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Abstract

K-Means is the most popular and widely used clustering algorithm. This al-
gorithm cannot recover non-spherical shape clusters in data sets. DBSCAN is ar-
guably the most popular algorithm to recover arbitrary shape clusters; this is why
this density-based clustering algorithm is of great interest to tackle its weaknesses.
One issue of concern is that DBSCAN requires two parameters, and it cannot re-
cover widely variable density clusters. The problem lies at the heart of this thesis
is that during the clustering process DBSCAN takes all the available features and
treats all the features equally regardless of their degree of relevance in the data set,
which can have negative impacts.

This thesis addresses the above problems by laying the foundation of the feature
weighted density-based clustering. Specifically, the thesis introduces a density-
based clustering algorithm using reverse nearest neighbour, DBSCANR that re-
quire less parameter than DBSCAN for recovering clusters. DBSCANR is based
on the insight that in real-world data sets the densities of arbitrary shape clusters
to be recovered within a data set are very different from each other.

The thesis extends DBSCANR to what is referred to as weighted DBSCANR, W-
DBSCANR by exploiting feature weighting technique to give the different level of
relevance to the features in a data set. The thesis extends W-DBSCANR further
by using the Minkowski metric so that the weight can be interpreted as feature
re-scaling factors named MW-DBSCANR. Experiments on both artificial and real-
world data sets demonstrate the superiority of our method over DBSCAN type
algorithms. These weighted algorithms considerably reduce the impact of irrelev-
ant features while recovering arbitrary shape clusters of different level of densities
in a high-dimensional data set.

Within this context, this thesis incorporates a popular algorithm, feature selec-
tion using feature similarity, FSFS into both W-DBSCANR and MW-DBSCANR, to
address the problem of feature selection. This unsupervised feature selection al-
gorithm makes use of feature clustering and feature similarity to reduce the num-
ber of features in a data set. With a similar aim, exploiting the concept of feature



similarity, the thesis introduces a method, density-based feature selection using
feature similarity, DBFSFS to take density-based cluster structure into considera-
tion for reducing the number of features in a data set. This thesis then applies
the developed method to real-world high-dimensional gene expression data sets.
DBFSFS improves the clustering recovery by substantially reducing the number of
features from high-dimensional low sample size data sets.
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Chapter 1

Introduction

The digital universe is growing in size every year, and it is projected to reach 44

zettabytes by 2020 (1 zettabyte is ∼ 1 trillion gigabytes) (EMC2, 2014). This wealth

of data being generated are stored in digital/electronic media, hence offering huge

potential for the automatic mining of data. Data by itself are unlikely to be useful

until they are not transformed into information/knowledge.

Machine learning methods are tools by which any amount of data can be ef-

ficiently processed to automate the pattern recognition and knowledge discovery

process. This task becomes difficult due to the large quantities of irrelevant in-

formation associated with the collected data. Feature weighting is one of the most

fundamental techniques of machine learning. Feature weighting identifies those

most salient features for a learning algorithm to focus on the important aspects

of the data most useful for future analysis and prediction. The hypothesis ex-

plored in this thesis is that feature selection for unsupervised learning tasks can

be accomplished based on the different degrees of relevance of features. Different

supervised and unsupervised learning algorithms can be benefited from such a
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feature selection process. A feature weighting-based feature selection technique is

developed and evaluated in the context of popular unsupervised learning meth-

ods on a variety of real-world and artificial settings. Feature weighting technique

can be used to eliminate irrelevant data in order to improve the performance of the

machine learning algorithms that would hence otherwise be, in many cases, com-

putationally expensive and may degrade the learning performance. In addition,

the proposed technique compares favourably with all the state-of-the-art variants

from the literature.

1.1 Motivation and background

In data mining and machine learning literature, the problem of data clustering

has been widely studied. Clustering is an unsupervised learning problem which

involves unlabeled data (Duda et al., 1973). It has been applied as a dominant

data analysis tool in diverse fields including medicine, marketing, bioinformat-

ics, image processing, geography, physics and astronomy (Amorim and Mirkin,

2012; Huang et al., 2005; Jain et al., 1999; Liu and Motoda, 2007). The three most

widely studied clustering algorithms are K-Means - a partitional clustering al-

gorithm (MacQueen et al., 1967), single-linkage - a hierarchical clustering algorithm

(McQuitty, 1957; Sneath et al., 1973) and Density-based Spatial Clustering of Ap-

plications with Noise, DBSCAN - a density-based clustering algorithm (Ester et al.,

1996).
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In real-world data sets, it is unlikely that all features will be relevant. In fact,

even among the relevant features, there may be different degrees of relevance. This

has been taken further by several researchers (Aggarwal et al., 1999; Amorim and

Mirkin, 2012; Chan et al., 2004; Chen et al., 2012; De Soete, 1986, 1988; Deng et al.,

2010; DeSarbo et al., 1984; Fan et al., 2009; Friedman and Meulman, 2004; Green

et al., 1990; Huang et al., 2005, 2008; Ji and Ye, 2011; Ji et al., 2013; Jing et al., 2007;

Makarenkov and Legendre, 2001; Modha and Spangler, 2003; Parsons et al., 2004;

Strehl et al., 2000; Tsai and Chiu, 2008) over the last few decades for K-Means type

algorithms. A feature is assigned a binary weight in ordinary feature subset selec-

tion methods, where 1 means the feature is selected and 0 otherwise. They give

the same level of relevance to all the features they select. This issue should be

addressed during the clustering process (De Amorim, 2016) by adopting feature

weighting, and density-based clustering is not any different. However, feature

weighting technique is yet to be investigated in relation to density-based clus-

tering algorithms. Feature weighting assigns a value in a range [0, 1] such that

greater weight represents salient features. However, calculating feature weights

without labelled samples is not a trivial task (De Amorim, 2011). This leads us

to the main contribution of this research work of developing recovering arbitrary

shape clusters for feature-weighted density-based clustering algorithm.
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1.2 Key research problem

The overarching goal of this work is to conduct the research of feature weighting

from the perspective of density-based clustering by using the Minkowski metric.

The research pursues the above insight into the context of both algorithms and

applications in order to answer the following core question:

Can we use the Minkowski metric to improve feature weighted density-based clustering

algorithm?

Next section identifies the aim of this work and sets out the objectives to invest-

igate the above research problem.

1.3 Research aim and objectives

This work mainly aims to calculate feature weights while recovering clusters of

different shapes and sizes.

The objectives of this research to answer the above question are:

1. To answer the research question and evaluate the introduced algorithms

a) Review density-based clustering algorithms and feature weighting tech-

niques.

b) Acquire artificial and real-world data sets.

c) Use reverse nearest neighbour to develop a density-based clustering al-

4



gorithm.

d) Develop a weighted density-based clustering algorithm.

e) Use Minkowski metric to develop a weighted density-based clustering

algorithm.

f) Define the evaluation criterion guided by prior works.

g) Apply the developed algorithms to high dimensional real-world data

sets which contain more irrelevant features than artificial low dimen-

sional data sets.

h) Compare the developed algorithms with state-of-the-art counterparts.

2. To analyse the impact of feature similarity in developed algorithms

i) Conduct experiments using the popular feature similarity based feature

selection method (Mitra et al., 2002) on real-world high dimensional low

sample size data sets.

j) Leverage the concept of feature similarity (Mitra et al., 2002) and de-

velop a density-based feature selection method.

k) Apply the developed algorithms to real-world high dimensional low

sample size data sets.

l) Compare the developed density-based feature selection method with

FSFS.
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1.4 Research contributions

The major contributions are summarised below:

1. This thesis introduces a density-based clustering algorithm identified in Sec-

tion 1.3, 1(c) to address the parameter selection and variable density cluster

recovery issues of DBSCAN simultaneously in Section 3.3. We refer to this al-

gorithm as the Density-based Clustering of Applications using Reverse Nearest

Neighbour (DBSCANR).

2. A feature weighting based algorithm identified in Section 1.3, 1(d) is de-

veloped in Section 4.3.1 to deal with degree of relevance of features issue

in relation to density-based clustering. We refer to this algorithm as the

Weighted DBSCANR (W-DBSCANR).

3. The feature weighting algorithm in Contribution 2 identified in Section 1.3,

1(e) is then further extended in Section 4.3.2 so that the density-based feature

weights can be seen as feature rescaling factors. We refer to this algorithm as

the Minkowski Weighted DBSCANR (MW-DBSCANR)

4. The popular feature selection method, FSFS is applied to the developed fea-

ture weighted density-based clustering algorithms, W-DBSCANR and MW-

DBSCANR in Section 5.4.1 and identified in Section 1.3, 2(i).

5. A density-based feature selection method identified in Section 1.3, 2(j) is de-

veloped in Section 5.4.2 for reducing the number of features based on their
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similarity to improve feature weighted density-based clustering. We refer to

this algorithm as the Density-based Feature Selection using Feature Similar-

ity (DBFSFS).

1.5 Thesis organisation

This thesis is organised into six chapters.

Chapter 2 presents a literature review of clustering with an emphasis on density-

based clustering. This chapter also justifies our choice of DBSCAN.

Chapter 3 describes our new method for density-based clustering using the

reverse nearest neighbour. The superiority of the algorithm is established through

experiments on various artificial and real-world data sets of different shapes, sizes

and dimensions.

Chapter 4 discusses our new density-based clustering methods that implement

feature weighting with and without using the Minkowski metric. Our experiments

demonstrate the superiority of our methods.

Chapter 5 applies FSFS to density-based feature weighting algorithms in high-

dimensional space. This chapter presents experiments with a popular feature se-

lection method that selects features based on feature similarity. In this chapter, we

introduce a new feature reduction method aligned with density-based clustering.

Finally, in Chapter 6, we conclude and discuss future work.
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Chapter 2

Literature review of clustering

2.1 Introduction

Hartigan (1975) defined clustering as grouping objects (in this work object, point,

entity, and observation are used interchangeably because all these terminologies

appear in the literature) that are as similar as possible. As opposed to supervised

learning, clustering is an unsupervised learning technique with unlabelled data

requirement (Xu and Wunsch, 2008). The history of clustering goes back as far as

the 17th-century (Hartigan, 1975). In 1962, Sokal and Sneath (Sneath and Sokal,

1962), Good (Good, 1965), Jardine et al. (Jardine and Sibson, 1971) and Cormack

(Cormack, 1971) motivated the research of modern clustering techniques.

Since similar objects group together to form a cluster, the definition of sim-

ilarity is critical for clustering, hence, this similarity measure is customarily ex-

pressed through a dissimilarity measure (more often, the measure of distance)
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(Arora et al., 2013; Ball, 1965; Beale, 1969; Bonner, 1964; Cheetham and Hazel,

1969; Choi et al., 2010; Edwards and Cavalli-Sforza, 1965; Friedman and Rubin,

1967; Galluccio et al., 2013; Gower and Ross, 1969; Hartigan, 1972; Huang et al.,

2014; Kulkarni et al., 2015; Lawson and Falush, 2012; Patidar et al., 2012; Wang

et al., 2002; Yu et al., 2004). For any given data set, each object is described by its

features. Similarity among objects is greatly influenced by the latter. Thus, the

clustering will depend on such features. In terms of separation and homogeneity,

(Jain and Dubes, 1988) clusters may be described as higher density regions separ-

ated by lower density regions. The clustering task aims to automatically discover

such latent, natural, interesting and meaningful structure or regions (Everitt et al.,

2011).

The task of clustering is known to be performed in the unsupervised fashion

of learning. Clustering algorithms have several advantages over algorithms based

on supervised learning, though the former does learn from the unlabelled data

and the features that describe them. Clustering algorithms outperform supervised

learning algorithms when the acquired labelled data are insufficient, not carefully

chosen, do not cover most of the common behavioural patterns, incorrect, unreli-

able, incur considerable manual labelling cost, and varied sufficiently to cover all

eventualities (Tsoi et al., 2006). In a similar context, Candillier et al. (2006) showed

that knowledge inferred from clustering algorithms could significantly improve

the performance of supervised learning algorithms.

In (Mirkin, 2012), five mutually inclusive objectives of clustering are outlined
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which are not necessarily exhaustive: (i) structuring, representing data as homo-

geneous subgroups of objects called clusters (Jain and Law, 2005). (ii) description of

clusters with respect to relevant features, not essentially concerned in discovering

them. (iii) association, involves uncovering interrelations among various aspects of

the phenomenon by matching descriptions of the same clusters in terms of their

features associated with the aspects. (iv) generalisation, making general statements

about the data structure and, potentially, the phenomena that the data relate to. (v)

visualisation, visually representing cluster structures over a well-known ground

image.

After grouping objects by the clustering algorithm, each object needs to be as-

signed to a cluster. There are four categories of assignment that directly impact

the structure of the final cluster (Witten et al., 2016). Among them two of the

most important categories are Non-overlapping and Hierarchical assignments. Non-

overlapping assignment involves the association of each object to exactly one cluster

number. Hierarchical structure of clusters assigns each object so that at the top level

the object space divides into just a few clusters, each of which splits into its own

sub-clusters at the next level, and so on.

2.2 Clustering Algorithms

The fact that there is no precise definition of cluster is partially responsible for

the development of many clustering algorithms (Estivill-Castro, 2002). Hence, the
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latter attracted many comprehensive reviews (Aldenderfer and Blashfield, 1984;

Hartigan, 1975; Jain and Dubes, 1988; Kaufman and Rousseeuw, 2009; Mirkin,

2012; Romesburg, 2004; Xu and Wunsch, 2008). The purpose of any clustering

algorithm is to group a data set Y containing n objects yi ∈ Rm into K clusters

S = {S1, S2, ..., SK}. Considering hard clustering, given a object yi which can be

assigned to a single cluster Sc ∈ S. Thus, the partitioning is subject to Sk ∩ Sl = ∅

for k, l = 1, 2, ..., K and k 6= l.

Arguably, the most popular way of calculating the dissimilarity between two

objects yi, yj each described over V features is given by the squared Euclidean met-

ric, that is

d(yi, yj) =
V

∑
v=1

(yiv − yjv)
2. (2.1)

Minkowski p-metric between two points x = xv and y = yv in V-dimensional

feature space defined by the following equation

dp(x, y) =

(
V

∑
v=1
|xv − yv|p

)1/p

. (2.2)

When p is 1 and 2, Equation (2.2) represents Hamming and Euclidean distance

respectively.

Clustering algorithms are broadly categorized into hierarchical, partitional and

density-based methods.
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2.2.1 Hierarchical Clustering

Hierarchical clustering algorithms generate binary tree-based data structures (also

known as dendrogram) to resolve the problem of clustering (Reddy and Vinzamuri,

2013). Hierarchical clustering can be divided into bottom-up (agglomerative clus-

tering) and top-down (divisive clustering) methods. Agglomerative methods be-

gin at the bottom level with singleton clusters and continue merging recursively

two or more most similar clusters. Divisive methods begin by taking a macro-

cluster containing all the objects at the top level and recursively split into smaller

binary groups.

Single-link and Complete-link clustering are two of the most popular agglom-

erative clustering methods. In single linkage clustering (McQuitty, 1957; Sokal

and Sneath, 1972), also known as the nearest neighbour method, the similarity

between two clusters is determined by the two closest objects to the different

clusters. Clearly, this method focuses on the local behaviour of the clusters. There-

fore, it is partially capable of identifying non-elliptical shape clusters, but it can-

not handle clusters of varying density. In contrast to the single-linkage, complete-

linkage clustering (King, 1967) determines the inter-cluster similarity based on the

farthest distance of a pair of objects. This method gives importance to the cluster

structure and therefore, as opposed to single-linkage clustering is biased to com-

pact and elliptical shape clusters. Group Average Criterion (GAC) takes the dis-

tance between the centroids (usually the average of a cluster) into consideration,

and Ward method (Ward Jr, 1963) takes the number of elements in each cluster into
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account to calculate the proximity between two clusters. In (Mirkin, 2012), Mirkin

described the Ward Criterion algorithm as a divisive method. In this top-down

approach, the similarity between a pair of clusters is defined as the decrease in the

squared error that results when two clusters are split rather than merged. Similar

to K-Means (introduced in the next section and reference therein), These methods

fail to identify arbitrary shapes and different sizes clusters (Karypis et al., 1999).

2.2.2 Partitional Clustering

K-Means (Lloyd, 1982; MacQueen et al., 1967), is arguably, the most popular par-

titional clustering algorithm. It is known to be better than hierarchical clustering

algorithms in terms of efficiency (Manning et al., 2008). It is present in major data

mining and statistical packages such as iDA (Gaetz and Roiger, 2003), DBMiner

(Han, 2011), SPSS (Green and Salkind, 2010) and SAS (Everitt, 2001; Institute, 2004).

The generic K-Means clustering begins by selecting K initial centroids. Then, in

step 1, each object is assigned to the nearest centroid based on a specified similarity

measure (usually squared Euclidean distance measure). In step 2, the centroids are

updated iteratively after the clusters are formed. The algorithm repeats these two

steps until a certain convergence criterion is met. The minimization of the score

function of the K-Means algorithm is NP-Hard (Drineas et al., 2004), though it is

guaranteed to converge to a local minimum (Manning et al., 2008). There are many

weaknesses that impact the cluster recovery capabilities of K-Means. Initialization

methods (Arthur and Vassilvitskii, 2007; Bradley and Fayyad, 1998; Hartigan and

13



Wong, 1979; Krishna and Murty, 1999; Milligan, 1981; Mirkin, 2012) were proposed

to tackle the initial centroids problem. Researchers have proposed various estima-

tion methods to estimate the number of clusters (K) (Ball and Hall, 1965; Caliński

and Harabasz, 1974; Duda et al., 1973; Kaufman and Rousseeuw, 2009; Mojena,

1977; Newman and Girvan, 2004; Tibshirani et al., 2001; Yeung et al., 2001). Fea-

ture weighting based K-Means algorithms (Amorim and Mirkin, 2012; Chen et al.,

2012; Deng et al., 2010; Fan et al., 2009; Huang et al., 2005, 2008; Ji and Ye, 2011; Ji

et al., 2013; Jing et al., 2007; Tsai and Chiu, 2008) have been proposed to address

the issues of unequal relevance of features that describe the objects to be clustered

(see (De Amorim, 2016) for a survey). When using squared Euclidean distance as

input, K-Means is known to be biased to spherical shape clusters (De Amorim,

2011). Minkowski metric was utilised to address the issue of K-Means caused by

using squared Euclidean distance biased to spherical shape clusters.

2.2.3 Density-Based Clustering

Wishart (1969) was the first to propose the idea of density-based clustering in an

endeavour to improve single-linkage clustering by removing those objects trigger-

ing the chaining-effect prior to clustering. Given a frequency threshold k and a dis-

tance threshold ε over input, the proposed method removes objects before single-

linkage clustering that do not have at least k neighbours within ε distance. These

objects are called non-dense or noisy objects. Each non-dense object is then as-

signed to a cluster which contains its nearest dense object. This is certainly the most
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intuitive solution, as the former will strengthen the relationship between clusters

and the definition of the cluster by tuning the clusters’ density level. Hartigan

(1975) proposed another clustering algorithm similar to single-linkage and gener-

alized the concept of density-based clustering by defining density-contour clusters

as maximally connected sets of objects yi such that their density p(yi) exhibit at

least a certain density λ. The dissimilarity measurement, such as distance threshold

ε can be used to specify the links between pair of objects. Both methods assume

that given a data set Y ⊂ Rm from the population of unknown probability dis-

tribution p(y), density-based clusters are high-density regions. Finding the latter

requires one to estimate local density of each object and to define the connectivity

between a pair of objects. The former is achieved usually in the form of nearest

neighbour or kernel density estimate (Devroye and Wagner, 1977; Loftsgaarden

et al., 1965; Moore and Yackel, 1977; Parzen, 1962; Rosenblatt et al., 1956). Typic-

ally, two objects are said to be connected, if the distance between two objects is not

more than ε. These methods inspire the research of density-based clustering, and

hence, their influence is evident in other such algorithms.

An increasing amount of research have been focusing on numerous density-

based techniques (Alibeigi et al., 2012; Ankerst et al., 1999; Birant and Kut, 2007;

Borah and Bhattacharyya, 2004; Cai et al., 2017; Ester et al., 1996; Hinneburg et al.,

1998; Sengupta et al., 2015; Zhou et al., 2000) for last two decades. Ester et al. (1996)

proposed a density-based clustering algorithm called Density-based Spatial Clus-

tering of Applications with Noise (DBSCAN). The cluster construction of DBSCAN
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(description in Section 3.1) is based on the notion of density and objects’ connectiv-

ity introduced by Wishart (Wishart, 1969) and Hartigan (Hartigan, 1975). DBSCAN

is the pioneer of density-based clustering techniques as it is capable of discover-

ing clusters of different shapes and sizes, scalable to large databases and detect

outliers. Thus, DBSCAN has been a target to numerous extensions (Ankerst et al.,

1999; Birant and Kut, 2007; Edla et al., 2012; Hinneburg et al., 1998; Hou et al., 2016;

Ienco and Bordogna, 2016; Koteshwariah et al., 2015; Kumar and Reddy, 2016; Luo

et al., 2016; Ruiz et al., 2007; Viswanath and Babu, 2009). The latter has contributed

significantly to our understanding of the drawbacks of DBSCAN and different as-

pects of density-based clustering. DBSCAN detects clusters based on the single

density threshold ε, and hence, it favours uniform density clusters. In (Ankerst

et al., 1999), Ankerst et al. proposed OPTICS to address this issue. Unlike DB-

SCAN, OPTICS is capable of identifying clusters of different densities. To achieve

this, OPTICS determines the density of an object by taking multiple distances into

account. This way, however, OPTICS incur substantial I/O costs.

In an endeavour to scrutinize density-based clusters, DENCLUE (Hinneburg

et al., 1998) considers influence functions1 for density of an object. The grid-based

approach on DENCLUE enables efficient cluster recovery by processing the data in

one grid cell at a time. DENCLUE uses a tree-based structure to manage and access

the grids. However, DENCLUE requires one to select a large number of input

parameters to find clustering. DBSCAN has tended to focus on only spatial data

1Influence function models the influence of an object in its neighbourhood, typical examples are
Gaussian functions or wave functions.
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rather than non-spatial or temporal data. This limitation has been addressed by ST-

DBSCAN (Birant and Kut, 2007). ST-DBSCAN has the ability to handle temporal

data. It suffers the same drawback as DENCLUE. The centre of research relating

to DBSCAN is drifting towards the large scale and high-dimensional data sets.

This is evident in recent literature (Andrade et al., 2013; Gowanlock et al., 2017; He

et al., 2014; Kumar and Reddy, 2016; Patwary et al., 2015) where researchers have

focused on scalability issue of DBSCAN.

K-Means type algorithms find spherical shape clusters and use a single object

in order to represent a cluster. A cluster, on the other hand, is represented by the

set of all of its objects in density-based clustering algorithms, which allows them

to recover clusters of arbitrary shapes and sizes. Clustering Using REpresentat-

ives (CURE) (Guha et al., 1998) takes an approach to compromise the represent-

ation of a cluster by a specified number of objects rather than all the objects in

a cluster. The certain number of objects are generated (by, e.g., farthest neigh-

bour method) such that objects are as well-scattered from the cluster as possible.

Then they are shrunk toward the centre (usually by a specified fraction) of the

cluster. This multi-representative approach enables CURE to tune to the different

non-elliptical shapes.

CHAMELEON (Karypis et al., 1999) is a hierarchical algorithm aims to detect

arbitrary shape clusters by taking the closeness and interconnectivity of clusters

into account in order to find the most similar pair of clusters. Then the above two

properties are compared in terms of within and between clusters in order to merge
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them. CHAMELEON finds clustering in two steps. In the first phase, a graph

partitioning algorithm is used to cluster the objects into sub-clusters. In the final

phase, a hierarchical clustering approach is used to create clusters.

DBSCAN, CURE and CHAMELEON perform particularly well for low dimen-

sional data, but high dimensional data brings new challenges. As the dimension

grows higher, clustering becomes more difficult due to distance concentration ef-

fect. Jarvis and Patrick (Jarvis and Patrick, 1973) has taken a shared nearest neigh-

bour based approach and later in (Guha et al., 1999), ROCK was proposed to deal

with this issue. Specifically, the nearest neighbours of each object are calculated,

and then a new similarity measure between them is proposed in terms of the num-

ber of neighbours they share. This idea has been taken further by (Ertöz et al.,

2003) where the authors extend the Jarvis and Patrick model of Shared Nearest

Neighbour (SNN) based approach. Though these approaches provide very valu-

able insights about the definition of density, they are far from perfect and suffer

several drawbacks (e.g., ROCK has a bias to globular shape clusters).

Many clustering algorithms suffer from the parameter selection problem. De-

termining suitable parameters usually require domain knowledge unless the ad-

equate recommendation is not provided for parameter selection. This task be-

comes increasingly challenging when a small variation of parameter values causes

a considerable change in the clustering results. Thus, the number of parameters

in an ideal clustering algorithm must be as few as possible. Moreover, the in-

put parameters should require minimal domain knowledge. This is particularly
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true for high dimensional data sets. DBSCAN requires its user to specify mainly

two parameters ε and MinPts, which requires additional computational effort in

order to find their appropriate value. Moreover, The choice of the value of dens-

ity threshold ε critically depends on the structure of the data set. This is rather

evident when a small variation in ε drastically impact the efficacy of cluster re-

covery. ISDBSCAN (Cassisi et al., 2013) was proposed to reduce the parameters of

DBSCAN. ISDBSCAN follows two steps to find clustering. In the first step (pre-

processing step), the outlier detection algorithm removes all the objects it identi-

fies as outlier. Then in the second step, ISDBSCAN is applied to the residual data

set for clustering. This poses a rather interesting problem. ISDBSCAN critically de-

pends on the pre-processing step of the algorithm. If the pre-processing step does

not find the true outlier successfully, ISDBSCAN hardly converge. RNN-DBSCAN

(Bryant and Cios, 2017) was proposed with a similar aim. RNN-DBSCAN aims

at reducing the number of parameters of DBSCAN by adapting ISDBSCAN’s re-

verse nearest neighbour based density estimation. Thus, RNN-DBSCAN is able

to recover clusters with different degrees of density by setting a single parameter,

k. Unlike ISDBSCAN, the density of a point is determined by a special combina-

tion of nearest neighbourhood and reverse nearest neighbourhood instead of the

influence space. Many interesting results indicating the potential of successfully

identifying variable density clusters, reducing the number of parameters, estimat-

ing reduced parameters of DBSCAN have been reported. However, no studies in

the literature simultaneously examine to address these issues.
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On the problem of clustering, similarity measures play a critical role. In general,

clustering finds a set of groups (called clusters) based on a measure of similarity

in a given representation of objects in a way that similar objects reside within the

same group while minimizing the similarity of objects between different groups.

Ideally, clusters are a compact and isolated set of similar objects and can be of dif-

ferent sizes, shapes and densities (Jain, 2010). Therefore, the similarity measures

to be used as input to the clustering algorithms may critically impact the quality

of cluster recovery (Steinbach et al., 2004). To form clusters and data space naviga-

tion, the concept of dissimilarity is an essential component, and the term distance

is most frequently used as dissimilarity (description in Section 2.2) (Pedrycz, 2005).

Different distance measures biased to different geometrical shapes and hence may

impact the characteristics of clusters to be formed (De Amorim, 2011). Prior works

show that the choice of p (in Equation (2.2)) is critical for better cluster recovery

(Aggarwal et al., 2001; Beyer et al., 1999; Hinneburg et al., 2000). In a similar con-

text, Aggarwal et al. studied Lp distance measures in (Aggarwal et al., 2001). The

authors observe that in a higher-dimensional setting, the performance of cluster-

ing varies for different values of p. This point has been taken further by Amorim

et al. in (Amorim and Mirkin, 2012), and their K-Means (MacQueen et al., 1967)

variant iMWK-Means (De Amorim, 2011) outperforms generic K-Means and WK-

Means (Chan et al., 2004; Huang et al., 2005, 2008). DBSCAN use Euclidean dis-

tance measure to find density (see Section 3.1). Based on previous works (Aggar-

wal et al., 2001; Beyer et al., 1999; Hinneburg et al., 2000), the choice of distance

metric obfuscate the task of clustering in high-dimensional setting due to the ef-
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fect of distance-concentration (Beyer et al., 1999). If the two neighbours belong

to the same distribution, the effect of distance-concentration implies that farthest

neighbour and closest neighbour have similar distances (Aggarwal and Reddy,

2013b). The choice of distance metric and its impact on high-dimensional data in

the density-based scenario is anything but well studied in the literature. For in-

stance, Minkowski metric has been successfully used to produce provably efficient

algorithms for cluster recovery e.g., in (Amorim and Mirkin, 2012) and for a wide

variety of problems (Banerjee et al., 2005; Doherty et al., 2004; Filippone et al., 2008;

Francois et al., 2007; Kivinen et al., 2006; Rudin, 2009).

One of the major drawbacks of DBSCAN is that it gives the same level of rel-

evance to all the features. Clustering requires the formulation of a hypothesis

(De Amorim, 2011). In (Liu and Motoda, 2007), the authors argued that the size

of the hypothesis space is exponentially proportional to the number of features in

the data. The performance of a given learning algorithm tends to degrade due to

the existence of a large number of features. In higher dimensions, DBSCAN faces

a further issue. Since DBSCAN relies on distance function to define density, the

precision of distance function is crucial to the density. However, it may become

meaningless in higher dimensions due to distance-concentration effect.

Feature selection can handle this issue by removing irrelevant and redundant

features. According to Dye and Brodley (Dy and Brodley, 2004), feature selection

aims to find the least number of features that uncovers the most natural and in-

teresting clusters from data based on some predefined criterion. Feature selection
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methods are capable of lowering computational complexity and improving learn-

ing performance. A number of surveys exist in the literature on feature selection

algorithms (Alelyani et al., 2013; Chandrashekar and Sahin, 2014; Guyon and Elis-

seeff, 2003; Tang et al., 2014). Feature relevance can be defined by various criteria

such as distance, correlation, separability and dependency that can be exploited by

different feature selection algorithms. Similarity-based feature selection methods

assess the significance of features by their ability to preserve data similarity. In

the case of unsupervised feature selection methods, the similarity is most often de-

termined based on a distance metric. Laplacian Score (He et al., 2005), SPEC (Zhao

and Liu, 2007), Multi-Cluster Feature Selection (Cai et al., 2010), `2,1-Norm Regu-

larized Discriminative Feature Selection (Yang et al., 2011) and Feature Selection

Using Nonnegative Spectral Analysis (Li et al., 2012) are some of the well-known

unsupervised feature selection techniques.

Feature weighting can be described as a generalization of feature selection (Wett-

schereck et al., 1997) since it aims to assign a weight within the interval [0,1] to

each feature rather than binary weights (Aggarwal and Reddy, 2013b). Feature

selection methods give the same level of relevance to all the features they select.

This issue can be addressed by Feature weighting. It assigns different values to the

relevant features based on their significance. Feature weighting based clustering

is becoming increasingly common in removing irrelevant and redundant features

from representational feature space. In high dimensional data sets, clusters tend

to reside in a subset of features rather than in the entire feature space. Thus, the
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inclusion of all available features will obscure the cluster recovery capabilities of

density-based algorithms. It appears from the literature that numerous research

(Aggarwal et al., 1999; Amorim and Mirkin, 2012; Chan et al., 2004; Chen et al.,

2012; De Soete, 1986, 1988; Deng et al., 2010; DeSarbo et al., 1984; Fan et al., 2009;

Friedman and Meulman, 2004; Green et al., 1990; Huang et al., 2005, 2008; Ji and Ye,

2011; Ji et al., 2013; Jing et al., 2007; Makarenkov and Legendre, 2001; Modha and

Spangler, 2003; Parsons et al., 2004; Strehl et al., 2000; Tsai and Chiu, 2008) have

been conducted on feature weighting based K-Means algorithm. However, no at-

tempt was made to learn feature weights for density-based clustering algorithms

such as DBSCAN, arguably, the most popular clustering algorithm to recover ar-

bitrary shape clusters.

2.3 Applications of DBSCAN

DBSCAN is well-known for its capability of recovering different shapes and sizes

clusters. It is simple, intuitive, fast and scalable. Probably, these are the reasons

why it is increasingly being applied to diverse real-world application domains.

Some of the very interesting applications of DBSCAN is presented here which are

not exhaustive by any means.

In (Georgoulas et al., 2013), a hybrid approach built upon DBSCAN to cluster

seismic events. Unsurprisingly, the empirical results showed that the proposed

variant of DBSCAN was capable of finding irregular shaped seismic regions. In
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(Antonelli et al., 2013), DBSCAN was applied to fairly high-dimensional diagnosis

data sets of diabetic patients and was able to identify the patient groups with a

similar diabetic history and complications. The results of clustering were helpful

to provide similar medical guidelines to those patients in the same group.

A DBSCAN based algorithm was applied in (Liang et al., 2014) to count the

crowd flow to investigate the characteristics of the crowd flow in a scene. A novel

power profiling approach based on DBSCAN (Rollins et al., 2014) was developed

in order to detect energy consumption events. The clustering solution obtained

from the proposed method was then used to improve home energy management.

The proposed extension (Mai et al., 2015) with an effort to improve the scalability

of DBSCAN was applied to segment the white matter fibre tracts in the human

brain to understand the brain structure and various diseases.

DBSCAN was used to detect parking slots in (Lee et al., 2016). The proposed

DBSCAN based parking slot detection based algorithm was robust and was able

to identify short, curvy, and distorted parking lines.

Tweet-SCAN (Capdevila et al., 2017) was developed to detect the event detec-

tion in Twitter to enable reasoning about the discovered events. DBSCAN was

utilized to effectively detect DDoS attacks regardless of high network traffic to en-

sure the availability of resources. The proposed method (Girma et al., 2018) was

able to identify flood attacks from the legitimate flush crowd.

Perhaps for the simplicity and its arbitrary shape recovery capability, there is

an active interest on adopting DBSCAN in a wide array of applications ranging
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from scene understanding to autonomous driving (Chen et al., 2020; Wang et al.,

2019; Zhao et al., 2019). Therefore, it is of great interest of this thesis to tackle its

shortcomings.

2.4 Clustering validation measures

Clustering validity measures deal with the quality of clustering (Maulik and Bandy-

opadhyay, 2002). These measures have been identified as one of the main issues

in the problem of data clustering (Jain and Dubes, 1988). The problem we tackle

here is: how close the structure of given clusters reflect the representation of data.

There is no consistent and conclusive solution to this problem due to the following

reasons:

(i) In an unsupervised learning problem, such as clustering, true class labels

may not be available in the real-world. Now when the true class labels cor-

respond to the different regions in the data space, even if the true labels are

available, those levels may not be aligned with the natural structure of the

cluster. Therefore, in clustering problem, most often, it is not possible to pre-

cisely quantify the quality of clustering in terms of accuracy.

(ii) Different clustering algorithms produce different clustering solutions, result-

ing in different cluster structure. As a consequence, a specific quality meas-

urement may favour a particular type of clustering algorithms.

(iii) Different clustering algorithms may produce different number of clusters.
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However, in real-world, we may not know the true number of clusters.

(iv) Finally, a clustering algorithm will still recover clusters even if there are no

natural clusters available.

Since the success of clustering algorithms and applications are measured by

clustering validation indices, this area has been a target to a considerable research

effort (Bezdek and Pal, 1998; Dubes, 1987; Halkidi et al., 2001, 2002).

Clustering validity indices are categorised into two types: internal clustering

validity indices and external validity indices (Xiong and Li, 2013).

2.4.1 Internal indices

Internal Clustering Validation Indices (CVIs) assess the quality of clustering without

any external information (Brun et al., 2007; Karypis et al., 2000; Song and Zhang,

2008; Tan et al., 2016). Clustering algorithms may produce a clustering even if the

data has no cluster structure. A number of CVIs have been proposed to meas-

ure the quality of clustering obtained using distance-based algorithms such as K-

Means (for a review see (Arbelaitz et al., 2013) and references therein). Selecting a

CVI to use is not a trivial matter; it should take into account the definition of the

cluster in use and any other requirement that may exist. CVIs suitable for density-

based clustering algorithms are not as popular as CVIs for partitional clustering

algorithms.

This research work does not focus on finding and comparing CVIs suitable

26



for density-based clustering algorithms. One could apply any such CVI to eval-

uate the clustering results produced by the introduced algorithms. With this in

mind, such comparison is left for future work. Density-Based Clustering Valida-

tion (DBCV) (Moulavi et al., 2014) measures clustering quality based on the relative

density connection between pairs of objects. This index is formulated on the basis

of a new kernel density function, which is used to compute the density of objects

and to evaluate the within and between-cluster density connectedness of cluster-

ing results. This is aligned to the definition we use of the density-based cluster.

Let DSPC be the density separation of a pair of clusters and DSC be the density

sparseness of a cluster. The validity index of the Clustering Solution S = Si, 1 ≤

i ≤ K containing K clusters is defined as the weighted average of the CVI of all

clusters in S.

DBCV(S) =
K

∑
i=1

Si

n
VS(Si) (2.3)

where,

VS(Si) =

min
1≤j≤K,j 6=i

(DSPC(Si, Sj))−DSC(Si)

max( min
1≤j≤K,j 6=i

(DSPC(Si, Sj)), DSC(Si))

Using density-based clustering algorithms, DBCV has unsurprisingly outperformed

the Silhouette Width (Rousseeuw, 1987), the Variance Ratio Criterion (Caliński

and Harabasz, 1974), and Dunn’s index (Dunn, 1974). These three CVIs are not

well-aligned with the definition of the cluster used by density-based clustering

algorithms, but DBCV is. DBCV has also outperformed Maulik-Bandyopadhyay

(Maulik and Bandyopadhyay, 2002) and CDbw (Halkidi and Vazirgiannis, 2008),
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since this method directly takes density and shape properties of clusters into ac-

count.

DBCV index indeed takes density and shape properties into account, how-

ever, it is not without weaknesses. It cannot handle clusters that are not well-

separated (Boudane and Berrichi, 2020) and in the case when inter-cluster densities

are widely variable (Liang et al., 2020). Furthermore, DBCV favours density-based

algorithms and may not work well in higher-dimensional settings. In the next sec-

tion, we present external indices.

2.4.2 External indices

For a given data set, external CVIs evaluate clustering results against true class

labels. In real-world, most often, the class labels are not available; if the true la-

bels were available, we would not need a clustering approach to partition data.

Nevertheless, these CVIs are more ”impartial” and more commonly used than the

internal indices (Aggarwal and Reddy, 2013a). Moreover, suitable internal indices

are not guaranteed and remain unknown in practice (Xiong and Li, 2013). When

developing a clustering algorithm, since external indices would allow us to eval-

uate the extent to which the new algorithm aligned with the real-world scenarios,

we decided to use the external index in this work.
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Purity

Purity (Zhao and Karypis, 2001) is one of the frequently used external clustering

validation index that measures the quality of the clustering with respect to the

given class labels (Steinbach et al., 2000; Zhao and Karypis, 2004) and the purity of

clustering is defined as

P(U, S) =
1
N

K

∑
c=0

max
i
|Sc ∩Ui| (2.4)

where |Sc ∩Ui| denotes the number of points that are both in cluster Sc and true

partition Ui. The purity is bounded between [0, 1]. The larger the purity, the better

the clustering performance.

Table 2.1: Example of evaluation using purity

Ground Truth Clustering Evaluation

U1 = {a, b, c} S1 = {a, b}
U2 = {d, e, f } S2 = {c, d, e} P(U, S) = 2+2

6 = 0.6667
S3 = { f }

In Table 2.1, the number of most frequent class labels in cluster S1, S2 and S3 is

2, 2 and 0 respectively.

One of the major weaknesses of this validation index is that the measure of

purity is susceptible to number of clusters. Hence this validation index falls short

as an accuracy measure when a clustering algorithm aims to optimise the quality

of clustering and the number of clusters (Ajmera et al., 2002; Demiriz et al., 1999;

Eick et al., 2004).
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Rand Index

Rand Index (RI) (Rand, 1971) is a pair counting-based evaluation measure of the

number of agreements in contrast to the number of disagreements between can-

didate clustering solutions.and is defined as

RI(U, S) =
∑n

i<j γ(yi, yj)

(n
2)

(2.5)

where,

γ(yi, yj) =



1, if there exist Si ∈ S and Uj ∈ U such that objects yi and yj are in Si and Uj.

1, if there exist Si ∈ S and Uj ∈ U such that objects yi is in both Si and Uj while yj is in neither Si nor Uj.

0, otherwise.

The Table 2.2 below presents an example of the Rand index

Table 2.2: Example of evaluation using Rand Index

Number of pairs both in U and S belongs to

Same subset Different subset

Ground Truth Clustering Agree Disagree Agree Disagree Evaluation

U1 = {a, b, c} S1 = {a, b} (a, d), (a, e), (a, f ),
U2 = {d, e, f } S2 = {c, d, e} (a, c), (b, c), (b, d), (b, e), (b, f )

S3 = { f } (a, b), (d, e) (e, f ), (d, f ) (c, f ) (c, d), (c, e) RI = 2+7
2+7+6

2 4 7 2 = 0.6

In Table 2.2, (a, b) and (d, e) are the 2 object pairs belongs to both U and S in

a group. 7 of 15 ((6
2) = 15) object pairs, (a, d), (a, e), (a, f ), (b, d), (b, e), (b, f ) and

(c, f ), are not in any of the groups in U or S. 4 pairs in the same subset (a, c), (b, c),

(e, f ), (d, f ) in U and not in S. 2 pairs in the different subset (c, d), (c, e) in U and
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not grouped in S.

RI has been used in the feature weighting literature (Amorim and Mirkin, 2012;

Huang et al., 2005) to evaluate the goodness of clustering results. One of the ma-

jor weaknesses of RI is that the expected value of RI is not constant (Santos and

Embrechts, 2009). For instance, if we compare known clustering with a random

clustering, given the varying number and size of the clusters, the value of RI var-

ies significantly, hence the variable expected value. In addition, since RI does not

take the chance of overlap into account, the RI value of the comparison is higher,

this higher value indicates better clustering recovery even though the labels are

random. RI considers similarity only in terms of agreement and disagreement

against the ground truth. Therefore, even with a random set, there could be a lot

of agreement with the known labels, hence higher baseline value. Adjusted Rand

Index (Hubert and Arabie, 1985), the corrected-for-chance version of Rand Index

is introduced to address this issue.

Adjusted Rand Index

Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) addresses the above issues

by correcting RI for a chance as defined below

ARI =
Index− Expected Index

Maximum Index− Expected Index
(2.6)
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According to the ARI, the partition required to be in accord with the observed

pairs. The expected number of the latter in agreement with the class label assis

defined by

E

[
∑
ij

(
nij

2

)]
=

[
∑i (

ti·
2 )∑j (

t·j
2 )
]

(n
2)

(2.7)

The above equation is associated with a cell in the contingency table, where ∑i (
ti·
2 )

is the number of object pairs in the row the number of pairs in the column ∑j (
t·j
2 )

and (n
2) is the total number of object pairs.

Manual classification and possible object pairs in the clustering solution is aver-

aged over to obtain the maximum number of object pairs. Therefore, the corrected

RI is given by

Adjusted Index︷ ︸︸ ︷
ARI(U, S) =

Index︷ ︸︸ ︷
∑
ij

(
nij

2

)
−

Expected Index︷ ︸︸ ︷
[∑

i

(
ti·
2

)
∑

j

(
t·j
2

)
]/
(

n
2

)
1
2
[∑

i

(
ti·
2

)
+ ∑

j

(
t·j
2

)
]︸ ︷︷ ︸

Max Index

− [∑
i

(
ti·
2

)
∑

j

(
t·j
2

)
]/
(

n
2

)
︸ ︷︷ ︸

Expected Index
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We present an example in the following example

Table 2.3: Example of evaluation using Adjusted Rand Index

Ground Truth Clustering Evaluation

U1 = {a, b, c} S1 = {a, b}
U2 = {d, e, f } S2 = {c, d, e} ARI(U, S) = 2− 4×6

15
1
2 (4+6)− 4×6

15
=

2− 8
5

5− 8
5
= 0.1176

S3 = { f }

From Table 2.2 and 2.3 the value of RI is typically much greater than the ARI.
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Unlike RI, the range of ARI does not lie between 0 and 1, more specifically, ranges

between ±1 (Hubert and Arabie, 1985), hence supports a wider range of values

(Santos and Embrechts, 2009). Due to its advantages of over RI, ARI is most pop-

ular (Ghosh and Acharya, 2013) and commonly used in feature weighting based

clustering literature (Amorim and Makarenkov, 2016; Breaban and Luchian, 2011,

2009; de Amorim, 2015; De Amorim, 2016; de Amorim and Hennig, 2015; Tsai and

Chiu, 2008). Based on the above reasons, following the literature, we decided to

use ARI as a measure of clustering accuracy in this thesis.

2.5 Conclusion

This chapter has demonstrated a considerable amount of expert endeavour over

the years spent on the various problems of clustering algorithms, more specifically

on the DBSCAN type clustering algorithms. Such efforts made DBSCAN the most

popular density-based clustering algorithm. This leads us to seek improvement of

DBSCAN by evaluating its weaknesses.

In this chapter, we have acknowledged that regardless of the shape of the clusters,

the criterion of K-Means type clustering algorithm leads to partitioning of a data

set that is equivalent to the Voronoi diagram of the recovered cluster centres. This

observation motivates DBSCAN to recover arbitrary shape clusters based on dens-

ity rather than distance. Thus, it regards high-density regions as a homogeneous

group of objects called clusters separated by contiguous low-density regions.
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DBSCAN is known to be the most intuitive and widely used density-based

clustering algorithm there is due to its ease of implementation and empirical suc-

cess. One of the main weaknesses of DBSCAN we acknowledge in this chapter

is that regardless of using two parameters, it is unable to recover widely variable

density clusters. OPTICS (Ankerst et al., 1999) has introduced an interesting al-

gorithm to overcome the variable density cluster recovery problem. A particular

ordering of data points based on the notion of core distance and mutual reachab-

ility distance is used to address this issue. ISDBSCAN (Cassisi et al., 2013) perhaps

for the first time proposed a variant based on reverse nearest neighbour (Korn

and Muthukrishnan, 2000) to exceed cluster recovery of OPTICS. RNN-DBSCAN

(Bryant and Cios, 2017) follows ISDBSCAN successfully and outperforms ISDBSCAN

using a special combination of the nearest neighbourhood in order to address the

variable density problem.

We acknowledged another major weakness in this chapter that DBSCAN treats

all the features equally that can have a disastrous effect on its cluster recovery

capability. This weakness arises due to the fact that all features are not relevant

or significant in a real-world data set. Consequently, clustering task may benefit

from selecting a subset of features rather than all the available features. Again if

the features are relevant, different features may have different degree of relevance.

Feature weighting should address this issue by tackling classification bias posed

by squared Euclidean distance, as demonstrated in Chapter 4.

In the next few chapters, we propose a solution to the above problems. Chapter
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3 suggests a new density-based clustering methods, then in Chapter 4 we provide

a compact solution to the feature relevance problem. Fortunately, we do have the

true class labels for the data sets we use in our experiments. This enabled us to use

the Adjusted Rand Index (ARI) to evaluate our clustering methods.
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Chapter 3

Improving density-based clustering

3.1 Density-based clustering

Unfortunately, there is no precise widely accepted definition for the term cluster. A

loose definition often employed is that a cluster is a compact set of similar points.

Clearly, clusters may have different cardinalities, shapes and densities. Density-

based clustering algorithms aim at discovering high-density regions that are separ-

ated from each other by contiguous regions of lower density (Kriegel et al., 2011). It

is intuitive to assign the term cluster to such high-density areas. These algorithms

rely heavily on a density estimation function, but they do not usually make as-

sumptions regarding the number of clusters in a data set, or the data distribution.

This can lead to the identification of arbitrarily shaped clusters. In this section, we

describe the key algorithms related to our research, with an added emphasis on

those we experimentally compare with.
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DBSCAN (Ester et al., 1996) is often considered the most popular density-based

clustering algorithm. As such, it can detect clusters of different cardinalities and

shapes. This does not mean one should disregard the importance of selecting an

appropriate similarity measure. This measure is a key to define the neighbourhood

of a point in a data set, which is intrinsically related to its density. Thus, the use of

different similarity measures may have an impact on the actual clustering.

Given a data set Y containing n points yi, each described over d features, DB-

SCAN begins by classifying each yi ∈ Y into one of three categories: (i) core; (ii)

(directly) reachable; (iii) outlier. A core point is a yi ∈ Y with at least minPts points

within a distance of ε. In other words, let

d(yi, yj) =
V

∑
v=1

(yiv − yjv)
2, (3.1)

and

Nε(yi) = {yj : yj ∈ Y ∧ d(yi, yj) ≤ ε}.

The point yi ∈ Y is a core point iff the number of points within a distance of ε from

yi, |Nε(yi)| ≥ minPts, where minPts is a user-defined threshold. A point yj is said

to be directly reachable from yi iff yi is a core point and yj ∈ Nε(yi). A point yj is

reachable from yi if there is a path of points yi, ..., yj where each point is directly

reachable from the previous point. Outliers are points that are unreachable from

any other point in the data set. DBSCAN produces a clustering using the defini-

tions above and following three simple steps: (i) for each yi ∈ Y, compute Nε(yi)
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and identify the set of core points; (ii) for each core point, identify all reachable

and directly reachable points; (iii) assign each non-core point (excluding outliers)

to its connected cluster.

DBSCAN produces a clustering based on three things: ε, minPts, and the dis-

tance function in use. Under usual conditions, the number of clusters is inversely

proportional to ε. A high ε leads to larger neighbourhoods and by consequence a

lower number of clusters, while a low ε has the opposite effect. It is often stated

that density-based clustering algorithms are capable of recovering clusters of ar-

bitrary shapes. This is a very tempting thought, which may lead to some disreg-

arding the importance of selecting an appropriate distance or similarity measure.

This measure is the key to produce homogeneous clusters as it defines homogen-

eity. Selecting a measure will have an impact on the actual clustering. Most likely

the impact will not be as obvious as if one were to apply an algorithm such as

K-Means (MacQueen et al., 1967) (where the distance in use leads to a clear bias

towards a particular cluster shape). However, the impact of this selection will still

exist at a more local level. If this was not the case, DBSCAN would produce the

same clustering regardless of the distance measure in place.

3.2 State-of-the-art DBSCAN type clustering

OPTICS (Ankerst et al., 1999) is a hierarchical clustering algorithm, which pro-

duces an augmented ordering of data set in order to represent the density-based
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clustering structure. It still requires two parameters, minPts and ε, but it manages

to address DBSCAN’s inability to deal with clusters of different densities. It does

so by taking into consideration the distance between core points and the minPtsth

nearest point when calculating the reachability distances. This essentially allows

OPTICS to identify clusters in data of varying density. One should note that a

higher ε incurs more computational cost (Berkhin, 2006).

ISDBSCAN (Cassisi et al., 2013) has pioneered the use of Reverse Nearest Neigh-

bour (RNN) (Korn and Muthukrishnan, 2000) in DBSCAN-based algorithms. Let

us first make some important definitions. The nearest neighbour of yi ∈ Y is the

point yj ∈ Y with the lowest distance to yi, with yi 6= yj, or, more specifically

{yj : ∀yj, yt ∈ Y \ yi, d(yi, yj) ≤ d(yi, yt)}. With this, we can now define the k-

neighbourhood of yi as the set NNk(yi) containing the k-nearest points to yi, with

yi /∈ NNk(yi). We can now make an important definition we will use later on.

Definition 1. The reverse k-neighbourhood of a point yi ∈ Y is given by

RNNk(yi) = {yj ∈ Y : yi ∈ NNk(yj)}. (3.2)

For example, in Figure 3.1, since the point q belongs to each point yi’s k-nearest

neighbourhood (that is within the grey circle of yi). Therefore, the reverse k-

neighbourhood of point q is

RNNk(q) = {y1, y2, y3, y4, y5, y6, y7}.
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Figure 3.1: Reverse nearest neighbours of q with respect to k, the grey boundary shows
the k-nearest neighbourhood of each point yi; for each point yi all the points belongs to its
nearest neighbourhood with respect to k is not shown for simplicity.

ISDBSCAN calculates the k-influence space ISk(yi) = NNk(yi)∩RNNk(yi). Note

that NNk(yi) 6= ∅ but there is no such guarantee for RNNk(yi). However, this

RNN-based approach allows the algorithm to capture local densities in different

regions of the data space, leading to the recovery of clusters having heterogeneous

density. In addition, ISDBSCAN attempts to lower the difficulty of using DBSCAN

by removing one of its parameters, ε - leaving only k (the number of nearest neigh-

bours) as a parameter.

ISDBSCAN performs the clustering task in two-steps. First, it attempts to identify

all outliers in a given data set. It does so by calculating the k-influenced outlier-

ness of a point yi given by INFLOk(yi) = ∑yj∈ISk(yi)
denk(yj)/|ISk(yi)|denk(yi),

where denk(yi) = 1
d(yi,yt)

and yt is the kth-neighbour of yi. Second, the clustering

algorithm is applied to the the residual data set. This algorithm builds a cluster
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based on the density of yi if |ISk(yi)| ≥ 2/3k. This was the best threshold iden-

tified by its authors. Of course, it is fair to assume that a different threshold may

be found in experiments on different data sets. Hence, one may even argue that

this threshold is in fact a parameter with no clear method to identify its optimal

value. Such thought leads ISDBSCAN to have the same number of parameters as

DBSCAN.

RNN-DBSCAN (Bryant and Cios, 2017) aims at reducing the number of para-

meters of DBSCAN by adapting ISDBSCAN’s RNNk-based density estimation. Thus,

RNN-DBSCAN is able to recover clusters with different degrees of density by set-

ting a single parameter, k. Unlike ISDBSCAN, the neighbourhood of a point is de-

termined by a special combination of nearest neighbourhood and reverse nearest

neighbourhood instead of the influence space. That is, if q is the query point, all

the points that belong to its k-nearest neighbourhood, Nk(q), and each point in

RNNk(q) that meets the core point condition |RNNk(q)| ≥ k. Given yi, yj ∈ Y there

are three scenarios for connectivity.

1. The point yj is directly density-reachable from yi if yj ∈ NNk(yi) and |RNNk(yi)| ≥

k.

2. A point yj is density-reachable from yi if there exist a ordered list of points

C = (y1, ..., ym), such that y1 = yi and ym = yj, and ∀yt ∈ C \ ym: yt+1 is

directly density-reachable from yt where |RNNk(yt)| > k, or yt is directly

density-reachable from yt+1 where |RNNk(yt)| < k.

3. The point yj is density-connected to point yi, if there is a point yt ∈ Y such that
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both yi and yj are density-reachable from yt.

Using the above, RNN-DBSCAN defines a cluster using a simple definition: any

two points yi, yj ∈ Y belong to the same cluster if they are density-reachable, or,

density-connected.

Unfortunately, as popular as it may be, DBSCAN has the following drawbacks:

(i) it requires two parameters which increase problem complexity and are really

hard to be determined; (ii) it recovers very different clustering results for a slight

change in its parameters; (iii) it is not particularly suitable for data sets whose

clusters have widely different densities; (iv) it may produce different partitions

under the same settings.

An efficient density-based clustering algorithm should address the above is-

sues simultaneously. Aiming to address point (iii), OPTICS (Ankerst et al., 1999)

was introduced. OPTICS orders the points of a data set with respect to its cluster-

ing structure based on density. The notion of core distance and mutual reachability

allows OPTICS to deal with point (iii). This motivated the recent advancement

of density-based clustering literature (Bryant and Cios, 2017; Cassisi et al., 2013).

Regarding the point (ii) and (iii) above, ISDBSCAN (Cassisi et al., 2013) and RNN-

DBSCAN (Bryant and Cios, 2017) adopted a more local approach than DBSCAN

to capture clusters whose densities are highly variable in nature. The common

neighbours of the nearest neighbourhood and reverse nearest neighbourhood of

a certain query point is called the influence space of such point. Influence space

was used by ISDBSCAN to estimate local density. To deal with the issues similar
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to (i), (ii) and (iii), a special combination of nearest neighbourhood and reverse

the nearest neighbourhood, more specifically, all the points in nearest neighbour-

hood and core points of the reverse nearest neighbourhood were considered by

RNN-DBSCAN.

However, there is still room for the further improvement of this approach.

To this end, this thesis presents a density-based clustering method using reverse

nearest neighbour without any special combination in the following section to ad-

dress issues of DBSCAN (i)− (iv) simultaneously.

3.3 Density-based spatial clustering of applications us-

ing reverse nearest neighbour

In this section we introduce our density-based clustering algorithm, DBSCANR.

Very much like DBSCAN (for details, see Section 3.1), density-based clustering

using reverse nearest neighbour, DBSCANR needs to determine whether a point

yi ∈ Y is core or non-core. In the case of DBSCANR this is determined using reverse

nearest neighbour (RNNk(yi)).

Definition 2. A point yi ∈ Y is said to be a core point iff

|RNNk(yi)| ≥ k.

Given the definition above, if yj ∈ Y is a core point, the density of yj is higher
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than yi iff |RNNk(yj)| > |RNNk(yi)|.

Example: In Figure 3.2, RNNk(q1) and RNNk(q2) is shown at k = 4. Since y1, y2, y3,

y4, y5, and y6 has q1 in their nearest neighbourhood, RNNk(q1) = {y1, y2, y3, y4, y5, y6}.

In similar manner, RNNk(q2) = {y3, y6, y7, y8}. Since |RNNk(q1)| and |RNNk(q2)|

are greater than k (|RNNk(q1)| = 6 and |RNNk(q2)| = 4), according to Definition

2, both q1 and q2 are core points when k = 4, however, the density of q1 is greater

than the density of q2.

Figure 3.2: Reverse nearest neighbours of q1 and q2 with respect to k, the grey boundary
shows the nearest neighbour of each point yi; for each point yi only the nearest neighbour-
hood boundary is shown, actual nearest neighbours are not shown for simplicity.

Now we are ready to make the following definitions for core points to form a

intermediate cluster.

Definition 3. A point yj ∈ Y is said to be directly density-reachable from a point

yi ∈ Y, with yi 6= yj iff

1. both yi and yj are core points,
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2. yj ∈ RNNk(yi).

Example: As shown in Figure 3.3(a), the RNNk(q1) = {y1, y2, y3, y4, y5, y6, q2}

and RNNk(q2) = {y4, y5, y7, y8} at k of 4. According to Definition 2, both q1 and q2

are core points as RNNk(q1) > 4 and RNNk(q2) = 4. Now as per Definition 3, q2

is directly density-reachable from q1 as q2 ∈ RNNk(q1).

(a) (b)

Figure 3.3: Reverse nearest neighbour based density-reachability and core density-
reachability. (a) q2 is directly density-reachable from q1; (b) q2 is core directly density-
reachable from q1 and q1, q2 is mutually directly density-reachable from each other.

Definition 4. A point yj ∈ Y is said to be core directly density-reachable from a point

yi ∈ Y, with yi 6= yj iff

1. Both yi and yj are core points,

2. yj ∈ RNNk(yi) and yi ∈ RNNk(yj).

Example: Figure 3.3(b) illustrates that RNNk(q1) = {y1, y2, y3, y4, y5, y6, q2} and

RNNk(q2) = {y4, y5, y7, y8, q1} at k of 4. Since both q1 and q2 are core points and

they belong to each other’s nearest neigbourhood, according to Definition 4, q2

is core directly density-reachable from q1. Obviously, q1 and q2 is directly density-
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reachable from each other.

The key idea of our method is that each point in a cluster has to comprise at

least a given minimum number of points (k) in its reverse nearest neighbour. This

way reverse nearest neighbourhood estimates the density of a point by discarding

those that do not consider the query point as their nearest neighbour. We find the

above definitions of core, directly density-reachable and core directly density-reachable

points to be more robust than those used by DBSCAN type algorithms, and our

experiments support this statement.

Given the basic definitions above, we can now go further and make other key

definitions for our method.

Definition 5. A point yj ∈ Y is density-reachable from yi ∈ Y with respect to k, if

there is a chain of points y1, ..., ym, ..., yt, with y1 = yi, yt = yj such that ym+1 is

directly density-reachable from ym.

Example: Figure 3.4(a) demonstrates the density-reachability of core points as

y1 is directly density-reachable from q, y2 is directly density-reachable from y1 and

ym is directly density-reachable from ym−1.

Density reachability is the transitive closure of direct density reachability. Any

core point may or may not be mutually density-reachable and directly density-

reachable, and therefore may be asymmetric as illustrated in Figure 3.4(a). This

figure shows the more interesting asymmetric case (as indicated by the one way

arrow) of this definition in a 2D vector space, which measures distance using (3.1).
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Within cluster Sc, two core points are core directly density-reachable if they belong

to each other’s nearest neighbour with respect to k and mutually directly density-

reachable.

(a) (b)

Figure 3.4: Reverse nearest neighbour based density-reachability and density-connectivity.
(a) ym is density-reachable from q; (b) y2 and y4 are density-connected by q.

Definition 6. A point yj ∈ Y is density-connected to yi ∈ Y with respect to k, if both

yi and yj are density-reachable from yt ∈ Y wrt. k.

Density-connectivity is a symmetric relation (Figure 3.4(b)). Similar to the ap-

proach taken by DBSCAN, a DBSCANR cluster is a set of density-connected points

holding the maximality with respect to density-reachability.

Definition 7. (intermediate cluster) The purpose of any clustering algorithms is to

split a data set Y containing n points yi ∈ RV into K clusters S = {S1, S2, ..., SK}.

Here, we are particularly interested in hard-clustering so that a given point yi can

be assigned to a single cluster Sc ∈ S, and ∑K
l=1 |Sl| = n. Our intermediate cluster-

ing satisfies the following conditions:

1. ∀yi, yj satisfying the core condition: if yi ∈ Sc and yj is density-reachable from

yi wrt. k, then yj ∈ Sc. (Maximality)

2. ∀yi, yj ∈ Sc, yi is density-connected to yj wrt. k. (Connectivity)

Now we are ready to recover our final cluster. In the final cluster each un-

clustered point will be assigned to the cluster of its nearest core point as described
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in the following definition.

Definition 8. (Final cluster) Our final clustering satisfies the following condition:

1. ∀yi, yj, ym: if yi, ym /∈ Sc, yj ∈ Sc, ym ∈ S and d(yi, yj) ≤ d(yi, ym), then yi ∈ Sc.

Given the parameter k, we can now recover a cluster in a two-step process.

First, select a point from the data set satisfying the highest density core point (ac-

cording to Definition 2) as a seed to retrieve all points that are density-reachable

from the seed recovering the cluster containing the seed. Second, assign each non-

core point to the cluster of its nearest core point.

We present DBSCANR to recover the clusters according to Definition 8. Given

a good k and a core point from the cluster to be recovered, DBSCANR retrieves all

points that are density-reachable from the query point.

To recover a cluster, DBSCANR starts with a highest density core point yi ∈ Y

from a ordered list of core points Ycore. If there are more than one point with equal

density as yi, it starts with an arbitrary point with same level of density as yi.

Then, DBSCANR retrieves all points that are density-reachable from yi wrt. k.

This method, iteratively, recovers all clusters comprising the core points. Finally,

each point that does not satisfy the condition for core point (see Definition 2) will

be assigned to the cluster of its nearest core point.

Although we use only global values for k, DBSCANR recovers clusters of dif-

ferent densities and shapes simultaneously according to Definition 7 and 8.

For example, DBSCANR recover a cluster following the below steps.
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Let C be all the core points within data set Y comprising 100 data points, y1, y2, y3

· · · y100. q be the point y20 and the core point with highest density. From Figure

3.5, if RNNk(q) = {y1, y2, y3, y4, y5} and y1, y4 and y5 are the core points then,

seeds = {y1, y4, y5}. We assign core point q that is y20 to cluster Sc, therefore,

Sc = {y20}.

We update q to hold the first element of seeds, y1 after checking whether y1 has

never been assigned to Sc. We always do check this condition before we consider

a point in seeds as our query point q to make sure we don’t have to process one

point twice. Then reverse nearest neighbour query is run for y1 and the core points

in RNNk(q), y6 and y9 and we update seeds = {y1, y4, y5, y6, y9}. Then we add q

(i.e., y1) to Sc = {y20, y1} and remove y1 from seeds = {y4, y5, y6, y9}.

Figure 3.5: DBSCANR intermediate cluster expansion process. In the intermediate cluster
only core points (green dots) are added to the cluster as per Definition 7; the final cluster
are then recovered comprising the non-core points (grey dots) as per Definition 8.

Since the next query point, q is y4 in seeds has no core points in its reverse
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nearest neighbours, y4 is added to Sc = {y20, y1, y4} and is removed from seeds =

{y5, y6, y9}.

Our query point, q is now y5 since this is the very first element of seeds. RNNk(q) =

y18 is found and seeds = {y5, y6, y9, y18} updated. We then update our cluster

Sc = {y20, y1, y4, y5} by adding q and the latter point is then removed from seeds =

{y6, y9, y18}.

Being the current first element of seeds, y6 is our next query point q to process.

From the Figure 3.5 y10 is the only core point added to seeds = {y6, y9, y18, y10}

found by RNNk(q)orRNNk(y6), the points y2 and y3 are discarded as they are not

core points. Since y6 is not in Sc, y6 is added to Sc before it has been removed from

seeds. Therefore, Sc = {y20, y1, y4, y5, y6} and seeds = {y9, y18, y10}.

We repeat the process above and update Sc = {y20, y1, y4, y5, y6, y9} and seeds =

{y18, y10, y14}.

In the next iteration y18 will be added to Sc = {y20, y1, y4, y5, y6, y9, y18} before

being removed from seeds = {y10, y14}. It is important to note that from Figure 3.5,

RNNk(y18) = {y3, y13, y10, y17}, y10 is not added to seeds regardless of being a core

point as y10 already belongs to the seeds.

One interesting point to note that both y6 and y10 are density-reachable from the

point y20 (that is the highest density point), hence y6 and y10 is density-connected

by the point y20 (see Definition 6 and Figure 3.4).

Now since y10 is our latest element in seeds to process and it has never been
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assigned to Sc then we can update Sc = {y20, y1, y4, y5, y6, y9, y18, y10} and seeds =

{y14} as no core point is found by RNNk(y10).

Finally, the only element y14 in seeds is assigned to query point q as it has never

been in Sc. Being the reverse nearest neighbours of y14, y15 and y16 have been

added to seeds and later processed following the steps presented above. We then

update Sc = {y20, y1, y4, y5, y6, y9, y18, y10, y14, y15, y16} and seeds = {} since no core

point was found by RNNk(y15) and RNNk(y16).

We now ready to remove all the points in Sc from C and assign the next highest

density core point in C to query point q and repeat the steps above until all the core

points are processed.

To obtain our final cluster, we then assign each non− core or unclustered point

to the cluster of its nearest core point. In the following, we present DBSCANR

Algorithm 3.1 : DBSCANR (Y, k)
Input
Y: Data set.
k: Minimum number of points.
Output
S : A clustering S = {S1, S2, · · · , SK}

1: Set S← ∅ and C ← ∅.
2: Add each point in Y to C (as per Definition 2).
3: Identify the point q ∈ C with the highest density, and remove q from C.
4: Sc = RecoverCluster (C, q, k)
5: If |Sc| ≥ k

Add Sc to S
6: Remove each point in Sc from C

Repeat steps 3 to 6 until |C| has converged.
7: Assign each unclustered point to the cluster of its nearest core point.

51



Algorithm 3.2 : RecoverCluster (C, q, k)
Input
C: Core point vector.
k: Minimum number of points.
Output
Sc : A cluster

1: Set seeds← ∅ and Sc ← ∅.
2: For each yi ∈ C

If yi ∈ RNNk(q) and yi has never been assigned to Sc
Add yi to seeds.

3: Add q to Sc, and remove q from seeds (if q ∈ seeds).
4: For each yi ∈ seeds

If yi has never been assigned to Sc
Set q← yi.

Repeat steps 2 to 4 until |seeds| = 0.
5: For each yi ∈ Sc

Add to Sc all points in NNk(yi) that are not in C and have never been as-
signed to Sc.

In the above, the quantity of nearest neighbours (k) is a user-defined parameter.

The quantity of clusters (K) is automatically found by the algorithm.

k-nearest neighbours of a point contain greater than or equal to k elements,

however, reverse k-nearest neighbours of a point may contain less than, equal to

or greater than k elements. Given k, if a point yi tends to be part of another cluster

Sc, it is highly likely that its reverse k-nearest neighbour containing fewer elements.

We leveraged this property of reverse nearest neighbours in our algorithm to dis-

cover the intrinsic clusters with very different local densities.

For instance, in Figure 3.6 the nearest neighbourhood is illustrated in coloured

circles. In Figure 3.6(a), the black circle of point 1 along with other coloured circles

of point 2, 3, 4, and 5 corresponds to the k-nearest neighbourhood at k = 3.
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NNk(1) = {2, 3, 4}, NNk(2) = {3, 4, 5}, NNk(3) = {2, 4, 5}, NNk(4) = {2, 3, 5}

and NNk(5) = {2, 3, 4}.

(a) (b)

Figure 3.6: The neighbourhood are shown in different colours (a) k-nearest neighbourhood
at k = 3 (b) reverse k-nearest neighbourhood at k = 3.

In Figure 3.6(b), the coloured circles represent the reverse k-nearest neighbour-

hoods of each point at k = 3. RNNk(1) = ∅, RNNk(2) = {1, 3, 4, 5}, RNNk(3) =

{1, 2, 4, 5}, RNNk(4) = {1, 2, 3, 5} and RNNk(5) = {2, 3, 4}. Since point 2, 3, 4,

and 5 do not see point 1 as their neighbour, the reverse nearest neighbour set of

point 1 is empty, hence no circle around point 1. It is interesting to note that the

empty reverse nearest neighbour set of point 1 is associated with the separation

of two widely variable clusters. This indicates that the reverse nearest neighbour

can be used to identify the border point of a widely variable density cluster such

as point 1, without the need of any special combination, while still maintaining

the competitiveness in clustering recovery when compared with DBSCAN and its

state-of-the-art counterparts.

Since we do not make any arbitrary assumptions of neighbourhood, our al-
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gorithm is able to find naturally meaningful clusters rather than the clusters that

fits a certain neighbourhood query. Unlike ISDBSCAN and RNN-DBSCAN, we used

only RNN for our neighbourhood calculation rather than any special combination

of nearest neighbourhood and its reverse counterpart.

When two widely variable clusters are separated by very narrow sparse region,

recovering cluster borders may become difficult. To address this issue only core

points are clustered in the initial clustering recovery step of our algorithm. Since

cluster borders are surrounded by non-core or border points, in the final clustering

recovery step we assigned the border points to its nearest core neighbour cluster.

Within the same cluster if the density varies, this cluster extension strategy in-

cludes all the points rather than assigning the non-core points as outliers just be-

cause it does not meet the clustering definition based on special neighbourhood

search condition.

3.4 Setting of the experiments

We have introduced one DBSCAN type algorithm and discussed further three in-

cluding DBSCAN itself. We use experimental results to demonstrate the cluster-

ing recovery of DBSCANR algorithm. It seems reasonable to conduct experiments

with all of these in order to get a formal comparison. Our experiments follow three

directions:

1. Test our proposed algorithm for cluster recovery, especially in data sets with
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different shapes, sizes and variation in densities. Then we compare them

formally with the described algorithms.

2. Test our proposed algorithm for cluster recovery in real-world data sets and

compare them with the other three algorithms.

3. Explore the behaviour of our proposed method with respect to increasing the

size of data sets.

The original paper introducing the density-based clustering (Ester et al., 1996)

assumes that the normalization is carried out during the clustering process and

hence does not deal with data normalization. This may not be true in all cases.

To solve this problem we normalize the features of each data set. Data sets

are often normalized using the z− score standardisation. In this popular method,

yiv − yv/stdev(yv), where stdev(yv) represents the standard deviation of feature v

over yi ∈ Y. We have decided to normalize the features of each data set by their

respective ranges (Chowdhury and de Amorim, 2019):

yiv =
yiv − yv

range(yv)
(3.3)

where yv = n−1 ∑n
i=1 yiv. We chose use of range rather than standard deviation,

since the latter is biased towards unimodal distributions. In addition it does not

guarantee the range of each numerical feature to be one (Mirkin, 2012). For in-

stance, consider feature v1 being the unimodal and feature v2 being the bimodal.

Since the stdev(v2) is greater than stdev(v1), the values of v2 will be smaller than
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those of v1 after standardization. This will result in v2 having a smaller contri-

bution in the clustering process. However, we would be usually interested in the

cluster structure present in v2.

We have applied the above normalization of all data sets we analysed in this

study. Table 3.1 and 3.2 describes each data set in terms of its number of points,

features and clusters. These data sets are freely available at the popular artificial

machine learning repository (Fränti and Sieranoja, 2018) and UCI machine learn-

ing repository (Bache and Lichman, 2013).

Our experiments involve five different algorithms as follows: (i) DBSCAN; (ii)

OPTICS (iii) ISDBSCAN; (iv) RNN-DBSCAN; and (v) DBSCANR.

1. DBSCAN: We experimented with k from 3 to 50 in steps of 1, and ε from the

minimum pairwise to maximum pairwise distances for each data set in steps

of 0.01.

2. OPTICS: We used a method OPTICS (AutoCl) (Sander et al., 2003) in order to

obtain flat partition. We set the speed control parameter of OPTICS (AutoCl),

ε to ∞. The minimum number of points k was chosen from 3 to 50 in steps of

1, and minimum cluster ratio mcr was choosen from 0.01 to 5 in steps of 0.01.

3. ISDBSCAN, RNN-DBSCAN AND DBSCANR: These algorithms have a single

parameter k. We experiment with values of k from 3 to 50 as in (Bryant and

Cios, 2017; Cassisi et al., 2013). As in the other algorithms, the selected k was

that which produced the best cluster recovery.
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Table 3.1: The list of artificial data sets used in our experiments. The data sets were ob-
tained from the popular artificial machine learning repository (Fränti and Sieranoja, 2018).

Points Clusters Features
Data set N K V

Aggregation 788 7 2
Grid 655 2 2
D31 3100 31 2
Flame 240 2 2
Mixed 1479 5 2
Pathbased 300 3 2
R15 600 15 2
Spiral 312 3 2
Toy 373 2 2
Twodiamonds 800 2 2

Table 3.2: The list of real-world data sets used in our experiments. The data sets were
obtained from the popular UCI machine learning repository (Bache and Lichman, 2013).

Points Clusters Features
Data set N K V

Banknote 1372 2 4
Iris 150 3 4
Ecoli 336 8 7
Seeds 210 3 7
BreastT. 106 6 9
Liver 583 2 9
Wine 178 3 13
Leaf 340 30 14
Parkinsons 195 2 22
Leukemia 72 3 39
TeachingA. 151 3 56
Libras 360 15 90
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(a) Aggregation (b) Grid (c) Pathbased

(d) Spiral (e) Toy (f) Flame

(g) R15 (h) D31 (i) Twodiamonds

(j) Mixed

Figure 3.7: Artificial data sets of arbitrary shapes, sizes and densities with true labels

One of the main objectives of most of the algorithms in this chapter is to recover

clusters regardless of shapes, sizes and densities simultaneously with little or no

domain knowledge of input parameters. We present examples of the data sets with
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different shapes, sizes and densities in Figure 3.7.

3.5 Experimental results and comparisons

The results are divided into two sections: in Section 3.5.1, we present the results of

the artificial data sets and in Section 3.5.2, we present the results of real-world data

sets.

For the artificial and real-world data sets results presented in the following

sections, the input parameters are selected based on the best Adjusted Rand Index

(ARI), a clustering validation Index used as a measure of agreement between two

partitions (as in de Amorim et al. (2016, 2019, 2017)).

3.5.1 Experiments on artificial data sets

In this section, experiments were conducted with artificial data sets with various

density settings.

1. Aggregation data set

To start with, we present the results of artificial Aggregation data set.
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Table 3.3: ARI achieved at different versions of density-based clustering algorithm for
Aggregation data set.

Algorithm ARI k ε mcr

DBSCAN 0.9834 10 0.0559 -

OPTICS(AutoCl) 0.9082 7 - 0.1468

ISDBSCAN 0.9911 12 - -

RNN-DBSCAN 0.9966 13 - -

DBSCANR 0.9978 12 - -

In Table 3.3, DBSCANR obtained the best result amongst five algorithms under

comparison and reached the optimal ARI of 0.9978 at k of 12. Both ISDBSCAN and

RNN-DBSCAN reached the ARI of 0.9911 and 0.9966 at the input parameter values

k closer to DBSCANR of 12 and 13 respectively. The ARI value for RNN-DBSCAN

is different from the original paper as we standardised the data points before we

applied the clustering algorithms.

As shown in Figure 3.8, DBSCAN misclassified 12 cluster members. ISDBSCAN,

RNN-DBSCAN and DBSCANR missclassified 4, 2 and 1 respectively due to the

narrow bridges between clusters. The number of missclassified points are higher

for DBSCAN due to its reliance on global input parameter ε, hence lowest per-

formed algorithm compared to the state-of-the-art counterparts we experimented.

The ARI result of 0.9978 obtained for DBSCANR is the highest result compared

to the ARI achieved for the same data set in the literature (Gionis et al., 2007).
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(a) Aggregation (b) DBSCAN

(c) OPTICS(AutoCl) (d) ISDBSCAN

(e) RNN-DBSCAN (f) DBSCANR

Figure 3.8: Best possible cluster recovery measured by ARI on the Aggregation data set.
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2. Grid data set

Table 3.4 presents the results of all five algorithms we experiment with for the Grid

data set in Figure 3.9 .

Table 3.4: ARI achieved at different versions of density-based clustering algorithm for
Grid data set.

Algorithm ARI k ε mcr

DBSCAN - - - -

OPTICS(AutoCl) 0.8585 5 - 0.0724

ISDBSCAN 0.9397 7 - -

RNN-DBSCAN 0.9397 7 - -

DBSCANR 0.9457 4 - -

On Grid data set, DBSCANR outperformed the state-of-the-art DBSCAN type

algorithms and was able to recover clusters of different densities simultaneously

as RNN is able to dynamically estimate local densities in different areas in the

data as shown in Figure 3.9(e). The cluster recovery of both RNN-DBSCAN and

ISDBSCAN reached the ARI of 0.9397 at k = 7 with 10 data points being misclassi-

fied due to clusters are not being well separated. However, DBSCAN was not able

to successfully recover any cluster unlike reported in Bryant and Cios (2017), as

the distance between two clusters are less than ε and it is a well-known fact that

DBSCAN cannot deal with clusters with very different local densities.
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(a) Grid (b) OPTICS

(c) ISDBSCAN (d) RNN-DBSCAN

(e) DBSCANR

Figure 3.9: Best possible cluster recovery measured by ARI on the Grid data set.
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3. Flame data set

The results in the Table 3.5 demonstrate that RNN-DBSCAN outperforms its density-

based counterparts. Though, the overall ARI obtained by the algorithms under

experiment is higher, all the algorithms unable to classify data points that are on

the border of both clusters.

Table 3.5: ARI achieved at different versions of density-based clustering algorithm for
Flame data set.

Algorithm ARI k ε mcr

DBSCAN 0.9715 14 0.1166 -

OPTICS(AutoCl) 0.8969 7 - 0.0842

ISDBSCAN 0.9497 8 - -

RNN-DBSCAN 0.9881 8 - -

DBSCANR 0.9833 8 - -

(a) Flame (b) DBSCAN
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(c) OPTICS(AutoCl) (d) ISDBSCAN

(e) RNN-DBSCAN (f) DBSCANR

Figure 3.10: Best possible cluster recovery measured by ARI on the Flame data set.

space

4. Mixed data set

We will now analyse the performance of the algorithms in the Mixed data set

shown in Table 3.6. The highest ARI of 1, was obtained by all the algorithms except

RNN-DBSCAN, as this is an ideal data set where clusters are well separated with

approximately similar density levels illustrated in Figure 3.11.
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Table 3.6: ARI achieved at different versions of density-based clustering algorithm for
Mixed data set.

Algorithm ARI k ε mcr

DBSCAN 1 2 0.0488 -

OPTICS(AutoCl) 0.9998 7 - 0.2267

ISDBSCAN 1 23 - -

RNN-DBSCAN 0.9989 36 - -

DBSCANR 1 14 - -

(a) Mixed (b) DBSCAN

(c) OPTICS(AutoCl) (d) ISDBSCAN
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(e) RNN-DBSCAN (f) DBSCANR

Figure 3.11: Best possible cluster recovery measured by ARI on the Mixed data set.

5. R15 data set

Table 3.7 demonstrates the performance of all algorithms for R15 data set. This

is a Gaussian data set of 15 similar spherical shaped clusters positioned in rings.

DBSCANR achieved the highest ARI compared to rest of the algorithms we exper-

iment with. The cluster recovery results are displayed in Figure 3.12.

Table 3.7: ARI achieved at different versions of density-based clustering algorithm for R15
data set.

Algorithm ARI k ε mcr

DBSCAN 0.9893 30 0.0514 -

OPTICS(AutoCl) 0.8682 8 - 0.2156

ISDBSCAN 0.9743 26 - -

RNN-DBSCAN 0.9857 30 - -

DBSCANR 0.9928 22 - -
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(a) R15 (b) DBSCAN

(c) OPTICS(AutoCl) (d) ISDBSCAN

(e) RNN-DBSCAN (f) DBSCANR

Figure 3.12: Best possible cluster recovery measured by ARI on the R15 data set.
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6. D31 data set

In Table 3.8, we show the performance in a larger data set of 31 spherical shaped,

randomly placed, same sized clusters. Similar to R15 data set, DBSCANR was able

to achieve the best ARI of 0.9354 at K of 22. As opposed to DBSCANR, surpris-

ingly, despite spherical shape, ISDBSCAN, similar to K-Means, failed to recover true

number of clusters successfully (Veenman et al., 2002).

Table 3.8: ARI achieved at different versions of density-based clustering algorithm for D31
data set.

Algorithm ARI k ε mcr

DBSCAN 0.8224 42 0.0381 -

OPTICS(AutoCl) 0.0197 6 - 0.1903

ISDBSCAN - - - -

RNN-DBSCAN 0.8591 35 - -

DBSCANR 0.9354 35 - -

(a) D31 (b) DBSCAN
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(c) OPTICS(AutoCl) (d) RNN-DBSCAN

(e) DBSCANR

Figure 3.13: Best possible cluster recovery measured by ARI on the D31 data set.

7. Spiral data set

Table 3.9 shows the cluster recovery of spiral data set. Apart from OPTICS, all the

algorithms reached the ARI of 1 and successfully recover all 3 spiral shape clusters.

This would not be the case if the algorithms relied on the Euclidean distance meas-

ure to capture the clusters in the data space.
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Table 3.9: ARI achieved at different versions of density-based clustering algorithm for
Spiral data set.

Algorithm ARI k ε mcr

DBSCAN 1 2 0.0447 -

OPTICS(AutoCl) 0.5477 2 - 0.3298

ISDBSCAN 1 5 - -

RNN-DBSCAN 1 2 - -

DBSCANR 1 2 - -

(a) D31 (b) DBSCAN

(c) OPTICS(AutoCl) (d) ISDBSCAN
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(e) RNN-DBSCAN (f) DBSCANR

Figure 3.14: Best possible cluster recovery in terms of ARI obtained with density-based
clustering algorithms under experiment on the Spiral data set.

8. Toy data set

Our next data set involves the two moons standard toy problem. DBSCANR,

ISDBSCAN and OPTICS obtained the highest ARI of 1 at k of 16, 17 and 32 respect-

ively and successfully able to recover two non-convex shapes, equally shaped, not

spatially separated clusters.

Table 3.10: ARI achieved at different versions of density-based clustering algorithm for
Toy data set.

Algorithm ARI k ε mcr

DBSCAN 0.9670 13 0.06 -

OPTICS(AutoCl) 1 32 - 0.0711

ISDBSCAN 1 17 - -

RNN-DBSCAN 0.9917 15 - -

DBSCANR 1 16 - -
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(a) Toy (b) DBSCAN

(c) OPTICS(AutoCl) (d) ISDBSCAN

(e) RNN-DBSCAN (f) DBSCANR

Figure 3.15: Best possible cluster recovery measured by ARI on the Toy data set.

73



9. Twodiamonds data set

The Twodiamonds data set contains two equal sized clusters that touches each

other on the border as shown in Table 3.11. DBSCAN outperformed other clus-

tering algorithms with the ARI of 0.9975 at k of 12 and ε of 0.0576, as it misclas-

sifies one data point as noise due to different density in the lower region of data

space as demonstrated in the Figure 3.16. Points on the border region are misclassi-

fied by both DBSCANR and RNN-DBSCAN, hence the ARI of 0.995. Surprisingly,

ISDBSCAN was not able to recover the true number of clusters and OPTICS reached

the ARI of 0.9751, slightly higher than DBSCANR and RNN-DBSCAN.

Table 3.11: ARI achieved at different versions of density-based clustering algorithm for
Twodiamonds data set.

Algorithm ARI k ε mcr

DBSCAN 0.9975 12 0.0576 -

OPTICS(AutoCl) 0.9751 27 - 0.0803

ISDBSCAN - - - -

RNN-DBSCAN 0.995 36 - -

DBSCANR 0.995 22 - -
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(a) Twodiamonds (b) DBSCAN

(c) OPTICS(AutoCl) (d) RNN-DBSCAN

(e) DBSCANR

Figure 3.16: Best possible cluster recovery measured by ARI on the Twodiamonds data set.
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10. Pathbased data set

We present and analyse the results of Pathbased data set in Table 3.12. In this data

set, the clusters are not well separated where two globular shaped clusters are sur-

rounded by a ring shaped cluster - clusters inside cluster problem. The results

obtained by DBSCANR is higher than its density-based counterparts in this exper-

iment and other algorithms in the literature proposed in Chang and Yeung (2008).

However, the objectives of their proposed algorithm was to test the robustness

against noise and outliers in the data.

Table 3.12: ARI achieved at different versions of density-based clustering algorithm for
Pathbased data set.

Algorithm ARI k ε mcr

DBSCAN 0.8948 9 0.0752 -

OPTICS(AutoCl) 0.7867 9 - 0.1067

ISDBSCAN 0.8819 12 - -

RNN-DBSCAN 0.9065 6 - -

DBSCANR 0.959 6 - -
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(a) Pathbased (b) DBSCAN

(c) OPTICS(AutoCl) (d) ISDBSCAN

(e) RNN-DBSCAN (f) DBSCANR

Figure 3.17: Best possible cluster recovery measured by ARI on the Pathbased data set.
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Summary of results of artificial data sets

We observed that differing the shapes and densities resulted in favourable out-

come by DBSCANR compared to original DBSCAN and its recent variants for the

Grid and Toy data sets in Figure 3.9 and 3.15, and Table 3.4 and 3.10 respectively.

DBSCANR also compared favourably or better than DBSCAN type algorithms

when dealing with arbitrary shapes and sizes clusters for the Aggregation, Mixed,

R15, D31 and Spiral data sets presented in Table 3.3, 3.6, 3.7, 3.8 and 3.9, and Figure

3.8, 3.11, 3.12, 3.13 and 3.14 respectively.

Our proposed RNN-based method is competitive or tend to perform better in

the scenarios when clusters are poorly separated from each other such as for Ag-

gregation, Flame, Pathbased and Twodiamonds data sets demonstrated in Table

3.3, 3.5, 3.12 and 3.11, and Figure 3.8, 3.10, 3.17 and 3.16 respectively.

3.5.2 Experiments on real-world data sets

Table 3.13 present the results of the real-world data sets. In contrast to the artificial

data sets, these data sets are higher dimensional. In these data sets, the proposed

DBSCANR tends to have better performance. When comparing expected ARI val-

ues given a good parameter, DBSCANR reaches the highest ARI value in 7 data

sets out of 12. It ceases to reach the highest ARI in 5 data sets.
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Table 3.13: Experiments with real-world high-dimensional data sets.

DBSCAN OPTICS(AutoCl) ISDBSCAN RNN-DBSCAN DBSCANR

ARI k/ε ARI k/mcr ARI k ARI k ARI k

Banknote 0.0216 12/0.21 0.0214 42/0.1 -0.0109 34 0.6513 46 0.8433 14
Iris 0.628 5/0.25 0.6063 13/0.03 0.4607 12 0.5651 6 0.8681 7
Ecoli -0.0084 4/0.19 0.4217 14/0.03 - - 0.5261 3 0.4206 3
Seeds 0.4916 18/0.5 0.4202 15/0.06 0.3855 12 0.4571 4 0.6132 3
BreastT. 0.152 2/0.48 0.0148 4/0.08 0.0976 5 0.2565 3 0.2773 3
Liver 0.0521 9/0.08 0.0565 11/0.12 0.0072 46 0.0320 9 0.0327 5
Wine 0.4497 17/0.95 - - 0.5635 9 0.3738 3 0.7123 3
Leaf - - 0.0058 2/0.08 - - - - 0.4096 2
Parkinsons 0.1877 7/0.65 -0.0069 4/0.08 0.0834 10 0.2473 5 0.2967 8
Leukemia 0.8947 2/3.4 - - 0.7439 16 0.8264 3 0.8809 3
TeachingA. 0.022 11/3.01 0.0092 4/0.02 0.0182 9 - - 0.0119 3
Libras 0.0369 4/1.42 0.0014 2/0.17 - - 0.2676 4 0.3752 5

The results of our experiments on the real-world data sets (see Table 3.2) com-

paring DBSCAN and DBSCANR shows the superiority of the DBSCANR. We show

the best ARI for what we found to be the optimum parameter for each data set we

experiment with. Given a good parameter, DBSCANR reaches the better ARI in

9 data sets and in 3 data sets DBSCAN obtains better accuracy in terms of ARI.

The 3 data sets, Leukemia, Liver and TeachingA. in which DBSCAN outperforms,

among these data sets in the Liver data set the difference of ARI values between

DBSCAN and DBSCANR is maximum, however, not more than 0.02. DBSCANR’s

outperformance on the 9 data sets is eminent with an average ARI of 0.4785 over

all the real-world data sets under consideration. This is 96% higher than the per-

formance of DBSCAN reaching an average ARI of 0.2440 with an outperformance

on the 3 data sets.

The results of OPTICS and DBSCANR in Table 3.13 demonstrates the superior-

ity of DBSCANR when compared against 12 real-world data sets. Apart from Ecoli
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and Liver data sets, the performance of DBSCANR is higher than OPTICS with re-

spect to ARI and true number of clusters. Unfortunately, OPTICS was unable to

recover clustering for Leukemia, and Wine data sets. The reason why OPTICS

could not find the required number of clusters in the latter data sets is probably

due to the higher data set dimensions.

Table 3.13 also shows the comparison between ISDBSCAN and DBSCANR in

real-world data sets where DBSCANR performed better than ISDBSCAN in terms of

best ARI averaged over 12 data sets. DBSCANR reaches the highest ARI in 11 data

sets, however, for TeachingA. data set ISDBSCAN performs better than DBSCANR

with a difference between the ARI values of 0.006. For Ecoli, Leaf and Libras could

not find the true number of clusters, hence the dash, whereas DBSCANR reaches

the ARI values of 0.4206, 0.4096 and 0.3752 at k of 3, 2 and 5 respectively.

In terms of average ARI, The accuracy of DBSCANR is higher than RNN-

DBSCAN when compared against 12 real-world data sets in Table 3.13. Taking

into account the highest ARI in this set of experiments, DBSCANR reaches the

highest ARI in 11 data sets, while RNN-DBSCAN does so in one. Looking at the

highest ARI in relation to the true label of clusters, RNN-DBSCAN could not re-

cover clusters in Leaf and TeachingA. data sets.

Summary of results on real-world data sets

On most data sets, DBSCANR outperformed DBSCAN type algorithms under

comparison with considerable improvements in clustering accuracy in terms of
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best ARI. DBSCANR tends to perform better on data sets with high dimensions. It

is interesting to note that the best parameter we could find for DBSCANR was the

same in six data sets and for 11 data sets of 12 the parameter values are under 8,

the only exception is Banknote where the best ARI value is found at k of 14.

3.6 Impact of data set size on k

In this section, we will analyse the impact of data set size N on our only input para-

meter, k. We are interested in how data set size is correlated with k, more specific-

ally, the impact on performance with the change in the sizes of the data sets with

respect to expected number of RNN, k, as shown in x-axis of the graph in Figure

3.20. To this end, we run experiments on four artificial data sets ClusterInCluster,

CrescentFullMoon, Corners, TwoSpirals (shown in Figure 3.19) by increasing the

size of each data set individually at N = 1K, 10K, 100K, 1M and we demonstrate

the performance of DBSCANR in terms of ARI over k.

(a) ClusterInCluster (b) CrescentFullMoon
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(a) Corners (b) TwoSpirals

Figure 3.19: Artificial two-dimensional data sets at N = 1K. The clusters are shown using
different colours and shapes.

(a) ClusterInCluster (b) CrescentFullMoon

(c) Corners (d) TwoSpirals

Figure 3.20: Best possible cluster recovery measured by ARI on the Mixed data set.

82



In Figure 3.20, we can see that the expected ARI with respect to k tends to

converge in general as the number of observations N grows. Unsurprisingly, the

ARI performance over k converges at lower k for larger data sets than that of data

sets with smaller number of observations, this is the case for all four data sets

we experiment with. We cannot say the same for DBSCAN where ε is predicted

with respect to k and N. However, unlike DBSCAN, since the choice of k is not

dependent upon N, this allows us to select a good k for optimum ARI performance

by using the sampling technique, when a sufficiently large sample is chosen.

3.7 Time comparisons

A number of experiments have been conducted to consider the computational ef-

fort of the various versions of the density-based clustering algorithms we experi-

ment with in this thesis.

To this end, we calculate the average CPU time over different values of k dis-

cussed in Section 3.4. Since all density-based algorithms (DBSCAN, OPTICS, ISDBSCAN,

RNN-DBSCAN and DBSCANR) under comparison in this work are deterministic,

we run experiment for each algorithm once. Table 3.14 demonstrates the average

CPU run time performance per independent run for each density-based algorithm

both for artificial and real-world data sets.

The amount of total time taken by each algorithm for independent single run

depends on various factors: hardware and software. The series of experiments
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in this work are executed on a single computer with an Intel Core-4 CPU of 1.8

GHz, with 8GB of RAM. The algorithms were developed in the MATLAB 2019

environment on Windows 10.

Table 3.14: The amount of total time, in seconds, taken by algorithms under experiment to
make a single run.

Algorithm

Data sets DBSCAN OPTICS (AutoCl) ISDBSCAN RNN-DBSCAN DBSCANR

Artificial
Aggregation 0.0044 0.0854 0.7151 0.6268 0.1345
D31 0.0280 0.9448 3.1391 20.4678 1.1068
Flame 0.0013 0.0157 0.1523 0.0963 0.0228
Grid 0.0034 0.0643 0.3234 0.3072 0.0938
Mixed 0.0117 0.2273 1.2441 2.6864 0.2612
Pathbased 0.0016 0.0211 0.2185 0.2725 0.0332
R15 0.0029 0.0562 0.4533 1.4571 0.0936
Spiral3 0.0026 0.0219 0.3153 0.0617 0.0312
Toy 0.0020 0.0283 0.2706 0.2254 0.0322
Twodiamonds 0.0042 0.0912 0.6271 0.9834 0.1286

Real-World
Banknote 0.0086 0.2801 1.3636 17.1733 0.2371
BreastT. 0.0005 0.0065 0.0762 0.0530 0.0113
Ecoli 0.0018 0.0308 0.2422 0.6067 0.0383
Iris 0.0008 0.0091 0.1030 0.0606 0.0141
Leaf 0.0019 0.0402 0.2562 0.4076 0.0436
Leukemia 0.0005 0.0064 0.0511 0.0175 0.0068
Libras 0.0046 0.1353 0.4585 0.6638 0.0686
Liver 0.0030 0.0938 0.4524 3.8174 0.0981
Parkinsons 0.0011 0.0208 0.1502 0.1359 0.0283
Seeds 0.0011 0.0151 0.1456 0.0980 0.0257
TeachingA. 0.0014 0.0266 0.1275 0.0550 0.0235
Wine 0.0010 0.0154 0.1416 0.1438 0.0225

Table 3.14 indicates how the algorithms would behave in a real-world scenario

in terms of CPU running time. We can see that both DBSCAN and OPTICS have

lower running time compared to the DBSCANR, ISDBSCAN and RNN-DBSCAN.

Though CPU running time of DBSCANR is orders of magnitude faster than

its state-of-the-art counter part ISDBSCAN and RNN-DBSCAN, the former takes
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roughly twenty times more time than DBSCAN on average and, one and a half

times more than OPTICS to find the clustering if we average out the run time of

each data set under comparison. DBSCANR incurs greater computational cost

than DBSCAN and OPTICS as it depends on reverse nearest neighbour based

density estimation for each observation in a data set to which DBSCANR is applied

to. However, in order to find a good clustering DBSCAN and OPTICS require two

user-defined parameters, hence increased problem complexity compared to DB-

SCANR, balancing the CPU time of both former and latter.

It is rather interesting to see that running time of DBSCANR is ten times faster

than ISDBSCAN and RNN-DBSCAN averaged over 22 data sets.

3.8 Conclusion

In this chapter, we have presented one contribution, DBSCANR, a novel density-

based clustering algorithm leveraging reverse nearest neighbour (RNN) based dens-

ity estimation. Our algorithm can recover clusters of arbitrarily shapes and sizes

ranging from lower (artificial) to higher dimensional (real-world) data sets. We in-

troduced a intermediate clustering (see Definition 7) before final clustering purely

based on RNN without any special combination unlike ISDBSCAN (Cassisi et al.,

2013) and RNN-DBSCAN (Bryant and Cios, 2017). Our new method follows the

original DBSCAN to recover clusters in the way that it still finds all density reachable

(see Definition 5) core (see Definition 2) points from the pre-defined core points, but
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also requires only one user-defined parameter. The RNN-based method allowed

us to overcome the weaknesses of DBSCAN (Ester et al., 1996), OPTICS (Ankerst

et al., 1999) and their state-of-the-art counterparts.

DBSCANR finds a cluster following two steps (i) recover clusters for core points

(ii) assign non-core points to nearest core point cluster. First, core points are determ-

ined based on RNN. The latter requires a parameter to do so, the only user-defined

parameter required by DBSCANR. The highest density core point is processed first.

For each core point, core reverse nearest nearest neighbours are found and the core

point in question is assigned to a cluster. This step is repeated for all the core points

in the reverse nearest neighbours. Then we take the next highest density core point

and iteratively recover cluster maintaining the above steps. In our final step, all

the non-core points are assigned to the cluster of nearest core point.

The experimental results on both lower dimensional artificial and higher di-

mensional real-world data sets have shown that the DBSCANR algorithm out-

performed the DBSCAN type algorithms in recovering arbitrary shape clusters in

data. We believe this to be a advancement further into the data clustering prob-

lem that attempts to reveal widely variable local densities and recover arbitrarily

shapes and sizes cluster structure simultaneously in different regions of the data

space using one global density parameter.

In general, we have empirically shown that given a good k, our proposed density-

based clustering algorithm tend to demonstrate higher accuracy than DBSCAN

and its recent popular variants in data sets ranging from lower to higher dimen-
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sional.

On artificial data sets, DBSCANR outperformed DBSCAN type algorithms to

recover different shapes, densities and poorly separated clusters. On real-world

data sets, DBSCANR considerably performed better than the DBSCAN and its

state-of-the-art counterparts. The performance of DBSCANR tends to be better,

and the value of parameter k is lower for higher-dimensional data sets.

We aim to address the next open question of DBSCAN type algorithms that is

DBSCAN treats all features equally but in reality different features may have un-

equal degree of relevance. Therefore, it is important to learn the feature weights

for DBSCAN type algorithms. To this end, in the next chapter we propose two fea-

ture weighting based DBSCAN type algorithms and present experiments in both

artificial and real-world data sets.
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Chapter 4

Feature weighting for density-based

clustering

4.1 Introduction

In this chapter, we propose a new feature weighted density-based clustering al-

gorithm. The key feature of this algorithm is its ability to calculate feature weights

for high-dimensional data sets that have intrinsic clusters of arbitrary shapes, sizes

and densities. This was the first feature weighted density-based algorithm to out-

perform DBSCAN and its state-of-the-art counterparts as we will show later in this

chapter.
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4.2 Feature selection and feature weighting

Exponential growth in data with respect to dimensionality size makes data storing

and processing a challenging task. Figure 4.1 shows the trend of feature space

growth over last 35 years for popular UC Irvine Machine Learning Repository

(Bache and Lichman, 2013). In cluster analysis, a hypothesis requires to be formu-

lated based on the given data set in order to predict classes. Higher-dimensional

data leads to greater hypothesis space with respect to size, more specifically, the

size of hypothesis space increases exponentially with an increasing number of fea-

tures (Liu and Motoda, 2007), known as curse of dimensionality (Bellman, 2013).

The main issue we are concerned about is that data described over many features

presents a difficult problem to learning methods. Reducing the number of features

will reduce the size of hypothesis space, and therefore, it will become easier for a

learning method to search for the best hypothesis.

Specialised solutions for clustering higher dimensional data are often associ-

ated with different aspects of the curse of dimensionality. One of the aspects we face

for density-based clustering is deterioration of expressiveness. DBSCANR decides the

similarity and cluster membership of given points in a data set based on a distance

function in Equation (3.1), where the shape of the neighbourhood is determined by

the choice of this distance function. The accuracy of this distance function is there-

fore critical to the clustering recovery of DBSCANR. As the number of features

increases, the difference between the farthest (Dmax) and closest (Dmin) distance
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becomes meaningless (Beyer et al., 1999). Formally:

lim
x→∞

Dmax − Dmin

Dmin
→ 0 (4.1)

Figure 4.1: Growth trend of number of features in UCI Machine Learning Repository from
1985 to 2020.

Feature selection is one of the most popular techniques to address this prob-

lem. It aims to select a subset of features that are relevant or most information

carrying by removing those features that are redundant or least information car-

rying in order to achieve better learning performance (Bae and Bailey, 2006; Cui

et al., 2007). These least information carrying features may hinder an algorithm

in its effort to recover clusters as the relevance score of these features are same.

Irrelevant features that do not carry the same information are likely to have a neg-

ative impact on the recovery of clustering; however, this may not be the case for
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relevant features. Hence, discarding redundant features by keeping at least one

relevant feature per group will not cause the loss of information. This will not

only reduce the feature space but computational effort and distance-concentration

(see Equation (4.1)) effect for an algorithm.

Relevancy becomes ambiguous for unlabelled data. Nevertheless, selecting the

smallest subset of features may help improve the learning performance of unsuper-

vised learning methods where data are not labelled. DBSCANR clustering method

classifies samples into groups called cluster without any supervision. However,

finding clusters in higher dimensional space not only incur a higher computational

cost but also, as the number of features grows the learning performance degrades.

Therefore, in order to alleviate the impact of high dimensionality on the classifica-

tion via clustering, it is reasonable to make use of feature selection for clustering.

This issue can also be solved by another dimensionality reduction technique

called feature extraction, where, rather than selecting a small subset of features,

they are projected into a new lower dimensional space. To achieve this one can

apply popular techniques such as Singular Value Decomposition (SVD), Linear

Discriminant Analysis (LDA), and Principle Component Analysis (PCA), to name

a few.
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Feature selection algorithms can be primarily categorized based on selection

strategies:

(1) Filter methods (Dash et al., 2002)

This method does not take clustering algorithm into account to test the qual-

ity of the features for feature selection (Dy, 2008). As the name implies fil-

ter method filters out the features according to certain criteria. Multivariate

feature evaluation, unlike univariate approach, can deal with redundant fea-

tures, since the former feature evaluation method is dependent upon other

features.

(2) Wrapper methods (Roth and Lange, 2004)

This method depends on clustering algorithm to evaluate the desired qual-

ity of features selected iteratively. Selecting features this way becomes im-

practical when the number of features are extremely high. Heuristic search

strategy could solve this problem to reduce the feature space by maximizing

the quality of features.

In this research work, we aim to enhance density-based clustering algorithm

DBSCAN. The wrapper methods are computationally expensive and biased to-

wards the clustering algorithm in use as it iteratively finds the subset of features

by evaluating the quality of clustering based on the selected subset (Dy, 2008).

Nevertheless, we have chosen to adapt wrapper feature selection approach, since

it produces better clustering results than filter approach.
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Feature weighting can be interpreted as a generalization of feature selection

(Modha and Spangler, 2003; Tsai and Chiu, 2008; Wettschereck et al., 1997). Fea-

ture selection algorithms give same relevance to all the features they select. But

there is no reason to believe that it is the case in the real-world. Feature weighting

algorithms assume that each selected feature may be relevant but not necessarily at

the same degree. Such algorithms allow a weight, usually within a certain interval

[0, 1] to represent the degree of relevance of each feature. Then, the feature weights

threshold could be selected to achieve a feature weighting based feature selection.

Feature weighting should follow DBSCANR, as it is an unsupervised algorithm. It

makes logical sense that applying feature weighting to DBSCANR might achieve

better performance in terms clustering recovery.

4.3 Density-based feature weighting

Feature weighting based clustering algorithms calculate feature weights follow-

ing only partitional approach so far. Feature weighting has a history of 40 years

(Sneath et al., 1973). However, feature weighting has been applied to popular par-

titional clustering algorithm K-Means not more than two decades ago (DeSarbo

et al., 1984). Since 1984, many feature weighting based partitional clustering al-

gorithms have been developed. However, we are unaware of any work on feature

weighting applied to density-based clustering algorithms.

Following are among the most popular partitional clustering algorithms that
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compute feature weights taking the K-Means criterion into account. SYNCLUS

(DeSarbo et al., 1984) is one of the very first algorithms that applies feature weights

to K-Means type algorithm. CK-Means (Modha and Spangler, 2003) incorporates

heterogeneous, multiple feature spaces into K-Means. WK-Means introduced by

Huang et al. (2005) iteratively assigns a single weight per feature for each partition.

As opposed to CK-Means, features in WK-Means are regarded as in homogeneous

feature space.

The above innovative algorithms heavily rely on various distance calculations

(such as dispersion measures in Huang et al. (2005)) based on distance measures

(for instance, use of Minkowski metric in Amorim and Mirkin (2012)) between

the points and their respective cluster centres in order to calculate feature weights.

This results in partitioning of the data set into Voronoi cells of the cluster centroids,

regardless of the actual shape of the clusters. To address this issue, we develop fea-

ture weighting mechanism for density-based clustering paradigm that makes no

assumptions about the shape, number or distribution of clusters to be recovered.

4.3.1 Weighted DBSCANR

In most pattern recognition tasks, different features may have different degrees of

relevance, and this certainly applies to clustering. Even if we assume that all fea-

tures in a given data set are relevant, there may be different degrees of relevance.

Given a cluster Sl ∈ S, one can set the weight of a feature v to be inversely propor-

tional to the dispersion of v within Sl (Amorim and Mirkin, 2012). In other words,
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features that are more compact within a cluster are more discriminatory than those

that are less compact.

Here, we adapt the above in order to introduce (perhaps for the first time) fea-

ture weighting to a density-based clustering algorithm. Given yi, yj ∈ Y we can

calculate their distance using

dW(yi, yj) =
V

∑
v=1

wβ
v(yiv − yjv)

2, (4.2)

where β is a user-defined parameter, and wv is the weight of feature v. Clearly,

the balanced use of (4.2) for density estimation requires each weight to be non-

negative and ∑V
v=1 wv = 1 for a data set Y. Hence, the weighted k-neighbourhood

of yi is the set NNW
k (yi) containing the k-nearest points to yi, calculated using (4.2),

with yi /∈ NNW
k .

The above allows us to revisit our definition of reverse k-neighbourhood (RNNk),

and present its weighted version.

RNNW
k (yi) = {yj ∈ Y : yi ∈ NNW

k (yj)}. (4.3)

Now, we are ready to make some important definitions for our algorithm.

Definition 9. A point yj is weighted directly density-reachable from a point yi with

respect to k and β, iff

1. both yi and yj are weighted core points that satisfies the weighted core point
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condition |RNNW
k (yi)| > k

2. yj ∈ RNNW
k (yi)

Definition 10. A point yj ∈ Y is said to be weighted core directly density-reachable

from a point yi ∈ Y, with yi 6= yj iff

1. Both yi and yj are weighted core points,

2. yj ∈ RNNW
k (yi) and yi ∈ RNNW

k (yj).

Definition 11. A point yj is weighted density-reachable from a point yi, if there is

an ordered list of points CW = (yi, · · · , yj), such that ym ∈ CW \ yj and ym+1 is

directly reachable from ym.

Definition 12. A point yj is weighted density-connected to a point yi, if both yi and

yj are density-reachable from a common point yt.

Weighted density-connectivity is a symmetric relation. We now introduce the

notion of weighted density-based cluster. Similar to DBSCAN, a weighted density-

based cluster can now be defined as a set of weighted density-connected points

which hold maximality with respect to weighted density-reachability.

Definition 13. (Weighted intermediate cluster) are a partition of a data set Y con-

taining n points yi ∈ RV into K non-empty disjoint clusters S = {S1, S2, ..., SK}.

Here, we are particularly interested in hard-clustering so that a given point yi can

be assigned to a single cluster Sc ∈ S. Thus, the final clustering is a maximal set of

weighted density-connected points subject to Sc ∩ Sl = ∅ for c, l = 1, 2, ..., K and

c 6= l satisfying the following conditions :
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1. ∀yi, yj satisfying the weighted core condition: if yi ∈ Sc and yj is weighted

density-reachable from yi wrt. k and β then yj ∈ Sc. (Maximality)

2. ∀yi, yj ∈ Sc, yi is weighted density-connected to yj wrt. k and β. (Connectiv-

ity)

Definition 14. (Weighted final cluster) Our weighted final cluster satisfies the fol-

lowing condition:

1. ∀yi, yj, ym: if yi, ym /∈ Sc, yj ∈ Sc, ym ∈ S and dW(yi, yj) ≤ dW(yi, ym), then

yi ∈ Sc.

Our proposed clustering algorithm recovers weighted cluster in two steps. First,

it identifies the weighted core points with the largest number of similar core points

in its neighbourhood. Then, it retrieves all points that are weighted density reach-

able from the highest density core point yi. Second, it assigns each weighted non-

core point to the cluster of its nearest weighted core point.

4.3.1.1 Calculating Feature weights in W-DBSCANR

Feature weighting, can be thought of as a generalization of feature selection. Fea-

ture weighting assigns a value, usually in the interval [0, 1], to each feature. The

greater this value is for a particular feature, the more this feature contributes to the

clustering. Feature weighting is a rather intuitive approach because even among

relevant features there may be different degrees of relevance. Also, feature weights

can be used to perform feature selection if one employs a threshold (see for in-
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stance (de Amorim, 2019; Panday et al., 2018)).

In order to calculate feature weights, we introduce a new step to DBSCANR.

This allows us to iteratively update each feature weight based on the current par-

tition. In the first iteration, we set each feature weight, wv, to 1
V so that all feature

weights have the same value to start from.

With the above, we can recover K clusters from the first iteration of our al-

gorithm, and represent this clustering using graphs. Let G be a graph with K

components G(1), G(2), ..., G(K), so that the vertices of G(c) (with 1 ≤ c ≤ K) rep-

resent the data points of a cluster Sc ∈ S. Given G(c), we can generate V graphs

G(c,1), G(c,2), ..., G(c,V), so that each edges of G(c,v) (with 1 ≤ v ≤ V) is the feature-

wise distance between its endvertices calculated using the below

dW
cv(yiv, yjv) =

d(yi, yj)

wβ
v

. (4.4)

where, d(yi, yj) is calculated using Equation (3.1).

For example, let yi and yj be the data points in cluster Sc where each data point

described over four features so that yi = [1, 2, 3, 4] and yj = [5, 6, 7, 8]. We obtain

the distance between yi and yj using Equation (3.1), d(yi, yj) = (1 − 5)2 + (2 −

6)2 + (3− 7)2 + (4− 8)2 = 64. Now, let W = [0.4, 0.2, 0.3, 0.1] be the weights of

4 features at β = 1.1. Then from Equation (4.4) we obtain, dW
c1(yi1, yj1) = 175.35,

dW
c2(yi2, yj2) = 375.88, dW

c3(yi3, yj3) = 240.63 and dW
c4(yi4, yj4) = 805.71. dW

c1(yi1, yj1),

dW
c2(yi2, yj2), dW

c3(yi3, yj3) and dW
c4(yi4, yj4) are the feature-wise distances and will
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represent each edge between the vertices (yi1, yj1), (yi2, yj2), (yi3, yj3) and (yi4, yj4)

respectively. An interesting point to note is that, in line with the literature Equation

(4.4) allows us to discern that the more the feature weights the closer the distance.

Figure 4.2: MST representing a feature at a cluster with compactness calculated by the
maximum internal edge of MST (highlighted in red colour).

Given a graph G(c,v), representing the feature v at cluster Sc ∈ S, we can cal-

culate its compactness based on the edges of its minimum spanning tree (MST),

G∗(c,v). Let eij ∈ G∗(c,v) represent the edge between the vertices of yiv, yjv ∈ Sc at

feature v, the compactness of G(c,v) is given by

Ccv = max
eijv∈G∗

(c,v)

eijv, (4.5)

For example, in Figure 4.2, if G∗(c,v) be the MST for feature v, then we obtain com-

pactness, Ccv = 7, the maximum internal edge within MST.

We add a constant σ to each Ccv. The constant σ is the average over all val-

ues of Ccv. Then we calculate compactness per feature Cv by summing over all
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clusters. We can now calculate each feature weight wv, by minimising ∑V
v=1 wβ

vCv

with respect to constraint ∑V
v=1 wv = 1.

wv =
1

∑u∈V

[
Cv
Cu

] 1
β−1

, (4.6)

To obtain the above, we should first apply the optimality condition of first-order

using Lagrange L as below

L = ∑
v∈V

wβ
vCv + λ

(
1− ∑

v∈V
wv

)
. (4.7)

Then the derivative of Lagrange L wrt. wv is found by

∂L
∂wv

= βwβ−1
v Cv − λ (4.8)

We vanish the gradient by equating the above to 0, we get

(
λ

β

) 1
β−1

= wvC
1

β−1
v , (4.9)

wv =

(
λ

βCv

) 1
β−1

. (4.10)

Now by summing the above expression overall for all the features, v ∈ V, we find

the Lagrange,

L = ∑
v∈V

(
λ

βCv

) 1
β−1

. (4.11)
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such that, (
λ

β

) 1
β−1

=
1

∑v∈V

(
1
Cv

) 1
β−1

(4.12)

which leads us to Equation (4.6).

We are now ready to present our feature weighted density-based clustering

method W-DBSCANR as follows:

Algorithm 4.1 : W-DBSCANR (Y, k, β)
Input
Y: Data set.
k: Minimum number of points.
β: Weight exponent.
Output
S : A clustering S = {S1, S2, · · · , SK}
W : A weight matrix W = {w1, w2, · · · , wV}

1: Set wv ← 1
V , for v = 1, 2, ..., V.

2: S = UpdateClustering (Y, k, S, W).
3: Update feature weights for each cluster (as per Equation (4.6)).
4: Repeat steps 2 and 3 until |S| has converged.
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Algorithm 4.2 : UpdateClustering (Y, k, S, W)
Input
Y: Data set.
k: Minimum number of points.
W: A weight matrix.
Output
S : A clustering S = {S1, S2, · · · , SK}

1: Set C ← ∅.
2: Add each weighted core point in Y to C (as per definition 9).
3: Identify the point q ∈ C with the highest density, and remove q from C.
4: Sc = RecoverCluster (C, q, k, W)
5: If |Sc| ≥ k

Add Sc to S
6: Remove each point in Sc from C

Repeat steps 3 to 6 until |C| has converged.
7: Assign each unclustered point to the cluster of its nearest weighted core point.

Algorithm 4.3 : RecoverCluster (C, q, k, W)

Input
C: Weighted core point vector.
q: Weighted core point with the highest density.
k: Minimum number of points.
W: A weight matrix.
Output
Sc : A weighted cluster

1: Set seeds← ∅ and Sc ← ∅.
2: For each yi ∈ C

If yi ∈ RNNW
k (q) and yi has never been assigned to Sc

Add yi to seeds.
3: Add q to Sc, and remove q from seeds (if q ∈ seeds).
4: Identify yi ∈ seeds, such that yi has not been assigned to any cluster. Set q← yi.

Repeat steps 2 to 4 until |seeds| = 0.
5: For each yi ∈ Sc

Add to Sc all points in NNW
k (yi) that are not in C and have not been assigned

to a cluster.
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4.3.2 Minkowski metric weighted DBSCANR

We recognise that the performance of W-DBSCANR is dependant upon the values

of the weight exponent β. Therefore, it is important for us to propose a method

to select the appropriate values of β. Let dW
p (yi, yj) be the weighted pth power of

the Minkowski distance metric, the distance metric in the former does not involve

the root, similar to the analogy to the use of squared Euclidean distance by the

W-DBSCANR.

Now we can relate the use of weights to the concept of the distance measure

in use. To this end, we introduce a weight w to the power of p (that is β = p)

and generalise the pth root of the Minkowski metric. We rewrite Equation (4.2) as

follows

dW
p (yi, yj) =

V

∑
v=1

wp
v(yiv − yjv)

p, (4.13)

The equation above is same as Equation (4.2) except now the weight exponent

β is similar to Minkowski distance exponent p, allowing us to select the weight

exponent.

Benefits of pth power of Minkowski metric are three fold.

(i) It allows us to remove the spherical distance bias due to squared Euclidean

distance.

(ii) The weight is now can be interpreted as feature rescaling factors for any value
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of p. That is, these weights can be used in the pre-processing step independ-

ent of the density-based clustering. This is not true for the powered weight

based method W-DBSCANR.

(iii) It enables us to select the weight exponent which is now equal to the Minkowski

distance exponent p.

MW-DBSCANR is similar to W-DBSCANR except for MW-DBSCANR the weight

exponent β is equal to Minkowski distance exponent p.

4.4 Setting of the experiments

We have introduced one weighted density-based clustering algorithm W-DBSCANR

and a Minkowski weighted clustering algorithm in this Chapter, preceded by the

description of five more state-of-the-art density-based algorithms in Chapter 3. We

think it is appropriate to make a formal comparison with these seven algorithms.

In order to achieve this, we have conducted experiments which encompass two

main axes:

1. Test our proposed feature weighting methods with respect to density-based

clustering recovery, and compare it with DBSCANR as well as its density-

based counterparts.

2. Investigate the characteristics of our weighting methods with respect to noise

features. We are also interested in the behaviour of our proposed method
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in regard to the growing number of features in relation to robustness and

comprehensiveness of an algorithm.

Before we apply clustering algorithms to the data sets we analyse for our experi-

ments, we normalise each data set using Equation (3.3), as we believe that in real-

life applications data normalisation needs to be dealt with in the pre-clustering

process (Amorim and Makarenkov, 2016).

In our series of experiments, we involve the following seven density-based

clustering algorithms: (i) DBSCAN (ii) OPTICS (iii) ISDBSCAN (iv) RNN-DBSCAN

(v) DBSCANR (vi) W-DBSCANR and (vii) MW-DBSCANR. The range of user defined

parameters selected for experiments along with the number of times the experi-

ments are run with (i), (ii), (iii), (iv) and (v) in this chapter will be same as the

settings described in Section 3.4. We have run one experiment per value of k =

{3, 4, · · · , 50} and β = {1.1, 1.2, 1.3, · · · , 5} with W-DBSCANR.
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Table 4.1: The list of artificial data sets used in our experiments. The column ’Total number
of features’ includes the number of original features as well as noise features.

Points Clusters Features Noise Total number
Data sets N K V features of features

+ 50% noise features
Aggregation 788 7 2 1 3
Grid 655 2 2 1 3
D31 3100 31 2 1 3
Flame 240 2 2 1 3
Mixed 1479 5 2 1 3
Pathbased 300 3 2 1 3
R15 600 15 2 1 3
Spiral 312 3 2 1 3
Toy 373 2 2 1 3
Twodiamonds 800 2 2 1 3

+ 100% noise features
Aggregation 788 7 2 2 4
Grid 655 2 2 2 4
D31 3100 31 2 2 4
Flame 240 2 2 2 4
Mixed 1479 5 2 2 4
Pathbased 300 3 2 2 4
R15 600 15 2 2 4
Spiral 312 3 2 2 4
Toy 373 2 2 2 4
Twodiamonds 800 2 2 2 4

One of the main objectives of our study is to understand the degree of relevance

of each feature in density-based setting. Unfortunately, the relevance of features

for each data set are unknown. We address this issue by adding noise features to

each of our original data set in Table 3.1 and 3.2 we considered for our experiments

(see details in Table 4.1 and 4.2) and generated two other data sets one with dV ×

0.5e and another with [V × 1] noise features.
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Table 4.2: The list of real-world data sets used in our experiments. The column ’Total
number of features’ includes the number of original features as well as noise features.

Points Clusters Features Noise Total number
Data sets N K V features of features

+ 50% noise features
Banknote 1372 2 4 2 6
Iris 150 3 4 2 6
Ecoli 336 8 7 4 11
Seeds 210 3 7 4 11
BreastT. 106 6 9 5 14
Liver 583 2 9 5 14
Wine 178 3 13 7 20
Leaf 340 30 14 7 21
Parkinsons 195 2 22 11 33
Leukemia 72 3 39 20 59
TeachingAssistant 151 3 56 28 84
Libras 360 15 90 45 135

+ 100% noise features
Banknote 1372 2 4 4 8
Iris 150 3 4 4 8
Ecoli 336 8 7 7 14
Seeds 210 3 7 7 14
BreastT. 106 6 9 9 18
Liver 583 2 9 9 18
Wine 178 3 13 13 26
Leaf 340 30 14 14 28
Parkinsons 195 2 22 22 44
Leukemia 72 3 39 39 78
TeachingA. 151 3 56 56 112
Libras 360 15 90 90 180

The noise features we added to the data sets are composed of uniformly ran-

dom values. In addition, the added noise features are within-domain so that the

range of values of noise features are identical to the original data set they are ad-

ded to. A feature selection method can either remove one of these noise features

or one of the original features. Removing the former indicates the feature selec-
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tion method is removing that feature it is supposed to remove, however, the latter

does not mean that the relevant feature belonged to the original data set being re-

moved, as we do not know the relevance of this feature. The added noise features

in the original data set and their impact on the latter are presented in Appendix

A where we have shown the clustering with true labels on the first two principal

components.

Apart from the algorithms we presented the experiments of in Section 3.4,

our experiments involve two new feature weighted algorithms as follows: (i) W-

DBSCANR; and (ii) MW-DBSCANR.

1. W-DBSCANR: We have two parameters, minimum number of points, k and

weight exponent, β. We maintain the same range of values of k from 3 to 50 in

steps of 1 and β was chosen from 1.1 to 5 in step of 0.1 (Amorim and Mirkin,

2012).

2. MW-DBSCANR: We have two parameters, minimum number of points, k

and weight exponent, p. We maintain the same range of values of k from 3

to 50 in steps of 1 and p was chosen from 1.1 to 5 in step of 0.1 (Amorim and

Mirkin, 2012).

4.5 Experimental results and comparisons

Our results are divided into two sections. Section 4.5.1 and 4.5.2 present the res-

ults with original data sets with and without noise respectively. The results of the
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artificial and real-world data sets presented in the next two sections where the val-

ues of user defined parameters are chosen at the best Adjusted Rand Index (ARI)

to determine the cluster recovery. Fortunately, to measure the performance, true

labels are available for the data sets we considered for our experiments.

4.5.1 Experiments on original data sets without noise features

4.5.1.1 Experiments on original artificial data sets without noise features

In this section, we conducted experiments on original data sets (see Table 3.1 and

Table 3.2) without any noise features.

1. Aggregation data set

To deal with original artificial data sets, in Table 4.3 we show the results of cluster-

ing recovery on the Aggregation data set without any noise features added.

Table 4.3: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Aggregation data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 10 0.0559 2 0 0.9834
OPTICS(AutoCl) 7 0.1468 2 0 0.9082
ISDBSCAN 12 2 0 0.9911
RNN-DBSCAN 13 2 0 0.9966
DBSCANR 12 2 0 0.9978
W-DBSCANR 6 2 1.6 0.9978
MW-DBSCANR 10 4.9 4.9 1.0000

In this table, W-DBSCANR and MW-DBSCANR reached the optimal ARI of
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0.9978 and 1 at β and p of 1.6 and 4.9 respectively, suggesting that no instances

were misclassified by MW-DBSCANR. DBSCAN and its’ state-of-the-art density

based counterparts including OPTICS reached the average ARI of 0.9754, among

the former DBSCANR reached the highest ARI (0.9978 at k of 12) and the ARI

value of OPTICS is the lowest (0.9082 at k of 7). The ARI value of both ISDBSCAN

and RNN-DBSCAN are greater than 0.99, however, slightly lower than our feature

weighted versions.

In terms of ARI, our result of 0.9978 and 1 obtained by W-DBSCANR and MW-

DBSCANR respectively, outperforms the other clustering algorithms, found in the

literature. We have also compared our methods with K-Means (MacQueen et al.,

1967), WK-Means (Huang et al., 2005) and iMWK-Means (Amorim and Mirkin,

2012), since to the best of our knowledge, the latter methods are arguably the most

popular clustering algorithms found in the literature.

Both K-Means and WK-Means are non-deterministic algorithms, that is, un-

der the same settings these algorithms may recover very different clusterings. To

choose the optimum parameter with the highest average ARI, we run each al-

gorithm at each parameter 100 times. As opposed to the K-Means and WK-Means,

we run iMWK-Means, W-DBSCANR and MW-DBSCANR run only once since they

are deterministic, meaning that if they are run multiple times, they generate similar

clusterings, under the same settings.

In the Table 4.4 below, though the maximum ARI value obtained by WK-Means

is as high as 0.8395, was in fact reached only once in a hundred run. K-Means
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reached the highest average optimal ARI of 0.7067 among the partitional clustering

algorithms we compare with.

Table 4.4: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Aggregation data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.7067 0.0464 0.7696
WK-Means 0.6171 0.0967 0.8395
iMWK-Means - - 0.4819
W-DBSCANR - - 0.9978
MW-DBSCANR - - 1.0000

Calculating feature weights while recovering arbitrary shaped clusters is one

of the key elements of our feature weighted density-based algorithms. Hence, we

now intend to analyse how feature weights have behaved in both W-DBSCANR

and MW-DBSCANR. The final feature weights for W-DBSCANR (0.7145 & 0.2855)

and MW-DBSCANR (0.5116 & 0.4884) in this Aggregation data set demonstrates

both features are almost equally important.

The feature weights calculated by both W-DBSCANR and MW-DBSCANR in-

dicate that the weight of feature 1 is higher than feature 2. Although one can

see no considerable difference in the feature weights between the features, how-

ever, when the feature weights are almost equal the ARI value reached 1 by our

Minkowski weighted DBSCANR algorithm (MW-DBSCANR) that implement fea-

ture weighting technique.

2. D31 data set

Table 4.5 presents the results of all seven density-based clustering algorithms in the
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D31 data set. In this data set feature weighting schemes seems to slightly increase

the cluster recovery, W-DBSCANR reached the highest ARI value of 0.9445, only

1% up from DBSCANR. ISDBSCAN could not find the true number of clusters

(hence the dashes). Though the shapes of the clusters are spherical, the cluster

recovery of the algorithms are approximately 15% lower (based on average ARI

score across seven clustering algorithms) in contrast to the Aggregation data set,

as the clusters are arbitrarily placed within the data space.

Table 4.5: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original D31 data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 42 0.0381 2 0 0.8224
OPTICS(AutoCl) 27 0.0931 2 0 0.4649
ISDBSCAN - - - -
RNN-DBSCAN 35 2 0 0.8591
DBSCANR 35 2 0 0.9354
W-DBSCANR 33 2 1.8 0.9445
MW-DBSCANR 33 1.9 1.9 0.9470

In Table 4.6, we show the cluster recovery in terms of ARI, this turn our fea-

ture weighting schemes are compared with popular generic and feature weighting

based partitional clustering algorithms. Unsurprisingly, The mean ARI is higher

for both K-Means and WK-Means compared with the results of Aggregation data

set since cluster shapes are globular, but still considerably lower than our feature

weighting schemes. Moreover, both W-DBSCANR and MW-DBSCANR are com-

petitive with the best result achieved by popular density-based algorithm that im-
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plements shared-nearest neighbour by fast search and density peaks searching,

SNN-DPC (Liu et al., 2018) (reaching the optimal ARI of 0.9509) and the best ARI

of fuzzy weighted KNN based algorithm, FKNN-DPC (Xie et al., 2016) (reaching

the best ARI of 0.9275).

Table 4.6: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal D31 data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.8464 0.0439 0.9172
WK-Means 0.7340 0.0968 0.9220
iMWK-Means - - -
W-DBSCANR - - 0.9445
MW-DBSCANR - - 0.9470

3. Flame data set

The results shown in the Table 4.7 demonstrate that RNN-DBSCAN reached the

highest ARI of 0.9833 at k = 8. W-DBSCANR, MW-DBSCANR and DBSCANR

reached the optimal ARI of 0.9833, slightly lower than RNN-DBSCAN as the former

was unable to classify just one border point. Given the poorly separated clusters,

the lowest recovery of clusters obtained by OPTICS (ARI of 0.8969), ISDBSCAN

(ARI of 0.9497) and DBSCAN reaching the best ARI of 0.9715.
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Table 4.7: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Flame data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 14 0.1166 2 0 0.9715
OPTICS(AutoCl) 7 0.0842 2 0 0.8969
ISDBSCAN 8 2 0 0.9497
RNN-DBSCAN 8 2 0 0.9881
DBSCANR 8 2 0 0.9833
W-DBSCANR 7 2 3 0.9833
MW-DBSCANR 7 2.2 2.2 0.9833

In Table 4.8, we show a results of those partitional based clustering algorithms

on the same data set. In this comparison, both W-DBSCANR and MW-DBSCANR

achieved highest cluster recovery with respect to optimal ARI.

Table 4.8: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Flame data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.4860 0.0253 0.5237
WK-Means 0.3024 0.2209 0.4880
iMWK-Means - - 0.5358
W-DBSCANR - - 0.9833
MW-DBSCANR - - 0.9833

4. Grid data set

We show the results of Grid benchmark data set in Table 4.9. This data set consists

of two clusters (see Figure A.2(a)) in which the density of one cluster is five times

greater than another. All the seven algorithms were able to reach optimal ARI of

more than 0.85 except DBSCAN. OPTICS showed better cluster recovery than DB-
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SCAN as the former is well-known for recovering variable density clusters within

a data space. This is not surprising as it is a well known that DBSCAN is unable to

recover widely variable density clusters simultaneously. The highest performing

algorithms are W-DBSCANR and MW-DBSCANR reaching the optimal ARI of 1,

both at k = 4 and β and p of 1.1 respectively (note the equal value of β and p).

Table 4.9: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Grid data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 4 0.07 2 0 0.6377
OPTICS(AutoCl) 5 0.0724 2 0 0.8585
ISDBSCAN 7 2 0 0.9397
RNN-DBSCAN 7 2 0 0.9397
DBSCANR 4 2 0 0.9457
W-DBSCANR 4 2 1.1 1
MW-DBSCANR 4 1.1 1.1 1

Table 4.10 demonstrates the results of generic and feature weighting based K-

Means algorithm. Though iMWK-Means reached the higher optimal ARI of 0.7275,

still lower than W-DBSCANR and MW-DBSCANR.

Table 4.10: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Grid data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.6996 0.0047 0.7067
WK-Means 0.5991 0.1210 0.7067
iMWK-Means - - 0.7275
W-DBSCANR - - 1.0000
MW-DBSCANR - - 1.0000
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5. Mixed data set

The results shown in the next Table 4.11 demonstrates the superiority of all the

clustering algorithms we experiment reaching the average best ARI of 0.9998 over

seven clustering algorithms. However both OPTICS and RNN-DBSCAN reached

the latter average value of ARI at rather smaller k compared to others. This ac-

cords with the fact that all the clustering algorithms we experiment with are able

to recover clusters that are arbitrarily shaped and well-separated within the data

space.

Table 4.11: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Mixed data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 2 0.0488 2 0 1.0000
OPTICS(AutoCl) 7 0.2267 2 0 0.9998
ISDBSCAN 23 2 0 1.0000
RNN-DBSCAN 36 2 0 0.9989
DBSCANR 14 2 0 1.0000
W-DBSCANR 12 2 2.3 1.0000
MW-DBSCANR 13 1.7 1.7 1.0000

Unsurprisingly in Table 4.12 one can see that both generic and feature weight-

ing based algorithms cease to demonstrate higher cluster recovery on the Mixed

benchmark data set, as this is a well-known fact that K-Means type algorithms are

biased to spherical shaped clusters.
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Table 4.12: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Mixed data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.3951 0.0237 0.4139
WK-Means 0.3391 0.0732 0.4443
iMWK-Means - - 0.3622
W-DBSCANR - - 1.0000
MW-DBSCANR - - 1.0000

6. Pathbased data set

Table 4.13 presents the results of Pathbased data set comparing all seven density-

based clustering algorithms. In this data set, two poorly separated spherical shaped

clusters are closely surrounded by ring shaped cluster. W-DBSCANR reached the

highest optimal ARI of 0.9804 and MW-DBSCANR reached slightly lower 0.9695

at the β and p value of 3.2 and 1.8 respectively.

Table 4.13: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Pathbased data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 9 0.0752 2 0 0.8948
OPTICS(AutoClust) 9 0.1067 2 0 0.7867
ISDBSCAN 12 2 0 0.8819
RNN-DBSCAN 6 2 0 0.9065
DBSCANR 6 2 0 0.9590
W-DBSCANR 5 2 3.2 0.9804
MW-DBSCANR 5 1.8 1.8 0.9695

The cluster recovery of all partitional clustering algorithms under comparison

in Table 4.14 demonstrates that the former methods reached considerably lower
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ARI compared to density-based counterparts such as W-DBCANR AND MW-DBSCANR.

This is understandable as the globular clusters are surrounded by non globular

cluster. On the same data set, the latter outperforms popular state-of-the-art density-

based clustering algorithms such as SNN-DPC (Liu et al., 2018) and FKNN-DPC

(Xie et al., 2016) based on best possible ARI (0.9294 and 0.8744).

Table 4.14: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Pathbased data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.4616 0.0006 0.4650
WK-Means 0.4103 0.0851 0.4921
iMWK-Means - - 0.4797
W-DBSCANR - - 0.9804
MW-DBSCANR - - 0.9695

7. R15 data set

In the Table 4.15 we show the results on R15 benchmark data set. This turn, both

W-DBSCANR and MW-DBSCANR reached the best optimal ARI of 0.9929 which

misclassified four border points. OPTICS reached the ARI of 0.8682, lowest in the

group and DBSCAN and RNN-DBSCAN reached the optimal ARI of over 0.98.
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Table 4.15: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original R15 data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 30 0.0514 2 0 0.9893
OPTICS(AutoClust) 8 0.2156 2 0 0.8682
ISDBSCAN 26 2 0 0.9743
RNN-DBSCAN 30 2 0 0.9857
DBSCANR 22 2 0 0.9928
W-DBSCANR 30 2 1.8 0.9929
MW-DBSCANR 29 2.8 2.8 0.9929

Table 4.16 shows the comparisons of additional popular clustering algorithms

demonstrates that our density-based algorithms that implements feature weight-

ing are favourably compared with the K-Means type algorithms. In contrast to the

Pathbased data set, all the 15 clusters are globular shaped, hence the better cluster

recovery by K-Means type algorithms reaching the maximum ARI of 0.9928 by

both K-Means and W-KMeans.

Table 4.16: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal R15 data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.8892 0.0751 0.9928
WK-Means 0.7735 0.0996 0.9928
iMWK-Means - - 0.7347
W-DBSCANR - - 0.9929
MW-DBSCANR - - 0.9929
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8. Spiral data set

Table 4.17 shows the performance of all seven clustering algorithms we experi-

ment with in terms of optimal ARI. On this data set, all the algorithms reached the

highest optimal ARI of 1 expect OPTICS reaching only the optimal ARI value of

0.5617. An interesting point to note is that both W-DBSCANR and MW-DBSCANR

reached the optimal ARI at the same k of 1.3.

Table 4.17: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Spiral data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 2 0.0447 2 0 1.0000
OPTICS(AutoClust) 5 0.2065 2 0 0.5617
ISDBSCAN 5 2 0 1.0000
RNN-DBSCAN 2 2 0 1.0000
DBSCANR 2 2 0 1.0000
W-DBSCANR 2 2 1.3 1.0000
MW-DBSCANR 2 1.3 1.3 1.0000

Given the spiral shape of the clusters, the cluster recovery of all three K-Means

type clustering algorithms we compare with are very low with an average ARI

value of 0.0138 in Table 4.18.

Table 4.18: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Spiral data set without noise.

ARI

Algorithm Mean Std Max

K-Means -0.0058 0.0002 -0.0050
WK-Means -0.0002 0.0073 0.0426
iMWK-Means - - 0.0040
W-DBSCANR - - 1.0000
MW-DBSCANR - - 1.0000
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9. Toy data set

Table 4.19 demonstrates that all the algorithms except DBSCAN and RNN-DBSCAN

were able to recover clusters and classify all the points in the Toy data set reaching

the best ARI value of 1. The cluster recovery of DBSCAN is lower since DBSCAN

cease to recover variable density clusters, which is the case for Toy data set (see

Figure A.9(a)).

Table 4.19: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Toy data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 13 0.0600 2 0 0.9670
OPTICS(AutoClust) 32 0.0711 2 0 1.0000
ISDBSCAN 17 2 0 1.0000
RNN-DBSCAN 15 2 0 0.9917
DBSCANR 16 2 0 1.0000
W-DBSCANR 12 2 2.5 0.9887
MW-DBSCANR 10 1.7 1.7 1.0000

From Table 4.20, among the clustering additional clustering algorithms under

experiment still comparing with respect to best ARI both W-DBSCANR and MW-

DBSCANR outperforms generic K-Means and its state-of-the-art feature weighting

variants.
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Table 4.20: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Toy data set without noise.

ARI

Algorithm Mean Std Max

K-Means 0.5767 0.0000 0.5767
WK-Means 0.5474 0.0901 0.6352
iMWK-Means - - 0.6257
W-DBSCANR - - 1.0000
MW-DBSCANR - - 1.0000

10. Twodiamonds data set

In Table 4.21, we show the results on Twodiamonds benchmark data set. The

cluster recovery of both W-DBSCANR and MW-DBSCANR in terms of optimal

ARI is 1 at rather same value of k of 9 and at closer exponent value of 1.5 and 1.6

respectively. Surprisingly ISDSBCAN was unable to find true number of clusters

(hence the dashes).

Table 4.21: Accuracies in terms of best ARI achieved at different versions of density-based
clustering at the original Twodiamonds data set with no added noise features.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 12 0.0576 2 0 0.9975
OPTICS(AutoClust) 27 0.0803 2 0 0.9751
ISDBSCAN - - - -
RNN-DBSCAN 36 2 0 0.9950
DBSCANR 22 2 0 0.9950
W-DBSCANR 9 2 1.5 1.0000
MW-DBSCANR 9 1.6 1.6 1.0000

Table 4.22 demonstrates that both W-DBSCANR and MW-DBSCANR compares

favourably with all the K-Means type algorithms under consideration reaching the
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maximum ARI values of 1.

Table 4.22: Comparison of clustering recovery achieved by various algorithms in the ori-
ginal Twodiamonds data set without noise.

ARI

Algorithm Mean Std Max

K-Means 1.0000 0.003 1.0000
WK-Means 0.4994 0.079 1.0000
iMWK-Means - - 1.0000
W-DBSCANR - - 1.0000
MW-DBSCANR - - 1.0000

In order to discern how our proposed algorithms behaves on real-world, higher

dimensional yet arbitrary shaped data sets and compares with DBSCAN and its

popular and state-of-the-art variants, we present the results below

4.5.1.2 Experiments on original real-world data sets without noise features

11. Iris data set

We start by presenting the cluster recovery performance of all seven clustering al-

gorithms on popular Iris data set consisting three equal sized clusters described

over four features. Based on optimal ARI, W-DBSCANR reached 0.9222, misclas-

sifying four border data points where two clusters are not well separated (see Iris

data set on the plane of the first two principal components in Figure A.12(a)) and

MW-DBSCANR reached the optimal ARI of 0.9039.
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Table 4.23: Experiments with the Iris data set with no added noise features. Best possible
ARI value achieved at different DBSCAN type clustering algorithms at the original Iris
data set

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 5 0.1262 2 0 0.6280
OPTICS(AutoClust) 13 0.0442 2 0 0.6063
ISDBSCAN 12 2 0 0.4607
RNN-DBSCAN 6 2 0 0.4008
DBSCANR 7 2 0 0.8681
W-DBSCANR 10 2 1.6 0.9222
MW-DBSCANR 3 1.3 1.3 0.9039

Comparing our feature weighted scheme with additional clustering algorithms,

the results in Table 4.24 suggests that the cluster recovery of W-DBSCANR and

MW-DBSCANR are higher than iMWK-Means and WK-Means. The former also

compares favourably with the clustering algorithms proposed in the recent literat-

ure (Boryczka, 2009; Chakraborty and Das, 2018; Kant and Ansari, 2016; Pei et al.,

2017; Sun et al., 2019; Vu and Do, 2017; Xu et al., 2018).

Table 4.24: Comparison of clustering results achieved by various algorithms in the original
Iris data set

ARI

Algorithm Mean Std Max

K-Means 0.6713 0.0985 0.7163
WK-Means 0.7475 0.1571 0.9037
iMWK-Means - - 0.9037
W-DBSCANR - - 0.9222
MW-DBSCANR - - 0.9039

Density-based feature weights is one of the key elements of W-DBSCANR and
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its Minkowski weighted version. Therefore, we are interested in analysing the

behaviour of the density-based feature weights at both algorithms. Figure 4.3(a)

shows the higher feature weights for each cluster over features 3 and 4 (petal length

and petal width) than features 1 and 2 (sepal length and sepal width) found by

W-DBSCANR. Recent feature weighted clustering research (Amorim and Mirkin,

2012) seems to corroborate our feature weights (features 3 and 4 are the most in-

formative ones) in the iris data set. Figure 4.3(b) illustrating the importance of fea-

tures calculated by MW-DBSCANR does not seem to match W-DBSCANR. How-

ever, in accordance with the literature, features 3 and 4 are found to be most in-

formation carrying features by both W-DBSCANR and MW-DBSCANR.

(a) (b)

Figure 4.3: Density-based feature weights (one per feature) calculated by (a) W-DBSCANR;
(b) MW-DBSCANR in Iris data set.

12. Banknote data set

Both W-DBSCANR and MW-DBSCANR outperforms all the other clustering al-

gorithms under comparison reaching the best ARI of 0.8567 and 0.8540 respect-

ively. On this data set, the clustering recovery of all the other clustering algorithms,
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unsurprisingly, are very low with an average ARI value of 0.006 with maximum

and minimum value of 0.0216 and −0.0109 obtained by DBSCAN and ISDBCAN

respectively. This is understandable as clusters in the original Banknote data set

are poorly separated (see Figure A.11(a)).

Table 4.25: Experiments with the Banknote data set with no added noise features. Best pos-
sible ARI value achieved at different DBSCAN type clustering algorithms at the original
Banknote data set

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 12 0.1062 2 0 0.0216
OPTICS(AutoClust) 42 0.1062 2 0 0.0214
ISDBSCAN 34 2 0 -0.0109
RNN-DBSCAN 46 2 0 -0.0081
DBSCANR 14 2 0 0.8433
W-DBSCANR 15 2 4.8 0.8567
MW-DBSCANR 19 2.8 2.8 0.8540

The results in Table 4.26 comparing the additional clustering algorithms demon-

strates the superiority of our feature weighting schemes over K-Means type al-

gorithms. Based on the best possible ARI, the average performance of W-DBSCANR

and MW-DBSCANR, is more than 80% higher than the best result of K-Means type

algorithm in Table 4.26. Among K-Means type algorithm, WK-Means reached the

optimal ARI of 0.4670, highest in the K-Means type group.
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Table 4.26: Comparison of clustering results achieved by various algorithms in the original
Banknote data set

ARI

Algorithm Mean Std Max

K-Means 0.0216 0.0009 0.0223
WK-Means 0.0441 0.0708 0.4670
iMWK-Means - - 0.1951
W-DBSCANR - - 0.8567
MW-DBSCANR - - 0.8540

13. The BreastT. Data set

Table 4.27 presents the cluster recovery of all seven density-based clustering al-

gorithms. When we compare these algorithms, taking the highest ARI into account

W-DBSCANR and MW-DBSCANR performed best as they iteratively calculates

and assigns weights based on the DBSCANR type cluster structure and OPTICS

being the worst reaching only the maximum ARI of 0.0148.

Table 4.27: Experiments with the BreastT. data set with no added noise features. Best pos-
sible ARI value achieved at different DBSCAN type clustering algorithms at the original
BreastT. data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 2 0.2382 2 0 0.1520
OPTICS(AutoClust) 4 0.0830 2 0 0.0148
ISDBSCAN 5 2 0 0.0976
RNN-DBSCAN 3 2 0 0.2892
DBSCANR 3 2 0 0.2773
W-DBSCANR 3 2 1.1 0.4715
MW-DBSCANR 4 1.5 1.5 0.4093

The same trend is evident in Table 4.28 when compared to additional clustering
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algorithms suggesting that both density-based and K-Means when applied feature

weighting techniques outperforms the generic versions. Though MW-DBSCANR

outperforms iMWK-Means on the BreastT. data set, both algorithms ranked feature

1 and 5 as the two most informative features with the feature weights calculated

by MW-DBSCANR and iMWK-Means are 0.1212 (feature 1), 0.1333 (feature 5) and

0.1345 (feature 1), 0.1504 (feature 5) respectively.

Table 4.28: Comparison of clustering results achieved by various algorithms in the original
BreastT. data set.

ARI

Algorithm Mean Std Max

K-Means 0.2880 0.0265 0.3729
WK-Means 0.3245 0.0722 0.4626
iMWK-Means - - 0.3838
W-DBSCANR - - 0.4715
MW-DBSCANR - - 0.4093

14. Leukemia data set

The results of clustering algorithms showing in Table 4.29 indicate that MW-DBSCANR

outperforms all six clustering algorithms under comparison. OPTICS ceased to

find the required true clusters, as this is a data set of relatively higher dimensions

(39 features) in contrast to BreastT. data set. An interesting point to note is that W-

DBSCANR and MW-DBSCANR reached their highest respective ARI at relatively

closer weight exponent value.
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Table 4.29: Experiments with the Leukemia data set with no added noise features. Best
possible ARI value achieved at different DBSCAN type clustering algorithms at the ori-
ginal Leukemia data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 2 1.6987 2 0 0.8947
OPTICS(AutoClust) - - - - -
ISDBSCAN 16 2 0 0.7439
RNN-DBSCAN 3 2 0 0.8264
DBSCANR 3 2 0 0.8809
W-DBSCANR 2 2 1.5 0.8809
MW-DBSCANR 2 1.3 1.3 0.9186

We can see the similar performance in terms of cluster recovery based on op-

timal ARI in Table 4.30 when MW-DBSCANR is competitive with the popular

iMWK-Means and their feature weights as shown in Figure 4.4 are unsurprisingly

correlated.

Table 4.30: Comparison of clustering results achieved by various algorithms in the original
Leukemia data set.

ARI

Algorithm Mean Std Max

K-Means 0.8420 0.1345 0.9186
WK-Means 0.6683 0.2042 0.9186
iMWK-Means - - 0.8809
W-DBSCANR - - 0.8809
MW-DBSCANR - - 0.9186
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Figure 4.4: Feature weights calculated by iMWK-Means and MW-DBSCANR in the ori-
ginal Leukemia data set.

15. Libras data set

We present the results of our experiment on Libras dat set in Table 4.31 comparing

seven clustering algorithms including newly proposed feature weighted density-

based clustering methods W-DBSCANR and MW-DBSCANR in this chapter (see

details in Section 4.3). We show the best optimum ARI for what we obtained to

be the best parameter we experiment with. Both W-DBSCANR and DBSCANR

reached higher ARI than DBSCAN and its state-of-the-art counterpart. Consistent

with the performance on Leukemia data set, MW-DBSCANR reached the highest

ARI of 0.4231, 11% higher than W-DBSCANR and DBSCANR.

The cluster recovery of MW-DBSCANR is 76% higher than the rest of the clus-
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tering algorithms (DBSCAN, OPTICS, ISDBSCAN and RNN-DBSCAN) under com-

parison in terms of the average of maximum ARI. DBSCANR and OPTICS reached

the best ARI value of 0.0369 and 0.0014 respectively. This is not surprising given

that Libras data set is higher dimensional (more specifically, 90 features) and the

former algorithms cease to discover clusters in higher dimensional settings.

Table 4.31: Experiments with the Libras data set with no added noise features. Best pos-
sible ARI value achieved at different DBSCAN type clustering algorithms at the original
Libras data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 4 0.7095 2 0 0.0369
OPTICS(AutoClust) 2 0.1682 2 0 0.0014
ISDBSCAN - - - -
RNN-DBSCAN 4 2 0 0.2676
DBSCANR 5 2 0 0.3752
WD-BSCANR 5 2 1.1 0.3758
MW-DBSCANR 5 3.7 3.7 0.4231

We can see the same trend in the results shown in Table 4.32 when we compare

our feature weighting schemes with K-Means type clustering algorithms as well as

in the result on Libras data set in more recent density-based clustering algorithms

such as DPC (Rodriguez and Laio, 2014), SNN-DPC (Liu et al., 2018) and FKNN-

DPC (Xie et al., 2016) reached the best ARI of 0.3193, 0.3927 and 0.3184 respectively.
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Table 4.32: Comparison of clustering results achieved by various algorithms in the original
Libras data set.

ARI

Algorithm Mean Std Max

K-Means 0.2971 0.0224 0.3551
WK-Means 0.2657 0.0329 0.3584
iMWK-Means - - 0.3204
W-DBSCANR - - 0.3758
MW-DBSCANR - - 0.4231

16. The Liver data set

In Table 4.33, we show the result of our experiments on Liver data set. In this

data set, the inter-cluster separation is very low (see Figure A.16(a) on the plane of

the first two principal components) hence the relatively low cluster recovery with

an average best ARI of 0.0442 over seven clustering algorithms under experiment,

MW-DBSCANR being the best method reached the optimal ARI of 0.0713, 24%

higher than W-DBSCANR and 37% higher than DBSCAN on the same measure-

ment.

Table 4.33: Experiments with the Liver data set with no added noise features. Best possible
ARI value achieved at different DBSCAN type clustering algorithms at the original Liver
data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 9 0.0390 2 0 0.0521
OPTICS(AutoClust) 11 0.1174 2 0 0.0565
ISDBSCAN 46 2 0 0.0072
RNN-DBSCAN 9 2 0 0.0320
DBSCANR 5 2 0 0.0327
W-DBSCANR 4 2 1.1 0.0575
MW-DBSCANR 4 1.4 1.4 0.0713
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The cluster recovery of MW-DBSCANR is competitive compared with K-Means

type algorithms shown in Table 4.34 as well as algorithms in the recent literature.

Table 4.34: Comparison of clustering results achieved by various algorithms in the original
Liver data set.

ARI

Algorithm Mean Std Max

K-Means 0.0327 0.0000 0.0327
WK-Means -0.0002 0.0297 0.0342
iMWK-Means - - 0.0327
W-DBSCANR - - 0.0575
MW-DBSCANR - - 0.0713

Table 4.34 compares the result of various K-Means type clustering algorithms

with Feature weighted versions of DBSCANR, W-DBSCANR and MW-DBSCANR

showing favourable results on the original Liver data set.

17. TeachingA. data set

The results of the comparison on TeachingA. data set demonstrates the superiority

of W-DBSCANR and MW-DBSCANR. However, the algorithms achieved very low

optimal ARI which is similar to Liver data set as one cannot see any visible density-

based cluster structure, i.e. in this data set higher density regions are not separated

from lower density regions (as shown in Figure A.21(a) on the plane of the first two

principal components). One may think, the clustering task may be impeded due

to higher dimensions of TeachingA. data set with 56 features. However, this is

not accountable for inferior cluster recovery as we can see relatively good cluster

recovery in the case of data set in which the number of features are higher than

TeachingA. for instance, Libras data set having 90 features.
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Table 4.35: Experiments with the TeachingA. data set with no added noise features. Best
possible ARI value achieved at different DBSCAN type clustering algorithms at the ori-
ginal TeachingA. data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 11 1.5029 2 0 0.0220
OPTICS(AutoClust) 4 0.0219 2 0 0.0092
ISDBSCAN 9 2 0 0.0182
RNN-DBSCAN - - - -
DBSCANR 3 2 0 0.0119
W-DBSCANR 10 2 1.5 0.0339
MW-DBSCANR 4 1.9 1.9 0.0273

Table 4.36 shows that the cluster recovery of K-Means type algorithms (how-

ever low in terms of expected maximum ARI) on this data set. This is not surpris-

ing as unlike density-based clustering the objective of K-Means type clustering

algorithms is to partition data set similar to the Voronoi diagram of the cluster

centers, regardless of the actual shape of the cluster.

Table 4.36: Comparison of clustering results achieved by various algorithms in the original
TeachingA. data set.

ARI

Algorithm Mean Std Max

K-Means 0.0288 0.0125 0.0657
WK-Means 0.0213 0.0153 0.0983
iMWK-Means - - 0.0421
W-DBSCANR - - 0.0339
MW-DBSCANR - - 0.0273

18. Wine data set

In the Table 4.37 below, W-DBSCANR reached 0.8819, highest optimal ARI com-
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pared to the other clustering algorithms under experiment. From A.17(a) (shown

on the plane of the first two principal components) one can see the well-separated

higher density regions, hence the higher ARI value regardless of the higher dimen-

sions (in contrast to TeachingA. data set).

Table 4.37: Experiments with the Wine data set with no added noise features. Best possible
ARI value achieved at different DBSCAN type clustering algorithms at the original Wine
data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 17 0.4753 2 0 0.4497
OPTICS(AutoClust) - - - - -
ISDBSCAN 9 2 0 0.5635
RNN-DBSCAN 3 2 0 0.3738
DBSCANR 3 2 0 0.7123
W-DBSCANR 3 2 2.2 0.8819
MW-DBSCANR 4 1.4 1.4 0.8185

The Wine data set matches the objective of the K-Means type algorithms hence

higher optimal ARI overall. However, the result obtained by W-DBSCANR and

MW-DBSCANR is competitive with these partitional clustering algorithms as well

as SNN-DPC, FKNN-DPC and DPC reaching the optimal ARI of 0.8992, 0.7990 and

0.6724 respectively.
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Table 4.38: Comparison of clustering results achieved by various algorithms in the original
Wine data set.

ARI

Algorithm Mean Std Max

K-Means 0.8385 0.0708 0.9149
WK-Means 0.7595 0.0931 0.9309
iMWK-Means - - 0.8185
W-DBSCANR - - 0.8819
MW-DBSCANR - - 0.8185

19. Ecoli data set

The results shown in the next table is undoubtedly consistent with the trend. In this

comparison, both MW-DBSCANR and DBSCANR outperforms the recent variants

of density-based clustering algorithm. In this data set, both ISDBSCAN and RNN-

DBSCAN were unable to recover the true number of clusters, hence the dashes.

Table 4.39: Experiments with the Ecoli data set with no added noise features. Best possible
ARI value achieved at different DBSCAN type clustering algorithms at the original Ecoli
data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 4 0.0935 2 0 -0.0084
OPTICS(AutoClust) 14 0.0306 2 0 0.4217
ISDBSCAN - - - -
RNN-DBSCAN - - - -
DBSCANR 3 2 0 0.4206
W-DBSCANR 3 2 1.2 0.5581
MW-DBSCANR 3 1.3 1.3 0.6860

The same cannot be told when the proposed versions of feature weighting

based DBSCANR algorithm was compared with K-Means type algorithms. In this

Ecoli data set, WK-Means performed better based on best possible ARI.
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Table 4.40: Comparison of clustering results achieved by various algorithms in the original
Ecoli data set.

ARI

Algorithm Mean Std Max

K-Means 0.4635 0.0757 0.7332
WK-Means 0.3419 0.1918 0.7726
iMWK-Means - - -
W-DBSCANR - - 0.5581
MW-DBSCANR - - 0.6860

20. Leaf data set

Table 4.41 and 4.42 show the results on original Leaf data set. This data set has 14

features, 30 true number of clusters of different sizes and shapes and clusters are

very poorly separated.

Table 4.41: Experiments with the Leaf data set with no added noise features. Best possible
ARI value achieved at different DBSCAN type clustering algorithms at the original Leaf
data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN - - - - -
OPTICS(AutoClust) 2 0.0792 2 0 0.0058
ISDBSCAN - - - -
RNN-DBSCAN - - - -
DBSCANR 2 2 0 0.4096
W-DBSCANR 2 2 4.8 0.4132
MW-DBSCANR 2 1.5 1.5 0.4125

Our experiment shows that both W-DBSCANR and MW-DBSCANR compare

favourably with other algorithms we experimented with. However, WK-Means

performed slightly better reached an ARI of 0.4364.
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Table 4.42: Comparison of clustering results achieved by various algorithms in the original
Leaf data set.

ARI

Algorithm Mean Std Max

K-Means 0.3466 0.0251 0.3968
WK-Means 0.3025 0.1048 0.4364
iMWK-Means - - -
W-DBSCANR - - 0.4132
MW-DBSCANR - - 0.4125

21. Parkinsons data set

Parkinsons data set has two unequal sized cluster and their density are very differ-

ent with poor inter-cluster separation. From Table 4.43 we can see the superiority

of our feature weighting algorithm W-DBSCANR and MW-DBSCANR. The cluster

recovery of DBSCAN and its recent variants are unsurprisingly very poor, as it is a

known fact that these algorithms cannot tackle poorly separated variable density

higher dimensional data set.

Table 4.43: Experiments with the Parkinsons data set with no added noise features. Best
possible ARI value achieved at different DBSCAN type clustering algorithms at the ori-
ginal Parkinsons data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 7 0.3231 2 0 0.1877
OPTICS(AutoClust) 4 0.0844 2 0 -0.0069
ISDBSCAN 10 2 0 0.0834
RNN-DBSCAN 5 2 0 0.2473
DBSCANR 8 2 0 0.2967
W-DBSCANR 5 2 1.1 0.3301
MW-DBSCANR 4 1.5 1.5 0.3806

The same applies to K-Means and its feature weighting based counterpart,
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hence lower ARI.

Table 4.44: Comparison of clustering results achieved by various algorithms in the original
Parkinsons data set.

ARI

Algorithm Mean Std Max

K-Means 0.0490 0.0033 0.0520
WK-Means -0.0897 0.0138 0.2019
iMWK-Means - - -0.0689
W-DBSCANR - - 0.3301
MW-DBSCANR - - 0.3806

22. Seeds data sets

Seeds data set has three approximately equal sized cluster described over seven

features. However, the intra-cluster density is not equal, hence in Table 4.45, re-

cent density-based clustering algorithms under experiment produced lower ac-

curacy in terms of best possible ARI compared to feature weighting counterparts

of DBSCANR.

Table 4.45: Experiments with the Seeds data set with no added noise features. Best possible
ARI value achieved at different DBSCAN type clustering algorithms at the original Seeds
data set.

Parameter

Exponent at

Algorithm k ε mcr Distance Weight ARI

DBSCAN 18 0.2485 2 0 0.4916
OPTICS(AutoClust) 15 0.0602 2 0 0.4202
ISDBSCAN 12 2 0 0.3855
RNN-DBSCAN - - - -
DBSCANR 3 2 0 0.6132
W-DBSCANR 9 2 2.8 0.7909
MW-DBSCANR 8 2.3 2.3 0.7553

Comparison with partitional clustering algorithms showed relatively better per-
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formance. However, not as good as our newly proposed feature weighted density-

based algorithm.

Table 4.46: Comparison of clustering results achieved by various algorithms in the original
Seeds data set.

ARI

Algorithm Mean Std Max

K-Means 0.6999 0.0057 0.7049
WK-Means 0.6732 0.0187 0.6896
iMWK-Means - - 0.7003
W-DBSCANR - - 0.7909
MW-DBSCANR - - 0.7553

Summary of experiments on original data sets without noise features

Both feature weighting based algorithms, W-DBSCANR and MW-DBSCANR are

comprehensive to tackle arbitrary shape, different densities, poorly separated cluster

with modest to moderate number of dimensions whilst other density-based al-

gorithms under comparison fall short on one or more of these counts.

Both W-DBSCANR and MW-DBSCANR performed equally well in terms of

maximum possible ARI. Based on this measure, feature weighting techniques im-

proved the clustering recovery considerably in comparison with other DBSCAN

type clustering algorithms. Another point of interest is that the best value of para-

meter k we could find for W-DBSCANR and MW-DBSCANR is lower in high di-

mensional data sets compared to lower dimensions. And the best value of β and p

for most of the data sets tend to be closer.
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4.5.2 Experiments on modified data sets with noise features

We have added 50% and 100% noise to 10 artificial and 12 real-world data sets, ob-

taining 44 modified data sets. Section 4.5.2.1 presents the results of artificial data

sets with added noise features and Section 4.5.2.2 shows the experiments of modi-

fied real-world data sets with added noise features in two different configurations.

4.5.2.1 Experiments on modified artificial data sets with noise features

We have run a series of experiments using the artificial modified data sets where

we have devised two configurations by adding 1 and 2 noise features to original

data set and the result is displayed in Table 4.47.

1. Comparison between artificial data sets with 50% added noise features

In this set of experiments, MW-DBSCANR reached the highest expected ARI in 7

data sets of 10 and ceased to reach highest ARI in 3 data sets. Given the presence

of noise features in the original data set, unsurprisingly, ISDBSCAN and RNN-

DBSCAN could not reach the highest ARI for any of the data sets, and could not

recover true number of clusters for most artificial data sets with noise feature under

experiment (hence the dashes).
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Table 4.47: Experiments with the artificial modified data sets, with 50% and 100% noise
features.

DBSCAN OPTICS(AutoCl) ISDBSCAN RNN-DBSCAN DBSCANR W-DBSCANR MW-DBSCANR

ARI k/ε ARI k/mcr ARI k ARI k ARI k ARI k/β ARI k/p

+50% noise features
Aggregation 0.8428 11/0.15 0.8583 27/0.03 - - - - 0.7216 8 0.8705 8/2.1 0.9978 8/1.1
D31 0.2285 13/0.08 0.0571 53/0 - - - - 0.288 9 0.6745 5/1.3 0.9423 23/1.1
Flame 0.5742 15/0.22 0.3878 28/0.03 - - -0.0017 7 0.0078 7 0.9833 8/1.1 0.8858 6/1.6
Grid 0.8277 6/0.12 0.8082 17/0.04 0.888 21 - - 0.1533 4 0.8867 7/4.9 0.9674 5/1.6
Mixed 0.6509 41/0.16 0.8594 5/0.21 0.8435 14 0.864 11 0.8809 7 1 8/1.5 1 8/1.6
Pathbased 0.5674 6/0.12 0.3361 38/0.02 0.1511 18 - - 0.1663 5 0.671 5/1.3 0.9591 5/1.1
R15 0.1331 10/0.1 0.2404 10/0.14 0.2352 9 - - 0.2447 7 0.9893 8/1.3 0.9964 19/1.1
Spiral 0.0179 10/0.14 0.3519 49/0.01 -0.0001 7 - - 0.0104 4 1 4/1.2 0.3928 4/1.5
Toy 0.8249 14/0.17 0.6834 32/0.05 0.1105 12 -0.0358 10 0.6258 7 0.779 7/2 0.8995 6/1.5
Twodiamonds 0.8368 17/0.15 0.0418 17/0.05 0.0001 11 - - 0.9311 6 0.995 7/1.3 0.99 6/4.3

+100% noise features
Aggregation 0.5994 12/0.23 0.0755 8/0.04 0.5602 9 - - 0.6257 4 0.7407 5/1.5 0.7624 6/1.6
D31 - - 0.0056 10/0.02 - - - - 0.0848 4 0.3349 6/1.1 0.3642 7/1.1
Flame 0.1367 15/0.28 0.0284 6/0.07 -0.011 9 -0.0245 6 0.0539 3 0.1028 3/1.6 0.2047 3/1.3
Grid 0.7089 9/0.21 0.3819 40/0.03 0.02 11 0.0182 9 0.467 4 0.7664 4/3.5 0.8032 4/3.8
Mixed 0.5203 35/0.24 0.028 6/0.08 - - - - 0.4079 4 0.6919 4/3.9 0.7213 6/1.2
Pathbased 0.3964 10/0.23 0.0854 7/0.05 0.2568 9 - - 0.3684 6 0.4717 17/1.1 0.4525 12/1.1
R15 0.2323 2/0.21 0.1799 6/0.07 - - - - 0.2053 4 0.3546 5/1.5 0.4144 4/1.6
Spiral 0.0181 12/0.25 0.0083 5/0.06 - - - - 0.0037 3 0.0172 3/3 0.0174 3/1.7
Toy 0.7162 15/0.27 0.5753 51/0.04 0.0783 7 0.0881 5 0.1568 3 0.578 5/2 0.8042 7/1.1
Twodiamonds 0.2398 30/0.25 0.0186 12/0.03 0.0007 9 - - 0.0764 4 0.3328 4/3 0.6068 5/1.4

2. Experiments on artificial data sets with 100% added noise features

When we added 100% noise features to our artificial data sets, MW-DBSCANR

not only outperformed DBSCAN and its recent variant, but W-DBSCANR. Apart

from Pathbased and Spiral, the Minkowski weighted DBSCANR, MW-DBSCANR

reached the maximum ARI for all the other 8 modified artificial data set. Similar

to 50% added noise configuration, for most of the data sets both ISDBSCAN and

RNN-DBSCAN were not able to recover any cluster.

3. Comparison on artificial data sets with 50% and 100% added noise features

Given the added noise features to our original data sets, W-DBSCANR reached the

highest ARI value of 0.9833, 1 and 0.995 on modified Flame, Spiral and Twodia-

monds data set at 50% added noise features. This result is significantly higher than

its Minkowski weighted version, MW-DBSCANR. However, when we added more

noise features at 100% added noise configuration, MW-DBSCANR outperformed
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W-DBSCANR with an average improvement of more than 80% on the same group

of data sets, reaching the highest ARI for all three above data sets.

Another interesting point to note is that the noise features at both 50% and 100%

added noise configurations, for both Mixed and Spiral data sets W-DBSCANR

reached the highest ARI of 1 had approximately zero feature weights for all the

extra noise features we added, hence the maximum ARI.

On D31 data set, at both data set configurations, both ISDBSCAN and RNN-

DBSCAN ceased to find the true number of clusters, while W-DBSCANR reached

the higher ARI value of 0.6745 and 0.3349 when the number of noise features are

1 and 2 respectively, when we compare with the ARI value of DBSCAN, OPTICS

and DBSCANR. However, at both configurations on D31 data set, MW-DBSCANR

outperformed W-DBSCANR.

We can see the same trend for the rest of the data sets Aggregation, Grid, R15

and Toy except for Pathbased. Our feature weighting algorithm W-DBSCANR

found the density-based clusters considerably well, and we can see the signific-

ant improvement in cluster recovery at both configurations. Besides, with respect

to ARI, the Minkowski variant of W-DBSCANR, MW-DBSCANR achieved higher

result compared to all the algorithms we experiment with including W-DBSCANR.

Summary of experiments on artificial data sets with noise features

In this section, we presented a set of experiments on modified artificial data sets.

We observed the following
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(i) MW-DBSCANR reached the highest accuracy on 15 data sets of 20 with re-

spect to best possible ARI when compared to the other density-based al-

gorithms we experiment with.

(ii) Our feature weighting methods improved the cluster recovery as we increase

the number of noise features in the original artificial data set. When we av-

eraged the expected ARI values over 10 data sets (original or modified) and

5 standard density-based clustering algorithms, W-DBSCANR increased the

clustering recovery by 10%, 156% and 159%; MW-DBSCANR increased the

clustering recovery by 10%, 161% and 204% at without noise, 50% noise and

100% noise configurations respectively.

(iii) In terms of cluster recovery based on ARI, given the added noise features to

the original data sets, the version of W-DBSCANR that use the Minkowski

metric are competitive and frequently superior to original W-DBSCANR and

other density-based clustering algorithms under comparison.

(iv) Both W-DBSCANR and MW-DBSCANR performed better than state-of-the-

art density-based clustering algorithms, including DBSCANR at both con-

figurations, suggesting that our feature weighting method increases the per-

formance in terms of density-based cluster recovery.

(v) Another interesting point is that value of the user-defined parameter k for

W-DBSCANR is lower in Table 4.47 compared to the without noise config-

uration and the value of k in DBSCANR is equal or closer to the value of k
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in W-DBSCANR and MW-DBSCANR. The same can be told for β and p for

most of the modified artificial data sets.

4.5.2.2 Experiments on modified real-world data sets with noise features

This turn, in order to discern the clustering recovery of W-DBSCANR and its

Minkowski metric based counterpart MW-DBSCANR and the impact of noise fea-

tures on real-world data sets, we compared state-of-the-art density-based cluster-

ing methods including DBSCANR over 12 real-world data sets. Unlike artificial

data sets, the dimension of real-world data sets is higher. In this set of experi-

ments, the number of features in the original real-world data sets ranges from 4

to 90. We increased the range by adding 50% or (dV × 0.5e) noise features with

a total number of feature ranging from 6 to 135, resulting 12 modified real-world

data sets with 50% added noise features. We further extended the number of noise

features from 8 to 180 total number of features by adding as many features as in

the original data set (i.e., adding 100% or (dV × 1e) noise features, see Table 4.2),

resulting 12 more modified real-world data sets with 100% added noise features.

Table 4.48 represents the results of all six clustering algorithms in higher di-

mensional real-world data sets with two different configurations. The OPTICS,

ISDBSCAN and RNN-DBSCAN ceased to find the true number of clusters in some

of the data sets and therefore we put dashes under ARI and parameters.

1. Experiments on real-world data sets with 50% added noise features

MW-DBSCANR improved the average cluster recovery by considerably over 12
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real-world high dimensional modified data sets, across six recent density-based

clustering algorithms under comparison including W-DBSCANR and reached the

highest ARI in 9 data sets and ceased to do so in 3 data sets when 50% noise fea-

tures were added to the original real-world data sets. Among those latter 3 data

sets, W-DBSCANR outperformed MW-DBSCANR on 3 data sets and DBSCAN

outperformed both W-DBSCANR and MW-DBSCANR on 1 data set.

Table 4.48: Experiments with the real-world modified data sets, with 50% and 100% noise
features.

DBSCAN OPTICS(AutoCl) ISDBSCAN RNN-DBSCAN DBSCANR W-DBSCANR MW-DBSCANR

ARI k/ε ARI k/mcr ARI k ARI k ARI k ARI k/β ARI k/p

+50% noise features
Banknote 0.0414 28/0.24 0.0088 6/0.08 -0.001 11 0.0071 8 0.0089 3 0.0106 3/1.5 0.0859 4/1.3
BreastT. 0.1181 2/0.57 - -/- - - - - 0.1917 2 0.2899 2/2.5 0.3314 2/1.6
Ecoli 0.2715 6/0.36 - -/- - - - - 0.298 3 0.4217 3/1.1 0.2611 3/4.9
Iris 0.5286 2/0.42 0.5281 8/0.08 - - 0.4437 5 0.4869 5 0.8857 7/1.1 0.8857 6/1.1
Leaf - - - -/- - - - - 0.0031 1 0.1295 2/1.8 0.1461 2/1.1
Leukemia 0.8741 6/2.42 - -/- 0.8809 13 0.8437 8 0.8809 3 0.9186 2/1.2 0.9186 3/1.4
Libras - - - -/- - - 0.106 2 0.2422 2 0.1625 2/2.2 0.2607 2/2.3
Liver 0.0397 5/0.59 0.0369 7/0.12 0.0282 19 0.0364 7 0.0327 3 0.0327 3/1.3 0.0382 2/3.6
Parkinsons 0.0545 5/1.1 - -/- 0.1157 7 0.0434 4 0.0977 4 0.1762 5/1.1 0.1662 3/1.9
Seeds 0.3019 5/0.43 - -/- - - - - 0.4235 3 0.4876 3/1.9 0.5227 3/2.8
TeachingA. 0.0431 9/2.46 - -/- - - 0.016 6 0.0252 5 0.0556 3/4 0.0583 4/3
Wine 0.2088 4/0.81 - -/- 0.3968 8 - - 0.0959 2 0.441 3/2.4 0.4659 3/2.4

+100% noise features
Banknote 0.0192 14/0.39 0.008 3/0.14 0.0105 9 0.0032 8 0.0069 4 0.0161 3/2.6 0.0238 3/3.8
BreastT. 0.1091 2/0.91 - -/- 0.0657 5 - - 0.0561 2 0.209 2/2 0.247 2/1.2
Ecoli -0.0156 2/0.41 - -/- 0.0661 6 - - 0.0072 3 0.1514 2/2.3 0.1556 2/2.5
Iris 0.5084 3/0.49 0.5543 6/0.07 0.3628 8 0.4868 4 0.5341 4 0.6828 5/1.3 0.9037 6/1.2
Leaf - - - -/- - - - - 0.0024 1 - -/- - -/-
Leukemia 0.679 9/2.96 - -/- 0.2866 5 0.7929 2 0.8809 3 0.9186 3/1.6 0.9186 2/1.6
Libras 0.0248 3/3.63 - -/- - - - - 0.0838 2 0.221 2/3 0.2136 2/1.4
Liver 0.0418 16/0.84 - -/- 0.0502 13 0.0299 12 0.0327 3 0.0327 3/1.5 0.0528 2/2.6
Parkinsons 0.0325 5/1.61 - -/- 0.0405 7 -0.0407 3 0.0407 1 0.125 3/2.7 0.289 4/1.1
Seeds 0.0804 12/0.78 - -/- 0.0337 6 - - 0.0227 2 0.3361 3/2 0.3361 3/2
TeachingA. 0.0101 17/3.26 - -/- - - - - 0.0146 2 0.0254 2/4.2 0.0306 3/2.3
Wine 0.0969 7/1.18 - -/- - - - - 0.2744 3 0.2719 2/2.1 0.3074 2/2.1

2. Experiments on real-world data sets with 100% added noise features

In Table 4.48, we can see a pattern is complete at 100% added noise features con-

figuration. At this configuration, MW-DBSCANR ceased to reach highest ARI in

2 data sets. However, MW-DBSCANR increased the average accuracy across six

algorithms over 12 modified real-world data sets under comparison compared to

the 50%. For Leaf data set, none of the algorithms could recover the true number

146



of clusters but DBSCANR, hence the dashes.

3. Comparison on real-world data sets with 50% and 100% added noise features

We added two and four uniformly random noise features to the Banknote data set.

On Banknote data set MW-DBSCANR outperformed its predecessor W-DBSCANR

and state-of-the-art density-based clustering algorithms including DBSCAN at both

50% and 100% configurations. As shown in Table 4.48, Minkowski metric based

W-DBSCANR when applied to modified Banknote data set, our feature weighting

improved the cluster recovery considerably compared to six other methods under

experiment.

We did add the same amount of noise features to Iris data set to increase the

number of features by 50% and 100%. When we added 50% noise both W-DBSCANR

and MW-DBSCANR performed equally, outperforming the DBSCAN type algorithms

we experiment with. In case of 100% added noise W-DBSCANR that implements

Minkowski metric reached the highest cluster recovery. The summary feature

weights of the noise is 37% of the total feature weights, still found feature 3 and 4

as the most informative features in accordance with Figure 4.3(a) and 4.3(b).

The same trend continued when we added 50% and 100% noise features to our

original BreastT., Leukemia, Libras, Seeds, TeachingA. and Wine data sets. MW-

DBSCNAR reached the highest accuracy or compared favourably in terms of ARI

for the above data sets, and the summary feature weights of noise features are

lower than original features. One can ascertain the same for Leaf data set when

the number of features increased 50% to this data set, however, this can not be told
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for 100% noise configuration. For the latter configuration, all algorithms under

experiment ceased to recover the true number of clusters except DBSCANR.

On modified Ecoli and Parkinsons data sets, W-DBSCANR demonstrated the

highest cluster recovery when 50% noise was added, but unsurprisingly, the res-

ults of MW-DBSCANR displayed maximum accuracy based on best ARI when we

doubled the number of features to the above data sets.

Summary of experiments on real-world data sets with noise features

In this section, we presented a set of experiments on modified real-world data sets

by adding a minimum of 2 and a maximum of 90 noise features to increase the

total number of features ranging from 6 to 180. We observed the following

(i) On the modified real-world data sets, MW-DBSCANR reached the highest

ARI on 19 data sets of 24 with a considerable average percentage improve-

ment over both versions of modified data sets under comparison across six

other density-based clustering algorithms under experiment including DB-

SCANR and W-DBSCANR.

(ii) Overall, our feature weighting methods improved the cluster recovery when

we increased number of features. The average of the expected ARI values

over 12 real-world data sets (original or modified) and 5 standard density-

based clustering algorithms, W-DBSCANR increased the clustering accuracy

by 119%, 129% and 138%; MW-DBSCANR increased the clustering accuracy
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by 122%, 136% and 176% at without noise, 50% noise and 100% noise config-

urations respectively.

(iii) For most of the modified real-world data sets, the summary feature weights

of original features are higher than the summary feature weights of noise

features.

(iv) For each modified real-world data set, the highest ARI obtained by our fea-

ture weighting methods for what we found to be the optimum parameters

are either equal or closer to the optimum value of the parameters we found

for DBSCANR.

4.6 Time comparisons

A series of experiments has been carried out to discern the computational intens-

ity of the various density-based clustering algorithms we experiment with in this

study. Each algorithm under experiment is deterministic, hence we run each al-

gorithm only once. For the algorithms that need to set β or p were run once in the

range of 1.1 to 5 in steps of 0.1, in line with our previous experiments. Table 4.49

and 4.50 presents the average CPU time per run for each algorithm.

Table 4.49 and 4.50 helps us to determine how the algorithms would work

in a real-world scenario. There are different comparisons we can make, particu-

larly some of the algorithms require only require only one user defined parameter,

such as DBSCANR. Both W-DBSCANR and MW-DBSCANR does not add much
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in terms of CPU time when compared with DBSCAN.

Table 4.49: The average time in seconds for all the algorithms under experiment for a
single run on artificial data sets.

Algorithm

Data sets DBSCAN OPTICS(AutoCl) ISDBSCAN RNN-DBSCAN DBSCANR W-DBSCANR MW-DBSCANR

Original
Aggregation 0.0044 0.0854 0.7151 0.6268 0.1345 0.5047 0.7532
D31 0.0280 0.9448 3.1391 20.4678 1.1068 4.7236 9.6862
Flame 0.0013 0.0157 0.1523 0.0963 0.0228 0.0963 0.1857
Grid 0.0034 0.0643 0.3234 0.3072 0.0938 0.3666 0.5609
Mixed 0.0117 0.2273 1.2441 2.6864 0.2612 1.0144 2.0107
Pathbased 0.0016 0.0211 0.2185 0.2725 0.0332 0.1127 0.1665
R15 0.0029 0.0562 0.4533 1.4571 0.0936 0.3145 0.4777
Spiral 0.0026 0.0219 0.3153 0.0617 0.0312 0.1827 0.2795
Toy 0.0020 0.0283 0.2706 0.2254 0.0322 0.0852 0.1650
Diamonds 0.0042 0.0912 0.6271 0.9834 0.1286 0.2602 0.5199

+50% noise features
Aggregation 0.0042 0.0998 0.6618 1.8776 0.1461 0.7265 1.1020
D31 0.0342 0.9967 3.2605 44.9982 1.1347 7.4979 14.6187
Flame 0.0013 0.0163 0.1673 0.0915 0.0253 0.0966 0.1459
Grid 0.0035 0.0702 0.4244 0.5912 0.1101 0.3701 0.6721
Mixed 0.0100 0.2473 1.3087 9.2161 0.3530 1.1580 3.1054
Pathbased 0.0016 0.0220 0.2183 0.4845 0.0345 0.1371 0.2138
R15 0.0032 0.0608 0.4611 10.0708 0.0977 0.3752 0.6307
Spiral 0.0017 0.0232 0.2516 0.1026 0.0376 0.0587 0.2226
Toy 0.0022 0.0297 0.2940 0.2527 0.0460 0.1785 0.2703
Diamonds 0.0044 0.1053 0.6820 1.5589 0.1352 0.5818 1.0204

+100% noise features
Aggregation 0.0051 0.1023 0.6202 1.0084 0.1372 0.8084 1.2450
D31 0.0358 1.0497 3.3202 71.7238 1.2997 10.0702 20.4022
Flame 0.0014 0.0167 0.1670 0.0871 0.0235 0.1079 0.1672
Grid 0.0037 0.0789 0.4537 1.2505 0.1279 0.4435 0.8274
Mixed 0.0105 0.3118 1.3284 4.8995 0.3565 2.0597 4.1336
Pathbased 0.0017 0.0226 0.2131 0.2022 0.0364 0.1508 0.2231
R15 0.0033 0.0693 0.4618 9.4722 0.1013 0.4550 0.7949
Spiral 0.0018 0.0239 0.2691 0.1087 0.0402 0.1515 0.2307
Toy 0.0021 0.0306 0.2770 0.1544 0.0489 0.2065 0.3208
Diamonds 0.0046 0.1106 0.6552 1.3567 0.1403 0.6846 1.2578

With respect to CPU time, our density-based feature weighted algorithm W-

DBSCANR and Minkowski weighted algorithm MW-DBSCANR, as expected, ceased

to perform well, taking hundred or more times longer to find density-based clusters

than DBSCAN. This longer CPU time incurs due to the effort the former algorithms

make in order to find reverse nearest neighbours and build minimum spanning

trees for each cluster iteratively. DBSCAN does find the latter much faster by de-

termining the minimum number of points (k) within a user-defined distance from

the query point ε. In order to find a good clustering we had to set the value of ε
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ranging from minimum pairwise to maximum pairwise distances for each data set

in steps of 0.01, this is not the case for Minkowski exponent p. This will balance the

CPU time of both DBSCAN and MW-DBSCANR with the contrast that the latter

recovered clusters closer to the true labels.

Table 4.50: The average time in seconds for all the algorithms under experiment for a
single run on real-world data sets.

Algorithm

Data sets DBSCAN OPTICS(AutoCl) ISDBSCAN RNN-DBSCAN DBSCANR W-DBSCANR MW-DBSCANR

Original
Banknote 0.0086 0.2801 1.3636 17.1733 0.2371 1.7376 3.6953
BreastT. 0.0005 0.0065 0.0762 0.0530 0.0113 0.0592 0.0864
Ecoli 0.0018 0.0308 0.2422 0.6067 0.0383 0.1702 0.2945
Iris 0.0008 0.0091 0.1030 0.0606 0.0141 0.0545 0.0794
Leaf 0.0019 0.0402 0.2562 0.4076 0.0436 0.4051 0.8444
Leukemia 0.0005 0.0064 0.0511 0.0175 0.0068 0.0851 0.1261
Libras 0.0046 0.1353 0.4585 0.6638 0.0686 1.7389 5.3372
Liver 0.0030 0.0938 0.4524 3.8174 0.0981 0.4568 1.1225
Parkinsons 0.0011 0.0208 0.1502 0.1359 0.0283 0.2337 0.4007
Seeds 0.0011 0.0151 0.1456 0.0980 0.0257 0.1116 0.1750
TeachingA. 0.0014 0.0266 0.1275 0.0550 0.0235 0.2189 0.2366
Wine 0.0010 0.0154 0.1416 0.1438 0.0225 0.1229 0.2124

+50% noise features
Banknote 0.0099 0.3076 1.2502 13.2589 0.3265 2.7131 5.4371
BreastT. 0.0006 0.0068 0.0820 0.0422 0.0120 0.0676 0.0975
Ecoli 0.0019 0.0366 0.2469 0.4175 0.0398 0.2333 0.4329
Iris 0.0009 0.0095 0.1134 0.0447 0.0153 0.0632 0.1101
Leaf 0.0022 0.0550 0.2696 0.4031 0.0404 0.4755 1.0192
Leukemia 0.0006 0.0072 0.0520 0.0152 0.0092 0.1208 0.1829
Libras 0.0059 0.1968 0.5022 0.5664 0.0761 2.7473 7.3187
Liver 0.0037 0.1145 0.4720 2.2499 0.1175 0.6102 1.4785
Parkinsons 0.0013 0.0303 0.1406 0.1192 0.0252 0.3022 0.5633
Seeds 0.0012 0.0168 0.1920 0.0511 0.0293 0.1355 0.2289
TeachingA. 0.0015 0.0309 0.1799 0.0734 0.0231 0.3732 0.7428
Wine 0.0010 0.0165 0.1210 0.0724 0.0215 0.1472 0.2753

+100% noise features
Banknote 0.0103 0.3429 1.2969 20.7248 0.3453 3.7489 6.9707
BreastT. 0.0006 0.0074 0.0767 0.0301 0.0111 0.0789 0.1200
Ecoli 0.0021 0.0392 0.2633 0.3607 0.0397 0.2978 0.6164
Iris 0.0009 0.0098 0.1176 0.0434 0.0133 0.0677 0.1060
Leaf 0.0024 0.0662 0.3699 0.4335 0.0446 0.6709 1.5802
Leukemia 0.0006 0.0097 0.0604 0.0187 0.0076 0.1604 0.2418
Libras 0.0071 0.2297 0.5456 0.5499 0.0902 3.6945 9.3613
Liver 0.0042 0.1303 0.5001 1.5982 0.0988 0.7619 2.0501
Parkinsons 0.0014 0.0350 0.1645 0.1205 0.0244 0.3928 0.7789
Seeds 0.0013 0.0188 0.1689 0.0595 0.0241 0.1603 0.2903
TeachingA. 0.0016 0.0349 0.1816 0.0646 0.0224 0.5001 1.0454
Wine 0.0011 0.0191 0.1465 0.0709 0.0204 0.1888 0.3673

W-DBSCANR took twice as less time as that of MW-DBSCANR in terms of CPU

time; this happened because the latter needs to find Minkowski metric based core

points at each iteration in each cluster it recovers. A rather interesting point to note
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that MW-DBSCANR takes less time (overall) to find clusters than RNN-DBSCAN

or at least competitive in terms of CPU time, especially when we add noise features

to our artificial data sets.

4.7 Conclusion

In this chapter, we have presented two major contributions. Firstly we introduced,

weighted density-based clustering algorithm using reverse nearest neighbour, W-

DBSCANR in Section 4.3. Density-based clustering, DBSCANR (see Section 3.3)

can recover clusters of any shapes and sizes. Given a density-based clustering,

W-DBSCANR is able to calculate feature weights. Based on the current clustering,

in the DBSCANR clustering process, our method calculates a new feature weight

using Equation (4.6) for each feature that describes a data point in a data set based

on the intra-cluster compactness. Then in the next iteration, this set of new feature

weights are leveraged to find new cluster members. We repeat these steps until

the current clustering, and the previous clustering is identical, and optimal feature

weights are found. W-DBSCANR allows to give the different degree of relevance

to different features in a data set to be applied to unlike DBSCAN and its state-of-

the-art variants.

Our empirical results on both artificial and real-world data sets have shown

that the cluster recovery of W-DBSCANR is higher than DBSCAN type clustering

algorithms. The experiments have demonstrated that our feature weighting al-
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gorithm improves the cluster recovery by calculating feature weights with respect

to k and β and hence effectively identifies the irrelevant features.

In our second contribution, we proposed a Minkowski metric-based method

MW-DBSCANR to select the parameter β and give it a meaning, recognising that

the feature weighting calculation is dependent upon it. Both DBSCANR and W-

DBSCANR use squared Euclidean distance for the reverse nearest neighbour query.

Analogous to this Euclidean distance, we use the pth power of the Minkowski

metric without the root and use Equation (4.13) for the reverse nearest negihbour

query. MW-DBSCANR follows the same method as W-DBSCANR to calculate fea-

ture weights. To this end, MW-DBSCANR removes the spherical shape bias, uses

weights as feature rescaling factors since the weight exponent and the exponents

used for distance calculation is the same, p, and addresses the lack of meaning

issue of β.

We assessed our method and presented experiments for both artificial and real-

world data sets with and without noise features. MW-DBSCANR compared fa-

vourably with W-DBSCANR, particularly when noise features were added to the

original data sets, indicating that both W-DBSCANR and MW-DBSCANR are resi-

lient to the added noise in relation to the total number of features.

Now that we can effectively distinguish noise features, how to reduce the fea-

ture space using this calculated density-based feature weights still remains an open

question. We will address this question in the next chapter by adopting the scen-

arios in which the number of observations is less than number of features.
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Chapter 5

Reducing feature space in high

dimensional data

5.1 Introduction

We intend to analyse the behaviour of W-DBSCANR and MW-DBSCANR in this

chapter when dealing with very high-dimensional data sets. These are the type

of data sets most commonly found in clustering text, image, bio-signal processing

and gene-expression analysis data, to name a few.

One of the main issues we face with the clustering higher dimensional data set

is the curse of dimensionality. The clustering task becomes even more challenging

when the number of features that describes a single point in a data set is very

high as the size of the feature space is exponentially proportional to the hypothesis

space. Below we highlight some of the key aspects of problem in relation to curse
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of dimensionality and feature space reduction with respect to high dimensional

data clustering.

(i) One aspect of the curse of dimensionality is studied in several works (Ag-

garwal et al., 2001; Beyer et al., 1999; Hinneburg et al., 2000) identified the

issues concerning the impact of high-dimensional feature space on the dis-

tance measure, more specifically on the choice of p in clustering (for example,

see Section 4.3.2).

(ii) The second aspect of the curse of dimensionality is the presence of irrelevant

attributes that can obfuscate the inter cluster separation in high-dimensional

feature space (Houle et al., 2010).

(iii) The third aspect of the curse of dimensionality we are concerned about is

the correlated attributes. In a high-dimensional data set, many features can

be expected to be correlated, and from the feature reduction viewpoint, all

features may be redundant but one. The latter leads us to the observation

that the number of feature space indeed used by data (see details in Gupta

et al. (2003)) is lower than the original number of features in the data set

which has been attributed to tackle the curse of dimensionality by several

studies (Belussi and Faloutsos, 1998; Faloutsos and Kamel, 1994; Korn et al.,

2001; Pagel et al., 2000).

(iv) Multi-dimensional data sets are considered as high-dimensional when the

size of the feature space is large. Our final aspect is concerned with the num-

155



ber of observations needed for the quality of clustering, and to maintain the

latter, the data space size requirement increases with the feature space of the

data set (Amorim and Mirkin, 2012; Hand et al., 2001). This leads us to the

problem of finding clusters in a data set that have higher inter cluster density

and the size of the feature space are much greater than the size of the data

space.

We explored the behaviour of DBSCANR, W-DBSCANR, MW-DBSCANR and

other density-based clustering algorithms in the previous two chapters. In this

chapter, to proceed further, we will extend our experiments to the types of data set

containing thousands of features. We have decided to use these data sets of various

shapes cluster structure in extremely high dimensional setting, unlike previous

experiments where the number of features was only as high as up to 90.

We took our experiment one step further in this chapter and decided to cluster

gene expression microarray data sets with thousands of features with relatively

smaller number of observations. We have decided to use the data sets that are

widely acknowledged in the literature of feature selection in both unsupervised

and supervised setting (Chuang et al., 2009; Loscalzo et al., 2009; Luss and d’Aspremont,

2010; Rajapakse and Mundra, 2013; Wang and Gotoh, 2010; Zhu et al., 2008).

Gene expression analysis is arguably the most popular DNA microarray tech-

nology in biomedical research to identify and classify some certain type of diseases

and their subtypes and predict the responses to treatment or recovery duration.

Therefore, tackling challenges more specifically curse of dimensionality, misla-
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belling of data, gene feature similarity, and gene feature redundancy in these types

of data sets have been a target to numerous studies (Benabdeslem and Hindawi,

2011; Chandra and Gupta, 2011; Ferreira and Figueiredo, 2012; Hindawi et al.,

2013; Kalakech et al., 2011; Liao et al., 2014; Liu et al., 2006; Loscalzo et al., 2009;

Luo et al., 2010; Luss and d’Aspremont, 2010; Maldonado et al., 2011; Mao and

Tang, 2010; Nie et al., 2010; Niijima and Okuno, 2008; Ren et al., 2008; Xiang et al.,

2012; Yu et al., 2014).

(a) (b)

Figure 5.1: (a) Feature u and v are similar, any of the two features (either u or v) is ad-
equate to recover both clusters; (b) Feature v does not contribute to cluster recovery, hence
irrelevant.

Gene microarray data sets comprise a large number (usually thousands) of fea-

tures in the form of gene expressions with a small number of instances (usually a

few tens of patients). The latter is attributed to lower cluster recovery, particularly

when the number of dimensions is much higher.

Besides, higher dimensional nature makes manual labelling of data becomes

rather expensive. The task of manual labelling is further challenging due to the
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presence of noise in the gene expression data (Golub et al., 1999).

Another major concern of these type of data sets is similar features and features

relevance. Redundant and irrelevant features (as shown in Figure 5.1) may obfus-

cate the clustering task (Dy and Brodley, 2004), hence determining the importance

of a feature or a subset of features is appropriate to recover meaningful clusters

from gene expression data.

Gene expression is high dimensional by nature. The data sets we experiment

with in this chapter has up to 4000 features and is introduced in the next section.

5.2 Setting of the experiments

We experiment with W-DBSCANR and MW-DBSCANR in this chapter, these al-

gorithms can be found in Chapter 4, Sections 4.3.1 and 4.3.2 respectively. We in-

tend to find the cluster recovery of these algorithms where the size of the feature

space is much greater than number of samples.

Colon (Alon et al., 1999) data set contains expression of the 2000 genes with

the highest minimal intensity across the 62 tissues. The genes are placed in the

order of descending minimal intensity. Each entry colon is a gene intensity derived

from approximately 20 feature pairs that correspond to the gene on the chip. The

patients are classified into two groups, normal tissue, and tumour tissue.

Lung (Bhattacharjee et al., 2001) data set comprises 203 snap-frozen lungs spe-

cimens described over 3312 gene expression elements with 186 lung tumours and
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17 normal lungs specimens. The 203 specimens include 6 SCLC cases, 17 normal

lungs, 20 pulmonary carcinoids, 21 squamous cell lung carcinomas, and 149 lung

adenocarcinoma specimens.

Lymphoma (Alizadeh et al., 2000) data set consists of 96 samples of normal and

malignant lymphocytes each has 4026 gene expression array elements. According

to the gene expression profiles, the 96 lymphocytes are classified into 46 Diffuse

large B-cell lymphoma, 2 Germinal centre B, 2 Nl. lymph node/tonsil, 10 Activated

blood B, 6 Resting/activated T, 6 Transformed cell lines, 9 Follicular lymphoma, 4

Resting blood, 11 Chronic lymphocytic leukemia.

The above three data sets were normalised maintaining the same method as

described in Chapter 3, Section 3.4. The data sets are illustrated on the plane of the

first two principal components in Figures 5.2, 5.4 and 5.7 respectively. Unsurpris-

ingly, the inter-cluster separation appeared to be poor.

5.3 Experimental results with all the features

We analyse the results of all the high dimensional data sets with all the features.

For each data set, we will analyse the accuracies in terms of best ARI with the

respective optimal weight exponent value (β for W-DBSCANR) and, weight and

distance exponent value (p for MW-DBSCANR) and then examine the impacts of

feature weights on clustering recovery obtained by each density-based feature-

weighted algorithm.
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1. Colon data set

The standardised version of the Colon data set, on the plane of the first two prin-

ciple components, is shown in Figure 5.2. In the figure, the given labels have been

represented in different shapes, however, the cluster structure does not seem to

follow the true labels.

Figure 5.2: Colon data on the plane of the first two principal components, the clusters are
shown using different colours and shapes.

Table 5.1 shows the maximum ARI for what is found to be the optimum para-

meter for Colon data set under experiment. Colon data set has 62 tissues data

points divided between the two clusters of 22 normal and 40 tumour tissues.
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Table 5.1: Best ARI found using W-DBSCANR and MW-DBSCANR on Colon data set

Algorithm
Exponent at

ARIDistance Weight k

W-DBSCANR 2 1.1 2 0.0738
2 1.1 4 0.1052

MW-DBSCANR 3.4 3.4 2 0.1161
2.5 2.5 3 0.2747
2.2 2.2 4 0.1052
1.5 1.5 6 0.0005

The evolution of the maximum ARI per β (for W-DBSCANR) or per p (for MW-

DBSCANR) for Colon data set are visualised in Figure 5.3. In the figure, we can

see that the ARI value of MW-DBSCANR tends to be between 0.05 and 0.5, reach-

ing 0.2747 at β of 2.5 and k of 3. The maximum ARI value per p or β of MW-

DBSCANR and W-DBSCANR seems to be equally stable, however, the ARI values

of W-DBSCANR tend to be lower than MW-DBSCANR, mostly at around 0.0738

with a maximum value of 0.1052 per β. MW-DBSCANR was also compared fa-

vourably with popular iMWK-Means. The latter reached an ARI of 0.0502 at p of

1.1.
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(a) (b)

Figure 5.3: Maximum ARI of MW-DBSCANR and W-DBSCANR (a) per k; (b) per weight
exponent (p or β), in Colon data set.

iMWK-Means found a considerable variation in the mean feature weights. On

this occasion, the feature weights found by both W-DBSCANR and MW-DBSCANR

are similar to each other. But, the variation in the feature weights found by iMWK-

Means did not seem to produce a higher level of accuracy than W-DBSCANR and

MW-DBSCANR.

2. Lung data set

With the normalised version on the first two principal components illustrated in

Figure 5.4, we begin our analysis on Lung data set where different shapes are re-

lated to different types of lung tumours including normal lungs specimens.
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Figure 5.4: Lung data on the plane of the first two principal components, the clusters are
shown using different colours and shapes.

In Table 5.2, the results obtained by our feature weighted density-based clus-

tering algorithms are recorded.

Table 5.2: Best ARI found using W-DBSCANR and MW-DBSCANR on Lung data set

Algorithm
Exponent at

ARIDistance Weight k

W-DBSCANR 2 1.9 2 0.0579
2 1.5 3 0.5188

MW-DBSCANR 2 2 2 0.0539
2 2 3 0.5188
3.3 3.3 4 0.6366
4.1 4.1 5 0.6357

The accuracy in terms of best ARI achieved by MW-DBSCANR, with respect to

k and β was frequently around 0.35 to 0.6 reaching the highest ARI of 0.6366. How-

ever, lower than it Minkowski version, W-DBSCANR reached an ARI of 0.5188 at
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k of 3 and β of 1.5.

(a) (b)

Figure 5.5: Maximum ARI of MW-DBSCANR and W-DBSCANR (a) per k; (b) per weight
exponent (p or β), in Lung data set.

An interesting point to note is that, in Figure 5.5, the ARI value of both W-

DBSCANR and MW-DBSCANR tend to stable at above 0.5, particularly in Figure

5.5(b) the ARI value of W-DBSCANR is demonstrated to be more stabilised than

MW-DBSCANR at β of 3.
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Figure 5.6: Feature weights calculated by MW-DBSCANR in Lung data set.

The variation in final feature weights found by MW-DBSCANR in Figure 5.6 led

to the higher ARI in Lung data set. Although W-DBSCANR favourably compared

with MW-DBSCANR, this powered feature weighting method could not found

any variation in the final feature weights in this data set. Although this is not a fair

comparison, one interesting point to note is that the final mean feature weights of

iMWK-Means seem to follow a similar pattern as that of MW-DBSCANR, hence

favourably compared with each other reaching an ARI of 0.6588.

3. Lymphoma data set

Our analysis begins with the demonstration of the normalised version of Lymph-

oma data set on the plane of the first two principal components, in Figure 5.7. This

data set has nine varied size clusters which do not seem to follow the density-based

cluster structure.
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Figure 5.7: Lymphoma data on the plane of the first two principal components, the clusters
are shown using different colours and shapes.

Hence, Table 5.3 shows the cluster recovery of both density-based feature weight-

ing algorithms under experiment. Both W-DBSCANR and MW-DBSCANR reached

the higher ARI of 0.6495 when 7 density-based clusters were recovered, at k of

5 and p of 2.2 MW-DBSCANR reached the highest ARI of 0.6809 recovering 4

clusters. However, this does not match with the true number of clusters, hence dis-

carded in the below Table. MW-DBSCANR recovered the true number of clusters

at k of 2 and p of 3.4 reaching the ARI of 0.3405, yielding higher cluster recovery

than W-DBSCANR, although the cluster recovery is lower in general.
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Table 5.3: Best ARI found using W-DBSCANR and MW-DBSCANR on Lymphoma data
set

Algorithm
Exponent at

ARIDistance Weight k

W-DBSCANR 2 1.1 2 -0.0120

MW-DBSCANR 3.4 3.4 2 0.3405

Figure 5.8 shows the cluster recovery of W-DBSCANR and its Minkowski ver-

sion in terms of k and β. As shown in Figure 5.8(b), the clustering recovery tends

to stable at around p/β of 3, however the number of clusters recovered does not

match with the true labels.

(a) (b)

Figure 5.8: Maximum ARI of MW-DBSCANR and W-DBSCANR (a) per k; (b) per weight
exponent (p or β), in Lymphoma data set.

As the true labels do not match with the density-based cluster structure, the set

of final feature weights generated by both W-DBSCANR and MW-DBSCANR do

not have any variation to each other.
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Summary of experiments with all the features

As expected, DBSCAN and its recent state-of-the-art variants, including DBSCANR,

could not achieve any result. In contrast, both W-DBSCANR and MW-DBSCANR

seem to find cluster structures, obscured by the noisy features and achieved a me-

dium level of accuracy in these data sets. The accuracy of these extremely high

dimensional data sets will perhaps be higher if one applies the supervised or semi-

supervised methods - we will leave this for future work. Of course, we should not

expect such higher accuracy from unsupervised algorithms as one would have

achieved once applied supervised or semi-supervised algorithms. However, the

above series of experiments points us to the following weaknesses of our feature

weighted density-based clustering algorithms W-DBSCANR and MW-DBSCANR:

(i). The final feature weights calculated by our weighting algorithms found sim-

ilar features. These similar features carry similar information and hence can

be discarded as redundant features. Our feature weighting methods assigned

similar weights to these redundant features rather than excluding them by

assigning zero weights.

(ii). All the features, no matter how trivial their feature weights are, participate

in the clustering process and this incurs greater computational effort.

The following sections address these limitations by introducing a new density-

based feature selection method.

168



5.4 Reducing feature space

The above limitations (i) and (ii) convinced us to believe that reducing feature

space would benefit our feature weighted density-based clustering algorithms. To

address these limitations, in the next Section 5.4.1, we present the algorithm feature

selection using feature similarity (FSFS) (Mitra et al., 2002), that tackles the issue

of redundant features with respect to a user-defined parameter. Then in Section

5.4.2 we extend FSFS and introduce a new method, density-based feature selec-

tion using feature similarity (DBFSFS). Like FSFS, our new method does require

an additional parameter. However, this parameter is easy to set.

5.4.1 Selecting subset of features using FSFS

Unsupervised feature selection algorithms aim at identifying a subset R, with 1 ≤

|R| ≤ V− 1, containing those features that are the most discriminative. Very much

like any method following the unsupervised learning framework, R is identified

without requiring labelled samples.

Unsupervised feature selection using feature similarity (FSFS) (Mitra et al., 2002)

is a fast and popular unsupervised feature selection algorithm. It benefits from be-

ing suitable for large data sets, and it is based on removing redundant features

(i.e. those that contain information already expressed in another feature). This al-

gorithm makes use of the Maximal Information Compression Index (MIC), defined
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as

2λ2(v1, v2) = (var(v1) + var(v2)−√
(var(v1) + var(v2))2 − 4var(v1)var(v2)(1− ρ(v1, v2)2) ) (5.1)

where ρ(v1, v2) is the Pearson correlation between features v1 and v2, defined as

ρ(v1, v2) =
cov(v1, v2)√
var(v1)var(y)

(5.2)

The variance of a variable is denoted by var and convariance is denoted by cov.

This index returns the smallest eigenvalue of the covariance matrix of v1 and v2. Its

value is zero if v1 and v2 are linearly dependent, and increases as the dependency

decreases. We describe the FSFS algorithm below.

Algorithm 5.1 : FSFS (Y, κ)
Input
Y: Data set.
κ: Size of reduced feature set.
Output
R : Reduced feature vector

1: Set κ so that 1 ≤ κ ≤ V − 1. Initialise the reduced feature subset R =
{1, 2, ..., V}.

2: for each feature v ∈ R, compute rκ
v.

3: Identify the feature v′ leading to the lowest rκ
v′ . Retain v′ in R, and discard the

κ nearest features to v′. Let ε = rκ
v′ .

4: If κ > |R| − 1, set κ = |R| − 1.
5: If κ = 1 go to Step 8.
6: While rκ

v′ > ε
(a) κ = κ − 1, rκ

v′ = infv∈Rrκ
v.

(b) If κ = 1, go to Step 8.
7: Go to Step 2.
8: Return R.
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In the above rκ
v represents the dissimilarity between feature v and its κth (we

used the symbol κ instead of k in the above algorithm) nearest neighbour, meas-

ured using (5.1). FSFS is a quite fast method as it does not perform a search,

however, it calculates scores for one feature at a time. This can be problematic

in scenarios where information is contained in a cluster of features rather than on

individual features.

FSFS compared favourably with the popular algorithms in the literature with

respect to different algorithm validation indices (King, 1967; Kononenko, 1994;

Pudil et al., 1994; Whitney, 1971) as reported in the experimental results by Mitra

et al. (2002).

5.4.2 Selecting subset of features using DBFSFS

As popular as it may be, FSFS is not without weaknesses. In relation to the problem

at hand, FSFS has the following two major weaknesses.

(i) FSFS does not take density-based cluster structure into consideration during

the feature clustering process.

(ii) One need to set an additional parameter κ between the value 1 and V − 1 to

find the subset of features. Thus, setting this parameter may be problematic

for high-dimensional data set.

With this in mind, to tackle the above issues, we introduce a novel method, density-

based feature selection using feature similarity (DBFSFS). This method is tempting

171



in the sense that it allows us to use a DBSCAN type clustering algorithm for feature

clustering. Density-based clusters are higher density regions that are separated by

lower density regions. In the density-based feature clustering scenario, Density-

based clusters are connected, dense regions in the feature space separated from

each other by lower density sparser regions. Thus, features that are not density-

connected and are not within the same cluster can be considered as dissimilar fea-

tures. In a similar manner, features reside in the same cluster can be considered

similar.

To this end, we decided to incorporate DBSCANR into DBFSFS for density-

based feature clustering, for the following reasons. Using W-DBSCANR or MW-

DBSCANR for feature clustering will not be appropriate. It is now a well-known

fact that these feature weighted density-based algorithms work best when we need

to calculate the degree of relevance of features while clustering the observations.

However, in this case we are clustering features themselves not the actual obser-

vations. This will also lead to ambiguous distance and weight exponent as their

value may differ from data clustering to feature clustering.

DBSCANR needs a user-defined parameter k to find density-based clusters. In

the context of density-based feature clustering, we denote this parameter k as ψ to

avoid any ambiguity. ψ is the minimum number of features within each cluster

Sc. At ψ = 1, DBSCANR can find singleton clusters, in this case a single feature,

allowing us to remove ψ (see Section 3.3, in Chapter 3 for more details). The same

may not be told for DBSCAN and its recent variants. However, we decided to
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keep this parameter ψ to make use of the effect it has in our new feature selection

method compared to popular FSFS.

Considering this, our method, DBFSFS utilises DBSCANR for feature cluster-

ing. Our method involves clustering the features into K distinct subsets or clusters

and then selects a number of features from each distinct subset to produce a re-

duced feature subset.

Unlike FSFS, we select one or more features rather than one single feature from

each cluster, depending on the number of features in each cluster. We believe that

selecting the same amount of features from different size clusters is not in line with

intuition. As a result, to produce reduced feature subset R, we select one or more

features fc from each cluster Sc based on its size |Sc|, representing the total number

of features within Sc and total number of features that is clustered |S| using

fc =

⌈
K
(
|Sc|
|S|

)⌉
(5.3)

For example, In a data set Y, let each data point yi is described over 10 features

v1, v2, v3, . . . , v10. Then the task of feature reduction via feature selection involves

two steps.

First, we recover DBSCANR clusters S1, S2 and S3 as per Algorithm 3.1 with

respect to ψ. As shown in Figure 5.9, S1 = {v2, v4, v9}, S2 = {v5, v10} and S3 =

{v1, v3, v6, v7, v8} . Let z1, z2 and z3 are the cluster centres of S1, S2 and S3 respect-

ively as determined by the mean of the features within each cluster Sc.
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Figure 5.9: DBFSFS feature clusters.

Second, we calculate number of features fc to be selected from each cluster Sc

using Equation (5.3). According to this equation, the number of features selected

from each cluster S1, f1 =
⌈
3× 3

10

⌉
= 1, cluster S2, f2 =

⌈
3× 2

10

⌉
= 1 and cluster

S3, f3 =
⌈
3× 5

10

⌉
= 2. Now, we calculate MIC of each feature within each cluster

Sc with respect to cluster centre zc as per Equation (5.1). Then we identify f1 = 1,

f2 = 1 and f3 = 2 features with the highest within cluster MIC from cluster S1, S2

and S3 respectively and assign them to Rc. Let the features with the highest feature

be R1 = {v2}, R2 = {v5} and R3 = {v3, v8}. Finally, we assign R1, R2 and R3 to R

to obtain reduced feature subset.

We are now in a position to formally introduce our density-based feature selec-

tion method below.
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Algorithm 5.2 : DBFSFS (Y, ψ)
Input
Y: Data set.
ψ: Minimum number of features.
Output
R : A reduced feature subset R = {R1, R2, · · · , RK}

1: Normalise features using Equation (3.3).
2: Apply DBSCANR using Algorithm 3.1 to find feature clustering.
3: Find Rc ( fc = |Rc|) features per cluster using Equation (5.3) with the largest

MIC ( as per Equation (5.1)). Set R← Rc.
4: Return R.

In the above algorithm, we determine the largest MIC by calculating the dis-

tance between each feature from its cluster centre (as determined by the mean fea-

tures within cluster) with respect to feature dissimilarity measure, MIC. Although

the above algorithm finds the feature subsets based on MIC using Equation (5.1), it

is possible to use pearson correlation coefficient using Equation (5.2) as a measure.

Next section presents the experimental results on high dimensional data sets

with reduced features.

5.5 Experimental results with the selected features

We begin our experiments on each high dimensional gene expression data set with

reduced feature subset. To this end, we present the experimental results of FSFS

and in Section 5.5.1 followed by DBFSFS in Section 5.5.2.

In FSFS method, Mitra et al. (2002) partitions features based on κ-nearest neigh-

bours (κ-NN). In doing so, FSFS calculates the similarity between features and their
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nearest neighbours (NN), requiring an additional parameter κ, which decides the

reduced feature set. Similarly, DBFSFS finds density-based clusters of features us-

ing DBSCANR, requiring a parameter ψ which decides the minimum number of

features in each cluster.

In the following set of experiments, we intend to analyse and compare the res-

ults of W-DBSCANR and MW-DBSCANR in relation to the reduced feature subset

produced by popular FSFS and our new method DBFSFS, rather than finding the

parameters of these feature selection methods.

In our experiments, for each data set, we select the only parameter value of

FSFS, κ, so that the number of features to be in the reduced feature subset range

from 50 to 1000, in steps of 100. We found this way of selecting the κ intuitive as one

can choose any value between 1 and V − 1 as κ, this is roughly the features to be

removed from the original features. In the case of DBFSFS, the parameter ψ range

from 1 to 5, in steps of 1. For each reduced subset of features, the value of β and p

range from 1.1 to 5 in steps of 0.1, as before, as the parameter of W-DBSCANR and

MW-DBSCANR respectively.

For both W-DBSCANR and MW-DBSCANR in our experiments, the optimal

values of κ or ψ were found to reach the highest ARI using all possible values of β

and p.
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5.5.1 Experiments with the FSFS

In this section, for each data set, we show the optimal accuracy in terms of ARI.

The reduced feature subset produced by FSFS was used in our feature weighted

density-based clustering algorithms, W-DBSCANR and MW-DBSCANR. For the

latter algorithms, the value of κ may vary as the optimal result may be found for a

different set of features.

1. Colon data set

The principal component analysis (PCA) on the the plane of first two principal

components is applied to the Colon data set using 25 features selected via FSFS for

both W-DBSCANR and MW-DBSCANR is shown in Figure 5.10(a) and with all the

features in Figure 5.10(b).

(a) (b)

Figure 5.10: Colon data set on the plane of the first two principal components, the clusters
are shown using different colours and shapes (a) using 25 features; (b) using all the fea-
tures.

Table 5.4 presents the results of our experiments using only the features selected

through FSFS. We do not see much improvement in the performance, especially the

177



feature subset selected for MW-DBSCANR. It is interesting to note that both W-

DBSCANR and MW-DBSCANR reached the highest ARI per β or p at the optimal

value of κ of 150 and hence the number of selected features were equal, 25.

Table 5.4: Experiments on the Colon data set with only the features selected by FSFS. The
number of selected features can be found in parentheses.

Algorithm
Optimal Exponent at

κ Distance Weight k ARI

W-DBSCANR 150 2 3.4 2 0.2478
(25) 2 2.6 5 0.2747

2 2.4 6 0.0521

MW-DBSCANR 150 1.8 1.8 2 0.1841
(25) 4.4 4.4 3 0.2057

2.1 2.1 5 0.2014
2 2 7 0.0521

Unfortunately, for MW-DBSCANR, the accuracy obtained with the optimal num-

ber of features are 25% less than the result achieved with all the features. W-

DBSCANR, however, did present a positive difference in maximum accuracy com-

pared to the result achieved without feature selection. For further validation, we

present the comparison of maximum accuracy obtained by each per k in Figure

5.11(a) and per β or p in Figure 5.11(b) with respect to optimal κ.
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(a) (b)

Figure 5.11: Maximum accuracy obtainted by each algorithm with the features selected
through FSFS (a) per k; (b) per weight exponent (p or β), on Colon data set.

We could not find any variations in the final feature weights for both feature

weighted algorithms.

2. Lung data set

Similar to Colon data set, Lung data set found the maximum accuracy at the same

κ, hence Figure 5.12 presents the result of PCA on Lung data set and the clusters

are shown on th plane of first two principal components in Figure 5.12(a) with 949

features selected via FSFS for both feature weighted density-based algorithms and

Figure 5.12(b) with all the features.
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(a) (b)

Figure 5.12: Lung data set on the plane of the first two principal components, the clusters
are shown using different colours and shapes (a) using 949 features; (b) using all the fea-
tures.

This turn, in Table 5.5, we can see some considerable improvement compared

to the result obtained for all the features. However, the number of features selected

seem to be far higher than Colon data set for both algorithms.

Table 5.5: Experiments on the Lung data set with only the features selected by FSFS. The
number of selected features can be found in parentheses.

Algorithm
Optimal Exponent at

κ Distance Weight k ARI

W-DBSCANR 950 2 1.1 3 0.7522
(949) 2 2.9 3 0.7294

2 1.7 3 0.6344

MW-DBSCANR 950 1.2 1.2 3 0.7683
(949) 1.6 1.6 3 0.7553

1.1 1.1 3 0.7426
1.7 1.7 3 0.6621

In terms of maximum accuracy, MW-DBSCANR performed slightly (2%) higher

than W-DBSCANR. Figure 5.13 shows the maximum accuracies obtained by each

feature weighted algorithm per k and β or p for optimal κ.

180



(a) (b)

Figure 5.13: Maximum accuracy obtainted by MW-DBSCANR and W-DBSCANR al-
gorithm with the features selected through FSFS (a) per k; (b) per weight exponent (p or
β), on Lung data set.

In terms of final feature weights, all the features calculated by both algorithms

are similar to each other except feature weights of feature 22, 76, 137, 243 and 418

are close to zero.

3. Lymphoma data set

We have different optimal κ on this occasion, hence we applied PCA to Lymphoma

data set using 30 features for W-DBSCANR is shown in Figure 5.14(a), 95 features

for MW-DBSCANR in Figure 5.14(b) and all the features in Figure 5.14(c). It seems

that data became more sparse and inter cluster density increased.
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(a) (b)

(c)

Figure 5.14: Lymphoma data set on the plane of the first two principal components,
the clusters are shown using different colours and shapes (a) using 30 features for W-
DBSCANR; (b) using 95 features for MW-DBSCANR; (c) using all the features.

In Table 5.6, we can see improvement in the results for both algorithms we

experiment with. MW-DBSCANR demonstrates higher cluster recovery than W-

DBSCANR. W-DBSCANR have had a considerable improvement in its cluster re-

covery than if no feature was selected.

182



Table 5.6: Experiments on the Lymphoma data set with only the features selected by FSFS.
The number of selected features can be found in parentheses.

Algorithm
Optimal Exponent at

κ Distance Weight k ARI

W-DBSCANR 250 2 1.1 2 0.1221
(30) 2 1.4 2 0.1221

2 1.8 2 0.1443
2 2.2 2 0.2613

MW-DBSCANR 950 1.4 1.4 2 0.4221
(95) 1.5 1.5 2 0.4213

1.7 1.7 2 0.3674

The cluster recovery of W-DBSCANR became more stable than MW-DBSCANR

at β of 2 in Figure 5.15. Though MW-DBSCANR showed higher accuracy at p = 2

with respect to k, the number of recovered clusters do not match with the true

cluster labels.

(a) (b)

Figure 5.15: Maximum accuracy obtainted by each feature weighted algorithm with the
features selected via FSFS (a) per k; (b) per weight exponent (p or β), on Lymphoma data
set.

The final feature weights calculated by W-DBSCANR and MW-DBSCANR is

approximately similar on this occasion and did not show much variations.

183



5.5.2 Experiments with the DBFSFS

In this section, only the feature selected via DBFSFS was used with W-DBSCANR

and MW-DBSCANR.

1. Colon data set

For Colon data set, DBFSFS selected 3 features and 37 features from the original

2000 features for W-DBSCANR and MW-DBSCANR respectively. We applied PCA

to this data and the reduced features subsets on the plane of their first two prin-

cipal component is shown in Figure 5.16(a) and 5.16(b). For comparison, in Figure

5.16(a) the PCA plot using all the features on the plane of first two principal com-

ponent are shown again.
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(a) (b)

(c)

Figure 5.16: The cluster structure of Colon data set is shown using different colours and
shapes on the plane of the first two principal components. The figure (a) uses only 3 fea-
tures for W-DBSCANR; (b) uses only 37 features for MW-DBSCANR; and (c) all the fea-
tures.

Although it is not entirely clear from the two-dimensional plot, Figure 5.16(b)

shows a better cluster structure aligned more to the Y-axis when 37 features were

selected.
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Table 5.7: Experiments on the Colon data set with only the features selected by DBFSFS.
The number of selected features can be found in parentheses.

Algorithm
Optimal Exponent at

ψ Distance Weight k ARI

W-DBSCANR 4 2 1.9 3 0.0898
(3) 2 1.7 4 0.0032

2 1.1 5 0.0586
2 1.1 6 0.0934
2 2.4 7 0.1528
2 1.6 8 0.111
2 1.6 9 0.0934

MW-DBSCANR 3 1.7 1.7 2 0.3221
(37) 1.3 1.3 3 0.2812

2.7 2.7 4 0.0044

In this case, although W-DBSCANR seems more stable in Figure 5.17, MW-

DBSCANR reached the highest ARI and outperformed W-DBSCANR, Table 5.7

verifies the results. Both algorithms considerably improved the clustering recovery

than if no feature reduction method had been performed.

(a) (b)

Figure 5.17: Maximum ARI of MW-DBSCANR and W-DBSCANR with the features selec-
ted via DBFSFS (a) per k; (b) per weight exponent (p or β), on Colon data set.
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The final feature weights found by each algorithm are roughly equal to each

other.

2. Lung data set

This turn, for both W-DBSCANR and MW-DBSCANR our feature selection al-

gorithm DBFSFS selected 22 features from original 3312 features, a 99% reduction

in the number of features. The comparison is shown in Figure 5.18 on the plane of

two principle components.

(a) (b)

Figure 5.18: The cluster structure of Lung data set is shown using different colours and
shapes on the plane of the first two principal components. The figure (a) uses only 22
features for both W-DBSCANR and MW-DBSCANR; and (b) all the features.

This feature reduction increased within-cluster density, hence led to better per-

formance if one compares the maximum accuracy with the result found with all

the features. This is verified in Table 5.8.
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Table 5.8: Experiments on the Lung data set with only the features selected by DBFSFS.
The number of selected features can be found in parentheses.

Algorithm
Optimal Exponent at

ARI
ψ Distance Weight k

W-DBSCANR 4 2 2.8 4 0.6000
(22) 2 3.3 4 0.5884

2 1.2 3 0.527
2 2.2 3 0.5259

MW-DBSCANR 4 1.5 1.5 3 0.6537
(22) 2.2 2.2 4 0.6209

2.3 2.3 3 0.5375
2 2 3 0.5246

Figure 5.19, the maximum clustering recovery obtained with both W-DBSCANR

and MW-DBSCANR is equally stable and consistent.

(a) (b)

Figure 5.19: Maximum ARI of MW-DBSCANR and W-DBSCANR with 3290 features re-
moved by DBFSFS (a) per k; (b) per weight exponent (p or β), in Lung data set.

3. Lymphoma data set

On Lymphoma data set, the DBFSFS method reduced the number of features from

the original 4026 to 32. The difference in the cluster structure this reduced feature
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made is presented in Figure 5.20.

(a) (b)

Figure 5.20: The cluster structure of Lymphoma data set is shown using different colours
and shapes on the plane of the first two principal components. The figure (a) uses only 32
features for both W-DBSCANR and MW-DBSCANR; and (b) all the features.

From the figure above, we can see a better cluster structure when only 32 fea-

tures were selected than the cluster structure without feature reduction. We valid-

ate this using the following Table 5.9 in terms of optimal accuracy.

Table 5.9: Experiments on the Lymphoma data set with only the features selected by DBF-
SFS. The number of selected features can be found in parentheses.

Algorithm
Optimal Exponent at

ψ Distance Weight k ARI

W-DBSCANR 3 2 1.5 2 0.3500
(32) 2 1.1 2 0.3350

2 1.2 2 0.3284
2 1.9 2 0.2813

MW-DBSCANR 5 1.4 1.4 2 0.4951
(32) 1.8 1.8 2 0.3806

1.1 1.1 2 0.3549
1.7 1.7 2 0.3322
1.2 1.2 2 0.2801
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Although the cluster recovery of MW-DBSCANR is consistently higher as il-

lustrated in Figure 5.21(b), this does not seem to match with the true number of

clusters, hence, clustering recovery remain under 0.40 for W-DBSCANR and 0.50

for MW-DBSCANR. However, both feature weighted algorithms demonstrated

better clustering recovery than if no feature reduction was performed.

(a) (b)

Figure 5.21: Maximum ARI of MW-DBSCANR and W-DBSCANR with number of features
reduced to 32 (a) per k; (b) per weight exponent (p or β), in Lymphoma data set.

5.6 Comparing DBFSFS with FSFS

As one expected, both DBFSFS and FSFS increased the cluster recovery of W-

DBSCANR and MW-DBSCANR in general by reducing number of features.

We are now in a position to compare the results obtained in Section 5.5.1 and

5.5.2. In this section, we intend to ascertain the differences between FSFS and DBF-

SFS in terms of cluster recovery. We begin by comparing the results obtained for

Colon data set, as presented in Table 5.10.
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Table 5.10: Comparison of the feature weighted density-based algorithms for Colon data
set. The column ’Selected feature’ includes the number of features selected by each feature
selection method under experiment.

Feature
selection Selected Exponent at

Algorithm method feature Distance Weight k ARI

W-DBSCANR FSFS 25 2 2.6 5 0.2747
W-DBSCANR DBFSFS 3 2 2.4 7 0.1528
MW-DBSCANR FSFS 25 4.4 4.4 3 0.2057
MW-DBSCANR DBFSFS 37 1.7 1.7 2 0.3221

When comparing FSFS with the version that implements density-based fea-

ture clustering, DBFSFS, one can observe that the number of features selected by

DBFSFS for W-DBSCANR is far lower than FSFS with competitive maximum ac-

curacy. DBFSFS selected a reasonably low number of features for MW-DBSCANR

to produce higher cluster recovery than the maximum accuracy obtained by both

W-DBSCANR with DBFSFS and FSFS, and MW-DBSCANR with FSFS. Table 5.11

presents the comparison for Lung data set.

Table 5.11: Comparison of the feature weighted density-based algorithms for Lung data
set. The column ’Selected feature’ includes the number of features selected by each feature
selection method under experiment.

Feature
selection Selected Exponent at

Algorithm method feature Distance Weight k ARI

W-DBSCANR FSFS 949 2 1.1 3 0.7522
W-DBSCANR DBFSFS 22 2 2.8 4 0.6000
MW-DBSCANR FSFS 949 1.2 1.2 3 0.7683
MW-DBSCANR DBFSFS 22 1.5 1.5 3 0.6537

This turn, in line with the results of Colon data set, DBFSFS selected consider-

ably fewer features than FSFS and enabled both W-DBSCANR and MW-DBSCANR
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to obtain competitive results on Lung data set. MW-DBSCANR outperformed W-

DBSCANR using both FSFS and DBFSFS.

Table 5.12: Comparison of the feature weighted density-based algorithms for Lymphoma
data set. The column ’Selected features’ includes the number of features selected by each
feature selection method under experiment.

Feature
selection Selected Exponent at

Algorithm method feature Distance Weight k ARI

W-DBSCANR FSFS 30 2 2.2 2 0.2613
W-DBSCANR DBFSFS 32 2 1.5 2 0.3500
MW-DBSCANR FSFS 95 1.4 1.4 2 0.4221
MW-DBSCANR DBFSFS 32 1.4 1.4 2 0.4951

Table 5.12 shows the comparisons for Lymphoma data set. The results on this

data set is consistent with the trend showing the superiority of DBFSFS.

In Colon and Lung data sets, the performance of DBFSFS is slightly lower than

FSFS for both W-DBSCANR and MW-DBSCANR. This is because, unlike FSFS,

DBFSFS depends on Equation (5.3) that selects a set of features based on the size

of each cluster recovered by DBSCANR. To address this issue, one could decide to

set a different K other than the number of clusters in Equation (5.3). However, we

decided not to open concessions to FSFS by introducing a new parameter to our

feature selection method, DBFSFS. In general, the feature selection method that

implements density-based feature clustering, DBFSFS seems to reduce features ef-

fectively and hence produce better feature subsets than the standard FSFS method

(Mitra et al., 2002). Next section summarises the results of our experiments.

192



Summary of experiments with and without feature selection

We have run experiments with all the features in Section 5.3 and with selected

features in Section 5.5. We observed the following

(i) Both W-DBSCANR and MW-DBSCANR seem to have had a better clustering

recovery with the features selected by DBFSFS and FSFS than if no feature

selection had been performed.

(ii) The DBFSFS method tends to select a better feature subsets than FSFS with

a considerable improvement in clustering recovery obtainded with both W-

DBSCANR and MW-DBSCANR.

(iii) With the features selected using DBFSFS, the clustering accuracy obtained

with W-DBSCANR is less but competitive to that obtained with MW-DBSCANR.

(iv) The maximum accuracy with respect to ARI for what we found to be the

optimal parameter ψ of DBFSFS, the range is much smaller (from 3 to 5 in

our case), hence easier to set. However, one can choose any value between 1

and V − 1 for the parameter κ of FSFS which is difficult to set.

5.7 Conclusion

The objective of this chapter was to investigate the behaviour of both W-DBSCANR

and MW-DBSCANR when recovering extremely high dimensional and low sample

size data sets with arbitrary shapes, sizes and poorly separated clusters. To this
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end, we decided to use widely recognised highly complex gene expression data

sets. We used the Colon data set with 2000 features, Lung data set with 3312 fea-

tures and Lymphoma data set with 4026 features.

When we have analysed these data sets, we found that both W-DBSCANR and

MW-DBSCANR are able to recover clusters from these extremely high-dimensional

data sets. MW-DBSCANR tends to have a higher cluster recovery than W-DBSCANR

in most cases with competitive computational effort.

We have found that data sets with a larger number of features have similar fea-

tures that can be grouped to form distinct subsets of features or clusters. Then

features from these clusters can be selected based on certain feature similarity

measure to comprise reduced feature subset. This method reduced the number

of features significantly. This is particularly important for both feature weighted

density-based algorithms as they assign equal weight to those features that are

similar rather than discarding few of them.

We have performed a series of experiments on these gene expression data sets

with the popular FSFS method (Mitra et al., 2002) and proposed a new method

DBFSFS that takes density-based feature clustering into account aligned with the

density-based notion of clustering. We found that DBFSFS tends to produce more

useful features, and its parameter is easier to set.

Next chapter concludes this thesis by summarising the contribution and defin-

ing the directions for future research.
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Chapter 6

Conclusion and future directions

6.1 Research outcomes

The widespread use of clustering analysis coupled with the emergence of fea-

ture selection has generated a persistent need for new clustering algorithms that

compute the feature weighting for density-based clustering recovering arbitrary

shape clusters. This thesis addresses this need by developing the feature weighted

density-based clustering algorithms and applying to real-world high dimensional

data sets that use these algorithms to solve key problems in the areas of feature

selection.

First, we extend the popular DBSCAN to density-based clustering using re-

verse nearest neighbour, DBSCANR. The latter allowed us to recover arbitrary

shaped clusters with widely variable within-cluster densities using only one para-

meter. Our method has proved, in our extensive experiments, superior to that of
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DBSCAN and its well-established variants. However, DBSCANR retains the draw-

back of the standard DBSCAN, that it treats all the features equally regardless of

their relevance.

We extend DSBCANR to feature weighting by adding one more step to the DB-

SCANR clustering process. W-DBSCANR can calculate the weight for each feature

iteratively while recovering arbitrary shaped clusters with widely variable within-

cluster densities without requiring any additional parameter than the DBSCAN.

W-DBSCANR improves DBSCANR by allowing different degrees of relevance for

different features in a data set it recovers clusters. W-DBSCANR has been en-

hanced to MW-DBSCANR which employs the Minkowski metric with same expo-

nent p in the weight and density calculation. This way, each feature weight can

now be seen as feature re-scaling factor for any considered exponent p. Experi-

mental results have shown that the new algorithms outperformed the DBSCANR

and standard DBSCAN type algorithms in recovering clusters.

Before applying the above method to real-world high-dimensional data, such

as gene expression data, we would need to reduce feature space by feature selec-

tion. In doing so, we apply a feature selection method using the feature similarity

approach, FSFS. This method reduces the number of features using the popular

maximal information compression index as a feature dissimilarity measure. How-

ever, this feature dissimilarity measure’s ability is undermined by one of the major

drawbacks of FSFS in relation to density-based clustering: FSFS does not consider

density-based cluster notion during the feature clustering process. We developed
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a feature selection method, density-based feature selection using feature similarity,

DBFSFS to address this issue. Our experiments demonstrate the superiority of our

method DBFSFS over FSFS. The research fullfilled in this PhD project has answered

the researh question of ”Can we use the Minkowski metric to improve feature weighted

density-based clustering algorithm?”. Specifically, we summarise the main results of

the project as follows:

1. A density-based clustering method using reverse nearest neighbour, DBSCANR

that improves DBSCAN’s accuracy at artificial data sets and real-world data

sets of different sizes and dimensions.

2. Two feature weighting methods, W-DBSCANR and MW-DBSCANR, without

and with Minkowski metric, respectively, which improve DBSCANR and

well-established DBSCAN type algorithms’ accuracy at artificial and real-

world data sets of different sizes and dimensions, with and without added

noise features.

3. A density-based feature space reduction method, density-based feature se-

lection using feature similarity.

4. A method for clustering gene expression data involving the above methods.

Furthermore, this research work generated the following research publications:

1. Stiphen Chowdhury and Renato Cordeiro de Amorim. An efficient density-

based clustering algorithm using reverse nearest neighbour. Proceedings of

the Computing Conference on Intelligent Computing, 2019.
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2. Stiphen Chowdhury, Na Helian and Renato Cordeiro de Amorim. Feature

weighted density-based clustering. Under review, 2021.

3. Stiphen Chowdhury, Na Helian and Renato Cordeiro de Amorim. Feature

weighting based feature selection in density-based clustering algorithm. In

progress, 2021.

6.2 Observations

(a) DBSCANR tends to recover arbitrary shaped clusters with widely variable

intra-cluster density in data sets that have moderate number of features.

(b) Both W-DBSCANR and MW-DBSCANR are deterministic and calculates all

the features used in a data set. MW-DBSCANR accepts different distance

bias.

(c) As the number of observations in a data set grows, the only parameter value

of DBSCANR, k converges. The value of k tend to decrease, the number of

features in a data set increases.

(d) W-DBSCANR tends to work as accurately as MW-DBSCANR in the presence

of noise features.

(e) Minkowski metric-based method MW-DBSCANR seems to work better than

W-DBSCANR in general.
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(f) Both W-DBSCANR and MW-DBSCANR tend to benefit from the feature sim-

ilarity based feature reduction method in the high-dimensional setting.

This thesis lays the foundation of the feature weighted density-based clustering. It

produces a theoretical and practical framework that researchers can use and build

on to further advance into the problem of density-based data clustering leveraging

feature weighting.

6.3 Limitations and future work

Both W-DBSCANR and MW-DBSCANR requires a new parameter. Although MW-

DBSCANR gives meaning to the parameter β, we have not provided a precise

strategy to select a precise parameter value. Future research could address this is-

sue by applying multiple density-based clustering validation indices (CVIs). These

CVIs will allow us to evaluate the quality of clustering obtained using different

parameter values.

Both of our feature weighting methods evaluate each feature one at a time. This

poses a problem when discriminative information is in a group of features rather

than any single feature. Future research could address this issue by integrating

density and the bi-clustering (Mirkin, 1998) notion in relation to weighting single

feature and groups of features by automatically grouping them.

Though W-DBSCANR and its variant that implements Minkowski metric MW-

DBSCANR take cluster structure into consideration during the clustering process,
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our feature weighting methods support one final weight per feature. This presents

a problem when more than a single weight may be necessary to model feature rel-

evance, as features may not be relevant by themselves, however, they may carry

useful information when they are grouped together (Chen et al., 2012). Future re-

search could address this issue by integrating density-based clustering and cluster-

specific feature weighting.

Our feature selection method DBFSFS constitute a reduced feature subset by

discarding similar features from within the same cluster, presenting difficulties for

cases when the feature clustering incorrectly assigns cluster members as similar

features. Although we have presented empirical comparison using experiments

with a positive outcome, we experimented only with high-dimensional gene ex-

pression data.

To evaluate the developed methods, we used the Adjusted Rand Index to meas-

ure accuracy. Future research could use more than one measure of accuracy to

validate the newly developed density-based clustering algorithms.

Finally, our developed density-based clustering method is capable of recover-

ing clusters of arbitrary shapes, sizes and densities. The developed feature weight-

ing techniques can lower computational complexity, build better generalisable mod-

els, decrease required storage and improve learning performance. Therefore this

could be applied to wide array of applications ranging from scene understanding

to autonomous driving.
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Kriegel, H.-P., Kröger, P., Sander, J., and Zimek, A. (2011). Density-based clus-

tering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

1(3):231–240.

Krishna, K. and Murty, M. N. (1999). Genetic k-means algorithm. IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439.

Kulkarni, A., Tokekar, V., and Kulkarni, P. (2015). Discovering context of labeled

text documents using context similarity coefficient. Procedia computer science,

49:118–127.

Kumar, K. M. and Reddy, A. R. M. (2016). A fast dbscan clustering algorithm

by accelerating neighbor searching using groups method. Pattern Recognition,

58:39–48.

220



Lawson, D. J. and Falush, D. (2012). Population identification using genetic data.

Annual review of genomics and human genetics, 13.

Lee, S., Hyeon, D., Park, G., Baek, I.-j., Kim, S.-W., and Seo, S.-W. (2016).

Directional-dbscan: Parking-slot detection using a clustering method in around-

view monitoring system. In Intelligent Vehicles Symposium (IV), 2016 IEEE, pages

349–354. IEEE.

Li, Z., Yang, Y., Liu, J., Zhou, X., and Lu, H. (2012). Unsupervised feature selec-

tion using nonnegative spectral analysis. In Proceedings of the Twenty-Sixth AAAI

Conference on Artificial Intelligence, AAAI’12, pages 1026–1032. AAAI Press.

Liang, R., Zhu, Y., and Wang, H. (2014). Counting crowd flow based on feature

points. Neurocomputing, 133:377–384.

Liang, S., Han, D., and Yang, Y. (2020). Cluster validity index for irregular cluster-

ing results. Applied Soft Computing, 95:106583.

Liao, B., Jiang, Y., Liang, W., Zhu, W., Cai, L., and Cao, Z. (2014). Gene selection

using locality sensitive laplacian score. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 11(6):1146–1156.

Liu, B., Wan, C., and Wang, L. (2006). An efficient semi-unsupervised gene se-

lection method via spectral biclustering. IEEE Transactions on nanobioscience,

5(2):110–114.

Liu, H. and Motoda, H. (2007). Computational methods of feature selection. CRC Press.

221



Liu, R., Wang, H., and Yu, X. (2018). Shared-nearest-neighbor-based clustering by

fast search and find of density peaks. information sciences, 450:200–226.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information

theory, 28(2):129–137.

Loftsgaarden, D. O., Quesenberry, C. P., et al. (1965). A nonparametric estimate of

a multivariate density function. The Annals of Mathematical Statistics, 36(3):1049–

1051.

Loscalzo, S., Yu, L., and Ding, C. (2009). Consensus group stable feature selec-

tion. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 567–576.

Luo, G., Luo, X., Gooch, T. F., Tian, L., and Qin, K. (2016). A parallel dbscan

algorithm based on spark. In Big Data and Cloud Computing (BDCloud), Social

Computing and Networking (SocialCom), Sustainable Computing and Communica-

tions (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Con-

ferences on, pages 548–553. IEEE.

Luo, L.-K., Huang, D.-F., Ye, L.-J., Zhou, Q.-F., Shao, G.-F., and Peng, H. (2010). Im-

proving the computational efficiency of recursive cluster elimination for gene

selection. IEEE/ACM transactions on computational biology and bioinformatics,

8(1):122–129.

Luss, R. and d’Aspremont, A. (2010). Clustering and feature selection using sparse

principal component analysis. Optimization and Engineering, 11(1):145–157.

222



MacQueen, J. et al. (1967). Some methods for classification and analysis of mul-

tivariate observations. In Proceedings of the fifth Berkeley symposium on mathemat-

ical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.

Mai, S. T., He, X., Feng, J., Plant, C., and Böhm, C. (2015). Anytime density-based
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Appendix A

PCA plots

A.1 Artificial data sets

(a) Original (b) +50% noise (c) +100% noise

Figure A.1: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Aggregation original data set. (b) Aggregation data set with one noise feature.
(c) Aggregation data set with two noise features.
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(a) Original (b) +50% noise (c) +100% noise

Figure A.2: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Grid original data set. (b) Grid data set with one noise feature. (c) Grid data
set with two noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.3: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) D31 original data set. (b) D31 data set with one noise feature. (c) D31 data set
with two noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.4: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Flame original data set. (b) Flame data set with one noise feature. (c) Flame
data set with two noise features.
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(a) Original (b) +50% noise (c) +100% noise

Figure A.5: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Mixed original data set. (b) Mixed data set with one noise feature. (c) Mixed
data set with two noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.6: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Pathbased original data set. (b) Pathbased data set with one noise feature. (c)
Pathbased data set with two noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.7: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) R15 original data set. (b) R15 data set with one noise feature. (c) R15 data set
with two noise features.
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(a) Original (b) +50% noise (c) +100% noise

Figure A.8: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Spiral original data set. (b) Spiral data set with one noise feature. (c) Spiral
data set with two noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.9: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Toy original data set. (b) Toy data set with one noise feature. (c) Toy data set
with two noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.10: Clustering using true labels shown on the plane of the first two principal
components (a) Twodiamonds original data set. (b) Twodiamonds data set with one noise
feature. (c) Twodiamonds data set with two noise features.
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A.2 Real-world data sets

(a) Original (b) +50% noise (c) +100% noise

Figure A.11: Clustering using true labels shown on the plane of the first two principal
components (a) Banknote original data set. (b) Banknote data set with two noise feature.
(c) Banknote data set with Four noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.12: Clustering using true labels shown on the plane of the first two principal
components (a) Iris original data set. (b) Iris data set with two noise feature. (c) Iris data
set with Four noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.13: Clustering using true labels shown on the plane of the first two principal
components (a) Ecoli original data set. (b) Ecoli data set with four noise feature. (c) Ecoli
data set with seven noise features.
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(a) Original (b) +50% noise (c) +100% noise

Figure A.14: Clustering using true labels shown on the plane of the first two principal
components (a) Seeds original data set. (b) Seeds data set with four noise feature. (c) Seeds
data set with seven noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.15: Clustering using true labels shown on the plane of the first two principal
components (a) BreastT. original data set. (b) BreastT. data set with five noise features. (c)
BreastT. data set with nine noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.16: Clustering using true labels shown on the plane of the first two principal
components (a) Liver original data set. (b) Liver data set with five noise feature. (c) Liver
data set with nine noise features.
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(a) Original (b) +50% noise (c) +100% noise

Figure A.17: Clustering using true labels shown on the plane of the first two principal
components (a) Wine original data set. (b) Wine data set with seven noise feature. (c) Wine
data set with thirteen noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.18: Clustering using true labels shown on the plane of the first two principal
components (a) Leaf original data set. (b) Leaf data set with seven noise feature. (c) Leaf
data set with fourteen noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.19: Clustering using true labels shown on the plane of the first two principal
components (a) Parkinsons original data set. (b) Parkinsons data set with eleven noise
feature. (c) Parkinsons data set with twenty two noise features.
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(a) Original (b) +50% noise (c) +100% noise

Figure A.20: Clustering using true labels shown on the plane of the first two principal com-
ponents (a) Leukemia original data set. (b) Leukemia data set with twenty noise feature.
(c) Leukemia data set with thirty nine noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.21: Clustering using true labels shown on the plane of the first two principal
components (a) TeachingA original data set. (b) TeachingA data set with twenty eight
noise feature. (c) TeachingA data set with fifty six noise features.

(a) Original (b) +50% noise (c) +100% noise

Figure A.22: Clustering using true labels shown on the plane of the first two principal
components (a) Libras original data set. (b) Libras data set with forty five noise feature. (c)
Libras data set with ninety noise features.
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