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Abstract

This paper deals with the problem of efficiency assessment using Data Envel-
opment Analysis (DEA) when the input and output data are given as fuzzy
sets. In particular, a fuzzy extension of the measure of inefficiency propor-
tions, a well-known slacks-based additive inefficiency measure, is considered.
The proposed approach also provides fuzzy input and output targets. Com-
putational experiences and comparison with other fuzzy DEA approaches are
reported.
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1. Introduction

In order to assess the relative efficiency of a set of homogeneous Decision
Making Units (DMUs) a non-parametric methodology, namely Data envelop-
ment analysis (DEA), can be used. DEA only requires data about the inputs

s consumed and the outputs produced by the DMUs and, from that, using some
optimization models, an efficiency score and an efficient target can be com-

puted for each DMU ([49], [12]). There are different ways of carrying out the
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projection onto the efficient frontier and computing the corresponding effi-
ciency scores: radial approaches (e.g. [29]), hyperbolic approaches (e.g. [18]),
directional distance function approaches (e.g. [32]), slacks-based approaches
(e.g. [43]), multidirectional efficiency approaches (e.g. [33]), efficiency potential
approaches (e.g. [40]), etc.

One of the challenges in DEA applications is the difficulty in quantifying
the exact value of some of the input and output data in real-world problems,
where the observed values are often undetermined or incomplete. One way
to handle this uncertainty in DEA data is using fuzzy sets. Thus, imprecise
or vague data in DEA can be represented by linguistic terms characterized by
fuzzy numbers.[23].

There are different fuzzy DEA (FDEA) approaches that can be used when
the data are fuzzy. The best reference on the subject is [17], which extended
a previous review by [22] and proposed a taxonomy that classifies the FDEA
methods into a-level set approaches (e.g. [27], [38]), fuzzy ranking approaches
(e.g. [21], [20]), possibility approaches (e.g. [44]), fuzzy arithmetic approaches
(e.g. [45]) and fuzzy random/type-2 fuzzy sets (e.g. [42]). [48] presents a more
recent survey of the FDEA literature. A summary of existing FDEA approaches
is shown in Table 1. This list does not pretend to be exhaustive but it includes a
number of representative approaches. For comparison, the proposed approach
has also been included.

It can be seen in the Table 1 that the a-level set, the fuzzy ranking and the
possibility approaches are the most common. Most FDEA approaches involve
radial, input-oriented, multiplier formulations. There are some non-radial
approaches, mostly based on the Enhanced Russell Graph Measure (ERGM)
and Slacks-Based Measure (SBM), as well as a few additive approaches, using
both multiplier and envelopment formulations. Some approaches compute
fuzzy efficiency scores while others compute a crisp efficiency or an efficiency
score for each possibility level. Also some FDEA approaches allow ranking the
DMUs. What most approaches neglect (or, more exactly, are unable to compute)

are efficient targets. Only a few FDEA approaches can compute targets, crisp
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in some cases and fuzzy in others.

As shown in Table 1, the proposed fuzzy ranking approach is based on
the normalized additive envelopment formulation. Unlike the conventional
additive DEA model considered in other FDEA approaches and which does
not normalize the input and output slacks, the proposed approach is units
invariant. Moreover, it makes use of a fuzzy partial order, which has proved to
be a flexible FDEA modelling tool ( e.g. [4]). This combination of features leads
to a simple and elegant linear programming (LP) formulation that provides
crisp efficiency scores as well as fuzzy targets. This target computing feature
and its focus on quantifying the potential input and output improvements are
the main advantages of the proposed approach with respect to other more
complex approaches that do not provide efficient targets. We believe that
such information is essential for managers to take action and orientate their
improvement efforts.

The structure of the paper is as follows. In Section 2, some notions related to
the Fuzzy sets and DEA methodologies are introduced. In Section 3, uncertainty
on inputs and outputs is addressed with trapezoidal fuzzy numbers. The
corresponding fuzzy DEA technology is defined, and a fuzzy DEA model is
proposed to compute an inefficiency measure as well as a fuzzy target for
each DMU. Section 4 illustrates the proposed approach on a dataset from the
literature, comparing it with some existing fuzzy DEA approaches. Finally,

Section 5 summarizes and concludes.

2. Preliminaries

2.1. Fuzzy sets Theory

A fuzzy set on R" is a mapping u : R" — [0,1]. For each fuzzy set u and
for any a € (0,1], let us define the a-level set as [u]* = {x € R" | u(x) > a} . Let
us denote the support of u by supp(u) where supp(u) = {x € R" | u(x) > 0}. The
closure of supp(u) defines the 0-level set of u, .i.e. [u]® = cl(supp(u)) where cI(M)
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means the closure of the subset M C R". A fuzzy number is a type of fuzzy set

(see [14, 15]) defined as follows.

Definition 1. A fuzzy set u on R is said to be a fuzzy number if:

1. uis normal, i.e. there exists xy € R such that u(xg) = 1;
2. u is an upper semi-continuous function;
3. u(Ax + (1 = A)y) = min{u(x), u(y)}, x,y € R, A € [0,1];

4. [u]° is compact.

Definition 2. A fuzzy number i = (u',u?,u® u*) is said to be a trapezoidal fuzzy

number if its membership function is given by

1 .
L, iful <x<u?,
1, ifu* <x<ud,
ii(x) = )

w—x o3 4
P ifu’ <x<u®,

0, otherwise.

Its corresponding a-levels are determined by [#]* = [u' + a(? — u'),u* -
a(u* — u®)]. We denote the set of all trapezoidal fuzzy numbers as TrFN. The
subset of non-negative TrFNs is denoted by TrFN,. A TrEN ii is a triangular
fuzzy number if and only if u? = u®. Figure 1 shows illustrative examples of a

trapezoidal and a triangular fuzzy number.

Definition 3. Given two trapezoidal fuzzy numbers i = (a',a?,a%,a*) € TrFN and

o b= (', 1?1, b*) € TrFN, the following arithmetical operations are defined:

(i) Addition,
d+b=@ +0b,a>+ 020+ 0,0 + %) )
(i) Multiplication by a scalar A € R,
(Aa', Aa?, Aa®, Aa*) if A > 0;

Ad = (3)
(Aa*, Aa®, Aa?, Aa') if A < 0.

(iii) Multiplication of two TrFN, db = ¢ = (', ¢, c3, c*), where
c! = min{a'b', a'b*, a*b?, a*v*) ¢ = max{a'v!, a'v*, a*b', a*b*)

@)

¢ = min{a®b?, a3, a®V?, a®b3) c® = max{a®t?, a*b®, a®v?, a®b%)
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Figure 1: Two trapezoidal fuzzy numbers, their sum and their product, as defined in 3. In cyan, the
particular case of a triangular fuzzy number @ = (1,2,3) = (1,2,2,3). In blue, a trapezoidal fuzzy
number (3.5,4,5,5.5). The [4]* and [b]* levels, for a = 0.2,0.4,0.6,0.8, are represented with dashed

lines.

In the particular case of two non-negative TrFN d and b, their multiplication
is just ab = (a'b',a?b?,a%b?,a*b*). Examples of the addition and of the multi-
plication of a trapezoidal and a triangular fuzzy number are shown in Figure
1.

In the Fuzzy DEA problem addressed in this research, we will consider
that the input and output variables (and some model variables) are TrFN.,.
The arithmetic operations between them are those established in Definition
3. Besides, it is necessary to provide a partial order relationship between two
trapezoidal fuzzy numbers. To this aim, we will use LU-fuzzy partial orders,

which are well known in the literature (see, e.g., [46, 41]):

p=(zvifandonlyif u < (2)v, and i, < (2)v,, foralla € [0,1].
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In the particular case of TrFNs, and following the characterization result
givenin [3] for triangular fuzzy numbers, we can say that given two trapezoidal

fuzzy numbers @ = (u', u?,u%,u*) and 7 = (0!, %, 03, v%),
ii < (2)7if and only if u’ < (>)¢, foralli=1,2,3,4. (5)

2.2. DEA methodology

Consider a set of N DMUs. For j € {1,...,N}, each DMU; has M inputs
Xj = (x1,...,xm;) € RM, and produces S outputs Y; = (y1j,...,ys;) € R®. DEA
aims to measure the relative efficiency of these DMUs. A DMU is inefficient
if it can reduce its inputs without reducing its outputs or it can increase its
outputs without increasing its inputs. The first step in the DEA methodology
is establishing the production possibility set (PPS) (a.k.a. DEA technology),
which contains all the operating points that are deemed feasible. The usual

axioms for a basic DEA technology, called T, are the following;:

(A1) Envelopment: (X;,Y;) € T, forall j€({1,...,N}L

(A2) Free disposability: (x,y) € T, (x',y) e RM*S v 2 x,y <y = (', y) € T.
(A3) Constant Returns to Scale (CRS): (x,y) € T = (Ax,Ay) € T, forall A € R,.

(A4) Convexity: (x,y),(x’,y’) € T, then A(x,y) + (1 — A)(x’,y') € T, for all
Ael0,1].

Let us recall that the technology which verifies (A1)-(A4) is known as Constant
Returns to Scale (VRS), and noted as Tcrs. Following the minimum extrapo-
lation principle, the DEA PPS is the intersection of all the sets that satisfy the

above axioms and can be mathematically formulated as ([9])

N
AiXj, y< Y AYj, Aj20
=

=

Tcrs = (X,y) € fR{:_/HS X2

]

I
—_

There is another common DEA technology labelled Variable Returns to Scale

(VRS) which corresponds to dropping Axiom (A3) ([7])
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N N N
Tyrs = (x,y)eﬂ{i\_m's: XZZA]-X‘, y§ZA/Y]‘, Z/\j:l,)\jzo
= = =

Note that the CRS and VRS DEA technologies differ basically in that the
latter imposes the convexity constraint Z;\il Aj = 1. Recall that, given a tech-
nology T (Tcrs, Tvrs, or any other under consideration), a DMU p is said to
be efficient if and only if for any (x,y) € T such that x £ X, and y 2 Y, then
(,9) = (%, ).

Radial efficiency measures can be computed by:

a) reducing all the inputs equi-proportionally without decreasing the outputs

(input-oriented model):
E(x,y) = min{0|(Ox, y) € T}

b) expanding all the outputs equi-proportionally without increasing the inputs

(output-oriented model):
E™'(x, y) = max{yl(x,yy) € T)

Instead of a radial measure of efficiency, an additive DEA model can be
used considering the input and output slacks. i.e. the amount that each input
can be reduced, and each output can be increased. This leads to the following

additive measure of inefficiency ([10])

M s
Max Z s, + Z sy (6)
=1 =1

N
s.t. Z/\]-xi]-+sf = Xip, i=1,.... M
j=1

N
ZAfyrf:yrpH:, r=1,...,5,

j=1
s; 20, i=1,.... M

sf>0,r=1,...,§

Aj20, j=1,...,N,
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Note that a certain DMUp is efficient if the optimal solution of the above
model has an objective function equal to zero. This means that all input slacks
s7, and all output slacks s; must be zero at the optimum ([13]).

A drawback of the above model is that its objective function sums input and
output slacks that may be measured in different units. One way of solving this
is to normalize the slacks, i.e. the input and output improvements, and express
them in relative terms. Then, for a given DMUp, the corresponding Measure
of Inefficiency Proportions (MIP) ([11]) results from changing the objective

function of the above model to

Max Z?fl s; [xip + Zf:l S Y (7)

Another relevant inefficiency measure is the directional distance function
(DDF), which uses a directional vector ¢ = (¢*, 8¥) = (&7, ---, &r g?, eee, gg) #0,
and leads to the following DEA model ([8])

0p= Max p 8)

N
s.t. Zijiijip—ﬁgf, i=1,....M
=1

N

Y Ay =y +Bgl, r=1,...8,
j=1
N
Y Ai=1

=1

B0, j=1,..N,

>~ e

Finally, another slacks-based measure of inefficiency was proposed by [19]
as a generalization of the above optimization problem considering the sum of
directional distance functions based on the unit vectors e,i=1,...,.M and e],/ ,
r=1,...,S (instead of a single directional vector g = (g%, g¥)) and different
variables B; and y,, instead of a single variable § for all inputs and outputs.

These f; and y, dimensionless variables can be interpreted as the number of



units that each input (respectively, output) can decrease (respectively, increase)

for DMU,,.

M s
op= Max Zﬁi+2% 9
par) =

N
S.t. Z/\]xl] Sxip_ﬁie?/ 1: 1/"-/M
j=1

N
Z/\]']/I‘jzyrp'f')/rery, r=1,...,5,
=1

3. Fuzzy DEA Slacks-Based model

In this section we present a slack-based measure of inefficiency in DEA
based on the sum of multiple directional distance functions in a similar way as
[19], but applied to the fuzzy data context and using the observed inputs and
outputs to define the corresponding directional vectors along each input and
output dimension.

Let us assume that there are j = 1,..., N DMUs, each of them with M fuzzy
inputs X]- = (%qj,..., %)) € (TrFN)’J\rA, and S fuzzy outputs Yj = (#1j,...,7sj) €
(TrFN)3. Let us define the following fuzzy DEA technology as a natural exten-

sion of the conventional Tygs DEA technology
N N N
Troea = 4 (%, 5) € (TrENYS c 22 Y Ak Vi, =) Ajiiy V1, Y Aj=1, A€RY
j=1 j=1 j=1
For Trpea, and as a natural extension of efficiency in a crisp technology,

a DMU p is said to be efficient if and only if for any (%, /) € Trpea such that

10



¥ =2 f(p and 7 = Yp, then (%, 7) = (f(p, Yp). Under the given technology Trpea,
for each DMU,, an additive, slacks-based measure of inefficiency T (f(,,, Y,,), that
is similar to MIP model (7) and also similar to (9) (if x;, and y,, were used as

us directional vectors instead of ef and e!) can be computed as:

S
(FDEA) I(X,, ¥,) = Max Z i+ ) 7 (10)
r=1
N
s.t. Z /\]2?,] + Bn,iip é xip/ i= 1/ e /Mr (11)
=1
N
Z iU Z G+ P, 7=1,...,5, (12)
j=1
N
Z Ai=1 13)
j=1
Bi, 7 € (TrEN), i=1,...,Mr=1,...,5, (14)
Aj20, j=1,...,N. (15)

Note that B;%;, and 7,7y, play the same role as the input and output slacks
in conventional DEA. Here, however, the inputs %;; and outputs 7/, as well as
the variables ﬁi and 7, are assumed to be trapezoidal fuzzy numbers (TrFN),,

ie.

Tj = (gx,0,x), i=1...,M, j=1,.. N
i o= vy, r=1..,5 j=1..,N
Bio= BLELEBD, i=1...M
7ro= rnyRYLYD, r=1...,5

150 The objective function is also a trapezoidal fuzzy number, and only the intensity
variables A; are non-negative real numbers, j = 1,...,N. Let 8 = (B1,..., fum),
4 ={1,...,7s), and let X = (A4,..., An) be a feasible solution of (FDEA) and let

us define the following fuzzy Pareto solution for the above fuzzy DEA problem.

11
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Definition 4. A feasible solution for (FDEA) (3*,4*, X") is a fuzzy Pareto solution
of (FDEA) if there does not exist a feasible solution (3,4, \) for (FDEA) such that
T Bit T 7 2 T By + Xy 7 and T i+ Xy 7 # D By + X0 7

Moreover, using the above fuzzy DEA model, efficient DMUSs have a null

inefficiency measure, i.e.

Proposition 1. If DMU p is efficient, then I(X,,, Y,) = 0, i.e. there is no fuzzy Pareto
solution of (FDEA) with Y1, f: + X, 7, # 0.

r=1

Proof. Suppose that I(X,,Y,) # 0, with (8%,4", \") a fuzzy Pareto solution for
(FDEA). As T(Xp, Y,,) z 0, then (8",%") # 0, and we have two possible cases:
[3;0 =0, Blo # 0 for some iy, or 4;, = 0, 4;, # 0 for some ry. Define (¥, ") =
(Z;\il A;fij, ):;il )\;yrj). In the first case, and by (11), X =2 Rigp, X # i, and then
¥ 2%, ¥ # Xp. Furthermore, by (12), it follows that §* = 7,, which implies that
DMU p is not efficient, reaching a contradiction. In the second case, reasoning

similarly we reach again a contradiction. O

Note that, from the above definition and proposition, T(f{p, Y,,) is the set
associated to the fuzzy Pareto solutions of (FDEA) and this set does not have
to be necessarily a singleton. To address this fact, we propose an approach
for solving the previous Fuzzy DEA problem computing a crisp inefficiency

measure [(X,, Y,) for the DMU p solving

M=
I:.g»
r
[;ﬂ%

(FDEA2) I(X,,Y,) = Max (16)

i1 k=1 =1 k=1
st (11) - (15)
Proposition 2. Ifa DMU p is efficient, then 1(X,, Y,) = 0.

Proof. If DMU p is efficient, then, by Proposition 1 it follows that I(X,, Y,) =
p B; + Yo, 7 = 0 for any (3°,4", X*) fuzzy Pareto solution for (FDEA). Now,
suppose that the optimal solution of (16) is I(f{p, Yp) > 0. Then, there exists
(8,4, ) feasible for (FDEA2), such that }:gl }:ﬁ:l ,Bf + Zf=1 }:ﬁ:l vk > 0. Hence

12
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(B,9) # 0, and therefore, Y, i + Y5 7, = 0, Y B + Yo, 7 # 0. Since
(8,4, ) is feasible for (FDEA), it implies that I(X,, Y,) # 0, which contradicts
p pr Ly

Proposition 1. O

The optimization problem (FDEA2), with fuzzy data and constraints, can
be reformulated with crisp values and inequalities by means of the correspond-

ing fuzzy numbers parametrization. To this end, let us consider the 4-tuple
23
i Ny
yf]., yf/., yf],) € R4, respectively. Using these parametrizations, and the order

representation of %;j and ,; as %;j = (xl.lj, x X} ) € R* and 7 = (y:j,

relationships between fuzzy numbers and their parameters given in (5), we can

reformulate the inefficiency measure I (X,,, Y,,) (16) as

4

(FDEA3) I(X,, Y,) = Max Z Z B+ ZS: i v 17)

i=1 k=1 r=1 k=1

st. Z/\xl]+ﬁlxw§xw, k=1,..,4 i=1,...,M (18)

ZA]%J YNk, k=14, r=1,..5 (19

M- T

Aj=1 (20)
=1
Br<p, k=123i=1,...,M, (21)
YE<ytl k=1,23r=1,...,5 (22)

By A20i=1,... ,Mr=1,..,5j=1...,N (23

There exists a strong relationship between (FDEA2) and (FDEA3) as the

following theorem establishes.

Proposition 3. (3,7,1) is an optimal solution of (FDEA2), with A € RY, B €
(TrFNYM and y € (TrFN)3, if and only if its corresponding representation is an
optimal solution of (FDEA3), with A € RY, B = (B}, B2, B3, Bi, -+ Biy Bop Bops
) € RMand 7 = (L YL iYL Vi Vi Vi V) € JR‘iS

13
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Proof. Itisnot difficult to see that the constraint conditions (11) - (15) in (FDEA?2)
are equivalent to the constraint conditions (18) - (23) in (FDEA3). The rest of

the proof is straightforward. O

Corollary 1. The optimal objective function value of models (FDEA2) and (FDEA3)
coincide and, therefore, given (X,Y) € Trppa with corresponding representation given
by (X, Y) € R*™M x R*, it follows that I(X,Y) = I(X, Y).

Corollary 2. Ifa DMU p is efficient, then I(X,,Y,) = 0.

In addition to providing the inefficiency measure for each a DMU,, the pro-

posed (FDEA3) model provides fuzzy input and output targets (X5, Y}")

prip
given as
N
target * X7
Xt = ZAij (24)
j=1
N
ctarget *47
vt = ZA],YJ (25)
j=1

Note that the targets computed by model (FDEA3) for a given a DMU p are
efficient, i.e. T(X;ng, Y;,ng) =0.

Before presenting a numerical example to illustrate the proposed approach
it may be interesting, as one of the reviewers inquired, to clarify the meaning
of the fuzzy input and output slacks computed by the proposed approach. In
this regard, we have to distinguish the interpretation in mathematical terms
from its interpretation in economic/managerial terms. As regards the latter, the
interpretation is the same as in conventional DEA, i.e. input slacks represent
excess input consumption and output slacks represent output shortfalls. The
former imply an inefficient use of the resources and the latter correspond to
an underperformance in the production of the outputs. It is interesting to note
that both effects occur simultaneously, i.e. the input reduction and the output
increase can (and should) both be achieved at the same time.

The mathematical interpretation of the slacks is simple in the crisp case but

more subtle in the fuzzy case. That is probably the reason why some FDEA
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Table 2: Observed DMUs and results of proposed FDEA approach

DMU In}jut Out~put i, 9) Inpljttalirget Outpj:zty ;ftarget
X 7 x s

A 1,3,4) (2,3,4) (0,0,0) 1,3,4) (2,3,4)

B (3.5,4,45) (1.5,25,35) (0.36,0.36,0.36) (1.50,3.375,4.50) (2.75,3.75,4.75)
C (3,4.5,6) (5,6,7) (0,0,0) (3,4.5,6) (5,6,7)

D (6,6.5,7) (2.75,4,5.25) (0.47,0.47,0.47) (3,4.5,6) (5,6,7)

E (5,7,9) (45,5,5.5)  (0.44,0.53,0.6) (3,4.5,6) (5,6,7)

F (7.5,8,8.5) (3,3.5,4) (0.96,1,1.04) (3,4.5,6) (5,6,7)

G (9,10,11)  (5.5,6,6.5) (0,0,0) (9,10,11) (5.5,6,6.5)
H (5.5,6,6.5) (0.5,2,35) (1.08,1.08,1.08) (3,4.5,6) (5,6,7)

approaches consider crisp slacks. However, we believe that, since the observed
inputs and outputs are fuzzy, their corresponding slacks should also be fuzzy.
This makes a lot of sense. Thus, since there is uncertainty in the observed
data, it is logical that there be uncertainty on the amount that they can be
improved. Similarly, this uncertainty also reaches the input and output targets

to be achieved to be efficient.

4. Numerical example

Let us consider the dataset from Leén et al. [30], with only one fuzzy input
and one output fuzzy, to illustrate the proposed approach. Table 2 shows the
observed data, given as triangular fuzzy numbers, in the first two columns.
The third column reports the fuzzy inefficiency measure I(X,Y), which in this
single-input, single-output case simplifies to I(¥, #) = f + 7. The variables f and
¥ have been computed solving (FDEA3) problem and re-writing the solution
in its equivalent fuzzy parametrization as described at the previous section.
Finally, the two last columns provide the input and output targets computed
using (24) and (25), respectively. Note that, among these 8 DMUs, we have
that five of them are clearly inefficient, since their T(fcp, ) # 0, whereas we

have only three possible efficient DMUSs, namely A, C, and G. Recall that a null
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Figure 2: Observed DMUs and their corresponding targets marked with blue triangles. The thick,

gray line joining DMUs A and C is a crisp approximation of the true fuzzy efficient frontier.

inefficiency measure is a necessary but not a sufficient condition for establishing
the efficiency of a DMU.

This simple example also allows us to illustrate the proposed FDEA ap-
proach graphically as regards the efficiency status classification. Thus, Figure 2
shows the observed DMUs, labeled A to H. The plotted horizontal and vertical
error bars represent the 0—level (i.e., the closure of the support) of the corre-
sponding trapezoidal fuzzy number, for both the input and output dimensions.
The targets computed by the proposed approach are marked with blue trian-
gles and its corresponding horizontal and vertical error bars. Note that DMUs
A and C are efficient, and hence, they are projected onto themselves. The effi-
ciency status of DMU G is undetermined, its inefficiency score I(xc, 7c) is zero
although it is not projected onto itself but onto DMU C. Inefficient DMUs D,
E, F, and H are projected onto DMU C while the remaining inefficient DMU

(namely DMU B) is projected onto a target that is a linear convex combination
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Table 3: Comparison with other FDEA approaches

Method alevel A B C D E F G H
Leén et al. (2003) [30] 0 1 1 1 07500 06429 0.6050 1  0.6923
(Radial efficiency) 05 1 09412 1 06623 06172 05227 1  0.6400
0.75 1 08675 1 06144 06010 04776 1  0.5854
1 1 07500 1 05385 05714 04062 045 05000
Saati et al. (2002) [38] 0 1 1 1 1 1 0.640 0867 0.764
(Radial efficiency) 05 1 0764 1 0706 0835 0462 0.628 0457
0.75 1 0602 1 0574 0668 039 0533 0343
1 0750 0469 1 0462 0536 0328 0450 0.250
Hatami-Marbini 0 6 7 2333 825 85 95 95 10
etal. (2012) [24] 05 0 5 0 6125 6 775 75 775
(Sum of slacks ineff.)  0.75 0 4 0 5063 475 6875 65 6625
1 0 25 0 4 35 6 55 55
1(x,, ) - 0 1071 0 1429 158 3013 0 3231

of DMUs A and C. The thick grey line joining these DMUs is an approximate
crisp representation of the true fuzzy efficient frontier.

Figures 3 and 4 show the solutions, for each of the DMUs, computed by
the proposed approach (FDEA). For each DMU, the left panel shows, in blue
color, the fuzzy inefficiency measure I(%, ) = f + 7. The middle panel shows
the input data (in black color) and the input target (in magenta color and dash
line). The right panel, shows the output data (in black color) and the output
target (in magenta color and dash line). When a DMU p is inefficient not only
I (%, %) # 0 but also its input target is shifted to the left (i.e. the original input
is reduced) whereas its output target is shifted to the right (i.e. the original
output is increased).

Finally, in Table 3, the results of the proposed approach are compared with
those of other fuzzy DEA approaches, namely [30], [38] and [24]. The last
row of the table considers the crisp inefficiency measure I(x,, y,) computed by
model (FDEA3). For the inefficient DMUs, with I(x,, y,) > 0, their efficiency
measurements from [30] and [38] are less than one for nearly all the a levels.

Equivalently in the case of [24], the corresponding sum of slacks is greater than
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zero for all a levels. On the other hand, for the three DMUs with I(x,, y,) = 0,
and therefore possibly efficient, their efficiency scores from [30] and [38] are
equal to one for all a levels in the case of DMUs A and C and for some alpha
levels in the case of DMU G. The sum of slacks computed by [24] are zero for
DMUs A and C for most a—levels and greater than zero for DMU C for all

a—levels.

5. Conclusions

In this paper, a new fuzzy DEA slacks-based measure of inefficiency has
been proposed. It requires solving a crisp linear optimization model and allows
computing corresponding input and output targets. The normalized character
of additive metric used in the objective function implies that it is units invari-
ant. Computational experiments have been presented to validate the proposed
approach and compare it with existing fuzzy DEA methods.

One of the advantages of the proposed approach with respect to other more
complex approaches is that, apart from computing efficiency scores, it focuses
on the input and output improvements that can be achieved, called slacks in
DEA parlance. These improvements are also expressed in the form of efficient
targets and provide managers with useful information on the variables on
which the improvement effort should be concentrated and the extent of those
efforts. Most existing FDEA approaches, particularly but not only those that
use multiplier formulations, do not provide efficient targets and thus their
managerial usefulness is limited.

A limitation of the proposed approach is that a null value of the computed
inefficiency score is a necessary nut not sufficient condition for efficiency, i.e. it
cannot discriminate between efficient and weakly efficient DMUs. This issue
does not happen in the crisp DEA case, in which maximizing the sum of
input and output slacks guarantees efficiency. This highlights the differences
between the crisp and fuzzy data scenarios. Devising an appropriate phase

II, as in radial DEA approaches, is a topic for further research. Extending the
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Figure 3: Solutions of proposed FDEA approach for DMUs A to D.

proposed to include undesirable outputs is also a worthy endeavour.
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