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Introduction 

Herbivorous insects and mites, plant diseases and weeds are major impediments to the 

production of food crops. Farmers and growers are reliant on chemical pesticides for pest  

management, but the use of these agents is becoming more difficult due to the evolution of 

resistance in pest populations and product withdrawals, both of which are reducing the 

availability of effective compounds.  There are also an increasing number of new threats from 

non-indigenous (i.e. invasive) pest species (Pimentel et al., 2005). At the same time, farmers 

and growers are trying to reduce the amounts of conventional chemical pesticides used, in 

response to demands from retailers.    There is a requirement, therefore, to develop 

environmentally sustainable systems for controlling pests that are less reliant on chemical 

pesticides as the primary management tool.  For most farmers, in order to maintain 

profitability, this must be done without sacrificing crop quality and productivity.  The best 

way is through Integrated Pest Management (IPM) and Integrated Crop Management (ICM), 

which combine a range of complementary methods to reduce a pest population below its 

economic injury level while minimising impacts on other components of the agro-ecosystem, 
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thus taking into account the needs of producers, wider society and the environment (Kogan, 

1998).  Chemical pesticides are not ruled out. Indeed, there is a new generation of chemical 

products with very good environmental and human safety characteristics.  However, in ICM 

they are treated less as a blanket solution to crop protection and more as a precious resource, 

to be used selectively in ways that complement other methods and reduce the chances of 

resistance occurring.  ICM assumes a broad palette of available control methods. Other ICM 

compatible methods include biological, cultural and physical controls, host plant resistance, 

and decision support tools.  Yet, despite a wealth of evidence showing that they can be 

valuable components of ICM  (Dent, 2000), there are relatively few biopesticides (i.e. mass 

produced biological agents for inundative pest control) on the market in the UK. This is 

particularly the case for microbial control agents (MCAs).  We contend that a failings in the 

regulatory process has created a barrier to getting more products on the market, caused in part 

by failure to apply ecological theory to the environmental risk evaluation of products set 

within an overall regulatory framework that encourages innovation.  This paper reviews some 

of the ecological and environmental issues concerning biopesticides, the possible failures in 

the regulatory process and examples of possible ways forward for the future use of 

biopesticides1

 

. 

Microbial Biopesticides in Integrated Crop Management 

Biopesticides are mass-produced, biologically based agents used for the control of plant 

pests. They can be divided into three sub categories (Copping & Menn, 2000): (1) living 

organisms (primarily predatory insects, parasitoids, nematodes or micro-organisms); (2) 

naturally occurring substances, such as plant extracts or insect pheromones; and (3), as 
                                                 
1 This paper arises from research conducted as part of the UK Research Councils’ RELU Programme (award 
number RES-224-26-0048). RELU is funded jointly by the Economic and Social Research Council, the 
Biotechnology and Biological Sciences Research Council and the Natural Environment Research Council, with 
additional funding from the Department for Environment, Food and Rural Affairs and the Scottish Executive 
Environment and Rural Affairs Department. 
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recognised in some countries, such as the USA, genetically modified plants that express 

introduced genes that confer protection against pests or diseases (so called plant incorporated 

products).  Biopesticides are being used on increasing scales. For example, the management 

of invertebrate pests of protected edible crops in the UK and the Netherlands is now done 

mainly with natural enemies supplied by specialised companies (Van Lenteren, 2000).   

 

This paper concerns microbial control agents (MCAs) aimed particularly at the control of 

invertebrate pests.  MCAs are bacteria, protozoa, fungi or viruses that are natural enemies of 

phytophagous invertebrates, plant diseases or weeds and which are used for pest management 

(see Box 1).  These micro-organisms are widespread in nature and contribute to the natural 

regulation of their hosts.  They can also be used as tools for pest management and have a 

range of properties that make them desirable for ICM (Hajek, 2004).  The micro-organisms 

selected for use as MCAs do not naturally infect vertebrates, and so are considered safe to 

humans, livestock and vertebrate wildlife. They produce little or no toxic residue, and 

development and registration costs are significantly lower than those of synthetic chemical 

pesticides (Hajek, 2004; D. Edgecomb, AgraQuest Inc., Sacramento USA, personal 

communication).  They can be applied to crops using the same equipment used to apply 

chemical pesticides, and formulated in similar ways to pesticides to enhance their efficacy.  

However, it is their potential for self-perpetuating control that distinguishes them from 

chemical pesticides.  Many microbial agents have high levels of specificity, making their use 

compatible with the deployment of other natural enemies.  However, that host range can vary 

considerably depending on the type of control agent: thus, while entomopathogenic (i.e.  

insect pathogenic) baculoviruses are confined to a small number of closely related insect 

species or a single genus, some species of insect pathogenic fungi are able to infect hosts 

across a range of taxonomic orders (Tanada & Kaya, 1993).  
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Therapeutic microbial pest control agents are used in two main strategies. Firstly, the 

‘classical’ approach is through the introduction of a host-specific, non-endemic natural 

enemy for the suppression of an alien (i.e. invasive) pest.  One longstanding hypothesis is that 

invasive species become pests because, being in a new area, they have escaped their natural 

enemies (Torchin et al., 2003).  The introduced control agent is expected to establish 

permanently and spread within its new environment. This does not require the mass 

production of control agents and has been implemented mainly through government 

programmes. Classical biological control has achieved successful pest control in a number of 

cases, although in general there is a lack of long term, quantitative and objective monitoring 

(i.e. embedded in ecological theory) of such programmes, which makes evaluation of the 

overall costs and benefits difficult (Thomas & Reid, 2007).  Secondly, augmentation 

biological control involves the application of natural enemies without the expectation of 

permanent establishment.  It normally uses control agents supplied as products and has two 

forms: inoculative and inundative. Inoculative applications are based on pest control through 

the action of individuals of the released agent and their progeny (Hajek, 2004).  The agent is 

expected to persist within the pest’s environment although without permanent establishment.  

In contrast, inundative applications achieve rapid pest control by the mass application of 

individuals of the released agent only, with no expectation of control by their progeny. The 

efficacy of inundative control agents is dose dependent.  Inundative control using microbial 

agents is akin to the use of chemical pesticides, which may explain why it is the most widely 

used form of microbial control.  In reality, inoculation and inundation form a continuum, with 

the control agent persisting for varying periods depending on its biological characteristics, the 

availability of hosts, the ecological stability of the environment and the cropping system. For 
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example, the use of some microbial agents to control plant pathogens relies on the 

establishment of the agent within the local environment of the pathogen  (Whipps, 2001).   

 

The focus of this paper is on microbial agents used according to the augmentation approach 

to biological control.  There is little doubt that microbial products for augmentation biological 

control can make significant contributions to pest management as part of ICM (Dent, 2000, 

p223).  Yet there are marked differences in the availability of products in different countries 

(see below).  In this paper we explore opportunities to make product commercialisation more 

effective using (a) knowledge from microbial ecology to underpin environmental safety, and 

(b) insights from political science to provide innovation in the biopesticides regulatory 

system.  

 

Environmental safety considerations for microbial pest control agents used in 

augmentation biological control   

Accumulated experience by researchers and practitioners indicates that MCAs used in 

augmentation biological control can give effective pest control with minimal detectable 

negative impact on the environment (Vestergaard et al., 2003).  But there is a lack of meta-

analyses in the scientific literature of the long term impact of these agents.  Providing such an 

analysis could be of considerable benefit to regulators of MCAs.  Although detectable risks 

of MCAs are likely to be low, lack of evidence of negative effects does not mean that new 

microbial products should be exempt from safety testing, since different species and strains of 

a microbial species can vary significantly in host range, pathogenicity and other biological 

characteristics which can potentially affect environmental safety. Thus while there is a sense 

of urgency to the development of MCAs, a responsible approach is also required which puts 

their use within the context of environmental sustainability (Bidochka et al., 1996).  Effective 
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methodologies need to be in place to determine the impact on non-target organisms. Such 

methodologies should be informed by ecological theory, as part of the development of a 

wider theoretical framework for biological control, founded on the advance of ecological 

information and understanding, including insights made in recent years in community 

ecology and invasion biology (Pearson & Callaway, 2003; 2005).  It should not be forgotten 

that early introductions of alien generalist vertebrate predators, such as cane toads in 

Australia, were done without proper consideration of the risks and with a poor understanding 

of ecological principles, resulting in unacceptable environmental consequences (Thomas & 

Willis, 1998).   

 

Impacts on non targets can be direct or indirect (e.g. competition between introduced and 

indigenous natural enemies). An MCA with a high level of host specificity means that 

unwanted direct effects on non-target organisms are likely to be rare.  However, even host-

specific biological control agents can have impacts on non-target organisms through indirect 

effects (Pearson  &  Callaway, 2005).  The strength and nature of the impact will depend on 

the structure and dynamics of the community to which the MCA is introduced, the ability of 

the MCA to persist in the biotic and abiotic environment and, in the case of dose dependent 

MCAs, the size and density of its population. The ecological interactions determining the 

persistence and effects of the MCA are highly complex and include processes such as 

competition, predation / parasitism or synergism between the MCA and other natural enemies 

(Chandler et al., 1993; Roy & Pell, 2000; Lockwood, 1993).  Theoretical models indicate that 

the evolutionary relationships between microbial natural enemies and their hosts and / or 

habitats at a local scale is important for generating biological diversity in ecosystems 

(Dybdahl & Storfer, 2003). If microbial natural enemies are adapted to their local 
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environment, this could have profound implications for microbial pest control, including the 

efficacy of MCAs and effects on non targets. 

 

Since classical control is based on the deliberate introduction of  a non-indigenous natural 

enemy with the aim of permanent establishment, determination of host specificity is high on 

the agenda to ensure that agents released do not have negative effects on non-target 

organisms. There are well-established and proven systems for risk assessment and host range 

testing of classical control agents, led largely by researchers working on weed control 

(Andersen et al., 2005).  People who use biocontrol and regulators are also bound by the 

FAO code of conduct on the import and release of biological control agents (FAO, 1996).  Of 

course, host range evaluation is important for augmentative MCA products too, although 

procedures here have been criticised for concentrating on the physiological host range of 

agents (i.e. the potential host range as determined through laboratory bioassays) at the 

expense of studies of the ecological host range (i.e. the actual host range in the agro-

ecosystem) (Jaronski et al., 2003).   

 

Augmentative applications are not aimed at permanent establishment and the population of 

the released agent is expected to decline to background levels post application. Because the 

effects of these agents are dose dependent, any negative effects on non-target species should 

be temporary and last for as long as the agent persists.  Anecdotal experience with agents 

such as entomopathogenic fungi used for augmentation biological control would appear to 

back this up, with no detectable detrimental environmental impact (Goettel et al., 2001).  

Such experience has an important bearing on the risk evaluation of new products, but – as 

outlined above - this is not to say that evaluation of new products is not required.  To start 

with, inundative applications alter interaction in space and time between the microbial agent, 
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its hosts and the environment (Jackson, 2003).  If MCAs become used more widely, then the 

amount of environmental perturbation might increase.  MCA manufacturers are under 

commercial pressures to use inundative agents with a relatively wide host range which could 

impact on a larger number of non-target organisms in the environment.  Potentially, there 

could be unintended effects, for example, on the diversity and function of other natural 

enemies (including other strains of the MCA naturally resident in the area), or on sub-specific 

groupings of the target host species that are associated with non-crop plants (Lockwood, 

1993; Roy & Pell, 2000; Pearson and Callaway, 2003; Miller et al., 2003). Moreover, 

variation in the biological properties of different strains means that unexpected effects from 

new agents cannot be ruled out.  A priori, applications of control agents that are endemic to 

the area of release should not be expected to cause permanent disturbance. However, exactly 

which entities are classed as ‘endemic’ may be more complex than it seems at face value.  

For example, many fungal species classified on the basis of morphological criteria have been 

described as having worldwide distributions.  However studies using molecular tools and 

species concepts based on evolutionary biology indicate that an entity classified as a single 

species on the basis of morphology may in reality consist of an assemblage of ‘hidden’ or 

‘cryptic’ species with differing geographical or host ranges (Desprez-Loustau et al., 2007).  

For commercial reasons, proprietary MCAs may involve the use of non-endemic strains in 

the area of release which could have potential to impact on endemic strains or non-target 

organisms if they persist. Therefore providing fundamental data on diversity and 

biogeography of microbial natural enemies is a critical step in underpinning risk evaluation.  

 

We believe there is a strong case for making better use of ecological theory to develop a 

knowledge-based framework for biological control that includes the environmental risk 

evaluation of MCAs.  This should enable regulators and others to respond better to future 
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political developments based in part around potential conflicts of interest between 

stakeholders.  These are  associated with rising concerns for the conservation of biodiversity 

and threats from invasive species, set against the requirement to maintain or increase 

agricultural production without excessive reliance on chemical pesticides (for a discussion on 

the impacts of these tensions on the development of biological control agents, see Briese 

(2005)).  The development of MCAs has largely followed a chemical pesticide model that 

does not exploit fully the favourable biological properties of the agents, in particular the 

potential for self-sustaining control that results from varying degrees of persistence in the 

environment (Waage, 1997).  To make best use of these biological properties is likely to 

mean that more resources will have to be devoted to considering the potential and actual 

environmental impacts of MCAs, and the demands of that will depend upon the types of 

products developed.  There is commercial pressure from the manufacturing side to develop 

products, based on a single strain, that are broad spectrum in order to control a range of pests 

on different crop types and may not be endemic to the areas of application.  In contrast, 

environmentalists want to see narrow spectrum products based on strains taken from the area 

of use (Waage, 2001). In seeking to reconcile these divergent demands, it is important not to 

lose sight of the overall context. In particular, experience indicates that the products in use 

today have minimal negative environmental impact, while the potential impacts on the 

environment need to be balanced against the requirement for effective pest management. At 

the same time the potential environmental impact of MCAs needs to be seen against the 

impact of conventional chemical pesticides.  The bottom line is that we need to have systems 

of evaluation that: (a) prevent the approval of agents that cause harm; (b) do not inhibit 

unduly the development of commercial products; and (c) promote sustainable pest 

management.  
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Microbial biopesticides: why such a low take-up? 
 
Microbial  biopesticides represent less than 1% of the global market for agrochemical crop 

production (Hajek, 2004, p. 331).  Of that, ninety per cent of world sales are derived from 

commercial preparations based on just one entomopathogenic bacterium, Bacillus 

thuringiensis (Advisory Committee on Pesticides, 2004, p. 15). Data on microbial 

biopesticide agents from Agriculture and Agri-Food Canada (Kabaluk & Gazdik, 2005) and 

the US Environmental Protection Agency (EPA) indicates that more than 200 products are 

being sold in the US, compared to only 60 comparable products in the EU. In the UK only 5 

microbial products are currently being sold, compared to 10 in Germany, and 15 each in 

France and the Netherlands.   

 

There are various reasons why take up of biopesticides has been higher in the US than 

elsewhere.  EPA and the individual states register or license pesticides for use. It has a 

separate Biopesticides and Pollution Prevention Division (BPPD) which promotes the use of 

biopesticides as components of IPM programmes, and also co-ordinates the Pesticide 

Environmental Stewardship Program (PESP). This is a voluntary programme that forms 

partnerships with pesticide users in order to reduce the potential environmental and health 

risks associated with pesticide use and implement pollution prevention strategies. EPA also 

tests biopesticides for safety but not for efficacy (efficacy testing may result in higher costs 

for biological than chemical pesticides). An Interregional Research Project (IR-4 Project), 

meanwhile, has earmarked funds for biopesticide research and registrations and is leveraging 

such funds through cooperative research with public sector researchers and venture capital 

biotechnology companies.  
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One explanation for low take-up of biopesticides as a proportion of the global market for crop 

protection agents is market failure. In other words, the market size is too small to provide 

economies of scale and encourage firms to enter. Given that biopesticides are niche products 

with very specific applications, the market size for any one product is small. The US has a 

large market with substantial climatic variations, also helping to explain the greater use of 

biologicals. In theory a single market operates within the EU, ‘as a dual system where the 

Community evaluates active substances and Member States evaluate and authorise products 

containing them’ (European Commission, 2001, p. 2). The Commission accepts that mutual 

recognition does not work effectively, and directive 91/414 which deals with such issues is 

under revision. Progress on mutual recognition could create a larger market for biopesticides 

and overcome some of the problems of economies of scale.   

 

Market failure, therefore, has a part to play in any explanation. An alternative hypothesis, 

however, is that of regulatory failure (and, of course, regulatory reform could reduce market 

failure problems as the US example illustrates). Systems of regulation can have unintended 

consequences. Bureaucratic theory points to a tendency for mechanisms to replace goals, for 

processes to become more important than outcomes. There may be consideration of policy 

instruments in isolation from their wider effects, and rules may be applied too rigidly. 

Systematic problems may arise in regulation, therefore, and there are also specific problems 

concerning the regulation of biopesticides. The safety and efficacy of biopesticides are 

regulated in the UK by the Pesticides Safety Directorate (PSD) and their use is governed by 

both national and EU level arrangements. The regulatory system was developed according to 

a chemical pesticides model, and this may act as a barrier to biopesticide commercialisation 

(Advisory Committee on Pesticides, 2003). The questions posed in relation to biopesticides 

are often not relevant and, therefore, do not facilitate the efficient registration of biological 
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alternatives. As Waage puts it: ‘biopesticide development is locked into an inflexible and 

unimaginative chemical pesticide model. In this position, all of the shortcomings of 

biopesticides relative to chemicals emerge and none of the benefits’ (Waage, 1997, p. 14). 

Waage goes on:  

 

‘It is not the industry alone, but the entire pesticide regulatory process which has not 

adapted itself to the new opportunities which biopesticides provide. In their emphasis 

on high efficacy standards typical of fast-acting potent chemical products, registration 

procedures make little allowance for new products whose effect is a combination of 

direct kill and the conservation of natural enemies’ (1997, p.16).  

 

Consequently, there is a potential government failure as the entry costs to the market are 

raised by an onerous registration process designed for chemical pesticides (Grant, 2005).  

 

Regulatory innovation 

However, regulation need not necessarily be incipiently conservative, and if appropriately 

designed and directed, may be an effective catalyst for change – hence our focus on 

regulatory innovation. We adopt a broad definition of regulatory innovation as innovation in 

any aspect of the regulatory system or regulatory regime (Black, 2005),2

                                                 
2 A regulatory regime is the set of interrelated goals which are engaged in joint problem solving to address a 
particular goal. Its boundaries are defined by the definition of the problem being addressed, and it has some 
continuity over time (Hood et al, 2001).  

 including the 

performance of regulatory functions, institutional structures and organizational processes that 

other authors focus on more narrowly (Sparrow 2000; Moran 2003). Regulatory 

agencies/organisations often have scope to innovate within existing legislation. However, 

other types of innovation may require changes in statute. Both are of importance but this 

paper is concerned mostly with the former.  
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The challenge is to develop a regulatory system able to balance the broadly defined 

costs and benefits of biopesticides compared with synthetic pesticides. Given that existing 

actors in the policy network are primarily orientated towards chemical solutions, how can 

change be brought about?  Policy network theory, which has been particularly extensively 

used in the analysis of agricultural policy, suggests that networks are good at managing 

incremental change, but tend only to innovate in conditions of crisis or exogenous shock. For 

defenders of the status quo, ‘a sectoral policy network which has a high degree of cohesion 

among its members is a very powerful political resource’ (Daugbjerg, 1998, p. 79).  What 

emerges has characteristics of an elite cartel where participants collude so as to preserve the 

existing parameters of the policy-making process (Grant, 2000, p. 51). The situation is 

complicated by the fact that the EU has the leading role in pesticides legislation. Its system of 

decision making and inbuilt ‘checks and balances’ does not promote rapid policy change or 

paradigm shifts. Using the insights provided by policy network theory along with the 

evidence of interviews, we can identify agents and processes that create the conditions under 

which regulatory innovation could occur. Specifically, we can investigate whether 

environmentally friendly scientific and technological innovations in pest control are 

coincident with innovative regulatory regimes which meet concerns about environmental and 

public safety without unnecessarily constraining developments that would help achieve 

sustainability goals for the rural economy.   

 

There is, of course, a danger that attempts at innovation end in counterproductive outcomes.  

Much of the regulatory reform literature treats ‘innovation as success’. Mohr, for example, 

saw innovation as ‘the successful introduction into an applied situation of means or ends that 

are new to that situation’ (eg: Mohr, 1969, p. 112). It is defined by the Cabinet Office, 
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moreover, as ‘new ideas that work’ (Cabinet Office, 2003, para 2.1). Moran’s thesis, 

however, is that innovation has been a ‘fiasco’, arguing that the last 30 or so years in the UK 

have been an era of ‘hyper-innovation’, ‘the frenetic selection of new institutional modes, and 

their equally frenetic replacement by alternatives’ (Moran, 2003, p. 26). Black puts forward 

the following view: 

 

‘Innovation, quite clearly, need not be successful, and moreover being in a constant 

state of innovation can itself be counterproductive: initiatives are not given the time to 

be properly implemented; costs are imposed through the constant need to change 

systems and processes to implement new policies, and no policy is around for long 

enough for its success or failure to be properly assessed’ (Black, 2005, p. 14). 

 

Furthermore, how and when ‘success’ or ‘failure’ is measured, and from whose perspective, 

are all moot points. Assessments of success or failure often depend on where you stand: in 

other words, all innovations will have winners and losers.  Therefore, innovations are not 

necessarily successes or failures, but “who judges what is ‘good’, at what point in the 

innovation’s ‘life cycle’, and against what criteria, inevitably remain critically open 

questions” (Black, 2005, p. 15).  

 

Regulatory innovation in the UK and the Netherlands  

As noted above, regulatory failure in relation to biopesticides arises in particular from the 

application of an inappropriate model derived from the regulation of synthetic chemical 

pesticides.    This could be overcome by regulatory innovation by the agency concerned, 

responding to a variety of stimuli.   Two member states of the EU have devised schemes to 
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cope with the difficulties arising in relation to the registration of biopesticides: the United 

Kingdom and the Netherlands. 

 

These schemes arose in different circumstances and have different histories and they seek to 

achieve their objectives in somewhat divergent ways.   Nevertheless, they perform somewhat 

similar functions.   These may be summarized as follows.    First, they seek to reassure 

developers of new products that the regulator is receptive to products that are not synthetic 

pesticides.    Second, they seek to facilitate the successful completion of the regulatory 

process by providing advice and assistance on its requirements.    Third, they seek to reduce 

the cost of registration by setting fees at a lower level than is customary or subsidising them. 

 

The Genoeg scheme in the Netherlands 

Genoeg is the acronym for Gwasbeschermingsmiddelen van Natuurlikje Oorsprong Effictief 

Gebruiken, which translates as using plant protection products of natural origin more 

effectively (or, more colloquially, the effective use of natural pesticides).   Genoeg is the 

older of the two schemes considered here, exploratory work having started in 2001.  3

 

  

Its broad objectives have been to get more natural pesticides registered; to learn about lower 

risk profiles; and to apply the knowledge and experience gained in statements for registration 

purposes.    The first phase of the scheme, Project Genoeg Toegelaten, ran from 2003 to 2005 

and led to the registration of four natural pesticides for use in glasshouses: Dipper (Citrex / 

ascorbinezur); Trianum (Trichoderma harzianum); BotaniGard (Beauveria bassiana); and 

Preferal (Paecilomyces fumosoroseus).   The second phase, Project Genoeg Breed, ran from 

                                                 
3  The following accounts draws on interviews conducted in the Netherlands in 2007 with representatives of the 
managing consultancy and the pesticides regulatory authority. 
 



 

16 

16 

2004 to 2007 and entailed the support of ten natural pesticides for all uses.   It is anticipated 

that there will be funding for a third phase. 

 

The project was initiated by the Greenhouse Horticulture section of the Dutch Organization 

for Agriculture and Horticulture (LTO Glastuinbouw) and the Product Board for Horticulture 

(Productschap Tuinbouw).    However, it also drew on political and financial support from 

the Ministry of Agriculture, as well as the Product Board for the first phase.    The project is 

managed by a consultancy called the Centre for Agriculture and Environment (CLM) which 

has extensive experience in sustainable agriculture.   It was started to serve as an intermediary 

between farmers and environmentalists and has good links with all the stakeholders, 

including the organic farming sector, who meet together two or three times a year.   This 

consensus and coalition building has been a key element in the success of the project. 

 

The first phase of the project also involved the construction of an inventory of pesticides of 

natural origin.    In particular this sought to distinguish between effective and ineffective 

pesticides.    The inventory was principally aimed at researchers and policy-makers, but could 

also be of use to growers as well. 

 

Registration fees and some extra studies for the four applications were co-financed to a level 

that was not allowed to exceed fifty per cent of registration cost (up to a maximum of 

€100,000).  The allocated budget has been under spent.   Literature search for a registration 

was undertaken by the National Institute for Public Health and the Environment (RIVM).   

This body has expertise in technical questions about ecotoxicology.   The regulatory body, 

the Board for the Authorisation of Pesticides (CTB), provided a help desk facility to assist 
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applicants and established a biopesticides team made up of six staff members has been set up, 

each with a defined expertise or speciality, e.g., characterisation, residues. 

 

The first phase sought to identify bottlenecks in the process, which included costs of 

development and registration; knowledge dossier requirements, especially the complexity of 

dossiers; and the availability of expertise to evaluate natural products.   There has been a 

problem with companies dropping out during the process.  For many applicants, the cost of 

registration remained a problem with €400,000 being identified as a typical cost for the whole 

process.   The second phase of the project places greater emphasis than the first phase on the 

pre-application process.     In particular more attention is paid to the selection of products and 

offering advice to the applicant.   Because of the variability of the products, however, it is 

sometimes difficult to generalize the steps involved. 

 

The UK Biopesticides Scheme 

In the UK there was concern about the lack of alternative control options, especially 

biological control agents.   The Better Regulation Executive in the Cabinet Office encouraged 

the regulatory authority, the Pesticides Safety Directorate (PSD), to think about ways in 

which the registration of biological agents could be facilitated.   This led to the introduction 

of the Pilot Project in June 2003.   Its aim was to increase the availability of biological 

pesticides in the UK by improving knowledge and raise awareness of PSD requirements and 

how to meet them.4

 

 

One important mechanism was the use of pre-submission meetings.   These take place 

between staff from the applicant company and experts at PSD.   A number of such meetings 

                                                 
4 The following account draws on interviews with PSD staff and observation of meetings at PSD. 
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were observed on a non-participant basis as part of our research. A typical meeting might last 

between three to four hours with different experts from PSD joining the meeting as required.   

The meetings enabled the identification of gaps in the application dossier and mutually 

helpful discussions of how these could be filled, for example through published data. 

 

Reduced fees are charged for biological control agents: £22,500 for biopesticides; £13,000 

for pheromones and £7,500 for taking either through European Food Safety Agency (EGSA) 

procedures.    These fees were not increased in March 2007 when other fees went up.   In 

comparison, the cost of core dossier evaluation, provisional approval and EFSA review for a 

synthetic was £175,000 from March 2007. 

 

The scheme has had to face a number of challenges.    It has involved PSD reaching out to 

non-traditional ‘customers’ who may be suspicious of the regulatory authority because they 

have no experience of working with them.    Biopesticides are typically produced by small 

and medium-sized enterprises that do not have the regulatory affairs divisions found in bigger 

companies.   One mechanism for contact has been through the trade association, the 

International Biocontrol Manufacturers Association (IBMA) with whom PSD has developed 

an effective working relationship, e.g., through a joint working group on efficacy issues.   

However, not all manufacturers are necessarily members of the IBMA.  It has also been 

necessary to reassure companies that all data supplied to PSD will remain confidential. 

 

It is also important to engage in a dialogue with potential applicants at an early stage of the 

process of product development.   This can help them to plan the acquisition of the data they 

need for registration and also avoid the compilation of any material which would be 

superfluous.   In particular, it is helpful to hold a pre-submission meeting before efficacy 



 

19 

19 

trials take place.  To help to build relationships with companies, PSD has appointed a 

designated Biopesticides Champion within the regulatory body.   They have also developed 

an informal internal network of staff with interest and expertise in biopesticides issues. 

 

The fee structure and success rate is dependent on the quality of submissions made.   PSD 

operates on a ‘cost recovery’ basis so it cannot subsidise lower fees for biologicals from 

elsewhere or from funds provided by government.   The hope is that the pre-submission 

meetings will lead to higher quality submissions which need less work and take less time to 

process, thereby reducing the costs involved.   

 

Prior to the introduction of the scheme, three active substances and four products were 

approved between 1985 and 1997.   Three products were approved under the Pilot Scheme 

which was replaced by a Biopesticide Scheme launched on 1 April 2006.   This covered four 

categories: semiochemicals; micro-organisms (bacteria, fungi, protozoa, virus); natural plant 

extracts; and other novel products considered on a case-by-case basis.   In April 2007 five 

products were at various stages of evaluation, and several other companies were discussing 

possible applications with PSD. 

 

Comparison of the Netherlands and the UK 

The two schemes in the Netherlands and the UK are structured in somewhat different ways.   

For example, in the Netherlands companies receive a subsidy from public funds while in the 

UK the fees are lowered.   However, both regulatory agencies face the challenge of cost 

recovery.    In the Netherlands, the process was more of a ‘bottom up’ one with a coalition of 

agencies and other actors creating a new process.    In the UK, the process was more ‘top 

down’, initiated by an intervention from the Better Regulation Executive in the Cabinet 
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Office with the regulatory agency then reaching out to other actors and building relationships.   

This was probably more time consuming and difficult to implement than the Dutch approach, 

but the difference is explained by the fact that relevant networks already existed in the 

Netherlands, stimulated in part by the economic importance of the protected crops sector.   In 

the UK there has been more of a challenge in terms of building networks and some parts of 

the jigsaw are incomplete - retailers, for example, are not generally well integrated into the 

network.  In both cases a key lesson has been the importance of meetings with applicants at 

an early stage in the application process to identify areas of difficulty and possible solutions. 

 

Regulatory innovation has successfully occurred in the sense that new processes have been 

put in place and these continue to be developed on the basis of experience.   Outcomes are 

relatively modest, although favourable compared to the preceding period.   It is here that 

alternative hypotheses in terms of market size have to be considered and also the 

attractiveness of products to growers in terms of their efficacy and the management costs 

involved in their successful use. 

 

Conclusions 

Better understanding of microbial control agents using new insights from community 

ecology, biogeography and invasion biology can assist a regulatory process which, at least in 

Britain and the Netherlands, is seeking actively to adjust to the need for more registrations of 

biopesticides to help meet sustainability objectives.   Scientific advances can thus feed 

directly into the enhancement of the regulatory process and foster the process of regulatory 

innovation.   Improved understanding of the ecology of MCAs will have a double pay-off of 

better systems of environmental risk evaluation and of more effective and sustainable 

microbial control.  As put by Jackson (2003), referring to the bacterial pest control agent 
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Serratia entomophila ‘While there will always be the potential of unanticipated and or 

unrecognised side effects from the use of bacterial biopesticides, the likelihood will be 

diminished with a good understanding of the science behind their use’. Areas that need 

attention include the following: 

• Better understanding of phylogeny of microbial natural enemies (Rehner & Buckley, 

2005). 

• Understanding of the biogeography of microbial natural enemies – the factors that 

determine distributions of species and strains and influence gene flow (Bidochka & 

Small, 2005).   

• Improved understanding of the factors determining the persistence and spread of 

microbial natural enemies, including interaction with the biotic and abiotic 

environment and community assembly.  

• Determination of background levels of microbial natural enemies in agricultural and 

natural ecosystems (Mensink & Scheepmaker, 2007). This should include prevalence 

and diversity from gene to community level, biomass and ecosystem function. 

• Better understanding of population dynamics including pathogen-host dynamics, and 

indirect effects on non target organisms.    

 

As one of the solutions to finding alternatives to chemical pesticides, biopesticides are still 

hampered by their lack of profile relative to other alternatives which reflects the weakness of 

the supporting policy network.    IBMA, the trade association, is relatively poorly resourced 

and is limited in the extent to which it can make an impact on the debate at the EU level.   

From a political science perspective, a key failing is lack of integration in the network as 

defined by Daugbjerg (1998, p.42) in terms of ‘the form, quality and frequency of interaction 

within the network.’   Underlying problems include the relative immaturity of the policy 
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network; limited resources and capabilities; and a lack of trust between some actors such as 

regulators and some firms who have not used revised approval processes.   The lack of 

resources can impact on the way in which issues are framed as there are insufficient 

opportunities to influence decision-makers. A recent report by the Committee for the 

Environment, Public Health and Food Safety of the European Parliament refers to 

alternatives to chemical pesticides that could be ‘Organic farming, crop rotation, weeding or 

possible substitution/partial substitution of pesticides by GMOs’ (European Parliament, 2007, 

p.8) without mentioning biopesticides.    Better understanding of their mode of action and 

effects, and of the regulatory issues that arise in their adoption, may help to raise their profile 

among public policy-makers and hence enable them to realise their contribution to 

sustainability. 
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Box 1: Microbial control agents and biocontrol 
Micro-organisms form the most abundant and diverse group of living things on earth, and as such offer a vast resource for exploitation.  Control 
agents of agricultural pests have been developed from microbial natural enemies in the bacteria, protozoa, fungi and viruses.  These microbes are 
commonplace in nature, although it is likely that the majority of species are yet to be described.  Of the known potential microbial control 
agents, only a very small fraction has been investigated for practical use. For example, while c. 750 species of entomopathogenic fungi are 
known, less than 20 have received serious attention as control agents of insect pests (Hawksworth et al., 1995; Copping, 2004).  While many 
technical and ecological challenges remain to the exploitation of microbial control agents, they can form valuable components of ICM. Table 1 
lists some representative species used as commercial control agents.   
 
Table 1:  Examples of microorganisms registered for use as control agents of agricultural pests 
 
Organism Use Pest Target crops 
Bacteria 
Agrobacterium radiobacter 
Xanthomas campestris pv. 
poannua 

 
Anti-bacterial agent 
Herbicide 

 
Crown gall (Agrobacterium tumefasciens) 
Annual bluegrass 

 
soft fruit, nuts, vines  
turf 

Bacillus subtilis Fungicide Fusarium, Pythium, Rhizoctonia spp. legumes, cereals, 
cotton 

Bacillus thuringiensis  Insecticide Various Lepidoptera, Diptera, Coleoptera  vegetables, fruit, 
cotton, rice, forestry 

    
Fungi 
Lecanicillium longisporum 

 
Insecticide 

 
Aphids 

 
glasshouse edible & 
ornamental crops 

Phytophthora palmivora Herbicide strangler vine  citrus 
Trichoderma harzianum Fungicide Pythium, Phytophthora, Rhizoctonia orchards, ornamentals, 

vegetables, glasshouse 
crops 

Protozoa    
Nosema locustae Insecticide grasshoppers, crickets pasture 
    
Viruses    
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Cydia pomonella granulosis 
virus 

Insecticide codling moth apple, pear 

 
For more information see Copping (2004); Kabaluk & Gazdik (2005).  
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