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Abstract 

Water quality is deteriorating worldwide due to the combined pressures of increasing 

urbanization and more frequent and severe extreme events. This thesis looks specifically at 

water temperature and dissolved organic matter (DOM), which despite being master variables 

of river water quality are not well understood in urban rivers. This thesis aims to increase 

understanding of how extreme events and urbanization combine to change the dominant 

processes for water temperature and DOM dynamics. Resultantly research was conducted in a 

range of headwater streams within Birmingham, UK from June 2016 to September 2018.  

Research gaps on the effects of urbanization and extreme events on water temperature and 

DOM were identified and four research themes were described. Firstly, the effects of 

precipitation on water temperature surges at 11 sites in an urban catchment were investigated, 

and the choice of precipitation dataset on the results evaluated. Secondly, the effects of 

extreme high and low flows on river temperature were analyzed for 27 sites in 3 catchments 

and the influence of land use evaluated. Thirdly, the impacts of shading and water temperature 

on photodegradation and biodegradation rates of urban DOM were studied. Fourthly, an in-situ 

fluorometer was used to investigate DOM response to storm events, and the influence of 

hydrometeorological and land use predictors were investigated. The primary findings were 1) 

High intensity precipitation events cause water temperature surges in urban catchments, while 

high temporal and spatial resolution datasets are required to capture this effect, 2) Water 

temperature anomalies are highest during extreme low flows, while urbanization is related to 

lower water temperature anomalies during extreme low flows. 3) Shading changes the 



 
 

composition of urban DOM by preventing photodegradation of the humic pool, however 

temperature had minimal effect. 4) Urban DOM is source-limited and exhibits exhaustion and 

dilution effects, with the main predictors of urban DOM during storms being water 

temperature and antecedent rainfall.   

The results indicate new understanding of how a range of extreme events alter water 

temperature and DOM processes within headwater, urban rivers. The need to change urban 

land use practices to mitigate the impacts of extreme events on urban water quality is 

highlighted. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Acknowledgments 

Thanks must go to Anne Van Loon who did a fantastic job as primary supervisor. I’m am also 

very grateful to my other supervisors Chris Bradley, Jon Sadler, and David Hannah for their help 

and guidance throughout the project. 

I am also very grateful for the help of Kieran Khamis and his endless patience guiding me 

through some unfamiliar technology and guidance on chapters 3 and 4. Other post-docs Val 

Ouellet and Steve Dugdale also provided guidance at various points.  

I would also like to acknowledge funding for the project provided by the Engineering and 

Physical Sciences Research Council (EPSRC). 

For data collection I thank The Nature Centre who provided access for logger sites and were 

always extremely receptive to the project. Thanks must also go the Environment Agency for 

providing temperature and flow gauge data.  

For providing assistance on some long days of logger installations I would also like to thank 

Richard Johnson and his unfailing enthusiasm.  

I also thank members of the drought research group past and present and in particular Colin 

Manning, Sally Rangecroft, Doris Wendt, Lucy Capewell for their support and allowing me to 

bounce ideas off them. I’ll particularly remember the writing weeks as some of the most 

productive times.  

My thanks also go to Tanu Singh for assisting with field work and sitting behind me for 3 years, 

Alex Hurley for his R guru expertise and always being a willing cinema companion, Julia 

Docherty for helping with field work, as well as Ben Fryer, Nicolai Brekenfeld, and everyone else 

in office 325. 

Finally, I would like to thank my parents for their continuous support in this never ending 

endeavor.   



 
 

PUBLICATIONS 

 

Peer- Reviewed Work Accepted for Publication  

Croghan, D., Van Loon, A.F., Sadler, J.P., Bradley, C., & Hannah D.M. (2018) Prediction of river 
temperature surges is dependent on precipitation method. Hydrological Processes. 
doi:10.1002/hyp.13317. (Chapter 2)  

 

In Preparation 

 

Croghan D., Van Loon A.F., Sadler, J.P., Bradley, C., & Hannah D.M. River temperatures higher 
during low flows but land use buffers effect (In Preparation) 

 

Croghan, D., Khamis K., Van Loon A.F., Sadler, J.P., Bradley, C., Singh T., & Hannah D.M. 
Mesocosm experiments show stream burial inhibits Dissolved Organic Matter processing by 
reducing photodegradation (In Preparation) 

 

Croghan, D., Khamis K., Van Loon A.F., Sadler, J.P., Bradley, C., & Hannah D.M. High-frequency 

in-situ fluorometry indicates the control and source dynamics of Dissolved Organic Matter 

during stormflow events in urban systems (To be submitted to Science of the Total 

Environment) 

  



 
 

Table of Contents 
 

CHAPTER 1: INTRODUCTION ......................................................................................................................... 1 

1.1 Extreme Events and Water Quality in Urban Rivers ..................................................................... 1 

1.1.1 Background .................................................................................................................................. 1 

1.1.2 Defining Water Quality ................................................................................................................ 3 

1.2 Water Temperature: ........................................................................................................................... 6 

1.2.1 Rationale ...................................................................................................................................... 6 

1.2.2 Processes ...................................................................................................................................... 6 

1.2.3 Urbanization and Extreme Events as Drivers of Change .............................................................. 8 

1.3 Dissolved Organic Matter ................................................................................................................. 12 

1.3.1 Rationale .................................................................................................................................... 12 

1.3.2 Processes .................................................................................................................................... 12 

1.3.3 Urbanization and Extreme Events as Drivers of Change ............................................................ 15 

1.4 Research Gaps ................................................................................................................................... 18 

1.5 Aims, Objectives, and Hypotheses .................................................................................................... 21 

1.6 Thesis Structure ................................................................................................................................ 24 

CHAPTER 2: PREDICTION OF RIVER TEMPERATURE SURGES IS DEPENDENT ON PRECIPITATION METHOD
 .................................................................................................................................................................... 25 

2.1 Abstract ............................................................................................................................................. 25 

2.2 Introduction ...................................................................................................................................... 26 

2.3 Methods ............................................................................................................................................ 30 

2.3.1 Study Location ............................................................................................................................ 30 

2.3.2 Water Temperature Data Collection .......................................................................................... 32 

2.3.3 Precipitation Data Collection ..................................................................................................... 33 

2.3.4 Statistical Analysis ...................................................................................................................... 36 

2.4 Results ............................................................................................................................................... 43 

2.4.1 Thermal, meteorological, and hydrological context .................................................................. 43 

2.4.2 Comparison of precipitation methods ....................................................................................... 45 

2.4.3 Sub-Hourly Water Temperature Change ................................................................................... 47 

2.4.4. Daily Water Temperature Variability ........................................................................................ 56 

2.5. Discussion and conclusions .............................................................................................................. 59 

2.5.1 Precipitation estimate differences between datasets ............................................................... 59 



 
 

2.5.2 Sub-Hourly Water Temperature Changes .................................................................................. 60 

2.5.3 Daily Water Temperature Variability ......................................................................................... 63 

2.5.4 Implications and Future Research ............................................................................................. 64 

CHAPTER 3: WATER TEMPERATURE HIGHER DURING LOW FLOWS BUT LAND USE BUFFERS THE EFFECT
 .................................................................................................................................................................... 66 

3.1 Abstract ............................................................................................................................................. 66 

3.2 Introduction ...................................................................................................................................... 67 

3.3 Methods ............................................................................................................................................ 70 

3.3.1 Study Site ................................................................................................................................... 70 

3.3.2 Data Collection ........................................................................................................................... 71 

3.3.3 Analysis ...................................................................................................................................... 74 

3.4. Results .............................................................................................................................................. 76 

3.4.1 Effect of Extreme Flows on Water temperature ........................................................................ 76 

3.4.2 Impact of land use on Water temperature response ................................................................ 79 

3.5 Discussion .......................................................................................................................................... 88 

3.5.1 Impact of Extreme Events on Water temperature .................................................................... 88 

3.5.2 Impact of land use on water temperature response ................................................................. 90 

3.5.3 Conclusions and Future Research .............................................................................................. 92 

CHAPTER 4: URBAN STREAM BURIAL INHIBITS DISSOLVED ORGANIC MATTER PROCESSING BY REDUCING 
PHOTODEGRADATION ................................................................................................................................ 94 

4.1 Abstract ............................................................................................................................................. 94 

4.2 Introduction ...................................................................................................................................... 95 

4.3 Materials and methods ..................................................................................................................... 98 

4.3.1 Study site and Experimental Set Up ........................................................................................... 98 

4.3.2 Sample collection and analysis ................................................................................................ 101 

4.3.3 Calculation of optical metrics .................................................................................................. 102 

4.3.4 Statistical Analysis .................................................................................................................... 105 

4.4 Results and Discussion .................................................................................................................... 106 

4.4.1 Temporal Change in DOC Concentration ................................................................................. 106 

4.4.2 Temporal Change in Absorption indices .................................................................................. 107 

4.4.3 Temporal Change in Fluorescence ........................................................................................... 109 

4.5 Conclusion ....................................................................................................................................... 119 

CHAPTER 5: HIGH-FREQUENCY IN-SITU FLUOROMETRY INDICATES THE CONTROL AND SOURCE 
DYNAMICS OF DISSOLVED ORGANIC MATTER DURING STORMFLOW EVENTS IN URBAN SYSTEMS ....... 121 



 
 

5.1 Abstract ........................................................................................................................................... 121 

5.2 Introduction .................................................................................................................................... 122 

5.3 Methods .......................................................................................................................................... 127 

5.3.1 Study site .................................................................................................................................. 127 

5.3.2 Stream Data ............................................................................................................................. 128 

5.3.3 Instrument Calibration and Data Correction ........................................................................... 130 

5.3.4 Meteorological data ................................................................................................................. 131 

5.3.5 Data analysis ............................................................................................................................ 131 

5.4 Results ............................................................................................................................................. 137 

5.4.1 Water Quality Parameters Time Series .................................................................................... 137 

5.4.2 Concentration Controls ............................................................................................................ 140 

5.4.3 Landscape and hydrometeorological controls ......................................................................... 143 

5.5 Discussion & Conclusions ................................................................................................................ 146 

5.5.1 Controls on DOM concentration .............................................................................................. 146 

5.5.2 Hydrometeorological and landscape controls on DOM dynamics .......................................... 148 

5.5.3 Conclusions and future research ............................................................................................. 150 

5.6 Supplementary Material ................................................................................................................. 152 

CHAPTER 6:  CONCLUSIONS AND SYNTHESIS ............................................................................................ 154 

6.1 Conclusions ..................................................................................................................................... 154 

6.2 Discussion ........................................................................................................................................ 156 

6.3 Synthesis & Implications ................................................................................................................. 158 

6.3.1 Urbanization and Extreme Events ............................................................................................ 158 

6.3.2 Importance of High-Frequency Monitoring ............................................................................. 162 

6.4 Future research suggestions ........................................................................................................... 164 

7.0 REFERENCES ........................................................................................................................................ 167 

 

 

 

 



 
 

List of Figures 

Chapter 1 

Figure 1.1. Potential effects of urbanization on processes controlling water temperature. Red 

arrows show increase in process (for example increase in air temperatures in urban areas), 

blue arrows show decrease. ................................................................................................ 11 

Figure 1.2. Potential effects of urbanization on processes controlling DOM. Red arrows show 

increase in process, blue arrows show decrease. ................................................................ 18 

Figure 1.3. Schematic of thesis structure .................................................................................... 24 

 

Chapter 2 

Figure 2.1. The River Rea catchment, UK, showing locations of water temperature loggers, 

automatic weather station, and citizen science gauges. ...................................................... 31 

Figure 2.2. Time series of water temperature, air temperature and precipitation as recorded at 

the weather station at site R1, and discharge as recorded as recorded at the catchment 

outlet. .................................................................................................................................. 44 

Figure 2.3. Daily precipitation totals for the study catchment. ................................................... 46 

Figure 2.4. GAM’s of maximum precipitation intensity and water temperature surge 

determined by the different precipitation sources.. ............................................................ 49 

Figure 2.5. Temporal development of the 8 June 2016 event for the different precipitation 

methods: .............................................................................................................................. 52 

Figure 2.6. Temporal development of the 13 September 2016 event for the different 

precipitation methods. ........................................................................................................ 55 

Figure 2.7. GAM’s of daily precipitation and standardized mean daily water temperature 

determined by the different precipitation sources. ............................................................. 58 

 

 

 



 
 

Chapter 3 

Figure 3.1. Map of study sites – a) River Rea, b) River Cole, c) River Blythe. Land uses classes 

derived from Land Class 2015 (Rowland et al., 2017) and land uses classes merged to 

similar classifications for clarity. .......................................................................................... 71 

 

Figure 3.2. Boxplots for moving mean water temperature anomalies for low flow, average flow, 

and high flow conditions for a) Mean water temperature, b) Maximum water temperature, 

and c) Minimum water temperature. .................................................................................. 77 

 

Figure 3.3. Histograms showing Z-scores for moving mean water temperature anomalies for 

low flow, average flow, and high flow conditions. A – C show mean water temperature, D – 

F show maximum water temperature, and G – I show minimum water temperature. Red 

denotes a Z-score greater than one, blue denotes a Z-score less than one. ........................ 79 

 

Figure 3.4. Linear regressions of variables featuring in the top model for mean, maximum, and 

minimum water temperature anomaly during low flow. Green dots indicate River Cole 

sites, Blue dots River Rea sites, and Red dots show River Blythe sites. ................................ 83 

 

Figure 3.5. Linear regressions of variables featuring in the top model for mean, maximum, and 

minimum water temperature anomaly during high flow. Green dots indicate River Cole 

sites, Blue dots River Rea sites, and Red dots show River Blythe sites. ................................ 87 

 

 

 

 

 



 
 

Chapter 4 

Figure 4.1. Excitation-Emission matrices of PARAFAC components identified in this study. .... 105 

Figure 4.2. Temporal variation of DOC (mg/L) across experiments. ......................................... 107 

Figure 4.3. Temporal variation of selected absorbance Indices during the study. .................... 109 

Figure 4.4. Temporal variation of Fluorescence Indices during the study. ................................ 113 

Figure 4.5. Temporal variation of PARAFAC components during the study. ............................. 116 

 

Chapter 5 

Figure 5.1. Maps of A) The Bourn Brook catchment and associated land use. B) The distribution 

of 1km2 grid cells used to estimate rainfall loads from rainfall radar C) The location of the 

catchment within the UK. .................................................................................................. 128 

Figure 5.2. Time series of water quality and discharge for the study period: 9 Sept. to 21 Nov. 

2017.. ................................................................................................................................. 139 

Figure 5.3. Log C-Q relationship for a) TLF against discharge and b) HLF against discharge. .... 141 

Figure 5.4. Examples of the hysteresis types observed during the study period, with event-

hydrograph shown to the right of each hysteresis type. .................................................... 143 

 



 
 

List of Tables 

Chapter 2 

Table 2.1. List of water temperature surges in the study period. ............................................... 40 

Table 2.2.  Precipitation (mm) for summer months in 2016 at the weather station site. ........... 46 

Table 2.3. Validated GAM models for maximum precipitation intensity calculated by different 

precipitation sources against water temperature surges. ................................................... 48 

Table 2.4. Linear regression coefficients and adjusted R2 for maximum precipitation intensity 

against water temperature surge in the 8th June event. ...................................................... 53 

Table 2.5. Validated GAM models for standardized mean daily water temperature against daily 

precipitation as determined by the different precipitation sources.. .................................. 57 

 

Chapter 3 

Table 3.1. Percentage distribution of extreme temperatures for each water temperature metric 

within the study. .................................................................................................................. 78 

Table 3.2 - Results of model selection for low flow temperature metrics.. ................................ 82 

Table 3.3. Relative variable importance of predictor variables for the low flow response metrics.

 ............................................................................................................................................. 82 

Table 3.4. Results of model selection for high flow temperature metrics. ................................. 86 

Table 3.5. Relative variable importance of predictor variables for the high flow response 

metrics. ................................................................................................................................ 86 

 

Chapter 4  

Table 4.1 - Water temperature and atmospheric conditions for each experiment during the 

study. ................................................................................................................................. 101 

Table 4.2.  Description of component characteristics identified in PARAFAC model. ............... 104 

Table 4.3. Linear mixed effects model results for all response variables within the study. ...... 117 

 



 
 

Chapter 5 

Table 5.1. Parameters and corresponding instrumentation with specifications used within 

study. ................................................................................................................................. 129 

Table 5.2. Summary of hydrometeorological and landscape metrics analyzed. ....................... 136 

Table 5.3. Definitions of fluorescence metrics used within the study....................................... 137 

Table 5.4. HI ratio shows categories for individual events for both TLF and HLF. ..................... 142 

Table 5.5.  Model coefficients for best model for each metric in Table 5.3. ............................. 145 

Table 5.6. Multiple linear regression models using ordinary least square for each fluorescence 

metric ................................................................................................................................ 152 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 Extreme Events and Water Quality in Urban Rivers  

1.1.1 Background  

Water quality is crucial to the functioning of society and impacts a vast array of sectors ranging 

from ecology and global health to social well-being, and the economy (UNESCO, 2019). Water 

pollution is linked to an estimated 1.5m deaths globally every year (Landrigan et al., 2018). In 

the USA alone, attempts to improve water quality and reduce water pollution have cost $1.9 

trillion since 1960 (Keiser and Shapiro, 2019). Water quality is also important for social well-

being: clean rivers are important for recreation, and society puts a high utility on clean rivers 

(Keeler et al., 2012). Water quality degradation is linked to biodiversity loss, and a reduction in 

the ecological health and functioning of rivers (Vaughn, 2010). Despite the costs of water 

quality degradation to society, global freshwater water quality is deteriorating (UNESCO, 2019). 

The main driver of global water quality degradation is land use change such as urbanization and 

agriculture (Foley et al., 2005), which coupled with climate change is exacerbating water quality 

issues worldwide (Tu, 2009). Water quality can be defined as the physical, chemical, biological, 

and aesthetic characteristics of water. The precise quality is then usually determined by a range 

of indices and metrics relating to specific requirements such as by finding thresholds at which 

parameters become hazardous to ecology (Environment Agency, 2018). Urbanization is 

increasing rapidly globally, and the population living in urban areas is expected to rise from 55% 

in 2018 to 68% by 2050 (United Nations, 2018) with an increase in urban extent of up to 

1,500,000 km2 (Seto et al., 2012). Urbanization is a primary driver of water quality degradation 

(Fletcher et al., 2013; Brabec et al., 2002; McGrane, 2016): it alters water quality by increasing 



2 
 

pollutant inputs to streams, and by modifying in-stream geomorphology and changing 

connectivity (Fletcher et al., 2013; Grimm et al., 2008). Stream chemistry within urban areas 

tends to be unique as a result of inputs from the wider catchment (Halstead et al., 2014). These 

inputs contribute to the “urban stream syndrome” where streams draining urban catchments 

are usually associated with poor ecological health (Walsh et al., 2005).  

Extreme events (floods and droughts) are one of the main mechanisms of water quality change 

within urban streams (Miller and Hutchins, 2017; Mosley, 2015; Whitehead et al., 2009). The 

amount of urban land exposed to droughts and floods is expected to increase 2 and 2.7 times 

respectively by 2030 (Güneralp et al., 2015). Consequently, there is an increasing risk of water 

quality change in urban areas due to extreme events. The effects of floods on water quality in 

urban streams are more commonly studied than those of droughts (Fletcher et al., 2013). 

Contaminants tend to build up in urban catchments, therefore, flood events are a common 

cause of water pollution due to increased surface runoff from impermeable surfaces (Brabec et 

al., 2002; Miller and Hutchins, 2017). Drainage systems in urban catchments convey stormwater 

into streams rapidly which can lead to rapid perturbation of water quality variables (Mallin et 

al., 2009). Droughts meanwhile are characterized for rivers by hydrological low flows and are 

known to alter water quality as the concentration of pollutants increases at low flow due to less 

dilution (Zwolsman and van Bokhoven, 2007). Droughts are expected to increase in severity and 

frequency (Güneralp et al., 2015), and can further degrade water quality by increasing pollutant 

concentrations due to less dilution at low flows (Sprague, 2005). Droughts are often coupled 

with extreme high temperature events which induce further water quality change (Stott et al., 
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2016; Ummenhofer and Meehl, 2017). However, understanding of the effects of drought on 

urban water quality are limited and require further work.  

Water quality is characterized by several variables. In urban areas a wide number of variables 

including nutrients, heavy metals, pH, dissolved Oxygen, turbidity, suspended sediments and 

conductivity are all liable to change due to extreme events in urban rivers.  In this research 

however, the focus is on temperature and dissolved organic matter (DOM). In the following 

sections I will discuss the rationale for choosing these variables, the relevant processes and the 

effects of urbanization and extreme events. 

1.1.2 Defining Water Quality 

Water quality has generally been defined and regulated using thresholds and indices developed 

by governmental agencies. In the UK water quality targets are mainly set in relation to the EU 

Water Framework Directive (WFD) (Giakoumis and Voulvoulis, 2019). The WFD is a piece of 

legislature that aims to restore the physical, chemical, and biological water quality of surface 

and groundwater in the EU, with the overall aim to achieve “good quality” in all these aspects 

(Brack et al., 2017).  

To define water quality, indices were developed as part of the WFD. The indices judge water 

quality on a five-point scale with the following classifications: bad, poor, moderate, good and 

high. Water quality indices have been developed to assess rivers based on chemical quality and 

ecological quality, with waterbodies expected to reach at least “good” standard for each (Brack 

et al., 2017). The chemical and ecological indices work by using a threshold-based approach to 

classify water quality for a range of water quality parameters. Thresholds are set by classifying 
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the range of values that define “bad” to “high” status for each water quality parameter. The 

chemical quality indices using abiotic metrics such as nutrient concentration and the ecological 

indices uses biotic metrics such as species richness alongside physical-chemical metrics to 

ascertain overall water quality. Each indices then defines the quality of a river by the worst 

performing parameter (European Commission, 2019). Hence, if one water quality parameter in 

the chemical indices is defined as “bad”, the overall chemical quality of the river would be 

defined as “bad”. The idea is based around the one out, all out principle which considers that 

water quality is reliant on a range of parameters, anyone of which may act as a barrier to 

achieving a healthy stream.  

In the WFD, water temperature is used as one of the indicators for the ecological water quality 

indices (UKTAG, 2008).The thresholds for water temperature vary by river and country, with 

thresholds mainly relating to tipping points thresholds of economically important fish such as 

Salmonids. The temperature exceedance thresholds are based around temperature levels that 

have been shown to have a deleterious effect on target species, as temperature influences fish 

habitat range strongly (Réalis-Doyelle et al., 2016). In the UK, river temperature thresholds are 

set for individual rivers based on the river typology, which is classified dependent on the fish 

community present. In order to achieve at least “good” status, the following indices are 

monitored: water temperature is measured downstream of points of thermal discharge and 

must not exceed a greater than 1.5 ºC increase for rivers with Salmonids, or 3 ºC for rivers with 

Cyprinids, and temperatures must not exceed 21.5 ºC for more than two percent of the time, 

while during breeding season rivers with cold water species should not exceed 10ºC (UKTAG, 

2008). The use of these exceedance-based approaches reflects their ease of use, however they 
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may be insufficient at identifying short term temperature stressors such as thermal surges 

(Nelson and Palmer, 2007).   

With regards to DOM, no specific legislature currently exists for regulating DOM in the UK, 

highlighting the paucity of research and importance for further study. This is mainly because 

the main regulations such as the WFD use measurements that are easy to undertake and 

commonly found (European Commission, 2019), whereas characterizing DOM requires 

specialist equipment. However, the WFD chemical and ecological indices use a threshold-based 

classification for metrics as Dissolved Organic Carbon (DOC), which correlates with the amount 

of humic-like organic matter, while Biological Oxygen Demand (BOD) is used within the 

regulations and has been shown to correlate to proteinaceous organic matter (Environment 

Agency, 2018). Further, using threshold-based approaches for DOM is generally problematic, as 

commonly used methods of characterizing DOM such as fluorescence have instrument specific 

biases as such results are not directly comparable between sites. One means of overcoming this 

is the use of indices that compare ratios of fluorescence peaks, such as the protein-humic ratio 

proposed by Baker et al., (2003) wherein organic pollution can be identified identifying protein-

humic ratios that are protein dominated. Though such ratio indices are widely used in academic 

literature, they have not yet been used to develop DOM standards.  The use of lower cost 

methods of characterizing fluorescence in-situ as undertaken in this thesis may instead offer a 

way of incorporating DOM into wider water quality indices and standards by making 

measurement of DOM easier and quicker.  
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1.2 Water Temperature:  

1.2.1 Rationale  

Water temperature is considered a master variable of water quality due to its influence on a 

wide range of stream processes and effects on many other water quality variables (Hannah et 

al., 2008; Caissie, 2006). Temperature influences the solubility of solids and gases in water 

(Kobe and Dutton, 1961): higher temperatures are associated with reduced dissolved Oxygen 

concentrations and changes in the nutrient and contaminant levels in streams with this 

relationship described by the Arrhenius equation wherein the rate constant generally increases 

rapidly with increased temperature (Harvey et al., 2011). Temperature is particularly important 

to the ecological functioning of streams as it controls the metabolism of the biota in rivers 

(Demars et al., 2011), growth rates of biota which tend to have a parabolic relationship with 

temperature (O’Gorman et al., 2016), decomposition of organic matter by microbial activity 

(Fierer et al., 2005), life cycles such as when spawning of fish occurs (Woodward et al., 2010b), 

and habitat ranges as habitat is constricted by a species’ preference for water temperature 

(Freitas et al., 2016). 

1.2.2 Processes 

Water temperature is determined by a number of processes which can be grouped into 

atmospheric conditions, topography, stream discharge, and streambed factors (Caissie, 2006). 

These processes occur over a range of spatial and temporal scales (Webb et al., 2008) and 

water temperature changes are governed by energy and water fluxes across the atmosphere-

surface water and streambed-surface water interface (Kelleher et al., 2012).  
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Atmospheric conditions mainly influence water temperature through exchanges of shortwave 

and longwave radiation at the atmosphere-surface water interface (Kelleher et al., 2012). Air 

temperature acts as a proxy of exchanges of shortwave and longwave radiation at the surface-

water interface and is commonly used as a predictor of water temperatures (Webb et al., 

2003). Heat loss from rivers is often driven by atmospheric conditions, with evaporation and 

convective heat flux being important drivers of energy loss at the atmosphere-surface water 

interface (Caissie, 2006). Precipitation also influences water temperature, as the temperature 

of precipitation runoff is often different to river temperature (Tilburg et al., 2015; Hofmeister et 

al., 2015). Precipitation inputs often cause short-term heat fluxes, which can cause thermal 

pulses to surge through rivers (Somers et al., 2016; Wilby et al., 2015).  

Topography influences water temperature by influencing atmospheric conditions (Caissie, 

2006). In smaller streams topography largely influences water temperature through shading. 

Dense riparian zones increase shading and reduce the amount of shortwave-radiation reaching 

the stream thereby reducing the energy available for heat exchange (Rutherford et al., 1997; 

LeBlanc et al., 1997). Stream orientation has also been shown to have an important influence 

on temperature, with stream orientation influencing exposure to solar inputs (Garner et al., 

2017). Altitude also influences water temperatures, as air temperatures are reduced at higher 

altitudes due to reduced adiabatic lapse rates, which subsequently leads to lower water 

temperatures (Hrachowitz et al., 2010; Jackson et al., 2015). Further, catchment geology is an 

important influence on rivers, as river temperatures in high permeability catchments are 

controlled by the temperature of groundwater discharge (Tague et al., 2007).  
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Conditions at the streambed influence water temperature through hyporheic exchange and 

groundwater inputs (Caissie, 2006). Groundwater temperatures tend to remain relatively stable 

throughout the year, therefore in winter groundwater inputs act to increase river temperature, 

while conversely during summer groundwater acts as a moderating force on river temperatures 

(Alexander and Caissie, 2003; Constantz, 1998). The effects of groundwater upwelling and 

hyporheic exchanges are often highly localized with minimal influence downstream of 

upwelling zones (Krause et al., 2012). Friction between flow and the streambed can also 

increase water temperatures, with higher velocity flows leading to increased friction (Hannah et 

al., 2004). However, this effect is minimal in comparison to other processes. 

Stream discharge impacts water temperature by altering the thermal capacity of the water 

(Sohrabi et al., 2017). Increases in stream discharge increase the amount of heat required to 

alter water temperature, and hence at higher discharges streams are less influenced by the air-

water surface interface (Webb et al., 2003). Floods and droughts are characterized by large 

changes in discharge and are therefore expected to be first-order drivers of water temperature 

change, but this relationship has not been explored in detail (Brown and Hannah, 2007; 

Zwolsman and van Bokhoven, 2007).  

1.2.3 Urbanization and Extreme Events as Drivers of Change 

Urbanization and extreme events modify the processes controlling water temperature (Figure 

1.1). Atmospheric conditions, topography, discharge & streambed conditions are all modified.  

Urbanization influences the atmospheric processes of water temperature. The urban heat 

island effect  can lead to increased air temperature, with mean annual air temperatures up to 
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5.9 °C higher than surrounding area air temperature (Soltani and Sharifi, 2017). This occurs 

because solar inputs in urban areas tend to be absorbed by buildings and impermeable surfaces 

(Mohajerani et al., 2017). Subsequently, during intense precipitation events rainfall runoff can 

heat substantially. Rainfall runoff has been measured at up to 7 °C warmer than river 

temperatures in urban areas (Pluhowski and Pecora, 1970; Nelson and Palmer, 2007; Somers et 

al., 2013). Urbanization has also been found to increase the frequency of intense precipitation 

events, particularly the short-duration high-intensity events which often lead to water 

temperature surge events (Golroudbary et al., 2019).  

Urbanization also changes the topographic controls of river temperature (O’Driscoll et al., 

2010b; Miller et al., 2014; Miller and Hutchins, 2017). Changes in riparian zones are common 

during urbanization. In some cases riparian zones are deforested, which reduces shading and 

can lead to increased warming of rivers (Garner et al., 2017). Other aspects of urban 

infrastructure such as buried streams and bridges/tunnels may increase the amount and 

frequency of shading in urban rivers (Elmore and Kaushal, 2008). Further, the impact of 

catchment geology is often reduced within urban streams due to reduced connectivity with 

groundwater as a result of urban river engineering. Modifications such as concreting river beds 

limit groundwater exchange reducing the moderating effect on water temperature (Tam and 

Nga, 2018). Drought events particularly impact urban rivers due to the reduced groundwater 

connectivity (O’Driscoll et al., 2010b), although to a certain extent other aspects of urban river 

management, such as stream burial, may offset the effects on water temperature. During high 

flows, the increased area of impermeable surfaces increases surface runoff which increases 
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peak flows and potentially water temperature surge events (Nelson and Palmer, 2007; Somers 

et al., 2013). 

Changes in land-use can cause substantial changes in stream discharge (McGrane, 2016; 

Fletcher et al., 2013). During high flow events urbanization increases the speed to peak flow, 

and overall peak flow values as a result of increased surface runoff from impermeable surfaces 

(Miller & Hutchins, 2017; O’Driscoll et al., 2010). Further, urban drainage infrastructure tends to 

channel stormflow into rivers quickly with reduced infiltration and storage within urban 

catchments (Braud et al., 2013). During high flows this is likely to alter stream discharge as a 

control of water temperature as higher discharges have higher thermal capacity (Webb et al., 

2003). For particularly large events, urbanization may lead to reduced water temperature 

variability, although the extent to which urbanization alters river temperature regimes 

compared to rural rivers is not well understood. Reduced baseflow discharge is also a 

commonly reported side effect of urbanization although evidence for this is conflicting (Bhaskar 

et al., 2016; Finkenbine et al., 2000). During periods with no rainfall this effect is exacerbated as 

the influence of the atmosphere on water temperature increases due to the lower thermal 

capacity of the water at low flows (Folegot et al., 2018). However, the extent to which inflows 

from urban sources such as pipe leaks and sewage outlets influence water temperatures at 

baseflow is not known.   

Streambed conditions in urban rivers are regularly altered through hard engineering (Walsh et 

al., 2005; Fletcher et al., 2013). Concreting of stream beds and channelization are common 

approaches in flood engineering, which can reduce the influence of streambed conditions on 

water temperatures (King et al., 2010). During high flows this leads to rapid transport of water. 
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This can increase the friction with the streambed which slightly influences water temperature 

(Hannah et al., 2004). However, the effects from altering streambed conditions are most likely 

to be evident during extreme low flow conditions. Streambed alteration reduces groundwater 

and hyporheic upwelling and reduces these moderating effects on water temperature at low 

flow (Constantz, 1998).   

 

Figure 1.1. Potential effects of urbanization on processes controlling water temperature during 
Summer. Red arrows show increase in process (for example increase in air temperatures in 
urban areas), blue arrows show decrease. 
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1.3 Dissolved Organic Matter 

1.3.1 Rationale 

Dissolved Organic Matter (DOM) provides one of the largest sources of energy and nutrients in 

streams (Wymore et al., 2016). Microbial activity accounts for most of the biological uptake of 

DOM in streams, however DOM is an important resource at all higher tropic levels. DOM is 

critical to support food webs (Arango et al., 2017; Meyer and Edwards, 1990) and plays an 

important role in the transport and mobilization of pollutants in streams (Hansen et al., 2016). 

The chemical make-up of DOM determines its role and interactions within the environment, 

with characteristics such as reactivity and lability determining to what extent it acts as an 

energy resource within streams (Hudson et al., 2007). The quality of DOM is highly variable, and 

characterization of DOM is important in order to understand its role within the environment. 

DOM is strongly influenced by terrestrial-aquatic linkages (Massicotte et al., 2017), therefore, 

changes to the terrestrial environment through land use change like urbanization are a 

particularly strong control on DOM dynamics (Khamis et al., 2018).  

1.3.2 Processes 

The main processes controlling DOM amounts and composition in streams are terrestrial inputs 

and biodegradation and photodegradation (Del Vecchio and Blough, 2002; Hansen et al., 2016).  

Allochthonous DOM from terrestrial sources is usually the main input of DOM to streams and 

most river fauna considered heterotrophic (Tank et al., 2010). The importance of terrestrial 

sources of DOM is central to the “river continuum concept” where upstream inputs of 

terrestrial carbon and nutrients from processes upstream are vital to the functioning of rivers 
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downstream (Vannote et al., 1980). The characteristics of DOM in rivers reflects processes in 

the wider catchment and is heavily influenced by land use. DOM in the terrestrial catchment 

builds up over time and is usually transported to streams during storm events, which is termed 

the “flood-pulse concept” (Tank et al., 2010). DOM transport during storm events can be 

through direct overland flow, however storms may also activate shallow sub-surface flow 

pathways which represent a further source of DOM (Fork et al., 2018).These slower activated 

pathways tend to be associated with labile, high-molecular-weight material and with DOM 

inputs reaching the stream over longer time periods (Dosskey and Bertsch, 1994).  

The types of DOM from the terrestrial environment are wide ranging and highly variable in 

quality and are strongly dependent on surrounding land use. Humic DOM tends to be produced 

by decomposition of leaf litter which provides an important source of labile material to 

streams. This is particularly prominent during autumn when leaf-fall is highest (Meyer et al., 

1998; Singh et al., 2014). Meanwhile proteinaceous terrestrial material is often associated with 

anthropogenic inputs, such as sewage effluent (Baker and Inverarity, 2004). Other forms of 

allochthonous DOM are derived from atmospheric deposition. This occurs through wet 

deposition (precipitation) and dry deposition (where gases and particles settle on the surface).  

(Monteith et al., 2007; Countway et al., 2003). 

Autochthonous processes influencing DOM in streams include autotrophic production, 

adsorption and desorption (Ye et al., 2018). Autotrophic production of DOM occurs mostly from 

phytoplankton and bacterial production, and through breakdown of material by grazers (Descy 

et al., 2017; Brett et al., 2017). Autotrophs produce DOM through photosynthesis, and this is 

usually subsequently released through respiration or grazer activity (Thorp and Delong, 2002; 
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Bunn, 1986). Respiration releases DOM through extracellular release, which provides high-

quality labile material to streams (Baines and Pace, 1991). Proteinaceous materials from 

cyanobacteria release is also a source of low lability material that is considered a major 

pollutant (Henderson et al., 2008; Qu et al., 2012). Grazer species are important to DOM 

processing as they feed on autotrophs such as algae and phytoplankton and subsequently 

release and transform DOM (Thorp and Delong, 2002). Adsorption and desorption meanwhile 

are key transfer processes within streams, as DOM can bind to suspended sediments which 

provides a key mechanism for transport downstream and for contaminants entering the food 

chain (Ye et al., 2018). Autochthonous material is taken up preferentially within the aquatic 

ecosystem (Sieczko et al., 2015), but it is not able to support food webs within streams, and 

terrestrial inputs of DOM are also required (Kritzberg et al., 2004) 

The main removal and transformation processes for DOM are biodegradation and 

photodegradation (Hansen et al., 2016). Biodegradation refers to the loss and transformation of 

DOM through decomposition from microbial activity. In streams the most labile, low-molecular 

weight, aliphatic material tends to be taken up preferentially by microbes, thus fresh material 

in streams tends to be degraded relatively rapidly (Moran and Zepp, 1997). Biodegradation also 

leads to the production of new DOM material, with aromatic, high-molecular materials often 

produced as a byproduct of activity from heterotrophs (Stepanauskas et al., 2005). 

Photodegradation refers to the breakdown and transformation of DOM through exposure to 

light sources. Photodegradation causes DOM to alter from large to small molecules, with an 

associated increase in lability for the smaller molecules (Moran and Zepp, 1997; Helms et al., 

2008). These molecules are often quickly removed from the DOM pool through uptake by 
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microbes or through volatilization. Photodegradation can also transform DOM and create by-

products by producing higher molecular weight, lower lability material (Hansen et al., 2016). 

Photochemical oxidation of DOM meanwhile causes increases in the release of nitrogen rich-

compounds, which in turn increases the potential for biodegradation of humic materials as 

nitrogen is often limiting in riverine environments (Bushaw et al., 1996).  

1.3.3 Urbanization and Extreme Events as Drivers of Change 

Urbanization and extreme events drive changes in the processes controlling DOM in a 

multitude of ways (Figure 1.2). The processes impacting allochthonous DOM in rivers are 

drastically altered by urbanization (Fork et al., 2018; Kaushal et al., 2014). The processes of 

DOM transport are different within urban catchments. Engineered sewage and storm drainage 

networks are the main pathways for allochthonous DOM within urban catchments (Hosen et 

al., 2014; Kaushal and Belt, 2012). Sub-surface runoff is often reduced in urban areas due to the 

extent of impermeable surfaces (Khamis et al., 2018). Resultantly, there are reduced inputs of 

humic-like DOM, while inputs of fresh, proteinaceous materials that are quickly routed through 

storm drainage systems are  often increased (Carstea et al., 2009). This alteration of flow 

pathways leads to changes in the character of allochthonous DOM in urban rivers compared to 

rural rivers. Although DOM in rural rivers are usually dominated by humic materials, urban 

rivers tend to be dominated by proteinaceous DOM (Chen et al., 2017; Hosen et al., 2014; 

Khamis et al., 2018). Transport of allochthonous material mainly happens during high flows due 

to activation of terrestrial flow paths. In urbanized catchments, the increased peaks and quicker 

time-to-peaks as a result of modified flow pathways lead to greater quantities of DOM 

transport into urban rivers (McGrane, 2016; McElmurry et al., 2014). During low flows the 
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terrestrial – aquatic linkage is reduced, lowering the input of DOM to urban streams (Petrone et 

al., 2011).  

Urbanization also changes the autochthonous processes influencing DOM (Hosen et al., 2014; 

Lambert et al., 2017; Parr et al., 2015). Autotrophic production of DOM is altered in urban 

streams as they have different autotrophic communities (Pereda et al., 2019). High Nitrogen 

loads are commonly found in urban rivers and can increase production of DOM due to increases 

in the population of autotrophs (Lavelle et al., 2019). Subsequently, in these Nitrogen-rich 

systems, increased autotrophic microbial activity leads to increases in microbially-derived 

humic DOM (Zhou et al., 2018). Greater suspended sediment concentrations also increase DOM 

adsorption, which increases DOM transport in urban rivers (Ye et al., 2018). This poses a 

concern as pollutants such as heavy metals form a higher portion of the suspended sediment in 

urban streams and the higher adsorption rates can increase pollutant bioaccumulation (Warren 

and Zimmerman, 1994).  

Extreme low flows increase the importance of autochthonous production as a resource of 

DOM, as connections to the terrestrial environment are limited. However, in urban rivers this is 

often not the case due to steady inputs of allochthonous DOM from drains (Petrone et al., 

2011). During high flows, the importance of autochthonous processes tends to be reduced, and 

allochthonous DOM tends to dominate urban rivers (Khamis et al., 2018). 

Photodegradation and biodegradation rates are potentially altered as urbanization changes the 

composition of DOM (Carstea et al., 2010, 2009). In urban streams, DOM tends to be of low 

lability, high-molecular weight and dominated by proteinaceous material (Khamis et al., 2018). 
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Urban DOM is generally not very bioavailable, thus reducing rates of biodegradation for urban 

streams. Similarly, for photodegradation, large portions of the DOM pool are less photoreactive 

than in rural streams, with proteinaceous material found to be less prone to photodegradation 

than humic-like materials that dominate in rural streams (Hosen et al., 2014; Hudson et al., 

2007). Urbanization changes the rate of shading in streams in various ways. For example, in 

buried streams there is total shading therefore photodegradation cannot remove or transform 

DOM (Beaulieu et al., 2014; Johnson and Wilby, 2015). Land use in riparian zones may also 

change, increasing or decreasing the amount of shading hence altering photodegradation rates 

(Larson et al., 2007).  

Extreme low flows have the potential to increase photodegradation rates as reduced flows 

allow greater light penetration (Harjung et al., 2019). Extreme low flows are also often coupled 

with extreme temperature anomalies (Manning et al., 2018), and the extreme (high)  

temperatures during drought events may increase photodegradation and biodegradation rates 

(Harjung et al., 2019). In high flow events, increased turbidity is likely to reduce photoexposure 

of the DOM pool. However, the high transport of terrestrial material to the system leads to 

increased biodegradation. This is likely exacerbated in urban rivers where terrestrial – aquatic 

linkages are particularly strong (Coble et al., 2016). 
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Figure 1.2. Potential effects of urbanization on processes controlling DOM. Red arrows show 
increase in process, blue arrows show decrease. 

1.4 Research Gaps 

Urban water quality is a major concern globally, and water quality problems are often 

exacerbated by extreme events (United Nations, 2018; McGrane, 2016; Fletcher et al., 2013). 

Resultantly, water quality in urbanized rivers often deteriorates during  extreme events 

(Kaushal et al., 2018a). Water quality degradation in urban rivers is expected to increase in the 

future as urbanization is increasing rapidly worldwide, while climate change is expected to 

increase the frequency and severity of extreme events (Güneralp et al., 2015). Despite this, key 
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knowledge gaps exist on the impact of extreme events on water quality in urban areas for many 

variables. Understanding of the underlying processes is particularly limited (Blöschl et al., 2019). 

In this thesis the variables of focus are water temperature and DOM. Both are important 

determinants of water quality, and they are likely to be especially impacted by the effects of 

urbanization (Fork et al., 2018; Kelleher et al., 2012). Despite this, the impact of extreme events 

on both variables is largely unstudied in an urban context (Hofmeister et al., 2015; Somers et 

al., 2013; Hosen et al., 2014). Given the importance of water temperature as a master variable 

controlling many stream processes (Caissie, 2006), and DOM’s importance as an energy 

resource in streams (Hudson et al., 2007), understanding the effects of extreme events on their 

controlling processes is required in order to facilitate urban stream remediation. Strong 

linkages exist between the two variables, as temperature is an important control of DOM 

production and dynamics within rivers (Raymond and Bauer, 2000). Hence an improved 

understanding of the impacts of extreme events and urbanization on water temperature feeds 

into greater understanding of the impacts of extreme events and urbanization on DOM.  

Water temperature research has been limited till relatively recently, with the importance of 

water temperature on water quality processes often overlooked (Hannah et al., 2008). 

Resultantly, multi-year water temperature studies are relatively rare, while water temperature 

dynamics within the headwaters are also poorly understood (Webb et al., 2008). Most prior 

catchment scale water temperature studies have also been within rural catchments which have 

differing controls and processes to urban systems (Somers et al., 2013). A need therefore exists 

to conduct water temperature studies at the catchment scale. High spatial and temporal 

resolution datasets are required to better understand water temperature response at the 
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catchment scale. Particularly during extreme events when water temperature changes may be 

more rapid both spatially and temporally (Nelson and Palmer, 2007).  

DOM dynamics have been poorly characterized for extreme events in urban rivers due to 

constraints in sampling technology (Khamis, Bradley and Hannah, 2018). DOM can vary over 

sub-hourly timescales, however most studies on urban DOM have used coarser timescales 

(Baker et al., 2003; Hosen et al., 2014; Hudson et al., 2007). As extreme events lead to rapid 

changes in DOM dynamics, sampling at higher frequencies is required to understand the 

processes driving DOM variability at sub-daily scales.   

Furthermore though headwater streams have been identified as crucial for influencing 

downstream water quality (Ockenden et al., 2016), the effects of urbanization in headwater 

streams are poorly understood, while extreme events are also likely to influence headwater 

streams disproportionately (Fork et al., 2018; Imholt et al., 2013). Therefore, improved 

understanding of the effects of extreme events within headwater streams is required.  

This research aims to investigate how extreme events impact the processes controlling water 

temperature and DOM dynamics in headwater, urban streams. Previous attempts to study 

water quality during extreme events have been hindered by low resolution datasets. For storm 

events particularly, high temporal resolution monitoring is required, yet high-frequency 

monitoring of extreme events is often limited. Therefore, in high spatial and temporal datasets 

were used where possible. 

To identify research gaps for specific aspects detailed literature reviews were undertaken and 

presented within chapters 2-5.  
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1.5 Aims, Objectives, and Hypotheses 

The main aim of this thesis is to investigate the effects of urbanization and extreme events on 

river water quality. Specifically, the research considers how extreme events and urbanization 

alter the hydrological processes controlling water temperature and DOM dynamics by 

considering a range of spatial and temporal scales using high resolution datasets.  The specific 

objectives were: 

1) To analyze the process-based links between precipitation intensity and water 

temperature surges, and to identify which precipitation dataset best represent these 

processes (Chapter 2). Subsequently, the following hypotheses were developed: 

• Higher intensity precipitation will be linked to higher sub-hourly water 

temperature surges. 

• The radar catchment dataset will be the best performing model for 

modelling water temperature surges. 

• Higher daily precipitation amounts will lead to greater daily water 

temperature changes.  

• All precipitation datasets will model daily water temperature changes 

similarly.  

 

2) To determine to what extent extreme events, cause anomalies in daily water 

temperature when compared to average flow conditions, and how land use impacts the 
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processes controlling water temperature during extreme events (Chapter 3). To achieve 

these objectives the following hypotheses were tested: 

• Water temperature anomalies will be highest during low flows. 

• Water temperature anomalies will be lowest during average flow 

• Urbanization land use metrics will be correlated to higher water 

temperature anomalies for low and high flows. 

• Urbanization metrics will be the most important predictor of water 

temperature anomalies for low and high flows.  

 

3) To test how extreme water temperature events and urban stream burial (where streams 

are culverted) impact photodegradation and biodegradation rates in urban streams 

(Chapter 4). To test this the following hypotheses were developed: 

• Unshaded treatments will increase the loss of humic-like DOM compared 

to shaded treatments leading to changes in DOM quality and 

composition. 

• Heated treatments will accelerate the decline in the humic-like content 

of DOM compared to the non-heated treatments. 

• Treatments that are both unshaded and heated will have the highest 

rate of loss of humic-like DOM. 
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4) To better understand the sources and pathways of urban DOM during high flows by 

analyzing the Concentration-Discharge (C-Q) relationship and identifying the 

hydrometeorological and landscape controls on storm DOM dynamics (Chapter 5). To 

achieve these objectives the following hypotheses were tested: 

• HLF and TLF will be chemodynamic up to a threshold whereupon they 

will become chemostatic due to exhaustion of material in the system. 

• A range of hysteresis types would be identified for both TLF and HLF, 

however anti-clockwise hysteresis will be more common for HLF than 

TLF due to differences in source types.  

• Antecedent conditions will be the strongest control on TLF and DOM 

dynamics. 

• Urbanization metrics will be the strongest land use metrics associated 

with TLF and HLF dynamics.  

 

To achieve these objectives, field studies were conducted for Chapters 1, 2, and 4 within 

Birmingham, UK. These studies were carried out in headwater streams with a range of 

sites covering a land use gradient from nearly rural to almost entirely urban. Chapter 3 

used an experimental approach using water samples from one of the urban streams in 

the study sites.  
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1.6 Thesis Structure 

The thesis is structured following a paper-based format. Chapters 2-5 are presented as 

independent pieces of research. Each chapter is self-contained, featuring a detailed literature 

review, methods, results and discussion and presented in a suitable format for publication. 

Chapters 2 and 3 examine water temperature, while Chapters 3 and 4 consider DOM.  Water 

temperature also features prominently in Chapters 3 and 4 as a control on DOM. Chapter 6 

consists of a conclusions and synthesis chapter summarizing the main results and placing the 

results in a wider context, while also identifying future directions for research (chapter 6). A full 

breakdown of the thesis structure is shown in Figure 1.3.  

Figure 1.3. Schematic of thesis structure 
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CHAPTER 2: PREDICTION OF RIVER TEMPERATURE SURGES IS DEPENDENT ON 
PRECIPITATION METHOD 

This chapter has been published in Hydrological Processes: 

Croghan, D., Van Loon, A.F., Sadler, J.P., et al. (2018) Prediction of river temperature surges is 
dependent on precipitation method. Hydrological Processes. doi:10.1002/hyp.13317. 

2.1 Abstract  

Urban river systems are particularly sensitive to precipitation-driven water temperature surges 

and fluctuations. These result from rapid heat transfer from low-specific heat capacity surfaces 

to precipitation which can cause thermally polluted surface runoff to enter urban streams. This 

can lead to additional ecological stress on these already precarious ecosystems. Although 

precipitation is a first-order driver of hydrological response, water temperature studies rarely 

characterize rain event dynamics and typically rely on single gauge data that yield only partial 

estimates of catchment precipitation. This chapter examines three different precipitation 

measuring methods (a statutory automatic weather station, citizen science gauges, and radar 

estimates) and investigates relationships between estimated rainfall inputs and sub-hourly 

surges and diurnal fluctuations in urban river water temperature. Water temperatures were 

monitored at 12 sites in summer 2016 in the River Rea, in Birmingham, UK. Generalized additive 

models (GAMs) were used to model the relationship between sub-hourly water temperature 

surges and precipitation intensity, and subsequently the relationship between daily 

precipitation totals and standardized mean water temperature. The different precipitation 

measurement sources give highly variable precipitation estimates, which relate differently to 

water temperature fluctuations. The radar catchment-averaged method produced the best 

model fit (generalized cross-validation score (GCV) = 0.30) and was the only model to show a 
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significant relationship between water temperature surges and precipitation intensity (P < 

0.001, R2 = 0.69). With respect to daily metrics, catchment-averaged precipitation estimates 

from citizen science data yielded the best model fit (GCV score = 0.20). All precipitation 

measurement and calculation methods successfully modelled the relationship between 

standardized mean water temperature and daily precipitation (P < 0.001). This research 

highlights the potential for the use of alternative precipitation datasets to enhance 

understanding of event-based variability in water quality studies. We conclude by 

recommending the use of spatially-distributed precipitation data operating at high spatial (< 1 

km2) and temporal (< 15 minutes) resolutions to improve the analysis of event-based water 

temperature and water quality studies.  

2.2 Introduction 

Urban stream water temperatures are highly variable and subject to short-term changes during 

high-intensity precipitation events. Short duration,  event-based changes, hereafter referred to 

as water temperature “surges”, can affect urban stream ecosystem health (Herb et al., 2008; 

Hester and Bauman, 2013; Hofmeister et al., 2015; Jones et al., 2012; Nelson and Palmer, 2007; 

Somers et al., 2016, 2013). Water temperature is a controlling factor on a wide range of abiotic 

and biotic variables. Hence sudden changes can have a cascade effect on a multitude of 

temperature-driven processes (Webb et al., 2008), particularly in urban catchments where 

regular surge effects can contribute to the “urban stream syndrome” (Walsh et al., 2005). While 

water temperature surges occur over short time scales (minutes to hours), precipitation also 

influences water temperature regimes over longer temporal scales (Hannah and Garner, 2015).  

The influence of precipitation on diurnal urban water temperature dynamics has not been 
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studied extensively. Precipitation  can lead to the reduced influence of air temperature on 

water temperature, leading to a distinct diurnal response in water temperature dynamics 

(Constantz, 1998). Resultantly, large precipitation events may impact river water temperatures 

change over longer time periods than previously thought. 

Urban environments are vulnerable to water temperature surges due to rapid heat-transfer 

between precipitation and surfaces with a low specific heat-capacity, coupled with changes in 

surface runoff processes in urban areas (Fletcher et al., 2013; Van Buren et al., 2000; Nelson 

and Palmer, 2007; Herb et al., 2008). Urban surfaces are typically darker in color and have a low 

specific heat-capacity; they can heat quickly and reach temperatures that far exceed air 

temperature on warm days. During precipitation events, heat can be rapidly transferred from 

these surfaces to surface runoff. As this thermally-polluted runoff enters rivers, rapid increases 

in river water temperature can occur (Herb et al., 2008; Van Buren et al., 2000). Moreover, the 

high proportion of low-permeability surfaces in urban areas reduces infiltration, and increases 

the proportion of precipitation that is conveyed rapidly through the catchment via direct 

surface runoff and through storm drains (Walsh et al., 2012; Fletcher et al., 2013). Hence a high 

proportion of urban precipitation is routed rapidly into water courses, with the consequence 

that thermally-polluted runoff enters rivers in greater quantities than in rural catchments. 

Furthermore, due to reduced infiltration and changes in subsurface flow pathways, urban 

streams typically experience reductions in baseflow (Fletcher et al., 2013). This can further 

increase the vulnerability of urban rivers to precipitation-driven water temperature changes, 

thereby increasing the influence of runoff temperatures on the temperature of receiving 

streams.  
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Characterization of urban precipitation patterns requires high spatial and temporal resolution 

precipitation data (Berne et al., 2004). However, many studies lack high-density precipitation 

gauges to quantify urban precipitation accurately (Pedersen et al., 2010; Thorndahl et al., 

2017). Consequently, it may be difficult to infer links between precipitation and hydrological 

processes in urban catchments (Berne et al., 2004). This has implications for a multitude of 

water quality variables that are influenced by event rainfall (Sandoval et al., 2014; Tilburg et al., 

2015).  

The analyses of precipitation metrics and water temperature frequently rely on single rainfall 

gauge data. These are often assumed to be representative of catchments with multiple water 

temperature logger sites (Lange and Haensler, 2012; Brown and Hannah, 2007; Somers et al., 

2013, 2016; Wilby et al., 2015; Hofmeister et al., 2015; Hester and Bauman, 2013). However, 

precipitation typically exhibits high spatial variability within catchments at different scales 

(Salvadore et al., 2015; Dixon and Mote, 2003). This is particularly evident in urban catchments 

where the combination of the urban heat island effect and changes in urban wind field alter 

precipitation patterns (Salvadore et al., 2015; Dixon and Mote, 2003) leads to variations in 

rainfall intensity and duration (Pedersen et al., 2010; Gabriele et al., 2017; Villarini et al., 2008; 

Thorndahl et al., 2017). Consequently, the precipitation processes that drive water temperature 

fluxes during individual events can be difficult to quantify, particularly when using data from a 

single rainfall gauge.  
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Radar and citizen science precipitation datasets may provide a useful alternative to single 

rainfall gauges (Buytaert et al., 2014; Gabriele et al., 2017; Starkey et al., 2017; Koch and Stisen, 

2017; Thorndahl et al., 2017), particularly in urban catchments where high-spatial resolution 

precipitation data are required, or where catchments are poorly gauged (Berne et al., 2004). 

Citizen science precipitation databases are increasingly common and can potentially increase 

the number of precipitation gauges available for catchment studies (Starkey et al., 2017; Koch 

and Stisen, 2017). However, to-date concerns over data quality have inhibited their uptake for 

research purposes (Buytaert et al., 2014; Barthel et al., 2016; Starkey et al., 2017). Radar 

precipitation data can also yield high temporal and spatial resolution precipitation estimates 

(Golding, 1998; Villarini et al., 2008; Biggs and Atkinson, 2011; Gabriele et al., 2017; Thorndahl 

et al., 2017). For example, in the UK, the NIMROD system generates radar-derived precipitation 

estimates at 5-min temporal and 1km2 spatial resolution (Villarini et al., 2008). These systems 

can monitor moderate to high-intensity precipitation events well, but they are less accurate in 

low-intensity precipitation events (Biggs and Atkinson, 2011; Golding, 2000). Previously, five 

minute temporal resolution radar precipitation has been found to represent spatial variability 

of rainfall well in small, urban catchments, compared to high-density gauge networks (Berne et 

al., 2004; Thorndahl et al., 2017). While radar estimates of total precipitation can be variable, 

the use of radar at a minimum of 5-min temporal resolution can provide good precipitation 

estimates for urban hydrology applications (Rico-Ramirez et al., 2015; Einfalt et al., 2004). 

This chapter investigates the use of different precipitation data sources in urban river water 

temperature studies, motivated by improving our understanding of water temperature fluxes 
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during rainfall events. We aim to establish which type of precipitation estimate correlates 

strongest with sub-hourly and daily water temperature change with the following objectives: 

1) Quantify how precipitation captured by citizen science and radar precipitation datasets 

compare to automatic weather stations providing point-based source estimates in the 

prediction of river-water temperature fluctuations over sub-hourly and daily timescales. 

2) Explore to what extent three precipitation datasets can represent spatial variability in 

precipitation intensity in relation to a water temperature surge event 

2.3 Methods 

2.3.1 Study Location 

The study was undertaken in the catchment of the River Rea in Birmingham, West Midlands, UK 

(52.4862° N, 1.8904° W; Figure 2.1a). This headwater catchment is located within the second 

largest urban conurbation in the United Kingdom (Figure 2.1b). The 74km2 catchment 

comprises clay overlying sandstone, with 31% of the catchment defined as highly permeable 

bedrock, particularly in the center of the catchment (NRFA, 2018). Surface elevations range 

from 107 to 291m asl, and the catchment has a mean annual precipitation of 781mm (NRFA, 

2018). Precipitation in the catchment exhibits a seasonal pattern, with the highest precipitation 

generally occurring from October to December, with the driest months from February to May 

(NRFA, 2018). The dominant Lamb Weather Type within the catchment is anticyclonic, with this 

the dominant weather type throughout the year, although cyclonic conditions occur with 

increased frequency during the summer months (Zhang et al., 2014). The proportion of the 

catchment that is urbanized is extremely high (built-up urban: 70.2%) making it an ideal study 
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catchment for the effects of urbanization: the remaining land use mainly comprises urban 

green space. The high proportion of storm drains and low-permeability surfaces in the 

catchment leads to a dominance of rapid flow pathways that route surface runoff quickly to the 

river during storm events. The presence of widespread low specific heat-capacity surfaces also 

leads to warming of land surfaces within the summer months, priming the catchment for water 

temperature surge events.  As a result of its land use, the Rea has a flashy flow regime with a 

mean flow of 0.77 m3/s and peak flow of 73.8 m3/s during the study period for a gauge located 

at the catchment outlet (NRFA, 2018).  

 

Figure 2.1. The River Rea catchment, UK, showing a) locations of water temperature loggers, 
automatic weather station, and citizen science gauges within the study catchment, b) the 
thiessen polygons produced for the citizen science precipitation data, c) the location of the 
River Rea catchment in the UK. 
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2.3.2 Water Temperature Data Collection 

River water temperatures were monitored using 12 TinyTag aquatic temperature loggers 

(Gemini Data Loggers, 2017) installed and calibrated using the protocol of Hannah, Malcolm, & 

Bradley (2009). The TinyTag loggers have a measurement accuracy of +/- 0.2 °C and were 

calibrated using an ice-bath set at a starting temperature of 0°C in which they were placed for 

48 hours with temperature logged at 15-min intervals recording in British Summer Time and 

starting on the hour, in accordance with the precipitation datasets. The mean water 

temperature logged in the ice-bath was then determined, and correction factors were 

calculated for individual TinyTags which either under- or over-estimated water temperatures by 

more than +/- 0.2 °C compared to the mean. Correction factors were applied post-monitoring.  

To monitor the water column temperature, TinyTags were secured to the riverbed in areas of 

unimpeded perennial flow. The loggers were placed within white radiation shields to prevent 

atmospheric radiation directly warming the loggers, and placed parallel to the flow to ensure 

constant flow through the radiation shield (Hannah et al., 2009). Loggers were tied to iron bars 

buried into the stream bed with wire rope and left free floating in the middle of the river 

stream, to prevent debris build-up impeding flow to the logger. The length of the wire rope was 

adjusted to ensure loggers would not be washed out. Loggers were placed evenly throughout 

the catchment, and at tributary confluences to ensure a high spatial resolution for water 

temperature monitoring in the catchment. This enabled localized water temperature fluxes to 

be monitored in line with previous studies of event-based water temperature changes (Somers 

et al., 2013, 2016; Wilby et al., 2015; Hofmeister et al., 2015). Loggers were installed with a 
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mean distance between loggers of 2.5km. Placement of loggers in some areas was impeded by 

lack of access to the river and hence a uniform separation distance between loggers was not 

feasible. For example, the Bourn tributary (Figure 1) contained only one logger (located at the 

tributary mouth) as the stream is largely culverted and inaccessible. The loggers were 

operational during the summer of 2016 (1 June 2016 to 15 September 2016), with river-water 

temperatures logged at 15-min intervals.  Loggers were checked once during the study period 

to ensure no debris build-up had occurred around the loggers which might have potentially 

affected the temperature data, however no debris build up occurred during the study period. 

One logger was lost during the study period, leaving data from 11 loggers available for 

subsequent analysis (Figure 2.1). 

2.3.3 Precipitation Data Collection 

Precipitation data were collected from three available sources. First, data were obtained from a 

weather station (elevation 140m asl) located near the catchment outlet which was installed 

prior to the study. This is a Met Office (the UK’s national weather service) approved station 

operating at 1-min temporal resolution and providing a dataset which is representative of the 

precipitation data used in many water temperature studies (Brown and Hannah, 2007; 

Hofmeister et al., 2015). Data were recorded in Greenwich Mean Time (GMT) and converted to 

British Summer Time to match the TinyTag water temperature data logging times. Distances 

from the weather station to individual water temperature sites ranged from 1km to 8.5km. The 

use of more weather stations would have been desirable, however, further Met Office sites 

were too far away from the study catchment and the creation of a dense network of gauges 

would have been expensive and difficult to maintain, as is the case for many water temperature 
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studies which are reliant on single gauges (Lange and Haensler, 2012; Brown and Hannah, 2007; 

Somers et al., 2013, 2016; Wilby et al., 2015; Hofmeister et al., 2015; Hester and Bauman, 

2013). Air temperature data used in the study were also gathered from the Met Office site 

within the catchment.  

Second, citizen science precipitation data were collected from the Met Office Weather 

Observation Website (WOW) (Met Office, 2018). The WOW network allows participants to 

upload data automatically from personal weather stations which can be downloaded freely. 

Each station in the network contains metadata detailing the degree of exposure, rain gauge 

type, recording hours, and urban climate-zone of the station. For this study, we used stations 

with standard precipitation gauges, with records over > 95% of the study period, the minimum 

threshold for inclusion in the study, and at a sampling frequency of ≤ 15-min. All sites recorded 

in GMT and were converted to British Summer Time. All stations recorded at time intervals 

beginning on the hour. This provided a pool of five citizen science gauges (ranging from 2.3 – 

4.2 km from water temperature sites), of which four gauges were located outside the study 

catchment (Figure 2.1a). Rainfall gauges outside a catchment have been successfully used for 

discharge estimation in ungauged catchments (Samuel et al., 2011), hence the citizen science 

gauges were considered suitable for use herein. Of the five gauges, one was in the west of the 

catchment, two to the south, and two to the east. Elevation at the gauges ranged from 110-

200m asl, with a mean of 154m asl. As seven of the water temperature loggers are located to 

the east of the catchment, the gauges to the east of the catchment have a larger weighting on 

precipitation estimates for these loggers. Although denser networks of citizen science gauges 

are possible, quality control (e.g. placement of gauges) remains problematic. It should be 
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recognized, also, that the WOW database is relatively new and is not yet comprehensive. As 

citizen science gauges are reliant on maintenance and installation by amateurs, data quality are 

reduced compared to official sources (Buytaert et al., 2014).  

Third, high resolution precipitation data from the UK’s NIMROD radar system (Golding, 1998) 

were provided by the UK Centre for Environmental Data (CEDA). Radar data were provided at 5-

min temporal and 1km2 spatial resolution. Data are recorded from the start of the hour 

onwards and converted from GMT to British Summer Time. Radar data from the NIMROD 

system have been quality checked and corrected through national scale corrections using gauge 

data, as described by Harrison, Scovell, & Kitchen (2009). Quantifying uncertainty ranges in 

radar rainfall has proven difficult as uncertainty propagates from a wide range of sources 

including, but not limited to, topography, atmospheric conditions, and distance from radar 

source. An extensive list of uncertainties and errors associated with radar data has been 

compiled by Villarini & Krajewski (2010). As the study catchment is in a relatively flat area and is 

situated within 50km of the nearest radar site (the Cleft Hill radar), these uncertainties are 

reduced for this study.  

Point-based and catchment-average estimates were derived for the three precipitation 

datasets. Point-based data for each water temperature logger site were taken from the nearest 

weather station (only one weather station was used in this study, resulting in the same data 

used for each logger site), citizen science gauge, or radar grid cell (at 1km2 resolution). For 

catchment-average data, nested catchments for each water temperature logger site were 

identified from the catchment topography, and precipitation data were averaged over each 

logger catchment to yield an overall catchment-average precipitation estimate. Consequently, 
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the catchment data are less variable than point-based data, particularly for the nested 

catchments. Citizen science gauge precipitation was averaged using the Thiessen method 

(Figure 2.1b), given its simplicity and widespread use in estimating areal precipitation (Ball and 

Luk, 1998). The contributing area of each gauge was determined and the contributing 

percentage of each gauge to each nested catchment precipitation total was calculated to derive 

estimates for catchment precipitation for each site. Because the weather station data featured 

only a single gauge, catchment-average precipitation could not be derived for this dataset. For 

the radar data, the contribution of each grid cell to each sub-catchment were calculated, and 

catchment-average precipitation was then derived for each logger.  

2.3.4 Statistical Analysis 

Statistical analysis was undertaken using each of the precipitation datasets to first relate sub-

hourly water temperature changes to precipitation intensity; and second, daily water 

temperature changes to daily precipitation.  

2.3.4.1 Sub-hourly analysis 

For sub-hourly water temperature changes, the relationship between precipitation and water 

temperature surges were analyzed. Here water temperature surges were defined as a positive 

change of at least 1°C in water temperature that occurred after the onset of a precipitation 

event. The threshold of a 1°C change within a 30 minute time-window, measured from the 

onset of water temperature rise, was used to identify surges, as has been used in previous 

studies (Somers et al., 2016). This threshold ensured water temperature changes were caused 
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by the precipitation event and not by air temperature influence.  A total of 48 temperature 

surges were identified within the study period (Table 2.1).  

Precipitation metrics linked to water temperature surges (Herb et al., 2008; Nelson and Palmer, 

2007; Somers et al., 2013) were calculated for each precipitation calculation method: maximum 

precipitation intensity prior to the surge; precipitation in the 30-min before the surge; and the 

precipitation total for the event prior to the surge. Exploratory analysis revealed that results for 

each metric were similar; hence only results for maximum precipitation intensity are presented 

herein. Precipitation intensity was selected given the importance of intense events rather than 

overall rainfall amount in causing water temperature surges identified in previous studies 

(Nelson and Palmer, 2007).  

Initial analyses showed the relationship between water temperature surge and precipitation 

intensity to be non-linear, so General Additive Models (GAMs) were chosen for the analysis. 

GAMs are a class of generalized linear models, and are ideal for semi-parametric datasets given 

there is no assumption of linearity and are flexible in dealing with differing (non-normal) 

statistical distributions of the data (Murase et al., 2009). Due to this, GAMs have been 

particularly useful in modelling environmental effects on water temperature (Laanaya et al., 

2017). All models were created using the "mgcv" package in R (Wood, 2018): The equation for 

GAMs can be written as so:  

g(E(y)) = β_0 + f1(x1) + f2(x2) + … fp(Xp)+ ε 

Where g is a link function, E(y) the response variables expected value, fi(xi) the smoothed 

function, and ε the error. The link function is a parametric function that enables the Gaussian 
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error structure to be applied to an exponential family, thereby linking the average of the 

dependent variables to the predictor variables (Laanaya et al., 2017). The smoothed function 

defines the regularity of the application of the regression within the model. This is controlled by 

the basis dimension (k), which represents the dimensionality of the spline basis, and controls 

the maximum degrees of freedom that can be applied within the model by each term. Higher 

values of k mean the smoothing function is applied more regularly. 

For this study, a two explanatory variable GAM using a Gaussian error structure and identity 

link function was produced for all precipitation datasets. All water temperature surges in the 

study period were used for the model (Table 2.1). The difference between water temperature 

and air temperature was used as an additional variable alongside maximum precipitation 

intensity, as preliminary analysis for this study had reflected its importance. This was done to 

achieve better model fits, and to assess how the relative importance of maximum precipitation 

intensity to the GAM alters depending on the precipitation dataset used. The difference 

between water temperature and dew point temperature was also calculated, however this was 

highly correlated with water temperature and air temperature difference so did not feature in 

the final model.  A smoother term was applied to the maximum precipitation intensity variable 

in all models and the basis dimension (k value) was chosen based on generalized cross-

validation (GCV) (Wood, 2017). To assess the best model fit for the GAM’s generalized cross-

validation (GCV) scores were used. GCV scores show the minimized general-cross validation 

score for each GAM, with a lower score indicating a better fitting model with less predictive 

error.  
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For an example storm on 8 June 2016 maximum water temperature surges for each logger site 

were regressed against maximum precipitation intensity, with models produced for each type 

of precipitation dataset in the study. The adjusted R2 was then compared to assess which 

precipitation dataset had the highest explanatory capability. The 8th June event was chosen as it 

had the largest water temperature surges in the study period, while the 13 September 2016 

event did not feature a regression due to low sample size. A lower intensity event was also 

analyzed for the 13 September 2016 but did not feature a regression due to low sample size. 
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Table 2.1. List of water temperature surges in the study period. Site shows the location of the TinyTag logger (Figure 1), water 
temperature surge (°C) shows the maximum water temperature surge extent for each event, Intensity (mm/hour) refers to maximum 
precipitation intensity for each surge as recorded by the different precipitation datasets. 

Date Site Water 
Temperature 
Surge (°C) 

Weather 
Station 
Intensity 
(mm/hour) 

Radar Point 
Intensity 
(mm/hour) 

Radar 
Catchment 
Intensity 
(mm/hour) 

Citizen 
Point 
Intensity 
(mm/hour) 

Citizen 
Catchment 
Intensity 
(mm/hour) 

07/06/2016 
22:30 

R2 1.21 2.4 9.48 5.18 0 0.2 

08/06/2016 
16:30 

R5 2.15 0 73.1 34.91 14.24 19.03 

08/06/2016 
16:30 

R2 4.24 0 69.4 34.3 31.52 21.05 

08/06/2016 
17:00 

BB2 3.82 96 107 46.7 31.52 31.52 

08/06/2016 
17:00 

R4 4.19 96 6.4 33.8 31.52 19.03 

08/06/2016 
17:15 

R7 4.93 84 40 36.4 9.12 17.72 

08/06/2016 
17:30 

R1 1.13 14.4 70.5 20.6 7.12 24.52 

08/06/2016 
17:30 

BB3 2.20 14.4 50 30.8 3.08 31.52 

08/06/2016 
17:30 

B1 1.31 14.4 25.8 28.2 7.12 30.07 

08/06/2016 
18:00 

R3 3.20 9.6 25.8 29.6 5.08 18.57 

08/06/2016 
18:30 

R2 1.97 4.8 43.4 22.4 0 21.8 

11/06/2016 
21:30 

R7 1.13 0 0.79 4.64 0 0 

11/06/2016 
22:00 

R4 1.43 0 3.63 9.08 22.36 6.35 

12/06/2016 
10:15 

R7 1.11 4.8 1.97 1.55 2.04 2.94 
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12/06/2016 
16:00 

R5 1.27 6.4 32.6 13.6 0 10.24 

12/06/2016 
16:30 

R3 1.07 12.8 12.3 8.9 0 8.62 

13/06/2016 
23:00 

R7 1.21 16 23.2 13.67 4.04 4.51 

14/06/2016 
15:30 

R3 1.12 24 10.7 4.7 1.04 2.91 

14/06/2016 
18:45 

BB2 1.43 0 11.9 6.4 5.08 5.08 

14/06/2016 
20:00 

BB3 1.26 4.8 6.72 6.7 0 5.08 

25/06/2016 
16:15 

R4 1.26 0 51.781 17.5 0 0.04 

01/07/2016 
18:45 

BB2 1.14 0 1.5 20.62 0 9.144 

12/07/2016 
11:00 

BB2 1.49 0 1.4 0.66 2.032 5.08 

12/07/2016 
14:00 

R3 2.34 0 1.6 0.78 0 1.26 

28/07/2016 
11:45 

R7 1.75 4.8 3 2.88 4.064 2.68 

28/07/2016 
12:45 

BB2 1.34 6 2.4 1.52 1.016 4.064 

28/07/2016 
20:00 

BB2 1.44 2.4 25.3 11.97 0 0 

29/07/2016 
17:00 

R6 1.49 0 7.1 4.5 1.016 2.66 

29/07/2016 
17:15 

R7 2.12 0 5.6 4.4 1.016 2.22 

19/08/2016 
08:30 

R7 1.38 4.8 2.18 2.22 2.032 2.68 

19/08/2016 
10:30 

BB2 1.10 2.4 2 2.18 2.032 4.064 

25/08/2016 
03:00 

BB2 1.51 4.8 3.75 4.38 5.08 5.08 
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25/08/2016 
13:45 

BB2 1.34 2.4 9.78 9.16 2.032 5.08 

25/08/2016 
20:30 

BB2 1.01 19.2 9.78 9.16 3.048 5.08 

27/08/2016 
16:30 

BB3 2.87 0 20 17.62 0 4.064 

28/08/2016 
18:15 

R7 1.56 0 15.8 7.9 0 0 

28/08/2016 
19:30 

R5 1.09 0 21.8 12.4 0 0 

03/09/2016 
11:15 

BB2 1.64 36 11.1 9.8 18.56 18.56 

03/09/2016 
11:30 

BB3 1.87 36 8.6 10.6 18.56 18.56 

10/09/2016 
06:45 

R3 1.37 28.8 6.4 13.3 16.4 15.2 

13/09/2016 
16:30 

R7 2.23 0 21.6 12.8 0 0.44 

13/09/2016 
16:45 

BB2 2.82 6.4 7.2 21.2 8.128 8.128 

13/09/2016 
16:45 

BB3 1.70 6.4 16.5 15.6 8.128 8.128 

13/09/2016 
17:15 

R2 1.10 25.6 11.2 18.8 18.56 11.4 

13/09/2016 
17:30 

B1 1.05 25.6 8.8 9.12 4.96 18.56 

13/09/2016 
16:45 

R6 1.71 19.2 14.16 8.56 9.04 15.52 

13/09/2016 
17:15 

BB1 1.13 19.2 13.32 11.28 16.256 4.88 

13/09/2016 
17:30 

R1 1.10 19.2 13.32 11.04 16.256 9.44 
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2.3.4.2 Daily analysis 

For daily water temperature variability, the following temperature metrics were calculated: 

daily maximum, daily minimum, daily mean, and daily range. All metrics, and associated 

precipitation data were calculated from midnight to midnight across the study period. The 

influence of seasonality was removed by subtracting a 10-day moving average (5 days either 

side) for each metric from the corresponding metric for each day. GAMs, with a Gaussian error 

structure and identity link function, were used to link standardized water temperature metrics 

to the precipitation total following the same model described in 2.3.1. Only precipitation days > 

4mm were included in the analysis, to include only events that produced enough storm water 

to have a substantial effect on discharge. This threshold was derived based on a sensitivity 

analysis of discharge to precipitation, with 4mm of daily precipitation being the threshold 

where daily discharge was consistently twice that of baseflow. The threshold discharge amount 

was hence decided as 1.49 m3/s.  As a similar relationship is shown between all calculated 

temperature metrics and daily precipitation, only the GAMs for the daily mean temperature 

metric are presented here as an example. GCV scores were again used to assess the model with 

the best fit.  

2.4 Results 

2.4.1 Thermal, meteorological, and hydrological context 

Time-series for precipitation, discharge, air temperature, and water temperature are shown for 

the study period at site R1 in Figure 2.2. June was notably the wettest month in the study 

period, registering 174mm of rainfall, whilst July was driest registering 24mm. Air temperature 



44 
 

during the study ranged from 7 to 32 °C, with a mean of 16.3 °C, whereas water temperature 

ranged from 11.1 to 21.7 °C, with a mean of 15.9 °C. Discharge had a minimum flow of 0.14 

m3/s, with a peak flow of 61.8 m3/s. 

 

Figure 2.2. Time series of water temperature for site R1 (see Figure 2.1), air temperature and 
precipitation as recorded at the weather station, and discharge as recorded as recorded at the 
catchment outlet. The black dot on the discharge graph shows a particularly large event that 
peaked at 62 m3/s, outside the limits of the y-axis. 
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2.4.2 Comparison of precipitation methods 

Monthly (Table 2.2) and daily (Figure 2.3) precipitation totals are shown for June, July, and 

August for the weather station location. The study period included months with very high 

(June), low (July), and mean (August) rainfall, providing a wide range of event types. Table 2.2 

gives the percentage difference in estimated precipitation for the different precipitation 

methods and the weather station. In the wettest month (June) high variation was apparent. 

Both citizen science methods considerably underestimated precipitation in comparison to the 

weather station, whilst both radar methods overestimated precipitation, but by a much smaller 

amount than citizen science methods. In the driest month (July), all methods measured 

relatively similar precipitation totals, although percentage differences are large given the small 

precipitation totals. In August, both radar methods underestimated precipitation in comparison 

to the weather station, particularly the radar point-based data. In August, citizen science data 

produced values closest to those of the weather station. The catchment citizen science data 

slightly underestimated compared to a slight overestimation for the citizen point-based data. 
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Table 2.2.  Precipitation (Precip) measured in mm for summer months in 2016 at the weather 
station site. Citizen = Citizen Science data, Catchment = Catchment-average, Point = Point-
based.  

 

 

Figure 2.3. Daily precipitation totals (mm/day) for the study catchment. Black bars represent 
the daily precipitation range. Colored dots represent the different precipitation methods used 
in the study. 

 June 
Precip 
(mm)  

%  
Difference 
to 
weather 
station 

July 
Precip 
(mm) 

%  
Difference 
to weather 
station 

August 
Precip (mm) 

%  
Difference 
to 
weather 
station 

Total 
Precip (mm) 

% 
Difference 
to 
weather 
station 

Radar  
Average 

166 -6.6 17 -23.5 47 -9.1 230 -9.1% 

Radar 
Point 

194 +8.8 20 -5 39 +0.8 253 +0.8% 

Citizen   
Average 

120 -47.5 23 +8.7 52 -28.7 195 -28.7% 

Citizen  
Point 

128 -38.2 26 +19.2 58 -18.3 212 -18.3% 

Weather 
Station 

177 NA 21 NA 53 NA 251 NA 
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2.4.3 Sub-Hourly Water Temperature Change 

Summaries of the GAM’s modelling water temperature surge using the predictors maximum 

precipitation intensity and air/water temperature differences are shown in Table 2.3. Maximum 

precipitation intensity was found to be a significant predictor (P < 0.001) of water temperature 

surges only when using radar catchment-average precipitation data. In contrast, maximum 

precipitation intensity was not found to be significant (P > 0.05) in any of the other GAMs. The 

deviance explained varied between models ranged from 72.7% for the radar catchment-

average data, to 64.5% for the citizen science point-based data. Adjusted R2 values ranged from 

0.69 for the radar catchment-average GAM to 0.60 for the citizen point-based GAM. GCV score, 

which can be used as a means of estimating prediction error in models, was lowest for the 

model using radar catchment-average precipitation data (0.30) and highest for the model 

showing the citizen point-based precipitation data (0.39). 

The GAM featuring radar catchment-average precipitation (Figure 2.4a) shows a non-linear 

threshold response, with increased water temperatures only at the higher maximum 

precipitation intensities. A similar non-linear trend is observed in both the weather station data 

(Figure 2.4e) and citizen point data (Figure 2.4d). In contrast, a linear trend is observed within 

the radar point (Figure 2.4b) and citizen catchment (Figure 2.4c) models.  
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Table 2.3. Validated GAM models for maximum precipitation intensity calculated by different 
precipitation sources against water temperature surges. Citizen = Citizen Science data, 
Catchment = Catchment-average, Point = Point-based.  
 

 Radar 
Catchment 

Radar 
Point 

Citizen 
Catchment 

Citizen  
Point 

Weather Station 

Adjusted R2  0.69  0.62 0.65 0.60 0.61 

Deviance 
Explained (%) 

72.7 66.7 69.5 64.5 65.4 

GCV Score 0.30 0.37 0.34 0.39 0.38 

Sample Size 48 48 48 48 48 

Covariate Df K p-
value 

df k p-
value 

df k p-
value 

df k p-
value 

df k p-
value 

Maximum  
Precipitation 
Intensity 

1.7 
 

3 <0.001 1.7 
 

3 0.30 1.7 
 

3 0.056 1.4 
 

3 0.36 1.15 
 

3 0.17 

Starting 
Water/Air 
Temperature 
Difference 

3.9 5 <0.01 3.9 5 <0.001 3.9 5 <0.001 3.9 5 <0.001 3.9 5 <0.001 
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Figure 2.4. GAM’s of maximum precipitation intensity and water temperature surge 
determined by the different precipitation sources. The black line shows the fitted line of the 
GAM, while the shaded grey area shows the 95% confidence interval. 
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2.4.3.1 High-Intensity Example (8 June 2016) 

Spatial and temporal variation in precipitation for an event on 8 June 2016 and the associated 

water temperature surges are shown in Figure 2.5. The timing of precipitation differs 

substantially between precipitation methods. The weather station data provides only one 

rainfall value across the catchment with heaviest rainfall occurring at 16:45 and 17:00. By 

contrast, both radar datasets show high spatial and temporal variations in rainfall across the 

catchment, with peak rainfall for logger sites varying between 16:15 and 16:45. The timing of 

peak rainfall differed markedly for logger sites between the point-based and catchment-

average radar methods. Both the citizen science datasets showed minimal rainfall until 17:00, 

with both datasets showing peak rainfall at 17:15 for all logger sites. 

The initial water temperatures surges shown at 16:15 and 16:30 appeared to occur without the 

onset of rainfall when using the weather station or citizen science datasets; however, both 

radar datasets showed rainfall correspond with these surges. Only surges occurring at 17:00 

corresponded with peak rainfall at the weather station, however, substantial prior precipitation 

was also shown with both radar datasets. The final water temperature surges occurred by 

17:15, corresponding with peak rainfall in the citizen science dataset, compared to minimal 

rainfall in the weather station and radar datasets.  

Linear regression models show the relationship between maximum precipitation intensity and 

water temperature surges for the different precipitation methods in the 8th June event (Table 

2.4). Maximum precipitation intensity was shown to be a significant predictor only for modelled 

radar catchment-average data (P < 0.01, R2 = 0.54). When using weather station, radar point-
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based, and citizen sciences datasets, maximum precipitation intensity was not significant with 

low explanatory capability shown (P > 0.05, R2 = -0.10 to 0.14). 
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Figure 2.5. Temporal development of the 8 June 2016 event for the different precipitation 
methods: white circles show no water temperature surge; red indicate > 1° rise in water 
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temperature for that site. Colors indicate precipitation in mm. Maps created in GIS by coloring in 
each logger nested catchment with corresponding precipitation amount for time period. 

 

Table 2.4. Linear regression coefficients and adjusted R2 for maximum precipitation intensity 
against water temperature surge in the 8th June event. The sample size for all models is 11. 

 Estimate Standard 

Error 

t-value p-value Adjusted 
R2 

Intercept 

Weather Station 

2.25  

0.15 

0.50 

0.01 

4.49 

1.63 

0.001 

0.138 

0.14 

 

Intercept 
Radar Catchment 

-1.96 
0.16 

1.37 
0.05 

-1.43 
3.56 

0.185 
0.006 

0.54 

Intercept 
Radar Point 

3.03 
0.00 

0.90 
0.01 

3.34 
-0.26 

0.008 
0.796 

-0.10 

Intercept  
Citizen 
Catchment 

5.24 
-0.10 

1.80 
0.07 

2.90 
-1.37 

0.017 
0.202 

0.08 

Intercept  
Citizen Point 

2.12 
0.04 

0.59 
0.02 

3.55 
1.49 

0.006 
0.169 

0.11 

 

 

2.4.3.2 Low-Intensity Example (13 September 2016) 

Spatial and temporal variation in precipitation and water temperature for a low-intensity event 

for 13 September 2016 are shown in Figure 2.6. Temporal variation through the event was 

lower than for the 8th June event, with all precipitation datasets suggesting that most of the 

precipitation occurred between 16:45 and 17:15. Again, the weather station provided a single 

value across the catchment, suggesting almost all precipitation fell between 17:00 and 17:15 

(after the first temperature surge event occurred). In contrast, both radar and citizen science 

methods indicate substantial rainfall in the south-west of the catchment prior to this, although 

only the radar methods capture precipitation corresponding to the initial water temperature 

surge at 16:30.  Both citizen science and radar methods capture precipitation in the north-west 
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of the catchment, which is the location of the subsequent water temperature surge. Large 

differences in precipitation estimation are noticeable at 17:00. Both citizen science methods 

suggest minimal precipitation at this point, however this was the time of peak rainfall within 

both radar methods and at the weather station site in the north of the catchment. By contrast, 

peak rainfall in the citizen science sites occurred at 17:15. For the citizen science catchment 

method, peak rainfall is shown within the south-east of the catchment, where no surge events 

were identified. By contrast, both radar methods suggest minimal precipitation in this location. 

Two further surge events were captured at this point, with citizen point and radar point 

suggesting the heaviest precipitation corresponding with these. By 17:30, all methods show the 

event to have ended.  
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Figure 2.6. Temporal development of the 13 September 2016 event for the different 
precipitation methods: white circles show no water temperature surge; red indicate > 1° rise in 
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water temperature for that site. Colors indicate precipitation in mm. Maps created in GIS by 
coloring in each logger nested catchment with corresponding precipitation amount for time 
period. 

2.4.4. Daily Water Temperature Variability 

Summaries of the GAM’s modelling deviation from mean water temperature using daily 

precipitation amount are shown in Table 2.5. In all models, daily precipitation was found to be a 

significant predictor for standardized daily mean water temperature (P < 0.001). The explained 

deviance varied widely between models, ranging from 20.7 % for the radar catchment-average 

GAM, to 52.2 % for the weather station GAM. Adjusted R2 ranged from 0.18 for the radar 

catchment-average GAM to 0.50 for the weather station GAM.  GCV was lowest for the citizen 

catchment-average precipitation model (0.20) and highest for the radar catchment-average 

precipitation model (0.33). A non-linear response was evident with an initial rise in 

standardized mean water temperature with higher precipitation totals up to a threshold around 

20mm which is followed by a fall in standardized mean water temperature for the highest daily 

precipitation totals was shown by all models (Figure 2.7).  
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Table 2.5. Validated GAM models for standardized mean daily water temperature against daily 
precipitation as determined by the different precipitation sources. Citizen = Citizen Science 
data, Catchment = Catchment-average, Point = Point-based. 

 Radar 
Catchment 

Radar 
Point 

Citizen 
Catchment 

Citizen  
Point 

Weather Station 

Adjusted R2  0.18  0.20 0.41 0.41 0.50 

Deviance 

Explained (%) 

20.7 22.2 42.5 30.2 52.2 

GCV Score 0.33 0.31 0.20 0.26 0.20 

Sample Size 127 151 155 150 152 

Covariate Df k p-
value 

df k p-
value 

df k p-
value 

df k p-
value 

df k p-
value 

Maximum  
Precipitation 
Intensity 

3,2 

 

5 <0.001 3.5 

 

6 <0.001 4.9 

 

6 <0.001 4.7 

 

6 <0.001 4.9 

 

5 <0.001 
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Figure 2.7. GAM’s of daily precipitation and standardized mean daily water temperature 
determined by the different precipitation sources. All TinyTag sites are combined for the 
purposes of these plots. The black line shows the fitted line of the GAM, while the shaded grey 
area shows the 95% confidence interval.  
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2.5. Discussion and conclusions 

2.5.1 Precipitation estimate differences between datasets 

Differences in precipitation between datasets (weather station, citizen science and radar) were 

more pronounced than the differences between point-based and catchment-average 

calculation methods, which reflect precipitation variability over short distances during the 

events.  Single precipitation gauge data are, therefore, often unrepresentative of multiple 

water temperature sample sites unless strict consideration is given to catchment size and 

strategic siting (Villarini et al., 2008; Gabriele et al., 2017; Thorndahl et al., 2017). 

Citizen science estimates of precipitation displayed large differences with respect to percentage 

difference in total rainfall amount when compared to estimates at the weather station site 

location during high-intensity events suggesting it may be inaccurate. This possibly resulted 

from high spatial variability in precipitation within the catchment that was not adequately 

accounted for by the citizen science gauges (Pedersen et al., 2010). These errors may also 

propagate from siting issues as meteorological standards for gauge site siting may be difficult to 

adhere to for citizens in urban areas due to lack of unobstructed space, which may lead to 

underestimation of precipitation (Muller et al., 2013). Radar data were most accurate in the 

wettest month (August), but exhibited substantial discrepancies from the weather station 

gauge in the driest month (June), possibly as radar data have larger uncertainty at lower 

precipitation intensities as radar data struggles to identify drizzle (Golding, 2000). 
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2.5.2 Sub-Hourly Water Temperature Changes 

The best model fit was achieved using the Radar catchment-average precipitation dataset. 

Catchment-average precipitation estimates account for precipitation falling across the 

catchment so are more spatially representative of ‘true’ precipitation patterns input into the 

river system (Walsh et al., 2012; Fletcher et al., 2013). Radar data have previously also been 

shown to monitor high-intensity events accurately (Biggs and Atkinson, 2011). Consequently, 

the higher predictive capability of the radar catchment-average model compared to the citizen 

catchment-average model reflects the higher spatial and temporal resolution of the radar 

dataset (Gabriele et al., 2017). As water temperature surges are more likely to occur where 

there is rapid surface and shallow sub-surface drainage (Nelson and Palmer, 2007; Somers et 

al., 2013), the radar catchment dataset is likely to be more representative of thermally-polluted 

water in the river than alternative precipitation datasets. Furthermore, as the process of heat 

exchange between low-heat capacity surfaces and surface runoff occurs over short durations 

(Herb et al., 2008), this effect is likely to be better captured by the highest temporal resolution 

datasets. In contrast, point-based methods provide inaccurate precipitation estimates as they 

fail to account for variations in storm intensity across the catchment, which may result in high 

spatial variation in rainfall, particularly in urban areas (Thorndahl et al., 2017). Point based 

methods are unlikely to be an adequate proxy of thermally charged surface runoff, as they fail 

to represent the export of heated water from individual sub-catchments. Hence point-based 

methods are particularly ineffective in urban environments, as they lack the spatial 

representativeness required to account for drainage systems that rapidly route water from the 

entire sub-catchment to the river rapidly (Jones et al., 2012), which in turn leads to water 
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temperature surges. This is particularly evident during convective storms which are responsible 

for most events causing water temperature surges (Hofmeister et al., 2015; Wilby et al., 2015; 

Nelson and Palmer, 2007). Consequently, point-based methods are unlikely to be 

representative, therefore, catchment-average radar precipitation datasets are recommended 

for use in water temperature studies focusing on high-intensity events.  

In the example water temperature surge events, both point-based and catchment-average 

radar estimation methods represented the relatively higher accuracy of radar data in spatially 

and temporally representing a high-intensity event.  The close temporal proximity of the onset 

of high-intensity precipitation event to the water temperature surges in urbanized catchments 

as shown by the radar data have been observed in previous studies (Anderson et al., 2010; 

Nelson and Palmer, 2007; Hofmeister et al., 2015; Somers et al., 2013) which noted the quick 

onset of surges after localized precipitation, with a longer lag time downstream due to 

dissipation of heat pulses from upstream (Wilby et al., 2015; Somers et al., 2013). Alternatively, 

the transit time of water from the point in the catchment where the rain fell to the river may 

also explain the seemingly delayed water temperature surge at the most downstream sites. It is 

further important to consider that water temperature dynamics such as water temperature 

surges are also controlled by numerous other variables such as dew point temperature that are 

not accounted for by solely using precipitation data (Herb et al., 2008). In contrast, for the low-

intensity event, both radar methods provided a relatively accurate description of precipitation 

associated with water temperature surges, which contrasts with previous studies suggesting 

that radar data are less effective at lower rainfall intensities (Biggs and Atkinson, 2011; Golding, 
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2000). Furthermore, both point-based and catchment-based radar methods also gave similar 

estimates, suggesting lower spatial variability in the low-intensity event. 

From the weather station data only constant precipitation across the catchment could be 

derived, which misleadingly showed water temperature surges taking place before any 

precipitation was observed in both the high-intensity event and the low-intensity event. The 

assumption of a constant precipitation value across the catchment is likely to be highly 

inaccurate and lead to difficulties quantifying precipitation-driven processes (Thorndahl et al., 

2017). The degree to which water temperature surges are controlled by precipitation may be 

underestimated or masked entirely when using single gauge data depending on catchment 

area, river network properties, storm direction, and rate of passage through the catchment.    

Both citizen science point-based and catchment-average methods suggested that the 

precipitation peak occurred after the water temperature surge at five of the ten logger sites 

within the high-intensity event. This represents the influence of gauges to the east of the 

catchment; with the 8th June storm moving from west to east across the catchment. As most of 

the water temperature loggers were in the eastern part of the catchment, the precipitation 

estimate for them was derived from gauges to the east of the catchment. Because the rain 

reached these gauges later, water temperature surges were already present at these sites 

before precipitation was measured. Increased density of citizen gauges in the western part of 

the catchment would likely help better capture similar surge-triggering events. However, 

without high density gauge networks with relatively even spacing, it appears that using citizen 

science gauge networks can lead to substantial under- or over-estimations in high-intensity 

events making links to water temperature data problematic.  However, for the low-intensity 
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event, citizen point data corresponded well with water temperature surges at individual sub-

catchments and suggested similar spatial distributions in precipitation as the radar methods. 

The citizen science catchment method gave substantially different estimations, with high 

precipitation estimates in the south-east region of the catchment that did not feature any 

water temperature surges, and minimal precipitation was estimated by the point citizen science 

method and radar methods. This suggests that the density of citizen science gauges was not 

high enough to provide reliable interpolations for the low-intensity event. 

2.5.3 Daily Water Temperature Variability 

All precipitation calculation methods modelled the relationship between mean water 

temperature and total daily precipitation effectively. Strong fits were provided by all models.  

This is because daily metrics are less sensitive to issues related to storm timing and duration 

(Fletcher et al., 2013; Jacobson, 2011). This may be because the main process driving the 

change in daily temperature dynamics after precipitation is a change in the specific heat-

capacity of the receiving waters (Hannah et al., 2008). At higher discharges the specific heat 

capacity of the stream is increased, and the river is more resilient to atmospheric cooling. As 

only a small subset of overall events leads to water temperature surges, diurnal temperature 

fluctuations after precipitation are likely to reflect changes in total discharge. Hence, although 

lower spatial and temporal resolution datasets may be inadequate for analyses of thermally-

polluted waters immediately entering rivers, lower spatial and temporal resolution 

precipitation datasets can provide a proxy of discharge. Therefore, if the focus of study is daily 

temperature metrics, then high spatial and temporal resolution precipitation data are not 

necessarily required.  
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Although citizen science and weather station datasets showed the strongest model fits, this 

may be an artefact of the reduced variation in rainfall in the point-based datasets which can 

lead to misleadingly small error in statistical models. Although radar catchment precipitation 

showed the worst model fit, the greater spatial variation in precipitation patterns accounted for 

than other methods in turn may lead to larger errors (Gabriele et al., 2017; Pedersen et al., 

2010). As such, caution is required in interpreting the strength of relationships within water 

temperature models where precipitation is a predictor, particularly where only a single gauge is 

used. Furthermore, some degree of uncertainty in the analyses was caused by the timing of the 

events, and the possibility that precipitation from a single event may extend over two days. All 

logger sites were included in the analyses, meaning headwater and downstream sites were also 

mixed together, which therefore respond differently to precipitation properties.  

2.5.4 Implications and Future Research 

This study highlights the value of using radar catchment-average rainfall datasets when 

modelling event-based water temperature fluxes at short temporal scales. However, when 

using traditional gauge methods, linking precipitation to water temperature dynamics has much 

greater potential for error at sub-hourly scales, and the role of precipitation as an important 

variable driving water temperature dynamic may currently be underestimated or ignored. The 

errors that propagate from the use of single point-based sources are likely to also occur for 

other water quality variables where precipitation is a primary driver of water quality dynamics. 

The use of catchment-average radar rainfall data as a means of analyzing precipitation-led 

fluxes in water quality variables is therefore encouraged. High spatial and temporal variability 

precipitation sources such as catchment-average radar is likely to be particularly beneficial in 
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urban water quality studies, where precipitation is shown to be more localized, and where 

precipitation linkages to water quality dynamics can often be directly correlated. The 

alternative catchment-average based datasets are likely to also be advantageous to water 

quality studies within poorly gauged catchments.  

Further research is required in catchments of different sizes and land use types. As the study 

took place in an urban headwater catchment, it would be useful to assess different 

precipitation datasets in varying land uses where hydrological and water temperature 

responses to precipitations events are likely to differ. To build on the findings of this study, 

more systematic examination of the lag time between precipitation and water temperature 

surges will further enhance understanding of the link between precipitation and water 

temperature change. Moreover, further water quality variables that are likely to be responsive 

to precipitation events and are important contributors to water quality such as suspended 

sediments, pH, conductivity, and heavy metals concentrations could be analyzed to ensure 

greater transferability of the results of this study to future water quality studies. Variables with 

a clear first flush effect, such as nutrients, organic matter, and heavy metals are of interest for 

further study given their links between catchment transport of these variables and precipitation 

intensity.   
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CHAPTER 3: WATER TEMPERATURE HIGHER DURING LOW FLOWS BUT LAND USE 
BUFFERS THE EFFECT 

3.1 Abstract 

Discharge-related river temperature changes are increasingly likely due to increasing 

urbanization and increases in the frequency of extreme events. Despite this, understanding of 

the effects of extreme flows on river water temperatures is limited and the effects of urban 

land use on river temperatures are not well known. To address these research gaps, we 

installed 27 water temperature loggers in 3 rivers spanning a gradient of land uses in 

Birmingham, UK for 3 summers from 2016-2018. We identified low flow, high flow, and average 

flow periods using 95th, 5th, and 50th percentile flow duration curve values respectively for all 

sites and calculated mean, maximum, and mean temperature anomalies at a daily temporal 

resolution for all sites. We found low flow periods to have significantly higher maximum, 

minimum and mean water temperature anomalies compared to average flow and high flow 

periods. No significant difference was found between high flow and average flow. To identify 

the main landscape controls on water temperature anomalies during extreme events we used 

multiple linear regression. For low flow, land use characteristics, specifically road buffer and 

1km urban buffer were found to be the main controls, with a negative relationship observed. 

For high flows, however, elevation was found to be the main control. Overall, we find that low 

flows lead to increased extreme water temperature, although this effect is reduced in more 

urbanized areas. Extreme high flows were found to be less related to extreme diurnal water 

temperatures anomalies. The study highlights that low flow can lead to higher frequency of 
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extreme water temperature events, however more urbanized streams are less likely to 

experience extreme water temperature events during extreme flows. 

3.2 Introduction 

Water temperature is a controlling variable for a multitude of abiotic and biotic processes 

within streams (Caissie, 2006).  For biota within streams, factors such as growth rates, 

metabolic activity, reproduction cycles and habitat ranges are all governed by temperature 

(Woodward et al., 2010a; Hogg et al., 1995).  Water temperature therefore exerts a strong 

control on ecosystem health for aquatic organisms. Subsequently, alterations in water 

temperature can lead to drastic changes in ecosystem health (Mohseni et al., 2003). Water 

temperature alterations are governed by four main processes: atmospheric conditions, stream 

discharge, topography, and streambed conditions (Caissie, 2006). Changes to these processes 

can lead to water temperature change.  

Extreme events such as floods and low flows can impact the water temperature dynamics 

within rivers (Van Vliet et al., 2013; Zwolsman & van Bokhoven, 2007). Due to the unique 

landscape properties of urban catchments, urban rivers are especially likely to experience water 

temperature change during extreme events. For example, during high-intensity precipitation, 

urban rivers can experience water temperature surges (Somers et al., 2013; Croghan et al., 

2018; Nelson and Palmer, 2007). Urban areas are susceptible to these water temperature 

surges as impermeable surfaces often warm to higher temperatures than air temperature, 

therefore, when stormwater is generated, heat exchange occurs with the impermeable surface 

which can cause large increases in stormwater runoff temperature (Herb et al., 2008). As 
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stormwater in urban areas is quickly routed to rivers through storm drains, this leaves urban 

rivers susceptible to sudden increases during storm events   This has been found to lead to 

increases in water temperature of upwards of 7 °C (Pluhowski and Pecora, 1970; Nelson and 

Palmer, 2007), while elevated water temperatures can subsequently be apparent for hours 

(Croghan et al., 2018; Wilby et al., 2015). However, most of the research focuses on isolated 

surge events. In addition to floods, hydrological droughts have been speculated to exert a 

strong influence on the water temperature of streams although evidence remains limited 

(Mosley, 2015; Van Vliet & Zwolsman, 2008). Meteorological droughts are defined as periods of 

below-normal precipitation, and subsequently can cause hydrological drought, which is 

denoted by low discharge (Van Loon, 2015). The reduced discharge in streams can increase the 

sensitivity of rivers to changes in air temperature, which during the summer months can cause 

extreme warming during heatwaves (Hrdinka, Novický, Hanslík, & Rieder, 2012; Van Vliet & 

Zwolsman, 2008). Urban catchments are likely to experience low flow conditions (Van Loon et 

al., 2016) as urbanization is often associated with reduced groundwater discharge. Reduced 

groundwater inputs increase the importance of atmospheric conditions as a control on water 

temperature (McGrane, 2016). This increases the chances that urban streams experience low 

flow related water temperature change.  

Land use change through urbanization has been found to be a strong driver of thermal regime 

change (Kaushal et al., 2010; Rice et al., 2011; Arora et al., 2018). Urbanization modifies all the 

processes that control water temperature. Atmospheric conditions are altered within urban 

environments, with urbanization linked to increased summer precipitation (Daniels et al., 

2016), and warmer air temperatures (Schwarz et al., 2012). Streambed conditions are often 
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modified due to the hard engineering of rivers in urban environments which is generally linked 

to reduced groundwater inputs and resultantly less moderation of stream temperature 

(McGrane, 2016). Topography is greatly altered with a high degree of impermeable surfaces in 

urban areas, while vegetation and riparian shading are generally reduced (Wang and Kanehl, 

2003). Meanwhile, after urbanization, streams generally have lower baseflow and higher peaks 

and shorter recession times in flood events due to changes in water pathways (Miller and 

Hutchins, 2017; McGrane, 2016; Fletcher et al., 2013).  The extent to which urbanization 

changes these processes is likely to be particularly exacerbated during extreme events when 

the greatest changes to atmospheric conditions and stream discharge are most apparent, and 

the effects of topography change most pronounced.   

Although urbanization is noted as an exacerbating factor in the impact of extreme events on 

other water quality variables, the evidence for water temperature remains sparse (Miller and 

Hutchins, 2017). Therefore, in order to mitigate the impacts of extreme events on water 

temperature within urban systems a greater understanding of the land use controls on water 

temperature is required. Further, where water temperature studies have incorporated land 

use, urbanization is usually treated as a coarse metric (Rice et al., 2011; Talmage et al., 1999), 

but urbanization is likely to be reflected in a multitude of metrics beyond impermeability 

coverage. Hence, in this study we consider the effects of an abundance of metrics associated 

with urbanization on water temperature response to extreme events.  

In this study, we aim to investigate to what extent extreme events alter water temperature 

dynamics, and how landscape metrics impact on water temperature response during extreme 

events. We hypothesize that extreme hydrological events would lead to an increase in the 
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amount of extreme water temperature events, and that catchment land use metrics associated 

with urbanization would lead to increased water temperature anomalies during extreme 

events. Hence, the objectives of our study were: 

1) Determine the impact of extreme hydrological events on water temperature 

2) Determine the influence of urbanization on water temperature anomalies to extreme 

events in relation to non-urban streams 

3) Examine which specific landscape characteristics are associated with the strongest 

water temperature anomalies during extreme events 

To address these objectives, we placed water temperature loggers at 27 sites for 3 years and 

determined land use for each logger catchment. Subsequently, we used a threshold-based 

approach to define high and low flow events for each site.  

3.3 Methods 

3.3.1 Study Site 

The study was conducted in three adjacent headwater catchments: the River Rea, River Cole 

and River Blythe (Figure 3.1). All three catchments are located within the city of Birmingham, 

West Midlands, UK (52.48 ° N, 1.89° W). The catchments were chosen to span a gradient of land 

use, with water temperature sub-catchments located in areas ranging from 0% to 82% 

impermeable surface cover. The River Rea was the most urbanized of the three catchments, 

with an average impermeable surface cover of 69%, whilst for the Cole this was 34%, and the 

Blythe 18%. The widely differing urban extent both within and between the catchments 

therefore make them ideal for studying the impacts of urbanization. 
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As they are adjacent catchments, atmospheric and weather conditions usually do not vary 

greatly between the catchments. Precipitation decreases from west to east across the 

catchments meaning the Rea experiences slightly more annual precipitation, with a mean 

annual precipitation of 781mm per year. In contrast, the Cole and Blythe catchments receive 

743mm and 725mm respectively.  

 

Figure 3.1. Map of study sites – a) River Rea, b) River Cole, c) River Blythe. Land uses classes 
derived from the Centre of Ecology and Hydrology Land Class 2015 dataset (Rowland et al., 
2017). Land use classes were merged to similar classifications in the map for clarity. 

3.3.2 Data Collection 

3.3.2.1 Water temperature Data 

Water temperature data was monitored for a three-year period, from 1st June 2016 to 31st 

August 2018. Three summers (June, July, and August) of data were collected and analyzed for 

27 sites across the three catchments. 11 sites were selected on the River Rea, 10 sites on the 
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River Cole, and 6 sites on the River Blythe. Sites were selected based on surrounding land use 

types in order to achieve a strong gradient of land use types for the study. Where possible 

loggers were also placed with relatively equal spacing between sites to ensure dense coverage 

of each catchment. 

We used TinyTag loggers to monitor Water temperature (Gemini Data Loggers, 2017). These 

loggers have a measurement accuracy of ±0.2°C and monitored Water temperature at a 

temporal resolution of 15 minutes. The installation and calibration techniques are outlined in 

section 2.3.2.   

3.3.2.2 Hydrometeorological Data 

To identify extreme events, flow and precipitation data were used. One flow gauge providing 

daily flow data was located within each catchment (Figure 3.1). Flow records were available for 

the period 2013-2018. For logger sites located away from the flow gauges, we used catchment 

area weighted averages based on the flow data from the gauges within each catchment. Flow 

gauge data was hence scaled to each logger’s sub-catchment based on sub-catchment area in 

order to provide estimates of flow for ungauged sub-catchments. This technique has been 

found to be relatively reliable for providing accurate estimates of flow within small catchments 

providing there are not vast differences in elevation (Anderson et al., 2010).  

3.3.2.3 Land Use Data 

A variety of land use characteristics were calculated using GIS. Physical landscape 

characteristics were chosen as: elevation of logger site, river gradient 1km upstream from 

logger site, river width at logger site, river depth at logger site, catchment area upstream of 
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each logger site, and distance of each logger from source. These landscape metrics were chosen 

as they had previously been identified in regression studies as predictors of water temperature 

changes (Chang and Psaris, 2013; Imholt et al., 2013; Jackson et al., 2017). A range of land use 

metrics were calculated: urbanized extent, road density, and woodland extent (measured 

through tree density).  Urbanized extent and road density were included based on identification 

in prior water temperature and water quality studies as important measures of urbanization 

(Blaszczak et al., 2019; Somers et al., 2013), while woodland extent has been highlighted as an 

important proxy for shading in previous studies and a potential control on water temperature 

(Chang and Psaris, 2013). Land use metrics were analyzed as 50m buffers either side of the 

stream as the influence of land use has been previously identified as strongest within the 

riparian extent of the stream (Somers et al., 2013; Malcolm et al., 2008). The land use metrics 

for the buffer of the entire upstream reach for each logger site were then calculated, as well as 

the buffer for the 1km upstream of each logger site. The 1km distance was chosen based on use 

in previous regression studies (Hrachowitz et al., 2010; Imholt et al., 2013; Jackson et al., 2017).  

Land use metrics were collated from a variety of sources. Impermeable surface extent, 

vegetation extent (based on total plant and grassland coverage), and woodland (based on the 

percentage of catchment defined as forest) data were sourced from the Land Class 2015 

dataset (Rowland et al., 2017). Land classes for a wider array of vegetation types were provided 

by the Land Class dataset, however these were combined into vegetation and woodland classes 

for the purpose of this study. Road density data was derived from the Europa Urban Atlas 2012 

dataset (EEA, 2012). To derive tree canopy data we used LIDAR point cloud data (Environment 

Agency, 2019), which enabled us to extract tree canopy data.  
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3.3.3 Analysis 

Water temperature data was converted to daily minimum, maximum, and mean temperatures 

for further analysis. Daily metrics are commonly used within water temperature studies as a 

means of assessing changing water temperature dynamics (Jackson et al., 2017). In order to 

reduce the impact of seasonality on results, whereby early within the summer will usually be 

colder in temperature compared to later in summer, we instead calculated mean, maximum 

and minimum temperatures as anomalies from two-week moving averages. This provided us 

with water temperature anomalies for mean, maximum and minimum daily temperature and 

further allowed better cross comparison between sites by reducing the impact of spatial 

autocorrelation on the dataset. In this chapter, we refer to these metrics as mean, maximum, 

and minimum water temperature anomalies. 

To identify extreme events, we used fixed 5% and 95% thresholds for flow exceedance for high 

flows and low flows respectively. The 5% threshold for high flows has been widely used within 

flood literature for identifying floods, while the 95% threshold is also commonly used within the 

literature to identify severe low flows (Vicente-Serrano et al., 2017; Whitfield et al., 2009). To 

identify average flow periods, we used the range of 47.5-52.5% to keep a consistent threshold 

window between average flow, high flow, and low flow. We considered using precipitation data 

to further define the extreme events, however as strong correlation existed between the 

precipitation and flow datasets this was considered redundant. Thresholds were calculated for 

the three catchments based on flow data from 2013-2018. We used flow data longer than the 

study period to better put the extreme events identified into a longer-term context. Due to 
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strong seasonal variations in flow all flow data thresholds were calculated based on summer 

data.    

To identify differences in water temperature anomalies between extreme events and average 

flow, we paired all the temperature data with flow data for each site by pairing flow gauge data 

to sites temperature loggers within the same catchment and calculated sub-catchment flows. 

Data was then subset between low flow, high flow, and average flow. Boxplots were then used 

to show the difference between water temperature anomalies for each flow type, and one-way 

ANOVA’s used to assess significant differences. We also calculated Z-Scores for the Water 

temperature anomalies data. Z-scores >+1 or <-1 indicate one standard anomalies from the 

mean. This threshold was used to identify extreme water temperature events in the 

distribution of water temperature anomalies data for low flow, high flow, and average flow.  

3.3.3.1 Statistical Modelling 

We identified the main landscape predictors of water temperature anomalies during extreme 

events using multiple linear regression (Ordinary Least Squares). The average water 

temperature anomaly for mean, minimum and maximum water temperature at each site were 

calculated and featured as the response variables in the models. Initially predictor variables 

were tested for normality, after which the land use metrics tree buffer, 1km urban buffer, and 

road density buffer were log transformed. To determine collinearity between the predictor 

variables we calculated variation influence factors (VIF). If a VIF score was over 3, we removed 

the highest scoring variable from the dataset till all VIF scores were below 3. Following this 

process only gradient (GR), elevation (EL), 1km-urban buffer (1km-UB), tree buffer (TB), and 
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road density buffer (RB) remained as predictor variables taken forward into the final modelling. 

We used the R package “MuMin” to fit all possible combination of models. Due to the sample 

size of the dataset being less than 40 we used corrected Alkaike Information Criterion (AICc) to 

rank the models. Models <2 AICc of the highest scoring model were considered the top models 

of the dataset hence only models < 2 AICc of the highest scoring model are presented herein.  

3.4. Results 

3.4.1 Effect of Extreme Flows on Water temperature 

For anomalies from mean water temperature (Figure 3.2A), a one-way ANOVA was conducted, 

and a significant difference was observed between groups (F = 17.3, P < 0.05).  A post-hoc 

Tukey HSD test showed low flow to be significantly warmer than average flow and high flows (P 

< 0.05), however high flow mean temperature anomalies were not shown to be significantly 

different than average flow mean temperature anomalies (P < 0.05).  

A one-way ANOVA comparison for anomalies from maximum water temperature (Figure 3.2B) 

also identified a significant difference between groups (F = 16.28, P < 0.05). A post-hoc Tukey 

HSD test was undertaken and showed that anomalies in maximum water temperature were 

significantly warmer for the low flow data when compared to the average flow and high flow 

data (P < 0.05). However no significant difference was observed between the average flow and 

high flow groups (P > 0.05).  

Anomalies from minimum water temperature (Figure 3.2C) also showed a significant difference 

between the groups (F = 16.28, P < 0.05) after a one-way ANOVA was conducted. A post-hoc 

Tukey HSD test observed minimum water temperature anomalies were significantly warmer 
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during low flow than anomalies under average flow and high flow conditions (P < 0.05), 

however no significant difference was observed between average flow and high flow (P > 0.05). 

 

Figure 3.2. Boxplots for moving mean water temperature anomalies (°C) for low flow, average 
flow, and high flow conditions for a) Mean water temperature, b) Maximum water 
temperature, and c) Minimum water temperature. Dots show values outside the 95% 
confidence interval.  

A normal distribution for Z-scores was observed for average flow and high flow for the mean 

water temperature anomalies (Figure 3.3A+C), however in contrast the low flow mean water 

temperature anomalies skewed to the right (Figure 3.3B). For both average flow and high flow, 

the distribution of Z-scores greater than one was relatively even between negative and positive 

anomalies (Table 3.1). However, for the low flow data, there were 43 times more positive Z-
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score anomalies greater than one compared to negative anomalies. Furthermore, Z-scores were 

shown to be considerably more likely within the high flow dataset, with 31.3% of the high flow 

dataset observed to be above or below the Z-score threshold of one.   

For the minimum temperature anomalies, all three flow variables showed a relatively normal 

distribution (Figure 3.3D-F). Distributions of Z-scores greater or less than one was relatively 

similar between the three groups, although negative Z-scores were more likely in the average 

flow data (Table 3.1). 

For the maximum temperature anomalies, all three flow variables had a normal distribution 

(Figure 3.3G-I), although the low flow data (Figure 3.3H) had slight skew to positive 

temperature anomalies. The average flow and high flow maximum data both had slightly 

skewed distributions, with more negative Z-scores below -1 than positive Z-scores above 1 

(Table 3.1). In contrast, the low flow data had less negative z-scores and a skew to positive 

anomalies.  

Table 3.1. Percentage distribution of extreme temperatures for each water temperature metric 
within the study.  

 % Z-Scores < -1 % Z-Scores > 1 Total  
Average flow 
Mean 

15.8 12.6 28.4 

Low flow Mean 0.5 21.5 22.0 
High Flow Mean 15.9 15.4 31.3 
Average flow 
Min 

17.1 12.7 29.8 

Low flow Min 10.1 14.3 24.4 
High Flow Min 10.2 14.4 24.6 
Average flow 
Max 

16.8 11.1 27.9 

Low flow Max 8.2 12.7 20.9 
High Flow Max 18.2 12.0 30.2 
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Figure 3.3. Histograms showing Z-scores for moving mean water temperature anomalies for 
low flow, average flow, and high flow conditions. A – C show mean water temperature, D – F 
show maximum water temperature, and G – I show minimum water temperature. Red denotes 
a Z-score greater than one, blue denotes a Z-score less than one. 

3.4.2 Impact of land use on Water temperature response  

3.4.2.1 Low flow 

Landscape predictors showed weak predictive ability for low flow mean water temperature 

anomalies with the top model’s explanatory value ranging between 11-20% (Table 3.2). 
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However, RB was found to be a significant variable in the top model (Figure 3.4A; P < 0.05). The 

1KM-UB featured in the second highest model however showed weaker explanatory ability and 

was not significant (P > 0.05). A model featuring RB and 1KM-UB had the highest predictive 

value, but neither variable was a significant variable (P > 0.05, R2 = 0.05). Both RB and 1KM-UB 

were negatively associated with mean water temperature anomalies.  RB and 1KM-UB were 

found to be of nearly equal importance to the low flow mean water temperature anomalies 

model, with minimal importance shown for the other predictor variables. (Table 3.3). 

In contrast, moderate predictive ability was shown by landscape characteristics for the 

maximum water temperature anomalies models with explanatory values from 25% to33% 

(Table 3.2). In both top models, land use variables were featured as predictor variables, 

whereas neither physical landscape characteristic featured in the best models. In the top 

model, RB (Figure 3.4B) and TB (Figure 3.4D) were found to be significant predictors (P < 0.01), 

with relatively similar effect sizes (RB = -0.49, TB = -0.43). 1km-UB (Figure 3.4C) also featured 

among the predictors but was not found to be significant (P < 0.05). In all cases, the land use 

characteristic had a negative relationship with maximum water temperature anomalies. In the 

second-best model also, both RB and TB featured as significant predictors (RB = P < 0.01, TB = P 

< 0.05), therefore RB was observed to be the strongest predictor of maximum water 

temperature anomalies. When assessing the relative importance of predictor variables (Table 

3.3), RB was found to be the strongest predictor (0.78), however TB (0.63) and 1KM-UB (0.50) 

were relatively strong predictors also. 

Moderate explanatory ability was observed in all models for minimum water temperature 

anomalies, with explanatory ability ranging from 36% to 40% (Table 3.2). Within all three top 
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models 1KM-UB (Figure 3.4E) was found to be the only significant predictor (P < 0.01), with a 

negative correlation observed. The minimum water temperature anomalies models were the 

only low flow model to feature a physical landscape characteristic, with EL featuring in the 

second top model, although it was not found to be significant (P > 0.05). In the relative variable 

importance, 1KM-UB was found to be by far the most important predictor (0.98), with elevation 

found to be the second most important predictor (Table 3.3). 
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Table 3.2 - Results of model selection for the anomalies (°C) from low flow mean, maximum 
and minimum water temperature metrics. Standardized model effect sizes are shown for each 
variable in each model. Variables deemed significant in each model are bolded. * = <0.05, 
**<0.01, ***<0.001. 

Response Model 
Rank 

Variables R2 AICc Δ 
AICc 

Weight 

  RB TB 1KM-UB EL     
Mean Water 
temperature 
Anomalies 

1 -0.38*    0.16 11.64 0.00 0.36 
2   -0.37  0.11 11.67 0.03 0.35 
3 -0.29  -0.28  0.20 12.19 0.45 0.29 

Max Water 
temperature 
Anomalies 

1 -0.49** -0.43* -0.34  0.33 23.57 0.00 0.62 
2 -0.57**  -0.37*   0.25 24.56 0.99 0.38 

Min Water 
temperature 
Anomalies 

1   -
0.62*** 

 0.36 -
10.97 

0 0.39 

2   -0.54** -0.26 0.40 -
10.88 

0.08 0.38 

3  -0.21 -
0.68*** 

 0.38 -9.93 1.04 0.23 

 

Table 3.3. Relative variable importance of predictor variables for the anomalies (°C) from low 
flow maximum, mean and minimum water temperature models.  

Response Road Buffer Tree Buffer 1km Urban 
Buffer  

Elevation  Gradient 

Mean Water 
temperature 
Anomalies 

0.48 0.20 0.50 0.30 0.20 

Max Water 
temperature 
Anomalies 

0.78 0.63 0.53 0.28 0.20 

Min Water 
temperature 
Anomalies 

0.24 0.34 0.98 0.44 0.20 
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Figure 3.4. Linear regressions of variables featuring in the top model for mean, maximum, and 
minimum water temperature anomaly (°C) during low flow. Green dots indicate River Cole sites, 
Blue dots River Rea sites, and Red dots show River Blythe sites. The grey shading represents the 
95% confidence interval. 

 



84 
 

 

3.4.2.2 High Flows 

Landscape predictors showed weak to moderate explanatory ability for the mean water 

temperature anomalies during high flows, with variation ranging from 14% to 24% (Table 3.4). 

EL featured as a significant predictor in the three top models (Figure 3.5A; P < 0.05) and had the 

largest effect size. A positive association was found between EL and mean water temperature 

anomalies. In the model with the highest explanatory capability (R2 = 0.24), 1KM-UB (Figure 

3.5B) and TB were also found to be predictors, however only 1KM-UB was found to be 

significant (P < 0.05). Both 1KM-UB and TB were negatively associated with mean water 

temperature anomalies. EL was found to be the most important predictor variable overall 

(0.79), although 1KM-UB was by far the most important second predictor variable (Table 3.5). 

In the maximum water temperature anomalies model’s moderate explanatory ability was 

shown by the landscape metrics, with explanatory ability ranging between 27% and 30% (Table 

3.4).  Again, EL (Figure 3.5C) had the strongest effect size in all three models and was significant 

in all three models (P < 0.01), with a positive relation with maximum water temperature 

anomalies. The only land use characteristic to feature within a model was 1KM-UB (Figure 

3.5D), which was not found to be significant (P > 0.05), however in contrast to the mean water 

temperature anomalies model, had a positive relationship with maximum water temperature 

anomalies. EL was once again found to be the most important predictor with 1KM-UB the 

second most important predictor (Table 3.5). 

Weak explanatory ability was shown by the landscape metrics in the minimum water 

temperature anomalies models, with explanatory ability at 13% and 18% (Table 3.4). In both 
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top models, EL was again the predictor with the strongest effect size (Figure 3.5E), although it 

was not found to be significant in either top model (P > 0.05). RB was the only other landscape 

variable to feature within a top model, although was also not found to be significant (P > 0.05).  

RB was negatively associated with minimum water temperature anomalies during high flows, 

whereas EL was positively associated. EL was also again found to be the most important 

variable (0.50) (Table 3.5).  
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Table 3.4. Results of model selection for the anomalies (°C) from high flow mean, maximum, 
and minimum water temperature metrics. Standardized model effect sizes are shown for each 
variable in each model. Variables deemed significant in each model are bolded. * = <0.05, 
**<0.01, ***<0.001. 

Response Model 
Rank 

Variables R2 AICc Δ 
AICc 

Weight 

  RB TB 1KM-
UB 

EL GR     

Mean water 
temperature 
anomalies 

1   -0.34 0.51*  0.21 5.92 0.00 0.43 

2    0.41*  0.14 6.75 0.82 0.29 
3  -

0.25 
-
0.42* 

0.55*  0.24 6.83 0.90 0.28 

Max water 
temperature 
anomalies 

1   0.32 0.44*  0.34 16.81 0.00 0.47 
2    0.54**  0.27 17.73 0.91 0.24 
3    0.57** 0.25 0.30 18.17 1.36 0.30 

Min water 
temperature 
anomalies 

1 -0.36   0.44  0.18 6.63 0.00 0.53 
2    0.26  0.13 6.84 0.21 0.47 

 

Table 3.5. Relative variable importance of predictor variables for the anomalies (°C) from high 
flow maximum, mean and minimum water temperature models.   

Response Road Buffer Tree Buffer 1km Urban 
Buffer 

Elevation Gradient 

Mean water 
temperature 
anomalies 

0.24 0.30 0.59 0.79 0.20 

Max water 
temperature 
anomalies 

0.35 0.20 0.52 0.83 0.32 

Min water 
temperature 
anomalies 

0.36 0.22 0.23 0.50 0.22 
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Figure 3.5. Linear regressions of variables featuring in the top model for mean, maximum, and 
minimum water temperature anomaly (°C) during high flow. Green dots indicate River Cole 
sites, Blue dots River Rea sites, and Red dots show River Blythe sites. The grey shading 
represents the 95% confidence interval.  
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3.5 Discussion 

3.5.1 Impact of Extreme Events on Water temperature 

Extreme events have been shown to lead to differences in water temperature anomalies 

compared to average flow, although differences were most apparent under low flow 

conditions. Although high flow conditions did have on average cooler water temperature 

anomalies compared to average flow, this was not substantial and may be because at high flow 

the specific heat capacity of the rivers increases, which increases the amount of heat transfer 

required to increase water temperature (Hannah and Garner, 2015). Resultantly, variation in 

water temperature is likely to be minimized during high flow events as a result of the increased 

thermal capacity. The moderately colder water temperature anomalies observed compared to 

average flow may reflect that the study took place during the summer months as heat budgets 

vary by season, with heat gain usually occurring during summer (Wagner et al., 2017; Kelleher 

et al., 2012). Hence, during high flows in summer, the increased thermal capacity likely leads to 

slightly cooler on average thermal dynamics than average flow because the main fluxes acting 

on water temperature are less effective at changing water temperature during higher discharge 

(Yang et al., 2014).  

Differences in water temperature anomalies between average flow and high flow were overall 

not high, suggesting that high flows do not constitute a strong control on water temperature. 

Although water temperature surges have been observes in rivers after summer storms (Nelson 

and Palmer, 2007; Pluhowski and Pecora, 1970), these likely constitute a relatively small subset 

of overall events that are often not visible on daily timescales. Furthermore, Croghan et al. 
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(2018) found that although precipitation events in summer can lead to increases in daily water 

temperature, for the largest precipitation events this effect was highly variable.  Overall, the 

impact of high flows on water temperature appeared to be minimal, with the likelihood of the 

occurrence of extreme temperature anomalies similar between average flow and high flows.   

In contrast to high flow, low flow conditions lead to substantial differences in water 

temperature anomalies compared to average flow. During low flows, the thermal capacity of 

streams is reduced and therefore the heat flux required to instigate water temperature change 

is decreased (Toffolon and Piccolroaz, 2015). Resultantly, low flows are likely to experience 

increases in water temperature during the summer months due to increased atmospheric 

influences. Hydrological drought is driven by anomalies in precipitation, and/or high 

temperatures leading to increased evaporation rates (Van Loon, 2015). Low flows therefore 

often occur during periods of high air temperatures, which means atmospheric conditions are 

already favorable to create water temperature increases, while the influence of high 

atmospheric temperatures increases as flow reduces (Van Vliet & Zwolsman, 2008; Zwolsman & 

van Bokhoven, 2007). Hence, atmospheric drought conditions during the summer months lead 

to a cascading effect causing extreme values in both flow and water temperature.  

Low flow conditions were almost twice as likely to exhibit positive extreme mean water 

temperature anomalies which further suggests that low flow can substantially increase the 

likelihood of rivers experiencing extreme warming. This has substantial implications for river 

ecology as the increased extreme water temperatures are a stressor to ecological life (Hester 

and Doyle, 2011), this stress is often exacerbated during low flow conditions where refuges 

from high temperatures are often reduced due to reduced flows (Bond et al., 2008). The 
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increased extreme water temperatures hence combine with low flow to provide a dual stressor 

on ecological life. Overall, the impact of low flows on water temperature can be substantial 

compared to both average flow and high flow which is likely to lead to degradation of riverine 

ecosystems.  

3.5.2 Impact of land use on water temperature response 

The main landscape characteristics predicting anomalies in low flow water temperature 

anomalies were land use characteristics. Counterintuitively, variables relating to urbanization 

(road density and 1km urban buffer) were negatively related to maximum, mean, and minimum 

water temperature anomalies. This suggests urbanization may reduce extreme low flow 

temperature anomalies. This may be because urban streams are usually found to be warmer 

than rural streams in the first place due to modifications such as increased discharge of 

effluents from sewage plants and industry as well as reduced riparian zone extent (Kaushal et 

al., 2010), therefore as this study looked at water temperature anomalies, it may be the case 

that as urban streams are comparatively warmer in the first place, the chances of positive 

temperature anomalies are less likely than in rural streams. Furthermore, infrastructure in 

urban streams, for example culverts, bridges, and tunnels have been found to reduce water 

temperatures by providing shading and thereby reducing the influence of atmospheric 

conditions on river temperatures (Anderson et al., 2010). Road density was found to be a 

particularly strong predictor of low flow water temperature anomalies. Road density has been 

found to be a main predictor of other water quality variables (Blaszczak et al., 2019), however 

has previously been thought to be a proxy of flow routing into streams. In this study it is 

possible that road density is a proxy of the drainage system, where areas of higher road and 
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drainage density provide a source of cooled water into urbanized rivers which may act to 

moderate water temperature. Further, pipe leakages are very common within urban areas in 

the UK and can provide an important source of groundwater recharge far exceeding natural 

conditions. This may provide a regular inflow of groundwater which moderates water 

temperature into more urbanized sites (Wakode et al., 2018), although evidence for the effects 

of urbanization on groundwater as a whole are mixed (O’Driscoll et al., 2010a). Furthermore, 

although urbanization is often associated with reduced riparian zones, which would reduce 

shading and potentially leave the site more responding to water temperature changes during 

low flow, a difference in riparian zone extent between our urban and non-urban sites was not 

noted. Tree buffer was also found to be negatively related to low flow temperature anomalies, 

which is likely due to increased riparian shading in forested areas which reduces temperature 

extremes (Garner et al., 2017; Dugdale et al., 2019).  

For predicting anomalies in high flow temperatures however, physical characteristics were 

continually the most important predictors with land use secondary or not relevant. Specifically, 

elevation was linked to increased mean, maximum and minimum temperatures anomalies 

which suggests that higher elevations are correlated with smaller river width and depth. Where 

rivers have less discharge, variations in flow and water temperature occur more quickly (Pilgrim 

et al., 1982), while increases in water temperature surges after storms are also found more in 

smaller catchments (Somers et al., 2013). Therefore, elevation likely represents increased 

temperature anomalies in headwater sites during high flow events. Elevation has further been 

noted as important predictor in water temperature in prior studies (Imholt et al., 2013; Jackson 

et al., 2017; Chang and Psaris, 2013). In these studies, elevation is noted to have a negative 
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relationship with water temperature at average flow, however sites with higher elevations 

usually have cooler water temperatures initially, this increases their susceptibility to warming 

through storm runoff.  In contrast, the main land use characteristics predicting water 

temperature anomalies during high flows were the 1km urban buffer and road buffer. 

Surprisingly, urbanization characteristics were negatively associated with mean and minimum 

anomalies but positively associated with maximum anomalies. This likely represents the water 

temperature surge effect for maximum water temperature anomalies where initially during 

some storms there is a surge in water temperature, with this effect strongly linked to 

urbanization (Somers et al., 2013; Nelson and Palmer, 2007). However, for minimum and mean 

temperature anomalies, the negative relationship may result from the fact that storm discharge 

is higher in urban areas (Fletcher et al., 2013), which may lead to reduced temperatures during 

high flow within the summer months due to increases in thermal capacity during high flow. 

Overall however, landscape characteristics predicted water temperature anomalies for high 

flow weaker than for low flow, indicating links between landscape and high flow water 

temperature are less marked.  

3.5.3 Conclusions and Future Research 

This study highlights that extreme events can lead to an increase in extreme water temperature 

anomalies. By providing better understanding of the landscape properties determining water 

temperature response to extreme events, the results inform urban planning to increase 

resilience of urban streams to extreme events.   
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Low flow is the main risk factor for extreme water temperature responses, with the relationship 

between water temperature and high flows being less marked. As climate change is expected to 

increase air temperature and the regularity of low flow events (Van Vliet et al., 2013), the 

impact of low flows on water temperature is likely to become increasingly common and more 

severe within future years. Further, we also found an impact of land use on water temperature 

response to extreme events. Urbanization was noted to be negatively related to mean low flow 

temperatures, which may be because urban streams are usually warmer than natural in the 

first place hence less susceptible to anomalies in warming. Furthermore, although urbanization 

is usually noted to degrade water quality, some aspects of urban stream infrastructure such as 

stream burial and artificial flow paths may reduce the impact of low flows on water 

temperature. For high flows, elevation, likely acting as a proxy of stream size, and distance to 

source were noted as strong predictor of high flow water temperature response and may 

highlight the responsiveness of water temperature in headwater catchments to high flow 

events. 

To increase the applicability of these results, studies featuring a wider range of geographical 

sites covering a greater range of land uses and river types is required. Further, developing 

longer water temperature time series is crucial to capture a wider range of flood and low flow 

events in order to increase confidence in the relationships we have observed.   
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CHAPTER 4: URBAN STREAM BURIAL INHIBITS DISSOLVED ORGANIC MATTER 
PROCESSING BY REDUCING PHOTODEGRADATION 

4.1 Abstract 

Urban landscapes can dramatically change fluvial shading (i.e. by stream burial) and water 

temperature regimes with significant implications for biodegradation and photodegradation of 

DOM rates in these ecologically vulnerable systems. However, short-term biodegradation and 

photodegradation dynamics in urban systems are not well understood, and sub-daily 

photodegradation has been rarely studied. In this chapter, we conducted 3 flume experiments 

with the following treatments: unheated and unshaded, heated and unshaded, unheated and 

shaded, and heated and shaded. The aim was to replicate various shading and temperature 

conditions to investigate the interaction between stream burial and future increases in climate 

extremes on photodegradation and biodegradation for urban streams by characterizing DOM 

using standard optical techniques. Mixed linear effects models were used to establish 

significant differences between treatments. The results show that photodegradation in 

unshaded treatments leads to high degradation of the fluorescent DOM pool, with significant (P 

< 0.05) differences in unshaded treatments versus shaded treatments for humic-like 

components and metrics. A significant difference (P < 0.05) between shaded and unshaded 

treatments for absorbance metrics (slope 275-295nm) indicates a shift to lower molecular 

weight material organic matter resulting from photodegradation in unshaded flumes. 

Temperature appeared to have a minimal impact on photodegradation rates when compared 

to shading, whilst minimal interaction effects were also observed, although some impact was 

observed for humic-like fluorescent metrics. The study suggests stream burial inhibits 
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processing of DOM and substantially alters DOM within the headwaters by preventing 

photodegradation of humic material while biodegradation was not affected by the treatments 

in this study. Hence, the study provides experimental evidence supporting daylighting as a 

means of increasing DOM processing in urban streams.  

4.2 Introduction 

Dissolved organic matter (DOM) is critical to the functioning of stream ecosystems, however 

urbanization can lead to substantial changes in DOM quality and quantity  (Hosen et al., 2014; 

Parr et al., 2015, O’Driscoll, Clinton, Jefferson, Manda, McMillan, et al., 2010; Beaulieu et al., 

2014). Urban landscapes significantly modify the processes controlling DOM production and 

processing to the extent that urban rivers have been associated with unique DOM compositions 

(Khamis et al., 2018). However, despite current global trends in urbanization and importance of 

DOM to stream ecosystem dynamics (Kaushal and Belt, 2012), important removal and 

transformation processes such as photodegradation and biodegradation remain poorly 

understood within urban streams.  

DOM incorporates a diverse mixture of aliphatic and aromatic compounds including humic and 

fulvic substances, proteins and phenols, carbohydrates and lipids, and polyaromatic 

hydrocarbons (Leenheer and Croué, 2003). DOM within urban streams has a distinct 

composition, with a greater prominence of microbial and proteinaceous materials compared to 

rural streams (Williams et al., 2016). Portions of DOM are important as an energy source in 

streams. Whilst DOM can attenuate light penetration into streams, DOM also acts as a reactant 
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and sorbent, enhancing interactions with anthropogenic pollutants and influencing mobilization 

rates and bioavailability (Minor et al., 2014).  

Processing of DOM is to a large extent controlled by rates of photodegradation and 

biodegradation (Hansen et al., 2016; Del Vecchio and Blough, 2002). Photodegradation occurs 

in the photic zone and impacts riverine DOM by transforming DOM molecules to smaller 

photoproducts with increased lability (Moran and Zepp, 1997), while labile bioreactive 

compounds can also be transformed to biorefractory compounds (Obernosterer and Benner, 

2004). Biodegradation occurs through microbial activity in both the photic and aphotic zones. 

Biodegradation tends to break down labile low-molecular weight organic matter (OM), while 

high-molecular weight aromatic materials can also be produced as by-products (Hansen et al., 

2016).  

In urban catchments stream burial reduces the exposure of urban rivers to solar radiation 

which is the primary driver of photodegradation (Beaulieu et al., 2014; Gurnell et al., 2007). 

Urban stream burial has been found to change DOM composition with higher humification 

identified within open reaches due to increased inputs of terrestrial material compared to 

buried streams, while greater uptake of recalcitrant humic material was also found within 

buried streams (Arango et al., 2017). Stream burial has also been found to reduce Nitrogen 

retention primarily as a result of reductions in transient storage, alongside reductions in 

primary production and hyporheic exchange, while rates of uptake of Nitrogen are lower in 

buried streams in general mainly as denitrification rates are lower due to reduced hyporheic 

sediments  (Beaulieu et al., 2014; Pennino et al., 2014). Reduced rates of photosynthesis in 

buried reaches also reduce labile Carbon production, although Carbon in urban streams is 
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usually dominated by allochthonous Carbon inputs (Arango et al., 2017). Changes in shading 

can also drive water temperature change within urban environments: riparian deforestation is a 

common cause of higher water temperatures, while stream burial can reduce both the 

magnitude and diurnal range of stream temperatures (Johnson and Wilby, 2015; Anderson et 

al., 2010). These changes in water temperature can impact photodegradation rates as the 

dominant pathway of DOM transformation changes with temperature (Porcal et al., 2015). 

Water temperature changes can also change the rate of DOM biodegradation, as solubility of 

Dissolved Organic Carbon (DOC) and microbial metabolism increase at higher water 

temperature (Mao and Li, 2018).  

Although stream burial has been identified as an important driver of DOM composition change 

(Beaulieu et al., 2014; Arango et al., 2017), the impacts of urbanization on instream 

biodegradation and photodegradation have not been quantified under experimental 

conditions. Field experiments on biodegradation and photodegradation are often hindered by 

confounding factors that are difficult to control for in field settings such as terrestrial inputs 

into the buried stream network (Haag and Matschonat, 2001). Mesocosm experiments are a 

useful alternative to field studies by allowing much greater control over the influencing factors 

acting on photodegradation and biodegradation rate (Nélieu et al., 2009). In order to validate 

findings from field studies and  improve understanding of the links between buried streams and 

degradation processes, mesocosm experiments are crucial to improving our understanding of 

the impacts of stream burial within urban rivers (Challis et al., 2014).  

This chapter addresses this gap by aiming to quantify the impact of landscape-induced changes 

in shading and temperature on DOM biodegradation and photodegradation rates 
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experimentally. We hypothesized:  

1) Unshaded treatments would increase the loss of the humic-like DOM compared to shaded 

treatments, leading to changes in both quality and composition of DOM. 

2) Heated treatments would accelerate declines in the humic-like content of DOM compared to 

non-heated treatments.  

3) Streams that were both unshaded and heated would lose the highest amount of humic-like 

DOM due to an interaction effect between temperature and shading.  

4.3 Materials and methods  

4.3.1 Study site and Experimental Set Up 

The research was undertaken in August 2018 at the University of Birmingham Ecolab facility in 

Birmingham, UK (52.4862° N, 1.8904° W). Three experiments were done across three days. In 

each experiment, 12 re-circulating flumes were installed outside in an unshaded area. The 

flumes were oval shaped and constructed of white fiberglass (dimensions 2m x 0.5m). Of the 

12, six flumes were subsequently shaded by placing a separate flume on top to prevent solar 

radiation, while the remaining six flumes were kept unshaded. Three shaded and three 

unshaded flumes were heated to give a total of four treatments in the experiment. Hence the 

experiment followed a 2x2 factorial design to enable interactions between variables to be 

explored. In heated treatments water temperature was set to ~23°C. Climate change is 

expected to increase 95th percentile river temperatures by up to 2.2 °C by 2100 (Van Vliet et al., 

2013), hence the 23 °C represents a likely extreme temperature scenario in the future for the 
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urban river this study sampled water from, where current maximum temperatures of around 

21°C have been observed. 

To provide water representative of an urban river, 1000 liters of water was taken from the 

Bourn Brook, a headwater stream 900m away from the Ecolab facility. The catchment is heavily 

urbanized (80%), and there have been extensive studies of the stream DOM (Carstea et al., 

2010; Baker et al., 2004; Khamis et al., 2018). At baseflow, DOC concentration  ranges between 

3.1-7.0 mg/L, while DOM has a high proportion of proteinaceous material reflecting inputs of 

OM associated with inputs from storm sewers (Carstea et al., 2009). Stream water was 

collected prior to each experiment and stored on-site in a water silo to allow mixing of stream 

water. The silo had an opaque lid to prevent sample photodegradation prior to the experiment 

start. Each flume was filled with 80 liters of water, giving each flume a water level of ~15cm, 

which was representative of the water level in the Bourn Brook.  

Each flume was instrumented with a water temperature sensor with ± 0.2 °C sensitivity 

(Campbell Scientific, Utah, USA), logging at 15-min intervals, and aquarium pumps (Newa 1.6 

adj, Loreggia, Italy) to circulate water and prevent oxygen depletion. In the heated flumes, an 

aquarium heater (NEWA THERM VTX 200W) was used to maintain the higher water 

temperature.  

Each experiment was undertaken for nine hours: from 9am – 6pm, which encompassed most of 

the daily solar radiation exposure. Most prior studies of photodegradation and biodegradation 

were completed over a daily or weekly timeframe (Shank et al., 2009; Lu et al., 2013; Moody 

and Worrall, 2017; Sankar et al., 2019). The shorter duration of our experiments reflected our 
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intention to replicate likely water transit times through buried streams, or deforested riparian 

margins given that urban streams comprise a relatively short proportion of the total stream 

length for many catchments (Napieralski and Carvalhaes, 2016). Furthermore, the majority of 

DOC degradation occurs rapidly, in the first day of DOM input to a river (Moody et al., 2013), 

although the temporal resolution of many biodegradation and photodegradation studies has 

been insufficient to investigate this. Hence our experiment offers an opportunity to replicate 

and control the effects of shading and temperature on photodegradation and biodegradation 

rates across the same source water. 

Atmospheric conditions affecting photodegradation and biodegradation rates were comparable 

for photosynthetically active radiation (PAR) and shortwave radiation (SW-Rad) during the 

three experiments (Table 4.1). PAR and SW-Rad were measured using a weather station set up 

at the same site of the experiment. Mean water temperatures for each treatment for all 3 

experiments are shown in Table 4.1.  Shaded unheated flumes were 6.6 °C cooler than shaded 

heated flumes, while the unshaded unheated flumes were 4.5 °C cooler than unshaded heated 

flumes. This difference was unavoidable due to the requirement to shield the shaded flumes 

from UV-exposure which reduced atmospheric influence on temperature dynamics. Despite 

this, water temperatures within the unheated treatments were substantially closer to one 

another, than to either heated treatment. 
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Table 4.1 - Water temperature and atmospheric conditions (photo-synthetically active 
radiation: PAR; and short-wave radiation) for each experiment during the study (Mean ± SD). 

 Daily Mean Water Temperature (°C)  
Experiment Shaded  

Heated 
Shaded  
Unheated 

Unshaded 
Heated 

Unshaded 
Unheated 

Mean  
PAR (μmol/s) 

SW-Rad  
Daily Flux 
(W/m2) 

1 25.0 ± 
0.40 

18.0 ± 
0.6 

23.9 ± 
0.6 

19.5 ± 
0.61 

549 ± 410 148 

2 24.5 ± 
0.30 

17.7 ± 
0.5 

23.4 ± 
0.70 

19.1 ± 
0.6 

570 ± 372 139 

3 21.0 ± 
0.3 

15.0 ± 
0.4 

22.2 ± 
0.60 

16.4 ± 
0.5 

637 ± 281 152 

Experiment 
Mean 

23.5 16.9 22.8 18.4 585 146 

 

4.3.2 Sample collection and analysis 

Samples were collected from each flume at 0, 1, 2, 4, 6, and 9 hours during each experiment. 

Samples were taken at higher frequency during the beginning of the experiment as prior 

studies, albeit in different environments, have indicated high rates of DOC loss and change 

within the first hour of photoexposure (Moody and Worrall, 2017). A total of 72 samples were 

collected during each experiment, giving a total of 216 samples in the study. Samples were 

immediately filtered using 0.45 µm sterile nylon membrane syringe filters following collection. 

Filtered samples were refrigerated in the dark in 100 ml sample tubes that were kept in an 

opaque container and had been acid washed for 24 hours and rinsed with deionized water.  

Samples were analyzed within 24 hours of collection. Prior to analysis, samples were raised to 

20 °C using a water bath. DOC concentration (mg C L−1) was determined for each sample using 

a Shimadzu TOC-V series autosampler. Organic Carbon calibration standards were prepared for 

a range of 2-25 mg C L−1 TOC in accordance following manufacturer’s guidelines. Prior to the 
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analysis, a wash cycle and standard measurement were undertaken. Blank measurements were 

also taken to give estimates of background noise. After every 10th sample, a replicate and 

quality check sample were measured, and a wash cycle completed.  

DOM quality was quantified by fluorescence using a Varian Cary Eclipse spectrofluorometer 

with a 1cm path length to produce excitation-emission matrices. Samples were kept at a 

constant 20 °C using a temperature controller. Prior to analysis, the water Raman peak was 

determined, and a blank sample containing deionized water was measured. Post-measurement 

corrections were applied to correct for inner-filter effects, Raman and Raleigh scatter was 

removed from measurements. The blank measurement was subtracted from each EEM and 

each EEM was normalized to the Raman measurement (Murphy et al., 2010). All corrections 

were performed using the “eemR” package (Massiccotte, 2017) in R (version 3.5.3). 

Absorbance spectra were measured for each sample using a Jenway 6850 spectrophotometer 

UV-VIS spectrometer, with measurements recorded between 200-700 nm at a 1 nm interval, 

with a 1 cm path length quartz cuvette. A blank measurement using deionized water was 

recorded prior to the start of the experiment and subtracted from each sample during post-

processing.  

4.3.3 Calculation of optical metrics 

A range of optical metrics were calculated to characterize DOM decomposition (for details of 

how to calculate these metrics readers are referred to Table 1 in Hansen et al., 2016).  

For absorbance metrics we calculated specific ultraviolet absorbance at 254nm (SUVA254) to 

indicate sample aromaticity (Weishaar et al., 2003). Spectral slopes at 275-295nm (S275-295), 
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and 350-400nm (S350-400) were also calculated, with higher slope values generally indicating 

low-molecular weight DOM (Helms et al., 2008).  The slope ratio was also determined as this 

has been found to increase after irradiation (Hansen et al., 2016).  

For fluorescence metrics, we calculated the fluorescence index (FI) where values of ~1.5 

indicate microbial activity while values around 1.2 indicate terrestrial DOM, the humification 

index (HIX) where higher values indicate more humic DOM, and the biological index (BI) where 

higher values indicate more autochthonous  production (Para et al., 2010; Ohno, 2002; 

McKnight et al., 2001). We also calculated peak ratios for peaks C:T (indicating the relative 

importance of humic-material compared to proteinaceous DOM), C:A (humic content compared 

to fulvic content), and A:T (recalcitrant humic material compared to labile material) (Baker et 

al., 2008; Coble, 1996; Hansen et al., 2016). 

The main fluorescence components were identified by Parallel Factor Analysis (PARAFAC) in 

MATLAB 9.2 (MathWorks, USA) using the “DOMFluor” toolbox following Stedmon and Bro 

(2008). We produced a 4-component model (Table 4.2; Figure 4.1) which was split-half 

validated. Fluorescence maxima (Fmax) values from each component in the validated model 

were then exported and are presented herein.  
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Table 4.2.  Description of component characteristics identified in PARAFAC model. Similarity 
scores based on correlations with observed components in the Open Fluor database are shown 
in brackets in column 5. 

Component Excitation 
Max λ (nm) 
 

Emission Max λ 
(nm) 

Description Identification in previous 
Studies 

C1 <250 396 Humic-like, in-
stream production 

C2 Søndergaard et al. (2003) 
(0.99) 
C4 Osburn et al. (2012) (0.99) 
C1 Yamashita et al. (2013) 
(0.98) 

C2 260 + 355 466 Humic-like, 
terrestrially 
derived, 
reprocessed  

C2 Gonçalves-Araujo et al. 
(2015) (0.99) 
C2 Borisover et al. (2009) 
(0.99) 
C2 Shutova et al. (2014) 
(0.99) 

C3 345 416 Humic-like, 
terrestrially derived 

C4 Stedmon et al. (2003) 
(0.97)  
C2 Liu et al. (2019) (0.97) 

C4 280 338 Tryptophan-like, 
associated with 
microbial activity 

C3 Borisover et al. (2009) 
(0.99) 
C5  Peleato et al. (2016) 
(0.99) 
C3 Stedmon et al. (2011) 
(0.93) 
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Figure 4.1. Excitation-Emission matrices of PARAFAC components identified in this study. 

4.3.4 Statistical Analysis  

Results were standardized to percentage change, with values from 0 hours representing 1. All 

three experiments for same treatments exhibited similar trends in all metrics over time, hence 

for brevity, graphs represent a pooled dataset.  

Differences in degradation rates between treatments were investigated using mixed linear 

effects models as they allow differences between the treatments to be assessed and have been 

widely used in experimental studies (Harrison et al., 2018). The response variables in the 

models are based on the value for each measured variable at the end of each experiment (9-

hour value) in order to assess the treatment effects at the endpoint of the experiments. All 

models were produced using the “nlme” package (Pinheiro et al., 2019) in R (version 3.5.3). In 

all models, shaded/unshaded and heated/unheated treatments were treated as fixed effects 
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while models also featured a fixed interaction effect between shaded/unshaded and 

heated/unheated. Experiment date was treated as a random effect within the models.  

4.4 Results and Discussion 

4.4.1 Temporal Change in DOC Concentration 

In our data, there was no short-term degradation in DOC, DOC did not vary significantly 

between treatments, and no interaction effect was observed (P > 0.05) (Table 4.3). DOC had 

positive and negative fluctuations within 5% of baseline values over time, suggesting little 

change in DOC during the experiments (Figure 4.2). Processing rates ranged from -0.28 mg 

C/l/day to 0.23 mg C/l/day in the experiments suggesting higher processing rates compared to 

those observed in other urbanized water sources, with 0.0048 ± 0.00339 mg  C/l/day identified 

by Sankar et al. 

 (2019) over a 30-day study, which indicates processing rates are somewhat higher on the first 

day. In contrast, Moody and Worrall (2017) found rates of -30.1 mg C/l/day to an increase of 

3.5 mg C/l/day for a peatland catchment thus highlighting dramatic differences in DOC 

degradation depending on catchment type. While losses of DOC can occur through 

biodegradation and photodegradation, the gains in DOC can result from increased production 

of DOM after photodegradation and biodegradation which can prompt greater autotrophic 

activity (Catalán et al., 2017).  

The  minimal degradation of DOC seen in these results likely reflects that urban rivers are 

relatively DOC depleted and at baseflow the majority of DOC is recalcitrant compared to that 

typically found in rural  rivers (Hook and Yeakley, 2005). Urban DOM is dominated by terrestrial 
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inputs during storms mainly through storm drain pathways and direct overland flow where 

there is often a high input of labile material (Coble et al., 2016), however this is rapidly 

consumed and is unlikely to be present at baseflow which is when water samples were 

collected for this study.  

 

Figure 4.2. Temporal variation of DOC (mg/L) across experiments. Data are normalized across 
the experiments. Black lines show shaded treatments while red lines show unshaded 
treatments. Solid lines show heated treatments while dashed lines show unheated treatments. 
Error bars were calculated at 95% confidence intervals by pooling data from the three 
experiments. 

4.4.2 Temporal Change in Absorption indices 

No significant differences in SUVA-254 (P > 0.05; Table 4.3) were observed (Figure 4.3A). 

Minimal positive changes in SUVA-254 following photoexposure were observed in previous 

studies (e.g. Hansen et al. 2016), suggesting that the aromaticity character of DOM does not 

change much due to short term photodegradation. Changes in SUVA-254 values have been 

noted as a result of biodegradation, however usually over a longer timeframe than our study 

(Fellman et al., 2009). 
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For S275-295 (Figure 4.3B), there was a significant difference between shaded and unshaded 

treatments (P < 0.01), but no significant difference (P > 0.05) between heated and unheated 

treatments and no interaction effect was observed (Table 4.3). Hence, it appears 

photodegradation was a significant process in the experiment, while biodegradation was 

minimal. S275-295 increased by up to 8% in the unshaded treatments, while it decreased by up 

to 4% in the shaded treatments. The increase in S275-295 values in the unshaded treatments 

suggests a shift in DOM composition to DOM with a lower molecular weight (Helms et al., 

2008). The shift towards lower molecular weight OM after photoexposure has been previously 

attributed to either disaggregation or an increase in photodegradation by-products (Hansen et 

al., 2016; Stepanauskas et al., 2005).  

In contrast S350-400 (Figure 3C) showed no significant difference between treatments over 

time (P > 0.05; Table 4.3). There was a general decrease in the S350-400 slope: with up to a 20% 

in the shaded unheated treatment, although large error bars were observed in all cases. 

Previous studies have found that S350-400 decreases after photoexposure (Spencer et al., 

2009; Logvinova et al., 2015; Helms et al., 2008), which we did not observe. It is likely, however, 

that the S275-295 and S350-400 track different DOM pools which have differing responses to 

light exposure and microbial activity (Romera-Castillo et al., 2013). Consequently, the pool 

tracked by S350-400 may be less vulnerable to photodegradation over the short timescale of 

our study.  

With respect to slope ratio (Figure 4.3D), there was a peak increase in the unshaded unheated 

treatment of 10%, while the shaded, unheated treatment had a peak of 10% decrease. 

However, these differences were not significant (P > 0.05; Table 4.3). Increases in slope ratio 
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relate to photochemical-induced increases, while decreases arise from microbial processes 

(Osburn et al., 2012; Helms et al., 2008). The slope ratios were higher in the unshaded 

treatments for the duration of the experiments, indicating the degradative effects of 

photoexposure, as higher slope ratios are linked to changes in molecular weight which in this 

case suggest photodegradation induced changes, however no significant effect was found, 

likely because there was a relatively large amount of noise with the S350-400 data. 

 

Figure 4.3. Temporal variation of selected absorbance Indices during the study. Error bars were 
calculated at 95% confidence intervals by pooling data from the three experiments. Black lines 
show shaded treatments while red lines show unshaded treatments. Solid lines show heated 
treatments while dashed lines show unheated treatments. 

4.4.3 Temporal Change in Fluorescence  
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A significant difference in the fluorescence index (Figure 4.4A) was found between the shade 

treatments and a significant interaction effect between shade and temperature was also found 

(P > 0.05, Table 4.3). Fluorescence indices provide an indication of microbial sources, hence the 

results suggest shading in combination with temperature change lead to a shift in the 

composition of DOM (Fasching et al., 2015). No clear temporal trend was apparent however, 

suggesting differences in the fluorescence index at the end point of the experiment may be as a 

result of natural variability in the treatments. The fluorescence index was not expected to 

reflect photodegradation given the short time scale of our study (Hansen et al., 2016).  

There was a significant difference between shaded and unshaded treatments in the HIX (Figure 

4B; P < 0.01, Table 4.3) with the HIX of unshaded treatments decreasing over the course of the 

study by up to 16%, while that of shaded treatments stayed relatively constant. This suggests 

that photoexposure can lead to rapid decreases in humification (Ohno, 2002). This possibly 

reflects the presence of allochthonous DOM (e.g. from plant sources) which are more 

vulnerable to photodegradation (Hansen et al., 2016). HI has previously been identified to be 

higher in buried reaches than open streams in the summer, however this effect appears to be 

highly seasonal, with Arango et al. (2017) finding HIX higher in the autumn months due to 

higher terrestrial inputs of leaf litter in open reaches. In contrast to previous studies which have 

found SUVA-254 and HIX to co-vary (e.g. Du et al. 2016), the lack of change in SUVA-254 in 

correspondence with the change in HIX indicates the complexity of the fluorescent DOM pool 

which may be particularly prone to photodegradation. This is supported by Catalán et al., 

(2017) who found that the humic-like fluorophores in DOM have widely different reactions to 

degradation effects. Hence, the main fluorophores contributing to HIX in this study may not be 
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the same types of fluorophores that are generally linked to SUVA-254 in previous studies. 

Further, while we observed no significant difference between the heated and unheated 

treatments (P > 0.05), the heated unshaded treatment reached a minimum value substantially 

quicker than the unheated unshaded treatment. This suggests that higher temperatures in the 

heated unshaded treatment increased the rate at which humic material was broken down 

(Porcal et al. 2015). 

There was no significant difference in BI (Figure 4.4C) (P > 0.05, Table 4.3) between treatments: 

minimal change was observed during the study with high error bars for all treatments. As BI is 

reflective of microbial-derived DOM (Para et al., 2010), the lack of change is further evidence 

that biodegradation was not a primary mechanism of DOM composition change within our 

study.  In literature also no significant differences between BI in buried and open streams has 

been identified, however in the summer months BI values appear to be higher than other times 

of year due to higher autochthonous production (Arango et al., 2017). 

For the A:T (Figure 4.4D) and C:T (Figure 4.4F) ratios, no significant differences were found 

between treatments and no interaction effect was found (P < 0.01; Table 2). For both A:T and 

C:T ratios, shaded treatments remained relatively stable throughout the study, although for 

unshaded treatments decreases of up to 13% and 21% were apparent for the A:T and C:T ratios 

respectively. Both the A:T and C:T ratios indicate the amount of humic material in comparison 

to fresh material in the OM pool. Increases in both ratios would be expected after 

biodegradation, with decreases after photodegradation (Hansen et al., 2016). Though 

decreases were observed, these were not significant, likely because fluorescence in the peak T 

and A regions was relatively weak, hence the noise to signal ratio was high between 
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treatments.  The lack of a significant difference between protein and humic ratios between 

open and buried reaches has also been identified by Arango et al. (2017).  

There was significant difference in the C:A ratio (Figure 4.4E; P < 0.01; Table 4.3) between the 

shaded and unshaded treatments with a steady decrease of 13% from baseline values. Peaks C 

and A represent different DOM pools (Kothawala et al., 2012), and hence the decrease in the 

ratio in the unshaded treatments suggests that the peak C pool of humic-material is particularly 

prone to photodegradation as shown in Figure 4.4B. Peak C materials are important to stream 

ecosystem functioning as an energy source (Hudson et al., 2007), yet peak C has been found to 

be particularly vulnerable to photodegradation. This suggests that stream burial in urban rivers 

may have important implications for ecosystem functioning by reducing removal rates of humic 

material for transport downstream. This effect may, however, be counteracted by higher input 
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rates of terrestrial materials within open reaches, although this material is often more 

recalcitrant (Arango et al., 2017).  

Figure 4.4. Temporal variation of Fluorescence Indices during the study. FI = Fluorescence 
Index, HI = Humification Index, BI = Biological Index, AT Ratio = Peak A to Peak T ratio, CA Ratio 
= Peak C to Peak A ratio, CT Ratio = Peak C to Peak T ratio. Error bars were calculated at 95% 
confidence intervals by pooling data from the three experiments Black lines show shaded 
treatments while red lines show unshaded treatments. Solid lines show heated treatments 
while dashed lines show unheated treatment 

 

For components 1 (Figure 4.5A), 2 (Figure 4.5B), and 3 (Figure 4.5C), significant differences (P < 

0.01) were observed between shaded and unshaded treatments (Table 4.3). Components 1-3 
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represent distinct pools of humic-like OM and it appears that humic material in the fluorescing 

pool of DOM is vulnerable to photodegradation over the short timescales of the study. In all 

cases, C1-3 gradually fell during the study but to varying degrees with reductions of up to 19%, 

30%, and 39% for components 1-3 respectively. Differences in the extent of degradation 

between the humic components reflect the complexity of the urban DOM pool. Humic 

fluorescence is thus likely to comprise a mixture of natural and non-natural compounds with 

natural compounds generally relating to breakdown of vegetation materials, while non-natural 

compounds can exist from inputs from the wider storm drain network where detergents for 

example also fluoresce in the humic-like region (Williams et al., 2010). C3, which represents a 

terrestrial DOM pool (Table 4.2), was most vulnerable to photodegradation. The photoreactivity 

of terrestrially derived humic-like OM has been observed previously (Lu et al., 2013). Hence, 

systems where terrestrial inputs of humic DOM dominate are likely particularly prone to 

photodegradation. With respect to temperature effects, C3 showed a significant difference 

between heated and unheated treatments (P < 0.05), although no significant difference was 

observed for C1 or C2, and no interaction effects were noted (P > 0.05). However, in all cases, 

the heated unshaded treatment was characterized by increased degradation, highlighting the 

importance of temperature in influencing OM degradation (Porcal et al. 2015). 

For C4, significant effects were found for temperature and shading, while the interaction 

between the two was also significant (P < 0.05; Figure 4.5D). Component 4 represents a 

proteinaceous fluorophore (Table 4.2), which have been found to be more resistant to 

photodegradation when compared to humic-like material (Phong and Hur, 2015). C4 increased 

in six hours for both unshaded treatments, indicating there may have been some 
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photodegradation in the unshaded treatments, however in the heated treatment C4 returned 

to baseline levels by the end of the experiment suggesting rapid processing by in-stream 

microbial communities of proteinaceous material at higher temperatures. Unshaded 

treatments however showed little change over the course of the experiment, likely reflecting 

that photodegradation was the main potential degradation mechanism to alter proteinaceous 

materials in the study (Hudson et al., 2007). In contrast to the humic-like components (C1-C3) 

where photodegradation was apparent within 2 hours, photodegradation was not apparent in 

C4 till six hours into the experiment, which likely reflects the increased resistance to 

photodegradation of proteinaceous material compared to humic-like material (Phong and Hur, 

2015). 
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Figure 4.5. Temporal variation of PARAFAC components during the study. Error bars were 
calculated at 95% confidence intervals by pooling data from the three experiments. Black lines 
show shaded treatments while red lines show unshaded treatments. Solid lines show heated 
treatments while dashed lines show unheated treatments 
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Table 4.3. Linear mixed effects model results for all response variables within the study. 
Temperature refers to treatments separated into “Heated” or “Unheated” categories, Shade 
effect refers to treatments separated into “Shaded” or “Unshaded” categories. Interaction 
refers to the interaction effect between temperature and shading. * denotes significant p-
values. 

Response 
Variable 

Parameter Estimate Standard 
Error 

t-value p-value 

DOC Intercept 0.99 0.027 36.90 0.00 
Temperature -0.02 0.037 -0.54 0.60 
Shade 0.02 0.037 0.76 0.46 
Interaction: 
Temperature 
and Shade 

-0.05 0.052 -0.96 0.34 

SUVA254 Intercept 1.05 0.04 27.92 0.00 
Temperature -0.00 0.04 -0.00 0.99 
Shade -0.01 0.04 -0.13 0.89 
Interaction: 
Temperature 
and Shade 

0.02 0.06 0.34 0.73 

S275-295 Intercept 0.97 0.04 27.11 0.00 
Temperature -0.01 0.04 -0.32 0.75 
Shade 0.11 0.04 2.54 0.01* 
Interaction: 
Temperature 
and Shade 

-0.02 0.06 -0.31 0.75 

S350-400 Intercept 0.87 0.09 9.47 0.00 
Temperature 0.07 0.07 1.00 0.32 
Shade 0.11 0.07 1.61 0.12 
Interaction: 
Temperature 
and Shade 

-0.12 0.09 -1.26 0.22 

Slope Ratio Intercept 1.21 0.11 11.17 0.00 
Temperature -0.16 0.10 -1.62 0.11 
Shade -0.08 0.10 -0.79 0.43 
Interaction: 
Temperature 
and Shade 

0.19 0.15 1.27 0.21 

FI Intercept 1.10 0.05 21.81 0.00 
Temperature -0.09 0.07 -1.26 0.22 
Shade -0.21 0.07 -2.96 0.01* 
Interaction: 
Temperature 
and Shade 

0.20 0.10 1.99 0.05* 
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HI Intercept 0.98 0.02 45.62 0 
Temperature 0.04 0.03 1.31 0.20 
Shade -0.13 0.03 -4.32 0.00* 
Interaction: 
Temperature 
and Shade 

-0.04 0.04 -1.03 0.31 

BI Intercept 1.07 0.05 22.18 0 
Temperature 0.03 0.07 0.46 0.65 
Shade 0.02 0.07 0.32 0.75 
Interaction: 
Temperature 
and Shade 

-0.06 0.10 -0.58 0.56 

AT Ratio Intercept 0.94 0.05 20.52 0.00 
Temperature 0.03 0.06 0.39 0.70 
Shade 0.06 0.06 0.90 0.37 
Interaction: 
Temperature 
and Shade 

-0.14 0.09 -1.56 0.13 

CA Ratio Intercept 98.83 0.27 37.40 0.00 
Temperature 0.01 0.03 0.17 0.86 
Shade -0.12 0.03 -3.41 0.00* 

 Interaction: 
Temperature 
and Shade 

-0.00 0.05 -0.03 0.98 

CT Ratio Intercept 0.93 0.05 44.49 0.00 
Temperature 0.03 0.07 -1.77 0.62 
Shade -0.06 0.07 -5.01 0.36 
Interaction: 
Temperature 
and Shade 

-0.13 0.10 -1.33 0.19 

C1 Intercept 0.98 0.03 35.68 0.00 
Temperature -0.04 0.03 -1.55 0.13 
Shade -0.13 0.03 -5.03 0.00* 
Interaction: 
Temperature 
and Shade 

0.00 0.04 0.06 0.95 

C2 Intercept 1.01 0.02 46.44 0.00 
Temperature -0.01 0.02 -0.65 0.52 
Shade -0.27 0.02 -11.72 0.00* 
Interaction: 
Temperature 
and Shade 

-0.03 0.03 -0.87 0.39 

C3 Intercept 1.05 0.01 75.52 0.00 
Temperature -0.06 0.02 -3.72 0.00* 
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Shade -0.41 0.02 -24.40 0.00* 
Interaction: 
Temperature 
and Shade 

-0.04 0.02 1.78 0.08 

C4 Intercept 1.09 0.03 41.40 0.00 
Temperature -0.13 0.04 -3.56 0.00* 
Shade -0.11 0.04 -3.02 0.01* 
Interaction: 
Temperature 
and Shade 

0.13 0.05 2.43 0.02* 

 

4.5 Conclusion 

The results suggest that shading reduced photodegradation of the humic fluorescent pool of 

DOM, in accordance with the hypothesis. DOM quantity however did not notably degrade or 

decrease during the experiments which was contrary to our hypothesis. Over the short 

timescales of our study, biodegradation appeared to have a minimal impact on DOM 

composition, with changes seemingly being driven by photodegradation. Furthermore, the 

effects of water temperature were shown to be relatively minor, which disproved our 

hypothesis that increased temperature would accelerate photodegradation and 

biodegradation. This was likely because the range of temperatures was not high enough to 

cause notable differences in the rates of photodegradation and biodegradation. The interaction 

effects between temperature and shading were also shown to be weak, which contradicted our 

original hypothesis. This can also be attributed to the minimal effect of temperature. There 

were considerable variations in differences in optical metrics: absorbance was generally less 

responsive than fluorescence which likely reflects the complex and varied OM pool that 

together constitutes urban river DOM.  
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These findings have important implications for urban river ecosystem management: the results 

indicate that shading through actions such as stream burial substantially alters DOM 

composition in the urban headwaters. Stream burial prevents photodegradation and leads to 

little compositional change of DOM for export downstream. Previous studies have indicated 

stream burial also greatly reduces terrestrial inputs of humic material, although this is often 

more recalcitrant in composition. Therefore, when daylighting streams, it is important to 

maintain stream shading through riparian coverage to reduce the loss of labile humic material 

downstream while also maintaining terrestrial inputs. For future research, in-situ 

measurements tracking photodegradation and biodegradation within urban rivers will be useful 

to increase our understanding of degradation in these relatively little studied, but highly 

important, river systems. Further, mass spectrometry techniques such as gas-chromatography 

mass spectrometry (GC-MS) and liquid-chromatography mass spectrometry (LC-MS) may offer a 

means of better characterizing DOM, in particularly with regards to identifying specific types of 

Organic Carbon. This will help resolve the complexities involved in understanding the behavior 

of the DOM pool in relation to biodegradation and photodegradation.
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CHAPTER 5: HIGH-FREQUENCY IN-SITU FLUOROMETRY INDICATES THE 
CONTROL AND SOURCE DYNAMICS OF DISSOLVED ORGANIC MATTER 
DURING STORMFLOW EVENTS IN URBAN SYSTEMS 

5.1 Abstract 

Urbanization alters the quantity and quality of Dissolved Organic Matter (DOM) fluxes to 

river systems during storms, degrading their ecological health. The flashiness of urban flow 

catchments means synoptic sampling has been a poor method for investigating DOM source 

dynamics. Resultantly the controls on linkages between DOM sources and flow path are 

poorly understood, and in-situ, continuous monitoring is required to characterize system 

behavior at a suitable temporal resolution. To address this knowledge gap, we installed an 

in-situ fluorometer in an urban stream (Bourn Brook, Birmingham, UK) for 10 weeks from 8th 

September to 20th November 2016. Two wavelength pairs were monitored at 5-min 

resolution: Humic-like fluorescence (HLF) (Ex. 365 nm, Em. 490 nm) and Tryptophan-like 

fluorescence (TLF) (Ex. 285 nm, Em. 340 nm). Controls on DOM concentration was 

investigated using log Concentration-Discharge (C-Q) plots. The relationship between 

discharge and concentration for TLF and HLF were strongly chemodynamic at low discharges 

but TLF showed chemostatic behavior thereafter suggesting urban DOM can be exhausted 

during large or frequent events, while figure of eight hysteresis was the most common 

hysteresis type for both HLF and TLF, indicating that the dominant sources of DOM shifts 

throughout events. Multiple linear regression was used to identify hydrometeorological and 

landscape predictors of fluorescence. Water temperature was an important predictor, 

possibly highlighting the influence of increased microbial activity at higher temperatures on 

urban DOM dynamics. Seven-day antecedent rainfall was also identified as an important 

predictor of TLF and HLF change with a negative relationship for both TLF and HLF with 
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increasing antecedent rainfall (indicating exhaustion of DOM sources). Land use metrics 

were weaker predictors of DOM dynamics; however, road density and total vegetated areas 

were important for predicting maximum HLF and TLF, highlighting landscape properties as a 

control on DOM dynamics.  This study enhances mechanistic understanding of DOM 

controls and sources and highlights the vulnerability of urban rivers to degradation through 

storm-based inputs of DOM from urban sources.    

5.2 Introduction 

Dissolved Organic Matter (DOM) represents a pool of complex, heterogeneous material 

within the carbon cycle that is ubiquitous in riverine systems and critical for ecosystem 

functioning (Fellman et al., 2010; Hudson et al., 2007). DOM composition and concentration 

is controlled by a combination of geology, land use, hydrometeorology and in-situ 

conditions such as biological communities and geomorphology (Williams et al., 2010; Coble, 

1996). Urbanization can substantially alter catchment permeability, the drainage network, 

decomposition and the input of terrestrial soil/vascular plant sources of DOM, leading to a 

distinctive DOM composition in urban catchments (Khamis et al., 2018; Hosen et al., 2014; 

Kaushal et al., 2014). Urban rivers have previously been found to have a DOM composition 

in which microbial, proteinaceous compounds dominate, whereas rural systems are typically 

dominated by humic-like compounds (Smith and Kaushal, 2015; McElmurry et al., 2014; 

Hosen et al., 2014; Baker, 2001; Kaushal et al., 2018b) . The increased concentration of 

proteinaceous compounds in urban rivers contributes to oxygen depletion by increasing the 

biological Oxygen demand (BOD) in streams, which impacts biogeochemical cycling within 

the stream and can lead to systems becoming anoxic if BOD becomes too high (Paerl et al., 

1998; Kaushal et al., 2014). The composition of urban DOM can vary at event-based time 
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scales when changes in water-flow pathways occur. For example, through the activation of 

storm drains and combined sewage overflows (CSOs), which can connect the wider 

catchment and the sewerage system to the stream (Czemiel Berndtsson, 2010; Liu et al., 

2019; Zwolsman and van Bokhoven, 2007) . Despite increasing urbanization worldwide 

(McGrane, 2016), the study of urban DOM has been relatively neglected to date.  Improved 

understanding of the major controls on urban DOM dynamics are required to improve water 

quality management in urbanized river catchments  (Khamis et al., 2018).  

A mixture of hydrometeorological and land use controls determine DOM response to 

individual storm events (McElmurry et al., 2014; Eckard et al., 2017; Blaen et al., 2017; 

Kaushal et al., 2014). Concentration-discharge (C-Q) relationships can be used to investigate 

DOM dynamics during storm events (Bowes et al., 2015; Bieroza et al., 2018). The shape of 

C-Q relationships can be used to infer the dominant catchment characteristics that influence 

water quality variables. C-Q relationships can be broadly split into two classes: 

chemodynamic, where source limitation occurs and either a positive or negative 

relationship is observed, and chemostatic, where no change in concentration with discharge 

is observed (Godsey et al., 2009). Despite growing interest in the wider water quality 

literature, little work has been done exploring C-Q relationships for DOM in urban rivers. 

 Hydrometeorological conditions have also previously been shown to be a major control on 

water quality dynamics (Worrall and Burt, 2004; Blaen et al., 2017). During storm events the 

potential nutrient load generated from the catchment is constrained by the precipitation 

amount and intensity, whilst the subsequent in-stream discharge response can lead to DOM 

mobilization (Schuster et al., 2007; Saraceno et al., 2009). Antecedent conditions have been 

highlighted as particularly important controls on nutrient dynamics. Drier conditions lead to 
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build-up of terrestrial material which can be mobilized during storm events, whilst 

consistently wet conditions have often been linked to source depletion, and to subdued in-

stream response (Carstea et al., 2010, 2009). 

Land use is a further control on DOM response during storm events (McElmurry et al., 

2014). The characteristics of precipitation events can be highly variable across catchments, 

particularly in urban catchments (Croghan et al., 2018), hence, DOM may be generated 

disproportionately at specific points in the catchment (Pedersen et al., 2010). Engineered 

headwaters, such as storm drains, gutters and pipes can act as sinks for organic material 

during dry periods but also provide large amounts of carbon and nitrogen to streams during 

storm events (Fork et al., 2018; Smith and Kaushal, 2015). Hence, in-stream responses are 

likely to be at least partly controlled by catchment land use in areas where DOM is 

predominantly mobilized. To date, however, our ability to assess the nature of these 

controls on urban DOM has been constrained by the limited availability of high temporal 

resolution data (Blaen et al., 2016; Old et al., 2019). Furthermore, urban land use has been 

treated as one broad class in previous studies, while urban land cover is variable, with a 

range of urban metrics influencing hydrological signals (McGrane, 2016).  

Historically DOM has been assessed within urban systems by analyzing water samples 

collected manually (e.g. Carstea et al., 2009). Fluorescence spectroscopy provides detailed 

characterization of DOM samples, and can be used to assess DOM concentration and quality 

(Fellman et al., 2010; Hudson et al., 2007). This technique requires the use of laboratory 

spectrometers or hand-held instruments, and, as a result, the temporal resolution and 

length of time series at high-resolution has been limited (Blaen et al., 2016). These manual 

sampling techniques cannot adequately characterize DOM in urban rivers during storm 
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events, as urban rivers respond rapidly to precipitation events. While some in-situ sampling 

campaigns have been completed (Carstea et al., 2010), they are of limited temporal 

duration. However, recent developments in optical sensors have included field-deployable 

in-situ fluorometers (Khamis et al., 2017). In-situ fluorometers have the capability to 

monitor fluorescence at high-temporal resolution, allowing monitoring over longer periods 

and capturing of storm event dynamics (Downing et al., 2012; Saraceno et al., 2017). In-situ 

fluorometers deployed in urban areas tend to monitor Tryptophan-like fluorescence (TLF) 

and Humic-like fluorescence (HLF) wavelength pairs (Khamis et al., 2018). The TLF signal is 

predominantly associated with dissolved proteinaceous and phenolic compounds (Beggs 

and Summers, 2011). However, phenolic compounds are unlikely to be a substantial 

contributor to the TLF signal in urban streams, which tends to be dominated by 

proteinaceous material (Baker, 2001). TLF is indicative of organic pollution within streams 

and strongly correlates with Biological Oxygen Demand (BOD) (Baker and Inverarity, 2004). 

It has previously been found to be a useful water quality metric in urban streams (Khamis et 

al., 2018). HLF is associated with humic substances, and provides a proxy for Dissolved 

Organic Carbon (DOC) (Coble, 1996).  To accurately monitor both TLF and HLF in-situ it is 

important that instruments are carefully calibrated and undergo regular maintenance as 

they can be susceptible to fouling (Downing et al., 2012; Khamis et al., 2017). The 

technology of in-situ fluorometers has, however, great potential to explore DOM dynamics 

at temporal resolutions that were previously not possible. 

Given the research gaps outlined above, the primary aim of this study was to identify the 

main controls on DOM dynamics (i.e. changes in composition and quantity) during high flow 

conditions for an urban river. To provide increased mechanistic understanding of DOM 

storm events dynamics we used high-resolution radar precipitation data, which enabled us 
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to overcome issues with the spatial patchiness of precipitation, and high spatial resolution 

land use datasets. Through this we aimed to more accurately link DOM dynamics to the 

routing of water through engineered drainage infrastructure from discrete parts of the 

catchment. More specifically, our main objectives were to: 

1) Identify the main controls on DOM dynamics during storm events using high 

frequency, in-situ monitoring of humic-like fluorescence (HLF), and tryptophan-like 

fluorescence (TLF); 

2) Infer source and flow-path linkages based on DOM response to spatially resolved 

meteorological and land-use variables. 

In order to test these objectives, the following hypotheses were developed: 

• HLF and TLF will both be chemodynamic up to a threshold 

whereupon they will become chemostatic due to exhaustion of 

material in the system. 

• A range of hysteresis types would be identified for both TLF and HLF, 

however anti-clockwise hysteresis will be more common for HLF than 

TLF due to differences in source types.  

• Antecedent conditions will be the strongest control on TLF and DOM 

dynamics. 

• Urbanization metrics will be the strongest land use metrics 

associated with TLF and HLF dynamics.  
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5.3 Methods 

5.3.1 Study site 

The study was conducted during autumn 2017, between September 9 and November 21. 

Sensors were installed in the Bourn Brook, Birmingham, UK (52°27′N, 1°54′W; Figure 5.1), a 

headwater stream with a catchment size of 27.9km2 and elevations ranging from 116 m to 

234 m above m.s.l. Although the source of the stream is a natural woodland, most of the 

catchment is urbanized (77% urban/suburban land use). The stream has a flashy flow 

regime, typical of urbanized catchments. While no wastewater treatment plant exists in the 

catchment, the river is vulnerable to Combined Sewage Overflow (CSO) discharges and 

leakage from the sewerage network (Khamis et al., 2017; Carstea et al., 2009). Chemical 

water quality in the river has previously been assessed by the Environment Agency as 

“good”, although this does not measure DOM, while biological quality was assessed as 

“fair”, although the river is at risk of diffuse pollution (Carstea et al., 2009). 
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Figure 5.1. A) The Bourn Brook catchment and associated land use derived from the UK 
Centre of Ecology and Hydrology (CEH) Land Class 2015 (Rowland et al., 2017). B) The 
distribution of 1km2 grid cells used to estimate rainfall loads from rainfall radar C) The 
location of the catchment within the UK. 

5.3.2 Stream Data 

Water levels in the stream were logged at 5-min resolution over the monitoring period using 

a Druck PDCR800 pressure transducer (GE, Billerica, USA). Water levels were converted from 

stage to discharge using a flow rating curve developed for the site, following the velocity-

area method. All data from the study were stored on a CR1000 data logger (Campbell 

Scientific, Logan, USA). A TinyTag Aquatic 2 (Gemini, Sussex, UK) water temperature logger 

was also installed to monitor in-stream water temperature data (Table 5.1).  

A modified GGUN-FL30 fluorometer (Albillia, Neuchâtel, Switzerland) was used to measure 

in-situ fluorescence. The fluorometers instrumentation is composed of an excitation branch 
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and a detection branch, which runs perpendicular to the excitation branch (Khamis et al., 

2017). The instrument monitors wavelength pairs corresponding to Tryptophan-like 

fluorescence (TLF) and Humic-like fluorescence (HLF) and turbidity (Table 5.1). The turbidity 

measurements were used to correct for turbidity interference post-monitoring. Sample 

temperature was measured within the sensor using an internal thermistor, which allowed 

correction for thermal quenching on the measurements.  

Table 5.1. Parameters and corresponding instrumentation with specifications used within 
study. Accuracy and range are reported for all variables. For TLF, HLF, and Turbidity, 
wavelengths monitored are reported. MDL = Minimum detection limits, ppb = Parts per 
billion. 

Variable Instrument Specification 
Water Level  Druck PDCR800  Accuracy = ±0.6%  
Water 
Temperature 

TinyTag Aquatic 2 
 

Accuracy = 0.01°C 
Range = -40°C to +70°C 

TLF GGUN-FL30 
 

MDL = 1.74 ppb 
Range = 0-1000 ppb 
Wavelengths monitored = Ex. 285 ± 12 nm (FWHM), 
Em. 340 ± 15 nm (FWHM) 

HLF GGUN-FL30 
 

MDL = 1.39 ppb 
Range = 0-1000 ppb 
Wavelengths monitored = Ex. 365 ± 25 nm (FWHM), 
Em. 490 ± 30 nm (FWHM) 

Turbidity GGUN-FL30 MDL = 0.8 NTU 
Range = 0-1000 NTU 
Wavelength monitored = 660 nm  

 

The fluorometer was secured on the stream bank and water samples were taken from the 

stream at 5-min intervals. A peristaltic pump (Model 810, Williamson Pumps Ltd, UK) 

controlled by a CR1000 logger was connected to the sensor and operated through a relay 

switch.  Samples passed through an inlet strainer wrapped in a 250-micron mesh to reduce 

potential fouling, and then flowed through 3m of silicon tubing (6.4 mm diameter). To 

minimize contamination between subsequent measurements, samples were pumped 

through the fluorometer for 3-mins to ensure complete flushing of the measurement cell 
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before taking three measurements for each wavelength pair. After analysis, samples were 

returned to the river. Optical sensors are prone to fouling (biological and inorganic) during 

field deployment, particularly following storm events (Rode et al., 2016), and hence the 

optical measurement cell of the sensor was cleaned at regular intervals over the monitoring 

period (i.e. sub-weekly) to reduce fouling-related drift in measurements. When fouling-

related drift was observed, which was identified by step changes in measurements following 

cleaning, this was corrected for using a linear regression model assuming a constant fouling 

rate. Generally, the regularity of cleaning lead to minimal periods of drift within the dataset.  

5.3.3 Instrument Calibration and Data Correction 

Raw outputs from the FL 30 (mV) data were converted to ppb or NTU using a six-point 

calibration curve, over a range of 0-1000 ppb. Prior to each run, a blank reading of the 

fluorometer was taken using ultrapure water to assess the baseline reading. TLF was 

calibrated using standards created by dilution of a 100-ppm stock solution (L-Tryptophan, 

Acgros Organics, 99%). HLF was calibrated using quinine sulphate dehydrate in 0.05 M 

H2SO4, a 100-ppm stock solution was subsequently diluted by ultra-pure milli-Q water. 

Turbidity was calibrated using a formazine suspension. For all optical parameter’s 

calibration was conducted using 1, 10, 50, 500, and 1000 ppb/NTU standard solutions, 

which were used immediately after production to avoid deterioration.  Each solution was 

measured in the fluorometer for at least one minute with measurements recorded every 10 

seconds and a mean value taken. All measurements were taken at 20°C, and the 

fluorometer was acid washed and rinsed repeatedly with deionized water between samples 

to avoid contamination.  
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Post-monitoring corrections for temperature quenching and turbidity interference were also 

required. Instrument-specific temperature corrections and instrument and site-specific 

turbidity corrections were developed prior to this study (by Khamis et al. 2017), and these 

were used herein. Fluorescence was temperature corrected to a reference temperature of 

20°C using the following equation derived by Khamis et al. (2015): 

1) 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟= 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
1+ 𝐩𝐩(𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎−𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓)

 

where F = Fluorescence signal, ρ = ratio at the slope intercept for the reference temperature, 

Fmes = measured value, and Tref = reference value.  

For turbidity, corrections were made for HLF and TLF using linear regression models. 

Measurements from the fluorometer were calibrated for turbidity by collecting sediment 

from the study site and diluting with deionized water to create a dilution series ranging 0-

500 NTU. The impact of site-specific turbidity across the dilution series was then calculated 

by measuring the degree of change in the TLF and HLF signal with increasing turbidity. The 

percentage change in the HLF and TLF signal across the range of turbidities were then 

calculated and could be applied to the data post-monitoring.  

5.3.4 Meteorological data 

Event precipitation for the catchment was estimated using radar data from the UK Met 

Office MIDAS radar system (Met Office, 2012), and checked against gauge data from within 

the catchment for accuracy. Radar precipitation data were recorded at 5-min time steps 

with 1km2 spatial resolution. This enabled spatial estimates of precipitation for each storm 

event to be calculated for 1km2 grid cells distributed across the catchment (Figure 5.1B).  

5.3.5 Data analysis 
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5.3.5.1 Concentration-Discharge Data 

C-Q relationships were developed for HLF and TLF. The C-Q relationship was determined by 

calculating the slope on logarithmically transformed data for both C and Q, as has been 

widely used in prior concentration-discharge studies (Evans and Davies, 1998; Bieroza et al., 

2018; Godsey et al., 2009). HLF, TLF, and discharge for the entire dataset were log-

transformed and TLF and HLF were then regressed against discharge to determine slope. 

Where a slope value was < 0.1, the relationship was defined as chemostatic, meaning that 

no change in concentrations occurs with increasing discharge. Where the slope was > 0.1, 

the relationship was defined as chemodynamic, indicating either a dilution or concentration 

effect with increasing discharge (Bieroza et al., 2018).  

As the C-Q relationships we observed were not entirely linear, we also used segmented 

regression to assess whether there was a breakpoint in the C-Q relationship (Muggeo, 

2008). We then tested if the difference in slope between breakpoints was significant using a 

Davies test. We used the Alkaike Information Criterion (AIC) index to assess if the C-Q 

relationship was modelled better by the linear model or segmented model.   

Hysteresis analysis provides further information about the nature of the C-Q relationship 

during discrete storm events,  specifically the potential catchment source areas and flow 

pathways (Lloyd et al., 2016a; Vaughan et al., 2017). In this study we used the modified 

Hysteresis Index (HI) developed by Lloyd et al. (2016b) to assess hysteresis. The modified HI 

calculates hysteresis across the loop for different flow percentiles by comparing the rising 

limb and falling limb values. Due to the rapid rising limb flow, which is common in urban 

rivers (Fletcher et al., 2013), the percentiles ranged from 20% to 33% for the study. In 
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calculating the modified HI, flow (Q) and fluorescence (F) for both HLF and TLF were 

normalized using the following equation (Lloyd et al., 2016), taking Q as an example: 

2) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑄𝑄𝑖𝑖 =  𝑄𝑄𝑖𝑖−𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛

 

where Qi is discharge for a given timestep, Qmin is minimum discharge and Qmax is maximum 

discharge. Fluorescence values were normalized in the same manner. HI was calculated 

using the following equation: 

3) 𝐻𝐻𝐻𝐻𝑖𝑖 =  𝑉𝑉𝑟𝑟 − 𝑉𝑉𝑓𝑓 

where HIi is the HI for a given percentile, Vr is the value of the rising limb for a given variable, 

and Vf is the corresponding value of the falling limb for the given variable. All values across 

the loop were then averaged, yielding a HI value between -1 and 1 for each event. Positive 

(negative) values indicate clockwise (anti-clockwise) hysteresis.   

Each event hysteresis graph was visually inspected and classified, based on the directionality 

and shape, into one of the following groups: (i) figure of eight, (ii) clockwise, (iii) anti-

clockwise, (iv) complex, and (v) no hysteresis. These groupings were chosen based on prior 

studies which have identified these as the most common forms of hysteresis (Williams, 

1989).  

5.3.5.2 Hydrometeorological and Landscape Analysis 

Hydrometeorological and landscape metrics (Table 5.2) were determined for 22 events. 

Events were defined using the “hydromad” R package, using a threshold of >25% increase in 

flow for a minimum of five hours. This relatively short event duration was selected due to 

the flashy nature of the catchment.  
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Hydrometeorological metrics were chosen based on their importance in other water quality 

studies (Blaen et al., 2017). The following landscape metrics were derived for the 

catchment: average slope (percentage), percentage road cover (defined as road and 

associated paved surfaces), roofs (defined as area of roofs from all buildings in the 

catchment), urban area (defined as all paved surfaces within the catchment), vegetation 

(defined as all vegetation within the catchment), and woodland (defined as only wooded 

areas of the catchment). The classifications were selected to include land use variables that 

reflect the drainage properties of the basin and influence water flow pathways (Khamis et 

al., 2018).  Vegetation, woodland, and urbanization metrics were calculated at a 25m2 

spatial resolution using the Centre of Ecology and Hydrology Land Class 2015 dataset 

(Rowland et al., 2017) while road and roof cover were obtained from the Corine Land Cover 

2012 dataset (EEA, 2012). Catchment slope was calculated from a catchment DEM derived 

from a 5m digital terrain model of the UK (Ordnance Survey, 2018). 

The catchment was sub-divided into 1km2 grid cells that matched the grid cells of the radar 

precipitation dataset (Figure 5.1B). For each event, precipitation totals were determined for 

each gridcell, and the weighted average for the contribution of each gridcell to the total 

event rainfall were derived. The contributions of each land use type in every event were 

calculated as a function of the proportional land cover in each gridcell and each gridcell was 

weighted by the proportion of the total catchment precipitation that fell in that gridcell. 

Gridcell values were then averaged to yield a single value for each land use variable, 

indicating its estimated contribution to each event: indicating the relative precipitation 

totals falling on roads, vegetation, urban areas, roofed, and woodland areas for each event. 
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To assess the main hydrometeorological and landscape predictors (Table 5.2) on the 

fluorescence metrics (Table 5.3), ordinary least squares (OLS) multiple linear regression was 

undertaken. Variables were initially screened for normality and homogeneity of variance. 

Normality was assessed using Shapiro-Wilk tests (Shapiro and Wilk, 1965), and then visually 

inspected using quantile-quantile plots. All variables were found to be normally distributed.  

Data were then investigated for collinearity by calculating variance influence factors (VIF) 

(Zuur et al., 2010). If a variable had a VIF greater than three, it was removed from analysis. 

The R package “MuMin” was then used to fit all combinations of response models (N = 256) 

ranked according to corrected AICc due to the small sample size of the dataset. All models 

within <2AICc were considered the subset of best models. Following the law of parsimony, 

the model with the fewest variables was considered the best model.  
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Table 5.2. Summary of hydrometeorological and landscape metrics analyzed. Land use stats 
represent the contribution of each land use type during individual events. Descriptive 
statistics are shown for storm events within the study period.  

 

Variable Code Metric Unit Max Min Mean 
Flow PF Peak flow m3 s-1 2.79 

 
0.54 1.46 ± 0.77 

 ED Event 
duration  

Hours 58.00 5.75 23.55 ± 14.15 

Precipitation RA Rainfall 
amount 

mm 18.40 
 

0.40 5.57 ± 4.95 

 MaI Maximum 
hourly 
intensity 

mm/hr 6.40 
 

0.40 2.11 ± 1.64 

 MeI Mean 
Intensity 

mm/hr 2.57 
 

0.18 0.72 ± 0.51 

Temperature WT Water 
temperature 
during event 

̊C 14.50 
 

9.33 12.37 ± 1.34  

Antecedent 
Conditions 

1A Total rain 1 
day before 
event 

mm 5.60 
 

0 1.31 ± 1.72 

 7A Total rain 7 
days before 
event 

mm 31.20 
 
 

2.20 18.84 ± 9.27 

 14A Total rain 14 
days before 
event 

mm 46.40 
 

4.80 32.68 ± 12.47 

 EM Magnitude 
of last event 

m3 s-1 2.79 
 

0.54 1.43 ± 0.79 

Landscape  Ur Average 
Urbanised  

% 81.03 73.65 76.9 ± 1.92 

 Ve Average 
Vegetation 

% 25.72 17.97 22.20 ± 1.95 

 Wo Average 
Woodland 

% 13.77 7.90 11.34 ± 1.36 

 Ro Average 
Roofs 

% 12.23 11.47 12.23 ± 0.28 

 Rd Average 
Roads 

% 8.97 7.95 8.38 ± 0.22 

 Sl Average 
Slope 

% 5.78 5.41 5.61 ± 0.08 
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Table 5.3. Definitions of fluorescence metrics used within the study 

 

5.4 Results 

5.4.1 Water Quality Parameters Time Series  

The study period included 22 discrete storm events. Daily mean discharge averaged 0.43 ± 

0.17 m3 s-1 over this period. Baseflow was relatively stable across the duration of the study, 

with discharge peaks predominantly influenced by precipitation (Figure 5.2). Mean 

precipitation for each discrete storm event averaged 2.86 mm, with the bulk of studied 

events (14) occurring in September, followed by a notable drier period from the 1st to the 

20th October, followed by a further 5 events in quick succession. In November, 3 discrete 

precipitation events were identified (Figure 5.2). Water temperature (WTemp) showed a 

notable decrease over time during the study (Figure 5.2), from a mean daily WTemp of 

14.21 ± 2.13 °C during September, to 9.5 ± 2.33 °C in November which followed normal 

seasonal patterns. Turbidity remained low during baseflow, with peaks during storm events 

(Figure 5.2).  

Metric Unit Definition Justification 
Max TLF ppb Maximum value for TLF during each 

event 
Indicator of maximum amount 
of protein-like fluorophores 
mobilised during high flow  

Max HLF ppb  Maximum value for HLF during each 
event 

Indicator of maximum amount 
of humic-like fluorophores 
mobilized. 

Mean 
TLF:HLF ratio 

None The mean value of the ratio between 
TLF:HLF for each event 

Indicator of shifts in flow path 

HLF HI  None HLF hysteresis index for each event Indicator of hysteresis type 
TLF HI  None TLF hysteresis index for each event Indicator of hysteresis type 
Max TLF 
increase 

% The percentage increase value for 
peak TLF from the start of event value 
for TLF 

Standardized peak increase 
across each event, allowing 
better comparison between 
events 

Max HLF 
increase   

% The percentage increase value for 
peak HLF from the start of event value 
for HLF 

Standardized peak increase 
across each event, allowing 
better comparison between 
events 
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TLF was stable outside of storm events, with increased largely after the onset of storm 

events (Figure 5.2). Mean daily TLF was 61 ± 15.85 ppb, with a maximum daily mean of 85.9 

ppb recorded on 11 September. Uncorrected TLF was slightly higher than the corrected TLF, 

with uncorrected mean daily TLF at 64.47 ± 17.3 ppb. HLF was also stable during baseflow, 

although a slight diurnal pattern was present with decreases in HLF throughout the day 

followed by increases at night (Figure 5.2).  Mean daily HLF was 58.05 ± 10.65 ppb, with a 

maximum daily mean of 76.39 ppb observed on 1 October. Uncorrected daily HLF was 

higher than corrected HLF, with uncorrected mean daily HLF at 74.35 ± 17.67 ppb.  
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Figure 5.2. Time series of water quality and discharge for the study period: 9 Sept. to 21 
Nov. 2017. A) Shows discharge (black) and precipitation (red), B) shows water temperature 
(black) and turbidity (red), C) shows TLF and D) shows HLF. For the TLF and HLF graphs black 
lines show the data corrected for temperature and turbidity, and red lines show the raw 
time series. 
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5.4.2 Concentration Controls  

5.4.2.1 Concentration-Discharge Analysis 

Analysis of the C-Q relationship indicates that both TLF (P < 0.01, slope = 0.54 ± 0.01) and 

HLF (P < 0.01, slope= 0.30 ± 0.01) exhibited significant chemodynamic behavior (Figure 5.3). 

The relationship was stronger for TLF, with greater explanatory power for the TLF linear 

model (R2 = 0.42) compared to the HLF linear model (R2 = 0.36).  

However, as both the TLF and HLF C-Q relationships were non-linear, a break point analysis 

was undertaken to identify the flow under which chemodynamic behavior ceases and 

chemostatic behavior begins. For the TLF data (Figure 5.3a), the breakpoint was 0.48 ± 0.01 

m3 s-1: before this point, the data are chemodynamic (slope = 0.85 ± 0.01), whereas 

subsequently chemostatic behavior is observed (slope = 0.09 ± 0.01). The slopes of the 

segmented regression for the TLF data were significantly different from one another, as 

analyzed with a Davies test (P < 0.001). For the HLF dataset, no chemostatic behavior 

threshold was reached and a breakpoint in the C-Q relationship occurred earlier at 0.46 ± 

0.01 m3 s-1. Slopes of the segmented regression for the HLF dataset were also found to be 

significantly different using a Davies test (P < 0.001).  

When ranking models using AIC, the segmented models were found to fit the C-Q 

relationship better than the linear models for both the TLF and HLF datasets. For the TLF 

data, the linear model had an AIC of -42355 compared to -46983 for the segmented model, 

while for HLF data, the linear model had an AIC of -55991 compared to -70403 for the 

segmented model. 
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Figure 5.3. Log C-Q relationship for a) TLF against discharge and b) HLF against discharge. 
Overall C-Q relationships for the dataset are indicated by the black lines, red lines show the 
chemodynamic portion of the dataset, and green lines show the chemostatic. The 
breakpoint line indicates where the relationship changes from chemodynamic to 
chemostatic. 

5.4.2.2 Hysteresis Analysis 

Four forms of hysteresis were observed during the study period (Figure 5.4). A HI between       

-0.1 and 0.1 was most commonly observed for both the HLF (11 events) and TLF (8 events) 

datasets (Table 5.4). An HI of < -0.1 (indicating anti-clockwise hysteresis) was found for 8 
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events for TLF, and for 9 events for HLF. An event HI of > 0.1 (clockwise hysteresis), was 

found 6 times for the TLF dataset, but only two times for the HLF dataset.  

After visual inspection, figure of eight hysteresis was determined to be the most common 

class in both datasets, followed by anti-clockwise, with clockwise hysteresis occurring far 

less frequently for both datasets (Table 5.4). While the hysteresis ratio suggested clockwise 

hysteresis, events were the most frequent, most clockwise and anti-clockwise hysteresis 

events were reclassified as figure of eight hysteresis following visual inspection. Complex 

hysteresis was also common in both datasets and tended to occur during storm events with 

multiple discharge peaks on the rising limb of the event.  

Table 5.4. HI ratio shows categories for individual events for both TLF and HLF. The 
hysteresis categories were split as follows:  >0.1 (indicating clockwise hysteresis), -0.1-0.1 
(indicating no hysteresis), and < -0.1 (indicating anti-clockwise hysteresis). Hysteresis type 
shows the categorization of events into the four defined hysteresis categories. Hysteresis 
type was determined by visual inspection as a means of best identifying figure of eight 
hysteresis. 

 

 HI Ratio Hysteresis Type 
 >0.1 0.1 to 

-0.1 
< -0.1 Clockwise Anti-

Clockwise 
Figure of 
Eight 

Complex 

TLF 6 8 8 2 7 8 5 
HLF 2 11 9 0 8 9 5 
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Figure 5.4. Examples of the hysteresis types observed during the study period, with event-
hydrograph shown to the right of each hysteresis type.  Color of the data points relates to 
the progression of the event (yellow = event start, red = event end), whilst arrows show 
direction of hysteresis. The associated HI scores are shown for each graph. 

 

5.4.3 Landscape and hydrometeorological controls  

Water Temperature was found to be the most common predictor of maximum change in 

TLF and HLF, featuring in all possible model combinations (Table 5.5), with WT positively 
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correlated with maximum TLF and HLF in all cases. For both maximum TLF and HLF, only one 

model combination was identified (Table 5.5). For mean TLF: HLF ratio, event magnitude 

and road density were found to be significant predictors and the most commonly featured 

variables in the top models (Table 5.5). Peak flow (PF) was found to be the most regular 

candidate variable and was also a significant predictor in TLF and HLF HI models (Table 5.5). 

For TLF, HI peak flow featured in 17 of 20 model combinations (Table 5.5), while for the HLF 

HI model peak flow featured in all three combinations. For the percentage change metrics, 

the seven-day antecedence predictor featured in all possible model combinations (Table 

5.5). In all cases seven-day antecedent rainfall had a significant (P < 0.05) negative 

relationship with maximum TLF and HLF percentage change. Mean rainfall intensity (MeI) 

also featured commonly in percentage change metric models and featured in the best 

model for maximum HLF (Table 5.5), with positive relationships observed for both metrics.  

Hydrometeorological variables were the dominant variables featuring in models for the 

fluorescence metrics and were included in all the best fitting models shown (Table 5.5). In 

contrast land use metrics were found to feature in models for three of the seven 

fluorescence metrics. Within the land use metrics, only vegetation (VE) and road density 

(RD) were found in the model combinations (Table 5.5), with road density the only variable 

featuring in a best model (Table 5.5). Notably, both vegetation and road density featured in 

model combinations for the maximum percentage TLF change where they were significant 

(P < 0.05) predictors, but not for the maximum percentage HLF change.  Where land use 

variables did feature, road density showed a positive trend with TLF metrics, while 

vegetation showed a negative trend. 
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Table 5.5.  Model coefficients for best model for each metric in Table 5.3. Number of models (N) that each predictor variable featured in for 
models <2 AICc of top model is also shown for each fluorescence metric (see Table 5.6 in supplementary material for full list of competing 
models). Only predictors significant in at least one the best models are shown. A full list of predictors is found in Table 5.2. *P < 0.05, **P < 0.01, 

***P < 0.001. 

 Predictor  
Response PF MeI WT 1A 7A EM RD Ve R2 
Max TLF   6.06 ± 2.29 

N = 1 
 -1.28  ± 0.33 

N = 1 
   0.46** 

Max HLF  15.62 ± 7.78 
N =1 

7. ± 2.91 
N =1 

     0.21* 

Mean 
TLF:HLF ratio 

   
N =1 

 
N =2 

 -0.12 ± 0.05 
N =4  

-0.33 ± 0.17 
N = 3  

 0.23* 

TLF HI 0.13 ± 0.06 
N = 17 

 
N = 5 

 
N = 3 

 
N = 10 

 
N = 4 

 
N =4 

 
N =2 

 
N =2 

0.17* 

HLF HI  0.18 ± 0.06 
N = 3 

-0.13 ± 0.11 
N = 3 

 
N = 2 

 
N = 1  

    0.20* 

Max TLF 
increase (%) 

 
N = 2 

 
N = 4 

 
N = 2 

 -4.87 ± 0.72 
N = 7 

  
N = 1 

 
N = 1 

0.68*** 

Max HLF 
increase (%)  

 18.53 ± 5.99 
N = 2 

  
N = 1 

-1.27 ± 0.33 
N = 2 

   0.69*** 
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5.5 Discussion & Conclusions 

5.5.1 Controls on DOM concentration 

We found that TLF and HLF responses were chemodynamic when discharge was below a certain 

threshold, suggesting that small events may have a disproportionately large impact on DOM 

dynamics. Urban catchments have particularly strong terrestrial-riverine linkages, with drainage 

systems activating at relatively low precipitation totals (McGrane, 2016). Consequently, even 

minor events (<1mm) can lead to noticeable fluxes in both TLF and HLF (Kaushal and Belt, 

2012). The strong changes in TLF and HLF at low discharge suggest that significant sources of 

organic fluorophores, contributing to TLF and HLF, are located either close to the channel or in-

stream. Previous studies have indicated that storm drain biofilms are particularly rich sources of 

DOM, while road runoff is also likely to also provide an elevated DOM pulses (Zhao et al., 2015). 

Stream bed scouring has also been proposed as an important DOM source during storm events 

with benthic algae and biofilms transported (Khamis et al., 2018; Kaushal and Belt, 2012). The 

chemostatic nature of the relationship at higher discharges is likely a result of a variety of 

factors. To a large extent, it is a dilution effect, whereby increased runoff from flow pathways 

carrying DOM are counteracted by low DOM precipitation inputs, leading to a relatively steady 

chemostatic relationship. As a result, the high HLF and TLF concentrations at low discharges are 

likely to be a result of anti-clockwise hysteresis as they were mainly apparent on the falling limb 

of storms, as has previously been observed by Evans and Davies (1998). It should also be noted 

that the range of values observed at high discharges is very high, indicating that events of 

similar magnitude have a substantially different response in DOM concentration. This suggests 

that  antecedent conditions may be a major  control of DOM dynamics at high discharges 
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(Guarch-Ribot and Butturini, 2016; Yates et al., 2016). Where antecedent conditions are wetter, 

new flow paths have been found to emerge from the wider catchment, which create new 

potential sources of DOM within the drainage network (Haga et al., 2005).  For example, after 

wetter antecedent conditions CSOs are more likely to be activated which means material 

usually transported to the sewerage system is instead transported to the river system.  

The hysteresis analysis identified a range of hysteresis types in the catchment. Figure of eight 

hysteresis was most commonly observed for both TLF and HLF. The frequency of figure of eight 

hysteresis supports the results of the C-Q relationship. As discharge increases from initially low 

values, clockwise hysteresis occurs, possibly as in- or near-stream DOM sources are activated 

(Blaen et al., 2017), while at higher discharges, anti-clockwise hysteresis occurs as a result of 

the changing relationship between discharge and DOM (Lloyd et al., 2016a). This is possibly due 

to source depletion from the near-stream sources that are activated first during storm flow 

(Lawler et al., 2006).  

It would appear that the fluorophores contributing to TLF are more prone to source depletion, 

whereas HLF tends to remain elevated even at long timescales after return to baseflow 

suggesting a long-term input from distal sources (Vaughan et al., 2017). This may indicate the 

importance of subsurface, slow flowing pathways which provide a steady and constant input of 

humic material as the main contributing source of HLF within the system. The compounds 

contributing to TLF meanwhile appear to be more related to more proximal sources, which 

reflects the influence of engineered structures on the TLF which tend to build up protein-like 

materials over time (Sakrabani et al., 2009), but are susceptible to exhaustion effects which can 

cause clockwise hysteresis. However, anti-clockwise hysteresis occurred regularly in both HLF 
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and TLF. Anti-clockwise hysteresis is suggestive of a lag between discharge rise and DOM 

activation, which suggests that distal pathways are in general a prominent source of DOM. The 

presence of anti-clockwise hysteresis may also result from the activation and cross-connections 

of CSOs, which are inactive at the beginning of the event  and are activated only during heavy 

rainfall and when specific flow thresholds are exceeded (Chen et al., 2017).  

5.5.2 Hydrometeorological and landscape controls on DOM dynamics 

The study has highlighted that water temperature, peak flow and antecedent rainfall appear to 

be the dominant hydrometeorological drivers influencing urban DOM dynamics. Water 

temperature during events was found to be a strong predictor of maximum fluorescence 

values. The positive influence of water temperature on DOM and DOC dynamics has been 

observed previously with temperature having an important role in delivery and uptake 

(Winterdahl et al., 2011, 2016; Huang et al., 2013; Raymond et al., 2016). This is thought to be 

caused by higher temperatures driving increased algal production in streams during warmer 

parts of the year (Dawson et al., 2008). As our study ran from the start of autumn, it is likely 

that as the study progressed and temperatures decreased, biological activity within the stream 

also reduced, which reduced the amount of DOM within the systems even for storms of similar 

discharges (Raymond et al., 2016).  TLF and HLF had higher values at the start of the study 

(early Autumn) and lower values at the end of the study period (late Autumn). The water 

temperature change within the study may therefore also represent the change in season. 

Hence, the reduced HLF and TLF values found for storms later during the study appear could be 

related to seasonal changes such as changes in leaf fall within early Autumn (Miller and 
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McKnight, 2010). Further, due to the large amount of rainfall events it is likely that significant 

source depletion occurred over the duration of the study. 

The TLF and HLF HI were linked to the peak flow, with higher peak flows generally 

corresponding to more positive HI values. This provides  further evidence of dilution effects 

being a strong control on DOM dynamics at high discharge, as higher HI values indicate 

clockwise hysteresis (Lloyd et al., 2016b). Subsequently, during higher peak flows, the amount 

of material transported into the river is counteracted by dilution from high discharge. (Phillips 

and Chalmers, 2009; Kaushal et al., 2014). However, it is also possible that the link of HI to peak 

flow is related to source depletion for bigger events, where during the largest events TLF and 

HLF concentrations the bulk of availably material has been transported on the rising limb of the 

storm (Sakrabani et al., 2009).  

Antecedent rainfall conditions featured in all models as a predictor of percentage changes in 

HLF and TLF, which is in line with numerous studies showing that antecedent conditions act to 

control nutrient dynamics (Grand-Clement et al., 2014; Gnecco et al., 2005; Blaen et al., 2017). 

This provides further evidence that source depletion is linked to antecedent conditions. Wetter 

antecedent periods lead to source depletion, with regular rainfall events leading to exhaustion 

of DOM within the catchment (Carstea et al., 2009). During drier conditions organic material 

builds up in the catchment and in the drainage network, which can then be mobilized during 

events (Guarch-Ribot and Butturini, 2016).  

While hydrometeorological conditions appear to represent the dominant control on DOM 

dynamics, land use was found to play a subsidiary role. Road density occurred in more model 
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combinations than any of the other land use metrics and contributed to one best model. As 

road drainage is directly connected to storm drain systems, the percentage of roads in the 

catchment provides a useful proxy for storm drain flow paths (Brabec et al., 2002). It is 

therefore likely a better proxy for urbanization and the density of urban infrastructure than 

impermeable surface cover. Roads are also a prominent source of DOM derived from the wider 

catchment, with petroleum spills and road dust build up representing two of the biggest urban 

terrestrial sources of DOM that are activated during storms (Krein and Schorer, 2000; 

McElmurry et al., 2014). Catchment vegetation was the only other land use variable to feature 

in the models. Vegetation generally featured in models for TLF, where a negative relationship 

with TLF was shown. This likely reflects that when vegetated areas provide higher amounts of 

material during storms, there is reduced impact from the engineered terrestrial sources that 

tend to be associated with higher TLF (Fork et al., 2018; Kaushal et al., 2014). Generally, for the 

HLF metrics, the land use variables were much less likely to appear as predictors. This may be 

because HLF in the urban environment tends to be formed from a wide range of both natural 

and anthropogenic sources and flow paths (Khamis et al., 2018), which is difficult to resolve 

using land use data alone. In contrast, the bulk of the sources contributing to TLF tend to be 

within the engineered network, which land use metrics appear to be able to more effectively 

identify.  

 5.5.3 Conclusions and future research 

The study highlighted the main controls on DOM event dynamics and explored the links to 

sources and transport mechanisms. We identified how an urban stream behaves 

chemodynamically at lower discharge, but at higher discharge source depletion and dilution 
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lead to the system becoming chemostatic. The relatively low discharge required for large 

increases in DOM suggested inputs of terrestrial DOM to the stream are likely to represent 

regular, recurrent events regardless of event size. Hence current management techniques to 

reduce peak flow magnitude for flood control are likely to be ineffective in moderating inputs of 

terrestrial DOM. Further, we highlighted the potential importance of water temperature in 

controlling overall urban DOM dynamics. However, when standardizing storm changes in HLF 

and TLF to percentages, antecedent conditions seemed to exert as a particularly strong control 

on DOM availability. This suggests source depletion is a predominant driving mechanism of 

DOM dynamics in urban systems. We also showed that hydrometeorological controls were 

generally much stronger than land use controls. However, road density, which acts as a 

surrogate for more urban, engineered infrastructure was shown to be a potentially useful 

predictor of in-stream DOM dynamics. The controls influencing TLF were also shown to be 

different to the controls on HLF. The compounds contributing to TLF appeared to be more 

vulnerable to source depletion and exhaustion effects than HLF. We suggest this reflects that 

TLF is generally influenced by proximal engineered sources vulnerable to exhaustion effects, 

whereas a wider array of sources contribute to HLF, with vegetated areas providing inputs of 

slow, subsurface humic-rich waters which are less vulnerable to exhaustion effects.  

Further research is required to explore the links between urban land use and DOM dynamics 

more fully. There is a need develop longer datasets that capture a greater range of event types 

to further investigate the degree of influence of land use on DOM dynamics. In conjunction 

with this, a wider gradient of land use over greater spatial scales, different landscape metrics 

(for example infrastructure age) and differing catchment types over differing latitudes and 
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climatic gradients are required to further strengthen or contrast our conclusions. Identification 

of the effectiveness of preventing degradation of DOM quality by sustainable urban drainage 

systems (SUDS) and other drainage interventions used to mitigate water quality issues is vital in 

order to better suggest remediation solutions for DOM in urban areas. Furthermore, 

monitoring networks with a higher spatial density of in-situ monitoring nodes are imperative to 

improve and strengthen mechanistic understanding of the linkages between DOM sources and 

in-stream response. This will enable better assessment of the role of catchment properties in 

modulating these relationships.    

5.6 Supplementary Material 

Table 5.6. Multiple linear regression models using ordinary least square for each fluorescence 
metric (Table 5.3). All models < 2 ΔAICc of the top model are presented. Candidate variables 
code refers to codes stated in Table 5.2.   

Response Candidate variables 
code 

k AICC ∆I  Weight 

Max TLF 7A + WT 4 186.10 0 0.22 
Max HLF MeI + WT 4 138.21 0 0.19 
Mean TLF:HLF ratio RD + EM 4 -20.90 0 0.09 

RD + EM + WT 5 -19.94 0.96 0.05 
RD + EM + 1A 5 -19.89 1.01 0.05 
EM + 1A 4 -19.26 1.64 0.04 

TLF HI PF + 1A 4 -1.86 0 0.08 
PF 3 -1.77 0.08 0.08 
MeI + PF + 1A 5 -1.62 0.23 0.07 
MeI + PF 4 -0.60 1.25 0.04 
RD + PF + 1A 5 -0.24 1.62 0.04 
EM + PF 4 0.51 2.36 0.02 
VE + PF + 1A 5 0.52 2.38 0.02 
VE + PF 4 0.60 2.46 0.02 
RD + PF 4 0.64 2.50 0.02 
EM + PF + 1A  5 0.67 2.52 0.02 
MeI + PF + 1A + WT 6 0.77 2.63 0.02 
1A  3 1.01 2.87 0.02 
PF + WT 4 1.02 2.87 0.02 
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PF + 7A 4 1.10 2.95 0.02 
PF + 1A + 7A 5 1.29 3.15 0.02 
MeI + PF + 7A  5 1.35 3.20 0.02 
PF + 1A + WT 5 1.45 3.30 0.02 
EM  3 1.53 3.38 0.01 
7A  3 1.58 3.44 0.01 
MeI + EM + PF + 1A 6 1.77 3.63 0.01 

HLF HI  MeI + PF + WT 5 -27.82 0 0.13 
 MeI + PF 4 -27.09 0.73 0.09 
 MeI + PF + 1A + WT 6 -26 1.82 0.05 
Max TLF increase (%) MeI + 7A 4 216.78 0 0.11 

PF + 7A 4 217.22 0.43 0.09 
PF + 7A + WT 5 217.80 1.01 0.07 
7A  3 217.94 1.16 0.06 
MeI + 7A + WT 5 218.34 1.56 0.05 
MeI + VE + 7A 5 218.43 1.65 0.05 
MeI + PF + 7A 5 218.55 1.77 0.03 

Max HLF increase (%)  MeI + 7A 4 178.91 0 0.29 
MeI + 1A + 7A 5 180.69 1.78 0.12 
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CHAPTER 6:  CONCLUSIONS AND SYNTHESIS 

6.1 Conclusions 

The research presented in this thesis aimed to improve understanding of the effects of 

urbanization and extreme events on river water quality with specific focus on water 

temperature and DOM. The research was conducted in urbanized, headwater catchments in 

Birmingham UK. The main aims of the study were addressed as follows: 

1) Water temperature surges were observed in an urbanized headwater catchment. 

Precipitation intensity and the difference between air temperature and water temperature best 

predicted water temperature surges. This suggests that the prime conditions for water 

temperature surge events are high-intensity precipitation events on days when air temperature 

is substantially higher than water temperature. The surge events were predicted best by 

catchment averaged precipitation data rather than the more commonly-used point-source 

data. Catchment-averaged precipitation measured with rainfall radar was a stronger predictor 

of water temperature surges than the other precipitation datasets (i.e. based on official and 

citizen-science rain gauges), likely because it best captures the high spatial and temporal 

variability of precipitation (Chapter 2). 

2) Daily water temperature anomalies were significantly higher during low flow events 

compared to average flow and high flow events, but no significant differences were found 

between average flow and high flow events. The metrics that best predicted daily water 

temperature anomalies during low flow events were those related to urbanization: road buffer 

percentage and urban land use in a 1km buffer. Both metrics had a negative relationship with 
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temperature anomalies suggesting urbanization is associated with reduced water temperature 

change during low flow. During high flow events, the metric that best predicted water 

temperature anomalies was elevation, which may be a proxy of river discharge and distance 

from source which indicates water temperature changes during high flows mostly occur in 

lower order rivers (Chapter 3) 

3) Flume experiments showed shading of urban streams alters DOM composition over sub-daily 

timescales. Shading prevents photodegradation which stops removal and transformation in the 

fluorescing humic component of DOM over daily timescales. However, shading had minimal 

effect on degradation of the proteinaceous component of DOM. Extreme temperature events 

had minimal impact on photodegradation and biodegradation rates over sub-daily timescales. 

At sub-daily scales photodegradation appears to be the main removal and transformation 

process in urban streams, however this is altered through practices such as stream burial 

(Chapter 4). 

4) In an urban headwater stream, TLF (Tryptophan-like fluorescence) and HLF (Humic-like 

fluorescence) were strongly chemodynamic at low discharges and chemostatic for TLF and 

weakly chemodynamic for HLF at higher discharges. This suggests that DOM in headwater 

urban rivers is strongly influenced by dilution effects and source depletion. Consequently, small 

events often had as large increases in TLF and HLF as large events. Figure of eight hysteresis 

was the dominant hysteresis type for both TLF and HLF, which suggests that the contributing 

sources of DOM shift throughout events. The main predictors of HLF and TLF were water 

temperature, which likely represents the increased microbial activity with higher temperature 

and the effects of changes in DOM inputs leaf fall in autumn, and antecedent rainfall 
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conditions, which suggests urban headwater systems experience exhaustion effects. Landscape 

metrics were weaker predictors of DOM dynamics. Only road density was identified as 

important, probably acting as a proxy of the storm drain system with denser storm drain 

systems contributing more DOM (Chapter 5). 

6.2 Discussion 

The research in chapter two identifies water temperatures surges in UK headwater sites. These 

temperature surges have not regularly been recognized in a temperate maritime climate. The 

study provides evidence of experimental work showing impermeable surfaces can cause 

heating of surface runoff due to heat transfer from low-specific heat capacity surfaces (Herb et 

al., 2008). Chapter two also highlights the importance of the temporal and spatial resolution of 

precipitation data to adequately quantify the surge effect. Whereas previous studies have 

identified surges as a result of thermal dissipation downstream (Somers et al., 2016; Wilby et 

al., 2015), chapter two proposes spatial variation of storms is the main governing process of 

temperature surges. This implies water quality studies should consider the spatial and temporal 

variation of measured variables in order to better represent water quality processes.  

The potential for urbanization to influence water temperature was demonstrated in chapter 

two. Building on this, the impacts of extreme events and land use on river temperature over 

daily timescales was discussed in chapter three.  Increased water temperature at low 

discharges were found, however no significant differences in water temperature between high 

flow and average flow were identified likely because the increased thermal capacity during 

higher flows reduces the likelihood of temperature anomalies.  Urbanization was associated 
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with reduced water temperature during low flows, although urbanization has been linked to 

increased water temperature elsewhere (Kaushal et al., 2010; Wagner et al., 2017; McGrane, 

2016). From the results, it was suggested that urbanization alters the main processes governing 

water temperature at low flows. This may occur by reducing the atmospheric influence on 

streams through urban infrastructure like stream burial while inputs from pipe leakages may 

also moderate water temperature at baseflow in urban streams.  

Chapter four considered the impacts of stream infrastructure (through stream burial) and 

extreme water temperatures on photodegradation and biodegradation of DOM. The research 

in chapter four confirmed findings from field experiments by showing that the humic-like 

component of DOM was the most prone to photodegradation, with this process inhibited by 

stream burial (Arango et al., 2017; Beaulieu et al., 2014). Although temperature has previously 

been identified to accelerate biodegradation processes through increasing microbial activities 

(Mao and Li, 2018), over the timescale of this study, high water temperatures had minimal 

effects on photodegradation and biodegradation rates. This suggests that land use change that 

alters shading, such as stream burial, has a larger influence on photodegradation and 

biodegradation than temperature.  

After chapter four identified the main autochthonous processes acting on DOM, chapter five 

focused on the allochthonous processes contributing to DOM in urban areas during storm 

events. The C-Q (concentration-discharge) relationships developed for TLF and HLF confirm 

previous work for other nutrients (Blaen et al., 2016; Bieroza et al., 2018). The chemostatic 

behavior developing after initial chemodynamic behavior provides evidence for the source-

limitation theory put forward in previous DOM studies (Fork et al., 2018; Khamis et al., 2018), 
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while it also suggests dilution effects at high discharge. Further, the identification of 

temperature and antecedent rainfall as predominant drivers of DOM dynamics provides 

evidence for the importance of biological activity (for example, increased algal activity at higher 

temperatures contributes more DOM)  and exhaustion effects as key controls on DOM 

dynamics (Kaushal et al., 2014; Gnecco et al., 2005; Miller and McKnight, 2010). Landscape was 

less of a control than hydrometeorological effects but some land use metrics such as road 

density may be useful proxies of the influence of land use on DOM pathways.  

The thesis further identified that water quality dynamics in urban headwaters differ 

substantially to those reported in previous studies for rural headwaters. The response of water 

quality variables to extreme events were more pronounced in the urban headwaters compared 

to previous studies on rural headwaters. For example, in rural catchments temperature surges 

were found to be much lower and inputs of DOM in natural streams were lower compared to 

the urban catchments in this thesis (Wilby et al., 2015). Urban headwaters are hence shown to 

be particularly sensitive to extreme high flow events, with subsequent increased influence on 

downstream reaches. For the low-flow events, urbanization led to lower water temperature 

anomalies compared to rural catchments (Wilbers et al., 2009), possibly due to increased 

underground connectivity due to pipe leakages and other point source outputs.  

6.3 Synthesis & Implications 

6.3.1 Urbanization and Extreme Events 

Water quality degradation from urbanization hinders efforts at maintaining rivers as healthy 

ecosystems. In the UK, only 14% of rivers were defined as good ecological status in 2016 under 
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the EU Water Framework Directive, while 53% were defined as good chemical status 

(Environment Agency, 2018). Over 1000 water bodies in the UK were identified to have urban-

related pollution problems. Diffuse pollution is responsible for 49% of missed water quality 

targets, while point source pollution accounts for 36% of missed water quality targets in the UK 

(DEFRA, 2012). Hence, despite the implementation of directives to improve water quality, it 

appears that urbanization has confounded most management attempts thus far.  

Urbanization is difficult to develop management strategies for as the impacts of urbanization 

on water quality can be more diverse than often considered. The impact of urbanization on 

hydrological processes varies depending on the catchment characteristics. Urbanization is 

assumed to cause increased warming through removal of riparian vegetation, heated effluents, 

and increased stormwater runoff (Whitehead et al., 2009; Hannah and Garner, 2015). However, 

urban infrastructure, such as stream burial and pipe leakage, may lead to reductions in stream 

temperature, although urban streams are still susceptible to storm surges. Many of the 

assumptions about the influence of urbanization on temperature such as increased 

temperatures from reduced riparian shading are not accurate for many urban catchments 

(Webb et al., 2008), particularly in the context of headwater catchments. Hence, grouping 

streams into “urban” is likely to be too general and may lead to contradictory conclusions in 

water quality studies. Developing effective management strategies for improving water quality 

in urban rivers is therefore likely to require catchment specific management strategies. To 

improve outcomes, identifying the main water quality variables affected by urbanization is 

required to better inform management efforts. Management practices for water quality 
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mitigation must further consider the potential trade-offs between different water quality 

variables when choosing stream restoration techniques. 

The need to identify more targeted metrics that better characterize urbanization has been 

raised in the hydrological literature (Walsh et al., 2016). Despite the importance of engineered 

flow pathways in urban rivers (Kaushal and Belt, 2012), they are not well categorized by simple 

impermeable surface land cover metrics. To better identify the impacts of urbanization in 

rivers, several further land use metrics should be developed, in particular for stream burial 

cover. In this thesis, stream burial was observed to impact DOM dynamics and also speculated 

to impact water temperature, and it has been identified as a dominant control on urban stream 

processes (Arango et al., 2017). Buried stream metrics are difficult to develop however due to 

difficulties in identifying buried streams from aerial imagery, therefore buried stream coverage 

would likely require manual calculation. But it may yield important information to inform water 

quality studies. Furthermore, road density may represent a useful proxy of the storm drainage 

system that depicts a more accurate estimation of the engineered pathways than other 

measures of land cover (Blaszczak et al., 2019). From a hydrology perspective, river buffer land 

use is likely to be much more important for altering water quality processes than wider 

catchment land use (Jackson et al., 2015).  

Urban environments are more susceptible to the effects of extreme events which poses a 

further barrier to achieving good water quality (Fletcher et al., 2013; Mosley, 2015). Floods are 

noted as a stronger immediate control on hydrological processes in urban rivers than other 

extreme events and from a biogeochemistry perspective they are far better studied (Miller and 

Hutchins, 2017). For example, high transport of polluting material from the catchment was 
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highlighted as a regular pulse disturbance to urban streams, with storm drains providing a 

direct pipeline from the catchment to the river (Raymond et al., 2016). However, although 

floods cause more immediate changes in processes, the prolonged nature of drought events 

means they alter hydrological processes over longer timespans (Van Loon, 2015). Recent 

research hence highlights the importance of studying droughts from a water quality perspective 

(Tilburg et al., 2015). The importance of drought as a water quality control is often overlooked 

as a contributor to the urban stream syndrome. The separation of extreme events such as 

floods and droughts can be problematic as the impacts of one can influence the other. For 

example, in this thesis dry antecedent periods were identified as a strong predictor of DOM 

dynamics in urban streams. Drought conditions are therefore influential on water quality 

response during storm events. Mitigation of extreme events is therefore required to reduce 

their impact on water quality in urban catchments. Hence for storm events, infrastructure that 

captures and slows down rainfall runoff in urban areas is required to better mitigate 

stormwater quality (Czemiel Berndtsson, 2010; Bliss et al., 2009; Razzaghmanesh et al., 2014). 

Increasing green infrastructure such as wetlands may also help to increase resilience to drought 

conditions by providing gradual releases of water to sustain baseflow (Güneralp et al., 2015). 

The prevention of urban sprawl has been highlighted elsewhere as imperative to reduce urban 

water quality degradation (Miller and Hutchins, 2017). The demands for urban growth often 

override water quality concerns however, hence management strategies in urban areas are 

often overwhelmed by urban sprawl. 

The impacts of extreme events and urbanization on water quality are most severe in developing 

countries (Cohen, 2006). However, water quality is not well studied in developing nations, 



162 
 

although recently increasing attention has been focused on outreach and collaboration with 

developing regions (McMillan et al., 2016). Resultantly, results from developed regions are 

regularly used to inform policy in developing nations. The impact of urbanization on river 

temperature may be of particular interest to developing regions as increased river 

temperatures prompt microbial growth which increases disease risk  (Karvonen et al., 2010), 

although the processes that lead to changes in water temperature in urban regions during 

extreme events may be different between developed and developing regions. Water 

temperature surges during storms are likely to combine with the high export of DOM to 

degrade water quality. This effect is likely to be exacerbated in developing regions, as 90% of 

sewage is discharged directly into water bodies (UN-Water, 2015). However, it is important to 

not over-generalize the applicability of results between regions, and further research on water 

quality in urban regions in developing countries is an urgent requirement.  

6.3.2 Importance of High-Frequency Monitoring 

Studies of storm events require high temporal resolution datasets in order to capture initial 

water quality dynamics (Fletcher et al., 2013). In this thesis, the largest change in water quality 

occurred at sub-hourly scales. The dominant processes acting on water quality were found to 

depend on the temporal resolution, for example storms cause water temperature surges at 

sub-hourly scales, but at daily scales their impact is minimal. 

The development of high-frequency sensors is a means of providing higher temporal resolution 

datasets, while also increasing the potential for long-term deployment of sensors as they can 

be left in-situ (Halliday et al., 2015; Rode et al., 2016). High frequency sensors are more readily 
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available than previously, while developments in homemade sensors have also reduced 

instrumentation costs (Mao, Khamis, Krause, Clark, & Hannah, 2019). High-frequency datasets 

are highlighted as particularly required for monitoring water quality during extreme events 

when large changes in water quality often occur (Blaen et al., 2017). Furthermore, high-

frequency datasets are a means of providing increased understanding of the processes 

influencing water quality dynamics. High-frequency sensors do usually require more 

maintenance therefore their benefits must be balanced with the need for regular upkeep (Rode 

et al., 2016). However, where available, in-situ high-frequency sensors should be considered by 

river managers to yield more meaningful monitoring data.  

Renewed focus on the importance of long-term catchment-scale monitoring to understand 

hydrological processes has also been recently highlighted (Tetzlaff et al., 2017). Building longer 

datasets for water quality variables is crucial to understanding long-term variability and 

dynamics, however hydrological variables are often monitored for the duration of projects 

based on grant lengths and hence do not capture long-term trends and variability in processes 

(Shanley et al., 2018). Long water temperature datasets are sparse although water temperature 

is relatively easy to monitor in-situ, while extremely few long DOM datasets exists. Resultantly, 

more long site-specific datasets need to be developed, but maintenance and instrumentation 

costs have hindered progress. Nonetheless, development of long-term datasets is crucial to the 

development of evidence-based management strategies. To measure the long-term impact of 

water quality projects, long-term datasets provide the most useful form of evidence to evaluate 

the success of projects (Pinto et al., 2013). 
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Citizen science has been increasingly promoted as a means of maintaining long-term datasets 

and increasing the spatial density of data collection (Bonney et al., 2016). For variables like 

water temperature and precipitation where instrumentation is relatively simple and low 

maintenance, citizen science is most likely to be useful. As demonstrated in this thesis, citizen 

science rain gauges provide a means of increasing the spatial density of precipitation datasets 

for water quality studies, however issues with data quality may limit their usage. Maintaining 

the motivation of citizen scientists may also provide a barrier to providing long-term datasets 

(Conrad and Hilchey, 2011), therefore maintaining awareness is required for projects aiming to 

use citizen science. For more complex instrumentation, such as for DOM, citizen science is of 

minimal use due to difficulties in the maintenance of the instruments. Although relying on 

citizen science entirely is likely to be problematic, there is some value to be found in citizen 

science datasets. Increasing data coverage in data-sparse regions is one of the chief advantages 

of citizen science. Citizen science activity should therefore be further encouraged and 

promoted as a means of complementing long-term data records from other sources.  

6.4 Future research suggestions 

To build on the results of this study, which focused on headwater catchments, water quality 

monitoring from source to sea is crucial. The dominant processes controlling water quality 

dynamics are likely to shift with distance downstream due to changes in stream size, 

surrounding land uses, and catchment size (Foley et al., 2005; Pilgrim et al., 1982). This source-

to-sea monitoring will allow identification of areas where extreme events often lead to water 

quality degradation, therefore informing where efforts for stream management and restoration 

should focus.   
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The understanding of when different flow paths activate and of residence time of water in 

different stores remains extremely limited, which has hindered efforts to increase 

understanding of water quality processes (Kaushal and Belt, 2012). Hence, future research 

should investigate flow-path activation and residence times and effects on urban water quality 

to build upon the results of this thesis. Tracer studies using conservative tracers are 

recommended to identify timing of flow path activation and these should be linked to high-

frequency in-stream water-quality measurements to build greater confidence in our 

understanding of flow pathways and water quality dynamics. 

To improve understanding of urban water quality dynamics, future research should also focus 

on a broader geographical range. Most previous research on water quality has been based in 

the developed world (Fletcher et al., 2013; Bhaskar et al., 2016), however the water quality 

dynamics and processes are likely to be highly variable between countries due to large 

differences in the characteristics and quality of urban infrastructure. In particular, countries 

with poorer infrastructure are likely to experience different responses during extreme events 

(Webster and Jian, 2011).   

Having identified that storm events can lead to substantial changes in water quality, research 

on the relative impact of mitigation strategies to reduce water quality degradation is required. 

Currently, much of the proposed green infrastructure is designed around reducing surface 

runoff (Czemiel Berndtsson, 2010). The influence of green infrastructure on water quality is 

much less understood (Hashemi et al., 2015). To better inform future management strategies, 

evaluation of the best methods of stormwater mitigation for water quality variables is required.  
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Furthermore, as extreme events are likely to become more severe due to climate change and 

urbanization is going to continue (Güneralp et al., 2015), resultantly the impacts of extreme 

events on urban water quality are likely to become more severe in the future. To assess 

possible trends, future research should seek to develop long datasets for field sites in order to 

assess the long-term impact of extreme events and urbanization on water quality dynamics. 

Currently, research tends to revolve round relatively short studies, but these are ineffective at 

identifying long-term trends, which are required to better identify the global pressures on 

water quality arising from multiple stressors.  

Future research should also consider the use of metabolomics as a tool to better understand 

the role of DOM composition in riverine ecology. Metabolomics offer a means of analyzing 

phenotypes using a range of tools. Mass spectrometry methods such as Liquid chromatography 

mass-spectrometry (LC-MS) and gas chromatography mass-spectrometry (GC-MS) offer a 

means of analyzing the entire metabolic network which allows for changing trends in 

metabolites to be identified (Burgess et al., 2014). Limited metabolomic work has currently 

been carried on DOM, however initial results have indicated that non-targeted metabolomics 

are capable of profiling metabolites in DOM and have been shown as useful as a means of 

exploring the link between land use and DOM complexity (Lynch et al., 2019). Future research 

involving metabolomics is therefore suggested as a means of complimenting the results in this 

thesis and allowing more precise characterization of DOM.  
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