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Abstract: Good air quality is essential for both human beings and the environment in general. The
three most harmful air pollutants are nitrogen dioxide (NO2), ozone (O3) and particulate matter. Due
to the high cost of monitoring stations, few examples of this type of infrastructure exist, and the use
of low-cost sensors could help in air quality monitoring. The cost of metal-oxide sensors (MOS) is
usually below EUR 10 and they maintain small dimensions, but their use in air quality monitoring is
only valid through an exhaustive calibration process and subsequent precision analysis. We present
an on-field calibration technique, based on the least squares method, to fit regression models for
low-cost MOS sensors, one that has two main advantages: it can be easily applied by non-expert
operators, and it can be used even with only a small amount of calibration data. In addition, the
proposed method is adaptive, and the calibration can be refined as more data becomes available.
We apply and evaluate the technique with a real dataset from a particular area in the south of Spain
(Granada city). The evaluation results show that, despite the simplicity of the technique and the low
quantity of data, the accuracy obtained with the low-cost MOS sensors is high enough to be used for
air quality monitoring.

Keywords: air quality; metal-oxide sensor; monitoring; multivariable regression models;
model calibration

1. Introduction

Good air quality is essential for both humanity and the natural environment. Economic
activities such as energy production, industry and agriculture, as well as the dramatic rise
in traffic, release air pollutants into the environment that can lead to serious problems for
our health [1]. In fact, the poor quality of air is the cause of more than 400,000 premature
deaths in Europe each year, as well as a decrease in quality of life by causing or exacerbating
asthma and respiratory problems [2,3].

There are several pollutants involved in air quality characterization, such as SOx, CO,
NOx, O3, or particulate matter pollution [4,5]. From all of them, three of the most harmful
air pollutants, in terms of damage to ecosystems, are nitrogen dioxide (NO2), ozone (O3)
and particulate matter (specifically PM2.5, which is directly related to traffic) [6–9]. Thus, it
is very important to monitor and analyze these elements in the air, especially in towns and
cities, in order to detect dangerously high levels and take actions to reduce pollution [10,11].

In this regard, several agencies around the world are responsible for the air quality
monitoring of their corresponding regions, such as the European Environment Agency
(EEA) in Europe, or the Environmental Protection Agency (EPA) in the United States. Their
data give relevant and reliable information to policymaking agents [12]. In particular, the
use of air quality models to assess the potential changes in urban air quality concentrations
is a fundamental element of air quality management. In this type of modeling, the input
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data require high spatio-temporal resolution to capture the variability in the urban environ-
ment. However, one of the main technical difficulties nowadays is the lack, or low quality,
of input data on concentrations [13]. Due to the high cost of monitoring stations, only a
few examples of this type of infrastructure have been deployed in cities, providing limited
spatial coverage [14].

In order to address this problem, recent environmental agencies’ reports suggest that
cities should participate in the input data acquisition, complementing official monitoring
data with additional measurements of local air quality [13]. In this sense, the cities are
increasingly aware of the potential for low-cost ‘citizen science’ sensors to help support the
results of their air quality modeling [15,16]. These sensors offer air pollution monitoring at
a lower cost and smaller size than conventional methods, making it possible for them to be
installed in many more locations [17–19]. However, the accuracy of input data in air quality
modeling is as important as the quantity of measures. Thus, the use of citizen science and
citizen participation in air quality monitoring by means of these low-cost sensors is only
feasible if they can provide accurate information [20,21].

Currently, the three most popular types of low-cost air quality sensors are electrochem-
ical sensors (EC), metal-oxide sensors (MOS) and photoionization detectors (PID) [22,23].
Since the objective is to achieve the widest possible distribution of air monitoring sensors
in cities, their price is an essential factor. In this sense, the cost of EC and PID sensors is
prohibitive for most consumers (they can cost more than EUR 100). On the contrary, the
cost of MOS sensors, which are usually below EUR 10, as well as their small dimensions,
make them an excellent option for use by citizens [24,25]. However, it should be noticed
that, in air quality monitoring, the pollutant concentration that sensors should capture is
usually very small: in the order of parts per billion (ppb) or “µg/m3”. In this sense, the
World Health Organization (WHO) casts some doubts on the reliability of low-cost sensors
when the calibration methods provided by manufacturers are employed, because these
methods may be questionable regarding very low concentrations [26]. Thus, the WHO, as
well as the EEA [10], only recommends the use of these devices for air quality monitoring
through an exhaustive calibration process and subsequent precision analysis [27,28].

In most of the works in the literature, sensor calibration is performed under laboratory
conditions [29–31]. In this type of approach, controlled environments are created by
injecting known concentrations of the specific pollutants to be measured. However, in
these ideal laboratory conditions, other variables that are present in real environments are
not taken into account. On the one hand, there could be particles of other components
that are different from the pollutants to be measured in the specific region where the
sensors should be used which are not considered in a laboratory. On the other hand,
although other environmental factors in the specific region can be simulated in a laboratory,
such as the temperature and relative humidity of the air, they may differ from the actual
conditions [32].

In order to face these problems, several on-field calibration techniques have been pro-
posed in the literature [33–36], which are based on the data obtained from the monitoring
stations of the regional government agencies. This way, sensors are calibrated using the
specific environmental conditions of the region where they will be used, and are, therefore,
adapted to its temperature, humidity and air composition. In most of these works, the
proposed calibration techniques are complex and not very intuitive, and they are applied
by experts in the field. In addition, in those studies, a large amount of calibration data
is available from sensors, since they have been placed close to the reference monitoring
stations for long periods of time. However, we should remember that the objective of
these low-cost sensors is the use of citizen science and citizen participation in air quality
monitoring. Thus, in real situations, the sensors will be calibrated by field workers who are
usually not so expert in applying complex techniques, and the available data for calibration
may be limited, since locations close to monitoring stations cannot be used for long periods
of time.
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In this work, we present an on-field calibration technique for low-cost MOS sensors
that tries to solve both problems commented on above: it can be easily applied by non-
expert operators, and it can be used even with only a small amount of calibration data. The
proposed technique is based on the well-known regression analysis tool [37–39], which
is widely used for data modeling in a great variety of fields. In our approach, we have
studied the different kinds of regression techniques in the literature, and we have selected
the most appropriate one, taking into account the number of independent variables, the
type of dependent variables and the shape of the regression curve. We apply and evaluate
this technique with a real dataset from a particular area in the south of Spain (Granada city).
The training and test data were used to fit and validate the model, respectively, using the
R software [40]. The evaluation results show that, despite the simplicity of the technique
and the low quantity of data, the accuracy obtained with the low-cost MOS sensors is high
enough to be used for air quality monitoring. In addition, the proposed method is adaptive,
in the sense that the calibration can be refined as more data become available.

The rest of the paper is organized as follows. In Section 2, we briefly present the
sensors that are usually employed to measure the air pollutant concentrations, giving more
details to the low-cost MOS used in this work, we describe and analyze the dataset used to
validate the calibration technique, and we explain the calibration methodology. In Section 3,
we apply this methodology to fit the pollutant concentrations corresponding to ozone (O3),
nitrogen dioxide (NO2) and carbon monoxide (CO). The obtained results are statistically
studied and discussed in Section 4, while Section 5 contains the main conclusions of this
paper.

2. Material and Methods
2.1. Sensors

Before going into details about the sensors used in this work to measure air pollutant
concentrations, we should clarify that the unit selected to express these concentrations will
be “µg/m3” because this is the form used by the European Commission for regulation in
the European framework.

The European air quality standards set by the Ambient Air Quality Directive (EU,
2008) for the protection of human health [41], the air quality guidelines (AQGs) set by the
World Health Organization (WHO) [42], and their subsequent revisions, define several
aspects of values for the different pollutants, like typical qualitative levels, the averaging
period, the time by which limit values can be overcome in a year, or alert values. In Spain,
there are certain laws that refer to these standards; the most recent of their revisions were
passed on 28 January 2011 in the form of the directive RD102/2011. Table 1 shows some of
its aspects.

Table 1. Qualitative levels as referred to for the quantitative levels of each pollutant, and the averaging period used in each
of them, following the European EEA standards.

Qualitative
Index

SO2 µg/m3

(24 h Average
Value)

O3 µg/m3

(8 h Average
Value)

NO2 µg/m3

(1 h Average
Value)

CO µg/m3

(8 h Measured
Value)

PM10 µg/m3

(24 h Measured
Value)

Good 0–63 0–60 0–100 0–5000 0–25
Moderate 63–125 60–120 100–200 5000–10,000 25–50

Poor 125–187 120–180 200–300 10,000–15,000 50–75
Very Poor >187 >180 >300 >15,000 >75

As mentioned in Section 1, in this study we have proposed the use of MOS sensors,
since they are the most accessible to users from an economic point of view. These sensors
are composed of a semiconductor layer, generally, tin dioxide (SnO2), which makes them
especially sensitive to other oxides, and, by controlling the doping of the semiconductor,
it is possible to make the material more sensitive to certain parameters. Therefore, when
there are higher concentrations of these parameters in sampled air, the conductivity of
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this layer changes its values. It is worth mentioning that this conductivity keeps a direct
relation with temperature, and, in general terms, they change in a proportional form. In
addition, it should be noticed that, after a certain temperature, the sensibility to target
gases can decrease, negatively affecting the quality of sensor detection. To take advantage
of this property, electrodes are inserted into the detection layer of the sensor in order to
increase its temperature in a controlled way (by using a heating circuit, such as a voltage
divider with resistors) [43–45].

In particular, the MOS sensors used in this work are the ones incorporated in the de-
vices developed in the “EcoBici (Kers bike)” research project (file number G-GI3002/IDIC)
which resulted in a patented invention, application number P201600319 and publication
number ES2638715 [46]. These devices were designed to take air quality values, accumulat-
ing the data and being able to configure the time in which the averages are sent to a web
server, in real time, through the deployment of a sensor network using XBee technology
(protocol ZigBee). The parameters measured by these devices are CO, O3 and NO2. It
should be noticed that these sensors are non-specific sensors since they can measure other
gases apart from the main gas [43], but these secondary gases are not those considered in
this paper. It is worth mentioning that O3 and NO2 are linked by the Leighton relationship.
Nevertheless, the proposed methodology is not affected by this relationship since it is
already considered in the parameter estimation.

For the calibration tests, the devices were adapted to send the temporal average of the
three parameters every 10 min in order to be synchronized with the calibration equipment.
Figure 1 shows the three sensors incorporated in EcoBici end devices, which include an
MQ-7 sensor for CO measuring [43], an MQ-131 sensor for O3 [44] and an MiCS-2714
sensor for NO2 [45].
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Figure 1. Telemetering devices from the EcoBici project.

The concentration values given by the curves in datasheets [43–45] are much higher
than the values that should be measured in terms of air quality. Although some of the
sensor manufacturers guarantee that the device is able to detect the presence of gas at tens
of ppb, our own experience can confirm the information from the WMO, cited in Section 1,
and discourage the use of these curves for low concentrations.

In order to carry out the measurement campaign for field calibration, we used the
highly sophisticated equipment located in the sampling stations belonging to the Environ-
ment Council of the Andalusian government. In these sampling stations, which are mostly
composed of measurement analyzers, the pollutant concentrations are taken continuously,
24 h/day, 365 days per year, except for breakdowns. The cost of this type of equipment
generally exceeds the barrier of EUR 10,000, and it is used to analyze a single parameter. It
should be noted that each autonomous community or region has its own criteria to collect
the data. In the case of Andalusia, the analyzers used in their stations take a sample of the
ambient air, previously conditioned and homogenized, and analyze it in periods ranging
from 10 s to 10 min, depending on the pollutant to be analyzed. This information is aver-
aged in 10 min periods, stored and published by the Spanish Ministry of Air Quality [47],
and on the Andalusian Council website (available from the following day) [48].
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In order to select the most suitable sampling stations for calibration campaigns, several
factors should be taken into account, such as the latest calibration reviews of the station,
accessibility, and measurements range obtained of the different parameters in the station in
several days. Regarding the data range, it is highly important to choose a station that can
provide a wide range of values in the different parameters to be calibrated. For example, if a
station where quantitative O3 values do not exceed 50 ppb after several days is selected, the
sensor may not be properly calibrated for higher concentration values. According to this
criterion, a station localized in Granada city was selected from more than 100 Andalusian
Council monitoring stations. Figure 2 shows a photo of the Granada sampling station,
where it is possible to identify the EcoBici devices on it, next to the station analyzers.
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Finally, it is important to take into account the particular conditions of temperature
and humidity in Granada city, since both parameters affect the best adjustment of sensors,
as will be seen in the data section. In fact, both parameters were requested by the agency in
charge of the sampling station after the measurement campaign. In any case, if these data
could not be obtained from the corresponding agency, another option would be to place
temperature and humidity sensors in the devices.

2.2. Description of Dataset

The real dataset of the work in the present paper involves measurements, taken by
both analyzers and sensors, of three particular gaseous pollutants: ozone, nitrogen dioxide
and carbon monoxide, in addition to temperature and humidity measurements by the
agency. The observations are collected in 490 registers which were taken from midnight,
00:00 h, 08/05/2016 until 09:30 h, 11/05/2016, at a ten-minute frequency. The respective
pollutant variables corresponding to the analyzers, from now on also called patterns, have
been denoted as “O3”, “NO2” and “CO”, the respective pollutant variables corresponding
to the sensors as “O3s”, “NO2s” and “COs”, the temperature variable as “temp”, and the
humidity variable as “hum”. To obtain a better fit of the models, we have added a new
variable, called “COsR”, which is a version of COs without trend. The rectified COsR time
series has been obtained by the ratio of the sensor values and its adjusted least squares
regression line. Moreover, we have translated the time series to the sensor range modifying
the scale. Therefore, finally, we count 9 variables of work in the dataset: temp, hum, O3,
NO2, CO, O3s, NO2s, COs and COsR.

The following sections show how to predict the pattern values for the gaseous pol-
lutants O3, NO2 and CO, applying multivariable regression models and selecting the
best fit by using the measurements of the sensors, O3s, NO2s and COs, and the values of
temperature and humidity. That is, a general expression of the model would be:

Y = f(X1, X2, . . . , X5), (1)
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where Y represents the pattern values, (X1, X2, . . . , X5) represent the measurements of
the sensors and the temperature and humidity values, and f represents the convenient
functional form of the model.

2.3. Methodology

The prediction and model assessment (or validation) are closely related to each other.
Particularly, in our task, several models have been considered, of which, those that we
have observed to best fit in each case will be analyzed and presented. It is important to
mention that, although we have considered different more complex functional forms for
the regression models, they have not managed to significantly improve the fits obtained by
simple multilinear regression models in all cases. Therefore, the expression of the model
used for the fit takes the form:

Y = α0 + α1 X1 + α2 X2 + α3 X3 + α4 X4 + α5 X5, (2)

where αi ∈ R, for i = 0,1, . . . ,5, are the independent term and the contribution of the
variables Xi in the model. Both fitting to a dataset and choosing the best multilinear
regression model can be easily done using the lm and step functions from the R stats
package (there are many works on the internet that show how to do it, such as [49,50]).

In order to evaluate the best fitting model, we have performed the following method.
We have split the sample into two disjoint subsets to estimate the prediction error, treat-
ing one subset as the training set and the other as the test set (split by vertical lines in
Figures 3 and 4). We used the training set to regress each gaseous pollutant on the rest of
the variables. Afterward, we predicted a new gaseous pollutant value by applying the
fitted model to the new values of the test set. The prediction was compared with the real
response value and the prediction ability of the regression model. This provided a measure
for the quality of the prediction, which was evaluated by its mean squared prediction error.
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Training and Test Sets

The methodology applied for each pollutant is similar. Firstly, we evaluate the different
regression models using the dataset with all records and choose the one that best fits.
Secondly, in order to perform a prediction test, we divide the whole dataset into two
subsets: the training dataset and the test dataset.

The training dataset contained the measurements corresponding to the period from
00:00 h on 08/05/2016 until 08:00 h on 10/05/2016. Thirdly, using this subset, we fit the
regression model chosen by fixing the coefficients of the model using the least squares
method. The test dataset contained the measurements corresponding to the period from
08:10 h on 10/05/2016 until 09:30 h on 11/05/2016. It is important to mention that the test
dataset contained an entire daily cycle, which let us include the possible daily periodicities.
Fourthly, with the regression model fitted in the previous phase, we obtain the predictions
for the test dataset and compare the results with respect to the pattern values of the test
dataset.

3. Results
3.1. Analysis of Dataset

We can observe in Figure 3a that, in a different proportion, the evolution over time
of the measurements taken by the sensor for nitrogen dioxide is closely related and also
directly to the pattern values. In addition, in the same sense, we can observe in Figure 3b
that there is a high association between ozone measurements, but in this case with an in-
verse relationship. The previous observations are supported by the correlation coefficients:
ρ(O3,O3s) = −0.8227, ρ(NO2,NO2s) = 0.6118.

In Figure 3c, we do not observe the existence of an evident relationship between the
carbon monoxide measurements captured by the sensor and its corresponding pattern
values. In addition, ρ(CO,COs) = −0.3735, which is a low correlation. In line with COs, it is
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possible to appreciate the existence of a decreasing trend in concentration over time that does
not exist in the pattern values curve. In order to better visualize any relationship, we have
decided to eliminate the slope of the curve, creating the new variable COsR. However, as we
can see in Figure 3d, there is still no evidence of any relationship after removing the slope,
and, in this case, an even lower correlation is obtained (ρ(CO,COsR) = −0.1467). We kept
the variable COsR in the dataset because the results in the model-fitting work improved.

3.2. Fitting Ozone
3.2.1. Selection of the Model

In the case of ozone, first, we considered a multilinear regression model with different
combinations among the measurements of the sensors for O3s, NO2s and COs, in addition
to the temperature and humidity measurements. Afterward, we chose the measures of
COs instead of its version without a decreasing trend, COsR, obtaining a better adjustment
and results. In particular, the model that best fits is:

O3 = α0 + α1 COsR + α2 NO2s + α3 O3s + α4 temp + α5 hum, (3)

where αi ∈ R, for i = 0,1, . . . ,5.
Adjusting the model by the least squares method to the dataset with all records,

we obtain the αi values contained in Table 2. We observed that all variables considered
were significant for the model. In addition, we know that the model manages to explain
75.08% of the total variability of O3, and the predictions of the model have a correlation
of 0.8665 with the measures of the O3 pattern. In the left plot of Figure 5, we compared
the values predicted by the model with the measurements of the O3 pattern. We can see
in the histogram of the net prediction errors of the model that visually these do not differ
too much from adjusting to a normal distribution (although the normality hypothesis was
rejected when the Shapiro–Wilk test was applied).

Table 2. The table contains the summary of the model described in Equation (3), adjusted to the
dataset with all records. We can see the estimated values and the standard errors of the coefficients,
the test statistics and p-values of their significance tests (for i = 0,1, . . . ,5, the null hypothesis is αi = 0),
the statistics of the residuals and the goodness of fit.

Coefficients Estimate Std. Error t Value p-Value

α0 −406.43899 54.43049 −7.467 3.85 × 10−13

α1 0.66569 0.07036 9.461 <2 × 10−16

α2 0.09424 0.02109 4.468 9.82 × 10−6

α3 −0.56357 0.03175 −17.752 <2 × 10−16

α4 −1.01488 0.31333 −3.239 0.00128
α5 −0.44478 0.07294 −6.098 2.20 × 10−9

Residuals:
Min 1Q Median 3Q Max
−31.110 −5.171 1.232 6.224 30.671

R-squared: 0.7508
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3.2.2. Evaluation of the Selected Model

Now, adjusting the model by the least squares method to the training dataset, we
obtain the αi values contained in Table 3. We can see that all variables considered in the
model are significant and that it manages to explain 71.27% of the total variability of O3 for
the training dataset. In Figure 6, for the test dataset, we can compare the values predicted
by the model with the measurements of the O3 pattern and, in the histogram of the net
prediction errors of the model, we can observe that these do not differ from a normal
distribution. In addition, applying the Shapiro–Wilk test, we obtain a p-value of 0.4424,
being able to consider the net prediction errors as normal, with mean µ = −4.2807 and
standard deviation σ = 10.8789. The predictions of the model have a correlation of 0.8824
with the measures of the O3 pattern for the test dataset.

Table 3. The table contains the summary of the model described in Equation (3), adjusted to the
training dataset.

Coefficients Estimate Std. Error t Value p-Value

α0 −413.68158 69.18787 −5.979 5.81 × 10−9

α1 0.69410 0.08865 7.830 6.68 × 10−14

α2 0.10644 0.02793 3.812 0.000165
α3 −0.61144 0.04218 −14.497 <2 × 10−16

α4 −1.99947 0.42228 −4.735 3.25 × 10−6

α5 −0.43273 0.08206 −5.274 2.42 × 10−7

Residuals:
Min 1Q Median 3Q Max
−32.143 −4.406 1.603 5.626 19.206

R-squared: 0.7127
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3.3. Fitting Nitrogen Dioxide

As in the ozone case, firstly we have selected the best fit for nitrogen dioxide, which
corresponds to the following multilinear regression model:

NO2 = α0 + α1 COs + α2 NO2s + α3 O3s + α4 temp + α5 hum, (4)

where αi ∈ R, for i = 0,1, . . . ,5.
In Table A1 we can see the αi values when we fit the model to the dataset with all

records. It can also be seen that all variables are significant for the model, and that the
model manages to explain 68.10% of the total variability of NO2. The model predictions
have a correlation of 0.8252 with the NO2 pattern. In Figure A1, it is possible to compare
the NO2 values predicted by the model with those of the pattern and the histogram of the
net prediction errors of the model, which do not differ too much from adjusting to a normal
distribution.

To evaluate the chosen model, it was adjusted to the training dataset, obtaining the
αi values contained in Table A2. In this case, all variables considered are also significant
and it managed to explain 65.55% of the total variability of NO2. In Figure A2, for the test
dataset, we can see the NO2 values predicted by the model, and in the histogram of the
net prediction errors of the model, we can see that they also did not differ from a normal
distribution. The predictions of the model had a correlation of 0.8301 with the measures of
the NO2 pattern for the test dataset.

3.4. Fitting Carbon Monoxide

The selected model for carbon monoxide has the following expression:

CO = α0 + α1 COsR + α2 NO2s + α3 O3s + α4 temp + α5 hum, (5)

where αi ∈ R, for i = 0,1, . . . ,5.
In this case, adjusting the model to the dataset with all records, the model explains

57.93% of the total variability of CO, and the corresponding predictions have a correlation
of 0.7611 with the CO pattern. In Table A3 we can see the αi values that were obtained, all
variables being significant. We can also see the predictions of the model and the histogram
of its net prediction errors in Figure A3.

Regarding the evaluation of the selected model, once it was adjusted to the training
dataset, it explained 47.49% of the total variability and its predictions had a correlation of
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0.7769 with the CO pattern. All variables considered are significant for the model, as we
can see in Table A4, in addition to the values of the coefficients. In Figure A4, for the test
dataset, we can observe the CO values predicted by the model and the histogram of the net
prediction errors of the model, which do not differ from a normal distribution.

4. Discussion

We observed that all the models generated overcame the global significance contrasts
(p-values < 0.01) and almost all the individual significance contrasts. In particular, the
p-values of NO2s from Tables A3 and A4 show that the null hypothesis cannot be rejected
by 10% of the significance level (0.09886 and 0.15552, respectively), the reason why the
coefficient of NO2s in the model of CO is statistically equal to 0. Nevertheless, when this
variable is removed from the model, although it simplifies it, neither the adjustment nor
the prediction improves. Furthermore, an extension of the dataset will induce the NO2
sensor to have a higher influence in the model, providing a better fit for them, as happens
with the other pollutants. For this reason, we decided to keep this variable in the model.

Focusing on ozone measurements, and considering all the datasets, the model ob-
tained explains 75.08% of the variability of the data (R-squared), leaving less than 25%
to the residuals. We also observed a high direct correlation (0.8665) with the measures
of this pollutant pattern. This coefficient indicated a good correspondence between the
observations and the predictions of this sensor. Moreover, the histogram of the prediction
errors was not normally distributed (Shapiro–Wilk test rejected), although we observed a
rough 0 symmetry distribution (Figure 5b).

Nevertheless, when we consider the training dataset for this pollutant, the least square
model when adjusted has a lower value of R-squared (71.27%), although it is close to the
previous goodness of fit. In this case, the model overcomes the Shapiro–Wilk test on the
prediction errors (they follow a normal distribution n(−4.28;10.88), p-value = 0.4424). It
can be seen that 95% of the central prediction errors are between −23 and 12.2 µg/m3 with
a median of −4.2 µg/m3. The interquartile range is 13.1 µg/m3. In the boxplot shown
in Figure 7a, we observe only 3 outlier values from 337 data points. In Figure 7b, the
theoretical normal quantiles, compared to prediction errors, display a good agreement in
the central quantiles (points near the straight blue line).
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In the case of nitrogen dioxide, we observed that the model obtained explained 68.10%
of the variability with a 0.8252 correlation with the NO2 pattern. The prediction errors
histogram has a slight right asymmetry, although it does not differ excessively from a
normal distribution (Figure A1b). Focusing on the training data, we observed a similar
value of R-squared (65.55%), and the prediction errors were distributed with the same right
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asymmetry as before. The mean value of the prediction errors was negative (−11.5 µg/m3),
with a standard deviation of 12.14 µg/m3. These values indicated that the prediction
values were greater than the real values, so the model overestimated the NO2 values.
The asymmetric coefficient is 0.4292, so the distribution shows a right asymmetry with
more concentration of negative values of the prediction errors. This bias also shows that
the model was overestimating the pattern value measures. We found that 95% of the
central prediction errors are between −28.3 and 9.1 µg/m3 with a median of −12.6 µg/m3.
The interquartile range is 16.2 µg/m3. Figure 8a shows the rough symmetry of the NO2
distribution and Figure 8b presents the deviation of the theoretical normal quantities and
the NO2 prediction errors.
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Regarding the carbon monoxide values, we needed to use the detrended measures
of the CO sensor (COs) because the fit is better than COsR. In this case, the variability
explained is lower (57.93%) regarding all the data, dropping to 47.49% of the total variability
considering the training dataset. Clearly, the distribution of the prediction errors did not
follow a normal distribution, with a strong right asymmetry with some values well over
100 µg/m3 (asymmetric coefficient: 1.4045). The mean value is 29.84 µg/m3 with a standard
deviation of 55.51 µg/m3. These values indicate that the prediction values were lower than
the real ones, so the model underestimated the CO values. Clearly, the adjustment of CO
was not as good as the fit of the other pollutants, even after the detrending process. We
found that 95% of the central prediction errors were between −34.3 and 164.5 µg/m3, with
a median of −17.5 µg/m3. The interquartile range is also the highest one, with 53 µg/m3.
Figure 9a shows the clear right asymmetry of the CO distribution and Figure 9b presents
the deviation of the theoretical normal quantities and the CO prediction errors.
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5. Conclusions

In this paper, we present an on-field calibration technique for low-cost MOS sensors,
using an adaptive method based on multivariate regression and rigorous statistical anal-
ysis. The results show a good adjustment with, at worst, almost 50% of the variability
explained by the model. In particular, we found 71.27%, 65.55% and 47.49% of the vari-
ability explained for O3, NO2 and CO, respectively. Considering the short time interval
used to estimate the model (less than 2.5 days), and achieving these adjustment values, it is
expected that expanding the time series would improve the results.

In the case of O3, we obtained the best fit. Ozone prediction errors followed a symmet-
rical distribution with no bias (the Shapiro–Wilks normality test passed 95% confidence).
On the other hand, the NO2 and CO prediction errors distribution had a right symmetry,
which indicates a greater tail of the distribution in positive values. In these pollutants, the
prediction values are generally overestimated with respect to the pattern ones. Overall, we
observed a better quality on the fit with higher data.

We observed that the values of CO have the worst fit, which affected the R-squared
with the variables considered. To model it, we needed to detrend the sensor measures of
monoxide to include them in the calculus. Despite that, the prediction errors were greater
than the others, with an average of 29 µg/m3 and a marked right bias. We consider that
this lack of adjustment in CO was caused by the high time of response of the sensor, the
daily variability of this pollutant and the short time interval. Although its calibration may
be improved using other more complex models, we consider that for a first approach, the
linear multivariate regression is the best-balanced model.

Despite the limitations of the sensors and the dataset used, we obtained a good fit of
these gaseous pollutants with respect to the values of the analyzers, while using measure-
ments obtained with low-cost MOS sensors. After the application of our methodology, we
observed that the O3 and NO2 adjusted parameters can be used to give reliable information
to citizens and could be used by government agencies for policymaking.

In future works, we will explore other and more complex statistical modeling to
enhance the results. We will also verify the possibility of calibrating other MOS sensors
through the use of sensors calibrated with the proposed methodology, instead of using
control stations. In addition, two of the main disadvantages of the MQ-7 sensor are the
delay in the response of the measure and the discontinuous operation mode. In relation to
the delay, this is due to the fact that it was designed to measure in ranges 100 times greater
than those measured in air quality. Nowadays, new CO sensors working in continuous
mode, with the capacity for measuring lower concentrations, has emerged, and these will
be considered to replace MQ-7 sensors in future experiments.
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Appendix A

This section contains tables and figures that complement Sections 3.3 and 3.4.

Table A1. The table contains the summary of the model described in Equation (4) adjusted to the
dataset with all records.

Coefficients Estimate Std. Error t Value p-Value

α0 205.52408 13.85254 14.837 <2 × 10−16

α1 −0.38428 0.02208 −17.402 <2 × 10−16

α2 −0.10342 0.02386 −4.335 0.000017738
α3 0.48487 0.03688 13.146 <2 × 10−16

α4 4.89923 0.43472 11.270 <2 × 10−16

α5 0.41505 0.07775 5.338 0.000000144
Residuals:

Min 1Q Median 3Q Max
−29.964 −7.158 −1.064 5.946 45.364

R-squared: 0.681

Table A2. The table contains the summary of the model described in Equation (4) adjusted to the
training dataset.

Coefficients Estimate Std. Error t Value p-Value

α0 306.28198 23.25716 13.169 <2 × 10−16

α1 −0.56296 0.03834 −14.685 <2 × 10−16

α2 −0.12499 0.02869 −4.357 1.76 × 10−5

α3 0.53380 0.04452 11.989 <2 × 10−16

α4 6.29591 0.55686 11.306 <2 × 10−16

α5 0.72325 0.09612 7.525 5.04 × 10−13

Residuals:
Min 1Q Median 3Q Max
−25.390 −6.507 −0.237 5.456 40.765

R-squared: 0.6555
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Table A3. The table contains the summary of the model described in Equation (5) adjusted to the
dataset with all records.

Coefficients Estimate Std. Error t Value p-Value

α0 3604.9455 261.9849 13.760 <2 × 10−16

α1 −4.4098 0.3387 −13.021 <2 × 10−16

α2 0.1679 0.1015 1.654 0.09886
α3 1.1791 0.1528 7.716 6.90 × 10−14

α4 4.5623 1.5081 3.025 0.00262
α5 1.6188 0.3511 4.611 5.13 × 10−6

Residuals:
Min 1Q Median 3Q Max
−132.41 −26.88 −3.60 25.60 210.30

R-squared: 0.5793
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