
This is a post-peer-review, pre-copyedit version of an article published in

Software Quality Journal. The final authenticated version is available online at:

https://doi.org/10.1007/s11219-020-09530-1

https://doi.org/10.1007/s11219-020-09530-1

Software Quality Journal manuscript No.
(will be inserted by the editor)

Evaluation of Alternative Design Choices for
Evolutionary Mutation Testing by means of
Automated Configuration

Pedro Delgado-Pérez · Francisco Chicano

Received: date / Accepted: date

Abstract Mutation testing is a well-established but costly technique to assess
and improve the fault detection ability of test suites. This technique consists
of introducing subtle changes in the code of a program, which are expected
to be detected by the designed test cases. Among the strategies conceived
to reduce its cost, evolutionary mutation testing (EMT) has revealed as a
promising approach to select a subset of the whole set of mutants based on
a genetic algorithm (GA). However, like any other metaheuristic approach,
EMT’s execution depends on a set of parameters (both classical of GAs and
context-specific ones), so different configurations can greatly vary its perfor-
mance. Currently, it is difficult to clarify what are the best values for those
parameters by applying manual parameter tuning, and whether new design
choices could improve its effectiveness with other combinations of values. The
experience carried out in this paper applying iterated racing, a well-known
automated configuration algorithm, reveals that EMT’s performance has been
undervalued in previous studies; the new configuration found by iterated rac-
ing was able to enhance EMT’s results in all C++ object-oriented programs
used in the experiments. This study also confirms alternative design choices
as convenient options to improve EMT in this context, namely, detecting and
penalizing equivalent mutants by means of Trivial Compiler Equivalence, and

This work was partially supported by the European Commission (European Regional Devel-
opment Fund - ERDF), the Spanish Ministry of Science, Innovation and Universities under
projects RTI2018-093608-B-C33 and TIN2017-88213-R, the excellence network RED2018-
102472-T, the University of Málaga, and Consejeŕıa de Economı́a y Conocimiento de la
Junta de Andalućıa (grant number UMA18-FEDERJA-003)

� Pedro Delgado-Pérez
Departmento de Ingenieŕıa Informática, Escuela de Ingenieŕıa, Universidad de Cádiz, Spain.
E-mail: pedro.delgado@uca.es
Tel.: +34 956 483243

Francisco Chicano
Escuela Técnica Superior de Ingenieŕıa Informática, Universidad de Málaga, Spain.
E-mail: chicano@lcc.uma.es

2 Pedro Delgado-Pérez and Francisco Chicano

learning which mutation operators produced live mutants in the past genera-
tions.

Keywords Mutation testing · evolutionary computation · genetic algorithm ·
automated configuration · iterated racing · equivalent mutants.

1 Introduction

Testing is widely accepted as a method to validate software systems. Its main
objective is to detect faults and fix them before a version of our software
is released. However, exhaustive testing is usually unfeasible. Therefore, we
should reach a manageable set of tests that provides high coverage, thereby
reducing the likelihood that faults will remain undetected. In this context,
mutation testing is gaining increasing attention to assess and improve the
quality of test suites (Papadakis et al., 2019). This is a fault-based technique
that imposes more stringent criteria than traditional test coverage criteria
(e.g., statement or branch coverage); mutation testing challenges the test suite
to reveal the existence of different changes in the source code. These changes
are introduced following some predefined transformations, guided by the so-
called mutation operators. These modifications are known as mutations, and
the resulting versions of the program as mutants. We then say that a mutant is
killed if the outputs of the test suite execution differ from those of the original
program. Otherwise, the mutant is alive and may represent an opportunity to
improve the test suite.

Mutation testing usually involves a trade-off between cost and effective-
ness: the probability to discover deficiencies in the test suite increases with
the number of mutants generated, but the more mutants the more expen-
sive the process will also be. With the aim to resolve this trade-off, different
techniques have been proposed in the past, such as mutant sampling (random
selection of a subset of mutants, Budd (1980)), selective mutation, (selection
of a subset of mutation operators, Barbosa et al. (2001)) or higher order
mutation (combination of two or more mutations in the same mutant, Jia
and Harman (2008)). In this paper, we focus on evolutionary mutation test-
ing (EMT) (Delgado-Pérez and Medina-Bulo, 2018), a search-based technique
that uses a genetic algorithm (GA) to favor the selection of mutants with the
potential to assist a tester in the refinement of a test suite (i.e., mutants that
remain alive). Notably, this technique has shown to be able to outperform
mutant sampling and selective mutation (Domı́nguez-Jiménez et al., 2011;
Delgado-Pérez and Medina-Bulo, 2018) in previous experimental procedures.

As other metaheuristic methods, the execution of EMT depends on a num-
ber of configurations options. Thus, the selected configuration can greatly af-
fect its effectiveness in practice. Therefore, setting appropriate values for these
parameters and optimizing the algorithm’s performance is required by means
of previous experiments. Experiments to find good parameter settings were
conducted by Domı́nguez-Jiménez et al. (2011). Despite the efforts, we note

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 3

some issues with their approach: (1) the parameter tuning was done manu-
ally, so the authors could only focus on a limited set of configuration options
and values for those parameters; (2) the experiments were undertaken using a
specific set of instances (programs coded in WS-BPEL language) and muta-
tion operators for that language. As a result, it is unclear whether the same
combination of values for those parameters is suitable when we move to other
contexts; (3) it is also uncertain how a refinement of the GA will impact the
best configuration known so far.

Taking into account the aforementioned problems, this means that we
might have underestimated the effectiveness of EMT —especially, if each par-
ticular context requires different parameter values or if an optimal configu-
ration was not found in the original experiments–. In fact, all experiments
applying EMT after that (Delgado-Pérez et al., 2017), (Delgado-Pérez and
Medina-Bulo, 2018), (Gutiérrez-Madroñal et al., 2019) have followed the pre-
sumably best parameter settings reached in that paper (Domı́nguez-Jiménez
et al., 2011). This is because restarting the same experiments to find a tailored
combination in each new context is tedious and costly, especially if the param-
eter tuning has to be done completely by hand. Currently, it is also especially
challenging to give evidence on whether suggested refinements of the GA pro-
vide any benefits; as a consequence of this, we might be missing a combination
of parameters for the GA that better suits the new design choices.

In this paper, we assess the application of automated configuration algo-
rithms to better exploits the benefits of this evolutionary approach for the
selection of mutants. We make use of the package irace (López-Ibáñez et al.,
2016) to this end, which offers a method called iterated racing for the au-
tomatic configuration of parameters. This procedure iteratively performs a
number of races with a set of candidate configurations to select the best ones.
This methodology allows dealing with the application of EMT in different con-
texts, where the best configuration settings can change, and allows assessing
the behavior of alternative design choices for the algorithm. Taking advantage
of this methodology, we add four alternative design options to the study in this
paper (including two previously proposed by Gutiérrez-Madroñal et al. (2019))
in order to evaluate their ability to improve EMT’s performance. These design
options, that have not undergone a configuration process yet, are:

1. Tournament selection as the method for the selection of mutants for
reproduction, with the possibility to adjust the tournament size.

2. Equivalent mutant detection and penalization. Equivalent mutants,
despite the injected mutation, do not change the program’s functionality.
As a result, they are not helpful to improve the test suite. With this in
mind, this option penalizes the fitness of equivalent mutants to prevent
the propagation of their features in the search. This can be achieved with
the help of Trivial Compiler Equivalence (Papadakis et al., 2015), a well-
known technique to detect some equivalent mutants automatically.

4 Pedro Delgado-Pérez and Francisco Chicano

3. Guided mutation operator, which implements a strategy to favor the
application of operators that produced live mutants in previous generations
of the execution.

4. Pure random individual generator, which achieves a uniform distri-
bution over all mutants, unlike the current individual generator.

This study investigates the automated configuration of parameters for
EMT in the context of mutants derived from real C++ object-oriented pro-
grams (Delgado-Pérez et al., 2017). The results of the experimental procedure
reveal that the best configuration automatically found differs from the con-
figuration used so far, and it includes two of the new extensions: equivalent
mutant detection and penalization and guided mutation operator. With the
new combination of values for these parameters, we observe reductions in the
percentage of mutants generated in all the 7 programs used in the experiments
(3.8% on average in the best case), including one program reserved for vali-
dation. In addition, the new configuration also reduces the standard deviation
(3.1% on average in the best case), which means that the variability of different
executions is lower now. In summary, this paper reinforces the usefulness of
this search-based strategy for the efficient selection of mutants, and provides
an analysis of a wider range of design choices. The methodology proposed in
the paper overcomes the problem of parameter configuration, which is an im-
portant step towards building operative tools for companies that adapt to the
particularities of their developments.

The structure of the paper is as follows. Section 2 describes the princi-
ples behind EMT and the current configuration of its GA. Section 3 explains
the four design choices included in the study, and Section 4 presents the pro-
posed methodology to automatically adjust EMT to each context. Section 5
introduces the research questions and shows the setup of the experimental
procedure. Section 6 presents and discusses the results. Finally, Section 7 and
Section 8 presents related work and the conclusions and future work, respec-
tively.

2 Evolutionary Mutation Testing

2.1 Description

Evolutionary mutation testing (EMT) seeks to reduce the cost of applying mu-
tation testing without a significant reduction of its effectiveness. EMT runs
in the hope that the subset of selected mutants contains a large proportion of
those that can be used by a tester to enhance the fault detection capability of
the test suite. To achieve this, EMT relies on a genetic algorithm (GA) (Gold-
berg, 1989), which propagates the information on the most useful mutants in a
generation to the mutants produced in the following generations. In summary,
the search performed by the GA is expected to gather as many live mutants
as possible in the resulting subset of mutants.

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 5

2.2 Genetic algorithm: steps

EMT works on the basis that a GA will be able to find useful mutants for
the test suite improvement starting from a small subset of randomly selected
mutants (first generation). This can be done by iteratively evolving and trans-
ferring the information on the most promising mutants to the rest of the
generations. To that end, the GA follows these steps in each generation:

1. The mutants are executed against the current test suite. The output of this
step is an execution matrix, that contains which test cases detect which
mutants.

2. The fitness function is calculated for each of the mutants based on the
number of test cases that kill them.

3. The next generation of mutants is then produced as follows:
– A small subset of the mutants in the generation is randomly generated

to preserve the diversity.
– The rest of the mutants are derived from the mutants in the current

generation. A selection method uses the previously calculated fitnesses
to pick the mutants that will transfer their information to the next
generation. Reproductive operators are then applied to the selected mu-
tants.

4. A termination condition is evaluated. If the condition is met, the algorithm
stops the execution and returns the mutants generated during the process.
Otherwise, all these steps are repeated.

The fitness function, the relevant features of the mutants for the encoding
scheme, and the selection and reproductive operators will be described in the
following subsections.

2.3 Fitness function

EMT’s aim is to select mutants for the refinement of the test suite, and this
can be mainly achieved with mutants that require specific test cases to be
killed. Therefore, EMT’s fitness function rewards each mutant depending on
the number of test cases that are able to reveal the mutation. This informa-
tion is extracted from the aforementioned execution matrix (see step 1 in the
previous section). In this regard, from the perspective of the fitness function:

– The best valued or most useful mutants are those not killed by the current
test suite. As such, they receive the maximum fitness. Being M the number
of mutants and T the size of the test suite, the fitness of live mutants is:

fitness = M × T (1)

– As for killed mutants, their fitness is lower than M×T . The more test cases
kill the mutant, the less valuable the mutant is and its fitness is penalized
proportionally. Furthermore, the fitness of a mutant decreases when the

6 Pedro Delgado-Pérez and Francisco Chicano

Fig. 1 Example of application of mutation operator (the mutation location is perturbed).

Fig. 2 Example of application of crossover operator between two mutants.

test cases killing that mutant kill many other mutants in turn. Being t the
number of test cases killing that mutant, and m the number of mutants
killed by those test cases (counting repeated mutants killed by different
test cases), then the final fitness of a killed mutant is:

fitness = (M × T) − t−m (2)

As such, since the selection method promotes the selection of mutants with
a high fitness, it is expected that the sum of the fitnesses in each generation
will increase over time.

2.4 Mutant characteristics and encoding scheme

Two are the main features that characterize a mutant: the mutation operator
that generates the mutation and the part of the code mutated. The GA uses
these two characteristics to uniquely identify each mutant or individual. As
such, an individual is encoded with two fields: an identifier to indicate the mu-
tation operator and a number to represent the mutation location in ascending
order of appearance in the code.

In fact, the GA works under the assumptions that:

– A mutation operator that generates apparently useful mutants is likely to
produce similar mutants.

– A mutation location that apparently is not well covered by the current test
suite is likely to be surrounded by other locations in a similar situation.
The notion of the proximity of locations varies depending on the domain;
for instance, two different mutations may be near when they were in the
same statement, function or class.

The GA then searches for subgroups of useful mutants based on those
assumptions thanks to the application of selection and reproductive operators.

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 7

2.5 Selection and reproductive operators

EMT counts with two classical variation operators to generate new individuals:

– Mutation operators1, where the value of one of the fields representing an
individual (i.e., Operator or Location) is slightly perturbed to produce new
nearby mutants.

– Crossover operators, where two individuals (parents) swap part of their
information to generate two new individuals (children).

Figure 1 and Figure 2 present an example of application of the mutation
and crossover operator, respectively.

2.6 Current configuration parameters

EMT requires to adjust a number of configuration parameters previous to its
execution. In its original version, EMT’s execution can be configured through
the following classical parameters in GAs: population size or Ps, as a percent-
age of the total number of mutants given a source code and a set of operators;
crossover and mutation probability or pc and pm, respectively, to adjust the
frequency in which these two variation operators are applied; and new indi-
viduals generated randomly or N, which indicates the percentage of mutants
randomly produced in each generation to preserve the diversity (except for the
first generation, where all mutants are randomly generated). The rest of the
mutants in a generation, that is 100% - N, are therefore produced by the ap-
plication of reproductive operators; this percentage is referenced in this paper
with the letter R.

Table 1 Current parameter settings for EMT.

Parameter Description Value

Ps Population size 5%
N Individuals generated randomly 10%
R(100%−N) Individuals generated 90%

by reproductive operators
pc Crossover probability 70%
pm Mutation probability 30%

Table 1 presents the best values for these parameters that Domı́nguez-
Jiménez et al. (2011) found in their experiments. As an example, if the mu-
tation tool generates 200 mutants in a program, the population size in each
generation is 10 (Ps = 5%); after the first generation, 9 out of those 10 mu-
tants are produced by reproductive operators (R = 90%) while only one is

1 Please note that the term mutation operator has a different meaning in the context of
mutation testing and in the context of GAs. To avoid confusion, the former will be referred
to as operator and the latter as mutation operator from now on.

8 Pedro Delgado-Pérez and Francisco Chicano

generated randomly (N = 10%). Finally, the probability of each of those 9
mutants to be generated by crossover or mutation is pc = 70% and pm = 30%,
respectively.

3 Design choices

Even though the original version of EMT performed reasonably well in the
past, other design choices can be considered with a view to enhancing its per-
formance. In this work, we assess several extensions (both general of GAs and
specific to EMT) to know if they are able to further improve the effectiveness
of this technique. The final goal of our work is to evaluate whether some of
these options lead to improved results, especially when they are applied in
combination instead of isolation. In the following, we explain the alternative
options that will be studied in this work:

1) Tournament selection The original authors of EMT opted for the roulette
wheel method as the selection operator of individuals. In the roulette wheel
method, the probability of an individual to be selected is proportional to its
fitness. As noted by Domı́nguez-Jiménez et al. (2011), this method is charac-
terized by its quick convergence, which fits well with the purpose of EMT (e.g.,
reduce the number of mutants as much as possible). However, such an assump-
tion has not been confirmed empirically. As such, we will evaluate the well-
known tournament selection method as an alternative to the roulette wheel
method (Eiben and Smith, 2015). Figure 3 shows an example of this selection
method, where a number of mutants are selected at random (in the example,
the size of the tournament is 2 and the mutants M1 and M3 are randomly
selected). Then, the winner of the tournament from the selected candidates is
the one with the highest fitness.

M1
fitness = 6

M2
fitness = 2

M3
fitness = 4

M4
fitness = 10

M5
fitness = 8

Tournament with size 2

M1
fitness = 6

Winner

M1
fitness = 6

M3
fitness = 4

Fig. 3 Example of the tournament selection method, where each box represents a mutant.

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 9

2) Equivalent mutant detection and penalization Mutation testing suf-
fers from two major problems (Papadakis et al., 2019). The first is the large
number of mutants that can be generated, which increases with the size of
the source code and the set of operators. The second problem relates to mu-
tations that do not actually change the program’s functionality; mutants con-
taining such mutations are known as equivalent mutants. Equivalent mutant
identification is an undecidable problem, and thus they require manual and
time-consuming revision. Fortunately, different techniques can help cope with
equivalent mutants (Madeyski et al., 2014). One of such techniques is Trivial
Compiler Equivalence (TCE) (Papadakis et al., 2019), a well-established tech-
nique to detect some equivalent mutants thanks to compiler optimizations.
Once the compiler has optimized the code of the original program and a mu-
tant, if the resulting binary files are exactly the same, then the mutant can be
determined as equivalent.

This option consists of two steps. In the first step, TCE is applied to the
mutants in a generation to reveal some equivalent mutants. In the second step,
that information is used to penalize the fitness of those mutants (their fitness
changes to 0). This modification, assigning the lowest fitness to those mutants,
avoids that the GA selects them for reproduction. Figure 4 illustrates the two
steps added to the GA when this design choice is enabled. As it can be seen,
mutants M2 and M4 turn out to be equivalent to the original program, and
their fitness is punished with 0.

M1
fitness = 6

M2
fitness = 10

M3
fitness = 4

M4
fitness = 10

M5
fitness = 10

Generation

TCE detection

M1
fitness = 6

M2
fitness = 0

M3
fitness = 4

M4
fitness = 0

M5
fitness = 10

Penalization

M2 M4

Selection and reproduction

Fig. 4 Example of equivalent mutant detection and penalization integrated into the GA.

3) Guided mutation operator According to Section 2.5, the current mu-
tation operator implemented in the GA perturbs the value of the Operator
field when that field is selected for mutation. Gutiérrez-Madroñal et al. (2019)
proposed the use of a new mutation operator that learns from the behavior of
each operator in past generations, based on the work by Qingfu Zhang et al.

10 Pedro Delgado-Pérez and Francisco Chicano

(2005). The goal of this new option, known as guided mutation operator, is
to favor the application of operators that are seemingly useful for test suite
improvement. More specifically, the guided mutation operator selects an op-
erator with a probability proportional to the percentage of all live mutants
generated by that operator in the previous generations of the execution.

As an example, consider a case where we have three operators, as illustrated
by Figure 5. The GA, in the generations preceding the current generation, has
produced a number of mutants from those operators, including the following
live mutants:

– Operator 1 : 2 live mutants.
– Operator 2 : 3 live mutants.
– Operator 3 : 1 live mutants.

In this example, operator 2 has produced the greatest number of live (and
apparently useful) mutants so far, and it is seemingly worth exploring in
greater depth than the other operators. Therefore, the guided mutation oper-
ator will select the 1st operator with probability 2/6, the 2nd with 3/6 and
the 3rd with 1/6.

M6M1 M2 M3 M4 M5

Operator 1 Operator 2 Operator 3

Guided mutation
operator 2/6 3/6 1/6

Live mutants generated by each operator in past generations

Fig. 5 Example of the probability of selection of operators with the guided mutation op-
erator.

4) Pure random individual generator As previously mentioned, the GA
generates N individuals in each generation in a random way (see step 2 in
Section 2.2). The current individual generator in EMT first selects a random
operator and then picks, also at random, one of the possible locations associ-
ated with that operator (Domı́nguez-Jiménez et al., 2011). However, as noted
by Gutiérrez-Madroñal et al. (2019), since not all the operators produce the
same number of mutants, this individual generator does not achieve a uniform
distribution over the whole set of mutants. As an alternative, they proposed
to shuffle the entire list of mutants and then select one of them randomly.
As a result of this individual generator, all mutants are selected with equal
probability.

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 11

The current non-uniform generator and the proposed uniform one will be
hereinafter referred to as partially random and pure random generator, re-
spectively. Figure 6 shows an example of the difference between both types
of generators. Focusing on the partially random generator, mutant M6 from
Operator 3 has a higher probability to be selected than the others because,
once this operator is selected (with probability 1/3), it is the only candidate
mutant; in contrast, mutant M3 has a lower probability because, once Oper-
ator 2 is selected (with probability 1/3), there are three candidates (M3, M4
and M5) and, in turn, each one is selected with probability 1/3 (i.e., 1/9 in
the end). Contrarily, the probability of each mutant to be selected is the same
with the pure random option.

M6M1 M2 M3 M4 M5

Operator 1 Operator 2 Operator 3

Partially random

Pure random

 1/6 1/6 1/9 1/9 1/9 1/3

 1/6 1/6 1/6 1/6 1/6 1/6

Fig. 6 Example of the difference between the partially random and pure random individual
generator.

4 Automated Algorithm Configuration

4.1 Methodology

The four aforementioned design choices significantly increase the number of
parameters to be configured. It also increases the number of combinations of
values for all the parameters. As a consequence, performing manual tuning of
parameters to reach an optimal combination becomes impractical. The context
is also important when applying EMT because of the variability of several
factors. With context, we refer, among others, to the following aspects:

– The number of mutants of each type (killed, equivalent,...).
– The distribution of mutants across the source code.
– The number of operators, how often they are applied and the percentage

of all mutants that each operator generates.

As a consequence of all this, in this paper, we emphasize the need to use
an automated approach to find good combinations of values for adjusting
the GA to each context. Specifically, we propose the application of iterated

12 Pedro Delgado-Pérez and Francisco Chicano

racing (López-Ibáñez et al., 2016), which has been used to configure similar
algorithms in the past (Lima and Vergilio, 2017). An iterated racing procedure
combines a search with a racing algorithm that allows discarding underper-
forming candidates in a set of instances given a cost measure. The process is
iterative because the procedure undertakes a number of races with different
sets of candidate configurations. Candidates, instances and the cost measure
are defined in the scope of EMT as follows:

– Candidates are each of the possible configurations for EMT, including
original and new design choices evaluated in this paper.

– Instances are a combination of (1) the source code of the programs, (2) the
set of mutations that can be injected in their code and (3) the associated
test suite. Section 5 will properly describe the form that all these elements
take in our evaluation.

– Cost or quality measure: we say that a configuration candidate will
perform better than another one when the application of EMT with that
configuration would induce a higher degree of test suite improvement after
selecting the same number of mutants with both configurations. The cost
measure used in our study is detailed in the following subsection.

Therefore, in the execution of the iterated racing, the algorithm randomly
selects an instance, and then executes EMT applying the candidate configu-
rations with a new seed. The output is a measure of the quality of each of
the assessed configurations with respect to that instance. After repeating the
same process a number of times with different instances, the sum of the costs
of each configuration helps the algorithm decide which configurations perform
better and which ones can be discarded.

4.2 Cost measure

In a previous paper (Delgado-Pérez et al., 2017), we noted the importance of
using a measure that reflects the degree of test suite refinement that would
be achieved by the subset of mutants returned by EMT. A simple measure
is counting the number of selected live mutants, but this option presents two
issues: first, a single test case could suffice to kill some of those mutants that
remained alive; second, equivalent mutants act as false positives.

Therefore, a more accurate measure for EMT should estimate the number
of new test cases that would be added thanks to those mutants. Such a metric
entails the following steps:

1. Reach a mutant-adequate test suite prior to the execution of EMT. This
previous step implies adding as many new test cases as required to kill all
non-equivalent mutants.

2. Execute EMT, to obtain the subset of mutants selected by the technique.
3. Calculate the level of test suite refinement achieved, that is, observe the

proportion of the test cases in the mutant-adequate test suite that the

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 13

selected subset of mutants would induce. That proportion is represented
by P .

As an example, let’s say that we inspect all live mutants in a program
previous to the execution of EMT, and we are able to reach a mutant-adequate
test suite with size 10 test cases (t1-t10). Then, we run EMT and, after two
generations, 6 mutants are selected (m1-m6). Now, we can analyze which test
cases in the mutant-adequate test suite kill each of those mutants with the
aid of an execution matrix (see Section 2.2), like the one shown below. By
processing this matrix with a minimization algorithm, we can observe that 5
out of those 10 test cases suffice to kill all the mutants selected by the GA so
far: t1 (m1), t3 (m2), t4 (m3 and m5), t8 (m4) and t10 (m6). Therefore, at that
point, the measure of EMT’s effectiveness is P = 50%. Note the importance
of calculating this measure as a percentage: the size of the mutant-adequate
test suite can be different for each program and, therefore, reaching a certain
value of P will require a different number of test cases in each program. The
value of P is the cost measure used in our experiments in the next section.



t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

m1 1 0 0 0 1 0 0 0 0 0
m2 0 0 1 0 0 0 0 0 0 0
m3 0 0 0 1 0 0 0 0 1 0
m4 0 0 0 0 0 0 0 1 0 0
m5 0 0 0 1 0 0 0 0 0 0
m6 0 0 0 0 0 0 0 0 0 1


1: t kills m; 0: t does not kill m.

We should remark that our cost measure implicitly considers the effect
of the equivalent mutants. If an equivalent mutant is selected by EMT, this
mutant will not be able to increase the quality measure because equivalent
mutants do not induce the design of the test cases in the mutant-adequate
test suite. Therefore, the more equivalent mutants appear in the set of selected
mutants, the less the test suite improvement that will be achieved.

5 Evaluation

5.1 Research questions

In the following items, we present the research questions that we want to
answer in this work:

– RQ1: Can we find a better configuration to improve EMT’s per-
formance?
This first question implies the application of iterated racing in combination
with EMT to find a convenient configuration for the GA in a given context.
To answer this question, we will compare the new values for the parameters
with those applied in previous experiments.

14 Pedro Delgado-Pérez and Francisco Chicano

– RQ2: Which of the four design choices evaluated in this study
are enabled in the best parameter settings found?
With this question, we seek to know whether the proposed additions to
EMT take part in the best parameter settings found, which will mean
that they actually improve EMT’s performance. It will also be interesting
to analyze how many times these options are applied over the iterated
racing execution (i.e., whether they are mostly contained in configurations
surviving the race), and whether the results agree in a cross-validation
process.

– RQ3: How much does the new combination of values for the pa-
rameters improve EMT’s performance?
Finally, if a better configuration is found in the experiments, we want to
know whether the improvement is generalized over the set of instances and
how much we have undervalued the actual effectiveness of EMT up to now.
We also want to know about the role of the termination condition in the
process of parameter tuning.

Table 2 Data about the instances used in the experiments.

Mutants Operators Alive TCE-Equivalent

TCL Pro 137 6 45 9
XmlRPC++ 151 18 76 4
Dolphin 219 14 103 19
MuParser 226 10 133 50
TinyXML2 614 14 159 30
MySQL 683 13 446 11
QtDOM 1,146 15 348 20

5.2 Context and set of instances

In this study, we apply EMT to a number of instances that belong to a spe-
cific context: real-world programs coded in C++ and the collection of mutants
derived from them with a set of operators at the class level (i.e., operators fo-
cused on the object-oriented features provided by the language). The mutants
are generated using the list of class operators included in the mutation tool
MuCPP (Delgado-Pérez et al., 2017). Also, the four proposed refinements
have been integrated into GAmera (Domı́nguez-Jiménez et al., 2009), which
implements the GA described in Section 2. GAmera is a language-independent
framework, so the new extensions of the algorithm can be applied to different
contexts (programming languages and sets of operators).

Our set of instances consists of 7 open-source programs: Matrix TCL Pro
(2019), XmlRPC++ (2019), Dolphin (2019), Tinyxml2 (2019), MySQL Server
(2019), QtDOM (2019) and MuParser (2019). In the experiments, 6 out of
the 7 instances are used for the parameter tuning and one is reserved for

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 15

validation. In the first part, MuParser is the instance reserved for testing; in
the cross-validation part, each of the programs acts as the validation instance.
Table 2 shows the number of mutants that can be derived from the source
code of each of these programs, operators applied, mutants that remain alive
after the execution of the initial test suite and equivalent mutants detected by
TCE (TCE-Equivalent mutants). Recall that TCE is used to penalize known
equivalent mutants in the second design choice described in Section 3.

As noted in Section 4.2, the cost measure requires of a mutant-adequate
test suite that kills non-equivalent mutants. As initial test suites, we used the
test suite that is distributed with each program under test, and we executed
them on each of the generated mutants. The execution results allowed us to
obtain a set of killed and live mutants. Then, we manually reviewed each of
the mutants that remained alive: non-equivalent mutants led us to incorpo-
rate new test scenarios in order to kill them; the rest of the mutants were
tagged as equivalent. We should note that some of the test cases designed for
one of the live mutants, in turn, killed some other live mutants. Also, note
that we checked that TCE-equivalent mutants were a subset of the manually-
determined equivalent mutants.

5.3 Candidate configurations

Table 3 collects the set of configuration parameters to be optimized. This
table includes both classical parameters, already shown in Table 1, and new
parameters associated with the four alternative design choices:

– A selection operator (Sop), either roulette wheel or tournament selection.
In the latter case, a tournament size (Ts) is also required.

– Whether the mechanism for equivalent mutant detection and penal-
ization (EQ) is enabled or disabled.

– A mutation operator (Mop), either the classical operator (where the
value of one of the fields is perturbed) or the guided mutation operator
(where the value of the Operator field is selected based on the proportion
of all the live mutants produced by that operator in previous generations).
In the latter case, a sampling rate (Gsr) is also required to indicate the
probability that the guided mutation operator is applied once the muta-
tion operator is selected —in the rest of the cases, the classical mutation
operator will be used as always.

– An individual generator (IG), either the current partially random gener-
ator (which depends on the number of mutants produced by each operator)
or the new pure random generator (which achieves a uniform distribution
over the set of all mutants).

The table provides the range of values for each parameter and, when ap-
plicable, the conditions under which a parameter is taken into account. The
table also shows the initial values for those parameters, which correspond with
the original configuration of EMT. In this way, the automated configuration
algorithm will take these parameter values as the starting point of the search.

16 Pedro Delgado-Pérez and Francisco Chicano

Table 3 Set of parameters and their values for tuning EMT (the line separates classical
and alternative design choices). The parameters marked with ‘*’ are not optimized directly,
but they are assigned a value depending on other parameters (column conditions).

P. Description Values Conditions Initial

Ps Population size (3%, 7%) - 5%
N Individuals generated (10%, 25%) - 10%

randomly
R* Individuals generated (70%, 90%) 100% - N 90%

by reproductive operators
pc Crossover probability (65%, 75%) - 70%
pm* Mutation probability (25%, 35%) 100% - pc 30%

Sop Selection operator {Tournament, - Roulette
Roulette}

Ts Tournament size (2, 4) Sop==“Tournament” -
EQ Equivalent detection {enabled, - disabled

and penalization disabled}
Mop Mutation operator {Classical, - Classical

Guided}
Gsr Sampling rate (guided) (70%, 90%) Mop==“Guided” -
IG Inidividual generator {Partial, Pure} - Partial

5.4 Iterated racing

The iterated racing is performed thanks to the application of the tool irace (López-
Ibáñez et al., 2016). We configure irace to execute with a budget of 3,000
experiments and to perform a race (and therefore discard underperforming
configurations) each time all candidate configurations are executed once in
each of the 6 instances. As previously explained, the cost measure is the per-
centage of the mutant-adequate test suite achieved with the mutants selected
in the execution.

Regarding the stopping condition of EMT’s execution, we should note that
we observed significant differences among the percentage of mutants required
in each instance to reach a percentage of the mutant-adequate test suite.
Therefore, we set a different stopping point for each instance; in this way,
the cost measure remains in a controlled range of values that allows irace to
discern between the performance of different configurations. Namely, the GA
stops when reaching the percentage of mutants originally generated by EMT
to achieve P = 75% in each particular instance (average of 30 executions).

6 Results and Discussion

In the following subsections, we show the results of the experiments and answer
the three research questions. Finally, we discuss the threats to the validity of
the results.

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 17

6.1 Iterated racing execution

Table 4 presents the best configuration found applying iterated racing with
irace. It shows the best value for each of the parameters (see Table 3) when they
are assessed together in the same execution of the automated configuration
algorithm. As for Table 5, it shows the four next elite configurations obtained
at the end of the run. As it can be seen, three of these elite configurations are
quite similar to the best configuration, which reinforces the adequacy of the
best values found. The other one, in contrast, is significantly different from
the rest of the configurations. This fact shows that different combinations of
values can work well together (that is, the parameters influence each other),
and emphasizes the need for finding the combination that is best suited to
each particular context.

Table 4 Best parameter settings found using the automated approach.

Ps N pc Sop Ts EQ Mop Gsr IG

Best 4% 20% 75% Roulette - enabled Guided 83% Partial

Table 5 Next elite configurations found using the automated approach, ordered from best
to worst.

Ps N pc Sop Ts EQ Mop Gsr IG

Elites 4% 17% 73% Roulette - enabled Guided 80% Partial
4% 14% 73% Roulette - enabled Guided 83% Partial
5% 12% 66% Roulette - disable Classical - Partial
4% 10% 73% Roulette - enabled Guided 78% Partial

Figure 7 allows us to observe the distribution of sampled values for these
parameters in the execution of the race. The preferred values for the classical
parameters in EMT are as follows:

– Population size. From the graph, it appears that 4% (instead of 5%) is
the size favored by the algorithm, while the values 3% and 7% have been
scarcely explored.

– Individuals generated randomly. It seems that values around 20%
are a good option for this parameter (note that the algorithm sampled
values for this parameter starting from 10%, which may have increased the
number of candidate configurations with values around 10%). Interestingly,
the value of this parameter decreases as the elite configurations worsen
their performance (from 20% in the best configuration to 10% in the last
elite configuration). This fact supports the trend observed in the graph to
explore higher values for this parameter. However, the varying values for
this parameter in the set of elite configurations suggest that it might not
be as decisive in the performance of EMT as other parameters.

18 Pedro Delgado-Pérez and Francisco Chicano

– Crossover probability. The frequency of this probability is quite spread
across the range, with 65% as the most sampled percentage. Still, we can
observe an increasing exploration tendency of values over 70%, which sug-
gests that increasing the original probability (70%) provides better results.

Fig. 7 Classical parameters sampling frequency: population size, individuals generated ran-
domly and crossover probability.

Answering RQ1, the automated algorithm was able to find a differ-
ent parameter configuration from the one used so far in experiments with
C++ object-oriented mutants. This configuration modifies the value of the
three classical parameters (population size, individuals generated randomly
and crossover probability). The fact of having found a better configuration
for EMT in this study does not necessarily mean that the parameter settings
extrapolate to other contexts, but it underpins the need to perform parameter
tuning in different contexts.

6.2 Evaluation of new design choices

Regarding the four alternative design choices, the following can be observed:

– Selection operator. The automated configuration algorithm confirms the
usefulness of the roulette wheel as the selection operator in the case of
EMT. Only one configuration enabling the tournament selection with size
3 appeared among the elite configurations of the three first iterations. The
superiority of sampled configurations using the roulette wheel method can
be seen in the frequency graph in Figure 8.

– Equivalent mutant detection and penalization. The option of detect-
ing and punishing equivalent mutants is enabled in the best configuration
as well as in three of the other elite configurations. The frequency graph in
Figure 9 shows that the algorithm has evenly explored both options, but it
is more inclined towards enabling this option in the end. As a conclusion,
this option facilitates that the GA focuses on finding useful mutants for

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 19

Fig. 8 Frequency graph of selection operators.

Fig. 9 Frequency graph of equivalent mutant detection and penalization option.

the improvement of the test suite, delaying the selection of some equivalent
mutants.

– Mutation operator. The guided mutation operator appears as the pre-
ferred option over the classical mutation operator, as it can be graphically
seen in Figure 10. The values for the sampling rate (Gsr) mainly concen-
trate around 80%. The most used sampling rate is 83%, which means that
the classical mutation operator is still applied 17% of times. This rate is a
bit lower than 90%, the percentage used in the experiments by Gutiérrez-
Madroñal et al. (2019). In summary, we can conclude that learning from
previous generations benefits the search.

– Individual generator. It is clear from the results that the pure random
individual generator is not an advisable option in our context. This is sup-
ported by the graph in Figure 11. In fact, all elite configurations found
in each iteration presented the partially random option. We believe that
this outcome is connected with previous results using the same set of class
operators (Delgado-Pérez et al., 2019); that study suggests that removing
some of these operators may not be recommendable because each class
operator targets a different object-oriented feature of the language (inheri-
tance, polymorphism, method overloading, constructors, etc). We find that
the partially random generator promotes the generation of mutants from
different operators (regardless of the mutants that each operator produces)
while the pure random one is more likely to select mutants from the most

20 Pedro Delgado-Pérez and Francisco Chicano

Fig. 10 Frequency graph of mutation operators (left) and sampling rates related to the
guided mutation operator (right).

prolific operators. As a consequence, the pure random option may delay
the selection of mutants from all operators and, therefore, that all the
object-oriented features are properly covered.

Fig. 11 Frequency graph of individual generators.

To analyze the consistency of these values, we carried out a process of leave-
one-out cross-validation, that is, we executed the iterated racing algorithm
seven times, leaving one of the instances out each time. The result of this
process is a set of seven different configurations (those that were found as
the best in each of the executions). Figure 12 shows the most selected value
in these configurations for each parameter (the numerical parameters with
more than five values have been divided in ranges). Additionally, this graph
allows us to better understand which are the parameters with the greatest
influence on EMT. The experiment reinforces pc = 72− 75%, Sop = Roulette,
EQ = enabled, Mop = Guided and IG = Partial as quite beneficial options,
while the rest are apparently less decisive.

Answering RQ2, 2 out of 4 of the assessed design choices appear as con-
venient options for EMT in the targeted context. Namely, equivalent mutant
detection and penalization and the application of the guided mutation oper-
ator. From the first, we can infer that equivalent mutants are often close to

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 21

Fig. 12 Most selected value in each parameter after leave-one-out cross-validation. The
most selected value or range is shown over each bar and the vertical axis represents the
number of times that it appears in the seven configurations.

others (either in the code or with respect to the operators that produce them);
the second one indicates that learning from previous generations is beneficial.
Neither tournament selection nor pure random individual generation seems
to be advisable options. Contrarily, the roulette wheel shows a quicker con-
vergence, and the partially random generator fosters a greater diversity of
mutants from different operators from the beginning of the search.

6.3 Assessment of EMT’s performance

After analyzing the parameters in the best configuration found in detail, it is
interesting to know its impact on EMT’s performance. To this end, Table 6
presents the comparison of results between EMT with the default configuration
and EMT with the best configuration automatically found. The table shows
the results of 30 executions of EMT with both configurations in each instance,
including the one reserved for validation. Note that we initially set 30 different
seeds and we used them to execute EMT with both the state-of-the-art and
the new configuration. Namely, we computed the mean and the standard devi-
ation (SD) of the percentage of mutants that EMT selects before reaching the
stopping condition (P = 75%, the same condition set in the execution of the
automated racing). Note that the lower the percentage of mutants, the more
effective EMT is because it achieves the same level of test suite improvement
with fewer mutants.

As it can be seen in the column Difference, the execution of EMT with the
new configuration outperforms the original configuration in all the instances,
both in the average and standard deviation. This means that the improved
configuration allows reducing the percentage of mutants required as well as
further stabilizes the GA. The greatest improvements are achieved in TCL
Pro and XmlRPC++ in both measures. Notably, the new configuration could
also enhance the results in the programs TinyXML2 and QtDOM, where the
margin of improvement is lower (EMT already performed pretty well in them).

22 Pedro Delgado-Pérez and Francisco Chicano

Table 6 Comparison of EMT with the Initial and Best configurations: mean and standard
deviation (SD) of the percentage of mutants generated in 30 executions in each instance
(including MuParser, the validation instance).

Instance Measure Initial Best Difference

TCL Pro
Mean 37.24 34.67 -2.57%

SD 10.77 7.69 -3.08%

XmlRPC++
Mean 45.25 41.43 -3.82%

SD 9.59 8.34 -1.25%

Dolphin
Mean 49.75 48.11 -1.64%

SD 8.51 7.69 -0.82%

TinyXML2
Mean 19.26 18.42 -0.84%

SD 4.38 3.94 -0.44%

MySQL
Mean 35.60 33.92 -1.68%

SD 7.07 6.85 -0.22%

QtDOM
Mean 13.33 12.64 -0.69%

SD 3.35 2.49 -0.86%

MuParser
Mean 42.71 41.19 -1.52%

SD 8.58 7.74 -0.84%

Regarding the validation instance, we can observe a similar degree of enhance-
ment to the one in the rest of the instances.

We additionally performed a statistical test to validate the significance of
these differences. The null hypothesis in our test states that there is not a
statistical difference between the percentage of mutants generated by EMT
before and after the parameter tuning, while the alternative hypothesis states
that the percentage of mutants with the new configuration is statistically lower.
Namely, we run the Wilcoxon signed-rank test between the averages of the
percentage of mutants generated in each case study using the original and the
new configuration (values shown in Table 6). The result (p-value = 0.0078)
leads us to accept the alternative hypothesis with 0.01 significance level.

Regarding the leave-one-out cross-validation, we analyzed the effect on
EMT’s performance of applying the different configurations obtained on aver-
age. The differences between the state-of-the-art and the obtained configura-
tions remained reasonably stable in most of the programs, with the greatest
average difference appearing in XmlRPC++ (mean: -2.8; SD: -1.4). We ob-
served greater variations among the results for TCL Pro, probably due to the
few mutants in this program (mean: -1.1; SD: -1.5). On the contrary, the av-
erage result with the new configurations in QtDOM improved over the one
shown in Table 6, both in mean (-1.0) and SD (-1.0). The rest of the results
are: Dolphin (mean: -0.7; SD: -0.5); TinyXML2 (mean: -0.6; SD: -0.1); MySQL
(mean: -1.4; SD: -1.4) and MuParser (mean: -1.2; SD: -0.3).

We also wanted to know about the importance of the stopping condition in
the process of parameter tuning, that is, what is the impact of a change in the
termination point on EMT’s performance when using the new configuration.

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 23

To achieve this, we repeated the experiments so that EMT stopped before
(P = 65%) and after (P = 85%) the point for which the algorithm had
been optimized (e.g., P = 75%). Table 7 summarizes the results (Mean and
SD) of the number of mutants generated when reaching both points with
the original and the new configuration. As it can be observed, the difference
between both configurations decreases in most of the programs (contrarily,
it increases in MySQL and QtDOM with P = 85%), and even the initial
configuration performs better than the new one in some of them. This reveals
the importance of optimizing the algorithm depending on the resources that
will be dedicated to the testing process. Another interesting alternative would
be to optimize the algorithm in the range between two stopping points. This
would be achieved by considering an instance as a pair <program, termination
point>; by analyzing each program with different termination points, irace
could search for a more general configuration.

Table 7 Comparison of EMT with the Initial and Best configurations in the stopping
points P = 65% and P = 85%. Results with a negative value correspond to a difference in
favor of the new configuration in the mean or the standard deviation (SD) of the percentage
of mutants generated in 30 executions in each instance; otherwise, the difference is positive
for the initial configuration.

Program
P=65% P=85%

Mean SD Mean SD

TCL Pro –0.75 –0.17 +0.15 –1.28
XmlRPC++ +0.53 +0.88 –3.00 –0.57
Dolphin +1.36 +1.22 –1.02 +0.50
TinyXML2 –0.32 –0.65 +1.70 +0.81
MySQL –1.03 –0.33 –4.51 –1.53
QtDOM –0.10 –0.41 –1.09 –1.56
MuParser –0.58 +0.12 +0.85 +0.13

Fig. 13 Comparison between the percentage of mutants generated by EMT with the new
automated configuration and random selection using a selective set of operators (SM+RS)
with P=75%. Mean (left) and standard deviation (right) of 30 executions.

24 Pedro Delgado-Pérez and Francisco Chicano

Finally, Figure 13 presents the results of a comparison between EMT and
an improved version of selective mutation (i.e., selection of a subset of op-
erators) combined with the random selection of mutants. In this improved
version, first, a subset of operators is selected at random until reaching the
stopping condition; second, in order to discard as many useless mutants as
possible, mutants are selected at random from that subset of operators until
reaching the stopping condition again. This version showed more competitive
results than conventional selective mutation and random selection in previous
experiments assessing EMT’s effectiveness (Delgado-Pérez and Medina-Bulo,
2018). The figure shows the average and standard deviation of the percentage
of all the mutants that are required by each technique in the programs under
test. As it can be observed, the average results for both techniques are similar
in the two programs with fewer mutants, but there is a considerable difference
between them in favor of EMT in the rest of the cases, especially regarding
the standard deviation.

Answering RQ3, the new configuration achieves improvements in all the
instances, both in mean and standard deviation (3.8% and 3.1% in the best
case, respectively), and these differences in favor of the new configuration also
appear in the cross-validation process. This means that we can save a percent-
age of mutants with the new configuration and that the results of different
executions are now less varied because they are spread out over a narrower
range. In previous experiments, EMT outperformed both random selection
and an improved version of selective mutation in most of these instances.
The differences between EMT and these techniques now become more notable
with the new configuration. Finally, the experiments suggest that the stop-
ping point is an aspect that should not be set lightly when performing the
parameter tuning.

6.4 Threats to Validity

The main threat to the validity of this study stems from the representativeness
of the set of instances. We selected 7 widely used programs and libraries to
train and test the system, which are of a different nature judging from the
number of mutants, operators applied and the percentage of mutants that
survive the execution of their respective test suites. The result in the program
used for testing purposes makes us feel confident that the number of instances
is appropriate and that the best configuration found does not suffer from the
problem of overfitting to our set of instances.

Despite our best efforts, we cannot guarantee that this is the best possi-
ble configuration for the addressed context (simply because the mutants in
each program are distributed differently). Therefore, this condition could only
be determined with greater certainty at a larger scale with a larger set of
programs. Also, note that computing an average of the values of each param-
eter in the different configurations is not convenient; as we have observed, the
power of this approach is to find combinations of values for the parameters

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 25

that work well together. In any case, our main goal in this study was not to
find the best possible configuration, but to give evidence on the benefits of
performing parameter tuning in each context.

The study suggests that both equivalent mutant detection/penalization
and the guided mutation operator improve the results of EMT in the con-
text of C++ object-oriented systems. However, we cannot know whether they
are actually recommendable options in general until the methodology of auto-
mated configuration presented in this paper is applied to other contexts. Re-
garding the first option, we should remark that mutants automatically flagged
as equivalent by TCE can be safely considered as equivalent; as a result, those
TCE-equivalent mutants selected during the execution of EMT with this op-
tion are guaranteed to be properly penalized. Nonetheless, the effectiveness of
the choice to penalize equivalent mutants depends on the effectiveness of TCE
in each instance.

7 Related Work

Search-based techniques have been extensively explored in the context of soft-
ware testing (Khari and Kumar, 2019), with a special emphasis on their appli-
cation for test case generation (McMinn, 2004; Rodrigues et al., 2018). Search-
based approaches have also been developed in relation to mutation testing,
these being collected by Silva et al. (2016) recently. Among other, metaheuris-
tic search techniques have been used for the selection of operators (Banzi et al.,
2012), the generation of mutation-based test cases (Papadakis and Malevris,
2011), the identification of subsuming higher order mutants (Jia and Har-
man, 2008) or the co-evolution of mutants and test cases (de Oliveira et al.,
2013), being GAs the most used metaheuristic. In this study, we focus on
the search-based problem of the selection of mutants with the potential to
enhance a test suite at a reduced cost, and we also use a GA to this end.
In the first studies, EMT was evaluated in the context of web service com-
positions (Domı́nguez-Jiménez et al., 2011). The assessment of this technique
was later extended to other contexts, i.e., object-oriented programs (Delgado-
Pérez et al., 2017; Delgado-Pérez and Medina-Bulo, 2018) and event process-
ing queries (Gutiérrez-Madroñal et al., 2019), providing evidence that this
approach could improve over other known selection techniques, such as mu-
tant sampling (Budd, 1980) and selective mutation (Barbosa et al., 2001). In a
related paper, Schwarz et al. (2011) also applied a GA to identify undetected
mutants for the test suite improvement, where they considered the impact that
mutations had on the code coverage and how these mutations were distributed
over the code, thus increasing the number of useful mutants selected in their
experiments.

Researchers making use of metaheuristic search algorithms have observed
the need to perform an empirical analysis of the involved parameters, given
the impact that the configuration can have on their outcome. Finding the
best parameter values can be done by means of different methods, including

26 Pedro Delgado-Pérez and Francisco Chicano

experimental design (Coy et al., 2001) and iterated local search (Hutter et al.,
2009). Racing approaches, and especially the one implemented by the irace
package (López-Ibáñez et al., 2016), constitute a well-established option that
has been applied for similar purposes. As an example, Lima and Vergilio
(2017) recently applied irace to avoid the manual configuration of a multi-
objective algorithm; they used this algorithm to compare different strategies
for the selection of second order mutants on the basis of different objectives,
such as the number of generated mutants or their ability to reproduce more
complex faults. They followed a hyper-heuristic approach, which is another
alternative to address the uncertainty regarding different algorithm choices in
search-based software testing (Balera and de Santiago Júnior, 2019).

However, the selection of mutants for the improvement of the test suite
with EMT remained pending. Domı́nguez-Jiménez et al. (2011) initially per-
formed an ad-hoc and manual process in order to obtain a value for the clas-
sical parameters shown in Section 2.6; in their experiments, they considered
a manageable set of 3 or 4 values to configure each parameter in three WS-
BPEL compositions. Their conclusions on the optimal values were based on
the total times required to reach the whole set of live mutants. In our exper-
iments, and thanks to the automated configuration approach, we analyze the
best values for an extended set of parameters using a larger set of case studies.
Additionally, we use a more accurate quality measure of the performance of
EMT, which simulates the actual improvement that would be achieved with
the selected mutants. Regarding the alternative design choices assessed in this
paper, Gutiérrez-Madroñal et al. (2019) applied the guided mutation operator
and the pure random individual generator in their experiments. They set the
sampling rate for the guided operator to 90%, but no configuration process
for this parameter was apparently carried out. In their experiments apply-
ing these refinements to EPL queries, they found that the changes improved
the original version of EMT in most cases. The benefits associated with the
guided approach hold in our study, but the pure random generator appears as
detrimental to EMT’s effectiveness.

The context has been remarked as a key factor within this study. In par-
ticular, the collection of operators is the aspect that has a greater impact on
EMT’s performance. Mutation testing has been successfully applied to many
programming languages and different domains (Papadakis et al., 2019). How-
ever, experimental studies have revealed that each set of operators is character-
ized by some specific features. Remarkably, traditional operators are known to
produce a large number of mutants, while class operators produce far fewer mu-
tants but a higher percentage of equivalent ones (between 28% and 45% in the
studies by Delgado-Pérez et al. (2017) and Segura et al. (2011), respectively).
This means that class-level operators focus on features that are less common
than those changed by traditional operators (e.g., relational operators). In our
study, the number of class-level operators generating at least one mutant in
the case studies ranged from 6 to 18, and the number of mutants from 137 to
1,146. Regarding WS-BPEL, Estero-Botaro et al. (2010) defined 26 operators
for this programming language and analyzed them considering the number

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 27

of stillborn and equivalent mutants. Boubeta-Puig et al. (2011) carried out a
comparison between these WS-BPEL operators and those for other languages.
Based on that study, Papadakis et al. (2019) pointed out that many of those
operators are different from traditional ones due to the particular constructs in
BPEL compositions. The particularities of each context also affect the design
options studied in this paper. With regard to equivalent mutant detection and
penalization, TCE has shown a varied performance depending on whether it
is applied to traditional C mutants (around 30% of all equivalent mutants are
detected on average in the study by Papadakis et al. (2015)), class-level C++
mutants (13% in the study by Delgado-Pérez and Segura (2019)) or memory
mutants (around 5% in the study by Wu et al. (2017)). As discussed in this
paper, the results of the pure random individual generator may also be directly
related to the set of operators, given that each operator focuses on particular
features of the object-oriented paradigm (Delgado-Pérez et al., 2019).

8 Conclusions and Future Work

This paper presents an approach for the automated configuration of Evolu-
tionary Mutation Testing, overcoming the impediments to its manual config-
uration. The best configuration found with the application of iterated racing
was able to improve over the default configuration in all the studied programs.
These results support the need to perform parameter tuning in different con-
texts and when new design choices come into play. The paper also provides an
in-depth evaluation of a range of advanced design options that can help better
tailor EMT to the particular features of each domain.

The fact that two of the alternative options assessed in the experiments
were enabled in the best configuration found lead us to believe that there
is still room for improvement in this search-based approach. For instance,
the preference shown for the guided mutation operator suggests that learning
from the past is a good idea. As such, the integration of data extracted by
machine-learning techniques might bring further benefits. In this paper, we
have evaluated the benefits of applying parameter tuning in terms of the size
of the test suites. In the future, it would be interesting to assess the overlap
between the test cases that would be achieved with each configuration and
whether there is a substantial difference in the quality of these test suites (that
would require to define a quantitative measure of test suite quality). Another
line to explore in the future is the application of this approach to other contexts
in order to observe if there are any changes in the best parameter settings.
This could help us gain insight into the connection between the particular
features of each context and the values acquired by the parameters in the best
configuration found in them.

28 Pedro Delgado-Pérez and Francisco Chicano

References

Balera JM, de Santiago Júnior VA (2019) A systematic mapping address-
ing hyper-heuristics within search-based software testing. Information and
Software Technology 114:176 – 189, URL https://doi.org/10.1016/j.

infsof.2019.06.012

Banzi AS, Nobre T, Pinheiro GB, Árias JCG, Pozo A, Vergilio SR (2012)
Selecting mutation operators with a multiobjective approach. Expert Sys-
tems with Applications 39(15):12131–12142, URL http://dx.doi.org/10.

1016/j.eswa.2012.04.041

Barbosa EF, Maldonado JC, Vincenzi AMR (2001) Toward the determina-
tion of sufficient mutant operators for C. Software Testing, Verification and
Reliability 11(2):113–136, URL http://dx.doi.org/10.1002/stvr.226

Boubeta-Puig J, Garćıa-Domı́nguez A, Medina-Bulo I (2011) Analogies and
differences between mutation operators for WS-BPEL 2.0 and other lan-
guages. In: Proceedings of the 2011 IEEE Fourth International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW),
IEEE, Berlin, Germany, p 398–407, URL http://dx.doi.org/10.1109/

ICSTW.2011.52, print ISBN: 978-1-4577-0019-4
Budd TA (1980) Mutation analysis of program test data. PhD thesis, Yale

University
Coy S, Golden B, Runger G, Wasil E (2001) Using experimental design to find

effective parameter settings for heuristics. Journal of Heuristics 7(1):77–97,
URL https://doi.org/10.1023/A:1026569813391

Delgado-Pérez P, Medina-Bulo I (2018) Search-based mutant selection for
efficient test suite improvement: Evaluation and results. Information and
Software Technology 104:130–143, URL https://doi.org/10.1016/j.

infsof.2018.07.011

Delgado-Pérez P, Segura S (2019) Study of trivial compiler equivalence
on C++ object-oriented mutation operators. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, ACM, New York,
NY, USA, SAC ’19, pp 2224–2230, URL http://dx.doi.org/10.1145/

3297280.3297499

Delgado-Pérez P, Medina-Bulo I, Núñez M (2017) Using evolutionary mutation
testing to improve the quality of test suites. In: 2017 IEEE Congress on
Evolutionary Computation (CEC), pp 596–603, URL https://doi.org/

10.1109/CEC.2017.7969365

Delgado-Pérez P, Medina-Bulo I, Palomo-Lozano F, Garćıa-Domı́nguez A,
Domı́nguez-Jiménez JJ (2017) Assessment of class mutation operators for
C++ with the MuCPP mutation system. Information and Software Technol-
ogy 81:169–184, URL http://dx.doi.org/10.1016/j.infsof.2016.07.

002

Delgado-Pérez P, Rose LM, Medina-Bulo I (2019) Coverage-based quality met-
ric of mutation operators for test suite improvement. Software Quality Jour-
nal 27(2):823–859, URL https://doi.org/10.1007/s11219-018-9425-7

https://doi.org/10.1016/j.infsof.2019.06.012
https://doi.org/10.1016/j.infsof.2019.06.012
http://dx.doi.org/10.1016/j.eswa.2012.04.041
http://dx.doi.org/10.1016/j.eswa.2012.04.041
http://dx.doi.org/10.1002/stvr.226
http://dx.doi.org/10.1109/ICSTW.2011.52
http://dx.doi.org/10.1109/ICSTW.2011.52
https://doi.org/10.1023/A:1026569813391
https://doi.org/10.1016/j.infsof.2018.07.011
https://doi.org/10.1016/j.infsof.2018.07.011
http://dx.doi.org/10.1145/3297280.3297499
http://dx.doi.org/10.1145/3297280.3297499
https://doi.org/10.1109/CEC.2017.7969365
https://doi.org/10.1109/CEC.2017.7969365
http://dx.doi.org/10.1016/j.infsof.2016.07.002
http://dx.doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1007/s11219-018-9425-7

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 29

Dolphin (2019) Dolphin. https://www.kde.org/applications/system/

dolphin

Domı́nguez-Jiménez J, Estero-Botaro A, Garćıa-Domı́nguez A, Medina-Bulo
I (2009) GAmera: an automatic mutant generation system for WS-BPEL
compositions. In: Eshuis R, Grefen P, Papadopoulos GA (eds) Proceedings
of the 7th IEEE European Conference on Web Services, IEEE Computer
Society Press, Eindhoven, The Netherlands, pp 97–106

Domı́nguez-Jiménez J, Estero-Botaro A, Garćıa-Domı́nguez A, Medina-Bulo
I (2011) Evolutionary mutation testing. Information and Software Tech-
nology 53(10):1108–1123, URL http://dx.doi.org/10.1016/j.infsof.

2011.03.008

Eiben AE, Smith JE (2015) Introduction to Evolutionary Computing, 2nd
edn. Springer Publishing Company, Incorporated

Estero-Botaro A, Palomo-Lozano F, Medina-Bulo I (2010) Quantitative evalu-
ation of mutation operators for WS-BPEL compositions. In: Third Interna-
tional Conference on Software Testing, Verification, and Validation Work-
shops (ICSTW), 2010, pp 142–150, URL http://dx.doi.org/10.1109/

ICSTW.2010.36

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine
Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA

Gutiérrez-Madroñal L, Garćıa-Domı́nguez A, Medina-Bulo I (2019) Evolu-
tionary mutation testing for IoT with recorded and generated events. Soft-
ware: Practice and Experience 49(4):640–672, URL https://dx.doi.org/

10.1002/spe.2629

Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: An auto-
matic algorithm configuration framework. Journal of Artificial Intelligence
Research 36(1):267–306

Jia Y, Harman M (2008) Constructing subtle faults using higher order muta-
tion testing. In: Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation, 2008, pp 249–258, URL http://dx.doi.

org/10.1109/SCAM.2008.36

Khari M, Kumar P (2019) An extensive evaluation of search-based software
testing: a review. Soft Computing 23:1933–1946, URL https://doi.org/

10.1007/s00500-017-2906-y

Lima JAP, Vergilio SR (2017) A multi-objective optimization approach for
selection of second order mutant generation strategies. In: Proceedings of the
2Nd Brazilian Symposium on Systematic and Automated Software Testing,
ACM, New York, NY, USA, SAST, pp 6:1–6:10, URL http://doi.org/10.

1145/3128473.3128479

López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016)
The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives 3:43–58, URL https://doi.org/10.

1016/j.orp.2016.09.002

Madeyski L, Orzeszyna W, Torkar R, Jozala M (2014) Overcoming the equiv-
alent mutant problem: A systematic literature review and a comparative

https://www.kde.org/applications/system/dolphin
https://www.kde.org/applications/system/dolphin
http://dx.doi.org/10.1016/j.infsof.2011.03.008
http://dx.doi.org/10.1016/j.infsof.2011.03.008
http://dx.doi.org/10.1109/ICSTW.2010.36
http://dx.doi.org/10.1109/ICSTW.2010.36
https://dx.doi.org/10.1002/spe.2629
https://dx.doi.org/10.1002/spe.2629
http://dx.doi.org/10.1109/SCAM.2008.36
http://dx.doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1007/s00500-017-2906-y
https://doi.org/10.1007/s00500-017-2906-y
http://doi.org/10.1145/3128473.3128479
http://doi.org/10.1145/3128473.3128479
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002

30 Pedro Delgado-Pérez and Francisco Chicano

experiment of second order mutation. IEEE Transactions on Software En-
gineering 40(1):23–42, URL http://dx.doi.org/10.1109/TSE.2013.44

Matrix TCL Pro (2019) TCL Pro. http://www.techsoftpl.com/matrix/

download.php

McMinn P (2004) Search-based software test data generation: A survey.
Software Testing, Verification and Reliability 14(2):105–156, URL https:

//doi.org/10.1002/stvr.v14:2

MuParser (2019) MuParser. https://beltoforion.de/article.php?a=

muparser

MySQL Server (2019) MySQL Server. https://github.com/mysql/

mysql-server

de Oliveira AAL, Camilo-Junior CG, Vincenzi AMR (2013) A coevolutionary
algorithm to automatic test case selection and mutant in mutation testing.
In: IEEE Congress on Evolutionary Computation, 2013, pp 829–836, URL
http://dx.doi.org/10.1109/CEC.2013.6557654

Papadakis M, Malevris N (2011) Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based testing.
Software Quality Journal 19(4):691–723, URL https://doi.org/10.1007/

s11219-011-9142-y

Papadakis M, Jia Y, Harman M, Le Traon Y (2015) Trivial compiler equiv-
alence: A large scale empirical study of a simple, fast and effective equiva-
lent mutant detection technique. In: Proceedings of the 37th International
Conference on Software Engineering - Volume 1, IEEE Press, Piscataway,
NJ, USA, ICSE’15, pp 936–946, URL http://dx.doi.org/10.1109/ICSE.

2015.103

Papadakis M, Kintis M, Zhang J, Jia Y, Traon YL, Harman M (2019) Chapter
six - mutation testing advances: An analysis and survey. Advances in Com-
puters, vol 112, Elsevier, pp 275–378, URL https://doi.org/10.1016/bs.

adcom.2018.03.015

Qingfu Zhang, Jianyong Sun, Tsang E (2005) An evolutionary algorithm with
guided mutation for the maximum clique problem. IEEE Transactions on
Evolutionary Computation 9(2):192–200, URL https://dx.doi.org/10.

1109/TEVC.2004.840835

QtDOM (2019) QtDOM. https://github.com/qtproject/qtbase/tree/

dev/src/xml/dom

Rodrigues DS, Delamaro ME, Corrêa CG, Nunes FLS (2018) Using genetic al-
gorithms in test data generation: A critical systematic mapping. ACM Com-
puting Surveys 51(2):41:1–41:23, URL http://doi.org/10.1145/3182659

Schwarz B, Schuler D, Zeller A (2011) Breeding high-impact mutations. In:
Proceedings of the 4th IEEE International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW 2011, pp 382–387, URL
http://dx.doi.org/10.1109/ICSTW.2011.56

Segura S, Hierons RM, Benavides D, Ruiz-Cortés A (2011) Mutation testing on
an object-oriented framework: An experience report. Information and Soft-
ware Technology 53(10):1124–1136, URL http://dx.doi.org/10.1016/j.

infsof.2011.03.006, special Section on Mutation Testing

http://dx.doi.org/10.1109/TSE.2013.44
http://www.techsoftpl.com/matrix/download.php
http://www.techsoftpl.com/matrix/download.php
https://doi.org/10.1002/stvr.v14:2
https://doi.org/10.1002/stvr.v14:2
https://beltoforion.de/article.php?a=muparser
https://beltoforion.de/article.php?a=muparser
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
http://dx.doi.org/10.1109/CEC.2013.6557654
https://doi.org/10.1007/s11219-011-9142-y
https://doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://dx.doi.org/10.1109/TEVC.2004.840835
https://dx.doi.org/10.1109/TEVC.2004.840835
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom
http://doi.org/10.1145/3182659
http://dx.doi.org/10.1109/ICSTW.2011.56
http://dx.doi.org/10.1016/j.infsof.2011.03.006
http://dx.doi.org/10.1016/j.infsof.2011.03.006

Evaluation of Alternative Design Choices for Evolutionary Mutation Testing 31

Silva RA, do Rocio Senger de Souza S, de Souza PSL (2016) A systematic
review on search based mutation testing. Information and Software Tech-
nology URL http://dx.doi.org/10.1016/j.infsof.2016.01.017

Tinyxml2 (2019) Tinyxml2. https://github.com/leethomason/tinyxml2
Wu F, Nanavati J, Harman M, Jia Y, Krinke J (2017) Memory mutation

testing. Information and Software Technology 81:97–111, URL https://

doi.org/10.1016/j.infsof.2016.03.002

XmlRPC++ (2019) XmlRPC++. http://xmlrpcpp.sourceforge.net/

http://dx.doi.org/10.1016/j.infsof.2016.01.017
https://github.com/leethomason/tinyxml2
https://doi.org/10.1016/j.infsof.2016.03.002
https://doi.org/10.1016/j.infsof.2016.03.002
http://xmlrpcpp.sourceforge.net/

	1 Introduction
	2 Evolutionary Mutation Testing
	3 Design choices
	4 Automated Algorithm Configuration
	5 Evaluation
	6 Results and Discussion
	7 Related Work
	8 Conclusions and Future Work

