI 0.929) and feature removal (k-Means
with average ARI 0.926) are found to be best when the percentage of missing
value is relatively low(1%). When the percentage of missing values is increased,
the partial distance performs better in k-Means with 10% and 20% missing values
and in Wk-Means with 15%, 25%, 30% and 35% missing values.

• Noise Type
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k-Means with the feature average or feature removal approach performs better
than its weighted variant when there in no noise in the dataset. However, with
the addition of noise, Wk-Means with the feature average and feature removal
approach performs better than k-Means. The Partial distance approach favours
Wk-Means over k-Means for all noise types.

When there is no noise, maximum ARI is observed in Wk-Means with partial
distance- average ARI equals to 0.928, whereas with full noise, maximum cluster
recovery is given by Wk-Means with feature removal approach.

A.ii) Univariate missing pattern with maximum correlation

In this section, we analyse the performance of three approaches to deal with missing
values in the Gaussian mixed model. The performance of these approaches is mea-
sured based on ARIs obtained from k-Means and Wk-Means. The missing values in
the experiment have NMAR mechanism and univariate missing pattern with missing
values in a feature with maximum correlation with its dataset.

TABLE 6.14: Comparison of two different clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
a Gaussian mixed model. The missing values have a MCAR mechanism and are
located in a feature (univariate missing pattern) which has maximum correlation

with its dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Four different cardinality of Gaussian clusters with covariance matrix equal to 0.5
1000x8 0.965/0.05 0.975/0.02 0.964/0.07 0.972/0.05 0.945/0.12 0.963/0.04

1000x12 0.922/0.17 0.916/0.18 0.924/0.15 0.921/0.16 0.812/0.2 0.922/0.17
1000x16 0.893/0.17 0.885/0.17 0.9/0.16 0.894/0.17 0.833/0.17 0.891/0.17
1000x20 0.864/0.15 0.859/0.15 0.871/0.15 0.864/0.15 0.83/0.15 0.863/0.15

Missing % Evaluation based on % of missing values
1 0.894/0.17 0.89/0.17 0.902/0.15 0.899/0.16 0.898/0.17 0.89/0.17
10 0.894/0.17 0.887/0.17 0.898/0.16 0.892/0.16 0.899/0.16 0.888/0.17
15 0.89/0.17 0.883/0.17 0.901/0.15 0.895/0.16 0.874/0.16 0.887/0.16
20 0.893/0.17 0.887/0.17 0.899/0.15 0.895/0.16 0.809/0.17 0.891/0.16
25 0.894/0.16 0.888/0.17 0.895/0.16 0.89/0.16 0.763/0.16 0.894/0.16
30 0.893/0.16 0.888/0.17 0.895/0.16 0.892/0.16 0.756/0.17 0.895/0.16
35 0.892/0.17 0.885/0.17 0.895/0.16 0.887/0.16 0.778/0.17 0.899/0.16

Noise Type Performance of the partial distance methods with added uniform noisy features
No Noise 0.893/0.17 0.887/0.17 0.898/0.16 0.893/0.16 0.825/0.18 0.892/0.16

Half Noise 0.867/0.23 0.87/0.16 0.827/0.26 0.859/0.17 0.776/0.23 0.861/0.17
Full Noise 0.849/0.24 0.789/0.18 0.796/0.28 0.773/0.18 0.755/0.24 0.784/0.18

• Dataset
k-Means and Wk-Means follow a similar pattern to that in previous table 6.13.
The feature average, feature removal and partial distance favour Wk-Means when
the cardinality of feature space is low (8). With increase in number of features,
k-Means gives better cluster recovery than its weighted variant for feature av-
erage imputation and feature removal approach. In case of partial distance, it
Wk-Means is always better than k-Means, for any feature space.
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Feature average imputation method is the best: for Wk-Means with average ARI
0.975 when the number of features is low (8). With increasing feature space cardi-
nality, feature removal approach (with k-Means clustering) is the best among the
three approaches.

• Percentage Missing
k-Means is found to be a better clustering algorithm than its weighted variant for
feature average imputation and the feature removal approach irrespective of the
percentage of missing values. However, in case of partial distance, k-Means per-
forms better than Wk-Means where there is a relatively low percentage of missing
values (less than or equal to 10%) and vice versa for larger number of missing val-
ues ( here more than or equal to 15%).

• Noise Type
k-Means performs better than Wk-Means in feature average imputation and the
feature removal approach for two extreme cases of noise: no noise and full noise.
In case of partial distance, Wk-Means has better performance than k-Means in all
noise type.

Feature removal approach is the best- k-Means with average ARI 0.898 among
the three approaches when there is no noise. With the addition of noise, average
imputation - Wk-Means with average AIR 0.87 in half noise and k-Means with
average ARI equals to 0.849 in full noise- are the best among three approaches.

B) Real-world datasets
In this section, results from two cases of univariate missing pattern with NMAR mecha-
nism in seven real-world datasets are explained.

B.i) Univariate missing pattern with minimum correlation

In this section, we analyse the performance of three approaches for dealing with
missing values in seven different real-world datasets from the UCI machine learn-
ing repository. The missing values in the experiment have NMAR mechanism and
univariate missing pattern with missing values in a feature with minimum correla-
tion with its dataset. The results are categorized based on datasets, percentage of
missing values and noise type.
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TABLE 6.15: Comparison of two difference clustering algorithms- k-Means and
Wk-Means along with three different approaches to handle missing attribute val-
ues in real-world datasets. The missing values have a MCAR mechanism and are
located in a feature (univariate missing pattern) which has minimum correlation

with its dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Seven different real world databases
Ecoli 0.413/0.06 0.242/0.2 0.413/0.06 0.447/0.12 0.415/0.07 0.243/0.2
Glass 0.217/0.04 0.204/0.04 0.252/0.02 0.225/0.04 0.22/0.04 0.2/0.05
Heart 0.358/0.11 0.178/0.11 0.355/0.11 0.184/0.11 0.333/0.11 0.178/0.11

Iris 0.68/0.11 0.757/0.15 0.723/0.08 0.821/0.1 0.604/0.13 0.733/0.12
Soya 0.794/0.21 0.625/0.18 0.785/0.21 0.621/0.18 0.764/0.2 0.627/0.18
Wine 0.853/0.02 0.784/0.09 0.842/0.02 0.79/0.1 0.771/0.13 0.785/0.11
Zoo 0.696/0.13 0.603/0.17 0.697/0.13 0.605/0.17 0.69/0.14 0.603/0.17

Missing % Evaluation based on % of missing values
1 0.519/0.27 0.44/0.28 0.534/0.26 0.477/0.27 0.495/0.27 0.443/0.28
10 0.508/0.27 0.434/0.29 0.517/0.26 0.459/0.28 0.507/0.28 0.434/0.29
15 0.528/0.27 0.447/0.29 0.539/0.26 0.49/0.27 0.513/0.27 0.447/0.29
20 0.512/0.26 0.445/0.28 0.519/0.26 0.488/0.27 0.52/0.27 0.446/0.28
25 0.528/0.27 0.438/0.3 0.531/0.27 0.482/0.28 0.496/0.26 0.427/0.29
30 0.531/0.27 0.447/0.3 0.535/0.27 0.485/0.28 0.469/0.25 0.448/0.28
35 0.536/0.28 0.457/0.3 0.537/0.28 0.487/0.28 0.456/0.22 0.446/0.29

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.523/0.27 0.444/0.29 0.53/0.26 0.481/0.28 0.493/0.26 0.442/0.29

Half Noise 0.442/0.29 0.452/0.26 0.438/0.28 0.468/0.26 0.41/0.26 0.448/0.26
Full Noise 0.431/0.29 0.422/0.25 0.428/0.29 0.446/0.25 0.389/0.26 0.421/0.25
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• Dataset
Imputation of missing value with feature average is the best option for k-Means
in six datasets- Ecoli, Glass, Heart, Soya, Wine and Zoo. For Wk-Means, feature
average imputation gives better results only in the Iris dataset. The feature re-
moval approach is found to be better in five datasets: Glass, Heart, Soya, Zoo
for k-Means. For Wk-Means, the feature removal approach gives better cluster
recovery in the Ecoli and Iris datasets. Partial distance favour k-Means in five
datasets- Ecoli, Glass, Heart, Soya and Zoo, whereas Wk-Means favours Iris and
Wine datasets.

In comparison with three approaches, Feature removal is found to be best in five
datasets- Wk-Means in Ecoli and Iris, and k-Means in Glass, Soya and Zoo dataset.
Whereas feature average imputation is best in two datasets- k-Means in Heart and
Wine datasets.

• Percentage Missing
On the basis of percentage of missing values, k-Means performs better than Wk-
Means in all three approaches. The feature removal approach( with k-Means) is
found to be the best among the three approaches.

• Noise Type
k-Means with feature removal and partial distance performs better than its weighted
variant when there in no noise in the datasets, and vice versa with the addition
of noise. In the case of feature average, k-Means performs better in extreme cases
(no noise and full noise), whereas Wk-Means is better when there is half noise in
the datasets.

Among the three approaches, feature removal is best for all type of noise- k-
Means with average ARI 0.53 for no noise; and Wk-Means with average ARI 0.468
and 0.446 for half and full noise respectively.

B.ii) Univariate missing pattern with maximum correlation

In this section, we analysed the performance of three approaches dealing with miss-
ing values in seven different real-world datasets from the UCI machine learning repos-
itory. The missing values in the experiment have NMAR mechanism and univariate
missing pattern with missing values in a feature with maximum correlation with its
dataset. The results are categorized based on datasets, percentage of missing values
and noise type.
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TABLE 6.16: Comparison of two different clustering algorithms- k-Means and Wk-
Means along with three different approaches to handle missing attribute values in
real-world datasets. The missing values have a MCAR mechanism and are located
in a feature (univariate missing pattern) which has minimum correlation with its

dataset.

F Avg F Removal Partial Distance

k-Means Wk-Means k-Means Wk-Means k-Means Wk-Means
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Dataset Seven different real world databases
Ecoli 0.386/0.06 0.121/0.16 0.391/0.06 0.107/0.14 0.562/0.11 0.365/0.25
Glass 0.156/0.02 0.157/0.05 0.155/0.02 0.152/0.05 0.155/0.03 0.171/0.06
Heart 0.327/0.13 0.18/0.11 0.322/0.13 0.167/0.11 0.358/0.09 0.173/0.11

Iris 0.616/0.12 0.659/0.15 0.607/0.11 0.644/0.15 0.56/0.1 0.677/0.09
Soya 0.768/0.2 0.598/0.17 0.761/0.2 0.599/0.18 0.764/0.21 0.597/0.17
Wine 0.874/0.02 0.786/0.09 0.915/0 0.813/0.09 0.67/0.15 0.78/0.1
Zoo 0.7/0.13 0.615/0.17 0.695/0.12 0.594/0.17 0.628/0.13 0.617/0.17

Missing % Evaluation based on % missing values
1 0.498/0.27 0.413/0.29 0.497/0.28 0.398/0.3 0.499/0.27 0.423/0.29
10 0.497/0.28 0.401/0.3 0.494/0.29 0.393/0.3 0.492/0.27 0.396/0.29
15 0.505/0.28 0.421/0.29 0.501/0.29 0.406/0.3 0.505/0.26 0.435/0.28
20 0.503/0.28 0.417/0.29 0.507/0.29 0.409/0.29 0.474/0.23 0.462/0.27
25 0.49/0.28 0.421/0.29 0.494/0.29 0.411/0.29 0.461/0.24 0.46/0.26
30 0.498/0.28 0.396/0.29 0.5/0.29 0.402/0.3 0.463/0.26 0.458/0.27
35 0.511/0.28 0.399/0.29 0.505/0.29 0.402/0.29 0.445/0.24 0.463/0.26

Noise Type Performance of the imputation methods with added uniform noisy features
No Noise 0.5/0.28 0.41/0.29 0.5/0.29 0.403/0.3 0.477/0.26 0.442/0.28

Half Noise 0.429/0.29 0.419/0.27 0.417/0.3 0.386/0.28 0.381/0.26 0.412/0.26
Full Noise 0.419/0.3 0.389/0.26 0.408/0.31 0.365/0.26 0.365/0.25 0.391/0.26
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• Dataset
Replacing the missing values with the feature average results in better cluster re-
covery in k-Means than Wk-Means for five datasets: Ecoli, Heart, Soya, Wine and
Zoo. Wk-Means has better cluster recovery in the Glass and the Iris datasets. In
case of removing the feature containing missing values, Wk-Means performs bet-
ter than k-Means in the Iris dataset. Whereas using the partial distance approach
performs better for: k-Means in the Ecoli, Heart, Soya and Zoo datasets, and Wk-
Means in the Glass, Iris and Wine datasets.

Comparing the three approaches, partial distance gives better results in four
datasets- Wk-Means in Glass (average ARI 0.71) and Iris (average ARI 0.677); and
k-Means in the Ecoli dataset (average ARI 0.562) and Heart (average ARI 0.358).
The feature average imputation performs better in two datasets- k-Means in Soya
(average ARI 0.768) and Zoo (average ARI 0.7), and in on case best results with
obtained with the feature removal approach - k-Means in Wine dataset (average
ARI 0.915).

• Percentage Missing
k-Means surpasses its weighted variant, Wk-Means, in all three approaches for
any percentage of missing values except for the partial distance approach with
35% missing values where Wk-Means with average ARI 0.463 is found better than
k-Means with average ARI 0.445.
Among the three approaches, with 1% of missing values, the partial distance ap-
proach is found to better (k-Means with average ARI 0.499) and for other, the
feature average and feature removal approaches share the best performance be-
tween them, with no apparent trend in respect to percentage of missing values.

• Noise Type
Replacing the missing value with feature average and removing the feature with
missing values favour k-Means over Wk-Means. The partial distance approach
is found to be better suited to k-Means than Wk-Means when there is no noise,
whereas with the addition of noisy features the performance is reversed.
Feature average (with k-Means) surpasses other two approaches- feature removal
and partial distance - in all three types of noise cases: no noise, half noise and full
noise.

Note:
In the above experiment, linear correlation is used to find a feature with maximum and mini-
mum correlation. Finding the correlation using different statistical tool like Pearson correlation
or Rank correlation can be an interesting area for further research, especially when dataset have
categorical or rank attributes. For example, the Soya dataset have all categorical features.

Here categorical features are converted into binary features. Therefore, this research is stick with
linear correlation.

6.5 Conclusion

Three different approaches: imputation, deletion and partial distance are observed thoroughly
in k-Means type algorithms. Along with Gaussian clusters, experiments are extended to real-
world datasets from the UCI machine learning repository, different missing value configurations
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and noise types.

For the experiments carried out the choice of particular approach depends on configuration
listed above. The experiments, based on different configuration, can be concluded as:

• Imputation - MCAR

In synthetic datasets, the performance of Wk-Means decreases as the cardinality of feature
space increases, whereas performance is higher in iWk-Means. The same pattern is ob-
served with the increase of the cardinality for noisy features in both cases of univariate
missing patterns.

In the real-world datasets, only iWk-Means shows a pattern of reduced performance for
all methods whereas no pattern is observed with percentage of missing values in both Wk-
Means and iWk-Means when missing values are in a feature with minimum correlation. In
the case of maximum correlation, KNN is found to be a better imputation method for Wk-
Means and the simple regression method when the missing percentage is less than 10%;
cluster-based regression for the rest is found to be better in iWk-Means.

• Imputation - NMAR

Simple regression is the best imputation method for Wk-Means for all dataset configu-
rations and percentages of missing values, although cluster-based regression is a better
alternative for full noise. In iWk-Means, feature average is the best choice when there is no
noise, whereas other imputation methods give better results with full noise.

In case of maximum correlation, simple regression is the best imputation method for Wk-
Means for all datasets and percentages of missing values. Cluster-based regression is
found to be a better imputation method for Wk-Means with all noise types. Feature av-
erage is the best imputation method for iWk-Means with no noise and other imputation
methods are better with full noise except feature average.

In real-world datasets, cluster-based regression is a better choice when there is no or half
noise and feature average is best when there is full noise for Wk-Means with minimum
correlation. With maximum correlation, regression-based imputations are better for Wk-
Means and iWk-Means.In Wk-Means, simple regression is better when there is half and
full noise and cluster-based regression is an optimal choice when there is no noise. This is
reversed for iWk-Means.

• Approaches - MCAR

In all three approaches, feature average imputation is better in synthetic datasets with
higher feature space cardinality for both case of correlation. The partial distance approach
is found to be the best option. Among the three approaches, partial distance is found to
be better at dealing with missing values for both k-Means and Wk-Means when missing
values are in feature with minimum correlation. However, when missing values are in a
feature with maximum correlation, partial distance is found to be better with low number
of missing values and feature average imputation for higher numbers of missing values.
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In real-world datasets, feature removal is the best approach for both k-Means and Wk-
Means with missing values in feature with minimum correlation but feature average im-
putation is better for both k-Means and Wk-Means when there are missing values in fea-
tures with maximum correlation.

• Approaches - NMAR

In the case of minimum correlation, partial distance is a better approach in the synthetic
datasets for Wk-Means in all cases and feature average is the best option for Wk-Means, es-
pecially when there are noisy features or a high number of missing values. But in the case
of maximum correlation, the feature removal approach is better for k-Means and partial
distance is better for Wk-Means when there are high number of missing values.

In the case of maximum correlation, the feature removal approach is better for k-Means
and Wk-Means in real-world datasets with any percentage of missing values. However,
feature average imputation is the best for k-Means with noisy feature. When missing val-
ues are in the feature with maximum correlation, the partial distance approach is best in
four datasets- Ecoli, Glass, Heart and Iris. The feature removal approach is found to be
the best one for k-Means when there are a large number of missing values, whereas partial
distance is the best approach for Wk-Means.

Overall, for the synthetic datasets, the cluster-based regression method is better in both Wk-
Means and iWk-Means with noise, irrespective of feature correlation. The regression-based im-
putation is found to be the better alternative in real-world datasets for both Wk-Means and
iWk-Means, despite feature correlation but not conclusive.
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Chapter 7

Performance of k-Means types in
p-norms

The Minkowski weighted k-Means (MWk-Means) replaces Euclidean distance by the Minkowski
metric (Lp-metric) [92] which enables it to capture different shapes of clusters other than spher-
ical. To our knowledge, the utility of Lp-metric in MWk-Means has are yet to explore fully as
most of the synthetic datasets used in data mining are generated in 2-norm. In this Chapter,
the performance of k-Means type algorithms, such as - original k-Means (referred as k-Means),
intelligent k-Means (ik-Means) [161], Minkowski weighted k-Means (MWk-Means) [92] and in-
telligent Minkowski weighted k-Means (iMWk-Means) [152] - are observed in different p-norms.
The adjusted Rand index(RAND) [142] is used to evaluate the performance of these algorithms.

The concept of using polar coordinate to simulate p-generalized Gaussian distribution, practised
by Kalke et al. [126], is used to transfer a dataset from one norms to another norms. In order
to run the experiments, Gaussian clusters in different p-norms are generated using a Gaussian
mixed model (GMM) available in MATLAB. The Gaussian mixed models are hyper-spherical
clusters defined in 2-norm. With feature space cardinality (m) equals two, i.e. m=2, these clus-
ters will have a circular shape and can be displayed in a 2-D plane where each of the two feature
is represented by x-axis and y-axis represents. When the feature space cardinality is extended to
three, i.e. m = 3, each of these Gaussian clusters will have a spherical shape. In general, a Gaus-
sian cluster defined over an m-dimensional feature space is represented by an m-dimension
hypersphere and each data feature that defines the cluster corresponds to one of the axes of the
hyperplane.

7.1 Aims

Aims of this experiment is to examine the performance of k-Means algorithms in different Lp-
spaces and explore the usefulness of Minkowksi metric. We limit our experiment to the re-
covery(transformation) of Gaussian clusters, generated by MATLAB gmm model, in different
p-norms. This experiment examines the effect of the distance coefficient (pdist) on performance
of k-Means types algorithm. To achieve this, we first create a model that translates spherical
shaped Gaussian clusters, which are generated using Euclidean matrix as similarity measure-
ment in Euclidean space, to regular shaped clusters in Lp space. As discussed earlier, the shape
of translated clusters are defined by a similarity measurement based on Minkowski matrix. This
is achieved by altering the distance coefficient (pdist) in the similarity measurement. In the later
part, the performance of k-Means type algorithms are observed with respect to the shape of the
Gaussian cluster.
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7.2 Validation of Transformation Process

Transformation of data points from pold-norm to pnew-norm which introduced in section 4.3 is
validated by reverse engineering. According to the principle of reverse engineering, if the trans-
formation process is correct, the original data points are recovered when the data points are
transformed back from pnew-norm to pold-norm . For the purpose of experiment, a cluster in
two dimensions using the GMM is generated in MATLAB. The cluster is defined in 2-norm by
default and hence has a circular shape. The cluster is then moved to the different p-norm which
re-shapes the cluster. The process is reversed with the transformation, i.e. clusters in different
p-norms are reshaped back to 2-norm for reverse engineering. The whole process is visualised
by displaying the cluster in a 2D plane.
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FIGURE 7.1: Transformation of a 2D cluster with center at (10, 5) from 2-norm
space to 0.5-norm space. The process is carried out in six steps from top left (a) to

bottom right (e).
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Visualization of Transformation Process in 2D

A set of data points of size 5000 with center (10, 5) is created using the GMM in Matlab. These
data points have a degree (θ ∈ (0, π) which is drawn from a uniform distribution and a radius
r ∈ (0, 1), also drawn from the uniform distribution. Using the polar to Cartesian coordinate
transformation, two coordinates, x and y, are derived for each data point in the cluster.

Based on the behaviour of the transforming process with respect to the value of p, experiments
are categorized into two subgroups: p with usual values and p with extreme values. From our
experiment, values of p less than 0.05 or greater than 100 are categorized as extreme values.

Categories of p values :

• Case 1, p ∈ [0.05,1,1.5,2.5,10,100]

• Case 2, p tends to infinity or 0

Case 1: p in the range [0.05,0.5,1,1.5,2.5,4,10,100]

The 2D data points displayed in Figure 7.1.a is first transformed to the corresponding p-norm
from 2-norm using the procedure defined in Algorithm 2. The process is then reversed back to
2-norm. This reverse engineering process helps us to check whether the transformation process
is valid for p ∈ [0.05,0.5,1,1.5,2.5,4,10,100].
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FIGURE 7.2: Results from moving data points, originally defined in 2-norm with
center at 10,5), to p-norms (p ∈ [0.05, 1, 1.5] are displayed in each of the sub-plots
on left hand side. Results from the reverse process are displayed sub-plots on the

right.
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Results from moving data points, originally defined in 2-norm with center at 10,5), to p-norms
(p ∈ [0.05, 1, 1.5] are displayed in each of the sub-plots on left hand side. Results from the re-
verse process are displayed to the right of each corresponding sub-plot.

The value of p in Figure 7.2 ∈ {0.05,1,1.5}. Each sub plot in the first column represents the cluster
reshaped to the corresponding p-norm. The data points in the right column show the results
from reverse engineering where the data points on the left is reshaped back to the 2-norm space.
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FIGURE 7.3: Data points with center (10,5) defined in two dimensions in Euclidean
space is reshaped using a different distance coefficient (p). Each sub plot in the left
column represents the data points changed to its respective p-norms. The right

column shows the results from reversing the process back to a 2-norm.
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The two figures above show the reversal of the process of reshaping the Gaussian clusters. Ini-
tially, a Gaussian cluster is generated with the center at (10,5). The data points is then reshaped
by transforming the data points in different p-norms. In the second part of the experiment, the
process is reversed by transforming the cluster back to 2-norm. The visualization of the process
(Figure 7.2 and 7.3 show that the process of reshaping is valid.

Case 2: p moving toward extreme values

When the distance coefficient, p, moves toward the extreme points 0 or ∞- the reshaping is not
reversible.
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FIGURE 7.4: A set of data points with center (10,5) defined in the two dimensions
in Euclidean space is reshaped using some extreme distance coefficient (p). The
values of p are either less than 0.005 or greater than 100. To the right of each sub-
plot with a given p, a reverse sub plot shows the results obtained when the process

is reversed.

As shown in Figure 7.4, when the distance coefficient, p moves toward 0, all points tend to over-
lap (move close) to the center, and they cannot be reversed. On the other hand, when the values
of p tends to infinity, dispersion of data points from their center become larger. All data points
tend to move towards ∞ and therefore, may not be reversible. We observed that the reason for
not being reversed for extreme values of p is the precision power of the machine (MATLAB). In
MATLAB, by default 16 digits of precision are set.

Example:
The precision in MATLAB is 32. When p -> 0, during transformation process some points, let
say (a, b) moved to (2 ∗ 10−34, 5 ∗ 10−34) becomes (0, 0) and therefore cannot reverse back to (a,
b). The similar situation is observed when data points are moved to larger values.

In most publication studies p-norm, usually the distance coefficient lies between 1.1 to 5 [137,
92, 153, 162]. From our experiments, our transformation works well and is reversible as well
for the range of distance coefficients well accepted in most of the papers on p-norm (Minkowski
distance) [152, 92].

7.2.1 Generation of a Gaussian Mixed Model in Different p-norms

In the Gaussian mixed model, each model is equivalent to a cluster. MATLAB has a built-in
Gaussian mixed model library, gmm, that generates a dataset with given K components (clus-
ters) in N by m (|V|) dimensions where N represents the total number of data points and m is
the number of the features (feature space cardinality).
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FIGURE 7.5: First and second PCA components
view of three Gaussian clusters generated using

the MATLAB Gaussian mixed model. 1st PCA Component
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Figure 7.5 displays the first and second principle component analysis (PCA) of three Gaussian
clusters, generated using the MATLAB build in module gmm. The dataset has 1000 data points
which are equally distributed between three components (clusters) and the feature space cardi-
nality, m = 5. Centroids for each cluster in the Figure 7.5 are generated from a Uniform distribu-
tion and the gmm model used has a spherical shape with covariance equal to 0.5.

Translation of GMM into different p-norms

The gmm by default has Cartesian coordiantes and uses distance coefficient equal to 2, i.e. these
clusters are defined in 2-norm. Translation of the Gaussian clusters in the Figure 7.5 can be done
by translating each Gaussian clusters using the Algorithm 1, where the center of the data points
in each cluster is given by the centroid of the respective clusters.

Validation of the transformation for the Gaussian mixed model.

A similar approach of reverse engineering is followed to validate the transformation process
for Gaussian mixed model. First, the three Gaussian clusters, in Figure 7.5, are transformed to
different p-norms (p ∈ [0.5,1,1.5,2.5,5,50]) and then reversed to 2-norm. Figure 7.6 summarizes
the entire process.
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FIGURE 7.6: First and Second PCA component view of 3 Gaussian clusters gen-
erated using the MATLAB Gaussian mixed model. Centroids for each of these
clusters are generated from a Uniform distribution and the GMM has a spherical

shape.
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As shown in the figure 7.6, the original clusters at 2-norm are successfully retrieved and hence,
the transformation process in GMM is validated.

7.3 Effect of p-norms over Clustering Algorithms

Performance of four k-Means type algorithms in different p-norms is observed in 20 synthetic
(GMM) datasets for each combination of feature space and mixed components that are gener-
ated. The combination of feature space (V) and mixed components (K), {(v, k)} = {(12, 4), (12, 5),
(16, 4), (16, 5), (20, 4)}, where the first element, v ∈ V and the second, k ∈ K . Each of these dataset
contains 1000 data points, equally distributed among the mixed components. These Gaussian
mixed model are generated using the MALAB library function called gmm. The gmm has the
Euclidean norm, i.e. 2-norm by default.

Therefore, the transformation process, defined in session 4.3.1, is used to translate each of these
datasets in different Lp-space. The Lp-space is defined in the range, {pdist} = {05, 0.6, ..., 5}.
Therefore, in total 20 (number of dataset) times 5 (combination) times 46 (p-norms) equal 5520
number of synthetic datasets are used in the experiments.

The purpose of using datasets defined in different p-norms is to observe the effect of the dis-
tance coefficients on four types of k-Means algorithms: original k-Means, intelligent k-Means
(ik-Means), Minkowski Weighted k-Means (MWk-Means) and intelligent Minkowski weighted
k-Means (iMWk-Means). The original k-Means and ik-Means provides no options to alter dis-
tance coefficient and inbuilt with distance coefficient equal to 2. But in MWk-Means and iMWk-
Means the distance coefficient, pdist, is parametrized.

Throughout the experiments, k-Means and ik-Means are executed once with pplane = 2 whereas
MWk-Means and iMWk-Means are executed 46 times with pdist varying from 0.5 to 5. There-
fore, k-Means and ik-Means are executed 5520 times whereas MWk-Means and iMWk-Means are
executed 46 by 5520 equal 253920 times. In the experiment k-Means and ik-Means are used as
a benchmark. The experimental results from MWk-Means and iMWk-Means are compared in
three ways:

• Using different aggregation functions to compare with k-Means and ik-Means(see subsec-
tion 7.3.1).

• Evaluating how different aggregation functions perform within them (see subsection 7.3.2).

• Assessing how a particular distance coefficient, pdist, behaves with p-norm(pplane) (see sub-
section 7.3.3).

7.3.1 Performance of Different Aggregation Functions

For each p-norm, MWk-Means and iMWk-Means are executed 46 time per dataset, whereas k-
Means and ik-Means are executed only once (with distance coefficient 2). Therefore, to compare
the performance of MWk-Means and iMWk-Means with k-Means and iMWk-means in a particu-
lar p-norm, we have to aggregate the results obtained along different distance coefficient, pdist.
We have aggregates these results in four ways:

• Average cluster recovery in the range (see figure 7.7).

• Cluster recovery for pdist equals to pplane (see figure 7.8.

• Cluster recovery for pdist equals to 2 (see figure 7.9.
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• Maximum cluster recovery in the range (see figure 7.10)*.

* The maximum cluster recovery in the range guides the maximum performance that could be
achieved theoretically, as it is only possible when labels are provided. Practically, we can use
some cluster recovery index to find the best pplane.

In each sub-section below (from 7.3.1 to 7.3.1), we discuss the four cases listed above using a
figure per case. These figures display the performance of the four k-Means type algorithms-
original k-Means, ik-Means, MWk-Means and iMWk-Means- on synthetic datasets generated in
different p-norms from 0.5 to 5, with steps of 0.1. X-axes in these figures represent the ’pplane’
of the p-norms whereas the y-axes represent the performance of these algorithms (ARI index).
Each ARI value for the k-Means and ik-Means plots is the average of the ARIs obtained from 20
datasets in the particular p-norm defined along the x-axes. Unlike k-Means and ik-Means where
distance coefficient (pdist) is fixed to 2, in MWk-Means and iMWk-Means the distance coefficient
varies from 0.5 to 5 with increments of 0.1. Therefore, for each of the dataset under discussion,
MWk-Means and iMWk-Means are executed 46 times, once per pdist value in the range [0.5, 5].
And the ARI values for the MWk-Means and iMWk-Means plot at a particular p-norm is the
mean of these ARIs obtained from the range of the distance coefficient. As listed above, ARIs
values from the pdist range are summarized as: mean, pdist equal to pplane in p-norm, pdist equal
to 2 and pdist that maximizes ARIs.

Average Cluster Recovery

In the figure below, ARI values for the MWk-Means and iMWk-Means for a set of distance co-
efficients pdist over the range [0.5,5] is summarized as a mean of these values. If we consider
these mean ARIs as A1s, then, for a particular ’p’ of p-norm along the x-axis, the performance
measure along the y-axis is the average of A1s obtained from the 20 datasets.
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FIGURE 7.7: Performance of four different k-Means Type algorithms on GMM
datasets defined in different p-norms, pplane ranging from 0.5 to 5.

In figure 7.7, for the p-norms below 1.5, k-Means and ik-Means provide higher cluster recovery
(almost 1) and their performance continually reduces as p-norm space is increased. This look
quite obvious from figure 7.6, where it can be seen that when the p-norm is low, GMM clus-
ters are well separated, whereas the clusters get more intermixed when p-norm is increased.
In k-Means, ik-Means and iMWk-Means, performance is keep falling down when p-norm is in-
creased, and the trend more smoother in k-Means and ik-Means. We also observe ik-Means
shows two sharp decreases at 1.1 and 1.5 (though the decrease is not very significant). As ex-
pected, the performance of MWk-Means and iMWk-Means is not higher at low p-norm space.
This is because of the distance coefficient considered within the Minkoswki type of k-Means, i.e.
each reading in p-norm space is the mean of 46 runs of the particular algorithm where distance
coefficient is parametrized in the range of 0.5 to 5. Most significantly, MWk-Means perform best
when p-norm is around 2.

pdist equals to pplane

One of the options for selecting the distance coefficient, pdist for MWk-Means and iMWk-Means
is the ’p’ value of the particular dataset. In the figure below, for each p-norm, ARI values in
MWk-Means and iMWk-Means plots are the average of ARI values obtained from execution of
these algorithms on 20 dataset in the particular p-norm when MWk-Means and iMWk-Means
used the distance coefficient equal to the p-norm of the dataset.
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FIGURE 7.8: Performance of different MWk-Means and iMWk-Means on the GMM
defined in different p-norms where distance coefficient pdist is equal to p-norm,

pplane.

In figure 7.8, for the p-norm below 1.5, k-Means and ik-Means gives higher cluster recovery
(almost 1) and their performance keep decrease as p-norm space is increased. This looks quite
obvious, as from figure 7.5, we have seen that when the p-norm is low, GMM clusters are well
seperated and the clusters get more intermixed when p-norm is increased. In k-Means, ik-Means
and iMWk-Means, performance decreases when p-norm is increased, and the trend is smoother
in k-Means and ik-Means. We also observe that ik-Means shows two marked decreases, at 1.1 and
1.5 (though the decrease is not very significant). As expected, the performance of MWk-Means
and iMWk-Means is not higher at low p-norm space. This is because of the distance coefficient
considered within the Minkoswki type of k-Means i.e. each reading at p-norm space is the mean
of 46 runs of the particular algorithm where distance coefficient is parametrized in the range of
0.5 to 5. Most signifacently, MWk-Means has best performance when p-norm is around 2.

pdist equals to 2

In the case above, distance coefficient (pdist) for MWk-Means and iMWk-Means is choosed based
on the p-norm, pplane of the dataset. One of the obvious case is to select distance coefficient
equal to Euclidean norm i.e. pdist = 2. In the figure below, performance, i.e. ARIs values for each
p-norm in each plots is the average ARIs obtained in execution of 20 dataset using Euclidean
norm.
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FIGURE 7.9: Performance of different MWk-Means and iMWk-Means on the GMM
defined in different p-norms where the distance coefficient pdist is equal to 2.

Performance of iMWk-Means is quite similar to that of k-Means and ik-Means when the distance
coefficient,pdist is equal to 2. However, MWk-Means shows more deviation in cluster recovery
across p-norms and is relatively lower than for other types of k-Means.

pdist that yield max ARI

In the figure below, (figure 7.10), for each dataset defined at the particular p-norm, distance
coefficient, pdist ∈ [0.5, 0.6, ...5], is chosen such that it maximizes the ARI. Therefore, each ARI
value in the MWk-Means and iMWk-Means plot below is the average the ARIs obtained from 20
datasets per configuration where MWk-Means and iMWk-Means are executed with the distance
coefficient, pdist, that maximized the objective (ARI).
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FIGURE 7.10: Performance of different MWk-Means and iMWk-Means on the
GMM defined in different p-norms where the distance coefficient, pdist is consid-

ered the one which maximize the ARI.

Plots in the figure above shows that MWk-Means and iMWk-Means give better performance
than k-Means and ik-Means when MWk-Means and iMWk-Means use an appropriate distance
coefficient, pdist. As expected, performance of all algorithms considered worsens as p-norm is
increased. However, the rate in fall of ARIs in significantly lower in the MWk-Means and iMWk-
Means than in k-Means and ik-Means when an appropriate distance coefficient is provided.

7.3.2 Comparison of Different Aggregation Functions

Four aggregation functions are used to analysis the performance of different distance coeffi-
cients, pdist, used in MWk-Means and iMWk-Means with respect to the datasets generated using
a range of p-norms, pplane. Results obtained from the experiments are grouped into two sub-
groups as represented in two figures below: one from MWk-Means (figure 7.11 ) and the next
from iMWk-Means (figure 7.12). In these figures, there are four plots, in different colors. Each
of these plots represents the performance of MWk-Means or iMWk-Means under the four ag-
gregation functions: average ARIs over p-norms, the maximum ARIs over different distance
coefficient(pdist), average ARIs for distance coefficient (pdist), equal to the dataset p-norm, i.e.
pdist = pplane and the average ARIs for distance coefficient, i.e. pdist = 2.
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FIGURE 7.11: Performance of four different combinations of the distance coeffi-
cient, pdist used in MWk-Means (p1) over different datasets defined using a range

of p-norms.

Figure 7.11 combines the results (ARIs) from MWk-Means for the datasets, using different p-
norms in four ways based on the function used to select the distance coefficient for MWk-Means.
The first plot (in blue) denotes the result when the average ARI is considered for the dataset
defined at the particular p-norm. In this case, the distance coefficient for MWk-Means is chosen
from the range 0.5 to 5 (46 cases) with an interval of 0.1. In the second case, the distance coef-
ficient pdist for MWk-Means is equal to 2 (green plot in the figure). The third plot (black in the
figure) is the case where the distance coefficient using by MWk-Means is equal to p-norm. And
the last plot (red) is the one chosen from the range of pdists such that it yields maximum ARIs
for a particular dataset defined at a particular p-norm.
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FIGURE 7.12: Performance of four different combination of the distance coefficient,
pdist used in IMWk-Means for different datasets defined for a range of p-norms,

pplane.

Figure 7.12 combines the results (ARIs) from iMWk-Means for datasets at different p-norms in
four ways based on the function used to select the distance coefficient for iMWk-Means.

From figures 7.11 and 7.12, we can conclude that both MWk-Means and iMWk-Means provide
better cluster recovery using distance coefficient, pdist equal to 2 (default value). Also, knowl-
edge of the p-norm of a dataset does not have significant contribution in the performance of
MWk-Means or iMWk-Means as plots for pdist equal pplane is third lowest next to the average
case.

7.3.3 p-norms vs Distance Coefficient

Each reading in the table below is the average cluster recovery for each of the algorithms over
100 datasets: 20 datasets for each of the five configurations discussed earlier. The first column
in the table represents the particular algorithms used. The second columns contain the distance
coefficient used within the particular algorithm. The remaining columns represent the ARI val-
ues at particular p-norms, ranging from 0.5 to 5 with interval of 0.5. Only ARI values for certain
p-norms are chosen in order to reduce the table width. The first two rows in the table shows the
ARI values from k-Means and ik-Means. Since k-Means and ik-Means have the Euclidean norm,
that is, distance coefficient equal to 2, pdist reading for these row is 2. As discussed earlier, the
distance coefficient in MWk-Means and iMWk-Means can be altered. In the two tables below,
for MWk-Means and iMWk-Means only the ARIs values pdist ∈ {0.5, 1, ..., 5} are displayed. The
reason to limiting the readings shown in tables is to synchronise the distance coefficients used
in the algorithms with database p-norms.

The table can be read follows: for a particular algorithm in the first column, for a dataset defined
in a particular p-norm (columns numbered three to last), each reading down the column shows
the ARIs values obtained by the algorithms when the algorithm uses the distance coefficient as
listed in the second column. Since k-Means and ik-Means use the distance coefficient pdist equal
to 2, there is only one raw for each of them. The first table shows the results from MWk-Means
and the second table contains reading from iMWk-Means.

The highest ARI values within a column, as given by three of the algorithms (k-Means, ik-Means
and one of MWk-Means or iMWk-Means) for datasets defined at a particular p-norm, are shown
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in bold. This will be of use when comparing the performance of the particular algorithm (MWk-
Means or iMWk-Means) against that of k-Means and ik-Means. It is also significant to know
the best distance coefficient for the particular algorithm (MWk-Means or iMWk-Means) for a
particular p-norm. And, in the two tables below, we mark the reading with an asterisk (*).

pdist vs pplane in MWk-Means

As stated above, the table below shows the ARIs for MWk-Means (from row three to the last)
where rows represent the distance coefficient, pdist used in MWk-Means and the columns repre-
sent p-norms, the pplane of the dataset.

TABLE 7.1: Performance MWk-Means in GMM datasets defined in a range of p-
norms.

GMM distance coefficient (p1)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Algorithms p2 ARI Index
kMeans 2.0 1.000 1.000 0.999 0.991 0.970 0.945 0.921 0.900 0.882 0.869

iKMeans 2.0 1.000 1.000 0.993 0.991 0.970 0.945 0.921 0.900 0.882 0.869

M
W

K
M

ea
ns

0.5 *0.833 0.811 0.884 0.908 0.865 0.837 0.779 0.722 0.711 0.682
1.0 0.760 0.475 0.339 0.210 0.154 0.132 0.108 0.097 0.098 0.093
1.5 0.736 0.773 0.844 0.875 0.912 0.885 0.869 0.850 *0.861 0.804
2.0 0.786 0.847 0.840 0.902 0.914 0.870 0.870 0.862 0.818 0.834
2.5 0.700 0.777 0.848 0.912 0.888 0.869 0.865 0.866 0.825 *0.845
3.0 0.719 0.766 0.797 0.917 0.900 0.890 *0.888 *0.875 0.859 0.800
3.5 0.729 0.780 0.895 0.899 0.896 0.885 0.874 0.845 0.841 0.819
4.0 0.798 0.855 0.883 0.914 *0.919 *0.900 0.861 0.845 0.822 0.796
4.5 0.795 *0.880 0.888 0.930 0.901 0.870 0.863 0.837 0.824 0.804
5.0 0.797 0.835 *0.926 *0.933 0.904 0.864 0.842 0.793 0.805 0.774

For all p-norms, k-Means and ik-Means show better cluster recovery than MWk-Means, as
we indicated in the figure above, where all entities in the first and second rows are in bold type.
For datasets with p-norm equal to 1, larger the distance coefficient (pdist) trigger a reduction in
performance. Also, with increasing p-norms, MWk-Means shows better performance when the
distance coefficient is around 2.

pplane vs pdist in iMWk-Means

Again, as in the previous table, the table below shows the ARIs for iMWk-Means (from row
three to the end) where rows represent the distance coefficient, pdist, used in iMWk-Means, and
the columns represents p-norms, pplane for the datasets used.
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TABLE 7.2: Performance iMWk-Means in GMM datasets defined in a range of p-
norms.

GMM distance coefficient (p1)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Algorithms p2 ARI Index
kMeans 2.0 1.000 1.000 0.999 0.991 0.970 0.945 0.921 0.900 0.882 0.869

iKMeans 2.0 1.000 1.000 0.993 0.991 0.970 0.945 0.921 0.900 0.882 0.869

iM
W

k-
M

ea
ns

0.5 0.996 *1.000 0.997 0.969 0.908 0.846 0.789 0.748 0.717 0.688
1.0 0.781 0.526 0.413 0.313 0.226 0.181 0.140 0.115 0.104 0.095
1.5 *1.000 0.986 *0.999 *0.991 *0.966 0.939 0.909 0.865 0.854 0.846
2.0 *1.000 0.986 *0.999 0.975 0.963 *0.940 *0.924 *0.904 0.879 0.864
2.5 *1.000 0.976 *0.999 0.986 0.963 0.934 0.908 0.903 *0.888 0.871
3.0 *1.000 0.972 *0.999 0.980 0.949 0.936 0.915 0.894 0.883 0.865
3.5 *1.000 0.971 0.988 0.971 0.956 0.935 0.905 0.883 0.871 0.855
4.0 *1.000 0.961 0.993 0.975 0.945 0.921 0.886 0.865 0.851 0.829
4.5 *1.000 0.956 0.987 0.960 0.937 0.915 0.872 0.853 0.836 0.809

5. 0 *1.000 0.956 0.969 0.968 0.940 0.883 0.859 0.830 0.808 0.797

Intelligent MWk-Means shows the best cluster recovery for datasets defined with p-norm equal
to 0.5. Most significantly, iMWk-Means gives better cluster recovery than k-Means and ik-Means
for dataset are defined in p-norms greater than 3 and iMWk-Means shows better cluster recovery
when distance coefficient around to 2 is considered for dataset defined in p-norms greater than
one.

Note:
Cluster validation index can be used to find the best distance coefficient (pdist) for both MWk-
Means and iMWk-Means, see results in appendix E.1.

7.4 Conclusion

In this chapter, an algorithm (pNormTransform) is developed which transforms a dataset to
different p-norms. This algorithm is practically validated using reverse engineering. With the
transformation of a dataset in different p-norms, new features of a dataset can be explored.
Moreover, availability of datasets in different p-norms provides data researchers with a large,
enriched pole of datasets to conducting simulations.

The range of datasets in different p-norms is used to evaluate the performance of k-Means types
algorithms. It is observed that when the distance coefficient (pdist) gets smaller, clusters become
more widely separated, and hence cluster recovery is increased in k-Means type algorithms. It is
also observed that the performance of weighted variants of k-Means is worst at 1-norm. Feeding
the Minkowski variant of weighted k-Means with the same distance coefficient as p in p-norm,
reduced the performance. However, these variants of k-Means have better cluster recovery for
dataset in all p-norms which further explore the capability of Minkowski variants of weighted
k-Means to learn the shape of clusters in different p-norms.
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Chapter 8

Extended Experiments

In the previous three chapters, results from the implementation of feature weighting principles
in three areas of clustering - p-norm datasets, datasets with missing values and feature selection
are discussed in detail. This chapter further extends our knowledge of cluster analysis and aims
to answer the following questions:

(i) Are the proposed feature selection algorithms effectively remove noisy features?

(ii) Are the proposed feature selection algorithms suitable for larger datasets?

(iii) Are the proposed feature selection algorithms able to retain the features, required by clas-
sifiers?

(iv) Is the performance of proposed feature selection algorithms better in p-norms?

(v) Can partial distance approaches can be implemented with the Minkowski metric in p-
norms datasets?

8.1 Experimental set-up

To answer the above questions, experiments are conducted on both the synthetic and real-world
(UCI) datasets introduced earlier, in Chapter 3. Research in this chapter is restricted to the added
noisy features, where noisy features are generated from the Uniform distribution. Three cases
of added noisy features - no noise, half noise and full noise - are analysed. The addition of noisy
features in the tables below is denoted by the datasetName+KNF, where K represents either 0
or ‖V‖2 or ‖V‖ number of added noisy features with ‖V‖ feature space cardinality. For example,
1000x8-2+4NF represents a dataset with two Gaussian clusters, 1000 data points and 8 original
features. The dataset (1000x8-2) has 4 more noisy features added on it.

In Chapter 5, the intelligent k-Means for feature selection, iKFS, is observed to have no role in
the selection of features, hence, iKFS is discarded. Therefore, in addition to our proposed feature
selection methods, feature similarity based on feature selection, FSFS, and multi-cluster based
feature selection, MCFS, are analysed further.

As in the earlier experiments, the Silhouette index is used for parameter tuning in FSFS and
MCFS (see [2] for further detail). In FSFS and MCFS, the best case is chosen by using the label
information available (supervised learning). The first three questions set-up above - (i), (ii) and
(iii) - are analysed by setting the distance coefficient (p) to 2.

In earlier chapters, Chapter 5 and Chapter 6, the value of p lies between 1.1 to 5.0, with an
interval of 0.1. However, to observe the trend of p, a larger interval of 0.5 can be considered.
Therefore, to answer questions (iv) and (v), the values of pplane for p-norm and the coefficient of
the Minkowski metric, pdist, in mean-FSFW and max-FSFW are set to {1.1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
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5}.

Experiments are run in both the synthetic and real-world (UCI) datasets to answer questions(i)
and (iii). Two datasets from the UCI repository which have higher feature space cardinality, i.e.,
‖V‖ ≥ 100, are considered, for question (ii). To answer questions (iv) and (v), experiments are
conducted in the synthetic datasets.

8.2 Extension of feature selection

In Chapter 5, performance of the proposed feature selection algorithms is observed on the basis
of cluster recovery and percentage of the feature selection. In [2], we published the results of
using the feature selection algorithm on the basis of the percentage of noisy feature selected and
have extended the work in two larger datasets from the UCI repository.

8.2.1 Percentage of noisy feature selection

In the two tables 8.1 and 8.2, results from synthetic and the real-world (UCI) datasets are sum-
marized, showing the percentage of noisy features selected.

Synthetic datasets

TABLE 8.1: The average percentage of noisy features selected, and their respective
standard deviations, in synthetic datasets

Accuracy

FS using Feature Similarity Multi-Cluster FS FS using Feature Weight

Dataset SIL Best Case SIL Best Case mean-FSFW max-FSFW

av
g

%
no

is
y

fe
at

.s
el

. 1000x8-2 +4NF 73.500/31.78 51.000/44.71 93.000/24.00 79.000/39.80 0.000/0.00 7.500/16.77
1000x8-2 +8NF 73.750/35.64 44.500/42.22 89.750/24.96 76.500/36.02 0.500/2.45 4.250/9.56
1000x12-3 +6NF 80.000/33.50 63.333/43.33 95.666/9.89 91.333/21.15 0.000/0.00 1.000/5.17
1000x12-3 +12NF 81.001/32.62 60.667/43.69 85.834/18.50 77.667/23.95 0.000/0.00 0.833/3.00
1000x16-4 +8NF 89.750/22.32 81.750/34.02 82.250/14.60 80.250/14.16 0.000/0.00 0.000/0.00
1000x16-4 +16NF 87.875/27.28 73.125/40.80 69.500/20.60 62.250/20.54 0.000/0.00 0.500/2.11
1000x20-5 +10NF 83.400/32.16 77.600/37.18 47.000/22.11 42.000/18.11 0.000/0.00 0.000/0.00
1000x20-5 +20NF:20 78.700/36.83 66.400/42.24 43.600/29.33 32.300/20.40 0.000/0.00 0.000/0.00

mean-FSFW is able to remove almost all added noisy features from the Gaussian clusters. max-
FSFW is able to remove most of the noisy features for larger datasets and up to 92.5% of noisy
features in the Gaussian clusters with feature space cardinality of 8+4NF. FSFS and MCFS are
hardly able to remove any noisy features as the maximum percentage of noisy features removed
is around 70% .

Real-world (UCI) datasets

mean-FSFW is able to remove all noisy features from eight out of ten UCI datasets. In the Car
Evaluation and the Tic-Tac-Toe datasets, mean-FSFW is not able to remove a single noisy features.
In comparison, max-FSFW is more effective than mean-FSFW, as max-FSFW is able to remove al-
most all noisy features from ten UCI datasets except the Car Evaluation dataset with full noise.

Under supervised learning, i.e. “Best Case", MCFS is also effective for removing noisy features.
However, performance is significantly reduced when the Silhouette index is used for parameter
tuning, i.e. unsupervised learning. FSFS is least effective in removing the noisy features in both
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TABLE 8.2: The average percentage of noisy features selected, in the real-world
(UCI) datasets.

Accuracy

FS using Feature Similarity Multi-Cluster FS FS using Feature Weight

Data Type Dataset SIL Best Case SIL Best Case mean-FSFW max-FSFW

In
te

ge
r/

R
ea

l

Ecoli +4NF 100.000 25.000 100.000 25.000 0.000 0.000
Ecoli +8NF 87.500 0.000 100.000 25.000 0.000 0.000
Glass +5NF 80.000 0.000 100.000 0.000 0.000 0.000
Glass +10NF 80.000 0.000 100.000 0.000 0.000 0.000
Ionosphere +17NF 5.880 0.000 0.000 0.000 0.000 0.000
Ionosphere +34NF 2.940 0.000 0.000 0.000 0.000 0.000
Iris +2NF 100.000 0.000 100.000 0.000 0.000 0.000
Iris +4NF 100.000 0.000 100.000 0.000 0.000 0.000
Wine +7NF 100.000 0.000 85.710 85.710 0.000 0.000
Wine +14NF 100.000 28.570 85.710 50.000 0.000 0.000

M
ix

Austra C.A.+21NF 100.000 100.000 0.000 0.000 0.000 0.000
Austra C.A.+42NF 100.000 100.000 40.480 0.000 0.000 0.000
Teaching Assistant +28NF 0.000 14.290 0.000 0.000 0.000 0.000
Teaching Assistant +56NF 0.000 5.360 0.000 0.000 0.000 0.000
Zoo +8NF 100.000 0.000 62.500 0.000 0.000 0.000
Zoo +16NF 100.000 0.000 75.000 0.000 0.000 0.000

C
at

eg
or

ic
al Car Evaluation +11NF 9.090 9.090 0.000 9.090 100.000 0.000

Car Evaluation +22NF 22.730 4.550 0.000 0.000 100.000 100.000
Tic Tac Toe: +14NF 28.570 7.140 92.860 0.000 100.000 0.000
Tic Tac Toe +28NF 53.570 3.570 0.000 0.000 100.000 0.000

supervised and unsupervised learning. FSFS with its Best Case (supervised learning) is far bet-
ter at removing noisy features than the unsupervised learning method.

mean-FSFW fails to remove redundant features from Car Evaluation and Tic-Tac-Toe dataset.
However, max-FSFW is able to all reduce redundant features except in one case- ’Car Evaluation
+ 22NF’. The Car Evaluation has six and Tic-Tac-Toe dataset has nine features which are all cat-
egorical, this shows that max-FSFW is better than mean-FSFW when a dataset has all categorical
features.

8.2.2 Extending the method to larger datasets

To observe the performance of our proposed feature selection algorithms for larger datasets,
the “Low Resolution Spectrometer" and “Glass Sensor Array Batch10" datasets are considered.
The “Low Resolution Spectrometer" dataset has 101 features, whereas the “Gas Sensor Array
Batch10" dataset has 129 features. In the “Low Resolution Spectrometer" dataset, 51 and 65
noisy features are added to create half and full noise datasets, whereas, in “Gas-Sensor-Array-
Batch10" dataset, 65 and 129 noisy features are added. All noisy features are drawn from the
Uniform distribution. The performance of the algorithms are observed on the basis of cluster
recovery (ARI) and the percentage of noisy feature selected.
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TABLE 8.3: Performace of feature selection algorithms in UCI datasets with a
higher degree of feature space cardinality.

Accuracy

FS using Feature Similarity Multi-Cluster FS FS using Feature Weight

Dataset k-Means SIL Best Case SIL Best Case mean-FSFW max-FSFW

cl
us

te
r

re
co

ve
ry

(A
R

I)

Low Resolution Spectrometer 0.202 0.210 0.230 0.240 0.260 0.260 0.270
Low Resolution Spectrometer +51NF 0.207 0.180 0.220 0.180 0.240 0.220 0.280
Low Resolution Spectrometer +101NF 0.194 0.180 0.200 0.190 0.230 0.230 0.070
Gas Sensor Array Batch10 0.126 0.120 0.210 0.170 0.170 0.190 0.140
Gas Sensor Array Batch10 +65NF 0.128 0.130 0.210 0.130 0.190 0.120 0.140
Gas Sensor Array Batch10 +129NF 0.126 0.140 0.210 0.140 0.160 0.130 0.140

%
of

no
is

y
fe

at
ur

e
se

le
ct

ed

Low Resolution Spectrometer +51NF – 100.000 100.000 98.040 25.490 0.000 0.000
Low Resolution Spectrometer +101NF – 100.000 100.000 97.030 48.510 0.000 100.000*
Gas Sensor Array Drift Batch10 +65 – 78.290 100.000 0.000 0.000 0.000 0.000
Gas Sensor Array Drift Batch10 +129 – 83.720 100.000 0.000 0.000 0.000 0.000

• Cluster recovery (ARI)

mean-FSFW and max-FSFW are able to improve the cluster recovery for both datasets in
most cases, with and without added noise, since the ARI index is better in all cases com-
pared to k-Means (without feature selection). mean-FSFW is the best for the “Low Resolu-
tion Spectrometer" dataset with higher noise and the “Gas Sensor Array Batch10" dataset
when there are no noisy features. In most cases, mean-FSFW and max-FSFW are able to
match the cluster recovery index (ARI). In some cases, mean-FSFW and max-FSFW are even
better than the “Best Case" of FSFS and MCFS.

• Percentage of noisy feature selected

mean-FSFW is able to remove all added noisy features in both datasets. max-FSFW also
gives the same results, except with the “Low Resolution Spectrometer" dataset with full
noise. MCFS is also able to remove all added noisy features from the “Gas Sensor Array
Drift Batch10" dataset in supervised and unsupervised learning. When compared with
FSFS, it is better at removing added noisy features in the “Low Resolution Spectrometer"
dataset, as FSFS has no contribution to make in removing the added noisy features.

Note*
With the addition of full noise, max-FSFW is not able to remove any noisy features in Low-
Resolution Spectrometer, though it can remove all noisy features when there is half noise. Origi-
nal features are likely more random such that the addition of full noise has minimized the feature
weighting index between them.

8.2.3 Performance of classifiers after feature selection

Feature selection algorithms are normally considered as a first step in data mining and are used
before classification. Feature selection algorithms are expected to retain the “important" features
required for classification. Therefore, the effect of proposed feature selection algorithms in three
classifiers - KNN, Decision tree and Navie bayes - are observed with 10-fold cross-validation on
both synthetic and the real-world (UCI) datasets. The performance of these classifiers is mea-
sured using the ARI score before and after the feature selection. In KNN, the value of K is set to
the square root of the number of entities in the dataset.

Table 8.4 and Table 8.5 show the average ARI score by the classifiers in synthetic and the real-
world datasets with and without feature selection.
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In the Table 8.5, results are grouped based on the attribute types- integer/real, mix and cate-
gorical. When a dataset has integral/real or mix attribute types, mean-FWFS and max-FSFW are
able to retain the true or important features required by classification algorithm, in most of the
dataset except Ecoli. Whereas, when dataset have all categorical attributes (here Car Evaluation
and TicTacToe dataset) both mean-FWFS and max-FWFS are not able to retain the important fea-
tures as ARIs are significantly dropped in these cases.

In case feature selection is necessary before classification, for real-world dataset, meanFWFS is
a better option than maxFWFS for decision tree and maxFWFW is better than meanFWFS for
navie bayes and KNN classifiers.

8.2.4 Performance of feature selection in Lp space

One of the areas of our research is analysis the performance of the cluster recovery algorithms in
p-norms. In the table below, the effects of four feature selection algorithms on cluster recovery
are observed in Gaussian clusters defined in different p-norms. The synthetic datasets consid-
ered earlier are translated into different p-norms, where pplane ∈ {1.1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.

The Silhouette index is used to identify best parameters in FSFS and MCFS. In the previously
described cases, the distance coefficient (pdist) is set to 2 in mean-FSFW and max-FSFW. For this
experiment, the value of pdist ∈ {1.1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. The Silhouette index is used to
find the best value of the distance coefficient, pdist, in mean-FSFW and max-FSFW for a dataset
defined in pplane-norm.
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8.3 Extension of partial distance to the Minkowski metric

The partial distance approach used in Chapter 6, as an alternative to imputation methods, shows
promising results. The partial distance approach is further extended to the Minkowski metric in
a way that the proposed feature selection algorithms can address the missing values implicitly.
The extended algorithms are called meanFSFWextPD and maxFSFWextPD.

For the experimental set-up, the missing values are introduced in the first two features of
the synthetic datasets used in earlier experiments. The missing values are missing completely
at random, MCAR, and the percentage of the missing values is set to 40%. The performance
of the extended algorithms is compared with three imputation methods used in earlier chapter
(Chapter 6) and are further experimented in Gaussian clusters, defined in different p-norms.
The performance is measured based on the adjusted Rand Index.

Note:
The code for the proposed meanFSFWextPD and maxFSFWextPD are available in the repository
at https://bitbucket.org/m-learning/phd/src/master/.

TABLE 8.7: The average adjusted Rand Index and its standard deviation for the
cluster recovery in synthetic datasets defined in p-norms. The datasets have miss-
ing values in first two features generated using the missing completely at random
(MCAR) mechanism. The Performance columns contains mean/std of the ARIs.

Performance of Algorithm

Imputation Partial Distance

average KNN C Regression Partial Distance
p meanFSFW maxFSFW meanFSFWext maxFSFWext meanFSFWext maxFSFWext meanFSFWextPD maxFSFWextPD

1.1 0.54/0.34 0.812/0.27 0.435/0.34 0.699/0.31 0.453/0.33 0.725/0.29 0.468/0.38 0.639/0.37
1.5 0.892/0.15 0.931/0.13 0.839/0.19 0.89/0.16 0.841/0.19 0.885/0.16 0.88/0.16 0.886/0.17
2 0.892/0.15 0.899/0.15 0.859/0.18 0.875/0.18 0.856/0.19 0.861/0.19 0.914/0.13 0.916/0.14

2.5 0.906/0.14 0.923/0.14 0.866/0.19 0.881/0.18 0.862/0.19 0.892/0.17 0.902/0.15 0.923/0.14
3 0.9/0.14 0.939/0.12 0.862/0.19 0.893/0.16 0.853/0.19 0.9/0.18 0.911/0.14 0.906/0.15

3.5 0.884/0.16 0.926/0.13 0.849/0.2 0.884/0.17 0.836/0.2 0.885/0.17 0.902/0.14 0.933/0.13
4 0.911/0.14 0.917/0.13 0.889/0.16 0.893/0.17 0.88/0.18 0.894/0.17 0.912/0.14 0.888/0.17

4.5 0.915/0.14 0.919/0.14 0.9/0.17 0.902/0.16 0.877/0.18 0.874/0.19 0.925/0.12 0.923/0.14
5 0.912/0.14 0.92/0.13 0.876/0.18 0.908/0.15 0.868/0.19 0.875/0.19 0.892/0.17 0.904/0.15

• p-norm, p < 2

Average imputation is found to be the best options for addressing missing values in mean-
FSFW and max-FSFW for the Gaussian clusters, defined with p-norms, where p < 2.

• p-norm, p = 2

When the Gaussian clusters are defined in 2-norm, the partial distance approach is found
to be the best in both proposed feature selection algorithms.

• p-norm, p > 2

For the Gaussian clusters, defined in p-norms, where p > 2, an average imputation method
is the best option for replacing missing values, closely followed by the partial distance
approaches for the proposed feature selection algorithms.

8.4 Conclusion

In this chapter, extended experiments are conducted in the three different areas of cluster anal-
ysis carried out in previous chapters, and are combined together. It has been shown that the
proposed feature selection algorithms are able to remove noisy features from both synthetic and
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the real-world datasets more effectively. The proposed feature selection algorithms are also suit-
able for the selection of the “informative" features from larger datasets and are able to retain the
“true" features, required by classifiers.

Moreover, the proposed feature selection algorithms provide the best alternative for feature se-
lection of Gaussian clusters, defined in different p-norms. The partial distance approach is found
to be the best alternative to imputation methods for addressing missing values in Gaussian clus-
ters, defined in 2-norm.



127

Chapter 9

Discussion and Conclusion

9.1 Research outcomes

The main objective of this thesis was to explore feature weighting techniques in cluster analysis
through Minkowski metric and use them for feature selection. This thesis took advantage of
prior work in the Minkowski weighted variant of k-Means and observed how missing values
can be handled in the weighted variants of k-Means. Also, the effectiveness of cluster analysis
in Lp space through k-Means type algorithms was explored.

There are three major approaches for handling missing values: removing instances with miss-
ing values, replacing the missing values with some known values, and implicitly modifying
algorithms so that missing values are handled within themselves. The last two approaches are
explored in this thesis. Based on the previous work on addressing missing values in k-Means
algorithm types [112, 163], these ideas are extended to the weighted and Minkowski variants
of k-Means and their effectiveness explored with values missing completely at random (MCA)
and not missing at random (NMAR) mechanisms, where the missing values were presented in
a feature with lowest and highest correlation with respect to each feature’s dataset. The other
approach, no imputation, requires a change in the distance metric within the algorithms so that
the missing values are handled implicitly.

In the literature [104, 164, 165], distance metrics used within the algorithms are modified such
that no imputation is required to address missing values. Here, the distance metric was success-
fully replaced by a partial-distance metric within both the weighted and Minkowski k-Means
frameworks to address the missing value problem in the proposed feature selection algorithms.
Good results are found on both synthetic and UCI datasets.

Earlier work introduced the Minkowski metric in Minkowski weighted k-Means[92, 162, 137, 2]
variants to find regular shaped clusters other than spherical. However, the usefulness of the
Minkowksi metric had yet to be fully explored since the experimental datasets use the 2-norm.
A translation procedure was created which is successfully used to translate a dataset from an
original pold-norm, usually 2-norm, to a new pnew-norm. The p-norm datasets are then used to
explore the behaviour of k-Means type algorithms including the Minkowski variants. Experi-
mental results in this thesis demonstrate that Minkowski weighted k-Means is equally effective
in datasets defined in different p-norms.

The main results of this thesis are:

i) A partial distance variant of weighted k-Means extended to partial distance (Wk-MeansPD),
intelligent weighted k-Means (iWk-MeansPD) extended to partial distance, Minkowski Weighted
k-Means extended to partial distance (MWk-MeansPD), and intelligent Minkwoski Weighted
k-Means extended to partial distance (iMWk-MeansPD) which are extension of their k-Means
variants so that, the partial distance variants can handle missing values without the need of
any imputation method.
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ii) Two feature weighting based feature selection methods, namely feature selection using
mean feature weight (mean-FSFW), and feature selection using maximum feature weight
(max-FSFW), which are effective in reducing feature space cardinality while preserving max-
imum cluster structure.

iii) A method to convert data from pold-norm to pnew-norm, which allows an analyst to trans-
form a synthetic or real-world dataset which are normally only available in 2-norm.

iv) The extension of the proposed feature selection algorithms: mean-FSFWextPD and max-
FSFWextPD where the partial-distance is used to address the missing values.

9.2 Observations

The following observations have been made:

i) Projection of clusters in p-norms for p < 2 separates them further and hence improves the
performance of k-Means types algorithm and vice versa as p in p-norms increases.

ii) Minkowski variants of k-Means are able to detect the shape of clusters and are equally ef-
fective for cluster analysis of datasets, defined in p-norms other than 2-norm.

iii) A sharp drop in performance of weighted Minkwoski variants of k-Means is observed when
a dataset is defined in 1-norm and distance coefficient of Minkowski metric is 1.

iv) Performance of weighted variant of k-Means is better when cluster based regression meth-
ods are used for imputation of missing values in synthetic and real-world (UCI) datasets
when including noise in the dataset.

v) Partial distance approach is better in weighted variant of k-Means for Gaussian mixed
model.

vi) Feature weighting can be effectively used for feature selection especially, in presence of
noise.

vii) Feature selection using mean feature weights (mean-FSFW) has better cluster recovery for
Gaussian mixed model whereas, in real-world (UCI) dataset feature selection using maxi-
mum feature weights (max-FSFW) is better choice.

viii) max-FSFW is slightly better than mean-FSFW for cluster recovery whereas mean-FSFW is
better for reducing feature space cardinality.

ix) Both mean-FSFW and max-FSFW are effective in feature selection for larger dataset as well.

x) Both of the proposed feature selection algorithms retain the features required by the classi-
fication algorithms in the majority of tested datasets.

xi) max-FSFW with partial distance (max-FSFWPD) produced better results compared to other
variants of FSFW with or without partial distance.

9.3 Limitations

The algorithm for transforming data from pold norm to pnew norm has a precision problem when
p tends to infinity, which is visible when displaying results. This algorithm works well for p less
than 100. When the value of p moves towards infinity (p >= 100) two cases of misbehaviour are
identified. First, some data points move towards infinity and cannot be reversed back to original
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p-norm. Second, some data points move closer to centre while reverting the data points to their
original p-norms.

The proposed feature selection algorithms, mean-FSFS and max-FSFS, use Minkowski weighted
k-means with modified partial distance metric. MWk-Means used Minkowski center based on
conversion of a convex function. The partial distance approach is yet to be extended to the
conversion of a convex function, which limits using one of the imputation methods for the con-
version.

The use of a partial distance approach to Minkowksi metric for cluster analysis has been ex-
tended. However, evaluation of these clusters is still not fully unsupervised as little work has
been done so far on cluster validation index capable to work with missing values implicitly.
Feature weighting in the proposed feature selection algorithms assigns weights to the features
based on their relevance. Theoretically, redundant (correlated) features are likely to have similar
weights and therefore do not contribute towards selection.

9.4 Further research

Subspace feature selection is one of the emerging techniques in data mining. The proposed algo-
rithms use feature weights based on clusters. This concept can be further extended to subspace
feature selection which can be more beneficial when information is sparsely distributed.

The partial distance variants of the proposed feature selection methods can be further extended
to unsupervised feature selection by enriching the available cluster validation index to deal with
missing values without imputation methods. For this, the similarity metric used in the cluster
validation index can be modified with partial distance.

The feature similarity index is successful in identifying redundant (correlated) features [143].
The inclusion of the feature similarity index in the proposed feature weighting based feature se-
lection algorithm can make the algorithm more effective at identifying and removing redundant
(correlated) features with further work.

The proposed feature selection algorithms already deal with feature weighting for cluster anal-
ysis. The partial distance approach can benefit from this weight and can be further extended to
weighted partial distance.

Other areas of further research include extension of these concepts, both imputation of missing
values and feature selection on constraint based clustering or semi-supervised clustering. The
feature weighting-based feature selection approach can be equally important in other cluster-
ing approaches like density-based, hierarchical and spectral clustering. In fact, density-based
clustering will be more effective with sub-space feature selection using feature weighting and
is worth exploring. Similarly, the concept of using partial distance can add a new dimension to
deal with missing values without ‘false’ imputations in clustering algorithms.
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Appendix A

Coordinates System

A.1 Cartesian to polar conversion

Cartesian and polar are two popular coordinate systems on the Euclidean plane[166]. A polar
coordinate in two dimensional Euclidean plane is represented by a radius (r), distance from
a reference point (or pole) and an angle θ from a reference direction. The reference direction,
a ray originated from the pole, is called the polar axis. In the Cartesian coordinate system, a
point in the two dimensional Euclidean plane is represented by (x1, x2) where x1 and x2 are the
displacement of the point from its origin along the two axes (x and y) respectively. The pole in
polar coordinates is analogous to the origin of the Cartesian coordinate and the polar axes of the
polar coordinate represents one of the Cartesian axes (usually x).
Conversion in 2D
Let a point P(r, θ1) be a point in a polar coordinate, as shown in the figure below.

FIGURE A.1: Polar coordinate system in two dimensions.

The relationship between the two coordinate systems which is defined as:

x = rcosθ, r > 0
y = rsinθ, 0 ≥ θ < 2π.

(A.1)

where r is a radial coordinate range, θ is angular coordinate in polar coordinates, and x and y
are two dimensions in Cartesian coordinates. The value of r in the equation A.1 is given by,

r =
√

x2 + y2 (A.2)

and the angular measurement(θ) is obtained by

θ = acos
x√

x2 + y2
(A.3)
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Conversion in 3D
Let a point P(r, θ1,θ1) be a point in a polar coordinate, as shown in the figure below.

FIGURE A.2: Polar coordinate system in three dimensions.

z = rcosθ1

y = rsinθ1cosθ2

x = rsinθ1sinθ2

(A.4)

where, (x, y, z) is a corresponding point in a Cartesian coordinate.
The radial coordinate r in the equation above is,

r =
√

x2 + y2 + z2 (A.5)

and the angular coordinates θ1, θ2 are,

θ1 = acos
z√

x2 + y2 + z2

θ2 = acos
y√

x2 + y2 + z2

(A.6)

Generalization,

Let a point P(r, θ1, θ1, ..., θm) be a point in a polar coordinate. Then its equivalent Cartesian
coordinate can be derived as [167]:

x1 = rcosθ1

x2 = rsinθ1cosθ2

x3 = rsinθ1sinθ2

.

.

.
xm−1 = rsinθ1sinθ2....sinθm−2cosθm−1

xm = rsinθ1sinθ2....sinθm−2sinθm−1

(A.7)
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where, (x1, x2, ..., xm) is a corresponding point in a Cartesian coordinate.
The radial coordinate r in the equation above is,

r =
√

x2
1 + x2

2 + ... + x2
m (A.8)

and the angular coordinates θ1, θ2, ...., θm−1 are,

θ1 = acos
x1√

x2
m + x2

m−1 + ... + x2
1

θ2 = acos
x2√

x2
m + x2

m−1 + ... + x2
2

.

.

.

θm−2 = acos
x2√

x2
m + x2

m−1 + x2
m−2

θm−1 =

acos xm−1√
x2

m+x2
m−1

, xm ≥ 0

2π − acos xm−1√
x2

m+x2
m−1

(A.9)
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Appendix B

Gaussian Distribution

The Gaussian distribution, also known as a normal distribution is a widely used model to simu-
late the distribution of continuous variables. The probability density function (PDF) of a Gaus-
sian distribution x with mean µ and variance σ2 is given by,

P(x|µ, σ2) =
1

σ
√

2Π
e−(x−µ)2/(2σ2) (B.1)

B.0.1 Standard Gaussian Distribution

A standard G distribution is a special case of a Gaussian distribution with mean µ = 0 and
variance σ2=1 with a bell-shaped PDF which is illustrated in figure B.1.
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FIGURE B.1: Probability density function (PDF) of Gaussian Model with mean = 0
and sigma (standard deviation) = 1.

The figure B.1 above has a random number generated between (-∞,∞) along the x-axis such
the mean of the numbers is equal to 3 and the standard deviation of the number is equal to 1.
Y-axis in the graph is the probability density function (PDF) of the points. Basically, the graph in
the figure represents PDF of a Gaussian distribution with mean 3 and standard deviation equal
to 1. This is the standard case of Gaussian distribution also called as a normal distribution.
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B.0.2 Gaussian Distribution in two Dimension

In two dimensions, each of the Gaussian PDF is an area covered under oval-shaped controlled
lines along the two-dimensional planes.
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FIGURE B.2: Probability density functions (PDFs) of two Gaussians with two vari-
ate random variables x and y.

In the figure C.1, the red and green oval-shaped curve lines denote the control line of two Gaus-
sian distributions with different mean and variance.

B.0.3 Generalization of Gaussian Distribution

For a D-dimensional vector x, the PDF of a multivariate Gaussian distribution is given by:

P(x|µ, Σ) =
1

(2Π)D/2‖Σ‖1/2 e−1/2(x−µ)TΣ
1

x−µ
(B.2)
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FIGURE B.3: Normalized Gaussian distribution in three dimension.
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Appendix C

Gaussian Mixed Model

In the real-world datasets normally have more than one Gaussian component. Each of these
components has its own probability density function. In terms of cluster analysis, each of these
components can represents a cluster.
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FIGURE C.1: Probability density functions (PDFs) of three univariate Gaussian
components

The figure C.1 has three Gaussian components with different means and standard deviations.

C.0.1 Gaussian Mixed Model in one Dimension

Figure C.1 shows a dataset with three Gaussian components (clusters): the first component
(green in the figure above) has a bell-shape PDF, the second component (purple in the figure
above) has a stiff shape PDF and the last one (blue in the figure above) has a flat shape PDF.

The probability density function of the mixture of the three Gaussian components is given by
a linear combination of the individual PDFs. Each peak from the individual distribution may
create a local peak (maxima) in the mixed distribution. The PDF of the mixed Gaussian looks
like ranges of mountains which is shown in as dotted line in the figure C.1.
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Mixed Model

FIGURE C.2: Mixed model Gaussian (GMM) distribution of three univariate Gaus-
sian components is given by a linear combination of the three Gaussians.

The figure C.2 combines the three Gaussian components in figure C.1. The mixed Gaussian is
represented by dot line in the figure.

C.0.2 Gaussian Mixed Model (GMM) for two Dimensions

Control lines for the Gaussian mixture of the two Gaussian components are obtained by a linear
combination of the control lines from each component. If we visualize each of these Gaussian
components as a mountain, the mixed Gaussian is the range of mountains that is the topology
of the mountains.
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FIGURE C.3: Probability density functions (PDF) of two variate Gaussian compo-
nents
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The figure C.3 shows the linear combination of two Gaussian components defined in the figure
B.2. The control lines (curves) in red and green color represents the control lines for each of
the Gaussian whereas the control lines (cures) with blue color is the control lines formed by the
linear combination of two Gaussians.
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Appendix D

GMM Control Parameters and k

D.1 Control Parameters in GMM

The distribution of a dataset generated from GMM depends on several factors including fea-
ture space cardinality, number of clusters, location of centroid, shape of cluster and covariance
matrix. Therefore,it is worth observing how these parameters affect the formation of clusters
and cluster recovery. In this section, we discuss how feature space cardinality, number of Gaus-
sian components and covariance matrix of Gaussian components effect on cluster recovery in
k-Means. To evaluate the cluster recovery RAND index [[168]] is used.

For simplicity, we have used a spherical shaped Gaussian mixed model (GMM). This model
requires a single variance parameter of each component. Centroid for each component is drawn
randomly from a uniform distribution defined over the range 0 to 1. We vary the variance
of GMM components in the range starting from .1 to 2, with an interval of 0.1. Also, feature
space cardinality and the number of Gaussian component are drawn from 2,4,8,16,32, 64 and
2,4,8,16,32,64 respectively.

D.1.1 Visualization of GMM Datasets

As a visualization of a dataset provides an easy way to grasp patterns present in the dataset, we
go through the visual inspection of the datasets for all possible combinations under our control
environments defined above. We carried out principal component analysis (PCA) of each dataset
and used the first two components to display the data points in the two-dimensional plane.
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FIGURE D.1: Visualization of the synthetic datasets generated by Gaussian mixed
models. These models consist of two GM components and have four variates (fea-
tures). First two PCA )Principal component analysis) component are used to dis-

play the data points.
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FIGURE D.2: Visualization of the synthetic datasets generated by spherical shaped
Gaussian mixed models. These models consist of four Gaussian components and
have four variates (features). First two components of PCA are used to display

data points.

In the two figures above, we used different colors to distinguish different components of GMMs.
feature space cardinality of Gaussian is set to four in both examples. But, in the first figure, the
number of Gaussian components is set to two and in the second figure, the number of Gaussian
components is set to four. The variance of the GMM models varies from 0.1 to 2 in an interval of
0.1 in each subplot. Each of the sub-plots displays variances of the first two PCA components,
the number of Gaussian components and covariance of the model.

From data visualization in Figure D.1 and D.2, we observe that with the increase in the number
of Gaussian components, overlapping between the clusters increases. Also, with the increase
in covariance of GMM models, the data points are widely scattered get a higher resulting high
chance of data overlapping.
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FIGURE D.3: Performance of k-Means is influenced by the number of features of
the Gaussian components.

D.1.2 Observation based on cluster recovery

To choose the best parameter setting for GMM, we examine the performance of the k-Means on
basis of cluster recovery (RAND index) for each of the combination. Again, for each combina-
tion, we compare the results with a Gaussian model drawn with the same configuration but only
varying the covariance in the interval of +/-0.2.

• Number of feature

With the increase in feature space, the performance of k-Means is improved in both cases:
fixed covariance and mixed covariance.

• Number of clusters

Again, with the increase in the number of Gaussian components, the performance of k-
Means decreases in both cases. More important the tendency of cluster recovery remains
the same in either case.
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FIGURE D.4: Performance of k-Means against the number of Gaussian compo-
nents.

• Affect of covariance

Similar tend is obtained when we vary covariance. In overall, the increase in covariance
had decreased cluster recovery of k-Means but the trend of cluster recovery remains the
same in both cases of fix or interval covariance.
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FIGURE D.5: Performance of k-Means against the covariance of the Gaussian com-
ponents.

• Covariance interval
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captionPerformance of k-
Means against the range of covariance in Gaussian components with mixed covariance matrix.

We also notice that the increase in the window size of covariance in the second experiment
decreases the performance of k-Means in terms of cluster recovery.
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Appendix E

Effect of Noise in k-means
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FIGURE E.1: Effect of noise on the performance of k-Means. Datasets are generated
using Gaussian mixed models. Noise i generated from two different distributions:

Gaussian and uniform distributions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Noise Distribution

Gaussian
Uniform

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Noise Model

Feature Added
Blur Feature
Blur Cluster based Feature

Noise Strength: 0- No Noise, 1- Half Noise, 2- Full Noise
Dataset: Realworld(UCI machine learning repository)

R
A

N
D

 In
de

x

FIGURE E.2: Effect of noise on the performance of k-Means in real-world datasets.
Datasets are generated using Gaussian mixed models. Noise are generated from

two different distributions: Gaussian and uniform distributions.

From our experiments, we observe that uniform feature noise has greater influence in the perfor-
mance of k-Means. However, in the real-world datasets feature noise from both the distributions
have a similar effect on the performance of k-Means.
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E.1 Using Cluster Validation Index in Lp

The table E.1 shows cluster validation index can be used to find appropriate distance coefficient
for Minkowski metric in Lp space.
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