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Abstract

In this thesis we propose formal verification as a way to produce rigorous perfor-

mance guarantees for resource control and estimation mechanisms in cloud comput-

ing. In particular, with respect to control, we focus on an automated resource pro-

visioning mechanism, commonly referred to as auto-scaling, which allows resources

to be acquired and released on demand. However, the shared environment, along

with the exponentially large space of available parameters, makes the configuration

of auto-scaling policies a challenging task. To address this problem, we propose a

novel approach based on performance modelling and formal verification to produce

performance guarantees on particular rule-based auto-scaling policies. We demon-

strate the usefulness and efficiency of our techniques through a detailed validation

process on two public cloud providers, Amazon EC2 and Microsoft Azure, targeting

two cloud computing models, Infrastructure as a Service (IaaS) and Platform as a

Service (PaaS), respectively.

We then develop novel solutions for the problem of verifying state estimation

algorithms, such as the Kalman filter, in the context of cloud computing. To achieve

this, we first tackle the broader problem of developing a methodology for verifying

properties related to numerical and modelling errors in Kalman filters. This targets

more general applications such as automotive and aerospace engineering, where the

Kalman filter has been extensively applied. This allows us to develop a general

framework for modelling and verifying different filter implementations operating on

linear discrete-time stochastic systems, and ultimately tackle the more specific case

of cloud computing.





Acknowledgements

I am grateful to my supervisor Professor David Parker for the generous support

and guidance throughout my research. His insightful comments and constructive

feedback have been invaluable. My ideas and how they have been shaped have

benefited from his wide knowledge and the opportunity to be in ongoing conversation

with him.

I would also like to thank Dr Rami Bahsoon, who has also been a supervisor

over the course of my studies, for providing me with valuable advice and guidance,

and for encouraging me to embark on my PhD studies.

For their helpful comments and feedback on my research I also wish to thank

Professor Ela Claridge and Dr David Oswald, my Thesis Group members.

Finally, I gratefully acknowledge the funding sources that allowed me to under-

take my doctoral research, the Engineering and Physical Sciences Research Council

(EPSRC) and the School of Computer Science, University of Birmingham.





Contents

1 Introduction 1

1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Material 9

2.1 Cloud Computing Definitions . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Linear Stochastic Dynamical Systems . . . . . . . . . . . . . . . . . . 15

2.2.1 Kinematic Models . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Linear Algebra and Control Theory Preliminaries . . . . . . . . . . . 22

2.4 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Square-Root Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 The Carlson-Schmidt Square-Root Filter . . . . . . . . . . . . 31

2.5.2 The Bierman-Thornton U-D Filter . . . . . . . . . . . . . . . 32

2.6 The Discrete Algebraic Riccati Equation . . . . . . . . . . . . . . . . 33

2.7 Probabilistic Model Checking and PRISM . . . . . . . . . . . . . . . 36



3 Related Work 39

3.1 Resource Provisioning in Cloud Computing . . . . . . . . . . . . . . . 40

3.2 Testing Non-Functional Requirements for Cloud Computing . . . . . 43

3.3 Verifying Non-Functional Requirements for

Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Kalman Filters for Resource Provisioning . . . . . . . . . . . . . . . . 49

3.5 Performance Analysis of Kalman Filters . . . . . . . . . . . . . . . . 52

3.5.1 Divergence Due to Numerical Instability . . . . . . . . . . . . 53

3.5.2 Divergence Due to Modelling Errors . . . . . . . . . . . . . . . 56

4 Quantitative Verification of Cloud-based Auto-Scaling Policies 58

4.1 Overview of the Framework . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Formal Modelling of Auto-Scaling Policies . . . . . . . . . . . . . . . 63

4.2.1 Clustering of CPU Utilisation and Response Time Traces . . . 64

4.2.2 Encoding Auto-Scaling Policies in PRISM . . . . . . . . . . . 65

4.3 Formal Verification of Auto-Scaling Policies . . . . . . . . . . . . . . 71

4.3.1 IaaS Case on Amazon EC2 . . . . . . . . . . . . . . . . . . . . 71

4.3.2 PaaS Case on Microsoft Azure . . . . . . . . . . . . . . . . . . 74

4.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Validation Methodology . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Experimentation Setup on Amazon EC2 . . . . . . . . . . . . 78

4.4.3 Load Profile for Amazon EC2 . . . . . . . . . . . . . . . . . . 80

4.4.4 Results and Model Validation via ROC Analysis . . . . . . . . 81

4.4.5 Experimentation Setup on Microsoft Azure . . . . . . . . . . . 86

4.4.6 Load Profile for Microsoft Azure . . . . . . . . . . . . . . . . . 86

4.4.7 Results and Model Validation . . . . . . . . . . . . . . . . . . 87

4.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 93



5 Quantitative Verification of Kalman Filters 94

5.1 Constructing Probabilistic Models of Kalman Filter Execution . . . . 95

5.1.1 Discrete-time Markov Chain States and Transitions . . . . . . 95

5.1.2 Noise Model Discretisation . . . . . . . . . . . . . . . . . . . . 97

5.2 Verification of Numerical Stability . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Verification of Numerical Stability of the Conventional Kalman

Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Verification of Numerical Stability of the Carlson-Schmidt Square-

Root Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3 Verification of Numerical Stability of the Bierman-Thornton

UD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Verification of Modelling Error Compensation Techniques . . . . . . . 110

5.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 114

6 VerFilter: Verification Through the Integration of Formal Mod-

elling with Kalman Filter Execution 115

6.1 Overview of VerFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 VerFilter Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 VerFilter Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 Automating the Generation of Kalman Filters . . . . . . . . . 120

6.2.3 The ModelGenerator Interface . . . . . . . . . . . . . . . . . . 121

6.3 The Conventional Kalman Filter . . . . . . . . . . . . . . . . . . . . . 124

6.3.1 Conventional Kalman Filter Example . . . . . . . . . . . . . . 125

6.4 The Steady-State Kalman Filter . . . . . . . . . . . . . . . . . . . . . 132

6.5 The Carlson-Schmidt Square-Root Filter . . . . . . . . . . . . . . . . 134

6.6 The Bierman-Thornton U-D Filter . . . . . . . . . . . . . . . . . . . 138

6.7 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 142



7 Evaluating Kalman Filter Verification 143

7.1 Verification of Numerical Stability of Kalman Filter Implementations 144

7.1.1 Verification Methodology . . . . . . . . . . . . . . . . . . . . . 144

7.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2 Cloud System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Verification of Kalman Filter Implementation for Cloud System Models157

7.3.1 Verification Methodology . . . . . . . . . . . . . . . . . . . . . 157

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.3 Threats to Internal and External Validity . . . . . . . . . . . . 166

7.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Conclusions 169

8.1 Summary and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Interfaces 174

A.1 The ModelGenerator interface . . . . . . . . . . . . . . . . . . . . . . 175

A.2 The KalmanFilter interface . . . . . . . . . . . . . . . . . . . . . . . 176





List of Figures

2.1 Microsoft Azure’s auto-scale control panel. . . . . . . . . . . . . . . . 14

2.2 Amazon EC2’s auto-scale control panel. . . . . . . . . . . . . . . . . . 15

4.1 A high-level diagram of the proposed framework. . . . . . . . . . . . 60

4.2 PRISM results for P=? [F util ≥ 95] (periodic load). . . . . . . . . . 73

4.3 PRISM results for P=? [F r t ≥ 2] (periodic load). . . . . . . . . . . 73

4.4 Determining k according to the Bayesian Information Criterion (BIC),

normalised by sample size. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Optimal univariate clustering of CPU utilisation per VM number. . . 76

4.6 Experimental setup on Amazon EC2. . . . . . . . . . . . . . . . . . . 79

4.7 Sample CPU utilisation trace under periodic load. . . . . . . . . . . 81

4.8 Sample response time trace under periodic load. . . . . . . . . . . . 81

4.9 Sample CPU utilisation trace under “aggressive” load. . . . . . . . . 81

4.10 Sample response time trace under “aggressive” load. . . . . . . . . . 81

4.11 ROC curves under periodic load: (a) CPU util. viol.; (b) resp. time. 83

4.12 ROC curves under “aggressive” load: (a) CPU util. viol.; (b) resp.

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 Sample CPU utilisation traces: (a) 1 VM; (b) 2 VMs. . . . . . . . . . 87



4.14 Auto-scale operations and VMs under the different cool-down periods. 91

5.1 Gaussian distribution with µ = 0 and σ = 2. . . . . . . . . . . . . . . 99

5.2 Flow diagram of the numerical procedure to create transition proba-

bilities and the means for the noise model, which perturb the system

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 A schematic representation of the Markov chain model with granu-

larity level 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 A high-level diagram of the approach. . . . . . . . . . . . . . . . . . . 116

7.1 Condition number of P+ over time under various degrees of precision. 147

7.2 Verifying goodness of P+ . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Verifying goodness of P+ . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Time comparisons between three filters. . . . . . . . . . . . . . . . . . 152

7.5 A system model of the CPU utilisation for VMs running on the cloud. 155

7.6 A sample CPU utilisation trace. . . . . . . . . . . . . . . . . . . . . . 156

7.7 Resulted inRange for σ2
w . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.8 Resulted inRange for σ2
w values between 0.001 and 0.1. . . . . . . . . 159

7.9 Resulted nis avg for σ2
w . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.10 Resulted nis avg for σ2
w . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.11 Resulted reward values for various degrees of numerical precision for

the CKFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.12 Resulted reward values for various degrees of numerical precision for

the square-root Kalman filter. . . . . . . . . . . . . . . . . . . . . . . 164

7.13 Resulted inRange for σ2
w values between 0.1 and 5.5 inclusive. . . . . 165

7.14 Resulted nis avg for σ2
w values between 0.1 and 5.5 inclusive. . . . . . 165



List of Tables

4.1 Model Parameters for Amazon EC2 . . . . . . . . . . . . . . . . . . . 66

4.2 An example of a step adjustment auto-scaling policy as seen in Ama-

zon EC2’s documentation [1] . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Auto-scaling policies for formal verification. . . . . . . . . . . . . . . 72

4.4 Auto-scaling policies for formal verification. . . . . . . . . . . . . . . 74

4.5 Performance measures for periodic load . . . . . . . . . . . . . . . . . 86

4.6 Performance measures for “aggressive” load . . . . . . . . . . . . . . 86

4.7 Relative error for “bad” auto-scale actions. . . . . . . . . . . . . . . 88

5.1 Intervals according to the granularity level. . . . . . . . . . . . . . . . 98

6.1 User inputs for each of the models. . . . . . . . . . . . . . . . . . . . 119

6.2 User inputs for each of the filters. . . . . . . . . . . . . . . . . . . . . 121

6.3 Kalman filter variables which are stored in the Markov chain state . . 122

6.4 The conventional Kalman filter algorithm . . . . . . . . . . . . . . . . 124

6.5 The Markov chain state array. (k is part of the state, but does not

appear in the table for space reasons.) . . . . . . . . . . . . . . . . . 126

6.6 The Markov chain state array at time k = 0. . . . . . . . . . . . . . . 126



6.7 The Markov chain state array at time k = 1 reached with probability p.127

6.8 The Markov chain state array at time k = 2 reached with probability p.132

6.9 The Markov chain state array of the steady-state filter. . . . . . . . . 134

7.1 Comparison between three filter variants. . . . . . . . . . . . . . . . . 151

A.1 The ModelGenerator interface. . . . . . . . . . . . . . . . . . . . . . 175





CHAPTER 1

Introduction

Cloud computing has become the most prominent way of delivering software so-

lutions, and more and more software vendors are deploying their applications in

the public cloud. In cloud computing, one of the key differentiating factors be-

tween successful and unsuccessful application providers is the ability to provide per-

formance guarantees to customers, which allows violations in performance metrics

such as CPU utilisation to be avoided [2]. In order to achieve this, cloud application

providers use one of the key features of cloud computing: auto-scaling, a resource

provisioning mechanism, which allows resources to be acquired and released on de-

mand.

While auto-scaling is an extremely valuable feature for application providers,

specifying an auto-scaling policy that can guarantee no performance violations will

occur is an extremely hard task, and “doomed to fail’ ’ [3] unless considerable care

is taken. Furthermore, in order for a rule-based auto-scaling policy to be properly

configured, there has to be an in-depth level of knowledge and a high degree of

expertise, which is not necessarily true in practice [4, 2]. The rule-based method
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is the most popular, and is considered to be the state-of-the-art in auto-scaling an

application in the cloud [5], and these challenges exist even in the case when a single

auto-scaling rule needs to be specified. In a rule-based approach, the application

provider has to specify an upper and/or lower bound on a performance metric (e.g.

CPU utilisation) along with the desired change in capacity for this situation. For

example, a rule-based method that will trigger an auto-scaling decision when CPU

utilisation exceeds 60% might take the form: if cpu utilisation > 60% then add 1

instance [6].

Lately, public cloud providers such as Amazon EC2 and Microsoft Azure have

increased the flexibility offered to users when defining auto-scaling policies, by al-

lowing combinations of auto-scaling rules for a wide range of metrics. However, this

freedom of being able to specify multiple auto-scaling rules comes at the cost of an

extremely large configuration space. In fact, it is exponential in the number of per-

formance metrics and predicates, making it virtually impossible to find the optimal

values for the auto-scaling variables [7].

In addition, an auto-scaling policy consists not only of performance metrics

thresholds, but also of temporal parameters, which often seem to be neglected, de-

spite their significance in configuring a good auto-scaling policy. These parameters

include the time interval that the auto-scaling mechanism looks back to determine

whether to take an auto-scale action, and the duration for which it is prohibited

from triggering auto-scale actions after a successful auto-scale request (cool-down

period). Since both of these parameters have to be specified by a human opera-

tor, it becomes a challenging task to understand the impact of these parameters on

performance metrics of the application running on the cloud.

As noted in [8], auto-scaling policies “tend to lack correctness guarantees”. The

ability to specify auto-scaling policies that can provide performance guarantees and

reduce violations of Service Level Agreements (SLAs) is essential for more depend-

able and accountable cloud operations. However, this is a complex task due to: (i)
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the large configuration space of the conditions and parameters that need to be de-

fined; (ii) the unpredictability of the cloud as an operating environment, due to its

shared, elastic and on demand nature; and (iii) the heterogeneity in cloud resource

provision, which makes it difficult to define reliable and universal auto-scaling poli-

cies. For example, looking at public cloud providers, one can observe that there is

no guarantee on the time it will take for an auto-scale request to be served, nor

whether the auto-scale request will receive a successful response or not.

Furthermore, in recent years, there have been several proposals to make the

resource provisioning mechanisms which exist in the cloud more autonomous by

integrating them with Bayesian state estimation algorithms, in order to minimise

the role of the human operators [9, 10, 11]. In general, estimating the state of

a continuously changing system based on uncertain information about its dynam-

ics is a crucial task in many application domains ranging from control systems to

econometrics. One of the most popular algorithms for tackling this problem is the

Kalman filter [12], which essentially computes an optimal state estimate of a noisy

linear discrete-time system, under certain assumptions, with the optimality criterion

being defined as the minimisation of the mean squared error.

These proposals often come from advocates of the autonomic computing paradigm

in which the Kalman filter is combined with a control system (i.e. controller), in

order to provide an effective way of automating the resource-allocation decisions.

The integration of a Kalman filter with a controller stems from the fact that the

Kalman filter can be used as a predictor for predicting noisy performance parame-

ters, such as the CPU utilisation. These predicted values are then passed as inputs

to the controller, thus allowing for a proactive resource provisioning approach to

be taken. Furthermore, if predictions about the future state of the system are not

of interest, the Kalman filter can be used purely as an estimator for tracking the

performance parameters of the “current” state of the system. This is a particularly

advantageous/appropriate use case for the Kalman filter since it is very effective in
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filtering out the noise from the true signal (e.g. CPU utilisation data).

However, despite the fact that there are many advantages in making the resource

provisioning mechanisms more sophisticated by integrating them with Kalman fil-

ters, there are significant challenges, in terms of their verifiability, which are asso-

ciated with this decision. This is because, despite the robust mathematical foun-

dations underpinning the Kalman filter, developing an operational filter in practice

is considered a very hard task since it requires a significant amount of engineering

expertise [13]. In particular, the underlying theory makes assumptions which are

not necessarily met in practice, such as there being precise knowledge of the sys-

tem and the noise models, and that infinite precision arithmetic is used [14, 15].

For example, avoidance of numerical problems, such as round-off errors, remains a

prominent issue in Kalman filter implementations [14, 15, 16, 17].

The first contribution of this thesis addresses the challenges that exist in produc-

ing rigorous performance guarantees for rule-based auto-scaling policies by present-

ing novel approaches based on quantitative verification, which is a formal approach to

generating guarantees about quantitative aspects of systems exhibiting probabilistic

behaviour. In particular, we use probabilistic model checking and the PRISM tool

[18, 19], where guarantees are expressed in quantitative extensions of temporal logic

and numerical solution of probabilistic models is used to precisely quantify perfor-

mance measures (e.g. probability of a performance metric exceeding a threshold).

This approach provides a formal way of quantifying the uncertainty that exists in

today’s cloud-based systems and a means of providing performance guarantees on

auto-scaling policies for application designers and developers. Another important

novel aspect of our approach is the combination of probabilistic model checking with

Receiver Operating Characteristic (ROC) analysis during empirical validation. This

allows us not only to refine our original probabilistic estimates after collating real

data and to validate the accuracy of our model, but also to obtain global Quality of

Service (QoS) violation thresholds for the policies. We demonstrate the correctness
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and usefulness of this approach through an extensive validation, considering an In-

frastructure as a Service (IaaS) and Platform as a Service (PaaS) scenario running

on the Amazon EC2 and Microsoft Azure cloud, respectively. We have made the

models and data used to validate our models publicly available [20].

We then build on this work to develop novel solutions for the problem of verify-

ing state estimation algorithms in the context of cloud computing. To achieve that,

we first perform a detailed study on other fields, such as automotive and aerospace

engineering, where the Kalman filter has been extensively applied. This allows us to

develop a general framework for modelling and verifying different filter implementa-

tions operating on linear discrete-time stochastic systems. It consists of a modelling

abstraction which maps the execution of a Kalman filter estimating the state of

linear stochastic dynamical system to a discrete-time Markov chain (DTMC). This

framework is general enough to handle the creation of various different filter variants.

The filter implementation to be verified is specified in a mainstream programming

language (we use Java) since it needs access to linear algebra data types and oper-

ations.

Once the DTMC has been constructed, we verify properties related to numerical

and modelling errors of the Kalman filter being modelled. These properties are ex-

pressed in a reward-based extension [21] of the temporal logic PCTL (probabilistic

computation tree logic) [22]. This requires generation of non-trivial reward struc-

tures for the DTMC computed using linear algebra computations on the matrices

and vectors used in the execution of the Kalman filter implementation. Generat-

ing reward structures for the DTMC using linear algebra computations is of more

general interest in terms of the applicability of our approach to analyse complex

properties of systems via probabilistic model checking.

We have implemented this framework within a software tool called VerFilter,

built on top of the probabilistic model checker PRISM. The tool takes the Kalman

filter implementation, a description of the system model being estimated and several
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extra parameters: the maximum time the model will run, the number of intervals

the noise distribution will be truncated into, and the numerical precision, in terms

of the number of decimal places, to which the floating-point numbers which are

used throughout the model will be rounded. The decision to let the user spec-

ify these parameters is particularly important in the modelling and verification of

stochastic linear dynamical systems, where the states of the model, which consist of

floating-point numbers, as well as the labelling of the states, are the result of com-

plex numerical linear algebra operations. Lowering the numerical precision usually

means faster execution times at the possible cost of affecting the accuracy of the

verification result. This decision is further motivated by the fact that many Kalman

filter implementations run on embedded systems with stringent computational re-

quirements [15], and being able to produce performance guarantees is crucial.

We demonstrate the applicability of our approach by verifying four distinct

Kalman filter types. This allows us to evaluate the trade-offs of one versus the other.

For the system models, we use kinematic state models, since they are used exten-

sively in the areas of navigation and tracking [23, 24]. We evaluate our approach

with two distinct models. We also show that our approach can successfully analyse

a range of useful properties related to modelling and numerical errors in Kalman

filters, and we evaluate the scalability and accuracy of the techniques. Overall, 1852

different filter implementations have been verified effectively. We have made the

tool, VerFilter, and supporting files for the results publicly available [25].

In summary, the main research question this thesis addresses is “Can we use

formal verification to produce rigorous performance guarantees for resource control

and estimation mechanisms in cloud computing?”. In particular we have developed

a framework based on novel quantitative verification methods which can be used

for the verification of the automated resource provisioning mechanisms in the cloud.

Finally, in the case where the resource provisioning mechanisms are integrated with

state estimators, our work can be thought of as adding an extra layer of verification,
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checking that the automated decision to be taken is correct.

1.1 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents background

material both on the areas of cloud computing and state estimation. In Chapter 3

we present a review of the related work by identifying the research that has already

been conducted, and how the work in this thesis contributes to it. Chapters 4, 5,

6 and 7 contain the main contributions of this thesis. In Chapter 4 we present

and evaluate a novel approach based on quantitative verification to produce per-

formance guarantees for cloud-based auto-scaling policies. In Chapter 5, we build

upon the work of Chapter 4, and we present a general framework for modelling

Kalman filter implementations operating on linear discrete-time stochastic systems,

and techniques to systematically construct a Markov model of the filter’s operation

using truncation and discretisation of the stochastic noise model. Then, we propose

verification techniques for properties which relate to numerical stability and mod-

elling error compensation techniques, respectively. Next, in Chapter 6 we provide

details on the implementation of this framework as a software, VerFilter. Chapter 7

demonstrates that the novel verification techniques which were presented and im-

plemented in Chapters 5 and 6 can be used for the verification of various types of

Kalman filters, successfully. The major contribution of Chapter 7 is that, through

an extensive experimental analysis, we show that probabilistic verification can be

used to verify Kalman filters operating on linear discrete-time stochastic systems.

Finally, Chapter 8 presents the main findings of this thesis, and provides directions

for future work.
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The following peer-reviewed papers were published throughout the course of the

doctoral studies.

1. Alexandros Evangelidis, David Parker, and Rami Bahsoon. 2017. Performance

Modelling and Verification of Cloud-based Auto-Scaling Policies. In Proceed-

ings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid). IEEE Press, Piscataway, NJ, USA, Pages 355-364,

ISBN: 978-1-5090-6610-0, DOI: https://doi.org/10.1109/CCGRID.2017.39

2. Alexandros Evangelidis, David Parker, and Rami Bahsoon. 2018. Performance

modelling and verification of cloud-based auto-scaling policies. In Future Gen-

eration Computer Systems (FGCS), Elsevier, Volume 87, Pages 629-638, ISSN:

0167-739X, DOI: https://doi.org/10.1016/j.future.2017.12.047

3. Alexandros Evangelidis, David Parker. 2019. Quantitative Verification of Nu-

merical Stability for Kalman Filters. In Proceedings of the 23rd International

Symposium on Formal Methods (FM), In: ter Beek M., McIver A., Oliveira

J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in

Computer Science, vol 11800. Springer, Cham, Pages 425-441, ISBN: 978-3-

030-30941-1, DOI: https://doi.org/10.1007/978-3-030-30942-8

The first and second publications, [26] and [27], correspond to the contributions

which are presented in Chapter 4. The third publication, [28], corresponds to ma-

terial which is presented in Chapters 5, 6 and 7. Also, an invited journal version of

the third publication is currently in preparation.
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CHAPTER 2

Background Material

In this chapter, we introduce background material which is required for this thesis.

Section 2.1, introduces definitions which are related to cloud computing. Specifi-

cally, Section 2.1 starts with defining concrete terms for the cloud actors which exist

in a cloud environment, followed by the cloud computing models and closes with

an extensive discussion about auto-scaling policies. In Section 2.2, we present an

overview of linear stochastic dynamical systems, and we show how the discretisation

process can be performed for the models we consider. In the same section we also

give the necessary background on the two types of kinematic models we consider.

Then, in Section 2.3 we present results from linear algebra and control theory, that

are used in the subsequent chapters. Next, Section 2.4 introduces the Kalman filter,

Section 2.5 covers the relevant background on square-root filters and Section 2.6

presents the discrete Riccati equation along with important theorems we later make

use of when we deal with steady-state filters. Section 2.7 presents relevant back-

ground information with respect to probabilistic model checking and the PRISM

tool.
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2.1 Cloud Computing Definitions

In this section, we describe the definitions relating to cloud computing that are used

throughout this thesis, in order to resolve any potential ambiguity.

Service Level Agreement (SLA). An SLA is a legal document that offers, among

other things, a level of QoS with respect to the non-functional requirements that are

being guaranteed to customers. In the cloud market there is a marked preference

among customers for providers who offer SLAs from those who do not. An SLA also

allows potential customers to negotiate their non-functional requirements with the

SaaS provider and assesses the appropriateness of the SaaS provider to fulfil them.

An SLA can consist of multiple objectives (Service Level Objectives or SLOs) and

each SLO usually contains a QoS metric which maps to a particular non-functional

requirement (e.g. performance) with a value above or below a given threshold with

a view to maximising or minimising it respectively [29].

Cloud provider. Manages the hardware resources in the data centre such as

servers, racks, physical machines and provides abstractions of those resources usually

through virtualisation to cloud users. The cloud provider has complete control over

the physical machines and can use strategies such as virtual machine migration to

allocate the resources efficiently. The cloud provider has an SLA that it is responsible

for satisfying with its tenants.

Cloud user or tenant. An application or a service provider who wishes to take

advantage of the infrastructure of the cloud provider and rents those resources, in

order to offer highly scalable solutions to its end users/tenants. The cloud user

seeks to exploit the elasticity property of the cloud infrastructure. Similar to the

cloud provider, the cloud user might offer an SLA to its end users/tenants for the

services that are being offered. In our research, this is the type of SLA we take into

consideration.
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End user or tenant. The end user, who is also considered a tenant [30], is not

directly involved in the resource allocation process, but can generate requests and

expects that those requests will be satisfied according to the values that have been

specified in the SLA (e.g. a request to the server should not take more than 3

seconds to complete).

Software as a Service (SaaS). Refers to on demand software which is offered

as a cloud-based service and can be accessed by web browsers. It is important to

note that a SaaS provider is not necessarily the cloud provider, and as a matter of

fact many service providers have moved their services to the cloud to benefit from

economies of scale. This means that service providers choose not to acquire and

deploy their services on their own infrastructure (that is on their own compute and

storage nodes) and prefer to rent those resources from a cloud provider in order to

be able to elastically allocate and de-allocate resources according to the demand.

Platform as a Service (PaaS). Refers to cloud-based services which offer a plat-

form to developers to build and customise their solutions, without however giving

them the ability to control the underlying cloud infrastructure, such as operating

systems or storage.

Infrastructure as a Service (IaaS). Provides a greater degree of control to the

cloud user than the PaaS model, by giving the user the ability to manage the

underlying cloud infrastructure, such as operating systems, storage and deployed

applications.

Quality of Service (QoS). QoS is used to describe the non-functional requirements

of services such as performance, availability, reliability, security and others, in the

form of an appropriate metric. For example, one might wish to use response time

as a metric to set an expectation about performance, or mean time between failures

for reliability etc. Briefly, QoS is a means to quantify the level of a service by

considering the appropriate metrics.
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Resources and resource provisioning. Resources can be categorised into com-

pute, networking, storage and energy resources. From the cloud provider’s per-

spective the resources above can be managed at the physical level (setting up the

physical machines, the servers etc.). In our research, “resources” refer to the vir-

tual infrastructure (whether that is a virtual machine, virtual disks (for storage)

or virtual networks) that is being offered to the cloud application provider through

virtualisation technology.

From the perspective of a cloud user, resource provisioning refers to the process

of efficiently allocating their virtualised resources to its tenants, by looking to meet

his/her but also the tenants’ objectives. The objectives could range from satisfying

the non-functional requirements in the SLA offered, to being able to continuously

adapt its services to minimise costs.

Auto-scaling/Elasticity. Auto-scaling is one of the key properties of cloud com-

puting [31, 32, 33]. In the literature there are a number of definitions regarding

elasticity which is often considered as a synonym for scaling. To avoid ambiguity

throughout the thesis we adopt the definition of elasticity used in [32]: “Elasticity

is the degree to which a system is able to adapt to workload changes by provisioning

and deprovisioning resources in an autonomic manner, such that at each point in

time the available resources match the current demand as closely as possible”.

Elasticity is a dynamic property that involves sophisticated concepts such as ef-

fective resource management policies and can be examined from two perspectives.

The first perspective involves taking the view of the cloud provider who seeks to

optimise the resource usage of its infrastructure at the level of racks, servers and

Virtual Machines (VMs), in order to minimise the operating costs while offering

reliable infrastructure services to its tenants. Tenants in this case refer to the appli-

cation providers that host their applications in the infrastructure of a cloud provider.

The second view, which is the one we adopt in this work, is from the angle of the

SaaS provider who wants to optimally allocate and deallocate resources on demand,

12



2.1. Cloud Computing Definitions

in order to provide reasonable guarantees to its tenants, in the form of an SLA.

Tenants here refer to the end users of the application that is hosted in the cloud. In

summary, the core problem around elasticity that refers both to the cloud providers

and cloud users, is the minimisation of time the system, whether it is a cloud layer

or an application, spends in an under-provisioned or over-provisioned state. More-

over, elasticity considers the temporal aspects of scaling [32] and is strictly related

to acceptable QoS criteria, which are specified in SLAs, and can be thought of as a

scaling-out and -in method based on the demand that the software is experiencing.

Taking into consideration the above definition, we note that, in contrast to scala-

bility, elasticity is a dynamic property of the application running on the cloud, which

considers the temporal aspects of scaling. However, it is worth noting that cloud

providers are not willing to take the responsibility for auto-scaling an application

deployed by someone else on their infrastructure. Furthermore, cloud providers give

the ability to cloud application owners to automate the process of auto-scaling, by

configuring their own auto-scaling policies.

An auto-scaling policy [7] defines the conditions under which, capacity will be

added to or removed from a cloud-based system, in order to satisfy the objectives

of the cloud user. Auto-scaling is divided into scaling-up/-down and scaling-out/-in

methods, with the two approaches also being defined as vertical (add more RAM

or CPU to existing VMs) and horizontal (add more “cheap” VMs) scaling. In our

research, we focus on scaling-out and -in since it is a commonly used and cost-

effective approach.

The main auto-scaling method that is given to application providers by all pub-

lic cloud providers today (e.g. Amazon EC2, Microsoft Azure, Google Cloud) is

rule-based. The rule-based method is the most popular and is considered to be the

state-of-the-art in auto-scaling an application in the cloud [5]. In a rule-based ap-

proach, the application provider has to specify an upper and/or lower bound on a

performance metric (e.g. CPU utilisation) along with the desired change in capacity
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Figure 2.1: Microsoft Azure’s auto-scale control panel.

for this situation. For example, a rule-based method that will trigger a scale-out

decision when CPU utilisation exceeds 60% might take the form: if cpu utilisation

> 60% then add 1 instance [6]. The performance metrics that public cloud providers

usually follow include CPU utilisation, throughput and queue length. We consider

auto-scaling decisions based on CPU utilisation as it is one of the most important

metrics in capacity planning, and also the most widely used in auto-scaling poli-

cies. In addition, an auto-scaling policy consists not only of performance metrics

thresholds, but also of temporal parameters, which often seem to be neglected, de-

spite their significance in configuring a good auto-scaling policy. These parameters

include the time interval that the auto-scaling mechanism looks back to determine

whether to take an auto-scale action, and the duration for which it is prohibited

from triggering auto-scale actions after a successful auto-scale request (cool-down

period). Since both of these parameters have to be specified by a human opera-

tor, it becomes a challenging task to understand the impact of these parameters

on performance metrics of the application running on the cloud. It is exactly this

impact that we wish to quantitatively analyse. In Figures 2.1 and 2.2 we show the

auto-scale control panel of two major public cloud providers, Microsoft Azure and

Amazon EC2, respectively.
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Figure 2.2: Amazon EC2’s auto-scale control panel.

2.2 Linear Stochastic Dynamical Systems

The Kalman filter tracks the state of a linear stochastic dynamical system, which

can be thought of as a system whose state vector evolves over time under the effects

of noise. Taking out the word stochastic for a moment, linear dynamical systems

have gained tremendous popularity in fields ranging from aerospace engineering to

economics. Applications include but are not limited to classical mechanics (Newton’s

laws), population and supply chain dynamics, stock markets and others [34]. As a

simple example, we can consider the following dynamical system, where xk+1, the

state vector at time step k + 1, is a linear function of xk, the state vector at time

step k, with the Fk matrix denoting the state transition matrix or dynamics matrix

[34].

xk+1 = Fkxk (2.1)

The model described in the equation above is also called a Markov model [34] since

the current state xk contains all the necessary information for xk+1 to be calculated.
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In estimation problems and especially those related to Kalman filters most of

the system models are described by a set of ordinary differential equations [14],

since most of the models which describe real world phenomena are in continuous

time. However, in order for these continuous-time models to be implemented and

simulated in “digital circuits” they have to be discretised in order to be transformed

to their equivalent discrete-time form [15].

This process is called discretisation and can be thought of as a preprocessing step

for the Kalman filter. In addition to the discretisation of a continuous model, one

also could use direct discrete-time models [35]. In our work we focus on kinematic

state models and we model them using both discretised and discrete approximations.

In general, kinematic state models describe the motion of objects as a function of

time, using so-called kinematic equations. These are models which have been used

extensively in the areas of navigation and tracking.

In order to demonstrate the discretisation process, let us assume the following

noiseless kinematic model, a continuous-time linear dynamical system, which is also

called an exact constant velocity model [23]. This model can be defined as a first

order differential equation of the following form:

ẋ = A(t)x(t) =

0 1

0 0

x(t) (2.2)

In equation 2.2 ẋ is defined as dx
dt

, and this equation represents a continuous-time

linear dynamical system in a more compacted form, in the so-called state space

format. Also note that the state vector x ∈ Rn, in the two-dimensional case we

consider, is given as x = [ p ṗ ]T , where the first element defines the position and the

second the velocity. In order to transform equation (2.2) to its discrete counterpart

with a sample time of ∆t one has to compute the matrix exponential (eA∆t), often

referred to as the fundamental matrix Φ in the control theory literature [14]. Here,

to avoid confusion with the later parts, we will denote it Fk. Also, note the difference
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between Fk and A(t): the first denotes discrete time instants k while in the latter

case the matrix A is a function of time t, which is continuous.

The matrix exponential can be computed by taking a Taylor series, an infinite

series, of the exponential and then substituting the matrix A∆t.

Fk = eA∆t = I + A∆t+
A2∆t2

2!
+ ... =

1 ∆t

0 1

 (2.3)

It turns out that in our case and for the system models considered, we can obtain

an exact answer by summing the first two terms of the Taylor series, since A2 is

equal to 0, which means all the subsequent terms of the summation will be 0. As a

result, we are able to calculate F by summing over a finite amount of terms from

the Taylor series.

Another method we can employ to obtain a closed-form solution of the problem

above is to use the Laplace transform and then take its inverse, providing that

the system is time-invariant [23, 15]. Time-invariance means that the matrix A

is constant (A(t) = A) and not a function of time. This is not an unrealistic

assumption, since the majority of linear systems are time-invariant [36]. This means

that we can also drop the subscript k from F (Fk = F ) since it will also be constant,

and will not depend upon different discretisation step sizes ∆t. However, note that,

despite the fact that the system is time-invariant, the Kalman filter in most cases

is not (it is time-varying). The Laplace transform can be thought of as a general

method of taking a function in the time domain such as a differential equation, and

transforming it to the frequency domain (also called Laplace domain [37]) where it

is easier to solve, since it involves only algebraic operations. Then, once we have

the solution in the frequency domain we can transform it back to the time domain,

by applying the inverse of Laplace transform. The Laplace transform of a function

f(t) can be written in compact notation as F (s) = L(f(t)), where F (s) and f(t)

are functions in the frequency and time domain respectively. F (s) can be expanded
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as follows:

F (s) =

∫ ∞
0

e−stf(t)dt (2.4)

In the equation above we can see that, once we integrate over time and apply

the limits of integration, the time variable t vanishes and we are left only with s.

Analogously, the inverse of a Laplace transform can be written as f(t) = L−1(F (s)),

and in this case, since we are dealing with differential equations, the inverse can

be written as L−1 ((sI − A)−1) [23]. To obtain the previous equation the derivative

property of the Laplace transform is used which is L(f ′(t) = sF (s) − f(0), and is

the Laplace transform solution for the continuous time-invariant linear dynamical

system defined earlier, ẋ = Ax [36]. The computations proceed as follows:

First we transform the equation to the frequency domain by applying the Laplace

transform operator:

(sI − A) =

s −1

0 s

 (2.5)

Then, we compute the inverse of the matrix above (providing that is invertible),

which is the solution in the frequency domain:

(sI − A)−1 =

1
s

1
s2

0 1
s

 (2.6)

Now we apply the inverse Laplace transform to transform the aforementioned solu-

tion from the frequency to the time domain:

F (∆t) = L−1


1
s

1
s2

0 1
s


 =

1 ∆t

0 1

 (2.7)

The solution is what we would expect and identical to the one obtained by summing
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the Taylor series. For a critical review of the many methods which can be used

to compute the matrix exponential, we refer the interested reader to the excellent

paper of [38].

2.2.1 Kinematic Models

In our work we focus on two types of kinematic models, which can be broadly

classified into: discretised continuous-time kinematic models and direct discrete-

time kinematic models. It is worth noting that information in the literature about

kinematic models is not presented in a unified and systematic manner. This issue

was reported by [39] who noted the “scatteredness” and “unavailability” of the

various motion models which had been developed from 1970 onwards, and made an

attempt to summarise them. Later, the same authors refined their original paper

and published a series of papers in separate parts (part I to V) related to target

tracking. Part I of this series [24] is an excellent survey on dynamic models and

motion models in particular.

Until that point, one of the notable collective works which surveyed motion

models specifically was from [40], whose book was, however, criticised by [39] as “far

from complete”. Of course, many models in this book were based upon previous

works of [41] and others, mostly among the radar tracking literature. Later, some

of the previous authors collaborated and wrote a book [23], which is considered one

of the standard references in the tracking and navigation literature. In fact, many

of high quality papers in this area use the results of the aforementioned book to

justify the values for their motion model parameters. Similar to those, the choice of

kinematic models which are described here are based upon this book.

Discretised Continuous White Noise Acceleration Model (CWNA). In

general, kinematic models describe the motion of objects (e.g. physical systems)

as a function of time. In particular, the CWNA model assumes that the object’s
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velocity is perturbed randomly by continuous time white noise. The equation of

the model in continuous-time is given by ẋ = Ax(t) + Dw̃(t) where A is the state

transition matrix defined in (2.2), and D is defined as the noise gain or the noise

distribution matrix for the system noise w̃(t) [23, 42].

A =

0 1

0 0

 D =

0

1

 (2.8)

The continuous-time white noise is a stochastic process w̃(t) whose mean is defined

as E[w̃(t)] = 0 with autocovariance E[w̃(t)w̃(τ)] = q(t)δ(t − τ), where τ is the

amount of time by which the signal has been shifted, δ is the Dirac delta function,

and q is the power spectral density [13]. Note that white noise does not exist

in the real world; mathematically it could mean a process with infinite variance

[43]. However, white noise is a very useful model to describe the various random

effects on a system in different scientific fields. Formally, the power spectral density

of a wide sense stationary (WSS) process is defined as the discrete-time Fourier

transform (DTFT) of its autocorrelation [44], and in the case of white noise, the

power spectral density is constant. Note that the Fourier transform is used to

transform the autocorrelation function, which is expressed in the time domain, to

the power spectral density, which is a function defined in the frequency domain. It

can be shown that the power spectral density of a white noise process is equal to its

variance (σ2
w). This is an important mathematical result which of course stems from

other important theorems (e.g. Wiener-Khinchin theorem) in the signal processing

literature. For a derivation of the above result, the interested reader can find more

information in [44].

The discretised model of the above system, assuming that we sample it at

discrete-time intervals ∆t, is given as xk = Fxk−1 + w, where the state vector xk

is a linear function of the initial state plus the additive noise. The covariance noise

matrix of w, Q, is computed in a relatively similar manner to the state transition
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matrix F , and is given as:

Q =

1
3
∆t3 1

2
∆t2

1
2
∆t2 ∆t

 q (2.9)

where q is the power spectral density of the noise defined previously. Note that

we drop the subscript k from the Q matrix since we treat the noise process w as a

stationary process which means that its mean and covariance will remain constant

over time.

Discrete White Noise Acceleration Model (DWNA). The DWNA model,

also called piecewise constant acceleration model [23], assumes that the acceleration

remains constant for each time interval ∆t. The equation of the model is given

by the following discrete-time equation: xk+1 = Fxk + Γwk, where F is the state

transition matrix, and Γ is defined as the noise gain matrix [45]. F and Γ are given

as:

F =

1 ∆t

0 1

 Γ =

1
2
∆t2

∆t

 (2.10)

Note that with the choice of the above noise gain Γ we compute the updated position

in one interval ∆t as wk
1
2
∆t, and the updated velocity as wk∆t. In other words we

can think of wk as the velocity which undergoes slight changes in different time

steps. Finally, the covariance noise matrix Q is:

Q = Γσ2
wΓT =

1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t2

σ2
w (2.11)

Note that σ2
w is the variance of the white noise, and is a scalar similar to the q

variable from the CWNA model.
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2.3 Linear Algebra and Control Theory Prelimi-

naries

In this section, we aim to give an overview of some important mathematical char-

acteristics which are going to be needed in the subsequent sections. A symmetric

matrix is a square matrix equal to its transpose (A = AT ). The symmetric property

of a covariance matrix can be derived from the definition of covariance, and holds for

every covariance matrix. The positive definiteness property of a symmetric matrix is

usually more complicated since it can be defined by several equivalent mathematical

statements. A symmetric positive definite matrix has eigenvalues which are real and

positive, which implies that the matrix is invertible or nonsingular [15]. Note that

it is because of the symmetric property that the eigenvalues are real.

Eigenvectors have played a prominent role in control theory to analyse systems

and their properties, from different perspectives. For example, in many cases it is

considered easier and more efficient to analyse the dynamics of the system under

consideration by transforming it from its initial coordinates to some eigenvector

coordinates, usually in the complex plane. Formally, the analysis of the dynamics

of a system can be compressed into the analysis of the following three properties:

stability, observability and controllability, and especially the last two are considered

“fundamental in modern control theory” [15, 46]. Also, these properties are defined

differently for continuous-time and discrete-time systems, and their definition de-

pends upon whether the system is time-varying or time-invariant. In our work, we

focus on linear, discrete-time, time-invariant systems and our discussion is centred

around these types of systems only.

Stability answers the question of how well the system behaves as time goes to

infinity, which practically means that xk converges to 0 as k →∞ [36]. A system is

stable if the eigenvalues of the state transition matrix F have magnitude less than

one. The notion of stability is related to the Kalman filter and more concretely

to the propagation of the a priori estimation-error covariance matrix, the so-called
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Lyapunov equation (see equation 2.30). In particular, if Fk is stable and constant,

and Qk is constant, the Lyapunov equation has a unique, symmetric steady-state

solution. In other words, the steady-state a priori covariance of the estimation error

can be computed by solving this equation [15, 36].

To describe observability, we first have to define the so-called measurement equa-

tion which is associated with a linear dynamical system, such as, for example, the

one in equation 2.1. This equation describes the observation process at discrete time

instants k, and is given as zk = Hkxk where zk is the measurement vector and Hk is

the measurement matrix which relates the measurement with the state vector xk.

Observability, is concerned with being able to estimate the state x at any given

time k from the measurements z. A common test for observability is to check

whether the rank (e.g. number of linearly independent rows/columns) of the so-

called observability matrix is equal to the dimension n of the state vector x. The

observability matrix M can be constructed as follows [14]:

M =

[
HT F THT (F T )2HT ... (F T )n−1HT

]
(2.12)

Additionally, observability can be defined in terms of the Lyapunov equation ex-

pressed earlier; for a compact representation of those theorems, we refer the inter-

ested reader to [15]. As discussed earlier, the system is observable if and only if

ρ(M) = n, where ρ is the rank of matrix M .

Controllability generally refers to the idea of being able to control the system by

using some form of feedback. More precisely, a system is controllable if the elements

of the state vector x can be affected by the control input [47]. In our case, the

control input is the process noise w of the DWNA model in Section 2.2.1. The

controllability test resembles the observability test, only in this case the rank of the

controllability matrix is examined. The controllability matrix S can be constructed
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as follows [14]:

S =

[
Γ FΓ F 2Γ ... F n−1Γ

]
(2.13)

The system is controllable if and only if ρ(S) = n, where ρ is the rank of matrix S

and n the dimension of state vector x. The notion of controllability is very important

because it can be extended and applied even if the system of interest has no input

gain matrix and vector.

2.4 The Kalman Filter

One of the most popular algorithms for estimating the state of a continuously chang-

ing system based on uncertain information about its dynamics is the Kalman filter.

Despite the fact that there exists a vast body of literature on the Kalman filter,

understanding it in-depth can be difficult. This is mainly because the Kalman filter

can be examined from different viewpoints, and sometimes this can cause confusion

to the reader. For example, in the control theory literature it is often referred to as

a linear quadratic estimator (LQE) [48] where it is combined with a state feedback

controller, usually under the name linear quadratic regulator (LQR) to control a dy-

namical system. Others may refer to it as a specialised instance of the Bayes filter

[49], where it can be seen as a recursive Bayesian estimation algorithm for Gaussian

distributions. Other authors describe it as a linear mean squared error estimator

[14], others as a “linear, finite-dimensional system” [35] or simply as a conditional

mean estimator [50].

What is “remarkable”[15], however, is that these different viewpoints are inter-

linked and can lead to the same conclusion: the Kalman filter is the best minimum

mean squared error estimator among all estimators (linear and nonlinear) under

the Gaussian assumption [14, 23, 13, 15, 51]. Even if the Gaussian assumption
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is relaxed, the Kalman filter is still the best linear minimum mean squared error

estimator among all estimators in the linear class.

The Kalman filter tracks the state of a linear stochastic discrete-time system of

the following form:

xk+1 = Fkxk + wk (2.14)

zk = Hkxk + vk (2.15)

where xk is the (n × 1) system state vector at discrete time instant k, Fk is a

square (n × n) state transition matrix, which relates the system state vector xk

between successive time steps, in the absence of noise. In addition, zk is the (m ×

1) measurement vector, Hk is the (m × n) measurement matrix, which relates the

measurement with the state vector. Finally, wk and vk represent the process and

measurement noises, with covariance matrices Qk and Rk, respectively. Given the

above system and under the assumption that both the system’s and measurement’s

noises are Gaussian, zero mean and uncorrelated, the Kalman filter is an optimal

estimator in terms of minimising the mean squared estimation error. Specifically,

the covariance matrices of wk and vk are:

p(wk) ∼ N (0, Qk) E[wkw
T
i ] =


Qk, i = k

0, i 6= k

(2.16)

p(vk) ∼ N (0, Rk) E[vkv
T
i ] =


Rk, i = k

0, i 6= k

(2.17)

E[wkv
T
i ] = 0 (2.18)

The Gaussian assumption associated with the state vector xk and measurement vec-

tor zk is particularly important because any linear combination of Gaussian random

variables preserves their Gaussian properties [35, 23]. Another benefit this assump-
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tion provides is that a Gaussian distribution can be characterised only by its first

and second moments (mean and covariance) [45, 13]. This justifies the efficiency

of the Kalman filter since, from a Bayesian viewpoint, it can propagate conditional

density functions forward in time using only those two pieces of information. Finally,

as we will see later, the Gaussian assumption can provide us with some worst-case

guarantees since, under this assumption, the theoretical performance of the filter

can be defined in terms of the estimation-error covariance matrix Pk [23, 14].

Before we give an overview of the estimation process, it is worthwhile to explain

the notation that will be used, by distinguishing two types of estimates that are

being used. The x̂−k notation stands for the a priori state estimate at time step k,

with the “hat” symbol denoting the estimate, and the minus superscript denoting

that the measurements at time k have not been processed yet. Mathematically,

it can be written as E[xk | z1, z2, z3, ...zk−1], which is the conditional expectation

of the random variable Xk given the measurements up to and including the time

step at k − 1. Analogously, the x̂+
k denotes the a posteriori state estimate at time

k, meaning that in this case the measurements at time step k have been taken

into account in the estimation of xk, and can be written as E[xk | z1, z2, z3, ...zk].

Each of those estimates, which are essentially estimates of the same variable under

different time steps, have their associated a priori, and a posteriori estimation-error

covariance matrices which denote the uncertainty associated with the respective

state estimates. The a priori estimation-error covariance matrix P−k of the a priori

state estimate x̂−k and the a posteriori estimation-error covariance matrix P+
k of the

a posteriori state estimate x̂+
k can be computed as follows:

P−k = E[(xk − x̂−k )(xk − x̂−k )T ] (2.19)

P+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ] (2.20)

The quantity xk − x̂k is the estimation error and the optimality criterion is defined
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in terms of minimising the variance or the mean squared error of this quantity, since

E[(xk − x̂k)2] = Var(xk), in the case there is no bias in the estimates. The reason

the performance criterion has been expressed in two equivalent terms is that it can

help us to develop our intuition with respect to how the estimation procedure in

a Kalman filter works, by drawing analogies from the least squares and Bayesian

estimation theories where needed. Moreover, in order to justify why the expected

value of xk is considered the optimal estimate it might be useful to consider the least

mean squares estimate in the special case where there are no observations available.

Recall that the mean squared error (MSE) is defined as E[(X − x̂)2] where X is a

random variable we are trying to estimate and x̂ is the estimate. The fact that we

treat the unknown variable X as random means that we take a Bayesian view in

our reasoning, which implies that X has an associated prior distribution to it. Also,

for convenience we have dropped the subscripts k. The MSE can be expanded as

follows:

E[(X − x̂)2] = E[X2]− 2E[X] + 2x̂2 (2.21)

Then, in order to find the value which minimises the MSE, we differentiate equation

2.21 with respect to x̂, and set its derivative to zero.

d

dx̂
= 0 : (2.22)

−2E[X] + 2x̂ = 0 (2.23)

x̂ = E[X] (2.24)

From the above equation we can observe that the MSE is minimised when x̂ = E[X],

and in that case the optimal value of the mean squared error is the variance of X [52].

The case above is identical to the case of no observations. Assuming the existence of

incoming measurements, the optimality criterion is defined in terms of minimising
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the conditional mean squared error given by E[(X − x̂)2 | Z = z]. This estimator

is defined as unbiased, and is the conditional mean or the minimum mean squared

error (MMSE) estimator. It has an important uniqueness property, meaning that

no other estimator can perform better in terms of minimising the mean squared

estimation error [52, 23].

In order to proceed with the derivation of the Kalman filter it is convenient

to express the computation of the a posteriori state estimate recursively, which is

similar to the recursive least squares (RLS) estimation algorithm expressed in the

following linear form:

x̂+
k = x̂−k +Kk(zk −Hxx̂

−
k ) (2.25)

The Kk term is called the Kalman gain matrix and will be derived shortly. In the

scalar case it can be thought of as a weighting factor whose entries take values in the

interval [0..1] and adjusts the a priori state estimate according to how much “trust”/

“belief” is placed on the newly obtained measurements. For example, if the Kalman

gain is zero that would mean that there is no uncertainty associated with the a priori

estimate x̂−k , and as a result the a posteriori state estimate x̂+
k would equal the a priori

state estimate x̂−k . The expression in the parenthesis is the residual or the innovation,

which essentially is the difference between the measurement obtained at time k (zk)

and the a priori state estimate x̂−k . It is important to note, however, that in the

RLS algorithm the vector x̂ is treated as a constant. Many of the standard books

related to estimation make this distinction, and they prefer to call this recursive

estimation process “dynamic estimation as a recursive static estimation” [23] and

others as some form of “updating least squares” [53] where the estimate is updated

as new measurements are being obtained.

The task of the Kalman filter is to find the optimal Kalman gain matrix in

terms of minimising the sum of estimation error variances or the mean squared
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estimation error. The sum of the variances of the estimation error can be obtained

by summing the elements of the main diagonal (trace) of the a posteriori estimation-

error covariance matrix P+
k . After making the necessary substitutions in equations

2.19 and 2.20, P+
k can be expressed in the following two equivalent forms:

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k (2.26)

P+
k = (I −KkHk)P

−
k (2.27)

Now, in order to solve for the optimal Kalman gain at time k, we differentiate the

trace of P+
k with respect to Kk and then set its derivative equal to zero, to obtain

the following:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (2.28)

In the Kalman gain equation 2.28 the computation inside the parenthesis is the

covariance of the innovation and usually it is calculated as a separate step before

the Kalman gain computation. The innovation covariance matrix is usually referred

to in the literature as S.

The estimation process begins by initialising x+
0 = E[x0], and P+

0 = E[(x0 −

x̂+
0 )(x0 − x̂+

0 )T ]. Then, the way linear difference equation propagates the state es-

timate of xk forward in time is given by taking the expected value of both sides of

the equation 2.14, which results in x̂−1 = F0x̂
+
0 or the more general version:

x̂−k = Fk−1x̂
+
k−1 (2.29)

The a priori estimation-error covariance matrix P−k is propagated in a similar manner

and its equation, which is known in the control theory literature as the discrete-time
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Lyapunov equation, is the following [15]:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1 (2.30)

Then, the Kalman filter proceeds by iterating between two steps. The first step is

called the prediction step or time update, while the second is the correction step or

the measurement update. The conventional Kalman filter algorithm is summarised

below:

Time update:

x̂−k = Fk−1x̂
+
k−1

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1

Measurement update:

yk = zk −Hkx̂
−
k

Sk = HkP
−
k H

T
k +Rk

Kk = P−k H
T
k S
−1
k

x̂+
k = x̂−k +Kkyk

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

or

P+
k = P−k −KkSkK

T
k

or

P+
k = (I −KkHk)P

−
k
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2.5 Square-Root Filtering

Square-root filters are generally considered superior to conventional filter imple-

mentations mainly because of their ability to increase the numerical stability of the

propagation of the estimation-error covariance matrix P , and have often been de-

scribed as outstanding [13, 54]. It should be noted that the term square-root filter

is mostly used to refer to the measurement update of the Kalman filter algorithm,

since it is this part that can cause numerical problems [16]. They were motivated

by the need for increased numerical precision because of word lengths of limited size

in the 1960s [15] and by the concern with respect to the numerical accuracy of P in

the measurement update of the Kalman filter equations [16]. Potter [55] proposed

the idea of the so-called square-root filters and this idea has evolved ever since. The

idea, which was limited to noiseless systems, is that P is factored into its square

root C, such that P = CCT , and as a result C is propagated through the time and

measurement update equations, instead of P . This means that replacing P with its

square-root factor C has the effect of doubling the numerical precision of the filter,

thus making it particularly suitable for matrices which are not well-conditioned or

when increased precision cannot be obtained from the hardware [14, 13, 15, 16].

2.5.1 The Carlson-Schmidt Square-Root Filter

The Carlson-Schmidt filter is a form of a square-root filter which relies on the de-

composition of P into its Cholesky factors in the time and measurement update

equations. The Carlson part of the filtering algorithm, originally given by Carlson

[56], corresponds to the measurement update, while the Schmidt part corresponds

to the time update of the Kalman filter equations, respectively. Carlson’s algorithm

is capable of handling noise and, like Potter’s algorithm, processes measurements as

scalars. It factors P into the product of an upper-triangular Cholesky factor and

its transpose such that P = CCT . Note that, unlike Potter’s initial square-root
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filter where the factor C is not required to be triangular, in Carlson’s square-root

implementation the Cholesky factor C is an upper-triangular matrix. Maintaining

C in upper-triangular form has been shown to provide several advantages in terms of

storage and computational speed compared to Potter’s algorithm [13, 56, 57]. While

the choice between a lower and upper-triangular Cholesky factor C is arbitrary [13],

Carlson motivated the preference to choose an upper-triangular Cholesky factor by

the fact that in the time update part of the algorithm, fewer retriangularisation

operations are required especially when someone designs a filter to be applied in a

tracking or in a navigation problem, respectively [56].

2.5.2 The Bierman-Thornton U-D Filter

The Bierman-Thornton filter, or U-D filter for short, is one of the most widely used

Kalman filter variants [58], which despite its appearance in the early 1970’s, due to

its numerical accuracy, stability and computational efficiency it is “still the dominant

type of factored filter algorithm” [16]. It is worth noting that in the literature there

seems to be some ambiguity as to whether the U-D filter is considered a square-

root filter or not, since there are authors who classify it under the broader category

of square-root filters and others who do not [14, 15]. Strictly speaking, the U-D

filter is not a square-root filter and therefore some authors use the term “factored

filter” [16] to refer to it. Specifically, the “Bierman” part of the filtering algorithm,

originally given by Bierman [59] corresponds to the observational update, while the

“Thornton” part given by Thornton [57] corresponds to the time update of the

Kalman filter equations, respectively.

Bierman’s covariance update, the “actual” U-D filter relies on the decomposition

of P into the following matrix product: P = UDUT , where U is a unit upper-

triangular and D is a diagonal matrix, respectively [60], a procedure which is often

referred to as a modified Cholesky decomposition and the U , D factors as modified

Cholesky factors [14]. Unlike Carlson’s method it does not require computing scalar
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square roots for every incorporated measurement [13, 60, 57], thus making it rather

suitable for problems where the number of variables defining the state space is large

[14]. Furthermore, Bierman’s algorithm in a manner similar to Carlson’s method

promotes the use of upper-triangular matrices for the same reasons of computational

efficiency. Thornton’s algorithm provides an alternative for the conventional Kalman

filter’s time-update equations as it propagates the U and D factors, instead of P ,

forward in time, using the numerically stable Modified Weighted Gram-Schmidt

(MWGS) orthogonalisation algorithm [57].

2.6 The Discrete Algebraic Riccati Equation

As it will become evident in the upcoming sections, the discrete-time matrix Riccati

equation1 or in other words the propagation of the estimation-error covariance matrix

Pk in each time step, is so important in the Kalman filter that it deserves a separate

section. The discrete-time matrix Riccati equation or just the Riccati equation for

convenience can be formed by combining the a priori and a posteriori covariance

equations [23]. The Riccati equation is given by:

P−k+1 = Fk[P
−
k − P

−
k H

T
k (HkP

−
k H

T
k +Rk)

−1HkP
−
k ]F T

k +Qk (2.31)

This equation is called a difference equation, the discrete version of a differential

equation, which describes how the covariance of the estimation error evolves over

time. It can also be thought of as a recursive equation since the computation of

the a priori estimation-error covariance for the next time step (e.g. P−k+1) depends

on the a priori estimation-error covariance of the previous time step (e.g. P−k ). In

fact, in the literature it is often referred to as the Riccati recursion [61], which aligns

perfectly with the recursive nature of the Kalman filter. Note that by expressing the

a priori estimation-error covariance with the Riccati equation we have eliminated

1Named after Jacopo Francesco Riccati (1676-1754)
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an extra computation step; the computation of the a posteriori estimation-error

covariance matrix P+
k . Also, P−k+1 is a symmetric, positive semidefinite matrix,

which means its eigenvalues ≥ 0. The interesting question is what happens in the

limiting case as k →∞. Under the assumption that the solution in the limit exists,

then P−k+1 = P−k , P , which leads us to the discrete algebraic Riccati equation

(DARE) given as:

P∞ = F [P∞ − P∞HT (HP∞H
T +Rk)

−1HP∞]F T +Q (2.32)

When we seek solutions for the equation we want to limit the choice of possible

solutions to those which are positive semidefinite, since P is a covariance matrix.

In addition, we are interested in finding the conditions for which these solutions

exist. The analysis of Riccati equations from several perspectives is an entire field

of mathematical study; here we summarise some of the important theorems which

can be found in several books such as [62, 23, 16, 15, 13] which can help us answer

our questions.

Theorem 1. A bounded solution (P ) in the limit exists for every P0, if the matrix

pair {F,H} is completely observable, and this solution P is positive semidefinite.

This theorem, despite its importance since it precludes solutions which are neg-

ative semidefinite, negative definite and indefinite, which would have been invalid

for a covariance matrix, could still lead to a not necessarily unique solution, since

the resulting matrix could be either positive definite or positive semidefinite. This

rather subtle point is very important for the propagation of the covariance of the

estimation error in the Kalman filter. This is because a change in the sign of the

eigenvalues of the estimation-error covariance matrix could determine whether the

Kalman filter will converge or not. For example a positive semidefinite (e.g. eigen-

values ≥ 0) estimation-error covariance matrix P , which is a valid covariance matrix

nonetheless, would mean that the Kalman filter “completely trusts” the estimates
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for some states of the state vector, and as a result would not “trust” the measure-

ments. Therefore, we are interested in finding those properties that could lead to a

unique positive definite solution, which leads us to the second theorem [23].

Theorem 2. Let C be the Cholesky factor, a square root of Q (
√
Q), of the process

noise covariance matrix Q, such that Q = CCT . If and only if the pair {F,C} is

completely controllable then there exists a unique positive definite limiting solution

P and this solution is independent of the initial condition P0.

The reason this controllability test is performed is to ensure that the process noise

will excite every component of the state vector, in order to prevent the estimation-

error covariance matrix P from becoming 0.

In the literature one can find proposals about numerical algorithms for solving

the Riccati for both the continuous and discrete-time case. However, the study of

the Riccati equations is a deep mathematical topic and one should evaluate the

various proposals in the literature carefully. It is no accident that state-of-the-art

commercial tools, such as MATLAB, rely on techniques which were proposed in the

eighties to solve the Riccati equations. In many cases the results for the continuous

case can be extended to the discrete one [14]. The classical methods for solving

the Riccati equation can be broadly classified into invariant subspaces methods,

iterative methods and methods based on the matrix sign function [63]. The most

well-known from the matrix sign function methods is the one from [64]. From the

iterative methods the most well-known includes the work of Kleinman who was

one of the first to use the Newton’s method to propose a numerical algorithm for

the continuous case [65], in what became known as the Newton-Kleinman iteration.

Later, Hewer [66] proposed an iterative method which is the analogue of the Newton-

Kleinman method for the discrete-time case. From the invariant subspace methods,

and in particular those based on Schur methods, one of the most important is

considered the algorithm given initially by Laub [67]. This was later extended with

other techniques by Arnold and Laub [68] to produce the numerical algorithmic
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library RICPACK. RICPACK, which was written in Fortran, was used for solving

the Riccati equation amongst other things, and later became part of the popular

linear algebra package LAPACK [16, 63, 68]. The techniques proposed in their

paper [68] are used today for solving the continuous and discrete-time equations in

MATLAB’s Control System Toolbox.

2.7 Probabilistic Model Checking and PRISM

Probabilistic model checking is an automatic quantitative verification technique

which seeks to establish quantitative properties which relate to the specification of a

probabilistic system, with some degree of mathematical certainty [69, 70]. In order

to perform probabilistic model checking two inputs are required: i) a probabilistic

model, which is a representation of a probabilistic system and ii) a specification,

usually expressed in probabilistic temporal logic [71]. Therefore, quantitative ver-

ification, and probabilistic model checking in particular, can be thought of as a

generalisation of conventional model checking techniques [69, 72].

PRISM [19] is a probabilistic model checker, which supports the construction

and formal quantitative analysis of various probabilistic models, including discrete-

time Markov chains, continuous-time Markov chains and Markov decision processes.

These models can be specified in several ways, in particular:

• using PRISM’s modelling language, which is how we define our PRISM model

related to cloud-based systems in Chapter 4.

• programmatically, using the ModelGenerator API, which is how we construct

models related to the verification of Kalman filters in Chapter 6.

In our research, for the verification of both auto-scaling policies and Kalman fil-

ters, we use discrete-time Markov chains, which are well suited to modelling systems

whose states evolve probabilistically, but without any nondeterminism or external
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control. They are therefore appropriate here, where we want to verify auto-scaling

policies and Kalman filter executions, whose outcomes are probabilistic. Formally,

a discrete-time Markov chain is defined as follows.

Definition 1. A discrete-time Markov chain is a tuple M =
〈
S,P,AP,L

〉
where:

• S is a finite set of states;

• P : S × S → [0, 1] is a transition probability matrix;

• AP is a finite set of atomic propositions;

• L: S → 2AP is a labelling function.

Each element of the transition probability matrix P(s, s′), gives the probability

of transitioning from state s to s′. Since we are dealing with probabilities, we require

that
∑

s′∈S P(s, s′) = 1. If we denote the state of the Markov chain at a particular

time step k by Xk, then the transition probabilities can be defined mathematically

as Pr(Xk+1 = s′|Xk = s) = P(s, s′) for any s, s′ ∈ S. The set of atomic propositions

AP describes properties of interest which can be either true or false in the Markov

chain’s states, and the labelling function L maps states to the atomic propositions

in the set AP .

For discrete-time Markov chains, properties of the model are specified in PRISM

using an extension [21] of the temporal logic PCTL (probabilistic computation tree

logic) [22]. A typical property is P./ p[ψ], where ./∈ {≤, <,>,≥} and p ∈ [0, 1],

which asserts that the probability of event ψ occurring meets the bound ./ p. Events

are specified using temporal operators, e.g. FΦ means that along a path state formula

Φ eventually holds and GΦ means that formula Φ always holds in every state of the

path. As an example, in our model, where we want to verify whether the auto-

scaling decisions will drive the cloud application to a state where the utilisation will

be less than 95% with probability greater than 0.7, the following formula will be

checked : P>0.7[F(util < 95)].
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The states of probabilistic models can also be annotated with rewards (or costs).

A reward structure is a labelling function which assigns a nonnegative rational value

to a state, and model checking a reward-based property usually refers to the com-

putation of its expected value [71]. Such properties are specified using the reward

operator R. For example, a state s satisfies a reward-based property of the form

R./ r[C
≤k] if from state s, the expected reward cumulated after k time steps satis-

fies the bound r. Moreover, a state s satisfies a property of the form R./ r[I
=k] if,

from state s, the expected instantaneous reward at time step k meets the bound r.

Furthermore, the property R./ r[FΦ] is true in a state s, if the expected cumulated

reward before reaching a state in which the formula Φ holds, meets the bound r

[71]. Moreover, when a model has multiple rewards structures, the R operator can

be annotated to indicate which one is being used.

In addition, PRISM supports numerical properties such as P=?[F fail ], which

means “what is the probability for the cloud application to end up in a failed state,

as a result of the auto-scaling decisions made?”. Of course, what is considered a

failed state will differ between cloud application owners, according to the relative

importance they put on the non-functional aspects of their application. PRISM

allows a wide range of such properties to be specified and analysed. See e.g. [21]

for full details of the syntax and semantics of the PRISM property specification

language.
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Related Work

In this chapter we review the relevant work from the literature, which is closely

related to the subject of the thesis: the verified estimation and control for cloud

computing, with an emphasis on the automated resource provisioning mechanisms,

which are an integral part of today’s cloud-based systems. We begin, in Section 3.1,

by conducting a thorough literature review on the types of resource provisioning

which manifest themselves in cloud computing. Next, Section 3.2 reviews the testing-

based approaches for evaluating non-functional requirements in cloud computing and

their limitations. Following this, in Section 3.3, we focus on the verification-based

techniques for non-functional requirements in the cloud, followed by a discussion

of the use of probabilistic model checking in the context of cloud computing in

particular. Then, in Section 3.4 we review the use of Kalman filters in resource

provisioning contexts. Finally, Section 3.5 contains an extensive discussion on the

causes of divergence of Kalman filters, followed by a review on the two most common

causes of divergence: modelling and numerical errors.
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3.1 Resource Provisioning in Cloud Computing

In the software engineering community, there has been a significant amount of work

in proposing methods for optimal resource provisioning in a cloud environment.

The resource provisioning methods are divided into two types: static and dynamic

approaches. Static provisioning is regarded as the simplest possible solution, since it

assumes that the workload patterns will remain unchanged, and as a result the end

user will be satisfied with a fixed amount of resources. Furthermore, in cases where it

assumes workload variations, the provisioning of resources is based on peak demand

therefore not taking into account the cost incurred from the provider’s perspective,

resulting in a method that is not cost-effective [73].

Dynamic provisioning, on the other hand, is a more challenging problem since it

does take into account the fluctuating demand and workload, and is concerned with

allocating and de-allocating resources in an efficient manner. Dynamic provisioning

is based on the elasticity property of the cloud which has been explained in Sec-

tion 2.1. Here, and in line with our research, we focus on the dynamic provisioning

of resources which is the harder problem and which has attracted the interest of

many researchers in the field. Over the past years a lot of work has been conducted

in the area of dynamic resource provisioning [74, 75, 33, 76, 77, 78, 79, 80], from a

cloud provider/IaaS perspective. Market-based approaches such as [74, 79, 75] view

the cloud as a market and focus on adaptive resource provisioning with the goal of

maximising revenue for the cloud provider.

Other work such as [81] is based on using Fast Fourier Transforms to detect work-

load patterns of the applications running in the IaaS layer and proposes a Markov

model that predicts the incoming load. Their goal is to achieve “predictive migra-

tion” of the virtual machines, minimising energy usage without violating the SLA.

Furthermore, [82] propose an architectural change on the IaaS layer by incorporat-

ing a “forecast engine”, that is based on Seasonal Autoregressive Integrated Moving

Average (Seasonal ARIMA) model.
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This non-trivial model is based on assumptions such as the willingness of cloud

users to “feed” it with the necessary data. The authors’ claim is that, despite

the difficulty in developing it, it can prove to be useful in deriving the resource

requirements for each cloud user, resulting in optimal allocation of resources.

Moreover, [77] propose an architectural change on the IaaS layer by taking a

control-theoretic approach. Their proposal consists of the use of three controllers (for

the application, the memory and the CPU) which are integrated and run in parallel

within a larger component (the authors name it the QoS controller), with the goal of

optimising the performance of the applications that are hosted on the VMs. Other

work by [80] proposes a “joint-VM provisioning” approach, where, by exploiting

statistical multiplexing, multiple VMs are being provisioned by approximating their

“combined” capacity needs. The common ground in the proposals described above is

that they assume full control and observability of the IaaS layer, and are concerned

only with fulfilling the objectives of the IaaS owner, which is not the case for a cloud

application provider (e.g. SaaS provider) who might have limited control over the

IaaS layer and different objectives from the cloud provider. In addition, it can lead

to the misleading assumption that dynamic provisioning of resources is a matter of

concern only to the IaaS owner.

This limited attention that has been paid to dynamic resource provisioning (elas-

tic provisioning) for SaaS providers had not been addressed until recently, when

researchers started to propose dynamic resource provisioning methods specifically

for SaaS providers [83, 84]. This gap has also been noticed by [85], where the au-

thors note that most of the work in provisioning resources in the cloud is focused

on IaaS providers, and by [83], where the authors confirm the limitations of exist-

ing research, and describe the current work with respect to dynamic provisioning for

SaaS providers as “in its infancy”. These two papers make the important distinction

between a SaaS and an IaaS provider, and do not assume that the SaaS provider is

necessarily an IaaS provider.
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Although this distinction may sound obvious, a significant amount of work in the

cloud does not make this clear, and only lately have there been papers and surveys

that define the cloud actors precisely. The observation made by [85] and [83] is very

important, since it further emphasises the fact that more research is needed in vari-

ous areas of cloud computing, especially from the application provider’s viewpoint.

This area is mentioned because our research is concerned with the verification

of dynamic provisioning from the application layer’s perspective (e.g. SaaS). We

believe that, in order for the dynamic resource provisioning proposals to be reliable,

for use in practice and to advance the state of the art, they should be verifiable. As

has been described in the previous section, the problem of managing resources in the

cloud efficiently is strongly related to the decision maker whether it is a human who

specifies threshold-based values manually or according to a mathematical model.

Furthermore, instead of a human operator, it can even be a highly automated system

which has been programmed to drive the application in the correct states. The main

objective of those decision makers is to take full advantage of the cloud’s elastic

infrastructure in order to guarantee the QoS promised to the end users, and keeping

the operational costs as low as possible.

Dynamic provisioning of resources is based on the elasticity property of cloud

computing. Elasticity is a property that spans over dependability, performance,

reliability and cost requirements. These requirements are called non-functional re-

quirements and can be viewed either as global constraints of a system, or objectives

that should be maximised or minimised accordingly. Current research that has been

mostly focused on the area of provisioning resources has neglected the correctness

criteria of the elasticity proposals; in fact we make a similar observation as the one

made by [86] in 2014, who noted that most of the proposals that are related to

automatic resource provisioning such as [81] and [87], “tend not to be accompanied

by correctness guarantees”.
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This is further reinforced by the fact that, despite all of the on demand resource

provisioning proposals, most providers still do not provide QoS guarantees with

respect to the non-functional requirements in their SLA. As [88, 89] note, none of

the public cloud providers provide performance guarantees to their end customers.

It should be noted that there are some objective reasons for this, such as sudden

and significant changes, hardware failures, etc., which makes it a challenging task.

The existing work on evaluating non-functional requirements from an application

provider’s perspective is based on two schools of thought: testing-based and formal

verification-based approaches. In the following sections, we review the related work

conducted in these areas and report on their limitations. Most of the focus is put

on reviewing the existing work that has been conducted in the area of verification

as it is more closely related to our research.

3.2 Testing Non-Functional Requirements for Cloud

Computing

Non-functional testing is the process of testing the non-functional requirements of

a system (e.g. performance, scalability, security, etc.). A problem in this process is

the assessment of the test results, because it is harder to define to what extent the

non-functional properties have been tested, compared to functional testing, where

a true/false result is produced by a test oracle against a test case. This problem

is of course harder to deal with within the context of cloud where there are many

unpredictable factors, possibly unknown to the cloud application provider, making

the quantification of quality a challenging task.

More specifically, the heterogeneous and unpredictable environment in which

cloud-based applications operate puts a significant burden on the non-functional

testing process because testers and decision makers have to determine to what extent

the deviation from the expected behaviour is acceptable. This brings to the surface
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the problem of classifying emergent behaviour as acceptable or unacceptable.

The notion of emergent behaviour has been well described by Mogul [90], where

he foresees the need that will arise in the future for “developing testing techniques for

emergent misbehaviour”. This idea has recently been put forward by Elbaum and

Rosenblum [91], who emphasise the inefficiency of existing testing methodologies,

such as coverage criteria, in “exposing or controlling the sources of uncertainty”.

Another drawback of non-functional testing that limits its reusability is the tight

coupling between the test cases and the underlying software. In a traditional non

cloud-based scenario, this might be acceptable; however, this is not the case for

cloud-based applications which are highly dynamic either due to the continuous

updates from their provider or from the variations in the workload patterns that are

being exercised by the tenants. This dynamicity could cause the test cases to be

out of date very soon. For example, it would be extremely hard and costly to add

new test cases that exercise new behaviour and to perform regression testing every

time an update is being made, leading to a test suite that does not represent the

behaviour of the software at a given point in time.

In an attempt to address the aforementioned challenges, there have been testing-

based proposals in the literature which focused on applying existing non-functional

testing methodologies for cloud-based applications, usually by adding them to the

stack of the “as a Service” model [92, 93, 94, 95, 96, 97, 98]. This practically

means that a portion of time-consuming and costly testing activities, such as re-

running the test scripts for regression testing, is outsourced to a service provider who

extrapolates the advantages of the cloud infrastructure. While the above proposals

might seem interesting, they seem to neglect the dynamic along with the evolving

nature of modern cloud-based applications that makes it virtually impossible to

perform exhaustive testing, and in the case where this could happen the cost would

have been prohibitive. Moreover, these proposals do not propose concrete solutions

regarding the evaluation of non-functional requirements; rather their scope is general
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and they talk about the difficulties that manifest themselves in cloud-based non-

functional testing from a general perspective. In particular, these proposals take a

slightly more passive approach with respect to the various properties that need to

be evaluated, without taking into consideration the time and cost constraints that

are a part of cloud-based software.

Other proposals, such as [99] present more concrete ideas and propose a frame-

work that is a combination between event-driven and combinatorial testing in order

to perform regression testing on SaaS. Their main contribution is a coverage metric

that is used to prioritise the test cases in regression testing. Although their work is

interesting, it presumes the existence of a large enough test suite, something which

is not applicable to new SaaS systems. In addition the evaluation is rather limited

since it is based on a single system, and as a result the generality of the method is

not guaranteed.

The work of [100], which takes a broad perspective and talks about best prac-

tices for engineering SaaS systems in general, includes a section on testing where

it is argued that SaaS engineers could benefit from the work that has been con-

ducted in software product lines, and the notion of a Test-Tree is proposed as a

way to exploit similarities between tenants and consequently to minimise testing

time. Similar to [100] are the works by [101, 102] which propose models inspired

by software product line engineering as a way to cope with the evolving nature of

SaaS. However, these works only propose a model, without evaluating it or showing

how it could work in practice. Other testing-based approaches for evaluating non-

functional requirements in SLAs are from [103], [104] and [105], where the authors

propose a coverage criterion that assists in deriving the test requirements from the

SLA, however they do not talk about SaaS or cloud-based software. Similar to the

authors above, [106] proposes a genetic algorithm in order to generate test inputs

that cause SLA violations, but does not take into account the unique characteristics

of a cloud environment.
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Moreover, work on the evaluation of auto-scaling policies includes [107], which

proposes a performance metric for evaluating auto-scaling policies, but it is not clear

where their experiments were conducted and to what extent their proposed metric

can be helpful in a realistic cloud setting.

The work of [108] proposes a performance evaluation framework for evaluating

auto-scaling strategies (PEAS). The authors formulate the evaluation of the auto-

scaling strategies as a chance constrained optimisation problem, which is then solved

through scenario theory in order to give probabilistic guarantees on the QoS. Despite

the fact that the authors use realistic workloads, the evaluation of their framework

is performed on their simulator where they attempt to simulate the cloud.

Furthermore, [109] perform an experimental evaluation of auto-scaling policies

for complex workflows, by comparing various auto-scaling techniques. However,

this evaluation is conducted on their own OpenNebula private cloud, and not on a

public cloud provider. The main difference between the previous three works and

our work is that they are not based on formal verification techniques and/or that

the evaluation of these works is performed on a simulator or on a private cloud.

A work which has evaluated auto-scaling mechanisms on two public cloud providers

(Amazon EC2 and Flexiscale) is the work by [110]. The authors experimentally com-

pare Flexiscale’s auto-scale mechanisms against those provided by Amazon EC2.

However, as the authors note, this cloud provider did not have any built-in support

for auto-scaling at the time, rather this is developed by themselves. As a result, it is

not clear how well this matched the auto-scaling mechanisms of major public cloud

providers, and whether reliable conclusions can be drawn.

Closing this section, we note that there is no prior work in the area of evaluating

auto-scaling policies which combines aspects of formal verification with validation

based on real data. Specifically, there is no prior work in which the auto-scaling

policies are evaluated using formal verification techniques and which builds prob-

abilistic performance models for horizontal auto-scalers where the models are: i)
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constructed and validated based on real data gathered from applications deployed

on public cloud providers and while the real auto-scaler was executing; ii) taking

into account aspects (e.g. capacity changes) of the documentation of major public

cloud providers (Amazon EC2 and Microsoft Azure).

In general, however, we note that the landscape in testing-based approaches with

respect to evaluating non-functional requirements for SaaS or cloud-based software

is rather foggy and more research is needed, an observation made by [99, 100, 29].

3.3 Verifying Non-Functional Requirements for

Cloud Computing

Formal verification techniques such as model checking have been applied success-

fully to a wide range of systems, from a functional perspective [69]. The purpose

of a model checker is to algorithmically check the states of a model (e.g. finite

state machine), to see if a functional property, usually expressed in a temporal logic

formula, holds or not. However, guaranteeing absolute correctness for systems that

operate in heterogeneous and unpredictable environments, such as the cloud, is too

optimistic. In addition, the increasing complexity of systems that operate in these

types of environments has shifted the focus from qualitative to quantitative verifica-

tion [111, 72]. Quantitative properties include the non-functional requirements, and

in the context of cloud computing, non-functional requirements are at the center of

attention, since their satisfaction determines the QoS offered to users. Therefore, be-

ing able to provide performance guarantees for systems which operate in these types

of environments is crucial; formal verification techniques based on formal modelling

and analysis of probabilistic models [112] can help towards accomplishing this task

[113]. A formal model can also help the various cloud application providers (e.g.

SaaS providers) and their end users to resolve the ambiguity that stems from the

use of natural language in the specification of SLAs that exists nowadays [76].
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Probabilistic model checking has been employed with great success in recent

years to verify and analyse properties of systems that manifest uncertainty. Do-

mains include automotive systems [114], security [115], biology [116] and software

engineering [117]. The latter domain, software engineering, includes works of re-

searchers who take a broader view on software engineering problems, usually con-

sidering software (and systems) operating in a self-adaptive context [118]. In gen-

eral, in a self-adaptive context the need to incorporate quantitative verification has

been advocated by [117], in which the authors describe the stages of the adaptation

process which can benefit from it. Other research works which use probabilistic ver-

ification in a self-adaptive context include the works of [119] and [120]. The former

employs PRISM-games, an extension of PRISM, in order to develop stochastic game

models to reason about different algorithms for self-adaptation; the latter reasons

about the human factors that affect the adaptation process.

In cloud computing formal verification approaches have not been applied widely,

and towards addressing this gap, a paper by [29] attempts to pave the way for

future research with respect to verification of cloud services. Although this paper

does not talk explicitly about formal verification, it proposes the use of model-

based approaches in order to check non-functional properties of cloud-based SaaS

systems. Furthermore, works of [117, 121] address the need for further research in the

area of cloud computing and propose as an area for further research the continuous

verification of non-functional properties. Lately, there has been an increased interest

by researchers in applying probabilistic model checking to cloud computing. The

main reason is that, from whichever perspective cloud computing is examined (e.g.

IaaS, PaaS, SaaS layer), there is an inherent degree of uncertainty, and there is a

clear need for this uncertainty to be quantitatively analysed.

Over the last years, there has been an active interest from researchers in employ-

ing probabilistic model checking to deal with the resource provisioning problems

in the cloud. For instance, Fujitsu researchers [113] address the problem of assess-
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ing the efficiency and reliability of live migration operations, which are an integral

part of the virtualised technology used in the cloud. To conduct this performance

analysis, they employ probabilistic model checking to verify the performance of live

migrations in the IaaS layer. However, they assume that migration requests are

distributed in a uniform way, which is not necessarily true in practice [122].

In addition, [8] propose a Markov decision process model developed with PRISM,

among other models, in order to formally verify different types of auto-scaling poli-

cies, including rule-based ones. The difference between our work and theirs is that

we focus exclusively on rule-based auto-scaling policies, by developing one dedicated

model to simulate the dynamics of the auto-scaling process. As a result, we take a

vertical in-depth approach in the auto-scaling process, by considering a significant

number of parameters that occur in realistic cases.

What further differentiates our work from others is that we perform an exten-

sive validation of our models on two major public cloud providers (Amazon EC2,

Microsoft Azure). This means that we do not have, or assume, any type of control

on the underlying auto-scaling mechanisms or on the VM provisioning methods and

strategies employed by the cloud provider, and through our model, we try to infer

the different outcomes that could happen.

In general, however, we note that the use of probabilistic model checking for

pragmatic cloud use cases is still at its infancy; our research aims at bridging this

gap.

3.4 Kalman Filters for Resource Provisioning

The use of Kalman filters has been proposed for the effective provision of resources in

the cloud or in other utility-based computing settings by [9, 10, 11]. These proposals

usually come from advocates of the autonomic computing paradigm in which the

Kalman filter is combined with a control system (i.e. controller), in order to provide
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an effective way of automating the resource-allocation decisions. The integration

of a Kalman filter with a controller stems from the fact that the Kalman filter can

be used as a predictor for tracking noisy performance parameters, such as the CPU

utilisation. These predicted values are then given as inputs to the controller, thus

allowing for a proactive resource provisioning approach to be taken. Furthermore, if

predictions about the future state of the system are not of interest, the Kalman filter

can be used purely as an estimator for estimating the performance parameters of

the “current” state of the system. This is a particularly advantageous/appropriate

use case for the Kalman filter since it is very effective in filtering out the noise from

the true signal (e.g. CPU utilisation data).

The first use of a Kalman filter in a resource provisioning context was by [9], in

order to track the parameters of a system which comprised a web server, a disk and a

Common Gateway Interface (CGI). However, it is worth noting that the performance

model (in the Kalman filter’s terminology the performance model is referred to as

the system model) of the system was abstracted in the form of a queueing model,

and many of the parameters were assumed to be constant over time. Later, this work

was extended by considering time-varying parameters, instead of constant ones, of

the underlying performance model [9].

Systematic studies on the topic of employing Kalman filters for resource provi-

sioning purposes were conducted by [10, 11, 123], in which the authors propose a

control-based resource allocation approach where the Kalman filter was integrated

with feedback controllers. In their work, the Kalman filter is used to track noisy

CPU utilisation data and the controller’s task is to maintain the CPU allocation

accordingly. It is worth noting that the performance model, the CPU utilisation

model in this case, in which it is assumed the emitted measurements originate, is

a one-dimensional random walk. Specifically, they propose a Single-Input, Single-

Output (SISO) Kalman controller, a Multiple-Input, Multiple-Output (MIMO) Pro-

cess Noise Covariance Controller (PNCC) and an Adaptive MIMO PNCC. The first
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is used to dynamically adjust the CPU allocation of individual virtual machines,

while the second one is used to take into account the resource couplings which ex-

ist in multi-tier applications. Finally, the third controller is configured in a similar

fashion to the second one; however, the external noise which affects the system is

assumed to be nonstationary in this case.

Similar related work includes [5] which proposes a stochastic model predictive

control approach to explore the trade-offs that an application provider faces when

renting resources from a cloud provider. Overall the problem is framed as an op-

timal control one, where the application provider tries to meet its Service Level

Objectives while minimising its costs at the same time. The performance model is

a queueing model used as an approximation for modelling the performance parame-

ters of a multi-tier cloud application. In this context, the Kalman filter constitutes

a component of the overall framework and tries to estimate the parameters of the

performance model (e.g. the size of the queue).

Finally, [124, 125] propose the use of Kalman filters as part of a wider service,

for proactive auto-scaling decision-making in the cloud. In the first paper, the au-

thors challenge the existing rule-based auto-scaling approaches offered by the cloud

providers. They propose a new cloud service, under the name Dependable Com-

pute Cloud, which can determine the correct auto-scaling decisions to be taken, in

a proactive manner. In the second paper, the same authors employ their modelling

approach to analyse the workload impact on the various scaling decisions. In both of

those papers, a variant of the Kalman filter algorithm is used to infer unobservable

system parameters, such as service times and service rates. The system in their

case refers to a multi-tier cloud application. However, this system is modelled as

a queueing network where homogeneity among the servers and perfect load balanc-

ing are assumed, assumptions which do not necessarily reflect the operation of the

system in a realistic setting.
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3.5 Performance Analysis of Kalman Filters

Even though, from a theoretical point of view, the Kalman filter may give the

impression that it will produce an optimal estimate, this might not be the case when

applied to realistic situations. The reason is that the theory behind the Kalman filter

often makes assumptions which could not be met in practice, such as the assumption

that there is precise knowledge of the system and noise matrices, or that the numbers

can be represented with infinite precision [15]. Specifically, it is assumed that the

representation of the model used in the Kalman filter algorithm corresponds exactly

to the “truth” model [16]. As a result, the approximation of the actual process

which is expressed by the state space equations might lead to a phenomenon known

as divergence [13] where the calculated state estimate from the Kalman filter does not

represent the actual state of the process accurately. In consequence, there is a high

potential for the estimated error covariance not to be consistent with the actual error

covariance [126], and as a result the accumulated estimation errors will hinder the

effectiveness/accuracy of the (Kalman filtering) estimation procedure (will render

the estimation procedure obsolete). As an aside, it should be pointed out that model

approximations of the actual process are not necessarily the result of an erroneous

analysis, but also they can arise in a deliberate manner as a way to restrict the

computational requirements of the Kalman filter [45] (e.g. reducing the order of the

model), and as a result it becomes quite significant to quantitatively analyse this

“degree of suboptimality”[43]. The precise identification of the conditions which

could result in divergence is not a straightforward task, mainly because the whole

concept of divergence is regarded more or less as a qualitative concept [35], which

encompasses a whole spectrum of errors.

The causes of divergence are mostly attributed to either modelling or numerical

errors [23, 43]. This is because the process of developing the Kalman filter in a com-

puter implicitly means to “transfer” the rich mathematical theory which surrounds

the Kalman filter to the computer’s digital representation. As a result, when the
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outcome of this process is erroneous it is either because the constraints imposed on

us by the computer (e.g. finite precision arithmetic) and the “digital” behaviour of

the Kalman filter does not match the “theoretical” behaviour or because errors have

been introduced during the modelling phase [127]. In particular, divergence because

of numerical instability of the numerical algorithms used and because of modelling

errors started to become apparent once the Kalman filter was gaining popularity in

a growing number of engineering applications [128]. In the next sections we describe

what is actually meant by numerical instability and modelling errors in the context

of the Kalman filter.

3.5.1 Divergence Due to Numerical Instability

The part of the filter that could hinder its numerical stability, and so cause it

to produce erroneous results, is the propagation of the estimation-error covariance

matrix P in the time and measurement updates [23, 14, 13]. This is because the

computation of the Kalman gain depends upon the correct computation of P and

round-off or computational errors could accumulate in its computation, causing the

filter either to diverge or slow its convergence [14]. While, from a mathematical point

of view, the estimation-error covariance matrix P should maintain certain properties

such as its symmetry and positive semidefiniteness to be considered valid, subtle

numerical problems can destroy those properties resulting in a covariance matrix

which is theoretically impossible [54]. Out of the two update steps in which the

filter operates, the covariance update in the correction step is considered to be the

“most troublesome” [13]. In fact, the covariance update can be expressed with three

different but algebraically equivalent forms, and all of them can result in numerical

problems [23].

In order for P to be statistically valid it must be (symmetric) positive definite.

Briefly, this means that all of its eigenvalues are positive real numbers. This is for two

reasons. First, from a modelling perspective, if its eigenvalues were zero, this would

53



Chapter 3: Related work

translate to a filter which may completely trust its estimates and consequently would

avoid taking into account the subsequent measurements, placing all of its “belief”

in the system model [23]. Second, from a numerical stability perspective, it does

not suffice for the eigenvalues of P to be greater than zero, because if they are in

close proximity to zero, then round-off errors could cause them to become negative,

rendering it totally invalid [35, 14, 129].

In fact, the three equivalent forms to express the covariance measurement update

are susceptible to numerical errors [23] and cannot guarantee the numerical stability

of P . For example, the covariance update P+
k = (I − KkHk)P

−
k is generally not

preferred because it is too sensitive to round-off errors [23], which means neither the

symmetry nor the positive definiteness of Pk can be guaranteed. That is because this

update takes the product of nonsymmetric and symmetric matrices, a form which

has been characterised as undesirable [13].

Alternatively, changing the covariance measurement update equation to P+
k =

P−k −KkSkK
T
k could potentially pose a “serious numerical problem” [13], such as Pk

losing positive definiteness. Finally, while Joseph’s stabilised form [130], given by

P+
k = (I−KkHk)P

−
k (I−KkHk)

T +KkRkK
T
k , is considered to preserve the numerical

robustness of P+, it is not totally insensitive to numerical errors [23]. An additional

disadvantage is the high computational complexity, which is O(n3) [14, 13], since

the number of arithmetic operations such as additions and multiplications is con-

siderably higher compared to the simpler form. One might assume that numerical

problems especially related to round-off errors were a problem of the past when the

word length of processors was shorter. Of course, the advancements in technology

such as the increased word lengths of processors have greatly ameliorated this sit-

uation and engineers today do not have to face to the same extent the numerical

problems their predecessors had to face some decades ago. However, failures because

of numerical problems are still a significant issue if the Kalman filter is implemented

in embedded systems or any other computing device with stringent computational
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requirements [15]. Moreover, it has also been shown that numerical problems can

still exist even in today’s Kalman filter implementations because of round-off errors

[14, 15, 17]. In order to demonstrate the numerical problems which could arise,

consider the following example, which is an extension of an example from [14].

Example 3.1. Let us first define a numerical quantity δ, which is the so-called ma-

chine epsilon (eps) or unit round-off error and is defined as the distance between 1.0

and the next largest double precision number. For instance, for a double-precision

number this number will be 2.2204e−16, or equivalently 2−52 in the binary numeral

system which means that a number can be stored with a precision of roughly 16

digits. Alternatively, it can be thought of as an upper bound on the relative error

between a number and its computer-based representation. It can be proven that for

the cases where rounding is implemented that |∆x||x| ≤
δ
2

[131], where ∆x is the true

error between a number and its machine approximation.

Consider the innovation covariance update in the measurement update part of the

Kalman filter (for more details see Section 2.4), where the measurement R = δ2I2,

δ > eps and δ2 < eps.

P =

1 0

0 1

 H =

1 1

1 1 + δ

 (3.1)

For our example, we have set the value of δ = 10−8, since it satisfies the constraint

which was set beforehand (δ > eps and δ2 < eps).

Performing now the computations for the innovation covariance update given by

S = R +HP−HT will yield the following matrix:

S =

2 2

2 2

 (3.2)

We note that the matrix S is singular, which means that it cannot be used in the
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subsequent Kalman gain equation because it is non-invertible. The case explained in

the example above is not the only one which can be affected by numerical errors. In

fact, in our work we totally avoid numerical errors which can arise from the inversion

of S by processing the measurements in a sequential manner which allows for the

division operation to be used in the place of an inversion. By doing that, we restrict

the range of the different possibilities which can cause numerical errors and focus

our efforts on the analysis of the estimation-error covariance matrix P .

3.5.2 Divergence Due to Modelling Errors

Divergence detection falls under the wider scope of estimation theory, and more

specifically to what is often referred to as consistency evaluation of estimators. An

estimator is said to be consistent when its estimates will converge to the true value as

the sample size increases [23], or informally when its estimates become increasingly

better over time. Also, it is important to consider the context under which the

Kalman filter operates. For example, the consistency tests that can be applied to a

Kalman filter operating in a simulation-based environment cannot be applied to the

situation where the Kalman filter operates in real-time, and processes real-time data

[23]. This is because devising statistical tests based on the actual estimation errors to

assess the consistency of a Kalman filter is only applicable in simulations, where the

true state of the system is known. A popular way to deal with divergence problems,

once they are detected, is called filter tuning. This works by adjusting the process

noise covariance matrix Q, which the Kalman filter uses to represent the unknown

effects affecting the system whose state is to be estimated. This can be thought of as

injecting “pseudo-noise” and is considered one of the hardest and most challenging

tasks in developing an operational filter [132, 133, 42], because it encompasses all the

unknown effects that perturb the process model of interest. It can also be thought

of as a modelling error compensation technique [134, 23, 43, 135, 45, 35], and can

be applied to a self-adaptive context, where it is sometimes referred to as self-tuning
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[13]. This context is often referred to as adaptive filtering which means that the

Kalman filter adjusts its noise levels dynamically according to some performance

criterion. Furthermore, filter tuning can also happen in the design phase, e.g. using

a simulation-based environment and an iterative search to select parameter values

that will achieve the best possible estimation result [13].

In this work, we instead focus on a quantitative analysis of the innovation (or

measurement residual), which represents the difference between the actual and the

predicted system measurement. This is considered a “prime indicator” of filter

divergence [35]. The consistency criterion of the innovation sequence we consider

is that its computed covariance from the Kalman filter (e.g. actual statistics) is

consistent with the design statistics [35]. In other words, we want to verify that the

actual statistical properties are consistent with the theoretical statistical properties.

To the best of our knowledge, there is no prior work applying probabilistic model

checking to Kalman filters. Perhaps the closest is the use of non-probabilistic model

checking on a variant of the Kalman filter algorithm in [136], which applied model

checking to target estimation algorithms in the context of antimissile interception.

More generally, others have applied formal methods to state estimation programs.

For example, [137, 138] combined program synthesis with property verification in

order to automate the generation of Kalman filter code based on a given specification,

along with proofs about specific properties in the code. Other work relevant to the

above includes [139], which used the language ACL2 to verify the loop invariant of

a specific instance of the Kalman filter algorithm.
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Quantitative Verification of Cloud-based Auto-Scaling Policies

In this chapter, we present a novel approach based on quantitative verification to

produce performance guarantees on particular rule-based auto-scaling policies for

cloud systems. In particular, we use probabilistic model checking, which is a formal

approach to generating guarantees about quantitative aspects of systems exhibiting

probabilistic behaviour, and the tool PRISM. Guarantees are expressed in quan-

titative extensions of temporal logic and construction, and numerical solution of

probabilistic models is used to quantify these measures precisely.

We demonstrate the usefulness and efficiency of our techniques through a de-

tailed validation process on two public cloud providers, Amazon EC2 and Microsoft

Azure, targeting two cloud computing models, Infrastructure as a Service (IaaS) and

Platform as a Service (PaaS), respectively. Another important novel aspect of our

approach is the combination of probabilistic model checking with Receiver Operating

Characteristic (ROC) analysis during empirical validation. This allows us not only

to refine our original probabilistic estimates after collating real data and to validate

the accuracy of our model, but also to obtain global QoS violation thresholds for

58



4.1. Overview of the Framework

the policies.

Our modelling and verification framework is intended to minimise the time and

costs for cloud application owners who do not have the resources or desire to clone

their existing applications in order to test them in a cloud-based environment. It

can also provide valuable assistance in designing, analysing and verifying the auto-

scaling policies of applications and services deployed on public clouds, and could

help in providing formal performance guarantees.

The remainder of this chapter is structured as follows: In Section 4.1 we present

an overview of the modelling and verification framework. Next, in Section 4.2 we

describe our formal modelling approach to constructing a probabilistic model of the

auto-scaling process. Then, in Sections 4.3 and 4.4 we present our techniques for

applying probabilistic verification to the model and validating the results, respec-

tively. In Section 4.5 we reflect on the results and in Section 4.6 we summarise the

main contributions of this chapter.

4.1 Overview of the Framework

In this section we give an overview of the modelling and verification framework for

building probabilistic performance models for horizontal auto-scalers on Amazon

EC2 and Microsoft Azure, which are then used for the verification of auto-scaling

policies. First, we present the workflow of our approach as a sequence of steps which

have to be carried out in order to apply the framework. A high-level overview of this

process is also illustrated in Figure 4.1. Then, we state the assumptions under which

the framework has been developed, and we conclude by describing the conditions

under which a user of the approach can directly use the specific DTMC models

described in this chapter.

Overall approach and workflow. The first step potential users of our approach

should perform in order to apply it to their particular problem domain is some form
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Figure 4.1: A high-level diagram of the proposed framework.

of load identification, in terms of the type of workload that will affect their cloud-

based application. This is particularly important since the states in the probabilistic

model will store information about the CPU utilisation and response time for a

number of VMs under a particular workload. In our case, for example, the minimum

number of VMs we consider is 1 and the maximum is 8 for the Amazon EC2 case,

while the minimum and maximum number of VMs considered for the Microsoft

Azure case is 1 and 4, respectively.

The next step is to generate load to the cloud-based application to gather the

necessary CPU utilisation and response time traces. For this step, in our work we

use the Apache JMeter [140], which allows us to simulate the type of load we are

interested in modelling, on the VMs. Furthermore, the load patterns used in our

case are a periodic and an “aggressive” load pattern. More information about these

load profiles is given in Sections 4.4.3 and 4.4.6, for the Amazon EC2 and Microsoft

Azure cases, respectively. Once CPU utilisation and response time traces have been

obtained, the clustering process begins which effectively determines the number of

states (per VM number) in the probabilistic model.
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As soon as the number of states is determined, the next part is the development

of the DTMC in PRISM. The auto-scaling policies to be verified should be used as a

guide for this step in order to allow for an accurate representation of the transitions

between the states in the DTMC.

Following the construction of the model, the performance properties, expressed

in PCTL, are verified against the model which abstracts the auto-scaling process,

and the quantitative results are obtained. The more expressive the model is the

more verification scenarios can be analysed. Next, ROC analysis is proposed as a

way not only of validating the results of the model against new data obtained from

the cloud-based application, but also of discriminating between auto-scaling policies

which could result in a QoS violation (Result=Yes) or no violation (Result=No).

Assumptions and constraints. Our framework is targeted at cloud-based appli-

cations which operate web or application servers (hosted as VMs) to serve static or

dynamic content to their users, respectively. As a result, we do not focus on specific

software implementations of the above architecture. An assumption we make for

the potential users of our framework is that they must have some prior knowledge

about the total number of VMs that their cloud-based application requires. More-

over, out of the two types of auto-scaling (horizontal and vertical) which have been

discussed in Section 2.1, our focus is on constructing probabilistic performance mod-

els for horizontal auto-scalers for Amazon EC2 and Microsoft Azure, and as such

the auto-scaling policies we encode and verify in PRISM are horizontal. In terms of

horizontal auto-scaling, our framework can be used to model and verify auto-scaling

policies of various step adjustments and VM types. However, we do assume that the

performance metric, on the basis of which the auto-scaling action is taken, is CPU

utilisation.

Furthermore, the auto-scaling policies are verified against properties which relate

to CPU utilisation and to response time. This means that the framework operates

under the assumption that the user is interested in optimising for availability and
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not, for example, for cost. In our work we aim to strike a balance between avail-

ability and cost by considering an upper bound on the number of VMs as shown in

Sections 4.3.1 and 4.3.2.

Both models are available online at [20]. For a user modelling a scenario similar

to ours, parts of our models can be changed quite easily in order to use them

directly. For example, the user would need to change the values of the minimum

and maximum number of VMs, assuming that the lowest number of VMs is not 1.

If we assume that the maximum number of VMs changes to 9 for the Amazon EC2

case, then the user would need to copy the existing PRISM code for a lower number

of VMs (e.g. 8) and add it after the code of the eighth VM.

Also, if the step adjustments of the auto-scaling policies change, then the lower

and upper bounds of CPU utilisation, on the basis of which the auto-scaling policy

is taken, would need to change as well. We also assume that the models do not

rely on a particular workload since the users can assign their own values of CPU

utilisation and response time, as well as the probability values, based on their own

data gathered for their particular workloads. However, under different conditions

(e.g. another cloud provider) a different model would need to be built. This is

because the models published online use computations with respect to how the

changes in VM capacity occur or to how “flapping” situations are prevented, based

on the Amazon EC2 [1] and Microsoft Azure [141] documentation, respectively.
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4.2 Formal Modelling of Auto-Scaling Policies

The states in our models represent the information needed to capture the dynamics

of the auto-scaling process and its impact on QoS. Apart from the use of boolean

variables which are used to synchronise certain transitions in our models, we have

employed clustering methods to summarise the monitored CPU utilisation and re-

sponse time traces. These clusters are used to characterise the different states of

our models, and in the following subsections we provide the details with respect to

the clustering procedures followed.

We model the dynamics of the auto-scaling process as a discrete-time Markov

chain, the states of which are updated in each time step, corresponding to one minute

and five minutes for the Amazon EC2 and Microsoft Azure cases, respectively. For

both of these cases, we have discretised time into slots of greater than or equal

to one minute, since there has to be a sufficient duration to gather and analyse

the “external” data that constitute the state (e.g. arrivals, utilisation levels). In

addition, due to the general uncertainty that manifests in a cloud environment, time

intervals of less than one minute would make limited sense. They would result in

unmanageably large spaces due to, for example, small temporal spikes in utilisation

levels which can be ignored in our models. It would also be unrealistic to assume

that a time step of less than one minute is long enough to flag a violation, and

consequently to send an auto-scale request.

The states in our models can be divided into deterministic and stochastic. The

former model the deterministic aspects of an auto-scaling policy that is to be verified.

This is similar to a real case, where the cloud application will transition to states

that have been previously defined by the application manager in the auto-scaling

policy. To make the analogy more concrete with a realistic example, deterministic

states in our model encode the subset of the conditions that apply to a cloud-based

application, which determine whether an auto-scale request will be sent to the cloud

provider or not. Stochastic states encode the probabilistic outcomes or responses of
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the auto-scale requests. The models have been developed in the PRISM modelling

language (as opposed to the ModelGenerator API) and have been made available

online [20].

4.2.1 Clustering of CPU Utilisation and Response Time
Traces

For the model developed for the IaaS use case on Amazon EC2, we standardise the

CPU utilisation and response time values by computing their z-scores [142]. Then,

the model is initialised after k-means clustering has been run on the CPU utilisation

and response time traces. The value of k is also the number of different outcomes

that could happen when a scale-out or a scale-in action occurs. Equivalently, k can

be thought of as the number of states per the number of VMs in operation. In a

sense, it captures the CPU utilisation and response time variability that exists for

a given number of VMs in operation.

As a result, as the size of k grows larger, the more detailed the possible state

representations will be, possibly at the cost of adding a degree of overhead in the

verification process. Conversely, for smaller values of k, the scalability of the ver-

ification process is improved, at the possible cost of representing the states in a

“coarser” way.

In our model of the IaaS use case on Amazon EC2, after experimenting with

different cluster sizes, we have set k = 5. For the second type of model which targeted

a PaaS use case on Microsoft Azure, a univariate clustering method was employed,

since we did not take into consideration the response time, and consequently had to

deal with one-dimensional data. This allowed us to use the Ckmeans.1d.dp algorithm

which “guarantees optimality” for data in a 1-D space [143]. The value of k in this

case was determined by trying a range of different cluster sizes and selecting one

with the appropriate Bayesian Information Criterion (BIC) (see Figures 4.4 and

4.5 for the BIC and the respective clustering plots for the CPU utilisation traces for
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the auto-scaling policies with the 5-minute cool-down period considered).

4.2.2 Encoding Auto-Scaling Policies in PRISM

Although two different models have been developed for the Amazon EC2 and Mi-

crosoft Azure case, the core principles underlying them are essentially the same. For

example, both of the models expect an auto-scaling policy as an input, the creation

of their states relies on clustering, and the “philosophy” of how transitions unfold

between the states is similar. In addition, both of the models share the same high

level objectives, since they are meant to assist in the auto-scaling decision mak-

ing process. In the next paragraph, we describe the important building blocks of

our models by highlighting their differences and by explaining the reasons for those

differences.

For the Amazon EC2 case, as shown in Table 4.1, the “free” parameters (con-

stants), which are left to the user of the model to set, are: i-iv) step adjustments

for scale-out and scale-in rules; v) the increment specifying the number of instances

which will be added; vi) the decrement specifying the number of instances which will

be removed; vii) the number of VMs that are currently reserved; viii) the maximum

time (MAX TIME ) the model will run in terms of t; ix) the probability p of delay,

defined as the number of time steps t set in the WAIT TIME variable, in serving an

auto-scale request; and x) the time that it will take for an auto-scale request to be

satisfied. The first seven constants are under the control of the application provider

and represent the values that an application owner would have to set in reality. The

last two represent parameters that are not controllable and are being used as a basis

for modelling and analysis of scenarios of interest (e.g. worst-case scenarios). All

the model parameters for the Amazon EC2 case are shown in Table 4.1.

The “free” parameters for the model developed for the Microsoft Azure case are

the increment and decrement variables, the number of currently reserved VMs and

the maximum time the model will run. The reason for having fewer constants than
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Table 4.1: Model Parameters for Amazon EC2

Model Parameters

Time variables
t Discretised time (step) for each state
WAIT TIME Wait. time
MAX TIME Max. time

Virtual machines
INITIAL VMs Number of reserved VMs
cVMs VMs operating currently

Auto-scale reqs.

scale out 1 Scale-out req. for CPU util. between 60% and 70%
scale out 2 Scale-out req. for CPU util. between 70% and 100%
scale in 1 Scale-in req. for CPU util. between 30% and 40%
scale in 2 Scale-in req. for CPU util. between 0% and 30%

Other actions wait No action is taken

Auto-scale resp.
sat s out req Adds the capacity (%) requested
sat s in req Removes the capacity (%) requested

Adjustment

s o adj 1 Capacity(%) to be added when scale out 1 is chosen
s o adj 2 Capacity(%) to be added when scale out 2 is chosen
s i adj 1 Capacity(%) to be removed when scale in 1 is chosen
s i adj 2 Capacity(%) to be removed when scale in 2 is chosen

Boolean variables

scale out trigger Coordinates scale-out requests
scale in trigger Coordinates scale-in requests
capacity added Indicates that capacity has (not) been added
capacity removed Indicates that capacity has (not) been removed

Perf. metrics

arrivals Arrivals (requests)
served reqs Average requests/jobs served per 1 time unit
util Average VM CPU utilisation
r t Average response time

Probabilities
q Prob. of util and r t (based on k-means)
p Probability of delay in serving an auto-scale request

Incr. / Decr.
inc Scale-out policy adds instances in increments of inc
dec Scale-in policy removes instances in decrements of dec

the Amazon EC2 model is to explore the impact on the performance metrics of

interest of more “direct” auto-scaling policies; that is, policies which do not express

the capacity to be added/removed as a percentage of the total capacity, but as an

integer which specifies the number of VMs to be added or removed. In addition, the

capacity adjustments are expressed as a percentage, as shown in the “Adjustment”

columns of Table 4.2, where 0, ±10 and ±30 are the percentages of the total capacity

to be added or removed accordingly. In this case, one has to think about the rounding

rules that exist, and the conditions that have to be fulfilled when a percentage in

capacity has to be added or removed.

In order to be able to develop a representative model for the Amazon EC2
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Table 4.2: An example of a step adjustment auto-scaling policy as seen in Amazon
EC2’s documentation [1]

Scale-out policy
Lower Bound Upper Bound Adjustment Metric value

0 10 0 50 ≤ value < 60
10 20 10 60 ≤ value < 70
20 null 30 70 ≤ value < +∞

Scale-in policy
Lower Bound Upper Bound Adjustment Metric value

-10 0 0 40 < value ≤ 50
-20 -10 -10 30 < value ≤ 40
null -20 -30 −∞ < value ≤ 30

case, there are certain conditions with respect to the addition/removal of VMs that

have to match those in real clouds. As an example we show some of these condi-

tions, encoded as formulae in PRISM and invoked in the respective states in our

model. Specifically, some of the conditions our model has to fulfil with respect to the

scale-out and scale-in adjustments are the following. Values in the intervals [0..1]

and (−∞..-1) are rounded up, while values in the intervals [-1..0] and (1..+∞) are

rounded down, respectively. In Listing 4.1, we show a sample of the PRISM code

for these conditions, expressed as formulae, as these are defined in Amazon EC2’s

documentation [1].

formula adjust c1=(cVMs∗s o adj 1)>=incr?ceil(cVMs∗s o adj 1):incr;

formula adjust f2=(cVMs∗s o adj 2)>=incr?floor(cVMs∗s o adj 2):incr;

formula adjust si f1=(cVMs∗s in adj 1)>=decr?ceil(cVMs∗s in adj 1):decr;

formula adjust si f2=(cVMs∗s in adj 2)>=decr?floor(cVMs∗s in adj 2):decr;

Listing 4.1: Changing capacity formulae

As a result, part of our reasoning when developing the model for the Microsoft

Azure use case was to explore how much of the computational overhead of checking

the changing capacity formulae for the scale-out and scale-in adjustments could

be avoided. This is important when dealing with auto-scaling policies where the

requested capacity is expressed as an integer, denoting the number of VMs to be
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added/removed.

After these parameters have been specified, the model transitions with a prob-

ability q to the possible outcomes of CPU utilisation and response time which are

associated with the particular number of VMs. For the Amazon EC2 model, these

outcomes, and the respective probability q, are set according to k-means clustering

which has been run beforehand.

Then, depending on the granularity of the auto-scaling policy, there can be multi-

ple states each of which is a deterministic state. For example, for the step adjustment

auto-scaling policy in Table 4.2, the deterministic state would have had six different

representations (one for each CPU utilisation interval). Then, depending on the

utilisation level (similar to a real auto-scaling policy), the model transitions to the

appropriate deterministic state, which causes the respective auto-scale request to be

triggered or not, resulting in a transition to a stochastic state. This represents the

fact that the auto-scaling request has been sent to the cloud provider, and is ready

to be processed.

According to the type of scenario one wishes to analyse and verify, different

transitions will occur. For example, let us assume that the probability p is set to

0.2, which means that with probability 0.2 the auto-scale request will be satisfied in

the next time step, and with probability 0.8 the auto-scale request will be satisfied

according to the WAIT TIME which is associated with p. Then, for the first case the

model will transition with probability p to a state where the capacity added variable

will be set to true, and subsequently the auto-scaling request will be immediately

satisfied, resulting in a change in the overall VM capacity.

On the contrary, with probability 1 − p, the model will transition to a state

where the auto-scale request will be satisfied based on the best-effort reservation

policy, and the respective boolean auto-scaling variables will be set to true/false

accordingly, representing the realistic case in which the auto-scaling actions are being

locked, and the application is forced to wait until the auto-scale request is satisfied.
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For example, when a scale out transition happens, the corresponding state variable

scale out trigger is set to true, preventing further scale-out or scale-in requests from

being triggered, as would have happened in a realistic setting.

In Listing 4.2 we show a sample of the PRISM code for the transition based on

the value of p, which takes into account the stochasticity of auto-scale requests, by

transitioning between the different waiting times with a probability p, and can be

specified by the user a priori, or left as a free parameter in order to probabilistically

verify an auto-scaling policy under different values of p. The → symbol is called

a “guard”, and the lines of code preceding it show the predicates that have to be

satisfied for the transition to occur. In Listing 4.2, we show how this case is expressed

in PRISM’s guarded commands [144].

[choice](...)&(t<MAX TIME)&(scale out trigger=true|..)&(best effort=false)

&(imm res=false)−> p:(imm res’=true) + 1−p:(best effort’=true);

Listing 4.2: Transition based on probability p

Also, the waiting time which was initialised before the model started will now start

to decrement, and until the duration of the waiting time has elapsed, the model will

be prohibited from sending any other auto-scale requests. Again, this is according

to realistic cloud controllers in practice, where the application owner is prohibited

from sending any more auto-scale requests until the one that has been sent has been

satisfied. In Listing 4.3, PRISM sample code for the scale out 1 transition is shown.

[scale out 1] (...) & (cVMs>=1)&(scale out trigger=false)&(scale in trigger=false)

&(best effort=false)&(t<MAX TIME)&(util>=60 & util<70)−>

(scale out trigger’=true)&(t’=t+1)&(actual util’=ceil(util));

Listing 4.3: Scale-out step 1 transition in PRISM

Furthermore, while the waiting time is active, the model continues to generate load

for the VMs to process. As has been described above, we abstract the generated load
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in the model, and our focus is directly on the impact of the load on the performance

metrics (CPU utilisation and response time), based on k-means. The transitions

unfold in a similar manner; for example, when the waiting time has completely

elapsed, the auto-scale request will be satisfied, and the requested capacity will be

added or removed.

For the Microsoft Azure model, there is no probability associated with the time it

takes to satisfy an auto-scale request. This is because we did not want to investigate

what-if scenarios with respect to the time variability of the auto-scaling policies,

rather our focus was on analysing the impact on the QoS of varying the cool-down

periods of an auto-scaling policy. Based on this intention, we added specific guarded

commands to states in our model where a scale-in action is to be taken, to prevent

“flapping situations” where the auto-scale controller triggers actions continuously

[141]. For example, in the states where a scale-in action is to be taken, we evaluate

if the resulting CPU utilisation after releasing a VM will be less than the scale-out

CPU utilisation threshold, to determine whether the scale-in action will be skipped

or not. In Listing 4.4, we show a code fragment of how this case is expressed in

PRISM’s guarded commands, and as a result the respective scale-in transition is

skipped when the guard is violated.

[scale in act1] (...)&

(INITIAL VMs=2)&

(cVMs=3 | cVMs=4)&

(decr=1)&

((util∗ cVMs) / (cVMs−decr) < cpu threshold)

Listing 4.4: A fragment of a guarded command in scale-in states to avoid “flapping”.
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4.3 Formal Verification of Auto-Scaling Policies

In this section we present the verification process for the two cases considered,

namely the IaaS case on Amazon EC2 and PaaS case on Microsoft Azure.

4.3.1 IaaS Case on Amazon EC2

The verification process consists of two phases. In the first phase, we generate

load on the rented VMs to gather at least 100 data points for CPU utilisation

and response time, for each VM number between 1 and 8. These 100 data points

correspond to approximately 100 minutes of load generation, monitoring, and data

gathering for each VM, and for each load type, resulting in approximately 26 hours

of data collection. These data points are used for the initialisation of our model. In

the second phase, we use k-means clustering to cluster the respective data points,

which correspond to different outcomes of CPU utilisation and response time. Once

the clustering process is finished, the clusters are fed into our model in PRISM, and

once an auto-scaling policy or a set of auto-scaling policies is given as input to our

model, we obtain the verification results.

Throughout this process we obtain CPU utilisation and response time guarantees

under two load patterns: periodic and “aggressive” (see Section 4.4.3 for details).

Specifically, we are interested in computing the probability that the cloud application

(consisting of all the VMs) will end up in a state where a QoS violation exists. This

is defined for states where the CPU utilisation is ≥ 95%, or the response time is

≥ 2 seconds for periodic load, or ≥ 5 seconds for the “aggressive” load (Listing 4.5)

under the policies shown in Table 4.3. We vary the INITIAL VMs in the range [1..8]

and inc, dec in the range [1..3].
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Table 4.3: Auto-scaling policies for formal verification.

Action Inc/Dec Min Util. Max Util. Initial VMs Adjust.
Scale-out [1..2] 60% 70% 2,3,4,8 [+10%]
Scale-out [1..2] 70% 100% 2,3,4,8 [+30%]
Scale-in [1] 0% 30% 2,3,4,8 [-30%]
Scale-in [1] 30% 40% 2,3,4,8 [-10%]
Wait - 40% 60% 2,3,4,8 0%

In Listing 4.5 we show how these properties are expressed in PRISM’s syntax.

P=? [F util >= 95] //both load patterns

P=? [F r t >= 2] // periodic load

P=? [F r t >= 5] // ‘‘aggressive’’ load

Listing 4.5: Properties to be checked

In addition, since the outcome of the auto-scaling action depends on uncontrol-

lable parameters, we vary the probability that the auto-scale request will be served

in the next time step, p, and the WAIT TIME in our model. It is important to

note that the verification process is not driven by too “optimistic” or too “pes-

simistic” parameter tuning. Specifically, we are interested in verifying for which set

of “reasonable” variables in the auto-scaling policy, utilisation and response time

guarantees hold. By “reasonable”, we mean that we do not analyse auto-scaling

policies under unrealistic conditions, such as choosing an increment of 20 VMs,

since there is a non-negligible cost associated with renting the VMs. Also, we avoid

unrealistic assumptions with respect to the time taken to satisfy auto-scale requests,

by not varying p above 0.5. This fits our purpose of performing worst-case analysis

as well. In our modelling and verification approach the worst-case is defined for the

situation in which the auto-scale request will never be satisfied immediately (p = 0),

and it would take at least 5 (WAIT TIME= 5) time units to be satisfied. Con-

versely, the best-case is defined with p = 0.5 and WAIT TIME= 1. In Figures 4.2

and 4.3, we show the output of verification, for a specific auto-scaling policy, under

periodic load. For the controllable parameters, we set the adjustments to ±10%
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Figure 4.2: PRISM results for P=? [F util ≥ 95] (periodic load).

Figure 4.3: PRISM results for P=? [F r t ≥ 2] (periodic load).

and ±30% for the two steps, respectively, as in Table 4.3. For the uncontrollable

parameters, we set p = 0.2 and WAIT TIME= 3, as an average case, which is not

biased towards worst- or best-case scenarios. In Figure 4.2, we can observe that the

probability for a CPU utilisation violation follows a decreasing trend as the number

of INITIAL VMs increases. An important observation which we capture is the de-

crease by approximately 0.5 in the probability for a CPU utilisation violation when

the cloud application starts serving HTTP requests with 4 VMs compared to 3. In

Figure 4.3, the probability for response time violation fluctuates around 0.95, and

drops sharply to 0 when the number of INITIAL VMs becomes 5.
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4.3.2 PaaS Case on Microsoft Azure

Table 4.4: Auto-scaling policies for formal verification.

Action Inc/Dec Min Util. Max Util. VMs Cool-down
Scale-out [1] 71% 100% [1..4] 5 minutes
Scale-in [1] 0% 39% [1..4] 5 minutes
Scale-out [1] 71% 100% [1..4] 1 minute
Scale-in [1] 0% 39% [1..4] 1 minute
Wait - 40% 70% [1..4] -

The verification process for Microsoft Azure follows a similar approach to the

one for Amazon EC2, with the difference being that we did not consider response

time as part of our QoS metrics, since we focused exclusively on CPU utilisation

and how it is affected by the variation of the cool-down period, which is part of

an auto-scaling policy. The reason for focusing exclusively on CPU utilisation is

the fact that we wanted to restrict our attention to server side metrics, and only to

metrics on which the auto-scale decisions are taken. The model was initialised in a

similar way to the Amazon EC2 case.

In the first phase, we generated load to the VMs and we gathered approximately

400 data points for CPU utilisation for the range of VMs 1 to 4, resulting in approx-

imately 26 hours of CPU utilisation traces that were used to construct our model.

For example, in Figure 4.4 we show the BIC plots that were used to determine the

number of clusters per VM number, and in Figure 4.5 we show the respective (opti-

mal) clustering plots of CPU utilisation after having chosen the number of clusters

according to the previous procedure. Our verification goal is twofold; first we wish

to compute the probability that the auto-scaling policies in Table 4.4 could result in

a QoS violation, and then to identify the set of states which have a high probability

of transitioning to a “bad” state. By doing that, we show how PRISM can be used

to narrow down the search state space to states which are more likely to cause “bad”

auto-scaling actions. We define a “bad” auto-scaling decision as an auto-scaling re-

quest which, even though it has been successful and the requested capacity has been
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Figure 4.4: Determining k according to the Bayesian Information Criterion (BIC),
normalised by sample size.

added/removed, still it has caused a QoS violation. Our main claim here is that

properly configuring the temporal parameters is equally important to the proper

configuration of the “standard” auto-scaling parameters such as the capacity to be

added/removed.

To capture “bad” auto-scaling decisions, we first identify the set of states where

a “bad” auto-scale state is true. This is achieved by adding two boolean variables

in our model; bad scale in, and bad scale out and setting them to true and false

when certain transitions occur in our model. After this point we can follow two

possible verification strategies. We can either use PRISM’s reward operator R to

assign a reward of 1 to states labelled as “bad” and then compute the expected

value of “bad” auto-scale decisions over all paths for a given period. An alternative

verification strategy is, after having computed the probabilities for the “bad” auto-
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Figure 4.5: Optimal univariate clustering of CPU utilisation per VM number.

scale states, to combine PRISM’s filtering operation with the temporal operator

X, to select the set of states which have a high probability to transition to “bad”

auto-scale states. That is, we identify the states that occur one time step before

a “bad” auto-scale state. For our validation purposes we have adopted the former

verification strategy (see Section 4.4.7). In Listing 4.6 we show those properties

expressed in PRISM.

R{bad auto scale state}=? [F end ]

P=? [F bad scale out=true]

P=? [F bad scale in=true]

filter(print, filter(argmax,P=?[X ‘‘bad util scale in’’]))

filter(print, filter(argmax,P=?[X ‘‘bad util scale out’’]))

Listing 4.6: Properties to be checked
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4.4 Model Validation

4.4.1 Validation Methodology

The research question the experiments in this section address is the first part of the

main research question which has been phrased in Chapter 1; that is, whether we can

use formal verification, and probabilistic model checking in particular, to produce

performance guarantees for resource control mechanisms in cloud computing.

Towards addressing the research question, the methodology employed for the

design of experiments allows us to investigate the validity of the outputs of the two

models constructed for Amazon EC2 and Microsoft Azure against real data obtained

from cloud-based applications running on those clouds. Specifically, for the Amazon

EC2 case, we investigate how accurate the model is in determining that an auto-

scaling policy will result in a QoS violation/non-violation. The performance metrics

which determine whether a QoS violation exists or not are CPU utilisation and

response time, as discussed in Section 4.3.1. Furthermore, for the Microsoft Azure

case, we investigate the accuracy of the model in computing the expected number of

“bad” auto-scaling decision taken. The performance metric which determines what

constitutes a “bad” auto-scaling decision is CPU utilisation as discussed in detail in

Section 4.3.2.

The methodology for the design of the experiments consists of several phases.

First, we create the models in PRISM under the various workloads considered and

based on the parameters defined in Section 4.2.2. These parameters include the

auto-scaling policies in Tables 4.3 and 4.4 for the two public cloud providers. For

example, once the model is constructed, for the Amazon EC2 case, we verify whether

the auto-scaling policy, given as an input, will result in a QoS violation. This is

done through PRISM which computes the probabilities for the properties specified

in Section 4.3.1. A similar process is followed for the model developed for Microsoft

Azure.
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Then, we create experimentation setups on the two public cloud providers, as

described in Sections 4.4.2 and 4.4.5. Also, we design load profiles by using a load

testing tool (Apache JMeter) and statistical methods to simulate the load patterns,

similar to what is described in Sections 4.4.3 and 4.4.6.

Next, we configure the auto-scaling policies on the public cloud providers and

generate HTTP requests to the VMs deployed in the public cloud. The same auto-

scaling policies are used as inputs both to the PRISM models and to the real auto-

scale controllers. Moreover, to minimise the possibility of measurement bias, we

perform this experimentation at random time intervals. Then, we obtain the CPU

utilisation and response time data for the auto-scaling policies, against which the

PRISM models are validated.

To validate the model for the Amazon EC2 case, we employ the ROC method-

ology [145], which is explained in detail in Section 4.4.4. This is based on statistical

methods and allows us to validate our model under a range of validation metrics. For

the validation of the Microsoft Azure model, we use the relative error as a validation

metric.

In summary, the validation framework consists of three parts for the IaaS case

on Amazon EC2 and the PaaS case on Microsoft Azure, respectively. The first is

the experimentation setup on the respective public cloud providers (Sections 4.4.2

and 4.4.5), the second is the load profile (Sections 4.4.3 and 4.4.6) and the third is

the ROC analysis (Section 4.4.4) for the Amazon EC2 case and the computation of

the relative error (Section 4.4.7) for the Microsoft Azure one. Results are discussed

for both cases in Section 4.5. Finally, data and other supplementary material from

this process are available online [20].

4.4.2 Experimentation Setup on Amazon EC2

First, we discuss the validation process of Amazon EC2, which uses a live public

cloud setting: Amazon EC2. The architecture of this experimental setup is illus-
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Figure 4.6: Experimental setup on Amazon EC2.

trated in Figure 4.6. We have created an auto-scaling group with minimum and

maximum capacity of 1 and 8 VMs respectively. The VM types that were used were

t2.micro with 1 CPU and 1 GB of RAM. In order to simulate the auto-scaling pro-

cess in the front layer (web servers) of a cloud-based application, a Python start-up

script [146] was launched on those VMs, to simulate the HTTP processing and the

CPU consumption. Specifically, the VMs were configured to process each request

in 1 second and to send a 500 HTTP response code if it took more than 9 seconds

to process the request. Also, an Internet-facing load balancer was used which dis-

tributed the load in a round-robin fashion. In addition, to monitor and log all the

metrics of the auto-scaling group, we have used Amazon EC2’s monitoring service,

CloudWatch [147]. The performance metrics are averaged over all the VMs. We

monitor and gather the performance metric data for each VM number and for each

auto-scaling policy. For each of the policies shown in Table 4.3, we generate load and

monitor our VMs on the Amazon EC2 cloud for 10 minutes. Then, we repeat this

process, with the same type of load, 30 times for each auto-scaling policy, resulting

in 5 hours of data gathering per auto-scaling policy we are validating, approximately.
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These samples are then used to validate the verification results of our model.

4.4.3 Load Profile for Amazon EC2

We generate two types of load in the VMs; a periodic and an “aggressive” load

pattern. The main reason for choosing a periodic load pattern is because it is

considered one of the most representative workload types in cloud computing [148].

To generate a periodic load we have used Apache JMeter [140], which is a professional

open source tool for testing web-based applications. Also, on top of Apache JMeter,

we make use of the Ultimate Thread Group [149] extension for Apache JMeter, which

gives us greater flexibility over the threads we are creating. Specifically, we create 3

Ultimate thread groups and, within each thread group, we start generating HTTP

requests from 1 thread, and then we gradually increase the number of threads. Also,

we keep the load duration of each thread for approximately 200 seconds.

The second type of workload we are considering has a greater degree of ran-

domness, and our aim is to validate our model against an aggressive load pattern,

but with an inherent degree of randomness. For this type of workload we make the

assumption that HTTP requests arrive according to a process with exponentially

distributed inter-arrival times.

In order to generate random variables to simulate the workload, the inverse trans-

form sampling method was used, which is a sampling method used in performance

modelling [150]. This method is relatively simple once the cumulative distribution

function (CDF) of the random variable X that is to be generated is known, and the

CDF of X can be inverted easily, which holds in our case since the inter-arrival times

of the HTTP requests in 1 time unit are exponentially distributed, and the inverse of

the CDF of an exponential distribution has a closed-form expression. The algorithm

[150] works as follows: 1. Generate u ∈ U(0, 1); 2. Return X = F−1
X (u), where FX

represents the inverse CDF of the exponential distribution. As a result, step 2 will

return a realisation of a random variable X from an exponential distribution. In

80



4.4. Model Validation

0
2
5

5
0

7
5

1
0
0

0 1
0

2
0

Time (minutes)

C
P

U
 u

ti
lis

a
ti
o
n
 (

%
)

Figure 4.7: Sample CPU utilisation
trace under periodic load.
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Figure 4.8: Sample response time
trace under periodic load.
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Figure 4.9: Sample CPU utilisation
trace under “aggressive” load.
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Figure 4.10: Sample response time
trace under “aggressive” load.

our case, since we assume 1 time unit, we keep generating exponentially distributed

random variables until their sum is 1. We run 1000 simulations and, after storing

the results in a vector, we take a sample size of 50 instances. In Figures 4.7–4.10 we

show a sample of a CPU utilisation and a response time trace under the two types

of workload.

4.4.4 Results and Model Validation via ROC Analysis

In this section, we give an overview of ROC analysis, which is widely used in machine

learning and data mining [151], and how it fits our purpose of discriminating between

auto-scaling policies that could or could not result in a QoS violation. In a sense,

we follow a similar approach to the validation of classification models, by treating

the probability as a ranking measure which determines the likelihood of the event

of interest, in our case the probability of a QoS violation. ROC can be used to help

the decision maker select the appropriate classification threshold, by quantifying the

trade-off between sensitivity and specificity. Additionally, it can be used to validate

the accuracy of a classification model, by computing the AUC (Area Under Curve)
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metric, which is one of the most commonly used summary indices [152] .

Our validation starts by ordering the probabilities that have been computed

from our PRISM model for each auto-scaling policy. Then, we plot the respec-

tive ROC curve which captures all the thresholds between points (0,0) and (1,1)

simultaneously. Through this analysis, we are able to find the optimal threshold

of discriminating between the auto-scaling policies that could result in a CPU/re-

sponse time violation. Our criterion of optimality is the point which minimises the

Euclidean distance between the ROC curve, and point (0,1), which is often called the

point of “perfect classification”. Also, this gives us the ability to refine our original

violation estimates after we have seen the real data, and to obtain a global threshold

for distinguishing between auto-scaling policies. After plotting the ROC curve, we

compute the AUC, which in our case can be interpreted as the number of times our

model can distinguish performance violations/non-violations of randomly selected

auto-scaling policies. This is an “important statistical property” [151] of AUC, and

one of the reasons that it has been used so widely for validating the performance of

classifiers.

Our PRISM model takes as an input an auto-scaling policy x, and produces a

continuous output which is a probabilistic estimate denoting the probability that an

auto-scaling policy will result in a QoS violation/non-violation.

Effectively, we wish to find the mapping from x to a discrete variable y ∈ {0, 1},

with 0 and 1 indicating the non-violation and violation cases, respectively. However,

since the output of the model is continuous and the prediction we want to make is

binary, through ROC analysis we find a threshold t such that if P (x = 1) ≥ t,

then we predict that y = 1, and if P (x = 1) < t, then we predict y = 0. We

choose t based on our optimality criterion which minimises the Euclidean distance

between the ROC curve and point (0,1). Figures 4.11–4.12 show the ROC curves

for CPU utilisation and response time under the two load patterns. In Figure 4.11,

for example, the threshold t would be approximately 0.8.
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Figure 4.11: ROC curves under periodic load: (a) CPU util. viol.; (b) resp. time.

However, it is important to note that what is considered optimal varies according

to the problem one is trying to address, and the relative importance of missing, or

increasing true and false positives. This threshold acts now as a global threshold,
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Figure 4.12: ROC curves under “aggressive” load: (a) CPU util. viol.; (b) resp. time.

for the specific auto-scaling policies considered here, and based on that we compute

the confusion matrix, and the associated performance measures, where the predicted

outcome is determined by this threshold, and the actual values are obtained through
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real measurements on the Amazon EC2 cloud.

For the ROC curves in Figures 4.11–4.12, we plot the diagonal (red dashed

line), which can be thought of as a baseline, which would have been obtained by

a random classifier, in order to show how the AUC (Area Under Curve) extends

over the diagonal. AUC takes values between 0 and 1, with 1 indicating a “perfect”

classifier. For example, if the AUC = 0.5, this is equivalent to a random classification

model, and consequently the further the AUC extends over this diagonal, the greater

the accuracy of the model.

For completeness, we also consider the MCC (Matthews Correlation Coeffi-

cient) [153], despite the fact this is often contrasted with AUC. MCC takes values

between -1 and +1, indicating a negative and positive correlation between the pre-

dicted and the actual value. Below, we provide its definition, along with several

other performance measures used to validate our model, in terms of the metrics

from the confusion matrix.

• ACC = (TP+TN)
(TP+FP+FN+TN)

(overall accuracy of model)

• TPR = TP
(TP+FN)

(true positive rate or sensitivity)

• TNR = TN
(FP+TN)

(true negative rate or specificity)

• FPR = FP
(FP+TN)

(false positive rate, 1 - specificity)

• FNR = FN
(FN+TP )

(false negative rate, 1 - sensitivity)

• MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

In Tables 4.5 and 4.6, we show the results for these performance measures, and the

results are discussed in Section 4.5.
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Table 4.5: Performance measures for periodic load

Perf. metrics ACC TPR TNR FPR FNR MCC
CPU util 0.92 0.88 1 0 0.12 0.83
Resp. time 0.9 0.82 0.94 0.06 0.18 0.77

Table 4.6: Performance measures for “aggressive” load

Perf. metrics ACC TPR TNR FPR FNR MCC
CPU util 0.91 0.98 0.65 0.35 0.02 0.7
Resp. time 0.96 0.97 0.93 0.07 0.03 0.86

4.4.5 Experimentation Setup on Microsoft Azure

For the experimentation setup on Microsoft Azure, we have deployed the Bakery web

application template to the Azure App Service [154]. This is a template for an online

store selling baked goods, developed with ASP.NET and mainly in JavaScript. This

allowed us to validate our model under a more realistic and modern web application,

while at the same time considering a PaaS cloud computing model (App Service).

For this purpose, we have created an App Service Plan, and rented S1 - Standard

VMs, with 1 core, and 1 GB of RAM. In addition, for our auto-scale plan we

considered VMs in the range [1..4] inclusive. The CPU utilisation of the VMs was

monitored using Azure’s monitoring service on a per-minute basis.

4.4.6 Load Profile for Microsoft Azure

In order to generate load we used four Apache JMeter client machines, deployed on

three virtual machines running Ubuntu Linux 16.04 LTS, and one physical machine

running Windows 10. The three VMs were deployed through Microsoft Azure to the

Western Europe region and they were of type Standard DS11 v2, while the physical

machine had 4 cores, and 16 GB of RAM. The test scripts were designed in such

a way to stress the web application, by performing a sudden increase to nearly 900

threads, and executing a test scenario for approximately 40 minutes. We have also

made the XML test scripts available here [20]. In Figure 4.13, we show sample CPU

utilisation traces for 1 and 2 VMs, respectively.
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(a) (b)

Figure 4.13: Sample CPU utilisation traces: (a) 1 VM; (b) 2 VMs.

In order to make our test scenario more interesting, we recorded some browsing

patterns and injected random delays between consecutive requests. This allowed

our test script to be more representative of a realistic case, by considering the think

time of users when browsing a web page. We monitor and gather the performance

metric data for each VM number and for each auto-scaling policy. For each of the

policies shown in Table 4.4, we generate load and monitor our VMs on Microsoft

Azure cloud for 40 minutes. Then, we repeat this process 10 times for each auto-

scaling policy, resulting in 6.6 hours of data gathering per auto-scaling policy we are

validating, approximately. These samples are then used to validate the verification

results of our model.

4.4.7 Results and Model Validation

In this section we describe our model validation with respect to what has been

discussed in Section 4.3.2. As a metric to compare the measurements from our

model with those from the realistic case, we have used the relative error, which has

been used in performance modelling and analysis studies [155]. The relative error

is defined as err = |Xmeas−Xsim|
Xsim

, where the numerator denotes the absolute error.

In Table 4.7, we show the relative error for the expected number of bad auto-scale

decisions between our PRISM model, and the measurements taken from our App

Service on Microsoft Azure.
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Table 4.7: Relative error for “bad” auto-scale actions.

Auto-scale actions PRISM Experimental Cool-down Rel. error
Scale-out 1.01 1 5 minutes 1%
Scale-in 0.62 0.6 5 minutes 3.33%
Scale-out 2.287 2.8 1 minute 18%
Scale-in 2.8 2 1 minute 40%

4.5 Discussion of Results

In this section we discuss the results for both cloud computing models considered.

For the verification of auto-scaling policies on Amazon EC2, our model captures

accurately enough the probability of CPU utilisation and response time violations

for the specific auto-scaling policies that were shown in the previous section. This

can be seen from the AUC values for the auto-scaling policies under the two types

of load, as shown in Figures 4.11 and 4.12. For auto-scaling policies which could

result in CPU utilisation violation, the AUC value is larger under the periodic load,

whereas for policies which could result in response time violations, the AUC is larger

for the “aggressive” load. However, for both of these cases, the AUC is high (> 0.8),

which shows the high accuracy of our model, under the thresholds [0..1], for the two

types of workload.

In Tables 4.5 and 4.6 we show the validation results of the model after selecting

a global threshold for each of the four cases. For the auto-scaling policies verified

under the periodic load (Table 4.5), we note that the overall accuracy (ACC) is

higher for CPU utilisation violation detection, compared to response time. An

important observation is that TNR=1, which represents the fact that our model

was able to detect, without any error, auto-scaling policies that would not result in

CPU utilisation violation, and as a result there were no misclassification of auto-

scaling policies which did not cause a CPU utilisation violation in the 10-minute

period. Moreover, TPR=0.88 indicates that 88% of the auto-scaling policies which

did cause a CPU utilisation violation were correctly identified as such. For the

response time, despite the fact that we see a marginal loss of 0.02 compared to the
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CPU utilisation in the overall accuracy of the model, we note that TPR and TNR

achieve high values of 0.82 and 0.94, respectively. However, we note an increase in

the FNR by 0.06.

For the auto-scaling policies validated under the “aggressive” workload (Ta-

ble 4.6), we note that the overall accuracy of the model with respect to CPU utili-

sation violation detection remains high (ACC=0.91). Furthermore, the increase in

FPR (0.35), compared to the periodic load, means that our model flagged auto-

scaling policies as CPU utilisation violators, when in fact they were not. One of the

possible causes of this could have been the fact that our gathered CPU utilisation

traces contained too many violations, compared to the initial gathered traces that

were passed to k-means, in order to be used in the state representation of our model.

This effect is due to the random nature of the load, and could potentially indicate

that more samples are required.

Another observation is the very small value of FNR (0.02), which is considerably

more important in our case, since the effects of not flagging an auto-scaling policy as

a possible QoS violator could be more serious than the opposite scenario. Finally, for

both types of workload, MCC is ≥ 0.7 for both CPU utilisation and response time,

indicating a very strong positive relationship between the policies our model flagged

as very likely to cause/not cause a violation and the actual outcome when these

policies were evaluated in the VMs on Amazon EC2 cloud. We consider the high

value of MCC (≥ 0.7) as particularly important since MCC is a balanced measure

of the quality of binary classifications, even in cases of imbalanced data.

For the Microsoft Azure case, our high-level goal was to show the importance

of the temporal parameters of an auto-scaling policy (e.g. cool-down period) on

the performance objectives of an application hosted on the cloud. In addition, we

wanted to explore how the non-static parameters of an auto-scaling policy could be

modelled and encoded in the PRISM modelling language. With these goals in mind,

we have experimented with the auto-scaling policies shown in Table 4.4, and in the
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next paragraph we report on the results shown in Table 4.7.

For the 5-minute cool-down period in an auto-scaling policy our model captures

accurately enough the expected number of bad auto-scale decisions, with the bad

scale-out actions being detected more accurately by our model, as the relative error

for those actions is 1%. Furthermore, we note that the relative error for the expected

number of bad scale-in actions is around 3%. The increase by approximately 2% in

the relative error can be explained by the fact that the CPU utilisation traces which

were used to validate our model had a slightly greater variability in the scale-in

actions for a certain number of VMs.

Also, an important observation that we made by examining our sample CPU

utilisation traces is that in most of the cases there existed a pattern with respect

to how auto-scale actions are being triggered given the workload used as an input.

In addition, from a modelling perspective, the stabilisation period of five minutes

after an auto-scale action has been triggered made the correspondence, regarding the

duration of each state, between the sampled CPU utilisation traces and our model

easier. The negative effect of a decreasing stabilisation period on the accuracy of

our model can be seen by the increased relative error for the bad scale-out and

scale-in actions. This is because by choosing the minimum cool-down period of one

minute we are allowing for the CPU utilisation to stabilise between the consecutive

auto-scale requests.

The additional complexity in capturing the temporal pattern of an auto-scale

controller which is programmed to fire auto-scale requests consecutively stems from

the fact that it becomes a formidable task to detect the actual sending time of

an auto-scale request, and the respective time by which the auto-scale request was

satisfied. The reasons above provide an explanation regarding the increased relative

error under the 1-minute cool-down period. However, we are partially satisfied since

our model managed to detect the bad scale-in actions in a moderately effective

manner.
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Figure 4.14: Auto-scale operations and VMs under the different cool-down periods.

As part of our exploratory analysis, we show in Figure 4.14 the negative effect of

having cool-down periods of short time intervals. For instance, the average number

of scale-out operations for the 1-minute cool-down period is 6 compared to 2 for the

5-minute cool-down period. More importantly, the extra scale-out operations did

not provide any significant benefit in minimising the QoS violations. In addition, the

scale-in actions were 3 under the 1-minute cool-down compared to 1 for the 5-minute

cool-down period. We note that the maximum number of VMs which seemed to be

required under the 1-minute cool-down was 4 compared to 3 under the 5-minute

cool-down.

At this point, we provide an overall assessment of the results in terms of the

threats which relate to internal and external validity. Internal validity threats can

arise in our case based on how the data, that were used to create and validate

the models, were gathered. For the construction of the models, we mitigated such

threats by gathering the data which were used to construct the states in our two

models at random 30- and 40-minute intervals, respectively. Moreover, we employed

well-known clustering methods from the literature to ensure the accuracy of the

clustering when creating the models, as it has been discussed in Section 4.2.1. In

terms of the data gathered to validate the models, we minimised the possibility of
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introducing measurement bias by performing this experimentation at random 10-

and 40-minute intervals for the two models, respectively.

Furthermore, the data used to validate the models have been made publicly

available at [20]. These data include the logs from Amazon EC2’s and Microsoft

Azure’s monitoring services and the associated screenshots of the CPU utilisation

graphs, which show whether an auto-scaling policy caused a QoS violation. Note

that the CPU utilisation graphs were constructed in real time, at the date of the

experiments, from the cloud provider’s monitoring services.

The main aim of this work was to ensure its external validity by validating

the results on public cloud providers. To this end, for the Amazon EC2 case, we

considered two types of workload, while for the Microsoft Azure case we aimed

to compensate for having one type of load by injecting random delays between

consecutive requests. Also, the main reason for considering a periodic load pattern

is that it is deemed one of the most representative in cloud-based applications [156].

However, the data used to create and validate the models were gathered at specific

dates in the past, and therefore an assessment of their generalisability would need

recent data.

Additionally, for the Amazon EC2 case, regarding the “aggressive” load pattern,

we made the assumption that the inter-arrival times of HTTP requests are exponen-

tially distributed. While this is an assumption used in performance analysis studies

[150], it is still an approximation of what might occur in a real situation.

Furthermore, while theoretically our models do not depend on workload types,

since the user can initialise the CPU utilisation values in the model, we have not

performed any experimentation with other types of workloads. Therefore, it is

unclear how well the models generalise to other load patterns. Moreover, the models

have taken into account specific conditions that relate to the computation of changes

in VM capacity and to the prevention of “flapping” situations which are part of the

documentation of Amazon EC2 [1] and Microsoft Azure [141], respectively. In this
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respect, we assume that they cannot represent conditions which might occur in other

cloud providers. The experimentation setup could also be extended to include types

of VMs other than the ones considered here. Finally, while we assume that the

models abstract away information relating to cloud-based applications, they have

been validated on the types of applications we consider here.

4.6 Summary of Contributions

The contributions of this chapter can be summarised as follows:

• A novel approach based on performance modelling and formal verification to

produce performance guarantees on particular rule-based auto-scaling policies.

• This is, to the best of our knowledge, the first work in which the auto-scaling

policies are evaluated using formal verification techniques and which builds

probabilistic performance models for horizontal auto-scalers where the models

are: i) constructed and validated based on real data gathered from applications

deployed on public cloud providers and while the real auto-scaler was execut-

ing; ii) taking into account aspects (e.g. capacity changes) of the documenta-

tion of major public cloud providers (Amazon EC2 and Microsoft Azure). In

addition, two cloud computing models (IaaS and PaaS) were considered.

• We have successfully shown that our verification scheme can be of valuable

assistance to cloud application owners and system administrators in formally

configuring and verifying the auto-scaling policies of their applications/systems

in the cloud.
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CHAPTER 5

Quantitative Verification of Kalman Filters

In this chapter, we describe our approach to modelling and verification of numerical

stability and filter consistency properties of several Kalman filter implementations.

This is based on the construction and analysis of a probabilistic model (a discrete-

time Markov chain) representing the behaviour of a particular Kalman filter execut-

ing in the context of estimating the state of a linear stochastic discrete-time system.

The probabilistic model is automatically constructed based on a specification of the

filter and the system whose state is trying to estimate. Numerical stability and filter

consistency properties are then verified using probabilistic model checking queries.

We describe these phases in the following sections.

The remainder of this chapter is structured as follows: In Section 5.1 we describe

our formal modelling approach to constructing probabilistic models of Kalman filter

execution. Then, in Sections 5.2 and 5.3 we present our novel formal verification

techniques for verifying the numerical stability and consistency of the filters, respec-

tively. Next, in Section 5.4 we summarise the main contributions of this chapter.

The implementation of the methodology presented in this chapter is shown in Chap-
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ter 6, which is then followed by an extensive validation and evaluation process in

Chapter 7.

5.1 Constructing Probabilistic Models of Kalman

Filter Execution

We define a high-level modelling abstraction which can be instantiated to construct

models of various different Kalman filter implementations. The modelling abstrac-

tion comprises three components: the first and second correspond to the system and

measurement models along with their associated noise distributions; the third is the

Kalman filter implementation itself used to estimate the state of the system model

in the presence of uncertainty. The first two of these are defined mathematically

along the lines described in Section 2.4. The third is specified in detail using a

mainstream programming language, since it requires linear algebra data types and

operations. Our implementation (see Chapter 6) uses Java and associated numerical

libraries.

The discrete-time Markov chain which represents the evolution of the system

model along with the filter estimates is not a static process. Rather it occurs in a

dynamic fashion, involving the interaction of several components. For example, we

do not assume that the measurements emitted from the system model are already

given to us or that the filter estimates are already predetermined. Rather, as the

system model evolves from state to state, the Kalman filter executes and tries to

estimate its true state, imitating a real-time tracking scenario.

5.1.1 Discrete-time Markov Chain States and Transitions

The variables which define the discrete-time Markov chain’s states correspond to

the system, measurement and filter models. All of these variables can be made

independent of the filter implementations. For example, in a square root filter
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implementation, P+ can be either reconstructed from the Cholesky factor C+, or

not by propagating C+ in each time step, before being passed into the Markov

chain’s state. This demonstrates the modularity and extensibility of our approach.

The evolution of the states of the Markov chain corresponds to the system model

perturbed by different noise values. Each of the Markov chain’s states stores the

“true” values of the system model’s state and the noisy measurements emitted at

each time step k. These variables, along with the a posteriori state estimate and the

estimation-error covariance, are stored in the Markov chain state, because they are

needed for verification purposes. Then, before the Markov chain transitions to the

next state (between time k and k + 1), the time update of the corresponding filter

variant is invoked. Both a priori variables depend on their a posteriori counterparts.

Specifically, once we are in a state for time instant k, our goal is to compute in

the next state at time k + 1 both the system model’s updated state vector and the

a posteriori variables of the respective filter, x̂+, P+. The a priori variables of the

Kalman filter types are encapsulated between these two updates as an intermediate

step. Note that x̂ and P are essentially the same variables which are used in the

computation of both the a priori and a posteriori state estimate and estimation-

error covariance matrix, respectively. What distinguishes x̂’s semantics is whether

the measurement z has been processed. This allows us to concretely define the

notion of time k in each of the Markov chain’s states.

In particular, a time instant k in the Markov chain can be thought of encom-

passing i) state variables before the measurement is processed and ii) state variables

after the measurement has been processed. Combining this temporal order into one

state allows us to save storage by merging what would otherwise require two states

to be represented.
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5.1.2 Noise Model Discretisation

Transitions in the discrete-time Markov chain capture the stochastic evolution of

the Kalman filter due to noise in the system and measurement models. Since the

latter are continuous probability distributions, we need to discretise these to model

them in the Markov chain, which allows us to obtain reasonable approximations of

the effect of the noise.

The number of outgoing transitions from every state and their probability val-

ues are determined by a granularity level of the noise, that we denote gLevel. The

Gaussian distribution of the noise is discretised into gLevel disjoint intervals. The

intervals used for each granularity level are shown in Table 5.1. In determining the

transition probabilities and the noise values that influence the system model’s state

vector, the following problem had to be addressed: The system model is a stochastic

linear dynamical system perturbed by Gaussian noise which means that we are deal-

ing with a continuous random variable which takes values over a continuous range,

and its distribution is described by a probability density function (PDF). On the

other hand, the probabilistic model is a discrete-time Markov chain which captures

the evolution of the system over time. This means that from our modelling abstrac-

tion’s viewpoint we are dealing with a discrete random variable which takes values

from a discrete set, and its distribution is described by a probability mass function

(PMF). The latter implies that an exact probability is assigned to each of those

values. In summary, the problem can be stated as finding a discrete approximation

of the Gaussian distribution, however, this raises the following questions:

1. How to compute the probability values for each of the transitions of the Markov

chain based on the granularity level, given as input?

2. How to compute the expected value of the interval which has been truncated,

especially for those cases in which the mean of the distribution is not included

in the interval?
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Table 5.1: Intervals according to the granularity level.

gLevel Intervals
2 [−∞..µ], [µ..+∞]
3 [−∞..− 2σ], [−2σ..+ 2σ], [+2σ..+∞]
4 [−∞..− 2σ], [−2σ..µ], [µ..+ 2σ], [+2σ..+∞]
5 [−∞..− 2σ], [−2σ..− σ], [−σ..+ σ], [+σ..+ 2σ], [+2σ..+∞]
6 [−∞..− 2σ], [−2σ..− σ], [−σ..µ], [µ..+ σ], [+σ..+ 2σ], [+2σ..+∞]

Before explaining our approach for dealing with the questions above it is worth

mentioning how the intervals are created in the first place. In Table 5.1 we show

the intervals for which each granularity level corresponds to. The measure used to

determine these intervals is the standard deviation, σ, which is a common practice in

statistical contexts; see for example the so-called 68−95−99.7 rule which states that

assuming the data are normally distributed then 68%, 95% and 99.7% of them will

fall between one, two and three standard deviations of the mean, respectively. This

statement can be expressed probabilistically as well by calculating the cumulative

distribution function (CDF) of a normally distributed random variable X, usually

by converting it to its standard counterpart and using the so-called standard tables.

While computing the probability that a noise value will fall inside an interval is

relatively easy, the computation of its expected value is slightly more difficult. This

is because we can choose to either truncate the distribution to intervals which contain

the mean value of the distribution, which is the easier case, or to intervals which do

not. See for instance Figure 5.1 and assume that the intervals from [−2σ..+2σ], and

[−2σ..µ] have been chosen. Note that we represent the intervals as closed with the

symbols [..] which denote that the upper and lower limits are included. However, as

we are dealing with a continuous distribution, having chosen to represent them as

open intervals it would have been equally correct since, for example, P (X = µ) = 0.

For the first case, the expected value will be 0, which is the mean of distribution; for

the second, this is not true. Usually for those cases one might use a simple heuristic

such as dividing the sum of the two endpoints of the interval by two which is actually

quite common. However, it might not be representative of the actual mean, since it
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Figure 5.1: Gaussian distribution with µ = 0 and σ = 2.

does not weigh the values lying inside the interval according to the corresponding

value of the density correctly. In other words, since the mean is also interpreted

as the “centre of gravity” of the distribution [52], in the case of truncated intervals

which do not contain the mean, more accurate techniques are needed. The following

example demonstrates this reasoning.

Example 5.1. Consider the case where the distribution in Figure 5.1 has been

truncated with a granularity of level 6, according to Table 5.1. Assume that we

want to compute the mean of the interval [+σ.. + 2σ], which for the distribution

in the figure amounts to [2..4]. If someone uses the simple common heuristic to

compute the mean given by 2+4
2

then the mean will be equal to 3. However, one can

note by visually inspecting the figure that this is not a very accurate approximation,

because a uniform weight of 0.5 has been assigned to the two values. Consequently,

the resulting value, the mean, will be in the middle of the interval, maintaining
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an equal distance from the upper and lower endpoints of the interval. In fact, the

correct mean is 2.77, which is closer to the lower endpoint of the interval.

The probabilities of the Markov chain for a given granularity level are computed

by first standardising the random variable, the noise in our case, and then evaluating

its CDF at the two endpoints of the corresponding interval. Then, by subtracting

them, we obtain the probability that it will fall within a certain interval. The way

a normal random variable X is standardised is by calculating the so-called Z score

given by Z = X−µ
σ

, which measures the distance between X and the distribution

mean µ in standard deviations. Note that in our case µ = 0 and σ2 = 1, since X is a

standard normal random variable. The CDF of a standard normal random variable

X, denoted as Φ, is given as follows [52]:

Φ(x) = P (X ≤ x) = P (X < x) =
1√
2π

∫ x

−∞
e−t

2/2dt (5.1)

Once the probabilities have been computed, it remains to find the expected value of

the random variable for the corresponding intervals. In order to avoid the situation

described earlier, in Example 5.1, and obtain the mean in a more accurate way, we

have used the truncated normal distribution to compute the mean for the respective

intervals. Formally, if a normal random variable X is normally distributed and

lies within an interval [a..b], where −∞ ≤ a ≤ b ≤ +∞, then X conditioned on

a < X < b has a truncated normal distribution. There are four different ways to

truncate a normal distribution [157, 158]. These four cases are described below:

1. a = −∞ and b = +∞. No truncation. The resulting distribution is the

original normal distribution.

2. a > −∞ and b = +∞. Singly truncated from below.

3. a = −∞ and b < +∞. Singly truncated from above.

4. a > −∞ and b < +∞. Doubly truncated, which amounts to the type of the

truncations we perform.
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The probability density function of a normally truncated random variable X

is characterised by four parameters: i-ii) the mean µ and standard deviation σ of

the original distribution and iii-iv) the lower and upper truncation points, a and b.

Formally, it is defined as follows:

ψ(x;µ, σ, a, b) =
φ(x−µ

σ
)

σ
(

Φ( b−µ
σ

)− Φ(a−µ
σ

)
) (5.2)

Compactly, the mean value of the noise for a corresponding interval can be expressed

as the conditional mean, E[X|a < X < b], given by the following formula [157]:

E[X|a < X < b] = µ+ σ
φ(a−µ

σ
)− φ( b−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
(5.3)

Note that in the expression above, φ and Φ denote the probability density and

the cumulative distribution function, of the standard normal distribution, respec-

tively. As a result, the computation of the transition probabilities and the mean

values for each of the corresponding interval can be done in a unified manner. The

example below demonstrates what has been discussed so far for an interval, and a

flow diagram of the whole process is shown in Figure 5.2.

Example 5.2. Let us assume that a normal random variable is passed as input

with a normal distribution as shown in Figure 5.1, with µ = 0 and σ = 2, and

assume that a granularity level of 3 has been given as input. The first step is to

construct the unstandardised, denoted as truncation points according to Table 5.1.

Next, the truncation points are standardised. Here, we show this process for the

interval [−2σ..+ 2σ].

This results in −2 and 2 for the standardised lower, (a2 std), and upper trunca-

tion, (b2 std), points, respectively. Next, we compute the probability that a random
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Flow diagram of the numerical procedure.

Inputs: Granularity level, µ and σ of noise

Create a normal distribution with the given
µ and σ.

Create a standard normal distribution with
µ = 0 and σ = 1.

Create the upper and lower truncation points
and standardise them.

Compute the standard PDF and CDF for all
of the standardised truncation points.

Compute the transition probabilities and the
mean values, for the interval specified by its
truncation points.

Output: The transition probabilities and
the means.

Figure 5.2: Flow diagram of the numerical procedure to create transition probabilities
and the means for the noise model, which perturb the system model.

variable (e.g. noise) will fall inside this interval.

P (a2 std ≤ X ≤ b2 std) = Φ(X < b2 std)− Φ(X < a2 std) ≈ 0.954 (5.4)

For the computation of the mean in this case, the result, which is zero, is already

known to us, because it is contained in the interval considered. However, for the

sake of this example it is also computed. This is expressed as the conditional mean
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Figure 5.3: A schematic representation of the Markov chain model with granularity
level 2.

of X given that it can only take values inside this interval, using the formula:

E[X|a < X < b] = µ+ σ
φ(a−µ

σ
)− ( b−µ

σ
)

Φ( b−µ
σ

)− Φ(a−µ
σ

)
(5.5)

E[X|a < X < b] = 0 + 2
0.05− 0.05

0.977− 0.022
= 0 (5.6)

In Figure 5.3 we show a simplified visual representation of the Markov chain with

a granularity level of 2. The numbers inside each state correspond to the discrete

time instants k. The +,− signs correspond to whether the noise perturbing the

system model is positive or negative. Similar to what has been described before, if

we consider gLevel intervals in which the mean value of the noise is included, the

Markov chain transitions to a state with probability p where the mean value of the

noise is positive and is computed similar to the procedure explained in Section 5.1.2.

Symmetrically, with probability 1− p the Markov chain transitions to a state where
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the noise takes a negative value. The terminal state, state 3, of the Markov chain is

also called an absorbing state since once entered there is no outgoing transition. In

our modelling abstraction absorbing states are determined based on the value of the

maxTime variable, which is given as an input, and determines the maximum time

the model runs.

It should be noted that the discretisation and truncation of the stochastic noise

model does not affect the validity of the verification results of the numerical prop-

erties we describe in Section 5.2. This is because these properties, and numerical

errors in Kalman filters in general, mostly relate to numerical instabilities in the

the computation of the estimation-error covariance matrix P , because this matrix

is independent of the measurements emitted from the system model.

On the other hand, the discretisation and truncation of the stochastic noise model

may affect the validity of the verification results, by decreasing their accuracy, for the

properties which relate to modelling errors (Section 5.3). This is because we assume

that the highest value of the granularity level of the noise (gLevel) considered (i.e.

6), provides the most accurate approximation of the noise. Consequently, since

the verification of these properties depends on the measurements emitted from the

stochastic noise model, a loss in the accuracy of the verification result may be

expected.

Therefore, a potential user of the approach should conduct a trade-off analysis

in order to determine an appropriate gLevel value, to verify the properties related

to modelling errors (Section 5.3). However, when verifying the numerical properties

shown in Section 5.2, the gLevel value should be set to the minimum value possible

(e.g. 2).
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5.2 Verification of Numerical Stability

Next, we discuss how to capture numerical stability properties for our Kalman filter

models (see the earlier summary in Section 3.5.1) using the probabilistic temporal

logic [21] of the PRISM model checker [19]. We explain the properties below, as

we introduce them, and refer the reader to [21] for full details of the logic. From

this analysis the steady-state filter is excluded, since its steady-state covariance is

computed prior to the execution of the filter, and as a result its numerical robustness

can be determined beforehand.

5.2.1 Verification of Numerical Stability of the Conventional
Kalman Filter

Verifying symmetry of the estimation-error covariance matrix. The sym-

metry of the estimation-error covariance matrix is an invariant which needs to hold

across every path of the Markov chain. It is worth noting, however, that verify-

ing invariants does not absolutely require the use of a model checker, since all the

states are generated and can be checked as the generation process is carried out. To

construct this property we use an atomic proposition isSymmetric for the states in

which the absolute difference between the corresponding elements of P+ which are

not on the main diagonal, is close to zero within some predefined tolerance, usually

the so-called machine epsilon.

In order to specify the probability that the estimation-error covariance matrix

remains symmetric, we use the formula P=?[ G isSymmetric ], where P is PRISM’s

probabilistic operator. Also, the temporal logic operator G, which is often referred

to as “always” or “globally”, is used to represent invariance. If the result of this

probabilistic query returns a probability value less than 1, then this means that P+

is not a symmetric matrix and consequently cannot be considered a valid covariance

matrix. As a result the Kalman filter considered, should be rejected.

105



Chapter 5: Quantitative verification of Kalman filters

Verifying positivity of the diagonal elements of the estimation-error co-

variance matrix. This is a “simple” property which relates to verifying where P+

remains positive definite throughout the execution of the filter, or not. “Simple”

here is used to denote the easiness this property can be constructed, in order for

“theoretical impossibilities”, such as negative variances, to be checked. However,

this property should be used with cautiousness in terms of determining whether P+

is positive definite or not. This is because, it is well-known that in a positive def-

inite matrix its diagonal elements are positive, however the converse is not always

true. For example, the diagonal elements of a matrix can be positive but the matrix

itself need not be positive definite. An atomic proposition isDiagPos is used for

the states in which the diagonal elements of P+ are positive, and the model is then

queried using the formula P=?[ G isDiagPos ]. If the query returns a probability value

< 1, then this means that P+ cannot be considered a valid covariance matrix, and

consequently the Kalman filter should be rejected.

Verifying positive definiteness. In order to construct this property, we perform

an eigenvalue-eigenvector decomposition of P+ into the matrices [V,D]. The eigen-

values are obtained from the diagonal matrix D, and their positivity is determined

and used to labelling each state of the Markov chain accordingly: we use an atomic

proposition isPD for states in which P+ is positive definite.

We can then specify the probability that the matrix remains positive definite

for the duration of execution of the filter using formula P=?[ G isPD ], and reject

Kalman filters for which isPD is not satisfied at all states of the model.

Verifying positive semidefiniteness. In many applications it is useful to deter-

mine those states in which P+ is positive semidefinite. This is because not only

a positive semidefinite matrix can be considered “troublesome” in the context of

Kalman filtering and estimation problems in general, but also because of the extent

to which a positive semidefinite matrix is susceptible to numerical errors, that it

might become indefinite. This property follows a similar construction process to the
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previous property; first an eigenvalue-eigenvector decomposition of P+ into the ma-

trices [V,D] is performed. The eigenvalues are obtained from the diagonal matrix

D, and their nonnegativity is determined and used to labelling each state of the

Markov chain. An atomic proposition isPSD is used for the states P+ is positive

semidefinite.

Then, the formula P=?[ G isPSD ] is specified and based on the result, the Kalman

filter will be considered as valid or invalid.

Examining the condition number of the estimation-error covariance ma-

trix. The verification of certain numerical properties, such as those related to pos-

itive definiteness, is a challenging task and should be treated with caution. This is

because, while convenient, focusing the verification on whether an event will occur

or not, might not capture inherent numerical difficulties related to the numerical

stability of state estimation algorithms. In other words, it does not suffice to check

whether P+ is positive definite or not by checking its eigenvalues because, as men-

tioned earlier, if they are in close proximity to zero, then round-off errors could cause

them to become negative [14].

For example, it is often the case that estimation practitioners want to detect

matrices that are close to becoming singular, a concept which is often referred to as

“detecting near singularity” [60]. In other words, since a positive definite matrix is

nonsingular, one wants to determine the “goodness” of P+ in terms of its “closeness”

to singularity, within some level of tolerance, usually the machine precision [14].

A matrix is said to be well-conditioned if it is “far” from singularity, while ill-

conditioned describes the opposite. In order to quantify the goodness of P+, we use

the so-called condition number, which is a concept used in numerical linear algebra

to provide an indication of the sensitivity of the solution of a linear equation (e.g.

Ax = b), with respect to perturbations in b [14, 13]. In our case, this concept is

used to obtain a measure of goodness of P+.

The condition number of P+ is given as κ(P+) = σmax/σmin, where σmax and
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σmin are the maximum and minimum singular values, respectively [16, 13]. These

can be obtained by performing the singular value decomposition (SVD) of P+. A

“small” condition number indicates that the matrix is well-conditioned and nonsin-

gular, while a “large” condition number indicates the exact opposite. Note that the

smallest condition number is 1 when σmax = σmin.

We express this property as the formula Rcond=? [ I=k ], which gives the expected

value of the condition number after k time steps. We assign the condition number

to each state of the discrete-time Markov chain using a reward function cond and we

set k to be maxTime, the period of time for which we verify the respective Kalman

filter variant.

Examining the reciprocal of the condition number of the covariance ma-

trix. Sometimes it is more intuitive to compute the reciprocal of the condition

number. This allows us to define it in the range of numbers between 0 and 1, and

relate it more “naturally” to a measure of goodness, in a “larger the better” sense.

In this case a matrix whose inverse condition number is close to 1 is considered a

well-conditioned matrix, while a matrix with an inverse condition number near 0

is an ill-conditioned matrix. The reciprocal of the condition number is computed

by dividing the smallest by the largest eigenvalue, or by diving 1 by the condition

number κ (e.g. 1/κ(P )). Similar to the previous property, this is a reward-based

property whose purpose is to assign a measure of goodness of P+ to the Markov

chain states for further analysis.

It is expressed as the formula RinvCond
=? [ I=k ], which gives the expected value of the

inverse of the condition number after k time steps. The reward function invCond

serves a similar purpose to the reward function cond , defined previously.

Providing bounds on numerical errors. Another useful aspect of the condition

number is that it can be used to obtain an estimate of the precision loss that nu-

merical computations could cause to P+. For instance, for a single precision and

a double precision floating-point number format, the precision is about 7 and 16
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decimal digits, respectively. Since our computations take place in the decimal num-

ber system, the logarithm of the condition number (e.g. log10(κ(P+))), gives us the

ability to define more concretely when a condition number will be considered “large”

or “small” [13, 15, 41]. For example, a log10(κ(P+)) > 6 and a log10(κ(P+)) > 15

could cause numerical problems in the covariance computation and render P+ as

ill-conditioned when implemented in a single and a double precision floating-point

number format, respectively.

So, to verify this property we construct a closed interval whose endpoints will

be based on the appropriate values of the numerical quantity of log10(κ(P+). This

lets us label states whose log10(κ(P+)) value will fall within “acceptable” values in

the interval, when, for instance, double precision is used. We compute, in a similar

fashion to the first property above, the probability P=?[ G isCondWithin ], where

isCondWithin labels the “acceptable” states. A probability value of less than 1

should raise an alarm that numerical errors may be encountered.

5.2.2 Verification of Numerical Stability of the Carlson-Schmidt
Square-Root Filter

There are two ways one can define properties for the Carlson-Schmidt square-root

filter. One might be interested in the estimation-error covariance matrix per se by

reconstructing it, in every or in a specific time step k, in order to analyse it further.

However, this approach might be of interest from a statistical point of view; for

example when the goal of the quantitative verification is to explore possible mod-

elling errors. Furthermore, adopting this approach for the verification of numerical

properties of the Carlson-Schmidt square-root filter is not ideal, since it might not

have made apparent the numerical robustness of square-root filters. Moreover, it

would have resulted in the unnecessary replication of the numerical properties which

were used for the verification of the conventional Kalman filter. For instance, the

properties which are related to the verification of symmetry and positive semidefi-
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niteness of the estimation-error covariance matrix would be considered redundant,

since the square-root filter results in an estimation-error covariance matrix, which is

symmetric positive semidefinite by construction [54, 56]. As a result, the proposed

properties related to the examination of the condition number of the “square-root”

of P+ are evaluated on its Cholesky factor, C+, which is propagated forward in time.

5.2.3 Verification of Numerical Stability of the Bierman-
Thornton UD Filter

Verifying positive definiteness. In a similar fashion to the Carlson-Schmidt

square-root filter, the UD filter exhibits the same nice numerical properties such

as ensuring symmetry and positive semidefiniteness by construction. Furthermore,

we can either choose to reconstruct the estimation-error covariance matrix in every

time step or process the U and D factors only. To check whether P+ is positive

definite it suffices to label the states of the Markov chain according to whether the

elements of the diagonal matrix D are greater than zero, or not.

5.3 Verification of Modelling Error Compensation

Techniques

In this section, we discuss how to perform a rigorous quantitative analysis of the

effectiveness of the Kalman filter variants, in particular tackling the detection of the

divergence of the filter in the presence of modelling errors. Quantitative verification

is used to verify the so-called consistency properties of Kalman filters. This can be

used to drive the so-called filter tuning process, which optimises parameters of the

filter, and produces guarantees on the chosen parameter values.

Verifying that the innovation is bounded by its variance. In the first statis-

tical test we verify that the fraction of times the innovations fall within two standard
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deviations (≈ 1.96
√
S) of the mean is at least 95%. In order to express this prop-

erty as a temporal logic formula, we use a reward function inRange, which assigns

a reward of 1 to the states in which the value of the innovation yk falls within two

standard deviations, and 0 otherwise.

Then, the reward-based property which verifies that 95% of the times the inRange

reward falls within two standard deviations, is expressed as a formula of the form

the R
inRange
=? [ C≤maxTime ]. The property C≤maxTime is called a cumulative reward and

associates the inRange reward to each path of the Markov chain. The result of the

reward is then compared to a bound, which is determined upon the maximum time

the model runs. This bound is computed as the product of 0.95 with the maxTime

variable, taking into consideration that measurements are processed as scalars. For

instance, if the model runs for 20 time steps, the bound on the reward will be 19

(0.95× 20), since 19/20 ≈ 95%.

In our case, we assume that there are no measurements available during the first

two time steps. The reason is due to the way we index time, starting from 0, since

the first two states are used in the initialisation of the Markov chain. This means

that when the model runs for 20 time steps (i.e. maxTime=20), the bound which

should be exceeded by the result of the inRange reward, is ≈ 17. As a result, if

the result of the formula is a value less than 17, then this is an indication that the

Kalman filter is inconsistent.

Verifying that the magnitude of the innovations should be proportionate

to the covariance. The second statistical test we consider revolves around the

concept of Hypothesis Testing, in which the null hypothesis H0 describes the status

quo or the default theory [159], and the alternative hypothesis H1 the exact opposite.

The overall concept of Hypothesis Testing is to test H0 against H1 and decide

whether to reject H0, based on the “amount” of evidence we acquire from the data,

which in our case corresponds to the measurements emitted at each time step. It

is important to note that there does not exist any symmetry between H0 and H1,

111



Chapter 5: Quantitative verification of Kalman filters

meaning that failure to obtain the required evidence, does not imply that H0 is

true, rather than the fact that enough evidence has not been acquired to reject it.

In our context, the null hypothesis, H0, describes the hypothesis that the Kalman

filter is consistent, or more specifically that the magnitude of the innovations yk

is proportionate to the covariance computed by the Kalman filter. Furthermore,

the alternative hypothesis, H1, describes the hypothesis that the Kalman filter is

inconsistent.

The statistic which we structure the statistical test around, is the so-called

normalised innovation squared (NIS) [23], given as: ε2yk = yᵀkS
−1yk. Formally,

a statistic is a function of the data, and since it is a random variable it has a

certain distribution [159]. Note that ε2yk conforms totally to the formal defini-

tion of a statistic, since ε2yk is a random variable, it can be expanded to ε2yk =(
zk −Hx̂−k

)T [
HP−k H

T +Rk

] (
zk −Hx̂−k

)
, and it follows a χ2 distribution. How-

ever, since the information at a particular time instant k might not be sufficient

to draw reliable conclusions, [23] proposed that the average of K time steps should

be taken into account. Therefore, the statistic we consider is the time-average nor-

malised innovation squared, given by ε̄2yk = 1
K

∑K
i=1 ε

2
yk

.

Under the assumption that H0 has been retained, or in other words that there

is no sufficient evidence to declare the Kalman filter as inconsistent, Kε̄2yk is χ2

distributed with Kn degrees of freedom, where n is the dimension of the mea-

surement vector [23] [160]. Note that the χ2 distribution, unlike the Gaussian

distribution, is indexed by one integer parameter, the degrees of freedom. We

accept H0 as long as ε̄2yk ∈ [r1, r2], where the confidence region is defined as

P
{
ε̄2yk ∈ [r1, r2] | H0

}
= 1 − α, and the significance level α is set to 0.05 as be-

fore. In general, a confidence region, or a confidence interval for the univariate case,

of a level 1 − α where α = 0.05, defines a 95% interval in which we expect the un-

known value of the parameter we try to estimate, in this case the NIS, to fall within

this interval with probability at least 95%. In other words, α = 0.05, represents the
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probability of making a type I error (e.g. a false positive decision), by rejecting the

null hypothesis when it is true. A type I error in our case means that we incorrectly

declare the Kalman filter as inconsistent, and a level α = 0.05 defines an upper

bound in the probability of committing such an error. For example, assuming 40

time steps (K = 40) and one-dimensional measurement vector, the two-sided confi-

dence region for the χ2
40 variable is [χ2

40(0.025), χ2
40(0.975)], which by looking at a χ2

table we find that the region is defined as [24.433, 59.342]. Then, since we want to

test whether the time-average normalised innovation squared statistic falls within

the interval we divide the lower (r1) and upper (r2) endpoints by the number of

time steps, in this case K = 40, to obtain the following interval: [0.6108, 1.4835].

For instance, if ε̄2yk = 0.85, hypothesis H0 is not rejected (i.e. H0 is retained), and if

it falls outside of the above region (e.g. ε̄2yk = 2.67), H0 is rejected.

The aforementioned statistical test is constructed by specifying a formula of the

form R
nis avg
=? [ C≤maxTime ]. First, a formula nis is used which calculates the nor-

malised innovation squared statistic. Then, we define a reward function nis avg

which divides the accumulated result obtained from the previous formula, nis , by

the maximum time the model runs, and assigns the result to the states of the model.

In each transition the cumulative reward, defined as C, is being updated and when it

reaches the terminal state, the time-average normalised innovation squared statistic

(nis avg) is obtained. The terminal state of the model is defined by the predicate

t=maxTime. Note that the time-average normalised squared value is obtained by di-

viding by (maxTime - 2), rather than by maxTime. This is because we do not want

to take into account in the computation the values of the initial states of the model

(e.g. when t = 0 or when t = 1). The value of (maxTime - 2) essentially defines

the degrees of freedom of the χ2 distribution, which means that when maxTime=20,

the lower and upper bounds are computed for 18 degrees of freedom.
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5.4 Summary of Contributions

In this chapter we presented a framework for the modelling and verification of

Kalman filter implementations operating on linear discrete-time stochastic systems.

This framework is general enough to handle the creation of various different filter

variants. The contributions of this chapter can be summarised as follows:

• Novel techniques to systematically construct a Markov model of the filter’s

operation using truncation and discretisation of the stochastic noise model.

• The generation of non-trivial reward structures for the discrete-time Markov

chain, which are computed using linear algebra computations on the matrices

and vectors used in the execution of the Kalman filter implementation.

• A novel approach that combines statistical theory and formal verification to

model and analyse the execution of a Kalman filter in order to produce guar-

antees on its performance for a given set of parameters.
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VerFilter: Verification Through the Integration of Formal

Modelling with Kalman Filter Execution

In this section, we present our tool, VerFilter, which is the software implementation

of the framework defined in Sections 5.1, 5.2 and 5.3. The VerFilter tool is written

in the Java programming language in order to be seamlessly integrated with the

PRISM libraries, which are written in Java as well. In particular, PRISM version

4.4 was used for the development of the tool. Moreover, in VerFilter, several of

the numerical linear algebra computations for implementing Kalman filters are done

using the Apache Commons Math library [161], while other parts have been manually

implemented. The tool and supporting files for the results in Chapter 7 are available

from [25].
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Figure 6.1: A high-level diagram of the approach.

6.1 Overview of VerFilter

Overall approach and workflow. The approach which is supported by VerFilter

is the modelling and verification of Kalman filter implementations. In particular,

the approach is based on the construction and analysis of a DTMC, representing

the behaviour of a particular Kalman filter executing in the context of estimating

the state of a linear stochastic dynamical system under a noisy measurement model.

The main three components which are given as inputs to VerFilter, as shown

in Figure 6.1, by the user are: (i) the system model; (ii) the measurement model;

and (iii) one of the four Kalman filter variants which are described in this chap-

ter. VerFilter takes the mathematical form, as vectors and matrices, of these three

components as inputs, similar to what is described in Section 6.2.

The DTMC is automatically constructed based on a specification of the filter and

the system whose state it is trying to estimate. This is done through the gLevel

value which is given as an input by the user and has been explained in detail in

Section 5.1. It is also done through the appropriate labelling of states and the
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computation of their rewards, for the properties. Moreover, the probabilistic model

checking queries, which verify properties related to numerical and modelling errors,

can also be given as inputs to VerFilter before the model construction process begins.

VerFilter invokes PRISM programmatically and outputs the results of the anal-

ysis. In the background, VerFilter executes a stochastic linear dynamical system

which emits noisy measurements, and a Kalman filter which tries to estimate the sys-

tem’s state. While this execution is occurring, VerFilter is interacting with PRISM

dynamically by updating the DTMC’s variables. The interaction with PRISM is

done through the ModelGenerator interface by overriding its methods, and is pre-

sented in detail in Section 6.2.3. More details about the construction of properties

and their PCTL expressions can be found in Sections 5.2 and 5.3, for the two classes

of properties, respectively.

The precise functions of VerFilter can be summarised as follows:

• Automates the generation of Kalman filters by constructing a DTMC represen-

tation of the filter’s execution. The execution of the filter and its interaction

with PRISM is done automatically through VerFilter. The user needs to spec-

ify the inputs shown in Table 6.1 only.

• Returns the verification results to the user directly, without requiring from the

user to manually load the model into PRISM.

Assumptions and constraints. While in theory our verification approach would

work for verifying higher-dimensional Kalman filters, the current version of VerFilter

does not handle Kalman filters of higher dimensionality than two. However, it is

worth noting that VerFilter’s practical applicability may not be limited as there are

many real-world applications which use two-dimensional or even one-dimensional

Kalman filters. This is also true of the number of intervals (gLevel) into which

the noise distribution will be truncated. In theory, the noise distribution can be
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truncated into more intervals than the six we consider here.

The VerFilter software tool has been made publicly available at [25]. To ver-

ify similar types of filters executing to track the states of the system models (e.g.

kinematic) we consider here, the user should specify F , P , H, R and the variance

of noise, σ2
w, which is used for the construction of the process noise covariance ma-

trix Q. Also, the user should specify the type of kinematic model and the type of

Kalman filter to be executed. The properties which can be used for the verifica-

tion of Kalman filters, and are available to the user, are the ones we consider in

Sections 5.2 and 5.3. However, under different conditions, such as verifying another

property on a different filter type, users could potentially modify parts of our code

to tailor the verification to their problem domain. The code published online could

serve as a guide in this regard.

6.2 VerFilter Inputs

In Table 6.1 we show the user inputs available to VerFilter, by distinguishing which

of those refer to the system and measurement models, which refer specifically to the

filter models and which are shared between them. The RealVector and RealMatrix

shown in Table 6.1 are implemented as one-dimensional and two-dimensional arrays

of type double, respectively. VerFilter also takes as inputs four extra parameters:

(i) gLevel which denotes the granularity level of the noise and has been discussed

in Section 5.1; (ii) decPlaces which allows the user to input the desired numerical

precision in terms of the number of decimal places, to which the numerical values

used in the computations will be rounded and stored in the respective Markov chain

states. This also determines the numerical precision of the Kalman filter equations

which will be propagated forward in time over the possible Markov chain trajectories.

This type of flexibility in the representation of numbers is particularly important

because it can help the user to construct various models with different degrees of
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Table 6.1: User inputs for each of the models.

Input Description Used in: Type

x̂+
0 A posteriori state estimate vector Filter RealVector

P+
0 A posteriori estimation-error covariance matrix Filter RealMatrix

x State vector System RealVector

w Process noise vector System RealVector

v Measurement noise vector System RealVector

F State transition matrix Shared RealMatrix

Q Process noise covariance matrix Filter RealMatrix

H Measurement matrix Shared RealMatrix

R Measurement noise covariance matrix Shared RealMatrix

gLevel Granularity of the noise Shared int

decPlaces Number of decimal places Shared int

maxTime Maximum time the model will run Shared int

filterType Type of filter variant Shared int

precision, and then use VerFilter to verify them. (iii) maxTime which determines the

maximum time the model will run; and (iv) filterType which is the type of filter

to be executed.

From a high-level point of view VerFilter comprises four components each of

which takes certain inputs in which VerFilter acts upon (see Section 6.3.1 for more

details). The first one is the system model which is a linear dynamical system one

is interested in modelling. The second component is the measurement model, which

can be thought of as the sensor model which captures the measurements emitted

from the system model. The third component encompasses the associated noise

distributions of the system and the measurement model, respectively. Finally the

last component is one of the four Kalman filter variants which is used to estimate

the state of the system model in the presence of uncertainty.

6.2.1 VerFilter Arithmetic

In this section, first we explain how VerFilter handles the numerical computations.

VerFilter operates on top of PRISM and has to satisfy the constraints set by it. The

most important constraint imposed to VerFilter by PRISM is the use of integers

for state variables instead of, for example, double precision floating-point numbers.
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This means that the numbers have to be rounded to the desired precision given as

input and then to be decomposed to their integral and fractional parts, in order to

be stored in the Markov chain state, respectively. In addition, since the Kalman

filter relies on the updated values to correct its estimates the integers stored in

Markov chain state are composed back to doubles in order to be processed. These

procedures take place in several methods in the Computations class.

6.2.2 Automating the Generation of Kalman Filters

VerFilter can currently create the following Kalman filter variants: i) the conven-

tional Kalman filter, ii) the steady-state Kalman filter, iii) the Carlson - Schmidt

“square-root” filter and iv) the Bierman - Thornton UD filter. This provides an

advantage to the user who can choose to experiment with a variety of different

filters. In addition, VerFilter is extensible meaning that it can be accessed program-

matically through its API from people who wish to add other filters or modify the

existing ones. This is done through the KalmanFilter interface, which all of our

filter variants implement and is shown in Appendix A, and provides a unified way

to implement the standard methods in a newly created Kalman filter class.

In the interface we can observe some of the parameters which were discussed

previously. For example, the getStateEstimationVector() method refers to the

state vector x, while the getErrorCovarianceMatrix() one, to the estimation-

error covariance matrix P . The predict() and correct(RealVector z) methods

refer to the time and measurement updates. Each one of those methods determines

whether the state estimate is considered an a priori or an a posteriori estimate. This

also applies to the estimation-error covariance matrix P . In the former case x and P

are considered a priori while in the latter a posteriori. The inputs with their types

for each of the filter classes are shown in Table 6.2.

In the following sections, we will describe how VerFilter handles the creation of

various Kalman filter implementations. This will involve switching between different
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Table 6.2: User inputs for each of the filters.

Parameter Description Type
x0 State vector RealVector

F State transition matrix RealMatrix

P0 Estimation-error covariance matrix RealMatrix

Q Process noise covariance matrix RealMatrix

H Measurement matrix RealMatrix

R Measurement noise covariance matrix RealMatrix

contexts; for example there is the numerical linear algebra context, in which the filter

is looked from a mathematical and algorithmic viewpoint.

6.2.3 The ModelGenerator Interface

PRISM’s ModelGenerator interface, provides us with the necessary method signa-

tures to generate a Markov chain, by overriding them. For easy reference, some of

the method signatures inside the ModelGenerator interface, are described in Ap-

pendix A. The state variables and their associated types are stored in a List and are

being returned from the getVarNames and getVarTypes methods, respectively. The

getInitalState method returns the initial state of the Markov chain, which from

an estimation viewpoint can be thought of as the set of the initial conditions. Fur-

thermore, a value of 1 is returned from the getNumChoices method, since the only

nondeterministic choice is based on the value of the process noise, which perturbs

the system model’s state vector. The returned values of the getNumTransitions

and getTransProbability methods are determined based on the input value of the

gLevel variable.

The computeTransitionTarget method in the FilterPrism class is arguably

one of the important methods in VerFilter, since it updates the values of the variables

in the states. The variables which define the Markov chain state are shown in

Table 6.3. First, we start by fetching the Markov chain state which is explored. The

state is returned from the getExploreState method, and contains the variables’
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Table 6.3: Kalman filter variables which are stored in the Markov chain state

System model variables
CKF var Type PF var Type

F [][] double

F11IntState

Integer

F11FracState

F12IntState

F12FracState

F21IntState

F21FracState

F22IntState

F22FracState

xSim [] double

x11IntSimState

Integer
x11FracSimState

x21IntSimState

x21FracSimState

w double
w11IntState

Integer
w11FracState

Measurement model variables
CKF var Type PF var Type

H [][] double

H11IntState

Integer
H11FracState

H12IntState

H12FracState

v double
v11IntState

Integer
v11FracState

z double
z11IntState

Integer
z11FracState

Kalman filter variables
CKF var Type PF var Type

xEst [] double

x11IntEstState

Integer
x11FracEstState

x21IntEstState

x21FracEstState

P [][] double

P11IntState

Integer

P11FracState

P12IntState

P12FracState

P21IntState

P21FracState

P22IntState

P22FracState
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names in an array of type Integer. Then, we initialise the state estimate of the

Kalman filter, xEst, by invoking the respective elements of the array stored in

the State class. The type of xEst is a RealVector which is implemented as an

array of type double. From an implementation viewpoint, this means that the

estimates stored in the Markov chain state have to be converted to their decimal

point counterparts, in order to be stored as vector elements in a RealVector, so

they can be processed from the ConventionalKalmanFilter class correctly. This

step is done by considering the numerical precision given as input, in the variable

decPlaces. Then, the same process is performed for the estimation-error covariance

matrix P.

Furthermore, the system and measurements model’s state vectors are set to their

Markov chain counterparts, along with their corresponding noise values. Specifically,

the new measurement is computed based on the system model’s state vector stored

in the Markov chain state and then is stored back into it. Note that the compu-

tation of the new measurement is of type RealVector and as a result has to be

converted back to an Integer type, in order to be stored in the Markov chain state.

This is done using the Computations class which performs computations of this

type by taking into account the value of decPlaces variable, which is given as an

input. The a posteriori variables of the Kalman filter are passed as inputs in the

ConventionalKalmanFilter class and one iteration of the time and measurement

updates is executed. Finally, the newly obtained a posteriori variables are stored in

the Markov chain state using the previous procedure.

Moreover, the getNumLabels method returns the number of the different labels,

while the isLabelTrue one checks whether a given label is true or false in a state.

There are currently nine labels in VerFilter. For example, the label end evaluates

to true when t=maxTime to check the maximum time the model will run or in

other words whether the Markov chain has reached an absorbing state. Finally,

the getStateReward method returns the reward, a positive real number, of a given
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Table 6.4: The conventional Kalman filter algorithm

Time update VerFilter’s predict() method

x̂−k = Fk−1x̂
+
k−1 x = F.operate(x);

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1 P = F.multiply(P).multiply(F.transpose()).add(Q);

Measurement update VerFilter’s correct(RealVector z) method

yk = zk −Hkx̂
−
k y = z.subtract(H.operate(x));

Sk = HkP
−
k H

T
k + R S = H.multiply(P).multiply(H).add(H.getR());

Kk = P−k H
T
k S
−1
k K = P.multiply(H.transpose()).multiply(inverse(S));

P+
k = (I −KkHk)P

−
k P = I.subtract(K.multiply(H)).multiply(P);

x̂+
k = x̂−k +Kkyk x = x.add(K.operate(y));

state.

In Section 6.3.1, we show a detailed example of how VerFilter performs an up-

date of the discrete-time Markov chain’s state, in the context of particular state

estimation problem, by focusing on the computeTransitionTarget method.

6.3 The Conventional Kalman Filter

The conventional Kalman filter is the most popular form of the Kalman filter, and

it was explained in detail in Section 2.4. This allows us to proceed directly to

its VerFilter implementation, as shown in Table 6.4. In the first column we show

the mathematical equations of the conventional Kalman filter, and in the second

column the VerFilter equivalent written in Java. The state x is the filter’s estimate

for the system model, while Q is the noise covariance matrix assumed to influence

the evolution of the system model from state to state. Usually, in simulations the

time and measurement updates operate inside a loop along with the system model.

The code which corresponds to the time update is placed directly after the loop

starts, then the code for the system is called in order to simulate that the true state

of the system model has been perturbed by noise, followed by the measurement

model which is also perturbed by random noise. Once the noise measurement has

been obtained, the measurement update methods are called where the Kalman filter

adjusts its estimate. However, this straightforward structure does not hold in our
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case.

6.3.1 Conventional Kalman Filter Example

This example presents a situation where the kinematic system model, as defined in

Section 2.2.1, is currently 5 metres away from the origin, moving with a velocity of

5 metres per second which is perturbed by noise having a normal distribution with

µ = 0 and σ2 = 0.025. The sensor, which is assumed to be more accurate, is also

perturbed by normally distributed noise with µ = 0 and σ2 = 0.01. The task of

the Kalman filter is to estimate the system model’s state vector, both position and

velocity. Note that the velocity can be estimated from the Kalman filter even though

it is not directly observed (i.e. it can be inferred from the observable variable, the

position). The inputs to VerFilter are the following:

1. The system model inputs: F =

1 1

0 1

, x =

5

5

, σ2
w = 0.025

2. The measurement model inputs: H =

[
1 0

]
, R = 0.01

3. The Kalman filter inputs: x̂+
0 =

0

0

, P+
0 =

10 0

0 10

,

Q =

0.00833 0.0125

0.0125 0.025


4. Numerical precision and granularity level: decPlaces=3, gLevel=2

Note that if we swap the place of the 1 and 0 in H, the problem could be

framed as trying to estimate the position of the vehicle given the observable velocity

values. In either case, this is a problem which could be met in realistic settings. For

example, someone drives a car and suddenly in the navigation map which shows the

car’s position, the GPS signal is lost. Then, software operating in the car could use

the Kalman filter to help it localise itself, by determining its position by observing
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Table 6.5: The Markov chain state array.
(k is part of the state, but does not appear in the table for space reasons.)

State array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

z z P P P P P P P P xE xE xE xE xS xS xS xS

Table 6.6: The Markov chain state array at time k = 0.

State array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0

the velocity only. The elements of the initial Kalman filter’s state vector are set to

0, to denote our complete ignorance with respect to the car’s position or velocity.

The same applies to the initialisation of P , where the uncertainty of estimate x̂

is specified by setting the value of 10 for the position and the velocity. Also, the

covariance between these two variables is set to 0, to demonstrate the fact that at

time k = 0 there is no indication that they vary in a similar way.

The position of the state variables, stored in an array of type int, which are going

to represent the Markov chain state is shown in Table 6.5. For easier visualisation

we have coloured the indices which correspond to: the measurement model with

orange, the Kalman filter with blue and the system model with purple. Note that

F , R, Q are not stored in the state since time invariance is assumed. The evolution

of the Markov chain states, which correspond to one iteration of the VerFilter for

the different probability values can be observed in Tables 6.6, 6.7 and 6.8. At time

k = 0 only the initial values of the Kalman filter variables are stored in the state

array; for example the value of 10 in index 2 is the integral part of the first element

of the a posteriori covariance matrix P , while index 3 is the fractional part of the

same variable.

From the state at the discrete time step k = 0, the Markov chain transitions with

probability 0.5 to either a state where the process noise w is positive or negative.

The mean values for the process and measurement noises are ±0.126 and ±0.08,

according to the procedure shown in Section 5.1.
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Table 6.7: The Markov chain state array at time k = 1 reached with probability p.

State array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 10 0 0 0 10 0 0 0 0 0 0 0 5 0 5 0

At time step k = 1, the values of the system model are being set up and the

integral parts of the elements of the system model’s state vector, indices 14 and

16 are changed to 5 and 5, respectively. From this state if we choose the transition

with the positive noise values, the Markov chain transitions to a state at time instant

k = 2. Let us consider at this point what happens in the computeTransitionTarget

method. The a posteriori variables are fetched from the Markov chain state and are

stored in a vector. This procedure is shown in Listing 6.1.

//A posteriori state estimate

x=new ArrayRealVector(new double[]{((int)state.varValues[10]+

((int)state.varValues[11]/pow(10,decPlaces)))),((int)state.varValues[12]+

((int)state.varValues[13]/pow(10,decPlaces)))});

//A posteriori estimation−error covariance

P = new Array2DRowRealMatrix(new double[][]{{(int)explore.varValues[2]+

((int)explore.varValues[3]/pow(10,decPlaces)),(int)explore.varValues[4]+

((int)explore.varValues[5]/pow(10,decPlaces))},{(int)explore.varValues[6]+

((int)explore.varValues[7]/pow(10,decPlaces)),(int)explore.varValues[8]+

((int)explore.varValues[9]/pow(10,decPlaces))}});

Listing 6.1: Store the “old” posterior estimates.

Since the initial a posteriori state estimate is zero, the new x becomes a vector of

zeroes. The same procedure is followed for the a priori estimation-error covariance

matrix PEst. Note also that the state.varValues[index] corresponds to the index

of the Markov chain state array and that the numerical precision given as input (e.g.

decPlaces) is taken into account in the computation above.

Next, the a priori state estimate x̂ and estimation-error covariance P of the
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Kalman filter are computed, and these variables are not stored in the Markov chain’s

state. It is worth noting that unlike the state estimate x̂ in which the order of its

execution matters, because it has to be updated before the measurement update

equation, the same does not apply to the computation of the error covariance equa-

tions, since those do not depend on the measurements. These a priori variables will

be used to update their a posteriori counterparts.

In Listing 6.2 we show how the a priori computations are implemented in Ver-

Filter.

@Override

public void predict(...){

//Computes a priori state estimate

x = F.operate(x);

//Computes a priori error covariance

P=F.multiply(P).multiply(F.transpose()).add(Q);

}

Listing 6.2: Computing the time update.

The code above equates to:

x̂−2 = Fx̂+
1 =

1 1

0 1

 •
0

0

 =

0

0



P−2 = FP+
1 F

T +Q =

1 1

0 1

 •
10 0

0 10

 •
1 0

1 1

+

0.0083 0.0125

0.0125 0.025


=

20.0083 10.0125

10.0125 10.0250


(6.1)

The number of decimal places of the first element in the Pk matrix is explained
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by the fact that we do not store this matrix in the Markov chain state, and as a

result its numerical precision is not limited at this point. Then, the system model

variables are fetched from the previous Markov chain state. The variables which

correspond to the system model’s state vector are stored in a vector with the name

xEntries. The process noise w is stored as a scalar. The update of the system

model’s state vector xSim is implemented as follows:

xSim = F.operate(xEntries).mapAdd(w);

Listing 6.3: Updating the system model’s state vector

The code above is the equivalent of:

xSim2 = FxSim1 + w (6.2)

xSim2 =

1 1

0 1

 •
5

5

+ 0.126 =

10.126

5.126

 (6.3)

Unlike the previous case, the updated values of the system’s state vector are stored

in the Markov chain state, so they have to be converted to integers. To do that, we

make use of the methods inside the Computations class, as shown in Listing 6.4.

int xSim11Int=Computations.getIntegralPartAsInt(xSim.getEntry(0),decPlaces);

int xSim11Fr=Computations.getFractionalPartAsInt(xSim.getEntry(0),decPlaces);

int xSim21Int=Computations.getIntegralPartAsInt(xSim.getEntry(1),decPlaces);

int xSim21Fr=Computations.getFractionalPartAsInt(xSim.getEntry(1),decPlaces);

Listing 6.4: Computing the integral and fractional part of a number

This results in 10 and 126, for the integral and fractional parts of the first element

of the system’s state vector, respectively. The numbers for the second element are

5 and 126. These numbers are then stored in the Markov chain state array in the

following indices: 14, 15, 16 and 17. The Markov chain state array is shown in

Table 6.8.
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The measurement is computed in a similar way; first the corresponding element

of the Markov state array is fetched, and then we overwrite it based on the values in

the updated system model’s state vector. The results of this computation are then

stored to positions 0 and 1. For this example, they amount to 10 for the integral and

to 206, for the fractional parts, respectively. At this point, the innovation yk and

the innovation covariance Sk, are computed. These variables will be needed for the

computation of the Kalman gain Kk. These computations are done in the correct()

method of the ConventionalKalmanFilter class, as shown in Listing 6.5.

y = z.subtract(H.operate(x));

S = H.multiply(P).multiply(H.transpose()).add(R);

K= P.multiply(H.transpose()).multiply(inverse(S));

Listing 6.5: Computing the innovation, its covariance and Kalman gain.

The equivalent of the code above is:

y2 = z2 −Hx̂−2

=

[
10.206

]
−
[
1 0

]
•

0

0

 =

[
10.206

]

S2 = HP−2 H
T +R

=

[
1 0

]
•

20.0083 10.0125

10.0125 10.0250

 •
1

0

+

[
0.01

]
=

[
20.0183

]

K2 = P−2 H
TS−1

2

=

20.0083 10.0125

10.0125 10.0250

 •
1

0

 • [0.0500

]
=

0.9995

0.5002



(6.4)

The innovation and measurement values are equal at time k = 2 (e.g. 10.206),

because the filter’s a priori state estimate x̂−k is zero. Furthermore, in the Sk com-

putation the a priori covariance matrix is used (e.g. P−k ), which is the one computed
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in Listing 6.1. Also, note the first element of the Kalman gain matrix, which is very

close to 1, which means that the filter essentially neglects the a priori state estimate

(e.g. zero state vector in our case), and trusts the measurement. This is because

of the relative large values of the a priori estimation-error covariance matrix P−k .

Now, we have all the information necessary to proceed to the computation of the a

posteriori state estimate and its associated covariance matrix, respectively. This is

shown in Listing 6.6.

//The a priori state estimate is overridden with the a posteriori state estimate

x=x.add(K.operate(y));

//The a priori error covariance is overridden with the a posteriori error covariance

P=I.subtract(K.multiply(H)).multiply(P);

Listing 6.6: Computing the a posteriori variables

The code above is equivalent to:

x̂+
2 = x̂−2 +K2y2

=

0

0

+

0.9995

0.5002

 • [10.206

]
=

10.2009

5.1047


P+

2 = (I −K2H)P−2

=
(1 0

0 1

−
0.9995

0.5002

 • [1 0

] )
•

20.0083 10.0125

10.0125 10.0250


=

0.0100 0.0050

0.0050 5.0171



(6.5)

These are the a posteriori estimates which will be stored in the Markov chain state,

after having been rounded to three decimal places. We would like to highlight

again the fact that the Kalman filter inferred the non-measured velocity value rela-

tively accurate. These values and their indices are passed as inputs to the PRISM’s
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Table 6.8: The Markov chain state array at time k = 2 reached with probability p.

State array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10 206 0 10 0 5 0 10 5 17 10 201 5 105 10 126 5 126

method setValue(int index, int value) in order to be stored in the Markov

chain state array, after invoking the respective methods in the Computations class.

The resulting array is shown in Table 6.8.

6.4 The Steady-State Kalman Filter

In this section, we explain how VerFilter handles the creation of the steady-state

Kalman filter. It should be pointed out that the fundamental creation mechanism re-

mains similar to the conventional Kalman filter. For example, the user chooses its de-

sired filter variant, and through the interface an instance of the SteadyStateFilter

class is created. As a clarification, the term “steady-state” refers to the Kalman gain

that is in steady state [15]. It turns out that in order to compute the steady-state

Kalman gain, the steady-state solution of the a priori error covariance must be

found, since the Kalman gain depends on it. Recall from Section 2.6 that this lim-

iting solution can be expressed as the discrete-time algebraic Riccati equation, and

the first step before any attempt is made to solve it, is to verify that the necessary

conditions hold.

In particular, in Section 2.3, we explained the observability and controllability

tests which provide a way of identifying whether a solution exists or not, and for

easy reference these tests are restated here. The first theorem states that the ma-

trix pair F,H must be completely observable, which means that the observability

matrix M must be of full rank (e.g. ρ(M) = n). In VerFilter this is taken care

by the Computations class in the getObsMatrix() method, by first specifying the

dimensions of the observability matrix np×n (np rows and n columns), correspond-
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ing to an n × n matrix F and an p × n matrix H. Then, we store the elements in

each position by iterating over the rows of F , and raising the matrix product (HF )

to the corresponding power. The resulting observability matrix M is passed as an

argument to the isObservable method which returns true or false depending on

whether it is singular or not. This step is performed by computing the singular value

decomposition on M . Alternatively, it could have been implemented in a slightly

different way, by still using a singular value decomposition to find the rank of the

matrix M and then subtracting from it the row/column dimension of F . This would

have given the number of unobservable states. In the case of zero, it would have

meant that none of the states are unobservable.

Once the observability test passes, the controllability test takes place, which

seeks to evaluate whether the matrix pair F,C is completely controllable. The

procedure followed is relatively similar to the previous case and is implemented

in the getContMatrix() and isControllable methods. The only difference is the

extra computation needed for the C matrix, which is a Cholesky factor of the process

noise covariance matrix Q. This is handled in the getCholeskyFactor() method

which returns the triangular factor C which is then passed as an argument in the

getContMatrix() method along with F . The Cholesky decomposition is computed

using the CholeskyDecomposition class from Commons Math, which takes as input

a positive definite matrix, P in our case, and calculates its Cholesky decomposition

CCT . The fact that this method throws a NonPositiveDefiniteMatrixException

when the matrix is not positive definite, can be used as an extra verification step

which ensures the positive definiteness of the matrix P . This is because the Cholesky

decomposition of a symmetric positive definite matrix is unique. In summary, if

both of the isObservable and isControllable methods return true, then we can

proceed to solving the Riccati equation since it will converge to a finite steady-state

covariance which is a unique and positive definite matrix [23].

Pre-computing the steady-state gains has the advantage of reducing the Markov
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Table 6.9: The Markov chain state array of the steady-state filter.

State array
0 1 2 3 4 5 6 7 8 9
z z xE xE xE xE xS xS xS xS

chain state space by a factor of ≈ 2. This is because there is no need in storing

the a posteriori estimation-error covariance matrix P in the Markov chain state,

since it will remain constant throughout the transitions. The reduced Markov chain

state array is shown in Table 6.9. On the other hand using fixed Kalman gains

implies transforming the Kalman filter from a time-varying filter to a time-invariant

one. This transformation could hinder the accuracy of the estimates produced by

the steady-state filter, because of the suboptimal gains being used in each of the

Markov chain states.

6.5 The Carlson-Schmidt Square-Root Filter

In the Computations class, the getUTCholeskyFactor(RealMatrix P) method ac-

cepts as an argument the reconstructed estimation-error covariance matrix P and

returns an upper triangular Cholesky factor C such that P = CCT , by iterating

over P backwards [13].

Schmidt’s algorithm for the time update operates on the following partitioned

matrix:

A =

[
FCP+ ΓCQ

]
(6.6)

where CQ is a Cholesky factor of the process noise covariance matrix Q, which in

our case is just the square root of a scalar, and CP+ is a Cholesky factor of the

a posteriori estimation-error covariance matrix P+. The products of the matrices

above define the input to Schmidt’s time update and triangularisation is performed

using Householder transformations, which is a numerically stable method for per-
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forming a decomposition of a matrix into the product of an orthogonal and an upper

triangular matrix, respectively [162].

Example 6.1. This example shows how VerFilter handles the creation of the Carlson-

Schmidt square-root filter to estimate the state of a discrete white noise acceleration

model. It is implemented in the CarlsonSchmidtFilter class, and the inputs to

VerFilter are the following:

1. The system model inputs: ∆t = 1, F =

1 1

0 1

, x =

5

5

, Γ =

0.5

1

,

σ2
w = 4

2. The measurement model inputs: H =

[
1 0

]
, R = 0.01

3. The Carlson-Schmidt filter inputs: x̂+
0 =

0

0

, P+
0 =

10 0

0 10

,

Q = Γσ2
wΓT =

1 2

2 4


4. Numerical precision and granularity level: decPlaces=3, gLevel=2

Note that there is no requirement from the user of VerFilter to perform a decompo-

sition of P , rather those decompositions are being handled internally by VerFilter.

Once the inputs have been received, the first step is to compute the upper triangular

Cholesky factors of P and σ2
w, a square root, in order to compute the products that

make up the partitioned matrix A. The result of those computations, performed in

the Computations class, gives the following:

FCP+ =

3.1623 3.1623

0 3.1623

 ,ΓCQ =

1

2

 (6.7)

As pointed out by Carlson [56], despite the fact that F and CP+ are already upper

triangular and as a result their product will result in an upper triangular matrix, we
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still need a (re)triangularisation method such as the Householder transformation or

the matrix root-sum square (Carlson’s choice), since the incorporation of the process

noise covariance Q in the time update equation causes the triangular form of A to

be lost. The output of the predict method in the CarlsonSchmidtFilter class

yields the following upper triangular Cholesky factor CP− :

CP− =

3.2733 3.2071

0 3.7417

 (6.8)

such that:

P− = CP−C
T
P− =

3.2733 3.2071

0 3.7417

 •
3.2733 0

3.2071 3.7417

 =

21 12

12 14

 (6.9)

The time update of the a priori state estimate x̂− remains the same as in the

conventional Kalman filter implementations (e.g. x̂− = [0 0]T ).

Carlson’s part of the algorithm, the “actual” square-root filter, is implemented in

the correct method in the CarlsonSchmidtFilter class. For the measurement up-

date of the square-root of the a posteriori covariance matrix CP+ and the a posteriori

state estimate x̂+ Carlson’s algorithms works as follows [13, 56, 57]:

1. Initialise a0 = R, e0 = 0, f = CT
P−H

T

2. for i=1,2...n loop through lines 3− 7.

3. ai = ai−1 + f 2
i

4. bi =
√

(ai−1/ai)

5. ci = fi/
√

(ai−1ai)

6. ei = ei−1 + CP−i fi

7. CP+
i

= CP−i bk − ei−1ci
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When the algorithm terminates, CP+ is an upper triangular Cholesky factor of the

a posteriori covariance matrix P+ such that P+ = CP+CT
P+ . The a posteriori state

estimate is given as x̂+ = x̂− + en[z −Hx̂−]/an. As an example, consider the CP−

and x̂− calculated in the time update. Also, consider the R and H matrices as given

in Example 6.1. Carlson’s algorithm is executed as follows:

1. a0 = 0.01, e0 =

0

0

, f =

3.2733 0

3.2071 3.7417

 •
1

0

 =

3.2733

3.2071


2. for i=1:

3. a1 = 0.01 + 10.7145 = 10.7245

4. b1 =
√

0.01/10.7245 = 0.0305

5. c1 = 3.2733/
√

0.01× 10.7245 = 9.9953

6. e1 =

0

0

+

3.2733

0

 3.2733 =

10.7145

0



7. CP+
1

=

3.2733

0

 0.0305−

0

0

 9.9953 =

0.1

0


8. for i=2:

9. a2 = 10.7245 + 10.2855 = 21.01

10. b2 =
√

10.7245/21.01 = 0.7145

11. c2 = 3.2071/
√

10.7245× 21.01 = 0.2137

12. e2 =

10.7145

0

+

3.2071

3.7417

 3.2071 =

21

12



13. CP+
2

=

3.2071

3.7417

 0.7145−

10.7145

0

 0.2137 =

0.0018

2.6734
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At this point the algorithm terminates and the a posteriori upper triangular

Cholesky factor CP+ of the a posteriori covariance matrix P+ is given as:

CP+ =

0.1000 0.0018

0 2.6734

 (6.10)

and the a posteriori state estimate x̂+ is:

x̂+ =

0

0

+

21

12

((11.378−
[
1 0

]0

0

)/21.01
)

=

11.3726

6.4986

 (6.11)

6.6 The Bierman-Thornton U-D Filter

In order to construct the U-D filter, first, the following two matrices are defined:

W =

[
FUP+ G

]
DW =

DP+ 0

0 DQ

 (6.12)

where the matrix G can be set equal to the noise distribution matrix Γ (as long as

rows ≤ cols), or can be obtained from the modified Cholesky decomposition [16].

Also, for discretised models wthout an explicit noise distribution matrix Γ, the G

matrix can be replaced with the identity matrix I after diagonalising Q. Further-

more, the noise covariance matrix Q is assumed to be a diagonal matrix, represented

by DQ. Then, by applying the Modified Weighted Gram-Schmidt (MWGS) orthog-

onalisation algorithm [57], the goal is to find U , D factors such that:

UP+DP+UT
P+ = WDWW

T (6.13)

Example 6.2. This example shows how VerFilter handles the creation of the U-

D filter to estimate the state of a discrete white noise acceleration model. It is
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implemented in the UDFilter class, and the inputs to VerFilter are the following:

1. The system model inputs: ∆t = 1, F =

1 1

0 1

, x =

5

5

, Γ =

0.5

1

,

σ2
w = 4

2. The measurement model inputs: H =

[
1 0

]
, R = 0.01

3. The U-D filter inputs: x̂+
0 =

0

0

, P+
0 =

10 0

0 10

, Q = Γσ2
wΓT =

1 2

2 4


4. Numerical precision and granularity level: decPlaces=3, gLevel=2

Here we restate the fact that there is no requirement imposed to the user of VerFilter

to perform a decomposition of P+
0 after having chosen the appropriate filter, U-

D filter in this case, rather those decompositions are being handled internally by

VerFilter. Once the inputs have been entered, the first step is to compute the

UP+DP+UT
P+ decomposition of P+, since the UP+DP+ factors are to be passed in the

predict method (Thornton’s algorithm) of the UDFilter class. The decomposition

of P+
0 to a unit upper triangular factor UP+ and to a diagonal factor DP+ which is

performed in the Computations class, results in the following:

P+ = UP+DP+UP+ =

1 0

0 1


10 0

0 10


1 0

0 1

 (6.14)

The UP+ and DP+ factors to be processed by Thornton’s algorithm are therefore:

UP+ =

1 0

0 1

DP+ =

10 0

0 10

 (6.15)
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The estimation process starts by calling the usual predict method which con-

structs the aforementioned W and DW matrices. In our case since the variance of

noise is treated as a scalar, the W and DW matrices are constructed as follows:

W =

1 1 0.5

0 1 1

DW =


10 0 0

0 10 0

0 0 4

 (6.16)

The output of the predict method yields the following UP− , DP− factors:

UP− =

1 0.85714

0 1

DP− =

10.7143 0

0 14

 (6.17)

such that:

P− = UP−DP−U
T
P− =

1 0.85714

0 1


10.7143 0

0 14


 1 0

0.85714 1

 =

21 12

12 14


(6.18)

The time update of the a priori state estimate x̂− remains the same as in the other

implementations (e.g. x̂− = [0 0]T ).

Bierman’s part of the algorithm, the “actual” square-root filter, is implemented

in the correct method in the UDFilter class. For the measurement update of the

UP+ , DP+ factors of the a posteriori covariance matrix and the a posteriori state

estimate x̂+ Bierman’s algorithms works as follows [13, 56, 57]:

1. Initialise a0 = R, f = UT
P−H

T , v = DP−f

2. for i=1,2...n loop through lines 3− 9.

3. ai = ai−1 + fivi

4. D+
ii = D−iiai−1/ai
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5. bi = vi

6. λi = −fi/ai−1

7. for j=1,2...,(i-1)

8. U+
ji = U−ji + bjλi

9. bj = bj + U−jivi

When the algorithm terminates, the UP+ , DP+ factors of the a posteriori covariance

matrix P+ have been computed such that P+ = UP+DP+UT
P+ . The Kalman gain

K is given as K = b/an and the a posteriori state estimate is given as x̂+ =

x̂− + K[z − Hx̂−]. As an example, consider the UP− , DP− and x̂− calculated in

the time update. Also, consider the R and H matrices as given in Example 6.2.

Bierman’s algorithm is executed as follows:

1. a0 = 0.01, f =

 1 0

0.85714 1


1

0

 =

 1

0.85714

, v =

10.7143

12


2. for i=1:

3. a1 = 0.01 + 1 ∗ 10.7143 = 10.7243

4. D11 = 10.7143 ∗ 0.01/10.7143 = 0.01

5. b1 = 10.7143

6. λ1 = −1/0.01 = −100

7. for i=2:

8. a2 = 10.7243 + 0.85714 ∗ 12 = 21.01

9. D22 = 14 ∗ 10.7243/21.01 = 7.1461

10. b2 = 12
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11. λ2 = −0.85714/10.7243 = −0.079925

12. for j=1:

13. U12 = 0.85714 + (10.7143 ∗ −0.079925) = 0.0008

14. b1 = 10.7143 + 0.85714 ∗ 12 = 21

At this point the algorithm terminates and the a posteriori U , D factors of the a

posteriori covariance matrix P+ are given as:

UP+ =

1 0.0008

0 1

 (6.19)

DP+ =

0.01 0

0 7.1461

 (6.20)

(6.21)

and the a posteriori state estimate x̂+ is:

x̂+ =

0

0

+

21

12

(11.378−
[
1 0

]0

0

) =

11.3726

6.4986

 (6.22)

Note that the results above agree with the ones obtained from Carlson’s algorithm.

Specifically, the a posteriori covariance matrix obtained from Bierman’s algorithm

(UDUT ) agrees with the one obtained from Carlson’s (CCT ). The same also applies

to the Kalman gain, and consequently to the a posteriori state estimate.

6.7 Summary of Contributions

The contributions of this chapter can be summarised as follows: The software im-

plementation of the novel techniques which were described in Chapter 5, including

a detailed example of its usage and its application to several filter implementations.
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Evaluating Kalman Filter Verification

In this chapter we illustrate results from the implementation of our techniques on the

filter variants described and implemented in Chapters 5 and 6, respectively. Our

experimental results target the two classes of properties which were explained in

Sections 5.2 and 5.3. In particular, in Section 7.1 we present results on verifying nu-

merical stability properties of the conventional Kalman filter, the Carlson-Schmidt

square-root filter and the Bierman-Thornton U-D filter. This is followed by a scal-

ability analysis in terms of the model construction and model checking times, in

Section 7.1.3.

Next, in Section 7.2 we present our rationale for using a kinematic state model as

an approximation for modelling the CPU utilisation of VMs operating in the cloud.

In Section 7.3 we show results for verifying properties which relate to modelling

error compensation techniques. The types of Kalman filters we consider are the

conventional Kalman filter and the steady-state Kalman filter. Finally, in Section 7.4

we summarise the main contributions of this chapter. The tool and supporting files

for the results are available from [25].
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7.1 Verification of Numerical Stability of Kalman

Filter Implementations

7.1.1 Verification Methodology

The research question the experiments in this section address is whether formal

verification, and probabilistic model checking in particular, can be used to verify

properties which relate to numerical errors in Kalman filters. Towards addressing

this research question, the methodology used for the design of experiments allows us

to investigate first whether the approach presented in Chapter 5 and its implemen-

tation in Chapter 6 can be used reliably to formally verify the numerical properties

which were presented in Section 5.2.

Moreover, the results presented here have been checked against programming

language implementations which are used for numerical analysis such as MATLAB.

The associated files which have been made available online [25] allow for the re-

producibility of the results of the experiments. Once the necessary validity has

been established, we analyse the performance characteristics of our approach in Sec-

tion 7.1.3, in terms of its scalability, and we proceed to addressing the second part

of our main research question in Section 7.3.

For the system models in our experiments, we use two distinct kinematic state

models which describe the motion of objects as a function of time. For the first, the

discrete white noise acceleration model, the initial estimation-error covariance ma-

trix P+
0 is defined as

10 0

0 10

. Defining P+
0 as a diagonal matrix is quite common,

since it is initially unknown whether the state variables are correlated to each other.

The process noise covariance matrix is given by Q = Γσ2
wΓT where the noise gain

matrix Γ = [1
2
∆t2 ∆t]T is initialised by setting the sampling interval ∆t to 1, which

results in Γ = [0.5 1]T . The variance σ2
w is set to 0.001 initially. For the second

model, the continuous white noise acceleration model CWNA, σ2
w is initially set to
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0.001. Note that each of these models results in a different process noise covariance

matrix Q.

7.1.2 Experimental Results

In the first set of experiments, shown in Figure 7.1 we analyse the condition numbers

of P+
CKF , P+

UDF for the conventional (CKFilter), U-D filter (UDFilter), and C+ for

the square-root filter (SRFilter), respectively. This is in order to verify that P+ or

the matrices which constitute P+, remain well-conditioned in terms of maintaining

their nonsingularity as they are being propagated forward in time (as discussed in

Section 5.2). Note that for the U-D filter we verify the reconstructed matrix P+

at a specific time step, while for the square-root filter, the Cholesky factor C+.

Then, this property is verified against two inputs which we vary; the first is the

numerical precision in terms of the number of decimal places, which we vary from 3

to 6 inclusive. The second input is the time horizon of the model which in our case

is measured in discrete time steps and is varied from 2 to 20.

Our goal is twofold. Firstly, we examine whether an increase in the numeri-

cal precision has a meaningful effect on how accurately the condition number is

computed. This is important since, as we show in Section 7.1.3, a decrease in the

numerical precision usually makes verification more efficient. Being able to consider

an appropriate threshold above which an increase in the numerical precision is un-

likely to have an effect on the property to be verified can determine the applicability

of these verification mechanisms in realistic settings. Secondly, we examine whether

letting the model evolve for a greater amount of time could have an impact on the

property that is being verified. The first observation for the CKFilter as shown in

Figures 7.1a and 7.1b is that the increased numerical precision actually determines

the verification result. For example, we note that for maxTime values in the range

of [4 − 20], when the input to our model for the numerical precision is 3 decimal

places, the instantaneous reward jumps to infinity. An infinite reward in this case
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means that the condition number of P+ is ≈ 1.009e+16, which practically means

that P+ is “computationally” singular and consequently positive definiteness is not

being preserved. This is in contrast to the result obtained for both the SRFilter

and UDFilter, where positive definiteness is preserved, irrespective of the numerical

precision and the value of maxTime used. For the SRFilter, as shown in Figures 7.1c

and 7.1d, the highest reward value is ≈ 70, while for the UDFilter, Figures 7.1e

and 7.1f, it is ≈ 5000. This means that the positive definiteness property of P+ is

maintained throughout the execution of these two types of filters, and the increase in

the numerical precision did not have any significant effect on the propagated matrix

P+.

On the other hand, for the CKFilter, positive definiteness is preserved when

we increase the numerical precision to a value > 4, and the instantaneous reward

assigned to the states fluctuates around small values close to zero. Another inter-

esting observation is that for the three filters considered, the instantaneous rewards

stabilise to a value of ≈ 2, irrespective of whether the numerical precision is 4, 5 or 6.

In fact, for the three filter variants, the actual absolute difference of the rewards over

the states in which positive definiteness is preserved between a numerical precision

of 5 and 6 decimal places, is ≈ 0.1.

In the second set of experiments, we consider the CKFilter and SRFilter while

the system model is a continuous white noise acceleration kinematic model. Our

goal is to examine how VerFilter can be used to examine heuristic-based approaches

and ad-hoc methods such as artificial noise injection in terms of their usefulness in

correcting potential numerical problems in P+. This is also helpful in situations

where it is challenging to determine the elements of Q, by performing an automatic

search over those values which will produce an optimal performance, in this case in

terms of the numerical robustness of P .

To this end, we verify whether P+ will remain well-conditioned or not, by varying

the elements of Q. Similar to the first set of experiments we verify C+ directly. For
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Figure 7.1: Condition number of P+ over time under various degrees of precision.

both of the filters, the noise variance σ2
w, which determines the elements of Q, is

the input to our model, P+ (and C+) is being verified against. We do not vary the

maximum time; rather, we let the Markov chain to a fixed maxTime value of 20 time
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steps, which corresponds to ≈ 1× 106 states. Also, the numerical precision is fixed

to a number of 3 decimal places.

In Figures 7.2 and 7.3 we show the effects of increasing the variance of the

noise by small increments, which is then multiplied with the elements of Q, for the

CKFilter and the SRFilter, respectively. The first point of the plot (0.1, 1000) in

Figure 7.2, means that for a value of σ2
w = 0.1, the corresponding instantaneous

reward which corresponds to the condition number of P+ in a set of states where

maxTime=20, is 1000. Similarly, the first point of the plot (0.1, 30) in Figure 7.3,

implies that the corresponding instantaneous reward for C+ for a maxTime=20 is
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≈ 70. For both of the filter types, a similar trend is observed. As we increase σ2
w,

the reward values decrease which implies an increase on the “quality” of P+s. In

the end, the reward values reach a condition number of ≈ 43 and ≈ 1.94 for the two

filters, respectively.

In summary, for this particular case, the optimal σ2
w = 1.3, for both filters. Es-

pecially for the CKFilter, it is important to note that when performing verification

on Markov chains whose trajectories evolve over multiple states, to verify that the

positive definiteness of P+ is not destroyed between successive states (i.e. successive

time steps). To this end, it is advisable to use a property of the form P=?[� isPD ]

and reject models in which the previous property is not satisfied with probability

one.

In Table 7.1 we compare three of the Kalman filter variants available in VerFilter;

the CKFilter, the SRFilter and the UDFilter. In this set of experiments, the setup

is similar to the first one, in terms of the system model and the filter parameters

used.

First, our purpose is to demonstrate the correctness of our approach by com-

paring the condition numbers of P+
CKF and C+, between the three filter types. For

instance, when the positive definiteness property is not violated, and as the reward

values begin to converge to certain values, then the difference of the condition num-

ber of P+ between the CKFilter and UDFilter should be small. The same can

also be said for the difference between the condition number of P+ of the CKFilter

(and the UDFilter), and the squared value of the condition number of C+ of the

SRFilter. For example, one can quickly observe in Table 7.1 that the reward values

of the CKFilter are nearly the same with the respective values of the UDFilter. In

particular, as the time horizon increases the values of these two filters are becoming

equal to each other. Similarly, one can observe that the squared reward values of

the SRFilter are approximately the same with the reward values obtained for the

other two filters. For instance, for a numerical precision of 6 decimal places and
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a maxTime value of 10, the reward value for the SRFilter is: RcondI=10 = 1.966205.

Squaring this result 1.9662052 ≈ 3.866, which is a very close approximation to the

reward values of the other two filters.

The superiority of the SRFilter and of the UDFilter compared to CKFilter,

is demonstrated when the numerical precision is 3 decimal places, and mainly from

the fact that for the same set of parameters the numerical robustness of P+ is

preserved. This can be seen by comparing the computed results of the reward-based

properties as shown in the third,fourth and fifth columns of Table 7.1. We note

that, for a numerical precision of 3 decimal places, when choosing the CKFilter,

the reward value shoots up to +∞, representing a covariance matrix in which the

positive definiteness property is destroyed, while in the SRFilter and UDFilter

cases the corresponding reward values settle around the small values of 1.94 and

2.20, respectively. This is also evident by observing the first, second and third

columns of Table 7.1 which tell us whether the isPD invariant will be maintained

in all the states of the model. Notably, the positive definiteness property in the

CKFilter does not hold for every state, in fact the probability is zero, while for the

SRFilter the positive definiteness property holds for every state with probability

one.

Moreover, when the numerical precision is increased in the range of [4−6] decimal

places, the performance of the three filters in terms of the numerical stability of P+,

is roughly the same, and the positive definiteness property of P+ is maintained in

every state considered. One can also note that the reward values of the CKFilter

and of the SRFilter converge to the same value for a numerical precision ≥ 5

decimal places.
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Table 7.1: Comparison between three filter variants.

decPlaces CKFilter SRFilter UDFilter CKFilter SRFilter UDFilter

P=?[ G isPD ] P=?[ G isPD ] P=?[ G isPD ] Rcond=? [ I=maxTime ] Rcond=? [ I=maxTime ] Rcond=? [ I=maxTime ]
3,maxTIme=2 1 1 1 5001 69.875 5000
3,maxTIme=3 1 1 1 6.854102 2.479506 3.472570
3,maxTIme=4 0 1 1 +∞ 2.016643 2.370931
3,maxTIme=5 0 1 1 +∞ 1.943289 2.200921
3,maxTIme=6 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=7 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=8 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=9 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=10 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=11 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=12 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=13 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=14 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=15 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=16 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=17 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=18 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=19 0 1 1 +∞ 1.943289 2.192302
3,maxTIme=20 0 1 1 +∞ 1.943289 2.192302

4,maxTIme=2 1 1 1 5001 70.768988 5000.800100
4,maxTIme=3 1 1 1 6.376508 2.505185 6.784395
4,maxTIme=4 1 1 1 3.439411 2.040158 4.519086
4,maxTIme=5 1 1 1 3.614225 1.939357 3.907120
4,maxTIme=6 1 1 1 3.614225 1.951946 3.866359
4,maxTIme=7 1 1 1 3.614225 1.964276 3.866359
4,maxTIme=8 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=9 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=10 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=11 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=12 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=13 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=14 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=15 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=16 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=17 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=18 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=19 1 1 1 3.614225 1.962769 3.866359
4,maxTIme=20 1 1 1 3.614225 1.962769 3.866359

5,maxTIme=2 1 1 1 5001.060113 70.722645 5000.810100
5,maxTIme=3 1 1 1 6.307259 2.507737 6.322909
5,maxTIme=4 1 1 1 4.164446 2.031345 4.116405
5,maxTIme=5 1 1 1 3.758763 1.932001 3.801081
5,maxTIme=6 1 1 1 3.866359 1.954296 3.852360
5,maxTIme=7 1 1 1 3.866359 1.966188 3.866359
5,maxTIme=8 1 1 1 3.866359 1.966978 3.866359
5,maxTIme=9 1 1 1 3.866359 1.966224 3.866359
5,maxTIme=10 1 1 1 3.866359 1.966224 3.866359
5,maxTIme=11 1 1 1 3.866359 1.966224 3.866359
5,maxTIme=12 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=13 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=14 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=15 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=16 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=17 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=18 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=19 1 1 1 3.866359 1.962769 3.866359
5,maxTIme=20 1 1 1 3.866359 1.962769 3.866359

6,maxTIme=2 1 1 1 5001.062113 70.720408 5000.812100
6,maxTIme=3 1 1 1 6.292646 2.507687 6.283849
6,maxTIme=4 1 1 1 4.129379 2.031178 4.125259
6,maxTIme=5 1 1 1 3.735914 1.931918 3.732897
6,maxTIme=6 1 1 1 3.831732 1.954872 3.820638
6,maxTIme=7 1 1 1 3.874810 1.966389 3.868675
6,maxTIme=8 1 1 1 3.866359 1.966605 3.867762
6,maxTIme=9 1 1 1 3.866359 1.966262 3.866359
6,maxTIme=10 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=11 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=12 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=13 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=14 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=15 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=16 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=17 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=18 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=19 1 1 1 3.866359 1.966205 3.866359
6,maxTIme=20 1 1 1 3.866359 1.966205 3.866359
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Figure 7.4: Time comparisons between three filters.

7.1.3 Scalability Analysis

In this section we report on the scalability of our approach in terms of the model

construction and model checking time, across three filter variants. The model has

been generated by letting the Markov chain evolve to a fixed maxTime value of 20 time

steps, which corresponds to ≈ 1× 106 states. The rationale behind this section is to

emphasise the careful analysis that needs to be performed to systematically evaluate

the trade-offs between the accuracy of the verification result and the fastness of the

verification algorithms.

In Figure 7.4 we show the time comparisons, for varying degrees of precision,

between a model which encodes the conventional Kalman filter (CKFilter), and our

two implementations of the Carlson-Schmidt square-root filter with (SRFilter-1)

and without (SRFilter-2) reconstruction of the covariance matrix, respectively.

The model checking time refers to the collective time it takes to compute the first

and second property of Section 7.1.2. These sets of experiments were run on a 16GB

RAM machine with an i7 processor at 1.80GHz, running Ubuntu 18.04.

By observing Figure 7.4a it is apparent that the increased numerical precision

affects the construction time of the models. The average model construction time

of the three filter variants increased by a factor of ≈ 3 from 3 to 6 decimal places.
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Specifically, the average time is ≈ 83 seconds for 3 decimal places compared to

≈ 249 seconds, when 6 decimal places were used. Moreover, the construction of the

CKFilter was the fastest in all the degrees of precision considered, however, as it

was noted in Section 7.1.2 it produces an inaccurate verification result when the

number of decimal places is 3.

Conversely, the construction times of the two square-root filters were about the

same, and it seems that the extra computational step (P = CCT ) did not have a

significant effect on the performance of the model construction. However, it should

be borne in mind that these experiments were conducted on systems represented

by two-dimensional matrices. The model checking times are shown in Figure 7.4b

and one can observe that they follow a similar pattern with the model construction

times shown earlier, in terms of the increase in time from 3 to 6 decimal places.

For instance, the average model checking time increases by a factor of ≈ 3 when 6

decimal places are used, compared to 3.

Another observation is that the model checking time appears to be independent

of the type of the filter used. This can be seen from the limited variability the model

checking time experiences between the three filter variants, since for the degrees of

precision considered, it remains at approximately the same level. This is in contrast

to the model construction time which appears to be affected by the filter type,

since it is considerably less for the CKFilter compared to its square root variants.

The reason for this seems to be the extra computational steps (e.g. Householder

transformations, generation of upper triangular Cholesky factors), which have to be

performed in the time update (Schmidt part) and measurement update (Carlson

part) of the Carlson-Schmidt square-root filter. In fact, for a precision of 6 decimal

places, and once CKFilter is chosen as an input we experience a drop in the model

construction time of about 53 seconds. However, for the same amount of precision,

the time it takes to model check all the three filters is around 3 seconds.
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7.2 Cloud System Models

Next, we evaluate Kalman filter implementations on cloud models. First, we explain

the rationale behind our modelling approach for specifying a performance model,

for the CPU utilisation of VMs running on the cloud. The performance (system)

model we apply for the evolution of the CPU utilisation over time relies on kinematic

state models. The first reason is that kinematic models are used to model linear

stochastic dynamical systems. We argue that the CPU utilisation can be modelled

as a linear stochastic dynamical system and in particular by a stochastic linear

difference equation of the form xk+1 = xk + wk. This argument is also reinforced

from several studies in the literature, for instance the works of [10, 11, 163, 123],

who model the CPU utilisation of the virtualised components as a one-dimensional

random walk. Also, the noise component of the system’s state vector, in this case

the CPU utilisation, is in accordance with reality since the environment in which the

VM runs is inherently stochastic. For example, a potential source of noise includes

the variations in the workload between successive time steps, such as requests being

added or removed from a server, and it is assumed they follow a Gaussian distribution

[11]. Finally, in the measurement equation zk = xk + vk, as shown in Figure 7.5,

zk corresponds to the value of CPU utilisation which is actually measured by a

computer system monitor tool (e.g. iostat, Amazon CloudWatch, etc.), perturbed

by noise, denoted as vk.

The second reason for choosing a kinematic model is that we believe that notions

from physics and classical mechanics in particular, such as position, velocity and

acceleration can be applied to model the CPU utilisation over a period of time.

For example, in the same way that the velocity of a car is influenced by various

disturbances such as wind drag and road bumps, the velocity of CPU utilisation

is influenced by the workload changes. A sudden increase in the requests the VM

receives means an increase in the rate of change of speed of the CPU utilisation.

To reinforce our claim we draw inspiration from the field of quantitative finance, in
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Figure 7.5: A system model of the CPU utilisation for VMs running on the cloud.

which motion models have been applied to model the motion of quantities of interest.

For example, notions such as “velocity of a stock price” or “price acceleration” are

well-defined in this field, and are being used for prediction and to better understand

the market dynamics. One notable example of that is the Black-Scholes model [164],

in which it is assumed that the price of a stock follows a geometric Brownian motion.

In fact, the influence of physics in economics, in terms of the analogies which can be

drawn between physical and financial market phenomena[165], has been such that

the interdisciplinary field Econophysics has emerged as a result of that [166].

The third reason is efficiency. Unlike some of the previous works (e.g. [163]) in

which the state transition matrix F is assumed to have no effect on the system’s state

vector, in our work we use the state transition matrix F of the kinematic models.

In these works, although not cloud-specific, F is simply the identity matrix. For

example, for the VMs depicted in Figure 7.5, F =


1 0 0

0 1 0

0 0 1

. One could argue that

this is a simplistic model to model the CPU utilisation of VMs in the cloud and

could potentially cause performance issues. This is because the number of rows and

columns (or the dimension of the matrix) in F scale linearly with the number of
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Figure 7.6: A sample CPU utilisation trace.

VMs added in the availability set (Microsoft Azure’s terminology) or in the auto-

scaling group (Amazon EC2’s terminology). As a result, instead of storing in the

system’s state vector x the CPU utilisation values of all the VMs, we store the

average CPU utilisation of all the VMs currently active in the auto-scaling group.

This is in accordance to how auto-scaling is performed in a realistic setting, where

the auto-scaling decision is taken based on the reported value of an auto-scaling

group, which summarises the performance of the individual machines currently in it

(e.g. average CPU utilisation).

Example 7.1. The usefulness of a Kalman filter in a cloud-based scenario can be

observed in Figure 7.6. The black dots in this figure denote the CPU utilisation

measurements which are emitted either from the VMs in real-time or from a sim-

ulation in a controlled environment. The red triangles are the predictions of the

Kalman filter for the future CPU utilisation values, and the points in the blue line

between the prediction and the measurement denote the a posteriori CPU utilisation

estimates of the filter. In fact, the a posteriori estimates will always lie between the

predicted and measured values. Finally, the yellow area represents the variance of

the estimation error, which ideally should converge, as in this figure.
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7.3 Verification of Kalman Filter Implementation

for Cloud System Models

7.3.1 Verification Methodology

Having validated the verification ability of our approach and its software implemen-

tation (VerFilter) in Section 7.1.2, we now proceed to addressing the second part of

the main research question. Specifically, the research question which is addressed by

these experiments is whether we can use formal verification, and probabilistic model

checking in particular, to produce performance guarantees for resource estimation

mechanisms in cloud computing.

Towards addressing this research question, the methodology used for the design

of experiments allows us to investigate whether the approach presented in Chapter 5

and its implementation in Chapter 6 can be used to formally verify properties related

to modelling errors in Kalman filters which operate in a cloud computing context,

to track CPU utilisation.

In particular, we focus on verifying the so-called consistency of the conventional

(CKFilter) and of the steady-state Kalman filters, respectively. The consistency

criteria of these two different Kalman filter variants, are verified under a wide range

of different process noise covariance matrices. These criteria are specified in the form

of properties, and have been described in Section 5.3. The performance model of

CPU utilisation is defined as a continuous white noise acceleration kinematic model,

and its noise covariance matrix is initially defined as Q =

1
3
∆t3 1

2
∆t2

1
2
∆t2 ∆t

σ2
w. The

sampling interval, ∆t, is set to 1, and the measurement noise variance R to 10.

Alternatively, our goal can be described as verifying the process noise covariance

matrix tuning, as an effective filter tuning technique for finding “optimal” noise

covariance matrices in terms of satisfying the respective consistency criteria. In

particular, we analyse by how much the elements of the process noise covariance
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matrix should be scaled. Before each one of the Kalman filter variants is given as an

input to VerFilter, to handle the creation of the probabilistic model, their process

noise covariance matrices are multiplied by the variance of noise that perturbs the

CPU utilisation (i.e. σ2
w). Then, we vary σ2

w over a range of values, and probabilistic

model checking is used to verify certain consistency properties over all possible

trajectories of the Markov chain.

In our experiments, we vary σ2
w between [0.001, 5.5] inclusive. From 0.001 to 0.1

and from 0.1 to 5.5, the σ2
w value is increased in increments of 0.001 and 0.1, respec-

tively. This results in 135 different process noise covariance matrices, against which

the conventional and the steady-state Kalman filters are verified. Furthermore, since

the impact of the numerical precision, in terms of the number of decimal places, on

the verification result is also of interest, the decPlaces value is also varied between

3 and 6 inclusive. It is important to state again the two important preconditions

of controllability and observability, which have to be satisfied before the verification

of the steady-state Kalman filter can begin. The theory underlying these precon-

ditions and our implementation on VerFilter to ensure their satisfaction have been

discussed in Section 2.3 and in Section 6.4, respectively.

7.3.2 Results

In this section we present our verification results for the conventional and for the

steady-state Kalman filters. In the first set of experiments, we verify the consistency

of these two filter types, for noise variance (σ2
w) values in the range [0.001, 0.1]. The

first property we verify is whether the magnitude of innovation is bounded by its

variance 95% of the time.

In Figures 7.7 and 7.8, we show the expected number of states, for the two filter

variants, in which the value of the innovation falls between two standard deviations

of the mean (y-axis), for different σ2
w values (x-axis). Equivalently, the graphs in

Figures 7.7 and 7.8 show the impact of tuning the process noise covariance matrix on
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Figure 7.7: Resulted inRange for σ2
w

values between 0.001 and 0.1.
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Figure 7.8: Resulted inRange for σ2
w values between 0.001 and 0.1.

the “quality” of the filters considered. Moreover, the decPlaces and maxTime values

are set to 3 and 20, respectively. As explained in Section 5.3, for maxTime= 20, the

value of the 95% lower bound we are seeking is 17.

In Figures 7.7 and 7.8, we note that for the minimum noise variance value

considered, σ2
w = 0.001, the expected value of the inRange reward is 7 (i.e. ≈

39%), and 4 (i.e. ≈ 22%), for the conventional and the steady-state Kalman filters,

respectively.

However, these values fall far from the 95% bound we are seeking to satisfy.

Moreover, as noise, in increments of 0.001, is injected in the two filters, the inRange
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Figure 7.9: Resulted nis avg for σ2
w

values between 0.001 and 0.1.

reward values steadily increase, and reach a value of 8 and 7 for the conventional

and steady-state Kalman filter, respectively. This happens when the process noise

covariance matrices are constructed by setting a maximum value of σ2
w, for this set

of experiments, that is 0.1. The inRange reward values computed for the two filter

variants, tell us that the number of times the value of the innovations falls within

±2
√
Sk, between a σ2

w 0.001 and 0.1, has increased by 5.4% and by 17% for the

two filters, approximately. The increase on the computed reward values of 17% for

the steady-state Kalman filter, indicates that the effect of artificial noise injection

is more prominent, compared to the equivalent increase of 5.4% for the CKFilter.

However, the ≈ 44.4% and the ≈ 39% values, for the CKFilter and the steady-

state filter, when σ2
w = 0.1, are still significantly less than the 95% bound which

is required, for the two types of filters to be considered consistent. As a result the

process noise covariance matrices, and consequently the filters constructed in this

range should be rejected.

The second property we verify, shown in Figures 7.9 and 7.10 is whether the

magnitude of the innovations is proportionate to the computed covariances of the

conventional and of the steady-state Kalman filters. The y-axis of Figures 7.9 and

7.10 denotes the different values of the time-average normalised innovation squared
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Figure 7.10: Resulted nis avg for σ2
w

values between 0.001 and 0.1.

statistic, which has been computed for different σ2
w values in the range of 0.001 to

0.1 inclusive. The goal of this experiment is to verify the consistency of the con-

ventional and steady-state Kalman filters under different process noise covariance

matrices, and choose a process noise covariance matrix which drives the aforemen-

tioned statistic to fall between the appropriate acceptance regions. Those regions

are visualised as the lower and upper red lines on the plots, and essentially define

the lower (0.46) and upper (1.75) bounds of the χ2 distribution, respectively.

For the CKFilter, Figure 7.9, we note that as the value of the noise variance σ2
w

increases, the nis avg values decrease, implying that the consistency of the filter is

increasing as more noise is being injected to the filter. This has been also observed

on the first set of experiments. For example, for a σ2
w = 0.001 the respective time-

average normalised innovation squared (nis avg) reward value is 23, approximately.

On the other extreme of the plot, when σ2
w = 0.1 the nis avg reward value becomes

≈ 9, denoting an overall decrease, in the range of the σ2
w values considered, by a

factor of 2.5.

A similar increasing trend, in terms of the improved consistency, is also observed

for the steady-state Kalman filter, as shown in Figure 7.10. the nis avg reward

value is ≈ 69 for the minimum value of noise variance considered (e.g. σ2
w = 0.001).
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The reward value of 69 is considerably larger compared to the reward value of 23,

computed for the CKFilter for the same input. The larger reward of the steady-

state Kalman filter can be explained by the fact that suboptimal Kalman gain is

being used in the computations at every time step. This is in contrast to the

CKFilter in which the optimal Kalman gain is being used. For example, for this

particular case, the steady-state Kalman gain propagated through the Markov chain

states is [0.141, 0.009]T . On the other hand, the Kalman gain of the CKFilter,

computed from the state (s = 2, t = 2), is [0.666, 0.333]T and converges to the

values of [0.183, 0.014]T at state (s = 20, t = 20). In fact, the initial difference,

when σ2
w = 0.001, between the nis avg rewards of the two filters, is 46, falls to a

value of less than 3 for 0.44 ≤ σ2
w ≤ 0.1. The gradual decrease in the difference

between the filters’ rewards indicates that as more noise is being injected, their

performance is becoming similar.

However, despite this decrease, all of the 200 different conventional and steady-

state Kalman filters cannot be considered as consistent. This is because all of the

noise covariance matrices, 100 for each filter type in this case, result in nis avg values

to fall considerably far from the 1.75 critical value. As a result, the null hypothesis,

which states that the filter is consistent, should be rejected for both the conventional

and the steady-state Kalman filters. In Figures 7.11 and 7.12, we show the combined

results of the previous experiments, for a numerical precision of four, five, and six

decimal places, respectively. In the first row of the respective figures, the inRange

reward values are shown, while the second row depicts the results of the nis avg

reward structures, for the two filter variants. For the CKFilter, Figure 7.11, and

for the steady-state filter, Figure 7.12, we note that an increase in the numerical

precision does not have any significant effect on the accuracy of the verification

result, for both of the reward structures. This can be observed by the tendency

by which the inRange and the nis avg values evolve over different σ2
w values, which

is similar irrespective of the degrees of numerical precision used. In fact, for both
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Figure 7.11: Resulted reward values for various degrees of numerical precision for the
CKFilter.

of the filters, the average difference between the computed rewards from models

constructed with decPlaces= 4 and decPlaces= 6, is zero. This means that,

similar to the case where the decPlaces= 3, the process noise covariance matrices,

and consequently the filters, should be rejected.

In the second set of experiments, shown in Figures 7.13 and 7.14, the setup is

similar to the first set of experiments, except that the σ2
w values, on the interval

[0.1, 5.5], are injected in larger increments of 0.1, instead of 0.001. In Figure 7.13,

we show the results for the inRange reward values, which were computed for the

specified interval, for the two filters. For the CKFilter in Figure 7.13, the inRange

reward values reach a plateau at 16, for a value of σ2
w between 3.2 and 5.5, inclu-

sively. Moreover, the nis avg reward values, start to reside inside the confidence

region for σ2
w values ≥ 3.5, for the specified interval. This means that on average, in

16 out of the 18 states of a particular path, the value of the innovation is expected
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Figure 7.12: Resulted reward values for various degrees of numerical precision for the
square-root Kalman filter.

to fall between two standard deviations of the mean. This gives us a value of ≈ 89%,

which is less than the 95% bound we seek to satisfy. In consequence, the verifica-

tion procedure of this particular consistency criterion was not successful, for the 55

different conventional Kalman filters which were verified for this particular range.

On the other hand, 13 out of the 55 different steady-state Kalman filters verified,

satisfied this particular consistency property, when their process noise covariance

matrices Q were constructed with a σ2
w value between 4.3 and 5.5 inclusive.

In Figure 7.14, we show the results for the inRange reward values, which were

computed for the specified interval, for the two filters. For example, the nis avg

value is ≈ 1.75 when verifying the CKFilter whose process noise covariance matrix,

Q, has been constructed using a σ2
w value of 3.5. For the subsequent σ2

w values

(e.g. 3.6, 3.7, ...), the nis avg values are constantly decreasing. For instance, for the

maximum σ2
w value we consider (e.g. 5.5) , the computed nis avg reward is 1.46.
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Figure 7.13: Resulted inRange for σ2
w values between 0.1 and 5.5 inclusive.
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Figure 7.14: Resulted nis avg for σ2
w values between 0.1 and 5.5 inclusive.

This means that the time-average normalised innovation squared quantity starts

to stabilise itself when it passes the upper bound of the confidence region (e.g.

σ2
w ≥ 3.6). This results in the non-rejection of the null hypothesis, which states that

the filter is consistent. In fact, all of the 21 different filters constructed with σ2
w values

from 3.5 to 5.5 inclusive, should not be declared as inconsistent. On the other hand,

while the nis avg reward computed for the steady-state Kalman filter is initially

much larger compared to the conventional one, it reaches the acceptance region

faster. In fact, its nis avg reward is 1.74 when it is constructed with a σ2
w = 2.5,

which is ten times less than its conventional equivalent. It also indicates, that for

this particular case, the performance of the steady-state Kalman filter surpasses the

conventional filter’s one, since less noise has to be injected to satisfy the consistency
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criterion.

7.3.3 Threats to Internal and External Validity

In terms of internal validity threats, first we consider the granularity level of the

noise (gLevel) and its impact both on scalability and on the verification results.

Note that we explicitly refer to verification results for properties which relate to

modelling errors. This is because, as we have described in Section 5.1.2, numerical

errors are not affected by the change in gLevel.

In the results presented, we assumed verifying Kalman filters mostly operating

on real-time systems and processing real-time data. Since in these types of systems

obtaining the verification result in a short amount of time is crucial, we focused more

on scalability by setting the value of gLevel to 2. Closely related to scalability is

the issue of accuracy and, as it has been noted in Section 5.1.2, the value of gLevel

may affect the accuracy of the result. However, while it would have been easier,

and potentially less accurate, not to include the stochastic system model in the

DTMC, thus assuming measurements emitted from an unknown source, we chose to

build a more expressive model which can be used for verification purposes; that is, a

Markov chain whose trajectories capture the execution of a Kalman filter estimating

the state of a stochastic dynamical system under a noisy measurement model.

With respect to external validity threats, the kinematic state model was pro-

posed as the performance model for CPU utilisation, having taken into account

other research works on the topic, as we presented in Section 7.2. However, the

main focus of our work is on verification and, while it might seem as a reasonable

model to track CPU utilisation data, more experimentation could potentially be

needed to assess it in real situations. Furthermore, we did not consider Kalman

filters specified in higher dimensions than two and we cannot claim that our work

generalises in higher dimensions, for example, in cases where one would prefer to

model each VM as a separate entity with a different performance model. However,
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as explained in Section 7.2, this was a design decision we consciously made for two

reasons: i) for modelling a scenario which occurs in a real cloud, where the aver-

age CPU utilisation across the VMs in an auto-scaling group is emitted as a single

measurement; ii) for efficiency, since by treating the auto-scaling group as a single

entity the dimensionality of matrices and vectors remains constant, irrespective of

whether VMs are added or removed.

Finally, in terms of the results presented in this chapter collectively, we gen-

eralised our approach, where possible, by considering four different filter variants

and two kinematic state models. Also, we verified properties of 1852 different fil-

ter implementations, by taking into account the two classes of errors which affect

Kalman filter implementations. Overall, for the two classes of errors (numerical and

modelling) we verified, the tool and supporting files are available at [25] to enable

reproducibility of the results.

7.4 Summary of Contributions

The contributions of this chapter can be summarised as follows:

• The successful demonstration of our tool VerFilter as reliable software, to be

used for the verification of various types of Kalman filters. This involved

the successful implementation of the novel verification techniques, which were

presented and implemented in Chapters 5 and 6, respectively.

• A detailed evaluation which involved a rigorous quantitative analysis on the

effectiveness of various Kalman filter implementations, using VerFilter. Over-

all, several properties of the conventional Kalman filter, the steady-state filter,

Carlson-Schmidt square-root filter and the Bierman-Thornton U-D filter were

verified. Overall, the numerical stability and consistency properties of 1852

different filter implementations were verified. The verification of the latter
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properties in particular were focused on cloud computing by modelling the

CPU utilisation as a kinematic state model.
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CHAPTER 8

Conclusions

8.1 Summary and Evaluation

The main aim of this work was to provide formal performance guarantees for key

resource provisioning methods in cloud computing. In particular, we developed a

novel framework based on quantitative verification methods which can be used for

the automatic verification of automated resource provisioning mechanisms in the

cloud.

We set out to investigate whether the gap that exists in the literature in terms

of the verification of reactive resource provisioning approaches, could be bridged

using probabilistic model checking. In Chapter 4 we presented a novel probabilistic

verification scheme, followed by a validation on VMs rented from two major public

cloud providers using two different cloud computing models, IaaS and PaaS, for

Amazon EC2 and Microsoft Azure, respectively.

In particular, in Chapter 4 we have developed a Markov model using the PRISM

model checker, in order to capture the dynamics of the auto-scaling process. This
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allowed us, for the Amazon EC2 case, to compute probabilities of CPU utilisation

and response time violation for each auto-scaling policy given as an input to our

model. Then, by using ROC analysis we were able to refine our original estimates,

and find a global estimate which best represented a threshold for differentiating be-

tween auto-scaling policies which could be flagged as QoS violators or non-violators.

Our experiments showed that our verification scheme can be of valuable assistance

to cloud application owners and system administrators in formally configuring and

verifying the auto-scaling policies of their applications/systems in the cloud.

For the Microsoft Azure case we focused on the temporal parameters of an auto-

scaling policy, by considering cool-down periods of one and five minutes. Then,

our goal was to show the usefulness of the PRISM model checker to compute the

expected number of bad auto-scale decisions, and we presented our results having

taken into account CPU utilisation as a performance metric. Moreover, we showed

the difficulties that manifest in the modelling process as the cool-down period be-

comes shorter, and highlighted the difficult problem of attributing a (meaningful)

duration to the states in the model in order to match to an extent the real situation.

We then proceeded to exploring the role quantitative verification, and PRISM es-

pecially, could play in modelling and verifying a certain class of resource provisioning

approaches, which are based on state estimation, and Kalman filters in particular.

This consisted of an in-depth investigation of research works in other fields, such as

automotive and aerospace engineering, where Kalman filters have been extensively

applied. This allowed us to lay the foundations to develop a general framework, as

presented in Chapter 5, for modelling Kalman filter implementations and techniques

to systematically construct a Markov model of the filter’s operation using truncation

and discretisation of the stochastic noise model. Then, we established consistency

properties of the Kalman filter by translating them to temporal logic. Moreover, we

considered two sources of errors which could render the Kalman filter inconsistent:

i) numerical and ii) modelling errors. Specifically, for the numerical errors, we were
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concerned with the propagation of the estimation-error covariance matrix P in the

time and measurement updates, since it is this the part of the filter that could hinder

its numerical stability and so cause it to produce erroneous results. Furthermore, for

the modelling errors, as a source of inconsistency, we studied how modelling error

compensation techniques can be verified using probabilistic model checking.

Then, in Chapter 6 we presented our software implementation, VerFilter, which is

built on top of PRISM and incorporates all of the techniques considered. VerFilter

can currently handle the creation and verification of four different Kalman filter

variants, based on inputs given by the user. This is, to the best of our knowledge, the

first work where these types of problems are analysed in a probabilistic verification

setting.

Finally, in Chapter 7 we put our software, VerFilter, in action through an exten-

sive validation and evaluation process. This chapter also addressed the secondary

aim of our work, which was to investigate the generalisability of our approach to

other types of problems. We successfully demonstrated the reliability of our tool

VerFilter, in terms of its verification ability on various types of Kalman filters. This

was achieved by successfully implementing the novel verification techniques, which

were presented and implemented in Chapters 5 and 6, respectively. Overall, several

properties of the conventional Kalman filter, the steady-state filter, Carlson-Schmidt

square root filter and the Bierman-Thornton U-D filter were verified.

171



Chapter 8: Conclusions

8.2 Future Work

There are many possible areas in which the work in this thesis could be developed

further. For example, for the quantitative verification of reactive resource provision-

ing mechanisms (e.g. auto-scaling policies), on Amazon EC2 we dealt mainly with

the dynamics of an auto-scaling policy by varying the increments and the initial

VMs in operation, as part of the controllable parameters. A potential direction for

future work would be to analyse the effects of varying the other controllable param-

eters of an auto-scaling policy, such as the percentages of the scale-out and scale-in

adjustments.

Moreover, for the Microsoft Azure case, the controllable parameters which were

varied were the increments, the initial VMs in operation and the respective cool-

down periods. A potential extension, which could be implemented in the future,is

to experiment with cool-down periods of various durations, and conduct further

research in the context of auto-scaling policies which dynamically change.

As far as the quantitative verification of Kalman filters is concerned, an im-

provement would be to consider models which are expressed in higher dimensional

matrices. With respect to that, we would like to investigate how our work gener-

alises not only in terms of various types of filters, but also in terms of matrices of

higher dimensions. It would also be beneficial to perform a thorough performance

analysis for these types of models to investigate the scalability of our techniques to

see how it compares to the current scalability results.

Furthermore, we would like to investigate how our work can be extended to

nonlinear models. For example, in our work the CPU utilisation model assumes that

the incoming load is linear. It would be interesting to see how we can model CPU

utilisation which corresponds to nonlinear load. This would potentially mean that

we would need to incorporate in our framework a nonlinear version of the Kalman

filter such as the Extended Kalman Filter. Lastly, we would like to research further

how this work can be expanded to other linear algebra applications.
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8.3 Conclusion

In conclusion, we have successfully answered our main research question which was

whether we can use formal verification to produce formal performance guarantees

for both control and estimation mechanisms in cloud computing. In particular, we

developed novel approaches based on formal verification to produce performance

guarantees on particular rule-based auto-scaling policies. Our experimental results

show that the modelling process along with the model itself can be very effective in

providing the necessary formal reasoning to cloud application owners with respect

to the configuration of their auto-scaling policies, and consequently helping them to

specify an auto-scaling policy which could minimise QoS violations.

Furthermore, we have successfully shown how quantitative verification can be

used in resource provisioning contexts where Kalman filters are used to track several

performance parameters. We have presented a framework for the modelling and

verification of Kalman filter implementations. This framework is general enough to

analyse a variety of different implementations and various system models, and to

study a range of numerical and modelling error issues which may hinder the effective

deployment of the filters in practice. We have created a software tool, VerFilter,

implemented the techniques in it, and illustrated its applicability and scalability

with a range of experiments.
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APPENDIX A

Interfaces

This appendix shows the Java code for the interfaces which were presented in Sec-

tions 6.2.2 and 6.2.3, respectively. In particular, Section A.1 presents the methods

available in PRISM’s ModelGenerator interface. Section A.2 shows the methods

available in VerFilter’s KalmanFilter interface.
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A.1 The ModelGenerator interface

Table A.1: The ModelGenerator interface.

Method Description

List<String> getVarNames()
Returns a list with the names

of the variables stored in the state.

List<Type> getVarTypes()
Returns a list with the types

of the variables stored in the state.

State getInitialState() Returns the initial state.

int getNumChoices()
Returns the number

of nondeterministic choices.

double getNumTransitions(int i)
Returns the

total number of transitions.

double getTransProbability(int i,int offset)
Returns the transition probability

based on a given choice.

void exploreState(State exploreState)
Explores the outgoing transitions

of the current state.

State getExploreState()
Returns the state that is being

explored.

State computeTransTarget(int i,int offset)
Returns the state

of a transition.

int getNumLabels()
Returns the number
of different labels.

List<String> getLabelNames()
Returns a list with the names

of the labels.

boolean isLabelTrue(int i)
Returns true or false depending

on the label’s ith value.

double getStateReward(int r, State state)
Returns the rth reward

of the state.
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A.2 The KalmanFilter interface

Listing A.1: Some of the methods in the KalmanFilter interface

public interface KalmanFilter {

public void predict();

public void correct(RealVector z);

public int getStateDimension();

public int getMeasurementDimension();

public RealVector getStateEstimationVector();

public RealMatrix getErrorCovarianceMatrix();

public RealVector getInnovation();

public RealMatrix getInnovationCovariance();

}
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