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Abstract

This paper deals with the problem of e�ciency assessment using Data Envel-

opment Analysis (DEA) when the input and output data are given as fuzzy

sets. In particular, a fuzzy extension of the measure of ine�ciency propor-

tions, a well-known slacks-based additive ine�ciency measure, is considered.

The proposed approach also provides fuzzy input and output targets. Com-

putational experiences and comparison with other fuzzy DEA approaches are

reported.
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1. Introduction

In order to assess the relative e�ciency of a set of homogeneous Decision

Making Units (DMUs) a non-parametric methodology, namely Data envelop-

ment analysis (DEA), can be used. DEA only requires data about the inputs

consumed and the outputs produced by the DMUs and, from that, using some5

optimization models, an e�ciency score and an e�cient target can be com-

puted for each DMU ([49], [12]). There are di↵erent ways of carrying out the
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projection onto the e�cient frontier and computing the corresponding e�-

ciency scores: radial approaches (e.g. [29]), hyperbolic approaches (e.g. [18]),

directional distance function approaches (e.g. [32]), slacks-based approaches10

(e.g. [43]), multidirectional e�ciency approaches (e.g. [33]), e�ciency potential

approaches (e.g. [40]), etc.

One of the challenges in DEA applications is the di�culty in quantifying

the exact value of some of the input and output data in real-world problems,

where the observed values are often undetermined or incomplete. One way15

to handle this uncertainty in DEA data is using fuzzy sets. Thus, imprecise

or vague data in DEA can be represented by linguistic terms characterized by

fuzzy numbers.[23].

There are di↵erent fuzzy DEA (FDEA) approaches that can be used when

the data are fuzzy. The best reference on the subject is [17], which extended20

a previous review by [22] and proposed a taxonomy that classifies the FDEA

methods into ↵-level set approaches (e.g. [27], [38]), fuzzy ranking approaches

(e.g. [21], [20]), possibility approaches (e.g. [44]), fuzzy arithmetic approaches

(e.g. [45]) and fuzzy random/type-2 fuzzy sets (e.g. [42]). [48] presents a more

recent survey of the FDEA literature. A summary of existing FDEA approaches25

is shown in Table 1. This list does not pretend to be exhaustive but it includes a

number of representative approaches. For comparison, the proposed approach

has also been included.

It can be seen in the Table 1 that the ↵-level set, the fuzzy ranking and the

possibility approaches are the most common. Most FDEA approaches involve30

radial, input-oriented, multiplier formulations. There are some non-radial

approaches, mostly based on the Enhanced Russell Graph Measure (ERGM)

and Slacks-Based Measure (SBM), as well as a few additive approaches, using

both multiplier and envelopment formulations. Some approaches compute

fuzzy e�ciency scores while others compute a crisp e�ciency or an e�ciency35

score for each possibility level. Also some FDEA approaches allow ranking the

DMUs. What most approaches neglect (or, more exactly, are unable to compute)

are e�cient targets. Only a few FDEA approaches can compute targets, crisp
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in some cases and fuzzy in others.

As shown in Table 1, the proposed fuzzy ranking approach is based on40

the normalized additive envelopment formulation. Unlike the conventional

additive DEA model considered in other FDEA approaches and which does

not normalize the input and output slacks, the proposed approach is units

invariant. Moreover, it makes use of a fuzzy partial order, which has proved to

be a flexible FDEA modelling tool ( e.g. [4]). This combination of features leads45

to a simple and elegant linear programming (LP) formulation that provides

crisp e�ciency scores as well as fuzzy targets. This target computing feature

and its focus on quantifying the potential input and output improvements are

the main advantages of the proposed approach with respect to other more

complex approaches that do not provide e�cient targets. We believe that50

such information is essential for managers to take action and orientate their

improvement e↵orts.

The structure of the paper is as follows. In Section 2, some notions related to

the Fuzzy sets and DEA methodologies are introduced. In Section 3, uncertainty

on inputs and outputs is addressed with trapezoidal fuzzy numbers. The55

corresponding fuzzy DEA technology is defined, and a fuzzy DEA model is

proposed to compute an ine�ciency measure as well as a fuzzy target for

each DMU. Section 4 illustrates the proposed approach on a dataset from the

literature, comparing it with some existing fuzzy DEA approaches. Finally,

Section 5 summarizes and concludes.60

2. Preliminaries

2.1. Fuzzy sets Theory

A fuzzy set on Rn is a mapping u : Rn ! [0, 1]. For each fuzzy set u and

for any ↵ 2 (0, 1] , let us define the ↵-level set as [u]↵ = {x 2 Rn | u(x) � ↵} . Let

us denote the support of u by supp(u) where supp(u) = {x 2 Rn | u(x) > 0}. The65

closure of supp(u) defines the 0-level set of u, .i.e. [u]0 = cl(supp(u)) where cl(M)

4



means the closure of the subset M ⇢ Rn. A fuzzy number is a type of fuzzy set

(see [14, 15]) defined as follows.

Definition 1. A fuzzy set u on R is said to be a fuzzy number if:

1. u is normal, i.e. there exists x0 2 R such that u(x0) = 1;70

2. u is an upper semi-continuous function;

3. u(�x + (1 � �)y) � min{u(x),u(y)}, x, y 2 R, � 2 [0, 1];

4. [u]0
is compact.

Definition 2. A fuzzy number ũ = (u1,u2,u3,u4) is said to be a trapezoidal fuzzy

number if its membership function is given by

ũ(x) =

8>>>>>>>>><>>>>>>>>>:

x�u
1

u2�u1 , if u
1  x < u

2,

1, if u
2  x  u

3,
u

4�x

u4�u3 , if u
3 < x  u

4,

0, otherwise.

(1)

Its corresponding ↵-levels are determined by [ũ]↵ = [u1 + ↵(u2 � u
1),u4 �

↵(u4 � u
3)]. We denote the set of all trapezoidal fuzzy numbers as TrFN. The75

subset of non-negative TrFNs is denoted by TrFN+. A TrFN ũ is a triangular

fuzzy number if and only if u
2 = u

3. Figure 1 shows illustrative examples of a

trapezoidal and a triangular fuzzy number.

Definition 3. Given two trapezoidal fuzzy numbers ã = (a1, a2, a3, a4) 2 TrFN and

b̃ = (b1, b2, b3, b4) 2 TrFN, the following arithmetical operations are defined:80

(i) Addition,

ã + b̃ = (a1 + b
1, a2 + b

2, a3 + b
3, a4 + b

4) (2)

(ii) Multiplication by a scalar � 2 R,

�ã =

8>>><>>>:

(�a
1,�a

2,�a
3,�a

4) if � � 0;

(�a
4,�a

3,�a
2,�a

1) if � < 0.
(3)

(iii) Multiplication of two TrFN, ãb̃ = c̃ = (c1, c2, c3, c4), where

c
1 = min{a1

b
1, a1

b
4, a4

b
1, a4

b
4} c

4 = max{a1
b

1, a1
b

4, a4
b

1, a4
b

4}

c
2 = min{a2

b
2, a2

b
3, a3

b
2, a3

b
3} c

3 = max{a2
b

2, a2
b

3, a3
b

2, a3
b

3}
(4)

5



Figure 1: Two trapezoidal fuzzy numbers, their sum and their product, as defined in 3. In cyan, the

particular case of a triangular fuzzy number ã = (1, 2, 3) = (1, 2, 2, 3). In blue, a trapezoidal fuzzy

number (3.5, 4, 5, 5.5). The [ã]↵ and [b̃]↵ levels, for ↵ = 0.2, 0.4, 0.6, 0.8, are represented with dashed

lines.

In the particular case of two non-negative TrFN ã and b̃, their multiplication

is just ãb̃ = (a1
b

1, a2
b

2, a3
b

3, a4
b

4). Examples of the addition and of the multi-

plication of a trapezoidal and a triangular fuzzy number are shown in Figure

1.

In the Fuzzy DEA problem addressed in this research, we will consider

that the input and output variables (and some model variables) are TrFN+.

The arithmetic operations between them are those established in Definition

3. Besides, it is necessary to provide a partial order relationship between two

trapezoidal fuzzy numbers. To this aim, we will use LU-fuzzy partial orders,

which are well known in the literature (see, e.g., [46, 41]):

µ ⌧ (�)⌫ if and only if µ
↵
 (�)⌫↵ and µ↵  (�)⌫↵, for all ↵ 2 [0, 1].

6



In the particular case of TrFNs, and following the characterization result

given in [3] for triangular fuzzy numbers, we can say that given two trapezoidal

fuzzy numbers ũ = (u1,u2,u3,u4) and ṽ = (v1, v2, v3, v4),

ũ ⌧ (�)ṽ if and only if u
i  (�)vi, for all i = 1, 2, 3, 4. (5)

2.2. DEA methodology85

Consider a set of N DMUs. For j 2 {1, . . . ,N}, each DMUj has M inputs

Xj = (x1 j, . . . , xMj) 2 RM, and produces S outputs Yj = (y1 j, . . . , ySj) 2 RS. DEA

aims to measure the relative e�ciency of these DMUs. A DMU is ine�cient

if it can reduce its inputs without reducing its outputs or it can increase its

outputs without increasing its inputs. The first step in the DEA methodology90

is establishing the production possibility set (PPS) (a.k.a. DEA technology),

which contains all the operating points that are deemed feasible. The usual

axioms for a basic DEA technology, called T, are the following:

(A1) Envelopment: (Xj,Yj) 2 T, for all j 2 {1, . . . ,N}.

(A2) Free disposability: (x, y) 2 T, (x0, y0) 2 RM+S, x
0 = x, y

0 5 y) (x0, y0) 2 T.95

(A3) Constant Returns to Scale (CRS): (x, y) 2 T) (�x,�y) 2 T, for all � 2 R+.

(A4) Convexity: (x, y), (x0, y0) 2 T, then �(x, y) + (1 � �)(x0, y0) 2 T, for all

� 2 [0, 1].

Let us recall that the technology which verifies (A1)-(A4) is known as Constant

Returns to Scale (VRS), and noted as TCRS. Following the minimum extrapo-100

lation principle, the DEA PPS is the intersection of all the sets that satisfy the

above axioms and can be mathematically formulated as ([9])

TCRS =

8>>><>>>:
(x, y) 2 RM+S

+ : x =
NX

j=1

� jXj, y 5
NX

j=1

� jYj, � j � 0

9>>>=>>>;

There is another common DEA technology labelled Variable Returns to Scale

(VRS) which corresponds to dropping Axiom (A3) ([7])

7



TVRS =

8>>><>>>:
(x, y) 2 RM+S

+ : x =
NX

j=1

� jXj, y 5
NX

j=1

� jYj,
NX

j=1

� j = 1,� j � 0

9>>>=>>>;

Note that the CRS and VRS DEA technologies di↵er basically in that the105

latter imposes the convexity constraint
P

N

j=1 � j = 1. Recall that, given a tech-

nology T (TCRS, TVRS, or any other under consideration), a DMU p is said to

be e�cient if and only if for any (x, y) 2 T such that x 5 Xp and y = Yp, then

(x, y) = (Xp,Yp).

Radial e�ciency measures can be computed by:

a) reducing all the inputs equi-proportionally without decreasing the outputs

(input-oriented model):

E(x, y) = min{✓|(✓x, y) 2 T}

b) expanding all the outputs equi-proportionally without increasing the inputs

(output-oriented model):

E
�1(x, y) = max{�|(x,�y) 2 T}

Instead of a radial measure of e�ciency, an additive DEA model can be110

used considering the input and output slacks. i.e. the amount that each input

can be reduced, and each output can be increased. This leads to the following

additive measure of ine�ciency ([10])

Max
MX

i=1

s
�
i
+

SX

r=1

s
+
r (6)

s.t.
NX

j=1

� jxi j + s
�
i
= xip, i = 1, . . . ,M

NX

j=1

� jyrj = yrp + s
+
r , r = 1, . . . ,S,

s
�
i
� 0, i = 1, . . . ,M

s
+
r � 0, r = 1, . . . ,S

� j � 0, j = 1, . . . ,N,

8



Note that a certain DMUp is e�cient if the optimal solution of the above

model has an objective function equal to zero. This means that all input slacks115

s
�
i

, and all output slacks s
+
r must be zero at the optimum ([13]).

A drawback of the above model is that its objective function sums input and

output slacks that may be measured in di↵erent units. One way of solving this

is to normalize the slacks, i.e. the input and output improvements, and express

them in relative terms. Then, for a given DMUp, the corresponding Measure120

of Ine�ciency Proportions (MIP) ([11]) results from changing the objective

function of the above model to

Max
P

M

i=1 s
�
i
/xip +

P
S

r=1 s
+
r /yrp (7)

Another relevant ine�ciency measure is the directional distance function

(DDF), which uses a directional vector g = (g
x, gy) = (g

x

1, . . . , g
x

M
, gy

1 , . . . , g
y

S
) , 0,

and leads to the following DEA model ([8])125

�p = Max � (8)

s.t.
NX

j=1

� jxi j  xip � �g
x

i
, i = 1, . . . ,M

NX

j=1

� jyrj � yrp + �g
y

r , r = 1, . . . ,S,

NX

j=1

� j = 1

� j, � � 0, j = 1, . . . ,N,

Finally, another slacks-based measure of ine�ciency was proposed by [19]

as a generalization of the above optimization problem considering the sum of

directional distance functions based on the unit vectors e
x

i
, i = 1, . . . ,M and e

y

r ,

r = 1, . . . ,S (instead of a single directional vector g = (g
x, g

y)) and di↵erent

variables �i and �r, instead of a single variable � for all inputs and outputs.130

These �i and �r dimensionless variables can be interpreted as the number of

9



units that each input (respectively, output) can decrease (respectively, increase)

for DMUp.

�p = Max
MX

i=1

�i +
SX

r=1

�r (9)

s.t.
NX

j=1

� jxi j  xip � �ie
x

i
, i = 1, . . . ,M

NX

j=1

� jyrj � yrp + �re
y

r , r = 1, . . . ,S,

NX

j=1

� j = 1

� j � 0, j = 1, . . . ,N

�i � 0, i = 1, . . . ,M

�r � 0, r = 1, . . . ,S

3. Fuzzy DEA Slacks-Based model

In this section we present a slack-based measure of ine�ciency in DEA135

based on the sum of multiple directional distance functions in a similar way as

[19], but applied to the fuzzy data context and using the observed inputs and

outputs to define the corresponding directional vectors along each input and

output dimension.

Let us assume that there are j = 1, . . . ,N DMUs, each of them with M fuzzy

inputs X̃j = (x̃1 j, . . . , x̃Mj) 2 (TrFN)M

+ , and S fuzzy outputs Ỹj = (ỹ1 j, . . . , ỹSj) 2
(TrFN)S

+. Let us define the following fuzzy DEA technology as a natural exten-

sion of the conventional TVRS DEA technology

TFDEA =

8>>><>>>:
(x̃, ỹ) 2 (TrFN)M+S

+ : x̃ �
NX

j=1

� jx̃i j 8i, ỹ ⌧
NX

j=1

� j ỹr j 8r,
NX

j=1

� j = 1, � 2 RN

+

9>>>=>>>;

For TFDEA, and as a natural extension of e�ciency in a crisp technology,140

a DMU p is said to be e�cient if and only if for any (x̃, ỹ) 2 TFDEA such that

10



x̃ ⌧ X̃p and ỹ � Ỹp, then (x̃, ỹ) = (X̃p, Ỹp). Under the given technology TFDEA,

for each DMUp, an additive, slacks-based measure of ine�ciency Ĩ(X̃p, Ỹp), that

is similar to MIP model (7) and also similar to (9) (if xip and yrp were used as

directional vectors instead of e
x

i
and e

y

r ) can be computed as:145

(FDEA) Ĩ(X̃p, Ỹp) =Max
MX

i=1

�̃i +
SX

r=1

�̃r (10)

s.t.
NX

j=1

� jx̃i j + �̃mx̃ip ⌧ x̃ip, i = 1, . . . ,M, (11)

NX

j=1

� j ỹr j � ỹrp + �̃r ỹrp, r = 1, . . . ,S, (12)

NX

j=1

� j = 1 (13)

�̃i, �̃r 2 (TrFN)+ i = 1, . . . ,M, r = 1, . . . ,S, (14)

� j � 0, j = 1, . . . ,N. (15)

Note that �̃ix̃ip and �̃r ỹrp play the same role as the input and output slacks

in conventional DEA. Here, however, the inputs x̃i j and outputs ỹr j, as well as

the variables �̃i and �̃r are assumed to be trapezoidal fuzzy numbers (TrFN)+,

i.e.

x̃i j = (x1
i j
, x2

i j
, x3

i j
, x4

i j
), i = 1, . . . ,M, j = 1, . . . ,N

ỹrj = (y
1
rj
, y2

rj
, y3

rj
, y4

rj
), r = 1, . . . ,S, j = 1, . . . ,N

�̃i = (�1
i
, �2

i
, �3

i
, �4

i
), i = 1, . . . ,M

�̃r = (�1
r ,�

2
r ,�

3
r ,�

4
r ), r = 1, . . . ,S

The objective function is also a trapezoidal fuzzy number, and only the intensity150

variables � j are non-negative real numbers, j = 1, . . . ,N. Let �̃ = (�̃1, . . . , �̃M),

�̃ = (�̃1, . . . , �̃S), and let � = (�1, . . . ,�N) be a feasible solution of (FDEA) and let

us define the following fuzzy Pareto solution for the above fuzzy DEA problem.
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Definition 4. A feasible solution for (FDEA) (�̃⇤, �̃⇤,�⇤) is a fuzzy Pareto solution

of (FDEA) if there does not exist a feasible solution (�̃, �̃,�) for (FDEA) such that155

P
M

i=1 �̃i +
P

S

r=1 �̃r �
P

M

i=1 �̃
⇤
i
+
P

S

r=1 �̃
⇤
r, and

P
M

i=1 �̃i +
P

S

r=1 �̃r ,
P

M

i=1 �̃
⇤
i
+
P

S

r=1 �̃⇤r.

Moreover, using the above fuzzy DEA model, e�cient DMUs have a null

ine�ciency measure, i.e.

Proposition 1. If DMU p is e�cient, then Ĩ(X̃p, Ỹp) = 0̃, i.e. there is no fuzzy Pareto

solution of (FDEA) with
P

M

i=1 �̃
⇤
i
+
P

S

r=1 �̃⇤r , 0̃.160

Proof. Suppose that Ĩ(X̃p, Ỹp) , 0̃, with (�̃⇤, �̃⇤,�⇤) a fuzzy Pareto solution for

(FDEA). As Ĩ(X̃p, Ỹp) � 0̃, then (�̃⇤, �̃⇤) , 0̃, and we have two possible cases:

�̃⇤
i0
� 0̃, �̃⇤

i0
, 0̃ for some i0, or �̃⇤r0

� 0̃, �̃⇤r0
, 0̃ for some r0. Define (x̃⇤, ỹ⇤) =

(
P

N

j=1 �
⇤
j
x̃i j,
P

N

j=1 �
⇤
j
ỹr j). In the first case, and by (11), x̃

⇤
i0
⌧ x̃i0p, x̃

⇤
i0
, x̃i0p, and then

x̃
⇤ ⌧ x̃p, x̃

⇤ , x̃p. Furthermore, by (12), it follows that ỹ
⇤ � ỹp, which implies that165

DMU p is not e�cient, reaching a contradiction. In the second case, reasoning

similarly we reach again a contradiction. ⇤

Note that, from the above definition and proposition, Ĩ(X̃p, Ỹp) is the set

associated to the fuzzy Pareto solutions of (FDEA) and this set does not have

to be necessarily a singleton. To address this fact, we propose an approach170

for solving the previous Fuzzy DEA problem computing a crisp ine�ciency

measure I(X̃p, Ỹp) for the DMU p solving

(FDEA2) I(X̃p, Ỹp) =Max
MX

i=1

4X

k=1

�k

i
+

SX

r=1

4X

k=1

�k

r (16)

s.t. (11) � (15)

Proposition 2. If a DMU p is e�cient, then I(X̃p, Ỹp) = 0.

Proof. If DMU p is e�cient, then, by Proposition 1 it follows that Ĩ(X̃p, Ỹp) =
P

M

i=1 �̃
⇤
i
+
P

S

r=1 �̃
⇤
r = 0 for any (�̃⇤, �̃⇤,�⇤) fuzzy Pareto solution for (FDEA). Now,175

suppose that the optimal solution of (16) is I(X̃p, Ỹp) > 0. Then, there exists

(�̃, �̃,�) feasible for (FDEA2), such that
P

M

i=1
P4

k=1 �
k

i
+
P

S

r=1
P4

k=1 �
k
r > 0. Hence

12



(�̃, �̃) , 0, and therefore,
P

M

i=1 �̃i +
P

S

r=1 �̃r � 0,
P

M

i=1 �̃i +
P

S

r=1 �̃r , 0. Since

(�̃, �̃,�) is feasible for (FDEA), it implies that Ĩ(X̃p, Ỹp) , 0, which contradicts

Proposition 1. ⇤180

The optimization problem (FDEA2), with fuzzy data and constraints, can

be reformulated with crisp values and inequalities by means of the correspond-

ing fuzzy numbers parametrization. To this end, let us consider the 4-tuple

representation of x̃i j and ỹr j as x̃i j = (x1
i j
, x

2
i j
, x

3
i j
, x

4
i j

) 2 R4 and ỹr j = (y
1
rj
,

y
2
rj
, y

3
rj
, y

4
rj

) 2 R4, respectively. Using these parametrizations, and the order185

relationships between fuzzy numbers and their parameters given in (5), we can

reformulate the ine�ciency measure I(X̃p, Ỹp) (16) as

(FDEA3) I(Xp,Yp) =Max
MX

i=1

4X

k=1

�k

i
+

SX

r=1

4X

k=1

�k

r (17)

s.t.
NX

j=1

� jx
k

i j
+ �k

i
x

k

ip
 x

k

ip
, k = 1, . . . , 4, i = 1, . . . ,M (18)

NX

j=1

� jy
k

rj
� y

k

rp + �
k

r y
k

rp, k = 1, . . . , 4, r = 1, . . . ,S, (19)

NX

j=1

� j = 1 (20)

�k

i
 �k+1

i
, k = 1, 2, 3 i = 1, . . . ,M, (21)

�k

r  �k+1
r , k = 1, 2, 3 r = 1, . . . ,S, (22)

�k

i
,�k

r ,� j � 0 i = 1, . . . ,M, r = 1, . . . ,S, j = 1, . . . ,N (23)

There exists a strong relationship between (FDEA2) and (FDEA3) as the

following theorem establishes.

Proposition 3. (�̃, �̃,�) is an optimal solution of (FDEA2), with � 2 RN
+ , �̃ 2190

(TrFN)M

+ and �̃ 2 (TrFN)S

+, if and only if its corresponding representation is an

optimal solution of (FDEA3), with � 2 RN
+ , �̃ = (�1

1, �
2
1, �

3
1, �

4
1, . . . , �

1
M
, �2

M
, �3

M
,

�4
M

) 2 R4M

+ and �̃ = (�1
1,�

2
1,�

3
1,�

4
1, . . . ,�

1
M
,�2

M
,�3

M
,�4

M
) 2 R4S

+
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Proof. It is not di�cult to see that the constraint conditions (11) - (15) in (FDEA2)

are equivalent to the constraint conditions (18) - (23) in (FDEA3). The rest of195

the proof is straightforward. ⇤

Corollary 1. The optimal objective function value of models (FDEA2) and (FDEA3)

coincide and, therefore, given (X̃, Ỹ) 2 TFDEA with corresponding representation given

by (X,Y) 2 R4M ⇥R4S
, it follows that I(X̃, Ỹ) = I(X,Y).

Corollary 2. If a DMU p is e�cient, then I(Xp,Yp) = 0.200

In addition to providing the ine�ciency measure for each a DMUp, the pro-

posed (FDEA3) model provides fuzzy input and output targets (X̃target

p , Ỹtarget

p )

given as

X̃
target

p =
NX

j=1

�⇤
j
X̃j (24)

Ỹ
target

p =
NX

j=1

�⇤
j
Ỹ j (25)

Note that the targets computed by model (FDEA3) for a given a DMU p are

e�cient, i.e. Ĩ(X̃target

p , Ỹtarget

p ) = 0̃.205

Before presenting a numerical example to illustrate the proposed approach

it may be interesting, as one of the reviewers inquired, to clarify the meaning

of the fuzzy input and output slacks computed by the proposed approach. In

this regard, we have to distinguish the interpretation in mathematical terms

from its interpretation in economic/managerial terms. As regards the latter, the210

interpretation is the same as in conventional DEA, i.e. input slacks represent

excess input consumption and output slacks represent output shortfalls. The

former imply an ine�cient use of the resources and the latter correspond to

an underperformance in the production of the outputs. It is interesting to note

that both e↵ects occur simultaneously, i.e. the input reduction and the output215

increase can (and should) both be achieved at the same time.

The mathematical interpretation of the slacks is simple in the crisp case but

more subtle in the fuzzy case. That is probably the reason why some FDEA
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Table 2: Observed DMUs and results of proposed FDEA approach

DMU
Input Output

Ĩ(x̃, ỹ)
Input Target Output Target

x̃ ỹ x̃
target

ỹ
target

A (1, 3, 4) (2, 3, 4) (0, 0, 0) (1, 3, 4) (2, 3, 4)

B (3.5, 4, 4.5) (1.5, 2.5, 3.5) (0.36, 0.36, 0.36) (1.50, 3.375, 4.50) (2.75, 3.75, 4.75)

C (3, 4.5, 6) (5, 6, 7) (0, 0, 0) (3, 4.5, 6) (5, 6, 7)

D (6, 6.5, 7) (2.75, 4, 5.25) (0.47, 0.47, 0.47) (3, 4.5, 6) (5, 6, 7)

E (5, 7, 9) (4.5, 5, 5.5) (0.44, 0.53, 0.6) (3, 4.5, 6) (5, 6, 7)

F (7.5, 8, 8.5) (3, 3.5, 4) (0.96, 1, 1.04) (3, 4.5, 6) (5, 6, 7)

G (9, 10, 11) (5.5, 6, 6.5) (0, 0, 0) (9, 10, 11) (5.5, 6, 6.5)

H (5.5, 6, 6.5) (0.5, 2, 3.5) (1.08, 1.08, 1.08) (3, 4.5, 6) (5, 6, 7)

approaches consider crisp slacks. However, we believe that, since the observed

inputs and outputs are fuzzy, their corresponding slacks should also be fuzzy.220

This makes a lot of sense. Thus, since there is uncertainty in the observed

data, it is logical that there be uncertainty on the amount that they can be

improved. Similarly, this uncertainty also reaches the input and output targets

to be achieved to be e�cient.

4. Numerical example225

Let us consider the dataset from León et al. [30], with only one fuzzy input

and one output fuzzy, to illustrate the proposed approach. Table 2 shows the

observed data, given as triangular fuzzy numbers, in the first two columns.

The third column reports the fuzzy ine�ciency measure Ĩ(X̃, Ỹ), which in this

single-input, single-output case simplifies to Ĩ(x̃, ỹ) = �̃+ �̃. The variables �̃ and230

�̃ have been computed solving (FDEA3) problem and re-writing the solution

in its equivalent fuzzy parametrization as described at the previous section.

Finally, the two last columns provide the input and output targets computed

using (24) and (25), respectively. Note that, among these 8 DMUs, we have

that five of them are clearly ine�cient, since their Ĩ(x̃p, ỹp) , 0̃, whereas we235

have only three possible e�cient DMUs, namely A, C, and G. Recall that a null
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Figure 2: Observed DMUs and their corresponding targets marked with blue triangles. The thick,

gray line joining DMUs A and C is a crisp approximation of the true fuzzy e�cient frontier.

ine�ciency measure is a necessary but not a su�cient condition for establishing

the e�ciency of a DMU.

This simple example also allows us to illustrate the proposed FDEA ap-

proach graphically as regards the e�ciency status classification. Thus, Figure 2240

shows the observed DMUs, labeled A to H. The plotted horizontal and vertical

error bars represent the 0�level (i.e., the closure of the support) of the corre-

sponding trapezoidal fuzzy number, for both the input and output dimensions.

The targets computed by the proposed approach are marked with blue trian-

gles and its corresponding horizontal and vertical error bars. Note that DMUs245

A and C are e�cient, and hence, they are projected onto themselves. The e�-

ciency status of DMU G is undetermined, its ine�ciency score Ĩ(x̃G, ỹG) is zero

although it is not projected onto itself but onto DMU C. Ine�cient DMUs D,

E, F, and H are projected onto DMU C while the remaining ine�cient DMU

(namely DMU B) is projected onto a target that is a linear convex combination250
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Table 3: Comparison with other FDEA approaches

Method ↵-level A B C D E F G H

León et al. (2003) [30] 0 1 1 1 0.7500 0.6429 0.6050 1 0.6923

(Radial e�ciency) 0.5 1 0.9412 1 0.6623 0.6172 0.5227 1 0.6400

0.75 1 0.8675 1 0.6144 0.6010 0.4776 1 0.5854

1 1 0.7500 1 0.5385 0.5714 0.4062 0.45 0.5000

Saati et al. (2002) [38] 0 1 1 1 1 1 0.640 0.867 0.764

(Radial e�ciency) 0.5 1 0.764 1 0.706 0.835 0.462 0.628 0.457

0.75 1 0.602 1 0.574 0.668 0.390 0.533 0.343

1 0.750 0.469 1 0.462 0.536 0.328 0.450 0.250

Hatami-Marbini 0 6 7 2.333 8.25 8.5 9.5 9.5 10

et al. (2012) [24] 0.5 0 5 0 6.125 6 7.75 7.5 7.75

(Sum of slacks ine↵.) 0.75 0 4 0 5.063 4.75 6.875 6.5 6.625

1 0 2.5 0 4 3.5 6 5.5 5.5

I(xp, yp) – 0 1.071 0 1.429 1.584 3.013 0 3.231

of DMUs A and C. The thick grey line joining these DMUs is an approximate

crisp representation of the true fuzzy e�cient frontier.

Figures 3 and 4 show the solutions, for each of the DMUs, computed by

the proposed approach (FDEA). For each DMU, the left panel shows, in blue

color, the fuzzy ine�ciency measure Ĩ(x̃, ỹ) = �̃ + �̃. The middle panel shows255

the input data (in black color) and the input target (in magenta color and dash

line). The right panel, shows the output data (in black color) and the output

target (in magenta color and dash line). When a DMU p is ine�cient not only

Ĩ(x̃p, x̃e) , 0̃ but also its input target is shifted to the left (i.e. the original input

is reduced) whereas its output target is shifted to the right (i.e. the original260

output is increased).

Finally, in Table 3, the results of the proposed approach are compared with

those of other fuzzy DEA approaches, namely [30], [38] and [24]. The last

row of the table considers the crisp ine�ciency measure I(xp, yp) computed by

model (FDEA3). For the ine�cient DMUs, with I(xp, yp) > 0, their e�ciency265

measurements from [30] and [38] are less than one for nearly all the ↵ levels.

Equivalently in the case of [24], the corresponding sum of slacks is greater than

17



zero for all ↵ levels. On the other hand, for the three DMUs with I(xp, yp) = 0,

and therefore possibly e�cient, their e�ciency scores from [30] and [38] are

equal to one for all ↵ levels in the case of DMUs A and C and for some alpha270

levels in the case of DMU G. The sum of slacks computed by [24] are zero for

DMUs A and C for most ↵�levels and greater than zero for DMU C for all

↵�levels.

5. Conclusions

In this paper, a new fuzzy DEA slacks-based measure of ine�ciency has275

been proposed. It requires solving a crisp linear optimization model and allows

computing corresponding input and output targets. The normalized character

of additive metric used in the objective function implies that it is units invari-

ant. Computational experiments have been presented to validate the proposed

approach and compare it with existing fuzzy DEA methods.280

One of the advantages of the proposed approach with respect to other more

complex approaches is that, apart from computing e�ciency scores, it focuses

on the input and output improvements that can be achieved, called slacks in

DEA parlance. These improvements are also expressed in the form of e�cient

targets and provide managers with useful information on the variables on285

which the improvement e↵ort should be concentrated and the extent of those

e↵orts. Most existing FDEA approaches, particularly but not only those that

use multiplier formulations, do not provide e�cient targets and thus their

managerial usefulness is limited.

A limitation of the proposed approach is that a null value of the computed290

ine�ciency score is a necessary nut not su�cient condition for e�ciency, i.e. it

cannot discriminate between e�cient and weakly e�cient DMUs. This issue

does not happen in the crisp DEA case, in which maximizing the sum of

input and output slacks guarantees e�ciency. This highlights the di↵erences

between the crisp and fuzzy data scenarios. Devising an appropriate phase295

II, as in radial DEA approaches, is a topic for further research. Extending the
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Figure 3: Solutions of proposed FDEA approach for DMUs A to D.

proposed to include undesirable outputs is also a worthy endeavour.
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Figure 4: Solutions of proposed FDEA approach for DMUs E to H.
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