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ABSTRACT 

Introduction: High throughput next generation sequencing (NGS) strategies such as 

whole exome sequencing (WES) are frequently used in medical research to identify the 

molecular cause of Mendelian genetic disease. WES, or clinical exome sequencing 

strategies are now being adopted into clinical genetics practice. This study focuses on 

the application of WES for genetic diagnosis in a group of mainly consanguineous 

families with rare phenotypes for which an autosomal recessively inherited disease was 

suspected but the molecular basis was unknown.  

Materials and methods: Families were recruited retrospectively from a previous 

research cohort (the National Autozygosity Mapping study) and prospectively from the 

Birmingham Women’s and Children’s NHS Foundation Trust. WES was subsequently 

performed.  

Results: 35 families with rare genetic disorders were studied by WES (in 9 families a 

single individual underwent sequencing). After bioinformatics analysis of WES data and 

detailed reassessment of the phenotype a molecular genetic diagnosis was reached in 

15 families (42.9%).  

Conclusion: WES is an effective strategy for identifying the molecular basis of 

recessively inherited disorders in consanguineous families.  The combination of WES 

with detailed phenotyping significantly improved variant interpretation and diagnostic 

yield over WES alone. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1. Introduction and Overview 

 

Clinical Geneticists diagnose and manage patients with rare genetic conditions.  A 

condition is classed as a rare disease in the UK, if it affects 1 in 2000 people or less.  

Next generation sequencing has proved to be an invaluable tool in the identification of 

genetic rare diseases for both gene discovery and identification of disease-causing 

variants.  This study will utilise next generation sequencing to identify the disease-

causing variant in families identified from a clinical genetics department with presumed 

genetic rare disease. 

 

The Human Genome project was a huge international collaborative project to sequence 

the entire human genome, which involved reading all 3.2 billion base pairs.  It was 

completed in April 2003, after 10 years of global collaboration.  This project provided the 

foundations to our current understanding of the human genome and genetic disease. 

With the advent of next generation sequencing, whole exome sequencing (WES), and 

even whole genome sequencing (WGS), can be performed in a matter of days rather 

than years.  Human genetic rare disease is caused by rare variations within th e 

genomic sequence.  The challenge is to identify the needle in the haystack: the rare 
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disease-causing variant amongst the many thousands of genetic variants found in 

individuals, many of which represent benign normal variation.  

  

The use of WES to identify novel genes causing human genetic disease was first 

described in 2009 (Ng et al., 2009).  The same group subsequently used this method to 

prove that pathogenic variants in the DHODH gene cause Miller syndrome (Ng et al., 

2010a).  This was a major landmark for gene discovery of human genetic rare disease.  

Researchers can use WES variant prioritisation methods, based around this proof of 

concepts method, to identify novel genetic causes for rare disease.  There are now 

6,318 phenotypes for which the molecular basis is known on the Online Mendelian 

Inheritance in Man Morbid map (“OMIM - Online Mendelian Inheritance in Man,” 19th 

December 2018), which has increased rapidly since this landmark paper in 2009.  This 

study will utilise WES to identify the disease-causing variants in a group of patients with 

rare genetic disease.   

 

Identifying the cause of genetic rare disease is extremely important.  The patient is 

provided with a diagnosis, an explanation for the affected individual’s condition.  This 

may often provide the patient, and family, with more information regarding the clinical 

phenotype associated with the condition, appropriate management plan, prognostic 

information, and in some instances treatment.  This can also be important to the entire 

family.  Family relatives may choose to have predictive testing to clarify if they will also 

develop the condition in question, or they may want to clarify the chance of their 



3 
 

offspring having the same condition.  Individuals may want to clarify if their baby is 

affected using prenatal testing, such as chorionic villous sampling or amniocentesis, to 

identify whether the fetus has the disease-causing variant in the family.   

 

Newer technologies in the form of non-invasive prenatal diagnosis (NIPD) enable 

identification of the disease-causing variant from the free fetal DNA released into the 

mothers’ blood stream during pregnancy from a maternal blood sample, without the 

need to an invasive test and the associated small risk of miscarriage.  NIPD is regularly 

used for fetal sexing in X-linked recessive conditions, and diagnosis of conditions such 

as thanatophoric dysplasia, spinal muscular atrophy (SMA), and cystic fibrosis. Non-

invasive prenatal testing or screening for the common trisomies 13, 18, and 21 is also 

available. Bespoke non-invasive prenatal diagnosis is also available in some instances, 

such as de novo heterozygous variants to clarify risk to subsequent offspring due to 

gonadal mosaicism.  Individuals may also choose to have pre-implantation genetic 

testing. This utilises in-vitro fertilisation techniques to create an embryo.  Only the 

unaffected embryos are then implanted back into the mother’s uterus.   

 

Importantly, identifying the genetic cause of rare diseases helps inform our 

understanding of biological pathway and subsequently our understanding of more 

common disease.  In autoinflammatory conditions, for example, knowing which pathway 

is affected, can influence which immune modulating treatment is used.  There are a 

handful of genetic rare diseases for which there is a targeted genetic therapy available.  
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One example of this is Leber’s congenital amaurosis secondary to a variant in the 

RPE65 gene. Viral vectors containing the normal RPE65 genetic sequence are injected 

into the eye of affected individuals. This has been shown to improve visual function in 

this group of patients (Sharif and Sharif, 2017). 

 

1.2 Deciphering Developmental Disorders (DDD) Study 

 

The Deciphering Developmental Disorders (DDD) study is a landmark large-scale UK 

based research study delivered by the Wellcome Sanger institute in Cambridge with 

collaboration of the clinicians in the 24 NHS Regional Genetics Centres in the UK and 

Republic of Ireland. This ran during the time of my study and some of the lessons learnt 

from DDD have been relevant to this study. The aim of the DDD study was similarly, to 

use new genetic technologies to identify the genetic cause for a patient’s developmental 

disorder. More than 12,000 patients, both adults and children, with an undiagnosed 

severe developmental disorder were recruited over a 4-year period in a trio with both 

parents ideally (PMC, 2017; Wright et al., 2018).  The study employed high resolution 

array and then WES to identify the underlying cause of their disease (Wright et al., 

2015). The DDD study reported back likely disease-causing variants for patients to the 

clinicians managing their care, as well as identifying new disease genes and n ovel 

genetic mechanisms (DDD study, PMC, 2017; Wright et al., 2018, 2015).   
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The initial diagnostic yield from the DDD study was 27%, reaching a diagnosis in 311 

out of the first 1133 patients recruited (Wright et al., 2015). Given the rapid rate of new 

gene discovery, DDD have regularly re-analysed the genomic data to constantly 

improve the diagnostic yield for clinicians, and ultimately the patients. However, there 

are logistical challenges to this, including the interval frequency of re-analysis, the 

logistics around re-analysis, the capacity of the clinicians to re-contact the recruited 

patients, and the timescale involved (Wright et al., 2018).  Disease-causing variants 

may have been missed due to the limitation of our knowledge of the gene originally, 

inappropriate filtering of a variant, low depth of sequencing data and erroneous 

annotation or variant calling of the genomic data in the analysis pipeline (Wright et al., 

2018).  Importantly a percentage of patients’ variants previously thought disease 

causing were re-classified as uncertain or benign likely related to the improved benign 

variant population databases  (Wright et al., 2018).  It can be challenging for clinicians 

and patients to receive a diagnostic result after an initial negative report, and even more 

challenging to remove a diagnostic label given to a patient.  The subsequent diagnostic 

yield increased to 40%, with a full or partial diagnosis made in 454 out of 1133 initial 

patients (Wright et al., 2018).  

 

1.3 Autosomal Recessive Disease 

 

About 80% of the diagnoses made through DDD were de novo heterozygous variants, 

which were not present in either of the patient’s parents (Wright et al., 2018).  The main 

focus for this study is autosomal recessive disease in consanguineous families.   
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A consanguineous relationship is defined as a relationship between individuals 

biologically related as second cousins or closer (Black ML, 2015). First cousin marriage 

unions are the commonest form of consanguineous union worldwide, meaning that each 

parent shares 1/8 of their genome from a common ancestor.  Their offspring will be 

homozygous at 6.25% of all gene loci analysed, over the baseline level in the general 

population (Black ML, 2015).  In the UK as a whole, the frequency of consanguinity is 

reported to be less than 1%.  Within the UK Pakistani community, an estimated 50-60% 

of marriages are reportedly consanguineous (Bittles, 2001).  In a study by Bundey et al 

(1991), the consanguinity rates in the Birmingham Pakistani population interviewed 

were 69%. 

 

Consanguinity is associated with double the baseline risk of congenital malformations 

(Sheridan et al., 2013).  Bundey et al found a 1 in 100 risk of a lethal malformation for 

babies born to parents of Pakistani origin, mostly felt to be as a consequence of 

autosomal recessive disease (Bundey et al., 1991).  The West Midlands population is 

therefore well suited to identify consanguineous families with autosomal recessive 

diseases. 

 

Once a novel gene has been identified, functional work is often required to demonstrate 

causality.  Animal models such as the mouse and zebrafish may be used to 

demonstrate the phenotypic effects of genetic variants in genes of interest.  A knockout 

mouse model describes a mouse model with a biallelic loss of function variant in the 
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gene of interest. The loss of function variants disrupt the protein encoded by the gene 

causing complete loss of function of that protein.  There are online databases describing 

some of the phenotypes seen in different mouse models.  Similarly, researchers have 

reviewed population-based WES results from consanguineous populations to better 

understand the human knockout phenotype (MacArthur et al., 2012; Narasimhan et al., 

2016; Saleheen et al., 2017; Sulem et al., 2015).  In other words, studying humans with 

complete loss of function of a specific gene, and its phenotypic consequences, provides 

better insight into the function of these genes (Saleheen et al., 2017).  One study 

described 253 genes with homozygous loss of function variants seen in at least one 

healthy individual, which they called LoF-tolerant genes (MacArthur et al., 2012).  They 

found they were less well-conserved, common variants with an allele frequency of >1%, 

with minimal health consequences (MacArthur et al., 2012).  In a study of 104,220 

individuals in the Icelandic population, they identified 8,041 individuals (7.7%) with 1 

gene completely knocked out by loss-of-function variants with a MAF under 2% (Sulem 

et al., 2015).  Thus, studying population genomic data for human knockout model can 

be extremely informative in our understanding of the genome. Researchers can identify 

LoF tolerant genes which would not cause rare autosomal recessive disease. 
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1.4. Next generation sequencing methods 

 

Genomics is the study of all 3.2 billion base pairs contained within the human genome.  

The original human genome project took many years to sequence using Sanger 

sequencing.  The newer method of sequencing, next generation sequencing, has 

massively decreased the length of time to sequence the human genome.  There are 

different mechanisms for next generation sequencing, which I have summarised in the 

table below: 

 

Table 1.1: Comparison of next generation sequencing methods  

Sequencing 
technology 

Roche 454 Illumina Ion Torrent Nanopore 

Amplification 

Emulsion PCR: 

clusters on 
beads 

Surface PCR: 
clusters by 

bridge 
amplification 

Emulsion 

PCR: clusters 
on beads 

Not required 

Sequencing 
location 

Beads on high 
density plate 

Clusters 

arranged on 
flowcell 

Beads in 

sensor wells 
on semi-

conductor chip 

DNA threaded 

through 
microscopic 

pore 

Chemistry 
Pyro 

-sequencing 

Reversible chain 

terminator 

Semi-

conductive 

Real time 

sequencing 

Detection 
Flash specific to 

nucleotide (nt) 

Differentially 

coloured nt 

Change in pH 

specific to nt 

Voltage change 

specific to nt 

Read length >300bp 100bp 200bp 100,000bp 

Advantage 
Long read 

length 
High throughput 

De novo 
sequencing 

High volume 
sequencing at 

low cost 

Dis- 
advantages 

High error rate Short reads 
Higher error 

rate 
Higher error 

rate (improving) 
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Illumina sequencing was used within this project.  Library preparation is first required 

before sequencing can commence.  The DNA for sequencing, is initially cleaved into 

short reads of about 100-150 base pairs (bp).  These short reads are ligated with 

generic adaptors, which allow the reads to anneal to a slide. Polymerase chain reaction 

(PCR) is carried out to amplify each read, creating spots on the slide with many copies 

of each read. The reads are then separated into single strands to be sequenced. 

 

To sequence the reads, the slide is then exposed to fluorescently labelled nucleotides, 

each base differentially labelled, and DNA polymerase. A chain terminator is also 

attached to each nucleotide to ensure only one base is added in each cycle. An image 

is taken of the slide demonstrating a fluorescent signal at each read location, which 

indicates the base added during that cycle. Preparation for the next cycle subsequently 

begins, including the removal of the chain terminators, and fluorescent signal.  This is 

repeated until the reads have been re-sequenced, adding one nucleotide at a time with 

an image taken at the end of each cycle.  The sequence reads are the same length, 

dictating the number of cycles carried out during sequencing. Base calling is then 

performed for each read based on the fluorescent image taken in each cycle.  The DNA 

sequence is then constructed for each read. 

 

The short reads subsequently need to be aligned to the correct place in th e genome 

and calling of the variants for each individual sample made. This process is called a 

bioinformatic pipeline (see figure 1.1 below).  At each step in the pipeline there are 
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many different tools that can be utilise depending on the required outcome.  The tools 

used in this project are detailed in methods. 

 

Figure 1.1: Bioinformatics pipeline summary 

 

Legend: BCL base calling file, SAM sequence alignment mapping, VCF variant call file 

 

When sequencing a human genome, there are different methods that can be employed.   

Whole Genome Sequencing (WGS) involves reading every 3.2 billion base pair.  Whole 

Exome Sequencing (WES), which will be used in this project, reads the exome or the 

coding sequence of the genome.  Other methods can include Clinical Exome 
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Sequencing, which focuses on reading the coding portion of the genome, but more 

specially focused on the genes for which a human disease phenotype is described (also 

known as Mendeliome).  Finally, gene panels can be used to look at specific human 

phenotypes, for example an aortopathy gene panel would involve sequencing the 

known genes associated with an aortopathy clinical phenotype. 

 

Identification of novel genes and phenotypes is potentially possible within this study, 

and therefore gene panels and clinical exome sequencing was not suitable.  WES was 

considered overall to be the most cost-effective way of sequencing the genome to 

maximise the novel variant identification and minimise incidental findings. 

 

1.5.  Analysis of WES results 

 

Analysing the results generated from WES required careful bioinformatic analysis.  

Each individual patient will have 20,000 to 30,000 variants detected on WES, the 

majority of which, are benign variants (Robinson et al., 2011).  Bioinformatic methods 

for filtering variants need to be employed to identify the metaphorical “needle in a 

haystack”, the molecular cause for Mendelian disease in the patient amongst the many 

thousands of sequence variants seen in an individual (Ku et al, 2011; Bamshad et al, 

2011).  A careful line must be drawn between rigorously filtering of variants and 

potentially filtering out the disease-causing variant, without setting the filtering 

parameters so low that the investigator has too many variants to review. The filtering 
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strategies employed are well described in the literature.  They rely on several 

assumptions, which means that it is still possible to inadvertently filter out the disease-

causing variant (Bamshad et al., 2011; Ku et al., 2011; Wright et al., 2015).  This 

process often includes filtering steps outlined below. 

 

1. Population variant databases 

Everyone has many thousands of benign sequence variants.  Population 

variant databases describe the frequency of these variants in the general 

population to aid sequence interpretation.  These publically-available 

databases include dbSNP, 1000 Genomes, ESP, ExAC and more recently 

gnomAD (1000 Genomes Project Consortium et al., 2015; Fu et al., 2013; Lek 

et al., 2016; Sherry et al., 2001).  They are an important resource for the 

interpretation of variants seen in patients undergoing WES for identification of 

their disease-causing variant (Lek et al., 2016).  GnomAD found on average 

one sequence variant for every 8 bp within the exome due to the recurrence 

of variation  (Lek et al., 2016).  Sequence variants found commonly in the 

general population are more likely to be benign.  Researchers are therefore 

able to filter out common variants by looking at the Minor Allele Frequency 

(MAF) (Bamshad et al., 2011; Ku et al., 2011).  A MAF of less than 1% is 

commonly used (Wright et al., 2015).  When looking for de novo 

heterozygous pathogenic variants a more rigorous MAF cut off less than  

<0.0005 (0.05%) may be employed (Wright et al., 2018). 
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Care needs to be taken when using this strategy.  Pathological variants can 

also be found in these databases, potentially resulting in disease-causing 

variants being rule out erroneously.  When utilising these datasets it is 

important to consider the population used for the sequence data.  GnomAD 

excludes all individuals and their first-degree relatives with severe paediatric 

disease, but if the disease being studied is later onset, it is possible the 

variant may still be present in the database, albeit with a low frequency if 

studying rare disease (Lek et al., 2016).  In addition, it may not include the 

ethnicity of the patient being studied. For autosomal recessive disorders, 

when using a MAF of less than 1%, it is important to consider whether the 

likely carrier frequency could be over this threshold in the population of 

interest, leading to erroneous exclusion of the disease-causing variant 

(Bamshad et al, 2011; Rabbani et al, 2012). 

 

2. Disease Variant Databases 

In addition to population variation databases, there are also a rich source of 

pathogenic variant databases.  These may be disease or gene specific such 

as the UMD-FBN1 mutation database, or general including ClinVar and 

Human Gene Mutation Database (Collod-Béroud et al., 2003; Landrum et al., 

2018; Stenson et al., 2014).  ClinVar also rates the variants according to 

pathogenicity.  If a variant is listed as pathogenic in one of these databases, 

this can be extremely useful for variant identification.  Similarly, to the 
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population databases, the variants are not always classified correctly on the 

site, and therefore other sources of information should also be consulted. 

 

3. Synonymous variants 

Synonymous variants occur when the nucleotide substitution alters the codon 

to a different codon encoding the same amino acid and so resulting the same 

protein sequence (Livingstone et al., 2017).  Synonymous changes are 

intuitively filtered out (Ku et al., 2011; Wright et al., 2015).  There are however 

an increasing number of synonymous pathogenic variants reported in  HGMD 

(Livingstone et al., 2017; Stenson et al., 2014).  Synonymous variants may, 

for example, alter splicing, gene expression or DNA methylation patterns 

through altered CpG islands (Livingstone et al., 2017). There are a vast 

number of synonymous variants in an individual genome and predicting which 

synonymous variants are pathogenic can be very difficult.   

 

4. Prediction software 

Bioinformatic software tools exist to predict whether a non-synonymous 

substitution variant is benign or pathogenic.  These include tools such as 

SIFT, POLYPHEN, and Mutation Taster (Adzhubei et al., 2010; Ku et al., 

2011; Ng et al., 2010b; Rabbani et al., 2012; Schwarz et al., 2010; Wright et 

al., 2015).  They look at different factors including species conservation at the 

nucleotide and amino acid level, the physio-chemical amino acid change 

involved, and the predicted effect on the structure and function of the protein 
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(Adzhubei et al., 2010; Ku et al., 2011; Ng et al., 2010b; Rabbani et al., 2012; 

Schwarz et al., 2010). These methods are predictive and therefore should be 

considered as supporting evidence for pathogenicity (Richards et al., 2015). 

 

5. Group of patients with shared phenotype 

Comparing WES results for groups of similarly affected, unrelated individuals 

to look for candidate pathogenic variants within a gene shared by all affected 

patients can be an effective mechanism to identify novel disease-causing 

genes (Ku et al, 2011; Rabbani et al, 2012).  However, genetic (locus) 

heterogeneity exists in many Mendelian disorders, for example Coffin -Siris 

syndrome, and therefore variants within genes shared by the majority of 

affected individuals or genes within the same biological pathway may also 

need to be considered (Ku et al, 2011; Rabbani et al, 2012).  Patients within 

this study had different and very rare phenotypes and were therefore unlikely 

to have variants within the same gene. 

 

6. Family segregation studies 

Family segregation studies can be very useful to aid identification of the 

disease-causing variant within a family. Identification of the variant within 

multiply affected individuals in the same family, especially when these are 

more distantly related individuals, can be very effective (Ku et al, 2011; 

Rabbani et al, 2012).  Autozygosity mapping studies can be utilised in 

consanguineous families by mapping the shared regions of homozygosity in 
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the affected family members and then focussing variant identification from 

WES within these regions (Bolze et al., 2010).  This also includes identifying 

variants not present in unaffected family members. 

 

7. Trio analysis 

Trio analysis is a specific type of family segregation studies.  Trio analysis 

typically involves sequencing the affected individual and both parents.  Trio 

WES analysis is an extremely effective filtering mechanism for identification of 

likely pathogenic de novo heterozygous sequence variants for patients with 

unaffected parents. It can also be used for other inheritance patterns, such as 

autosomal recessive, and autosomal dominant with an affected parent, but is 

most effective for disorders caused by de novo heterozygous variants. Trio 

analysis has been very effectively employed in the DDD study (Wright et al., 

2018, 2015).  The majority of patients recruited to my project were suspected 

to have autosomal recessive disease, therefore family segregation studies in 

general were employed.  

 

8. Phenotype analysis 

This involves phenotype-based analysis returning variants that are specific to 

the patient’s disease. Genotype-phenotype based analysis can be key to 

variant prioritisation.  This is a key part of this project and is discussed in 

more detail in the next section.  
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9. Constraint score 

More recently constraint scores provided in ExaC, and subsequently updated 

in GnomAD, provide additional information for the interpretation of WES data 

by quantifying the level of tolerance each gene has to variation (Lek et al., 

2016; Samocha et al., 2014).   The constraint score used in gnomAD is gene 

specific.  It looks at synonymous, missense and LoF variants separately. For 

each variant category within each gene the database details the expected 

number of variants and the observed number of variants. This is used to 

create a constraint score and Z score from the observed over expected ratio 

(oe) with a 90% confidence interval (Lek et al., 2016; Samocha et al., 2014).  

   

Benign variants have a higher frequency in the population when compared to 

disease-causing variants due to natural selection (Lek et al., 2016).    A low 

oe score for a specific variant type means that the gene is under greater 

selection for that type of variant than a gene with a higher score (Lek et al., 

2016).  This must be taken in the context of the confidence interval. Positive Z 

scores suggests the gene has fewer variants than expected and is therefore, 

more intolerant to variation (Lek et al., 2016).  A negative Z scores indicates a 

gene has more variants than expected and is therefore more tolerant to 

variation (Lek et al., 2016).   
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The probability of being loss of function intolerant (pLI) is used for LoF 

variants and has 3 classes: null where loss of function of one or both copies 

of the gene is tolerated, recessive where loss of function if both copies of the 

gene is not tolerated, and haploinsufficient where loss of a single copy of the 

gene is not tolerated (Lek et al., 2016). Null genes had the expected number 

of LoF variants, recessive genes had a Z score of around 0.5 or less and 

severe haploinsufficient genes observed LoF variants less than 10% of the 

expected variation level with a Z score of 0.1 (Lek et al., 2016).  This score 

has been used more latterly in this project. 

 

1.6. Phenotyping and HPO terms 

 

It was postulated that as next generation sequencing becomes mainstream in medicine, 

we will see the demise of the importance of accurate phenotyping that has been a key 

part of clinical genetics practice (particularly for dysmorphology) (Hennekam and 

Biesecker, 2012).  Good phenotyping, however, is still needed to ensure that each 

disease is fully characterised to allow the patients to receive accurate information about 

their condition.  Expert phenotyping can also aid the interpretation of WES results, 

requiring a medical geneticists’ unique skill of combining clinical and genetic knowledge 

to make the correct diagnosis (Hennekam and Biesecker, 2012).  This was an important 

manual step within the DDD project pipeline (Wright et al., 2015).   
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To accurately phenotype on a large scale, precise standardised, universal phenotypic 

terms are important.    The Human Phenotype Ontology (HPO) was created for this 

purpose (Köhler et al., 2017; Robinson et al., 2008). HPO is now widely used in the 

medical literature, phenotypic databases including OMIM, and WES/WGS bioinformatic 

prioritisation software (Köhler et al., 2017; “OMIM - Online Mendelian Inheritance in 

Man,”; Wright et al., 2015; Zemojtel et al., 2014). Each term within the ontology falls into 

one of 5 sub-ontologies (Köhler et al., 2017).  The main sub-ontology is for phenotypic 

abnormalities describing a specific phenotypic trait in humans within the ontology 

(Köhler et al., 2017).  This term is part of a tree of terms (ontology), which relates back 

to the parent term (Köhler et al., 2017).  Less specific terms, such as abnormality of the 

immune system (parent), are found closer to the root, and more specific terms such as 

neutropenia (child), are found in more distant branches (see figure 1.2)(Köhler et al., 

2017). Each sub-ontology or child term can relate back to more than one parent term 

such as abnormality of leucocytes below (see figure 1.2) (Köhler et al., 2017).  The 

other main sub-ontology trees are mode of inheritance, clinical modifiers such as 

severity, clinical course and frequency (Köhler et al., 2017).  Each term in the ontology 

is given a unique number starting with HP: followed by 7 digits (Köhler et al., 2017).  

The HPO is regularly updated. HPO terms are utilised within this project. 
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Figure 1.2: Example of HPO sub-ontology from phenomizer (Köhler et al., 2017, 2009) 
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1.7. Incidental findings 

 

An incidental finding in the context of NGS data means the identification of a likely 

disease-causing sequence variant in a gene not associated with the primary indication 

for testing.  In other words, if a patient has hypertrophic cardiomyopathy and a variant is 

identified in the BRCA1 gene, this would be considered an incidental finding. This can 

create ethical challenges for the researcher and patient regarding the reporting and 

management of these findings.  Extra caution is advised when evaluating and reporting 

variants identified in healthy or asymptomatic individuals, because these are less likely 

to be pathogenic, than if detected in a disease specific gene panel (Richards et al., 

2015).  It is predicted that the penetrance of pathogenic variants would be lower than 

expected, in an individual with no clinical phenotype for that condition and with no 

relevant family history (Richards et al., 2015).  Despite this, the American College of 

Medical Genetics and Genomics recommended actively looking for and reporting 

incidental findings pertaining to a list of 56 genes considered to be clinically actionable, 

without seeking patient preference (Green et al., 2013).   This list has subsequently 

been updated, the incidental findings referred to as secondary findings because variants 

in these genes were actively being sought, and an opt-out preference for patient 

receiving these incidental findings unanimously added (Kalia et al., 2017).   

 

The DDD study has not reported back incidental findings (Wright et al., 2015).  A sub-

study of the DDD project performed an online survey looking at peoples’ views in the 

reporting of incidental findings.  It was completed by 6944 people from 75 different 
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countries from four groups: 4961 members of the public, 607 genomic researchers, 533 

genetic health professionals and 843 other health professionals (Middleton et al., 2015).  

88% thought that incidental findings should be made available to research participants, 

and 31% thought that researchers should actively look for these incidental findings 

(Middleton et al., 2015).  The US Presidential Commission for the Study of Bioethical 

Issues recommends informing research participants of the findings that might arise from 

the project, as well as the findings that will not be returned, and thus ensuring informed 

consent (Weiner, 2014).  However, reporting of incidental findings was outside the 

ethical approval used for my project (this is specified in the consent form) and therefore 

incidental findings were not to be reported back to the patient in this project. 

 

1.8. Clinical Application of Next Generation Sequencing 

 

WES is being increasingly used in the clinical setting.  It can be hugely beneficial by 

reducing the diagnostic odyssey for patients, particularly those patients with highly 

genetically heterogeneous conditions, such as intellectual disability syndromes.  This 

diagnostic odyssey is often a slow and costly journey, with patients with rare genetic 

disorders seeing multiple specialists and undergoing a diverse range of investigations 

(e.g. imaging, metabolic investigations, genetic tests and, in some patients, invasive 

testing such as a skin biopsy) (Sawyer et al., 2016). The global rare disease 

commission quote an average time of about 4.8 years between the onset of symptoms 

and  the diagnosis of a rare disease (“Global Commission to End the Diagnostic 

Odyssey for Children with a Rare Disease,”).  Currently, Sanger sequencing for 
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individual genes is no longer the baseline, and generally gene panels using next 

generation sequencing are performed for clinical diagnostic testing in NHS genetics 

centres.  This can become costly if the disease-causing variant is not identified in the 

first gene panel performed.  In this instance clinical exome sequencing or WES are 

more beneficial as, in the event of negative results for a specific gene panel, additional 

gene panels can be interrogated in silico without having to undertake further molecular 

genetic studies.   

 

In one of the first studies looking into the clinical application of WES to the clinical 

setting, Need et al identified the likely genetic diagnosis in 6 out of 12 patients recruited 

from a general genetics clinic (Need et al., 2012).  Worthey et al also used WES in the 

clinical setting to make a diagnosis in a single patient with inflammatory bowel disease 

(Worthey et al., 2011).  Similarly, there have subsequently been many studies 

demonstrating the utility if WES in the clinical setting. Yang et al had a diagnostic rate of 

25.2% in 504 patients using WES in the clinical setting (Yang et al., 2014).  Clinical 

exome sequencing had a diagnostic yield of 26% in 814 patients in California (Lee et 

al., 2014).  Retterer et al reported a diagnostic rate of 28.8% in 3,040 patients using 

WES in a clinical laboratory (Retterer et al., 2016). This rate would have been higher if 

WES had been used earlier in the investigation of the patients, because many had been 

extensively investigated including metabolic, karyotype, microarray, single gene or gene 

panel testing (Retterer et al., 2016).  Several patients actually had an immediate change 

of management including dietary fructose elimination in a patient with hereditary 

fructose intolerance, pyridoxine phosphate medication in a patient with pyridoxamine 5-
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prime-phosphate oxidase deficiency, and treatment with L-dopa and selegiline in a 

patient with Segawa syndrome (Retterer et al., 2016). 

 

When considering WES in the clinical setting, it is important that patients are consented 

appropriately, which should include discussion with families regarding the reporting of 

incidental findings, the potential for complex results, and identification of non paternity.  

It is important for the clinican to consider when it is best to use WES over gene panels. 

Laboratories must have clear guidelines for reporting of WES data (Bamshad et al., 

2011).  There are of course limitations to the detection of the causative variant with 

WES such as non-coding variants, copy number variants, expansion mutations and, in 

the clinical setting, the ability to investigate novel genes and genomic mechanisms 

further.  It is however, highly likely that whole exome sequencing will become 

increasingly used in the clinical setting for the patient’s benefit where used 

appropriately.  This project will consider its clinical utility further.  

 

1.9. Conclusion 

 

WES is an extremely useful tool for identification of the disease-causing variant in 

patients.  WES generates many sequence variants.  Filtering strategies need to be 

carefully considered to help identify the pathogenic variant explaining the patient’s 

phenotype.  The clinical application of WES and the impact of phenotyping in this 

process will be carefully considered throughout the project.  



25 
 

1.10. Aims of the Project 

 

1. Identify the most efficient process for rare variant interpretation and disease gene 

identification.  

2. Define the role of deep clinical phenotyping in the interpretation of 

comprehensive NGS analysis. 
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CHAPTER 2: METHOD 

 

2.1. Patient Acquisition 

2.1.1. Phenotypes of Interest 

Families in this study were selected for Whole Exome Sequencing based on whether 

their phenotype included one of the diseases of interest (see table 2.1).  I mainly 

focused on phenotypes involving the immune, neurological, bone and renal systems 

and cases with likely autosomal recessive inheritance.  
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Table 2.1: Disease and Phenotypes of Interest 

Disorder Type Disease of Interest 

  

Neurological Neurodegenerative 

 Neuro-inflammatory 

 Early Onset Epilepsy including Early Infantile Epileptic 

Encephalopathy (EIEE) 

 Seizures particularly responsive to certain drugs 

  

Immune-
Related 

Immunodeficiency Disorders 

 Familial Autoimmune Conditions  

 Inflammatory Conditions including Inflammatory Bowel Disease 

  

Bone-related Autosomal Recessive Osteogenesis imperfecta 

 Osteopetrosis 

  

Renal  Glomerulonephritis 

 Focal Segmental Glomerulosclerosis (FSGS) 

  

Other Multi-system disorders 
 

 

2.1.2. Family Prioritisation 

 

To increase the likelihood of identifying a disease-causing variant, I prioritised 

consanguineous families with likely autosomal recessive diseases and families in whom 

a de novo heterozygous mutation could be identified with trio analysis (analysis of the 

proband and both parents).  
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Families were also prioritised for inclusion if they had a genetic condition for which the 

molecular basis was unknown and the potential for identification of a novel disease 

gene or phenotype. 

 

2.1.3. Patient Recruitment 

 

I employed several different strategies to identify patients for recruitment within this 

project: 

 

1. I manually reviewed 366 research files of families previously recruited to the 

National Autozygosity Mapping Research (NAMR) study in Birmingham.  I 

identified 21 families who had a phenotype of interest who had already 

consented to the Molecular Pathology of Human Disease study.  I identified 6 

further novel families of interest who had not been recruited to the Molecular 

Pathology of Human Genetic Disease project.  Of these, 3 families were recruited 

to the study, but the other 3 families did not respond to the invitation to 

participate. 

2. Families were identified through the West Midlands Regional Clinical Genetics 

department retrospectively by identifying those coded with diseases of interest 

listed above:  
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a. Of the 23 clinical genetics files with a diagnosis of Osteopetrosis, I could 

identify 2 suitable families based on the above criteria. These families 

were contacted via letter but did not respond.  

b. Of the 6 families with Pulmonary Fibrosis, only 1 family was suitable.  After 

recontacting and visiting the family it transpired that sadly all affected 

family members had died in the intervening period.  

c. There were 12 possible patients with Inflammatory Bowel Disease, of 

which only 1 family were suitable, but again both affected family members 

were now deceased.  

d. 152 patients were identified with neuro-degenerative of childhood 

unspecified, but only 1 family were appropriate for inclusion in the study.  

This family were contacted and recruited to the study. 

3. I reviewed the medical records of 16 families with an inherited cerebral palsy like 

condition, previously phenotyped by a colleague in the department.  A molecular 

diagnosis of Aicardi Goutiere syndrome had since been made in 1 family and 

another was being investigated for Refsum syndrome.  4 families were already 

having WES as part of other research studies.  2 families had requested no 

further involvement in research documented in their notes.  For 1 family, the 

genetics file was missing.  This left a total of 7 families who were initially 

contacted through their clinicians (due to the time that had lapsed).  1 family were 

interested in meeting to discuss the study but declined involvement because the 

parents felt that a molecular diagnosis would not impact their day-to-day care. 
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4. I applied for a Research Passport with Leicester Royal Infirmary to recruit 

patients to my study.  After reviewing files coded as Early Encephalopathy.  I was 

able to identify 4 suitable familes not currently involved in other studies.  These 

patients were contacted by the local clinical geneticist involved in their care, but 

unfortunately, we did not hear back from them. 

5. Families were identified through the West Midlands Regional Clinical Genetics 

department prospectively by referral from the clinician involved in their care.  I 

raised awareness for this project by presenting at the whole department 

laboratory meeting and sending out intermittent email reminders of the inclusion 

criteria afterwards. We identified 9 suitable families from the department.  These 

families were contacted by letter or telephone and invited to participate.  7 

families were recruited to the study. 1 family responded and later decided not to 

proceed after completing their family, and 1 family were unsuitable after further 

discussion.  1 of the 7 recruited families were not sent for WES analysis because 

they received a molecular diagnosis soon after recruitment and clinical 

phenotyping, leaving 6 families recruited via this method.  

6. I regularly attended a neurometabolic clinic at the Birmingham Children’s 

Hospital. I identified 1 suitable family who were not already known to the West 

Midlands Regional Genetics department.  This family were recruited to the study.  

7. The Regional Immunology service is based at Birmingham Heartland’s Hospital. I 

contacted the department directly, but unfortunately, they had already sent all 

patients without a molecular diagnosis for further investigation in Newcastle-

upon-Tyne.  
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8. The Regional Paediatric Endocrinology department were also contacted to 

identify families of interest.  They kindly invited me to present at their 

departmental meeting at the Birmingham Children’s Hospital.  They were unable 

to identify any families for inclusion into this study. 

9. The Paediatric Rheumatology department at the Birmingham Children’s Hospital 

identified 3 families not already known to the project.  These families were 

recruited to the project. Subsequently a joint clinic was established with Dr Eslam 

Al-Abadi to identify patients with autoinflammatory disease requiring clinical 

genetic input.   
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Table 2.2: Number of patients identified, contacted and recruited to the study 

Patients Identified 

 

Number of Patients 

Contacted 

Number of Patients 

Recruited 

NAMR Already Recruited 
 

21 21 

NAMR Required Recruiting 
 

6 3 

Department Retrospectively 
 

5 1 

Department Prospectively 
 

9 6 (7) 

Birmingham Children’s Hospital 

 

4 4 

Leicester Royal Infirmary 
 

4 0 

Total 

 

49 35 (36) 

 

2.1.4. Informed Consent 

 

This project was part of the Molecular Pathology of Human Genetic Disease study.  The 

study design, protocol, patient information leaflets, and consent forms had already been 

approved by the relevant Research Ethics Committee (South Birmingham REC 

reference number 5175).  The relevant forms can be found in Appendix11.1 and 11.2. 

Written informed consent was obtained from all participants and all their family 

members. This clinical research adhered to principles outlined by the Declaration of 

Helsinki.  

 

For adult patients who lacked capacity, the General Medical Council guidance on 

Consent in Research and Mental Health Act 2005 were adhered to.  Their parents were 
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asked if they thought the patient would wish to be involved in this project if they had 

capacity to decide for themselves.  

 

2.2.  Human Phenotype Ontology and Phenotyping 

 

For the patients seen by Clinical Geneticists, consent for inclusion in the Molecular of 

Pathology of Human Genetic Disease was obtained at a routine clinic appointment.  

Patients who were referred to the study by other specialties or had been seen in Clinical 

Genetics previously and were later referred for inclusion in the study, were invited to 

attend a clinic appointment by letter and a follow up telephone call. For these patients, I 

undertook deep clinical phenotyping in clinic or during a home visit, took consent to join 

the research study and a blood sample if required for DNA extraction (see Methods 

2.3). 

 

For all patients, medical records were requested from their local hospital or tertiary 

hospital where relevant.  The medical records and clinical genetics records for the 

recruited patients were thoroughly reviewed. The patients were then phenotyped using 

Human Phenotype Ontology (HPO) terms.    These terms were documented within an 

excel spreadsheet to allow easy comparison of the phenotypes for the recruited patients 

and their families.  A summary of this table can be seen in the Appendix (11.3 and 

11.4).   
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For patients in whom we identified a putative causative variant, further phenotyping was 

performed where relevant to aid interpretation of the data.  This included clinical 

assessment and where relevant, further clinical investigation. 

 

2.3. DNA Analysis 

2.3.1. Sample Collection and Extraction 

 

1. For individuals with an adequate volume of stored DNA in the local 

regional genetics laboratory, we used this preferentially. 

2. For each adult participant with no available stored DNA, a 10ml blood 

sample was taken in an EDTA blood tube bottle.  For each child 

participant with no stored DNA sample, a 5ml of blood sample was taken 

in an EDTA tube.  In some individuals a saliva sample was taken instead 

using an Oragene DNA kit.  The DNA was then extracted from the blood 

or saliva using standard techniques by staff of the West Midlands 

Regional Genetics Laboratory.  

3. Aliquots of DNA of sufficient quantity (minimum of 3 microgram samples) 

and quality for WES were shipped to The Centre for Human Genetic 

Variation (CHGV) at Duke University, USA, by international courier (e.g. 

FedEx) for families 1-10, and to the University of Cambridge, UK, for 

families 11-35. 
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2.3.2. Whole Exome Sequencing Studies  

 

For the first 10 families WES studies were undertaken at the Genomic Analysis Facility 

at the Duke Centre for Human Genome Variation, USA. Exons were captured using the 

Agilent exon capture platform and massively parallel sequencing was undertaken on the 

Illumina HiSeq 2000 system. Reads were aligned to the reference sequence using 

Novoalign alignment tool.  Depth of capture and coverage of the exome was assessed 

using custom analytical tools built using the BED tools package. Quality filtering was 

undertaken using the Sam tools and Picard tools packages.  Single nucleotide 

substitutions and small insertion deletion variants were called using the Sam tools 

package. All identified variants were annotated with respect to open reading frames and 

cross referenced with publically available variant databases and internal control 

samples using custom scripts built around the Annovar tool.  

 

The remaining families had WES studies performed at the Department of Medical 

Genetics in the University of Cambridge.  Similar methods were utilised.  In brief, DNA 

was prepared using the TruSeq rapid exome library prep kit (Illumina, United States) 

following the manufacturer’s protocol. Pooled libraries were analysed on an Illumina 

HiSeq 2500 using Illumina HiSeq Reagent v.2 – paired end 150 bp (Illumina, United 

States). FASTQ files were aligned to genome reference GRCh38 using BWA-MEM 

(version 0.7.15-r1140) in ALT-contig aware mode. PCR duplicates were flagged by 

SAMtools rmdup (version 1.4.1).  Variant calling was carried out using GATK unified 

genotyper (version 3.7-0-gcfedb67). VCFtools was employed to filter variants.  Annovar 
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was used to annotate the variants using various databases including refGene, 

1000g2015aug_all, exac03, avsnp150, dbnsfp35a, clinvar_20180603, cosmic70, nci60, 

dbscsnv11. Variants were filtered by global minor allele frequencies present in both the 

1000 genomes project and ExAC cohorts. Variants with heterozygous call rates >15% 

of the total cohort were classed as technical artefacts or undocumented common SNPs 

and therefore removed. 

 

2.4. Identification of candidate pathogenic mutations  

 

Filtering of variants was performed using standard methods.  Briefly, common variants 

with a MAF of greater than 1% were removed using data from publically available 

databases such as dbSNP, the 1000 genome project 

(http://browser.1000genomes.org/index.html) and NHLBI Exome Sequencing Project, 

exome variant server (http://evs.gs.washington.edu/EVS/). Synonymous variants and 

intronic variants more than 4 base pairs from the splice site were removed.  I also 

removed genes starting with MUC, HLA, LINC, LAIR. 

 

Initially known variants that had been previously reported as pathogenic in HGMD, 

ClinVar or the medical literature were prioritised. For the consanguineous families, 

heterozygous variants were then removed to focus on homozygous variants. Novel 

truncating or nonsense variants were prioritised next, when present in all affected family 

members.  Missense substitutions were considered for further analysis if they were 

http://evs.gs.washington.edu/EVS/


37 
 

predicted to affect protein function or structure, were evolutionary conserved, and were 

absent in the homozygous state in ethnically matched controls. The remaining 

candidate variants were then considered depending on the function of the protein, the 

biological pathways and interactions of that protein, and any known associated 

phenotypes.  For consanguineous families, in whom no putative homozygous variants 

were identified, I then considered other types of variants, such as de novo heterozygous 

variants in families with a single affected patient and variants on the X chromosome if 

only affected males in the family. 

  



38 
 

2.5. Molecular Confirmations 

 

Sanger sequencing confirmation and segregation analysis was performed in families in 

whom a putative causative variant was identified. Verification of candidate pathogenic 

variants was undertaken by a postgraduate research student (Atif Al-Saedi) at the 

University of Birmingham, including segregation analysis within the family using 

standard methods.  Primers were designed using Primer3 tool to cover the specific 

mutation and the surrounding area of the gene.  PCR amplification was performed on 

the DNA samples. Each set of PCR reactions included a negative control to check for 

contamination. PCR products were sequenced using standard BigDye Terminator v3.1 

cycle sequencing method. Sequencing products were loaded on ABI 3730 automated 

sequencer and the sequences were processed using Bioedit and/or mutation surveyor.  

Sequence traces from each of the DNAs analysed was compared to the reference 

sequence from the ENSEMBL database. 

Figure 2.1: Summary of Flow through the study
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2.6. Website Addresses for Internet resources 

 

Several different online tools and databases were utilised to analyse the WES data.  

These resources are listed in table 2.3. 

 

Table 2.3 Internet Resources 

Name of Internet Resource Website address 

Autoinflammatory Alliance http://www.autoinflammatory-

search.org/search/index 

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/ 

dbSNP https://www.ncbi.nlm.nih.gov/snp 

Decipher https://decipher.sanger.ac.uk/ 

Ensembl http://www.ensembl.org/index.html 

Exome Aggregation Consortium http://exac.broadinstitute.org/ 

Exome Variant Server http://evs.gs.washington.edu/EVS/ 

GeneCards http://www.genecards.org/ 

HGMD http://www.hgmd.cf.ac.uk/ac/index.php 

Mouse Genome Informatics http://www.informatics.jax.org/ 

OMIM http://omim.org/ 

Orphanet http://www.orpha.net/consor/cgi-

bin/index.php 

Phenomizer http://compbio.charite.de/phenomizer/ 

Pubmed https://www.ncbi.nlm.nih.gov/pubmed/ 

UCSC Genome Browser https://genome.ucsc.edu/ 

  

http://www.autoinflammatory-search.org/search/index
http://www.autoinflammatory-search.org/search/index
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/snp
https://decipher.sanger.ac.uk/
http://www.ensembl.org/index.html
http://exac.broadinstitute.org/
http://evs.gs.washington.edu/EVS/
http://www.genecards.org/
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.informatics.jax.org/
http://omim.org/
http://www.orpha.net/consor/cgi-bin/index.php
http://www.orpha.net/consor/cgi-bin/index.php
http://compbio.charite.de/phenomizer/
https://www.ncbi.nlm.nih.gov/pubmed/
https://genome.ucsc.edu/
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CHAPTER 3: RESULTS; IMMUNE-RELATED DISORDERS 

 

This chapter includes findings that have been published previously in a journal article 

(Damgaard et al., 2016).  

3.1. Overview 

 

Table 3.1: Immune Related Disorders results overview 

Family 
number 

Clinical Diagnosis Molecular Diagnosis 

1 Familial Haemophagocytic  

Lymphohistocytosis (FHL) 

UNC13D homozygous missense 

variant  

2 
 

Relapsing Nodular Panniculitis 
(Weber Christian Disease) 

OTULIN homozygous missense 
variant  

5 
 

Immunodeficiency  
Syndrome 

No candidate mutation identified 

8 
 

T Cell Immunodeficiency and 
Photoreceptor Deficiency 

No candidate mutation identified 

10 
 

Autosomal Recessive Inflammatory 
Bowel Disease- like 

No candidate mutation identified 

12 

 

Acute disseminated 

encephalomyelitis in 2 siblings 

No candidate mutation identified 

15 
 

Phenotypic diarrhoea and 
autoinflammatory conditions 

No candidate mutation identified 

32 Autoinflammatory Condition 

 

No candidate mutation identified 

33 Autoinflammatory Condition 
 

Candidate NLRC3 heterozygous 
missense variant  

TNFRSF1A heterozygous 
missense variant – conflicting 
reports 

34 Autoinflammatory Condition 
 

DNASE1L3 homozygous 
frameshift deletion variant 
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I studied 10 families with immune-related disorders.  I identified the likely pathogenic 

disease-causing variant in 3 out of the 10 families (30%).  A further family (Family 33) 

had a candidate NLRC3 variant identified, as well as a variant in TNFRSF1A with 

conflicting pathogenicity data on ClinVar.  Interestingly, the clinical phenotype would fit 

well with a TRAPS phenotype.  NLRC3 is an immune-related gene with no human 

phenotype reported, which will be further investigated after this project has ended.   

 

The proband in Family 1 presented with clinical features consistent with Familial 

Haemophagocytic Lymphohistiocytosis (FHL).  She was the only affected individual in a 

multiply consanguineous family, who originally presented to the local paediatric 

department at 9 months of age with febrile seizures.  The clinical features included 

generalised seizures, jaundice, hepatosplenomegaly with deranged liver function tests, 

cytopenia, raised ferritin, hypertriglyceridaemia, microcephaly, short stature, global 

developmental delay, cerebellar ataxia, diarrhoea, and hypopigmentation of the skin. A 

bone marrow biopsy demonstrated haemophagocytosis without any evidence of 

myeloproliferative disease, which confirmed the diagnosis of haemophagocytic 

lymphohistiocytosis. She went on to receive a successful bone marrow transplant, 

although she continued to have neurological sequelae, including learning difficulties and 

cerebellar ataxia. Exome sequencing identified a homozygous missense variant in 

UNC13D c.3053G>T (p.Arg1018Gly), predicted to be deleterious, found within a highly 

conserved region of the gene, and not present in population variation databases. This 

gene is also known as FHL3 and accounts for around 20% of all cases of FHL.  It is 

therefore likely to explain the clinical phenotype seen in the patient, which will therefore 
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not be discussed further within this report.  This chapter will instead focus on the 

autoinflammatory disorders as exemplified by Family 2 and Family 34. 

 

3.2. Family 2 

3.2.1. Introduction 

 

Systemic autoinflammatory disorders are a group of rare conditions caused by a 

dysregulation of the innate immune system reflected by a neutrophilic, monocytic or 

macrophagic response with an abnormal cytokine profile (Broderick, 2016; Hoffman and 

Broderick, 2016; Kastner et al., 2010).  They are characterised by systemic 

autoinflammation in the absence of infection, autoantibodies and antigen specific T cells 

with features which may include recurrent fevers, rash, serositis, uveitis, meningitis, 

arthralgia or arthritis, sensorineural hearing loss and lymphadenopathy (Broderick, 

2016) (Hoffman and Broderick, 2016).  This is generally associated with a neutrophilic 

leukocytosis and raised acute inflammatory markers.  These episodes may be chronic 

or recurrent in nature.  Some of these episodes may be triggered by external stimuli 

such as cold exposure (Hoffman and Broderick, 2016). It is important to distinguish 

these patients from those with an infectious cause with or without an immunodeficiency.  

Failure to treat these autoinflammatory conditions can lead in many cases to AA 

amyloidosis and the consequences of this such as renal failure leading to death.  
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The first systemic autoinflammatory conditions described were characterized by 

recurrent fevers, rash, raised inflammatory markers, a neutrophilia, and with no 

identifiable source of infection (Broderick, 2016).  These conditions included Familial 

Mediterranean fever (FMF) where patients may have had repeated normal laparotomies 

for an acute abdomen, Cryopyrin-associated periodic syndromes (CAPS), TNF 

receptor-associated periodic syndrome (TRAPS), and Hyper-IgD syndrome (HIDS) also 

known as mevalonic kinase deficiency (MKD) (Broderick, 2016). There are three distinct 

phenotypes seen within CAPS, starting with the mildest cold induced symptoms with 

Familial Cold Autoinflammatory Syndrome (FCAS), to the recurrent unprovoked 

episodes in Muckle Wells syndrome (MWS) and finally with continuous symptoms in 

Neonatal-Onset Multisystem Inflammatory Disorder (NOMID).  Please see table 3.1. for 

a description of these conditions amongst other autoinflammatory conditions. 

 

The type 1 interferonopathies were subsequently described.  There are different 

components to the type I interferon (IFN) family including 13 different types of IFN-α, as 

well as IFN-β, IFN-ε, IFN-κ and IFN-ω (Eloranta and Rönnblom, 2016). The levels of 

IFN typically increase in response to an infection, particularly a viral infection, after 

recognition of foreign nucleic acids by the pattern recognition receptors (PRRs), such as 

certain Toll-like receptors (TLRs) mainly present in immune cells (Eloranta and 

Rönnblom, 2016).  The recently named relopathies, or NF-kB-related autoinflammatory 

diseases, are relatively new members of the autoinflammatory groups of conditions. 
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Table 3.2. Overview of Known Autoinflammatory Conditions 

Condition 

 

Gene 

 

Age of 

Onset 

Duration 

attack 

Clinical Features Standard 

Treatment 

Interleukin 1 cytokine based pathology 

FMF 
 

  

MEFV  
(AR) 

First 
decade 

1-3 days Erysipeloid rash LL 
Monoarthritis 

Serositis 
Splenomegaly 

Colchicine 

HIDS 

/MKD 

MVK  

(AR) 

Infancy 3-7 days 

(imms 
may 
trigger) 

 

Maculopapular rash  

Aphthous ulcers 
Abdominal pain, D, V 
Arthralgia, Symmetrical 

polyarthritis 
lymphadenopathy 

NSAIDs 

Anti-IL-1 

TRAPS TNFRSF1A 

(AD) 

Varied 

(0-53 
years) 

7-21 

days 

Daily fevers 

Periorbital oedema 
Migratory rash +/- 

underlying myalgia 
Large joint arthritis 
Serositis, CBH 

Conjunctivitis 
Splenomegaly 

Steroids 

Anti-IL-1 

CAPS 

(FCAS) 

NLRP3  

(AD) 

Infancy <1 day Cold induced fever 

Urticarial like rash 
Arthralgia 

Anti-IL-1 

CAPS 
(MWS) 

NLRP3  
(AD) 

Infancy 2-3 days 
 

Urticarial like rash 
Abdominal pain 

Polyarthralgia 
Conjunctivitis, 

episcleritis 
SNHL 

Anti-IL-1 

CAPS 
(NOMID) 

NLRP3  
(AD) 

Neo 
-nate 

Constant Urticarial like rash 
Epiphyseal overgrowth 

Chronic arthritis 
Uveitis, visual loss 

Chronic aseptic 
meningitis 
Mental retardation 

Hepatospenomegaly 

Anti-IL-1 

PAPA PSTPIP1 
(AD) 

Child Induced 
mild 

trauma or 
infection 

Pyogenic Sterile 
Arthritis  

Pyoderma 
Gangrenosum 

Acne syndrome 

Steroid 
Anti-IL-1 
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Recurrent ulcers 
Lymphadenopathy 

NLRC4 NLRC4 

(AD – de 
novo) 

Varied Variable Prolonged episode fever 

Urticarial like Rash 
Arthritis 
Raised ferritin 

Severe GI symptoms - 
including enterocolitis 

Anti-IL-1 

Anti -IFNγ 

Interferonopathy 

CANDLE PSMB8 

PSMB4 
PSMB9 
PSMA3 

POMP 
(AR) 

Infancy Frequent Chronic Atypical 

Neutrophilic Dermatosis 
Lipodystrophy 
Elevated temperature 

Violaceous eyelid 
swelling 

(partial) 

TNFα 
blocker 
Anti-IL-1 

SAVI: 

STING 
Associated 

Vasculo 
-pathy 
onset in 

Infancy 

TMEM173 

encodes 
STING 

 

Infancy  Fever 

Neutrophilic 
vasculopathy 

Interstitial lung disease 

Nil 

AGS: 
Aicardi 

Goutiere 
Syndrome 
 

ADAR, 
RNASEH2A

RNASEH2B
RNASEH2C
SAMHD1 

TREX1 
IFIH1 

Infancy Constant Fevers and chilblains 
Encephalopathy 

Severe LD/ regression 
Dystonia and spasticity 
Calcification basal 

ganglia 
Hepatosplenomegaly 

Nil 

Inhibitory Receptor Mutations 

DIRA: 

Deficiency 
of IL-1 
Receptor 

Antagonist 

IL1RN 

(AR) 

Birth Constant Neutrophilic pustular 

rash 
Osteopenia 
Sterile lytic bone lesions 

Anti-IL-1 

DITRA: 
Deficiency 

of IL-36 
Receptor 

Antagonist 

IL36RN 
(AR) 

Varied Flares 
days to 

weeks 

Generalised Pustular 
Erythematous rash 

flaring with physiological 
stressors 

Anti-IL-1 

Complex Autoinflammatory disorders 

PFAPA Unknown <5 
years 

~monthly Periodic Fever 
Aphthous Stomatitis 
Pharyngitis 

Adenitis Syndrome 

 

Autoinflammatory Disease with Immunodeficiency 
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HOIL-1 
deficiency 

HOIL-1 
(AR) 

  Pyogenic bacterial 
infections 
Autoinflammation 

Amylopectinosis (CM, 
sm muscle myopathy) 

 

HOIP  

Deficiency  

HOIP 

(AR) 

  Immunodeficiency 

Autoinflammation 
Amylopectinosis 

Multiple lymphanectasia 

 

DADA2 
Deficiency 
of ADA2 

 

CERC1 
encodes 
ADA2 

(AR) 

<5 
years 

Episodic Recurrent fever 
Livedo reticularis 
Early lacunar strokes 

Low IgM 
>50% lymphopenia and 

hypogammaglobinaemia 

 

Other 

FHL PRF1 
STX11 

STXBP2 
UNC13D 
RAB27A 

SH2D1A 
BIRC4 

<1 
year 

>2 weeks Maculopapular/ nodular 
rash 

Liver disease 
CNS inflammation 
Blindness 

Lymphoma 
Haemophagocytosis 
bone marrow 

 

Majeed LPIN2 
(AR) 

<2 
years 

Few days 
1-4/m 

Neutrophilic dermatosis 
Congenital 
Dyserythropoietic 

Anaemia 
Multifocal osteomyelitis 

Delayed growth 

 

Blau 
syndrome 

NOD2 
(AD) 

<5 
years 

Episodic 
or 
constant 

Non-caseating 
granulomatous rash 
Arthritis and vasculitis 

Cranial neuropathies 
Uveitis, cataracts 

Pericarditis 
Lymphadenopathy 

 

AD autosomal dominant, AR autosomal recessive, CBH change in bowel habit, CM 
cardiomyopathy, D diarrhea, DIRA Deficiency of IL-1 Receptor Antagonist, DITRA 

Deficiency of the Interleukin-36 Receptor Antagonist, imms immunisations, LL lower leg, 
m month, sm smooth, SNHL sensorineural hearing loss, temp temperature, V vomiting, 

(Broderick, 2016) (Pagon et al., 1993) (“Systemic Autoinflammatory Diseases (SAID) 
Database,” n.d.) (Hoffman and Broderick, 2016) 
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Family 2 and 34 both had features consistent with a systemic autoinflammatory 

disorder, although the clinical presentations were quite different.  Neither fell typically 

into the above known systemic autoinflammatory disorders. 

. 
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3.3.2. Clinical Description 

 

Figure 3.1: Pedigree of Family 2 

 

  

IV:1 IV:2 

III:3 III:4 
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The proband, V:2, is the second child born prematurely at 28+6 weeks gestation to 

consanguineous parents (IV:1 and IV:2) with a birth weight of 1.23kg.  He first 

developed relapsing nodular panniculitis at 8 weeks of age while he was on the 

neonatal intensive care.   Prior to the appearance of his skin rash, he had had repeated 

episodes of possible infection, showing a rise in C-reactive protein (CRP) and white cell 

count (WCC), but no focus for infection had been identified.   The rash was biopsied 

and confirmed inflammation in the dermis extending into the subcutaneous layer with a 

mixed inflammatory cell infiltrate, with no granulomata or vasculitis seen. 

 

He had frequent flare-ups involving widespread painful lumps in the skin lasting 2 days 

to 2 weeks.  During these episodes he would be systemically unwell with fever, 

vomiting, diarrhoea (sometimes bloody), inflamed painful joints, swollen feet, and weight 

loss associated with a raised CRP and raised WCC.  He would lose his appetite, lose 

weight and become dehydrated.  He had multiple admission to the high dependency 

unit.  He seemed susceptible to frequent infections especially viral illnesses including 

bronchiolitis and chickenpox.  These recurrent episodes had long-term consequences 

including poor weight gain, slow growth, developmental delay, and mild learning 

difficulties.  Other clinical problems included congenital hydroceles, dental caries, a 

pathological osteoporotic tibial fracture (which may have been secondary to repeated 

steroid use) and juvenile cortical cataracts at 2-3 years of age requiring surgical 

management with bilateral lensectomy and vitrectomy. He was treated both with 

systemic steroids and Anakinra.  Neither medication successfully prevented the 

recurrent episodes or additional symptoms. Infliximab (a TNF alpha blocker) was 
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introduced 7 years ago and has successfully controlled the disease.  He has had a 

couple of minor exacerbations when the frequency of the infliximab was decreased or 

the dose of infliximab per kilogram of body weight decreased.  In addition to this, he 

takes methotrexate, azithromycin and acyclovir prophylaxis.  

 

On examination, his growth parameters were all less than the 0.4th centile.   He had a 

prominent nodular rash in keeping with a flare of panniculitis.  Cataracts had been noted 

previously in both eyes.   He had coarse hair with bushy eyebrows, slight hypertelorism, 

broad nasal bridge, prominent nose, protruding normally formed ears and a prominent 

chin.  Also see the HPO phenotype summary table and code (Appendix 11.3 and 11.4). 

 

He had been extensively investigated for the cause of his systemic autoinflammatory 

disorder.  The positive findings included recurrently raised WCC (see figure 3.2), which 

was mainly accounted for by a neutrophilia.  During one episode, he had a neutrophil 

count of 68x109cells/l recorded with toxic granulation, vacuolation and a left shift.  He 

also had recurrently raised CRP and Erythrocyte Sedimentation Rate (ESR), when 

performed (see figure 3.2).  The WCC, CRP and ESR levels reflect the 

autoinflammatory process of the disease.  These levels normalised once the condition 

was controlled by infliximab treatment, with levels increasing only during dose-related 

exacerbations described above (see figure 3.2).  He had a single strongly positive anti 

smooth muscle antibody (1/320).  The most recent skin biopsy was very similar to the 
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appearance of his cousin’s skin biopsy (described below) showing a neutrophil-rich 

panniculitis with fat necrosis favouring septal distribution.  

 

Figure 3.2: Timeline showing inflammatory markers for patient V:2 (overleaf) 

Summary: Graph A demonstrates the CRP and ESR levels over the lifetime of the 

patient. The normal reference range is marked as seen in the key.  Please note that the 

ESR was not recorded regularly.  The recurrent spikes of inflammation are reflected in 

the recurrent large spikes in the CRP and ESR levels above the normal reference 

range.  Infliximab was commenced at the age of 3 years 1.5 months. After a year of 

relatively good control, the prednisolone was gradually stopped.  The infliximab dose is 

increased subsequently at 4 years 5 months of age after a marked episode of 

inflammation demonstrated by a massive increase in the CRP level.  Subsequent minor 

increases in CRP level are related to attempts to space out the infliximab infusions and 

as the dose of infliximab per kilogram body weight reduces.  CRP is an excellent marker 

for inflammation in this condition.   

Graph B similarly demonstrates the WCC and associated neutrophil count over the 

lifetime of the patient. The normal reference range is marked as seen in the key.   

Similarly, a raised WCC and neutrophil count correlated well with the autoinflammatory 

disease exacerbation.  These levels settle to normal with infliximab treatment, with 

minor exacerbations associated with altered infliximab dose or infusion interval. 
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Timeline showing inflammatory markers over the lifetime of patient V:2 
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Timeline showing inflammatory markers over the lifetime of patient V:2 
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The proband had two cousins who had previously died with a similar disorder. Patient 

IV:3 is the first child born to consanguineous parents (III:3 and III:4) at 34 weeks 

gestation via normal vaginal delivery and was small for gestational age. She first 

developed an erythematous maculopapular rash, with poor feeding and weight gain at 6 

days of age.  She presented at 3 weeks of age with protracted diarrhoea, pyrexia, a 

widespread erythematous papulonodular rash, severely inflamed BCG scar, mild 

hepatomegaly and failure to thrive. At 7 months corrected gestational age all growth 

parameters were well below the 0.4th centiles.  She required total parenteral nutrition 

(TPN) and later nasogastric tube feeds. During her lengthy admission she was noted to 

have recurrent episodes of a widespread nodular erythematous rash associated with 

fever, neutrophilia and an exacerbation of her diarrhoea.  An initial skin biopsy, taken as 

the rash was resolving showed non-specific changes.  Duodenal biopsies showed 

microvillous dystrophy.  She also had mild hepatomegaly.  A liver biopsy showed TPN 

induced micro-nodular cirrhosis.  Echocardiogram identified an atrial septal defect.  

 

Patient IV:3 was extensively investigated to identify the cause of her protracted 

diarrhoea and episodic skin rash including extensive immunological investigations (see 

Figure 3.3). The lymphocyte subsets showed all major classes were present with an 

increased density of polyclonal B cells and NK cells.  She also had a raised IgM and IgA 

level, raised C3 (2.28), a positive ANCA (1:100 cytoplasmic) and SMA level. When she 

was treated with intravenous methylprednisolone, her fever, diarrhoea and rash would 

resolve, but these clinical features would return when attempts were made to chan ge to 

oral prednisolone.  Azathioprine and methotrexate were also trialled.  She had 3 
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episodes of bilateral consolidation progressing to sepsis and acute respiratory collapse 

in the last 3 months of her life requiring ITU admission.  Sadly, she died at 17 months 

from the final episode.  These episodes were complicated by acute tubular necrosis 

from presumed end organ damage.  Cerebral atrophy was also identified on a CT head 

scan during this period.  

 

Figure 3.3: Inflammatory markers over lifetime of IV:3 

 

For normal reference ranges, please see figure 3.2.  

Summary: Recurrent episodic inflammation demonstrated by inflammatory marker 

levels. 
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Patient IV:4 is the second child born to consanguineous Pakistani parents (III:3 and 

III:4) at 36 weeks gestation via normal vaginal delivery with a birth weight of 2kg. She 

was diagnosed with relapsing nodular panniculitis at 3 days of age.  This rash, similarly 

to her sister and cousin, was episodic in nature and associated with diarrhoea (bloody 

at presentation), vomiting, fever, painful swollen joints and difficulty sleeping. She also 

required nasogastric tube feeds for failure to thrive.  All growth parameters were below 

the 0.4th centile. She had developmental delay.  IV:4 had high neutrophils, and raised 

white cell counts, mainly reflecting a neutrophilia. The last recorded levels prior to her 

death demonstrated massive levels of inflammation with a CRP of 388, WCC of 95.7, 

and a neutrophil count of 92.3.  CRP was checked at every flare up, therefore was 

always raised, with a maximal recorded level of 419 (See Figure 3.4).  She also had 

bilateral cataracts diagnosed at the age of 5 months, like the proband.  In addition, she 

had recurrent urinary tract infections with no identifiable aetiology.  The cataracts were 

not present in the neonatal period on formal ophthalmological examination.  The 

appearance of the cataracts was more suggestive of an inflammatory cause rather than 

a complication of steroid use.  She was treated with prednisolone from the age of 1 

month.  Azathioprine and anakinra were tried unsuccessfully.  At the time all known 

systemic autoinflammatory conditions were ruled out by single gene sequencing. 

                                                                                                                                                                                                                                                   

During a severe episode of inflammation at the age of 5, IV:4 demonstrated features 

consistent with a high cell turnover including a raised potassium, phosphate, uric acid, 

LDH, white cell count and a metabolic acidosis.  She was admitted to paediatric 

intensive care with acute renal failure, pulmonary oedema and an ileus, but sadly 
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passed away.  Treatment had included intubation and ventilation, intravenous 

methylprednisolone, dexamethasone, and methotrexate.  

  

Figure 3.4: Inflammatory markers over lifetime of IV:4 

 

For normal reference ranges, please see figure 3.2.  

Summary: Recurrent episodic inflammation less well demonstrated by inflammatory 

marker levels in IV:4.  This patient was not admitted for a sustained period of time 

similar to sibling and therefore normal inflammatory markers in between periods of 

inflammatory exacerbation are less well documented. 
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Table 3.3: Comparison of the affected individuals’ phenotype using HPO in Family 2 

(see overleaf) 

Summary: Affected individuals have similar recurrent episodes with similar clinical 

features and long-term consequences.  Infliximab treatment was life-saving for the 

proband. 

Legend: UnK is unknown. 
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3.3.3. Results 

 

WES revealed 50 rare homozygous variants, none of these were reported in to be 

pathogenic in ClinVar or HGMD (see Appendix 11.5.2). Among the homozygous 

variants, I prioritized a homozygous missense substitution within the OTULIN gene 

(c.815T>C, p.Leu272Pro).  This variant was not detected on the population databases. 

Leu272 is located in a helix of the catalytic OTU domain which forms part of the binding 

pocket for M1-linked diUb.  This variant is therefore predicted to disrupt ubiquitin binding 

domain of the OTULIN protein.  Sanger sequencing has confirmed this result in V:2.  

IV:1, III:3, and III:4 were confirmed heterozygotes of this variant. 

 

This result was consistent with previous studies in this family.  Previous SNP array 

analysis of the 3 affected individuals identified 3 regions of extended homozygosity.  

The largest shared region of homozygosity was at 5p15, from 13,802,063 to 16,722,976 

bp.  Sequencing of the genes within this region had identified a h omozygous missense 

variant in FAM105B in all affected individuals (c.815T>C; p.Leu272Pro).   Little was 

known about the function of this gene at the time.  When I subsequently reviewed this 

data, it was clear that we had identified the same variant.  OTULIN was previously 

known as FAM105B. 
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There was no human phenotype reported for patients with variants within the OTULIN 

gene at that time.  There was however, an increasing body of information regarding the 

biology of OTULIN as a key regulator of the TNF alpha pathway, discussed further 

below.  The proband was exquisitely sensitive to TNF alpha blockade treatment, which 

made it highly likely that the homozygous variants in OTULIN were the disease-causing 

variants in this family.  There were no other similarly affected families.  We worked with  

David Komander’s group in Cambridge, who were working with OTULIN mice models.  

The human and mouse phenotype work has subsequently been published in the peer 

review journal Cell (Damgaard et al., 2016). This condition has now been described as 

OTULIN-related autoinflammatory syndrome (ORAS). 

 

3.3.4. Discussion 

 

I have described 3 children from a multiply consanguineous family with an 

autoinflammatory disorder, now called ORAS, manifesting from a few days of age with 

recurrent episodes of relapsing nodular panniculitis, fever, myalgia, arthralgia, 

diarrhoea, weight loss, a raised CRP and white cell count. Additional long-term 

consequences included cataract, developmental delay and growth delay. The nuclear 

cataracts seen in two of these individuals are not consistent with those seen as a 

complication of steroid treatment, but rather the underlying inflammation. The affected 

children were miserable when this condition was poorly controlled.  Treatment of 

affected patients with prednisolone, general immunosuppressant did seem to mildly 

reduce the severe inflammation seen in the affected individuals but did not reduce the 
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frequency of recurrence. Azathioprine, methotrexate, and Anakinra, an interleukin-1R-

antagonist, made no difference to the disease course.   Infliximab, TNF alpha blockade, 

successfully manages this condition. 

 

The affected individuals in the family had a homozygous missense variant in the 

OTULIN gene.  At the time of identification, there were no reported patients with 

variants in OTULIN.  Some patients with Cri-de-Chat syndrome have a heterozygous 

deletion incorporating this gene, but it is unclear how this contributes to the phenotype.  

A knockout mouse model, called gumby, was embryologically lethal (Rivkin et al., 

2013).  We therefore postulated that this missense variant would be hypomorphic, and 

therefore some residual OTULIN function would remain.  Blood samples from the 

proband confirmed the presence of OTULIN, although the levels were slightly reduced 

as compared to age-matched controls (Damgaard et al., 2016). SHARPIN was also 

detected in the blood sample (Damgaard et al., 2016). Interestingly, M1-linked ubiquitin 

chains were strongly increased in the proband, but found at very low levels in control 

samples, mimicked by the bone marrow chimera mice models described below 

(Damgaard et al., 2016).  The OTULIN deficiency means that the M1-linked ubiquitin 

chains are produced by the unregulated LUBAC, leading to unregulated stimulation-

independent activation of the NF-kB pathway, and thus explaining the marked systemic 

autoinflammation seen in Family 2 (Damgaard et al., 2016).   
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Detailed phenotyping demonstrated clear biological plausibility to the OTULIN variants 

being the disease-causing variants in this family.  Patient V:3 was commenced on 4 

weekly infusions of infliximab, a TNF alpha blocker, at 3 years of age controlling his 

auto-inflammatory disorder (see results 3.3.2.).  Exacerbations were seen if the dose 

per kg body weight of infliximab was reduced to less than 5mg or the treatment interval 

of 4 weeks lengthened.  Infliximab therefore, radically altered the disease course for the 

proband.  His cousins did not receive infliximab treatment.  They both sadly died in early 

childhood secondary to complications from the untreated severe inflammation seen in 

ORAS.  We postulate that the molecular cause for the systemic autoinflammatory 

condition in Family 2 would lie within or interact with the TNF alpha pathway.  OTULIN 

is a regulator of this pathway.  I will now discuss the biological evidence explaining the 

causality further. 

 

OTULIN (#615712), previously known as FAM105B, is part of the OTU family and works 

as a deubiquitinase (DUB), hence it was so named (OTU DUB with linear linkage 

specificity) (Keusekotten et al., 2013; “OMIM - Online Mendelian Inheritance in Man ”).  

Ubiquitination is an important protein post-translational modification, involving the 

addition of ubiquitin or a ubiquitin chain.  This process of ubiquitination regulates a 

number of cellular processes including protein degradation and activation (Keusekotten 

et al., 2013; Komander and Rape, 2012; Tokunaga, 2013).  Polyubiquitin chains can be 

linked via Met-1 linked or linear polyubiquitin, by linking the C-terminal glycine at 

position 76 of one ubiquitin to the N-terminal methionine at position 1 on the 

neighbouring ubiquitin (Keusekotten et al., 2013; Lork et al., 2017; “OMIM - Online 
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Mendelian Inheritance in Man”; Tokunaga, 2013).  There are seven other types of 

ubiquitin chains with the C-terminal glycine attached to one of the seven lysine residues, 

K6, K11, K27, K29, K33, K48 or K63, as well as mixed chain utilising more than one 

type of polyubiquitin link (Lork et al., 2017). The Met-1 linked polyubiquitin is assembled 

by the linear ubiquitin chain assembly complex (LUBAC) (Keusekotten et al., 2013).  

This E3 ligase is made up of 3 main components: HOIL-1L which is encoded by 

RBCK1, HOIL-1L-interacting protein (HOIP) encoded by RNF31, and SHARPIN 

encoded by SHARPIN (Fiil et al., 2013; Keusekotten et al., 2013; Steiner et al., 2018; 

Tokunaga, 2013).  LUBAC is involved in the nuclear factor κB (NK-κB) activation after 

stimulation by inflammatory cytokines such as TNF-α (Fiil et al., 2013; Keusekotten et 

al., 2013; Tokunaga, 2013).  The NF-κB pathway is a critical signalling pathway, which 

regulates both the innate and acquired immune system (Tokunaga, 2013). There are 

two main pathways, the canonical and alternative NF-κB pathway.  The canonical 

pathway is triggered by the binding of pro-inflammatory cytokines, such as tumour 

necrosis factor (TNF) to TNF receptor 1 (TNFR1), as well as  IL-1β and pathogen-

associated molecular patterns (PAMPs) to their specific receptors (Steiner et al., 2018).  

This leads to an activation pathway cascade culminating in the release of two NF-κB 

subunits, p65 and p50, leading to the upregulation of proinflammatory and antiapoptotic 

gene transcription (Steiner et al., 2018). 

 

OTULIN specifically degrades the met-1 linked ubiquitin chains, and therefore regulates 

LUBAC activity (Keusekotten et al., 2013). OTULIN binds to HOIP via the PUB domain 

and is thus able regulate LUBAC (Elliott et al., 2014; Lork et al., 2017; Schaeffer et al., 



64 
 

2014).  OTULIN is the only deubiquitinase which specifically cleaves these met-1 links 

(Keusekotten et al., 2013; Rivkin et al., 2013).  Overexpression of OTULIN reduces 

LUBAC-mediated NK-κB activation and therefore OTULIN knockdown leads to 

increased signaling of this pathway (Keusekotten et al., 2013).  Linear ubiquitination by 

LUBAC and deubiquitination by OTULIN are therefore critical regulators of the innate 

immune system (Tokunaga, 2013).  Thus, giving substantial plausibility to the likelihood 

of ORAS causing the infliximab responsive autoinflammatory condition in Family 2.  

 

The OTULIN knockout mice are embryonically lethal, therefore Damgaard et al created 

CreERT2-OTULINLacZ/flox mice, in which OTULIN was systemically ablated in all cells 

with tamoxifen administration (Damgaard et al., 2016; Rivkin et al., 2013).  This led to 

the mice becoming rapidly moribund (Damgaard et al., 2016).  CreERT2-OTULINflox 

mixed bone marrow chimera mice were generated and treated with tamoxifen to induce 

OTULIN ablation at 6-8 weeks (Damgaard et al., 2016).  This resulted rapid weight loss, 

increased levels of neutrophils in the bloodstream, as well as pro-inflammatory 

cytokines including TNF, IL-6, and G-CSF, when compared to controls (Damgaard et 

al., 2016).  The liver, spleen, abdomen, lungs and kidneys had neutrophil infiltration 

(Damgaard et al., 2016).  This demonstrated a very similar phenotype of systemic 

autoinflammatory disease to that seen in Family 2.  Damgaard et al subsequently went 

on to see whether neutralisation of the raised inflammory cytokines, TNF, G-CSF, or IL-

6, would rescue to phenotype (2016).  After tamoxifen-induced OTULIN ablation, TNFα 

antibodies were administered, demonstrating a significant change in the mouse 

phenotype with resolution of the previously described weight loss, reduced tissue 
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neutrophil infiltration, and the pro-inflammatory cytokine levels were also reduced 

(Damgaard et al., 2016).  Additionally, they identified that targeted ablation 

of OTULIN in myeloid cells led to chronic inflammation, and conversely 

OTULIN ablation in B and T lymphocytes, resulted in no specific phenotype, and 

interestingly HOIP and SHARPIN were simultaneously downregulated in these cells 

(Damgaard et al., 2016). In summary, the mice models were therefore able to 

recapitulate the human phenotype to demonstrate that ORAS is the cause of disease in 

Family 2.  

 

Two further patients have subsequently been reported with ORAS (Zhou et al., 2016b).  

Both are Turkish patients, one with another homozygous missense variant and another 

with a homozygous frameshift variant (Zhou et al., 2016b).   The first patient had 

recurrent episodes of panniculitis and fever from the age of four and a half months, 

whereas the second patient presented more similarly to Family 2 with neonatal 

recurrent fevers, panniculitis, arthralgia, and failure to thrive (Zhou et al., 2016b).  The 

patient with milder symptoms of ORAS is successfully managed with anakinra and the 

second patient with the TNF blocker, etanercept, as well as steroids for 

autoinflammatory symptom flare-ups (Zhou et al., 2016b).  In view of the supposition 

that hypomorphic variants in OTULIN produce ORAS and more severe variants may be 

lethal, this is surprisingly compatible with life, although clearly more severe than the 

phenotype seen in the proband of Family 2, who no longer requires steroid treatment.  

The missense variant reported in the first patient, p.Tyr244Cys, resulted in a milder 

phenotype explained by experiments showing that the OTULIN enzyme activity was 
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similar to baseline (Zhou et al., 2016b).  This provides further evidence to the validity of 

the pathogenicity for the variant identified in Family 2.  

 

CreERT2-OTULINflox mixed bone marrow chimera mice were shown to have evidence 

of chronic inflammation in the liver and spleen (Damgaard et al., 2016).  Further 

unpublished work from David Komander’s laboratory in mice with liver-specific deletion 

of OTULIN has shown early-onset neonatal steatosis, which developed severe liver 

disease with severe portal inflammation, at 3-4 weeks of age (equivalent to 12-14 years 

in humans) and subsequently nodules and adenomas.  Worryingly, there was only mild 

derangement on liver function testing in these mice, which may make detection 

potentially difficult, unless this phenotype is specifically sought out.  This is a liver-

specific knockout and therefore may not be relevant to missense variants within the 

gene seen in Family 2.  

 

The liver function results for the affected individuals were therefore consulted.  IV:3 had 

known liver function derangement, which at the time was felt to be a secondary 

consequence of long-term total parenteral nutrition replacement.  Hepatomegaly was 

documented in IV:4, but with no subsequent investigation, this is difficult to interpret.  

IV:4 also has mild liver derangement, which could have been a secondary consequence 

from the Anakinra.  V:2 also had mild liver derangement, with an exacerbation just after 

3 years which occurred soon after infliximab treatment was commenced, but this 

subsequently resolved. Overall, it is likely that the mild liver derangement seen in 
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affected individuals was potentially a secondary effect of systemic inflammation or 

treatment being received at the time.  It is unlikely to represent primary liver 

involvement.  It is unclear whether the phenotype seen in the liver-specific knockout 

mice would be relevant to the human phenotype.  Equally, it is a possibility that with the 

TNFα blockade, this complication may be prevented.  It will of course be prudent to 

observe the proband in Family 2 carefully for liver involvement.  

 

Human phenotypes have been reported in patients with variants within the genes 

encoding the components of the ubiquitinase, LUBAC.  Homozygous and compound 

heterozygous loss-of-function mutations in RBCK1, encoding the subunit of LUBAC, 

HOIL1, were reported in 3 individuals from 2 families (Boisson et al., 2012).  This 

resulted in a similarly fatal autoinflammatory disorder with additional features including, 

increased susceptibility to pyogenic bacterial infections and muscular amylopectinosis 

resulting in myopathy and cardiomyopathy (Boisson et al., 2012). This results in HOIL1 

and LUBAC deficiency, with no detectable formation of linear ubiquitin chains causing 

impaired NF-κB activation, and subsequent decreased NF-κB pathway activity in 

response to TNF (Boisson et al., 2012; Steiner et al., 2018).  A similar phenotype was 

seen in a patient with a homozygous variant in HOIP who not only had 

autoinflammation, amylopectinosis, and recurrent viral and bacterial infections due to a 

combined immunodeficiency, but also had lymphangiectasia (Boisson et al., 2015). 
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Human phenotypes have also been associated with variants in other deubiquitinases.  

CYLD is a deubiquitinase which cleaves both the Met1-linked ubiquitin chains, as well 

as K63-linked ubiquitin chains from different proteins within the NF-κB signaling 

pathway  (Damgaard et al., 2016; Lork et al., 2017; Steiner et al., 2018).  CYLD 

deficiency leads to increased NF-κB pathway activity resulting in increased 

proinflammatory and anti-apoptotic gene transcription (Lork et al., 2017).  CYLD also 

interacts with LUBAC via interaction with the PUB domain of HOIP with SPATA2 (Elliott 

et al., 2016; Lork et al., 2017).  CYLD and OTULIN do not bind with LUBAC 

simultaneously, and appear to be functionally distinct (Hrdinka and Gyrd-Hansen, 2017; 

Lork et al., 2017). Familial cylindromatosis (genetic predisposition to multiple tumours of 

the skin appendages) is reported in patients with heterozygous pathogenic variants in 

CYLD (Bignell et al., 2000), which is unsurprising in view of the upregulation of anti-

apoptotic gene transcription secondary to its deficiency, but a very different phenotype 

to that seen in Family 2.  No specific tumour types with loss of OTULIN have been 

reported, but in unpublished work from David Komander’s laboratory discussed earlier 

neoplastic changes were seen in the Otulin deficient liver model (Elliott and Komander, 

2016; Steiner et al., 2018). The relevance of OTULIN to tumourigenesis is currently 

unclear and requires further study.  

 

A systemic autoinflammatory condition, with a similar phenotype to Behcet syndrome 

consisting of arthritis, oral and genital ulcers, was reported in 6 families with 

heterozygous variants in the deubiquitinase TNFAIP3 gene (tumor necrosis factor, 

alpha-induced protein 3 or A20) (Zhou et al., 2016a, 2016b).  A20 expression has also 
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been shown to be suppressed by microRNA in diffuse large B-cell lymphoma (Kim et 

al., 2012; Lork et al., 2017).  A20 has deubiquitinase and ubiquitinase ligase activity, 

which also has a regulatory role in the NF-κB activation pathway in response to different 

proinflammatory stimuli, but its precise role is less clear (Lork et al., 2017).  A20 

deficient mice develop severe inflammation, cachexia, and die prematurely (Lee et al., 

2000).  The human A20 deficiency phenotype is a less severe, autoinflammatory 

disease than ORAS, but occurs in the heterozygous state. 

 

Family 15 have an autoinflammatory phenotype, which may fit within this group of 

conditions.  Similarly, to Family 2, they initially presented with a phenotypic diarrhoea of 

infancy presentation.  There were 3 affected siblings born to consanguineous first 

cousin parents.  The second sibling sadly died within the first couple of years of life.  

The elder sibling developed sepsis and a cerebrovascular event.  This left her with a 

significant neurological deficit, meaning she is unable to walk or talk, she is ventilated 

and receives enteral feeds.  The younger of the 3 siblings is developmentally normal, 

currently attending college.  She has episodes of a neutrophilic dermatosis, which have 

not been seen in the older siblings.  Both surviving siblings however, also have an 

endocrine phenotype (hypopituitarism).  It is unclear how all these features tie together, 

and it is possible that they may represent a blended phenotype of more than one 

condition.  I have been unable to identify the disease-causing variant explaining the 

phenotype in Family 15, but analysis is ongoing. 
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In summary, ORAS, due to homozygous missense variants in OTULIN, results in a fatal 

autoinflammatory condition.  As a regulator of the TNF mediated NF-kB pathway, 

OTULIN deficiency is successfully treated with TNF alpha blockade in mice and 

humans.  ORAS is therefore a novel human phenotype explaining the systemic 

autoinflammatory condition seen in Family 2.  
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3.4. Family 34 

3.4.1. Introduction 

 

Systemic lupus erythematosus (SLE) is a complex auto-immune multi-system disorder 

with multifactorial aetiology, including both genetic and environmental factors, due to 

hyperactive T and B cells, ANA directed against self-DNA and immune complex 

deposition (Carbonella et al., 2017; Costa-Reis and Sullivan, 2017).  The immune 

complexes accumulate in the patients’ vessel walls, glomeruli and joints causing a type 

III hypersensitivity reaction manifesting the clinical features seen in patients with SLE, 

namely vasculitis, glomerulonephritis, and arthritis (Napirei et al., 2000).  Features 

suggestive of a monogenic cause include paediatric onset, consanguinity, a family 

history consistent with Mendelian inheritance, or disease which is not responsive to 

regular medication (Costa-Reis and Sullivan, 2017).   

 

There are multiple forms of monogenic lupus and these can be grouped into several 

different categories.  Firstly, there are the inherited complement deficiencies, such as 

C1q, C2 and C4 deficiencies, which result in a phenocopy of SLE due to aberrant 

clearance of apoptotic cells and immune complexes, resulting in exposure of self-

antigen (Costa-Reis and Sullivan, 2017; Lo, 2018). In this group of SLE-like conditions, 

there is commonly skin involvement and a significant history of infections (Lo, 2016).  

Defects in nucleic acid degradation and repair results in inadequate removal of DNA, 

which could drive an auto-immune response similar to the clinical features seen in 
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individuals with SLE and patients with variants in TREX1 with either autosomal 

dominant familial chilblain lupus or autosomal recessive Aicardi–Goutières syndrome 

(Costa-Reis and Sullivan, 2017).   The type I interferonopathies also have similarities to 

SLE including the aforementioned Aicardi–Goutières syndrome and familial chilblain 

lupus, spondyloenchondrodysplasia and STING-associated vasculopathy with onset in 

infancy (SAVI) (described in table 3.1) (Costa-Reis and Sullivan, 2017).  Affected 

individuals with these interferonopathies have defective interferon production and as 

such will have higher levels of IFNα and overexpression of IFNα-induced genes, called 

the interferon signature (Costa-Reis and Sullivan, 2017).  These can be triggered 

normally with infection, particularly viral infections and endogenous nucleic acid (Costa-

Reis and Sullivan, 2017).    In line with this, patients with SLE may have a detectable 

interferon signature, and one of the first-line treatments for SLE is hydroxychloroquine, 

which downregulates the type I IFN signature (Costa-Reis and Sullivan, 2017; Eloranta 

and Rönnblom, 2016).  Variants in genes associated with processing and sensing of 

intracellular nucleic acid have also been described in the interferonopathies (Lo, 2018).   

 

Monogenic SLE can also occur in individuals with variants in genes important for the 

identification and elimination of B and T cells with receptors which recognise self-

antigens (autoreactive B and T cells) (Costa-Reis and Sullivan, 2017).  The resultant 

autoimmunity from loss of B and T cell tolerance can result in monogenic SLE, for 

example homozygous variants in PRKCD which encodes PKCδ, which is important for 

negative selection of B cells via apoptotic signaling cascades (Costa-Reis and Sullivan, 

2017; Lo, 2018, 2016).  Interestingly the RASopathies, a group of neurodevelopmental 

https://www.sciencedirect.com/topics/medicine-and-dentistry/hydroxychloroquine
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disorders associated with short stature, congenital heart disease, and bleeding 

diatheses, have been implicated in monogenic SLE, due to the part Ras plays in T cell 

maturation (Lo, 2016).  Overlapping features are also seen in the autoinflammatory 

conditions described above such as CANDLE (Costa-Reis and Sullivan, 2017).   

 

3.4.2. Clinical Description 

 

The proband is the second child born to consanguineous first cousin parents. She was 

diagnosed with systemic lupus erythematosus in another country at 11 years of age. 

She had persistent anaemia, glomerulonephritis, rash over her face, arms and trunk, 

and raised inflammatory markers including ESR ranging from 60 to 100. On review at 

the age of 13, she continued to have anaemia, haematuria secondary to 

glomerulonephritis, and raised inflammatory markers, as well as musculoskeletal pains, 

lethargy and persistent cough. She remains clinically stable managed with 

hydroxychloroquine, MMF and prednisolone.  She was negative for ANA, ANCA, ENA, 

dsDNA, anti GBM and antiphospholipid antibody.  She also had normal complement 

levels and bone marrow aspirate. Also see the HPO phenotype summary table and 

code (Appendix 11.3 and 11.4). 

 

The first-born child to the proband’s parents, died at 7 years of age with viral 

pneumonitis secondary to chickenpox.  She had a clinical history of rash, arthritis, and 

raised inflammatory markers. She was treated with prednisolone and azathioprine.  I 
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have been unable to gather more clinical information regarding this individual .  There 

are 3 other younger apparently unaffected siblings.  There was no one else in the wider 

family with these clinical features.  A maternal aunt did have autoimmune hepatitis.  

 

In summary, we have a consanguineous family with 2 clinically affected siblings with a 

childhood-onset SLE-like condition. Due to the early age of onset and the severe 

phenotype seen in the sibling, a monogenic cause for the lupus-like condition was 

suspected.  They had normal complement levels and therefore did not have an inherited 

complement disorder.  Their normal neurological function and intellect made Aicardi–

Goutières syndrome unlikely. They did not have any clinical features of the Rasopathy 

disorders. It was therefore possible that they had another cause of monogenic lupus, 

such as a biallelic variant in DNASE1L3 gene, explaining their clinical phenotype. 

 

3.4.3. Results 

 

WES revealed 33 rare homozygous variants (1 nonsense, 5 frameshift variants, 25 

missense, 1 splicing and 1 unknown variant) in V:3 (see Appendix 11.5.34). None of 

these were reported to be pathogenic in ClinVar or HGMD. Among the homozygous 

truncating variants, I prioritised a homozygous intragenic frameshift deletion within the 

DNASE1L3 gene (c.290_291delTG, p.Thr97Ilefs*2).  This variant was detected in the 

heterozygous state in 6 out of 30972 individuals on GnomAD (0.00019), with no 

detected homozygotes. Another variant (c.289_290delAC, p.Thr97Ilefs*2), resulting in 
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the same protein alteration, has previously been reported in a family with 

Hypocomplementaemic urticarial vasculitis syndrome (see below discussion).  The 

DNASE1L3 (c.290_291delTG, p.Thr97Ilefs*2) variant was present in the homozygous 

state in the proband.  Both parents were shown to be heterozygous for the variant.  

There was no available DNA from the first affected sibling for analysis.  Sanger 

sequencing and segregation studies have confirmed the result in the proband.  Her 

unaffected sister did not carry the variant and her unaffected brother carried the variant 

in the heterozygous state.  Her youngest sister was also found to be a homozoygote for 

this variant.  She is not known to have any clinical features of SLE.  She is however only 

9 years of age.  It is therefore possible that she has not yet presented with features of 

this condition.  This is however, likely to explain the clinical phenotype seen in this 

family. 

 

3.4.4. Discussion 

 

Family 34 have an SLE-like condition, which is likely to be a monogenic autosomal 

recessive disorder, because of the paediatric onset in 2 affected siblings with healthy 

consanguineous parents.  It was therefore postulated that Family 34 may have one of 

the immune-related SLE-like monogenic disorders described in the introduction, or a 

novel condition within one of these classes of monogenic SLE. 
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The proband in Family 34 is homozygous for a frameshift deletion in the DNASE1L3 

gene.  This monogenic form of SLE was first described in 2011 when a homozygous 1-

bp deletion in DNASE1L3 (c.643delT, p.Trp215Glyfs*2) was identified in all affected 

members from six consanguineous families of Arab descent, which was confirmed as a 

founder mutation (Al-Mayouf et al., 2011).  The clinical phenotype in this monogenic 

SLE is similar to that seen in Family 34.  Affected individuals have childhood onset SLE, 

with an onset between 2 and 12 years of age, with a mean of around 5 years (Al-

Mayouf et al., 2011).  There was a predominance of lupus nephritis (Al-Mayouf et al., 

2011).  All of these individuals had raised anti-nuclear antibodies (ANA), low 

complement C3 and C4 levels, with many also having detected anti-neutrophil 

cytoplasmic antibodies (ANCAs) and anti-dsDNA (Al-Mayouf et al., 2011).  Two of the 

reported affected individuals had no detectible DNASE1L3 transcript in a lymphoblast 

cell line (Al-Mayouf et al., 2011). 

 

DNASE1L3 is one of three human homologs of DNase I (Al-Mayouf et al., 2011).  It 

functions as an endonuclease, which can cleave both single and double-stranded DNA 

(Al-Mayouf et al., 2011).  It is important for the degradation of DNA in serum, for 

example, from apoptotic cells (Zhao et al., 2017).  Impaired removal of endogenous 

DNA may induce the formation of anti-DNA antibodies, which may then attack self-DNA, 

which results in an auto-immune condition such as SLE (Al-Mayouf et al., 2011).  

Dnase1-deficient mice had classical features of SLE, including ANA, and immune 

complexes in the glomeruli leading to glomerulonephritis (Napirei et al., 2000). 
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Dnase1L3 has more recently been shown to regulates NLRP3 and NLRC4 

inflammasome activation and subsequent cytokine release (Shi et al., 2017). 

 

Hypocomplementaemic urticarial vasculitis syndrome (HUVS) is a condition which 

results in episodes of urticaria, which histologically looks like vasculitis, associated with 

low complement levels (Özçakar et al., 2013). Other systemic features, such as fever, 

fatigue, arthralgia, uveitis, recurrent abdominal pain, and glomerulonephritis, may also 

be seen with raised inflammatory markers and anaemia (Özçakar et al., 2013).  More 

than half of patients with this condition will develop SLE (Özçakar et al., 2013).  A study 

looking at 2 families with affected siblings suggestive of autosomal recessive disease 

used whole exome sequencing and autozygosity mapping to identify causative variants 

in DNASE1L3 (Özçakar et al., 2013).  One family had a similar frameshift deletion 

identified in the DNASE1L3 gene (c.289_290delAC, p.Thr97Ilefs*2) resulting in the 

same protein change, as that seen in Family 34 (Özçakar et al., 2013). This segregated 

within the family with the disease, and at the time they were unable to identify this 

variant in other population variation databases (Özçakar et al., 2013).  They were also 

able to look at the relative quantities of the cDNA levels of DNASE1L3 in this family, 

demonstrating marked reduction in levels for the homozygotes when compared to 

controls, and heterozygotes had around half the levels of those seen in controls 

(Özçakar et al., 2013).  This suggested that the RNA was subject to nonsense-mediated 

decay (Özçakar et al., 2013).  This 2bp deletion has also subsequently been reported in 

an affected proband, sibling and mother, all with an SLE-like condition, and the 

unaffected father was shown to be a heterozygous carrier (Carbonella et al., 2017).  
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The authors also wondered whether the contractures of the distal phalanges seen in the 

affected siblings could be part of the condition, although this was not present in Family 

34 (Carbonella et al., 2017).  Another patient with early onset SLE with this variant has 

also been described (Batu et al., 2018).  This suggests that the variant seen in Family 

34 is likely to be disease-causing, although it would currently be classified as a variant 

of uncertain significance using ACMG criteria(Richards et al., 2015).   

 

Yang et al looked at DNASE1L3 activity in serum in 30 patients with 

dermatomyositis/polymyositis, 20 patients with SLE, 18 patients with rheumatoid 

arthritis, and 26 controls (Zhao et al., 2017). Decreased DNASE1L3 level and 

subsequent reduced activity was seen in patients with dermatomyositis/polymyositis 

and SLE (Zhao et al., 2017). The DNASE1L3 level was relatively lower in the SLE 

patients with higher disease activity (particularly ESR level), kidney involvement and of 

course those with detectable anti-dsDNA (Zhao et al., 2017). This demonstrates that 

DNASE1L3 activity is important in SLE and therefore provides further evidence for the 

pathogenicity of the variant seen in Family 34. 

 

In summary, Family 34 have a monogenic phenocopy of SLE due to a frameshift 2bp 

deletion within the DNASE1L3 gene.  This results in paediatric SLE-like symptoms with 

a predominance of lupus nephritis, similar to that described in Family 34. 
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CHAPTER 4: RESULTS; CONNECTIVE TISSUE DISORDERS 

 

This chapter includes findings that have been published previously in a journal article 

(Meester et al., 2018; Webb et al., 2017).  

 

4.1. Overview 

 

Figure 4.1. Overview of Connective Tissue Disorders 

Family 

number 

Clinical Diagnosis Molecular Diagnosis 

3 
 

Osteogenesis  
Imperfecta plus 

TMEM38B variant 
 

4 
 

Osteogenesis  
Imperfecta 

No variant identified 

6 
 

Connective Tissue Disorder 
 

COL1A2 variant 
 

14 
 

Odontochondrodysplasia like 
Disorder 

 

No variant identified 

27 Adams Oliver syndrome NOTCH1 variant 
 

 

This results chapter looks at several consanguineous families with a rare connective 

tissue disorder to try to identify the disease-causing variant explaining their phenotype.  

There are 5 different families described with potentially novel phenotypes.  I will discuss 

these results within this chapter. 
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The proband in Family 27 presented with clinical features consistent with Adams Oliver 

syndrome.  These clinical features were: central scalp aplasia cutis congenita with wide 

upper parietal skull defect on skull x-ray within the region of the sagittal suture with 

multiple small ossified islands within the defect, short distal second, third and fourth 

phalanges of the right hand associated with brachyonychia and nail hypoplasia of the 

left index finger. In addition, she was reported to have had generalised cutis marmorata 

as a neonate, and she had had a normal echocardiogram.  She was the only affected 

child within a consanguineous family.   

 

I identified a novel likely pathogenic missense variant, c.3281G>A, p.Cys1094Tyr, in the 

NOTCH1 gene from the WES results, which was not present in her father or sibling 

(mother’s sample failed WES).   Sanger sequencing confirmation studies were 

unfortunately not possible in this family.   This gene is known to cause Adam Oliver 

syndrome and therefore the phenotype would fit with this variant being disease-causing.  

This variant is predicted to be deleterious on in silico tools, it is found within a highly 

conserved region of the gene and is not present in population variation databases.  It 

was a novel variant, which was not present on clincal variant databases and was 

therefore published as part of a series of patients with Adams Oliver syndrome (Meester 

et al., 2018).  This missense variant involved the replacement of cysteine within a EGF‐

like repeat domains, and cysteine residues within this region form essential disulfide 

bonds important in the tertiary structure of the protein, which means this missense 

variant is likely to affect the subsequent structure and therefore be pathogenic (Meester 

et al., 2018). It is therefore likely to explain the clinical phenotype seen in the patient.  
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This result highlights the importance of still considering a de novo autosomal dominant 

condition in a singleton affected individual in a consanguineous family.  I will not discuss 

this result further within this chapter.   

 

Overall, we had 5 families with connective tissue disorders.  I identified the likely 

pathogenic disease-causing variant in 3 out of the 5 families (60%).  All these variants 

were in known disease genes.  I will discuss Family 3 and 6 in more detail in this 

chapter. 

 

4.2. Introduction 

 

Osteogenesis imperfecta (OI), or brittle bone disease, is a clinically and genetically 

heterogeneous condition, which manifests as bone fragility leading to recurrent fractures 

after minimal or no preceding trauma, which may cause secondary bone deformities 

and short stature (Marini and Blissett, 2013; Pagon et al., 1993).  Other non-skeletal 

clinical features include blue or grey sclerae, hearing loss, dentinogenesis imperfecta 

and joint laxity (Pagon et al., 1993; Valadares et al., 2014).  A classification for the 

different clinical and radiological presentations of OI was published in 1979, describing 

4 different types of OI: type 1 is the classical non-deforming type of OI with blue sclera, 

type 2 is perinatally lethal OI, type 3 is a progressively deforming type of OI, and type 4 

is a moderately severe type of OI with normal sclera (Marini and Blissett, 2013; Pagon 

et al., 1993; Sillence et al., 1979; Valadares et al., 2014).  These classical types of OI 
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are inherited in an autosomal dominant manner, or de novo variants if embryonically 

lethal or severe OI, and are associated with heterozygous variants in the COL1A1 or 

COL1A2 genes (Marini and Blissett, 2013; Valadares et al., 2014).   

 

COL1A1 encodes the α1 collagen 1 chain and COL1A2 forms the α2 collagen 1 chain. 

Collagen 1 is the main structural protein found in the extracellular matrix of bone, skin 

ligaments, tendons, and cornea, which forms a triple helical structure from two α1 

collagen chains and one α2 collagen chain (Nicholls et al., 2001). The variants in 

COL1A1 or COL1A2 may reduce the quantity of the resultant collagen chain or its 

structural quality, commonly by replacing the glycine in the chain , which is found every 

third amino acid and thus, affecting the overall structure of the tightly wound collagen 

helical structure (Marini and Blissett, 2013; Pagon et al., 1993; Valadares et al., 2014).  

The milder types of OI are seen in individuals with haploinsufficiency from decreased 

synthesis of type I procollagen, secondary to heterozygous nonsense, frameshift or 

splice site variants resulting in mRNA instability (Nicholls et al., 2001; Vandersteen et 

al., 2014). The more severe types of OI tend to occur in individuals with helical glycine 

substitutions or exon skipping in COL1A1 or COL1A2, disrupting the helical formation of 

collagen type 1 (Nicholls et al., 2001; Vandersteen et al., 2014).  In contrast an Ehlers 

Danlos syndrome (EDS) VII phenotype may be seen in individuals with variants in these 

genes which affect the processing of procollagen (Nicholls et al., 2001).  Ehlers Danlos 

syndrome is a heterogeneous group of connective tissue disorders associated with a 

combination of clinical features, which may include generalised joint hypermobility, and 

skin hyperextensibility.  There is a crossover in  some individuals with a combined OI 
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and EDS phenotype.  Homozygous variants in COL1A1 are lethal (Nicholls et al., 2001; 

Schnieke et al., 1983).  An EDS cardiac valvular phenotype has been reported in 

patients with biallelic variants in COL1A2 (discussed further in Family 6 discussion 

4.4.3.) 

 

More recently, a number of other genes have been identified as the molecular cause for 

autosomal recessive OI including SERPINF1, CRTAP, LEPRE1, PPIB, and BMP1 

(Marini and Blissett, 2013; Valadares et al., 2014).  The proteins produced generally 

interact with collagen either by affecting post-translational folding, modification or cross-

linking (Marini and Blissett, 2013; Shaheen et al., 2012; Valadares et al., 2014).  In 2009 

the International Society of Skeletal Dysplasias recommended continuing to use the 

Sillence OI classification to classify the severity of OI based on clinical features with 

reference to the inheritance pattern (Marini and Blissett, 2013; Valadares et al., 2014; 

Warman et al., 2011).  The additional genes associated with OI were listed separately 

(Warman et al, 2011).  A new classification of OI based on their genetic defect in groups 

of 5 conditions, A to E, has also been proposed (Forlino and Marini, 2016).  
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4.3. Family 3 

4.3.2. Clinical Description 

 

Family 3 are a multiply consanguineous family with 4 affected individuals with an OI 

phenotype with other additional clinical features, which was felt to represent a novel 

form of OI.  The proband was originally referred to the clinical genetics department at 

the age of four months with a fractured right femur.  At the time, old healed fractures 

were detected on a skeletal survey in the fibula and clavicle. She is the second child 

born to first cousin Pakistani parents at 38 weeks via Caesarean section for pre-

eclampsia with a birth weight of 2.8kg.  She had recurrent fractures until th e age of 11 

years including bilateral femoral fractures on one occasion. She has normal hearing and 

no dental problems. She has normal menstruation. She also has vitamin D deficiency, 

hypothyroidism and a waddling gait. The waddling gait was extensively investigated 

including a muscle biopsy demonstrating myopathic changes, although the cause for 

these changes was not identified. Her height was between the 9th and 25th centiles, and 

her weight on the 50th centile.  On examination she had a broad forehead, 

hypertelorism, epicanthic folds, bluish sclera, high palate, thick alveolar ridges, mild 

scoliosis, lumbar lordosis, and indistinct speech.  Also see the HPO phenotype 

summary table and code (Appendix 11.3 and 11.4).  She therefore had clinical features 

consistent with OI.  The myopathic changes are not seen in OI and may therefore 

represent a second clinical diagnosis in this patient or a new OI syndrome. 
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The first-born child (sibling 1) born to the same parents, was born at 36 weeks via 

normal vaginal delivery after induction for pre-eclampsia. She had a left femoral fracture 

at the age of two years.  At clinical assessment of this fracture, she was also noted to 

have bowed tibiae. She had three subsequent fractures involving her femur and tibia.  

She also has normal hearing and no dental anomalies.  At the age of 16 years, she 

developed a thrombus in the left anterior descending artery resulting in an extensive 

anterior myocardial infarction (MI), which was successfully stented.  At the time, she 

had impaired glucose tolerance with acanthosis nigricans, secondary amenorrhoea, 

polycystic ovaries, and a fatty liver.  To manage this, she had been commenced 

metformin and the combined ethinylestradiol/cyproterone acetate contraceptive pill upon 

which improved these clinical problems. The combined oral contraceptive pill was 

subsequently stopped after her MI.  Her height was between the 25th and 50th centiles 

and weight over the 97th centile, with a BMI of 31.8kg/m2. On examination she has 

acne, facial hirsutism, abdominal striae and acanthosis nigricans. These clinical 

features were consistent with a metabolic syndrome.  These features are not typically 

seen in OI.  They may represent a new OI syndrome or a second diagnosis in this 

multiply consanguineous family. 

 

The fourth child (sibling 2) born to the same parents, was born at 34 weeks via 

Caesarean section for pre-eclampsia with a birth weight of 1.7kg. He presented with a 

right tibial metaphyseal fracture at the age of two. Subsequent fractures included a 

femoral fracture, humeral fracture, and vertebral compression fractures to T8-T10.  He 

developed severe scoliosis requiring surgical correction with rod insertions. After 
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surgical correction he developed restrictive lung disease.  He also had a right 

conductive hearing loss, but no dental anomalies.  Similar to the proband, he has motor 

involvement with moderate hypotonia, which has meant he did not walk without support 

until the age of 3 years.  In addition, he also has nephrocalcinosis, atrial septal defect 

(ASD) and ventriculo-septal (VSD), which was surgically repaired at 2 months due to 

clinical features of heart failure. His height is just above the 0.4th centile and weight 

below the 0.4th centile.  On examination he had epicanthic folds, and hypertelorism.  

Again, sibling 2 has additional features not seen in OI, but different to his other siblings. 

 

The fourth affected individual in this family, is the cousin of the three siblings described 

above.  She is the first child born to consanguineous parents at 38 weeks gestation with 

a birth weight of 2.29kg.  During the pregnancy bilateral femoral bowing and fractures 

were identified.  A femoral fracture was evident soon after birth. She had normal hearing 

and no dental problems.  She has not yet reached menarche.  Her weight was between 

the 0.4th and 2nd centiles. On examination she had blue sclera.  She therefore has none 

of the additional clinical features seen in her three cousins but has a more severe type 

of OI that was detectable in utero (comparison in table 4.2. below).  
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Table 4.2. Comparison of affected individuals’ phenotype with HPO in Family 3  

WES was performed in Sibling 1 (highlighted) 

Proband Sibling 1 Sibling 2 Cousin 

Recurrent 
fractures 

HP:0002757 

Recurrent 
fractures 

HP:0002757 

Recurrent fractures 
HP:0002757 

Recurrent 
fractures 

HP:0002757 

Reduced bone 

mineral density 
HP:0004349 

Reduced bone 
mineral density 

HP:0004349 

Reduced bone 

mineral density 
HP:0004349 

Femoral 
bowing 

HP:0002980 

Blue sclerae 
HP:0000592 

Tibial bowing 
HP:0002982 

Vertebral 
compression 

fractures 

HP:0002953 

Blue sclerae 
HP:0000592 

Myopathy 
HP:0003198 

Obesity  
HP:0001513 

Thoracic scoliosis 
HP:0002943 

 

Prominent 

forehead 
HP:0011220 

Secondary 

amenorrhoea 
HP:0000869 

Conductive 

hearing impairment 
HP:0000405 

 

Hypertelorism 

HP:0000316 

Polycystic 

ovaries 
HP:0000149 

Hypertelorism 

HP:0000316 

 

Hypothyroidism 
HP:0000821 

Myocardial 
infarction 

HP:0001658 

Joint hypermobility 
HP:0001382 

 

Mandibular 
prognathism 

HP:0000303 

Acne  
HP:0001061 

Nephrocalcinosis 
HP:0000121 

 

Alveolar ridge 
overgrowth 

HP:0009085 

Glucose 
intolerant 

HP:0000833 

Muscular Hypotonia 
HP:0001252 

 

Epicanthus  
HP:0000286 

Hepatic 
steatosis 

HP:0001397 

Epicanthus  
HP:0000286 

 

High palate 

HP:0000218 

striae distensae 

HP:0001065  

Ventricular septal 

defect  
HP:0001629 

 

 Acanthosis 

nigricans 
HP:0000956 

Atria septal defect 

HP:0001631 

 

 Facial hirsute 

HP:0009937 

Restrictive lung 

disease HP:0002091 

 

 



88 
 

4.3.3. Result  

 

WES revealed 23 rare homozygous variants (3 nonsense, 2 frameshift, 3 splicing, 10 

missense, 4 non frameshift insertion and 1 non frameshift deletion variant) in Sibling 1 

(see Appendix 11.5.3). None of these were reported as pathogenic in ClinVar or HGMD. 

Among the homozygous truncating variants, I prioritized the homozygous nonsense 

variant c.507G>A in exon 4 (p.Trp169*) of the TMEM38B gene after analysis of the 

WES results in Sibling 1. This has been confirmed on Sanger sequencing and 

segregation analysis has been consistent with the expected phenotype (see table 4).  

TMEM38B had been identified during the study period as a novel cause of autosomal 

recessive OI.  This variant is therefore likely to partially explain the clinical features seen 

in this family (see discussion 4.3.4.).  At the time, there were only a small number of 

patients reported with OI secondary to variants in the TMEM38B gene.  It is therefore 

possible that as further patients were identified, some of the additional clinical features 

observed in Family 3 may be identified.  I therefore worked with another group gathering 

a phenotypic series of patients together with biallelic variants in the TMEM38B gene, in 

the hope that this could be better assessed in a larger group of similarly affected 

individuals (Webb et al., 2017). 

 

I continued to analyse the WES results for a second and even third genetic diagnosis 

that may explain wider clinical phenotype in Family 3.  I identified an interesting 

homozygous missense c.83T>C p. Leu28Pro variant in the DYRK1B gene, which may 

be relevant to the metabolic syndrome phenotype see in Sibling 1.  A heterozygous 
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gain-of-function missense variant, Arg102Cys, was reported to segregate with disease 

in three Iranian families with an early-onset metabolic syndrome, including early onset 

coronary artery disease, type 2 diabetes mellitus, hypertension and obesity (Keramati et 

al., 2014).  A further five unrelated patients amongst a group of 300 morbidly obese 

individuals with a metabolic syndrome were all identified to carry a different gain-of-

function missense variant in this gene, p.His90Pro, which was shown to enhance the 

expression of glucose-6-phosphatase (Keramati et al., 2014).  There is increased 

expression of DYRK1B during differentiation mesenchymal stem cells towards the 

formation of adipocyte cells (Keramati et al., 2014). The proband had a different 

missense variant in the homozygous state (c.83T>C, p.Leu28Pro) that could therefore 

be contributory to her metabolic phenotype.  This variant was predicted to be 

deleterious on in silico analysis. It was present with a 0.00433 (1060/245034) frequency  

in the heterozygous state in the GnomAD population database.  A higher level of 

frequency of this variant in the heterozygous state is acceptable, since a metabolic 

syndrome is relatively common in the general population.  However, a subsequent 

report demonstrated that the p.Leu28Pro variant, seen in the proband, is a loss-of-

function variant and was even shown to have a statistically significant protective effect 

in 42 heterozygotes against type 2 diabetes mellitus and potentially hypertension 

(although this did not reach statistical significance) compared to two benign variants, 

which had no significant differences (He et al., 2014).  It is therefore difficult to conclude 

that the p.Leu28Pro is likely to be the cause of the metabolic syndrome seen in Sibling 

1.  At this stage, family segregation studies of this variant are likely to be uninformative, 

in view of the young age of the other family members.  The metabolic traits in the 
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heterozygotes compared to non-carriers in the 3 reported families showed statistically 

significant differences between the glucose levels, BMI and blood pressure with age of 

onset between 34 and 58 years (Keramati et al., 2014).  Biochemical results in this 

family did not fit with this metabolic condition, which may be age related, confirm that 

this variant is protective, or even benign.  It was also suggested that measuring the 

plasma levels of the adipokines, including adiponectin, leptin, may be informative 

biomarkers for this metabolic syndrome (He et al., 2014).  There could be further clinical 

phenotypic investigation to explore this variant further, but in view of the suggestion that 

this variant could in fact be protective in the heterozygous state, I decided to not 

investigate this variant in DYRK1B further in Family 3. 

 

4.3.4. Discussion 

 

We identified a homozygous nonsense variant in TMEM38B segregating with disease in 

Family 3.  This explains their OI phenotype of recurrent fractures ranging in first 

presentation from prenatal to 2 years of age, with associated osteopaenia, scoliosis 

from vertebral compression fractures, blue sclera and hearing impairment.  There were 

additional clinical features including a metabolic syndrome, myopathy, congenital heart 

defects and nephrocalcinosis.  TMEM38B associated autosomal recessive OI has been 

classified as OI type XIV and was clinically classed as being of moderate severity most 

akin to type IV (Valadares et al., 2014).  This does seem to fit with the phenotype of OI 

seen within family 3.  
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At the time of identification there had been three papers in the medical literature 

describing families with OI and biallelic variants within the TMEM38B gene.  Three 

Arabian families were reported to have a homozygous deletion of exon 4 within the 

TMEM38B gene by Shaheen et al (2012).  Within this group of affected individuals, 

there was a range of severity reported with multiple fractures and osteopaenia, 

commencing either prenatally or up to the age of 6 years, but no other systemic 

involvement (Shaheen et al., 2012).  Volodarsky et al (2013) reported 3 Israeli 

consanguineous families with a similar homozygous deletion of exon 4, with clinical 

features consistent with type IV OI including 6 individuals with reported grey-blue sclera 

in childhood, but no other systemic involvement (Volodarsky et al., 2013).  Rubinato et 

al (2014) reported an Albanian girl with a homozygous deletion involving exons 1 and 2 

with multiple fractures including seven at birth, osteopenia and mild conductive hearing 

loss detected at ten years of age.  The patients in family 3 presented with multiple 

fractures of variable onset, ranging from prenatal onset to two years of age.  There were 

no reported dental manifestations, but one sibling had mild conductive hearing loss and 

two patients had bluish sclera.  Therefore, the clinical features of OI only were reported 

in the other individuals in the medical literature.  Family 3 represented the first family 

with OI secondary to TMEM38B that was not an exonic deletion.  However, the 

additional clinical features observed in Family 3, were not described in the other 

reported patients. 
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Family 3 were subsequently included in the 8 patient case series reported by Webb et al 

V:3 is Sibling 1, Proband is patient 4, Sibling 2 is patient 5 and Cousin is patient 6 

(Webb et al., 2017).  Patient 1 in this series similarly to the cousin in Family 3, 

presented antenatally with a bowed femur, whereas the other patients, excluding patient 

8, had all presented with their first fracture at 2 years of age or less (Webb et al., 2017). 

Scoliosis, like Sibling 2, was seen in patient 7 and minimally in his relatively 

asymptomatic sibling, patient 8 (Webb et al., 2017).  All patients in the series had 

osteopenia (Webb et al., 2017).  The three patients reported by Lv et al appear to be the 

same three patients described by Liu et al.  They had recurrent fractures, with mild bone 

deformities and short stature, but did not have any dental or hearing abnormalities and 

were therefore phenotypically most consistent with type 4 OI (Lv et al., 2016)(Liu et al., 

2017). 

 

There were other non-skeletal phenotypes described too in this case series.  

Sensorineural hearing impairment was seen in patient 1 and patient 7, compared to the 

conductive hearing impairment in Sibling 2 (Webb et al., 2017).   The scleral 

appearance ranged between white, grey and blue in all individuals (Webb et al., 2017).  

Patient 7 developed a lung condition, although it was of a different type involving lower 

airway obstruction at the age of 22 years rather than the restrictive lung disease see in 

Sibling 2 (Webb et al., 2017).  Sibling 1 had an MI and Sibling 2 had an ASD and VSD.  

Patient 7 in this case series had tricuspid regurgitation and nonobstructive hypertrophic 

cardiomyopathy, although his father had concentric left ventricular hypertrophy with 

mitral and aortic regurgitation, suggesting this may be a separate autosomal dominant 
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condition (Webb et al., 2017).  Blood lipid profile, echocardiogram and 

electrocardiogram were normal in the other patients (Webb et al., 2017).  Only the 

Proband and Sibling 2 in Family 3 had motor involvement. Patient 1 and 2 had 

developmental delay that could be due to a second condition or related. 

  

Both set of heterozygous parents appear clinically unaffected in Family 3.  The 

heterozygous parents of patients 7 and 8 in the case series by Webb et al potentially 

had some minor related features that may be explainable by other mechanisms (Webb 

et al., 2017).  The father had macrocephaly, hip laxity only, and degenerative changes 

in midthoracic vertebrae (Webb et al., 2017). Their mother had short stature, and mild 

central compressions of lower thoracic and lumbar vertebrae, and bilateral mild mid-

frequency sensorineural hearing impairment (Webb et al., 2017).  There are no other 

reports of heterozygotes being clinically affected.  

 

TMEM38B encodes the TRIC-B protein, which is an ubiquitously expressed intracellular 

cation channel protein, involved in controlling the release of calcium from the 

endoplasmic reticulum (Caparros-Martin et al., 2017; Marini and Blissett, 2013).  OI is 

caused by a variant in the alpha1 or 2 subunits of collagen 1, a gene encoding a post-

translational modifying protein of collagen 1, a protein involved in the folding of collagen 

1, or its transport (Caparros-Martin et al., 2017; Marini and Blissett, 2013).   Calcium is 

important in many steps within the pathway for type 1 collagen synthesis, which 

explains the OI phenotype (Caparros-Martin et al., 2017).  The main biological focus 
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has been to find an explanation for the OI phenotype in affected patients.   However, it 

is conceivable that additional clinical features outside the skeleton, skin and tendons 

would be possible in a condition resulting in defects of the TRIC-B protein, which is 

ubiquitously expressed.  An underlying skeletal and cardiac muscle pathology could 

potentially occur secondary to the altered release of calcium from the endoplasmic 

reticulum, directly or indirectly affecting the expression of other genes or post-

translational modification of other important protein in these cells (Webb et al., 2017). 

Skeletal muscle and cardiac muscle cells however, actually express more TRIC-A than 

TRIC-B (Webb et al., 2017). Tric-A knockout mice develop hypertension and skeletal 

muscle dysfunction, Tric-B knockout mice have respiratory defects, and neonatal 

lethality, and double knockout mice are embryonically lethal secondary to cardiac arrest 

(Zhou et al., 2014). In addition Tric-A knockout with Tric-heterozygous mice are 

susceptible to stress-induced heart failure (Zhou et al., 2014).  This suggests some 

commonality but requires much further study.  Cardiovascular assessment has 

therefore been recommended in patients with TMEM38B related OI (Webb et al., 2017). 

 

Interestingly a SNP just outside TMEM38B has been associated with age of menarche 

(Chen et al., 2012; Dvornyk and Waqar-ul-Haq, 2012).  Personal communication with 

the authors of the previously published patients revealed that the female members of 

the reported families have so far not reached puberty and therefore it is not clear 

whether they may yet develop premature ovarian failure or even a metabolic syndrome 

in both sexes, although the corresponding author of the Volodarsky paper did not 

respond (Rubinato et al., 2014; Shaheen et al., 2012; Volodarsky et al., 2013).  Sibling 1 
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in Family 3 had normal menarche, but subsequently developed secondary amenorrhoea 

at 11 years.  The proband has had normal menarche and menses to date, and the 

female cousin would not have reached puberty when reviewed.  Additional work is 

required to understand this further.  

 

An alternative, and more likely explanation for the additional phenotypes seen in Family 

3 is that there is a second diagnosis explaining the metabolic syndrome, a third 

diagnosis explaining the myopathy or hypotonia, and even a fourth diagnosis to explain 

the congenital heart defects.  The only additional molecular variant identified was a 

homozygous variant in the DYRK1B gene associated with a metabolic syndrome, but 

this same variant was demonstrated to be protective in 42 heterozygotes for type 2 

diabetes mellitus and possibly essential hypertension (He et al., 2014; Keramati et al., 

2014).  This variant has therefore not been explored further.  Additional phenotypes 

were reported in other patients by Webb et al, but they are not reported elsewhere, 

even in patients with the same variant in TMEM38B as seen in Family 3 (Caparros-

Martin et al., 2017; Essawi et al., 2018; Liu et al., 2017; Lv et al., 2016; Rubinato et al ., 

2014; Shaheen et al., 2012; Volodarsky et al., 2013; Webb et al., 2017).  Additional 

features are not described in the genetic classification of OI (Forlino and Marini, 2016). 

In a multiply consanguineous family, it is entirely possible that other autosomal 

recessive disorders could be seen in the siblings resulting in a blended phenotype 

(discussed further in general discussion (see Chapter 8)).  
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The initial reported patient with OI type XIV had an exonic deletion within TMEM38B 

resulting in a subsequent predicted frameshift variant (Shaheen et al., 2012).  Patients 

have since been reported with the same homozygous nonsense variant as that seen in 

Family 3, as well as other nonsense variants, frameshift, splice site variant and an 

intronic variant leading to the insertion of two amino acids predicted to affect an 

important domain of the protein (Caparros-Martin et al., 2017; Essawi et al., 2018; Liu et 

al., 2017; Lv et al., 2016; Webb et al., 2017). It has been demonstrated in 3 patients 

with variants resulting in premature stop codons within TMEM38B that the transcripts 

were subject to nonsense-mediated decay, including a patient with the same variant 

seen in Family 3 (p.Trp169*) (Caparros-Martin et al., 2017).  This resulted in a 

functional null alleles demonstrated by the absence of TRIC-B protein in the fibroblasts 

and osteoblasts in all three affected individuals described when compared to TRIC-B 

protein presence in control samples (Caparros-Martin et al., 2017).  They were also able 

to demonstrate altered Ca2+ flux in the cell of the proband compared to controls, 

particularly affecting the rate of recovery of the endoplasmic reticulum Ca2+ stores 

(Caparros-Martin et al., 2017).  Importantly, the patient also had altered expression and 

activity of multiple proteins involved in post-translational modification of type 1 collagen, 

resulting in the production of misfolded collagen, which was subject to intracellular 

degradation, with a 50–75% reduction in collagen secretion from fibroblast and 

osteoblast cells compared to the control cells (Caparros-Martin et al., 2017).  

TMEM38B-related OI has been classed as a group B condition secondary to defects in 

collagen modification resulting in a severe OI with normal to blue sclera and no 

additional hearing loss or dental problems (Forlino and Marini, 2016).  This therefore 
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demonstrates the functional impact of the homozygous variants in TMEM38B and 

confirms their role as the disease-causing variants in the OI in the affected individuals.   

 

In summary, I describe a family with Type XIV OI secondary to a homozygous 

nonsense variant in the TMEM38B subsequently reported in other individuals.  

TMEM38B encodes the TRIC-B protein involved in control of calcium flux in the 

endoplasmic reticulum, which affects the activity of proteins involved in the post-

translation modification of collagen 1 and therefore a misfolded protein, which is partly 

subject to intracellular degradation, and results in a moderate-severe form of OI.  Family 

3 have additional phenotypes, which might result from a blended phenotype secondary 

to more than one genetic diagnosis evident in a multiply consanguineous family. 
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4.4. Family 6 

4.4.1. Clinical Description 

 

Family 6 are a multiply consanguineous family with a connective tissue disorder. The 

proband presented at the age of 2 with delayed gross motor development.  He had a 

height on the 50th centile and a head circumference on the 99.8th centile consistent with 

macrocephaly. He came again to the genetics department in his 30s, after referral by a 

neurologist who had noted areflexia excluding the ankle, distal amyotrophy, and distal 

muscle weakness, which he thought were more likely to be secondary to a connective 

tissue disorder.  Nerve conduction studies and electromyography were normal.  He had 

increased susceptibility to fractures with bilateral fractured femora at the age of 4, and 

subsequent recurrent metacarpophalangeal fractures.  In addition, he had joint 

hypermobility, with recurrent shoulder dislocation and tendon rupture of right index 

flexor tendon and right biceps.  He had arthralgia, and osteoarthritis of the knee and 

right hip.  As a child he was described as having blue sclera, and subsequently as an 

adult, slate grey sclera. Other clinical features included camptodactyly of the fingers and 

toes, convex contour of sole, pes planus, and excessive wrinkling of palmar skin.  

Overall the clinical phenotype has been progressive as the patient became older.  It was 

unclear whether he had ever had an echocardiogram.  Also see the HPO phenotype 

summary table and code (Appendix 11.3 and 11.4). 
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The sibling of the proband also had clinical features of a connective tissue disorder as a 

child.  It is reported by the proband that the clinical problems seen in the sibling 

resolved by adulthood.  I was unable to contact the sibling directly to confirm this.  As a 

child a skin biopsy was performed in the sibling, for collagen analysis, but no 

abnormality of collagen was identified at the time. 

 

4.4.2. Result  

 

I detected 45 rare homozygous variants from the WES data in the proband from Family 

6 (2 frameshift, 42 missense and 1 unknown variant) (see Appendix 11.5.6).  There 

were no reported variants in ClinVar or HGMD.   Amongst these variants, I was then 

able to identify a homozygous missense variant in exon 8 of the COL1A2 gene, 

c.370G>A p.Gly124Ser (see figure 4.1).  At the time the variant was not reported on 

population databases including dbSNP or exome variant server.  This specific variant 

was not reported in a disease database, but a similar variant resulting in a substitution 

of the same amino acid (c.371G>A p.Gly124Asp) has been previously reported as 

pathogenic on HGMD and ClinVar.  No additional supporting data has been provided 

including zygosity and phenotype. 
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Figure 4.1: COL1A2 exons with corresponding protein domains and variant position  

including arrow demonstating the location of the variant in Family 6 (adapted from 

Figure 2 (Ho et al., 2016)) 

 

 

 

4.4.3. Discussion 

 

The proband in Family 6 had features of a connective tissue disorder with clinical 

features overlapping with osteogenesis imperfecta and Ehlers-Danlos syndrome, which 

are progressive.  He was found to have a homozygous glycine substitution, which is 

likely to be the disease-causing variant in this family.  His brother had previously been 

assessed for symptoms in childhood, which we believe are largely resolved now but his 

genetic status is unknown. The heterozygous carrier parents are not known to be 

clinically affected.  Biallelic mutations in genes causing autosomal dominant conditions 

have been described in many disorders. For example, homozygosity for 

achondroplasia-associated FGFR3 mutations causes a more severe phenotype with 

premature death from respiratory failure, whereas individuals with biallelic Huntington 

expansion variants do not seem to present earlier (Migliore et al., 2019; Pagon et al., 

1993; Uhlmann et al., 2015).  It is difficult to clarify the range of severity seen in Family 

6 without having segregation studies and detailed phenotyping, which is not possible.  
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There are only a few reports of patients with biallelic variants in COL1A2, which I will 

now discuss in more detail. 

 

Individuals with biallelic variants in the COL1A2 gene have been reported with Ehlers 

Danlos syndrome (EDS), cardiac valvular type (see table 4.3 for comparison of 

phenotypes).  Three EDS patients with cardiovascular involvement were reported to 

have compound heterozygote splice variants or homozygous nonsense variants 

(Schwarze et al., 2004).  The clinical features reported in patients with this type of EDS 

include delayed motor milestones,  joint hypermobility especially of the small joints, 

recurrent shoulder dislocations pectus excavatum, muscle and tendon rupture, bilateral 

inguinal hernias, pes planus, genu recurvatum, atrophic scars over the knees and shins, 

easy bruising, thin or soft skin, striae, delayed wound healing, myopia and bilateral 

astigmatism (Hata et al., 1988; Nicholls et al., 2001; Schwarze et al., 2004). The cardiac 

valvular phenotypic features have included mitral prolapse, severe mitral regurgitation, 

aortic insufficiency, left atrial and ventricular dilatation, and ventricular hypertrophy, 

(Hata et al., 1988; Schwarze et al., 2004) or no cardiac phenotype yet, which may be 

age related (Nicholls et al., 2001).  There are no known cardiac features in Family 6.  

On skin biopsy the fibroblasts in the affected patients have failed to make proα2(I) 

chains (Hata et al., 1988; Schwarze et al., 2004). Another patient with hypermobile 

EDS, a normal echocardiogram, and no evidence of procollagen 1α2 or collagen 1α2 

chains, has been reported with a homozygous single nucleotide insertion resulting in a 

frameshift and a premature stop codon (Malfait et al., 2006).  This patient was only 6 

years of age and therefore will be observed for the cardiac valvular clinical features, 
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which may present in adulthood (Malfait et al., 2006).  It would be helpful to perform 

collagen studies from fibroblasts in the proband to check the protein levels, but the 

patient did not want to have a skin biopsy performed.  There was mild or no bone 

fragility reported in these patients suggesting that bone appears to function normally or 

almost normally in individuals with no production if the type 1 collagen α2 (Schwarze et 

al., 2004).   
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Table 4.3: Patients with biallelic variants in COL1A2 

Patient Variant 

effect 

Skin Bone/Joint Cardiac Eyes 

Family 6 Homozy 
Glycine 
substitution 

Excessive 
wrinkling of 
palms 

hypermobility, 
recurrent # 
dislocations 

and tendon 
rupture 

Nil Blue 
Later slate 
grey 

DePaepe 

P1 

Homozy 

Glycine 
substitution 

- Severe, 

progressively 
deforming OI 

- - 

Constantini 

P1 

Homozy 

Glycine 
substitution 

Not recorded Recurrent # 

Osteoporosis 

Not 

recorded 

Blue sclera 

Constantini 
P2 

Homozy 
Glycine 

substitution 

Not recorded Bone fragility Not 
recorded 

Blue sclera 

Nicholl P1 Homozy 
C terminal  

Frameshift 
deletion 

Soft, silky, 
prominent 

veins 

Multiple # 
Severe bony 

deformities 
Popcorn 
epiphyses 

Osteoporosis 
Hypermobility 

Motor delay 

Not 
recorded 

Not 
recorded 

Nicholl P2 Homozy 
Frameshift 
deletion 

Normal Joint laxity 
Muscle 
hypotonia 

Recurrent # 
dislocations 

Pes planus 

Normal Pale blue 

Schwarze 
P1 

Comp het 
Splicing 

Atrophic scars 
LL 

Thin skin 
Easy bruising 
Herniae 

Hypermobility, 
pectus 

excavatum, 
muscle and 
tendon tears 

MVP, 
MR, AR, 

AF, LVH 

Myopic 
Astigmatism 

Schwarze 

P2 

Comp het 

Splicing 

Soft 

Hyperext 
Atrophic scars 

Easy bruising 

Hypermobility, MR Not 

recorded 

Schwarze 
P3 

Homozy 
Nonsense 

Soft 
Hyperext 
Striae 

Hypermobility 
Pes planus 
Talipes 

sASD 
MVP, 
MR 

AR 

Not 
recorded 
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Genu 
recurvatum 
 

LVH 

Malfait P1 Homozy 
Frameshift 
insertion 

Herniae 
Normal skin 

Joint laxity 
Muscle 
hypotonia 

Pes planus 
Genu 

recurvatum 
 

Bulging 
mitral 
valve 

Normal 

Hata P1 Not 
recorded 

hyperextensible 
skin 

Abnormal 
wound healing 

Joint 
hypermobility 

MR Not 
recorded 

 

Legend: # fractures, AR atrial insufficiency, Comp het compound heterozygous, 

Homozy homozygous, hyperext hyperextensibility, LL lower limbs, LVH left ventricular 

hypertrophy, MR mitral regurgitation, MVP mitral valve prolapse, OI osteogenesis 

imperfecta, sASD secundum atrial septal defect 

(De Paepe et al., 1997; Hata et al., 1988; Malfait et al., 2006; Nicholls et al., 2001, 1984; 

Schwarze et al., 2004) 

 

The different variants reported in patients with EDS cardiac valvular type generally 

seem to result in biallelic premature stop codons in the COL1A2 gene (Nicholls et al., 

2001; Schwarze et al., 2004).  For the reported splice site variants in this group of 

patients, rather exon skipping, a cryptic splice site is utilised, resulting in premature stop 

codon producing unstable mRNA transcripts, which are subject to nonsense-mediated 

decay degradation (Schwarze et al., 2004).  The variants therefore, result in an absence 

of procollagen 1 α2 chain synthesis, and therefore produce a similar phenotype 
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secondary to the same mechanism as the homozygous nonsense variants (Schwarze et 

al., 2004). Family 6 have a substitution variant rather than the molecular mechanism 

described here.  An echocardiogram has however, been requested.   

 

The second phenotype seen in patients with biallelic COL1A2 variants is a more severe 

OI phenotype.  A patient with severe progressive OI type 3 was reported with 

homozygous collagen 1 α2 deficiency (Nicholls et al., 1984).  Two siblings were 

described with severe, progressively deforming OI with homozygous glycine to serine 

substitution in the COL1A2 gene, whose heterozygous first cousin parents, and two 

siblings had mild clinical features of OI (De Paepe et al., 1997). Collagen studies were 

performed on fibroblast cells, which similar to the homozygous individuals described 

earlier, demonstrated unstable collagen I only (De Paepe et al., 1997). Similarly other 

patients with biallelic COL1A2 glycine-to-serine substitutions have been reported with 

severe OI (Costantini et al., 2018).   It is therefore likely that the location of the biallelic 

glycine-to-serine substitution will affect the resulting phenotype, hence explaining the 

reason for the EDS and OI overlapping phenotype seen in Family 6.  

 

Family 6 have an overlapping EDS and OI phenotype, which has been previously 

described in patients with heterozygous variants in both COL1A1 and COL1A2 (Malfait 

et al., 2013).  This overlapping phenotype has been reported in 3 siblings with 

compound heterozygous variants in COL1A1, including a novel frameshift variant 

inherited from their mother with a mild OI phenotype and a arginine missense variant, 
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affecting the Gly‐Xaa‐Yaa amino acid repeat in the triple helical domain , from their 

clinically unaffected father, which would be predicted to give an EDS phenotype, and 

had been previously described in a family with overlapping OI and EDS phenotype 

(Ackermann and Levine, 2017).  This was the first report of biallelic pathogenic variants 

in COL1A1 (Ackermann and Levine, 2017).  It is therefore likely that this COL1A2 

homozygous variant is the cause of the EDS and OI overlapping phenotype seen in 

Family 6.  

 

In summary, it is hypothesised that Family 6 have a OI and EDS overlapping condition, 

secondary to a homozygous COL1A2 glycine substitution (c.370G>A p.Gly124Ser) in 

the proband, but further studies are required to confirm this.   
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CHAPTER 5: RESULTS; RENAL DISORDERS 

5.1. Overview 

Table 5.1: Renal Disorders results overview 

Family 

number 

Clinical  

Diagnosis 

Molecular  

Diagnosis 

7 
 

Galloway-Mowat Syndrome 
-  Cerebro-osteo-nephro 
dysplasia 

Candidate homozygous variants in 
COG3, ANLN 
 

28 Polycystic  
Kidney Disease 

Homozygous PKD1 variant 
 

 

In this Chapter I will focus my discussions on family 28 who have polycystic kidney 

disease, because I believe the homozygous PKD1 variant explains the renal disease in 

this family. I will discuss the clinical and genetic features of 3 patients from two 

consanguineous families with renal disease.  Unfortunately, the affected child in family 7 

passed away during the course of this project.  To investigate the COG3 candidate 

variant further, I could have arranged to check the affected individual’s transferrin levels.  

This could have been done on a Guthrie card, but the family did not want any further 

investigations performed at this time. Further analysis of these variants has therefore 

been halted. 
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5.2. Introduction 

 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) affects 1/400 to 1/1000 

individuals globally, making it the most common genetic cause of renal disease 

(Cornec-Le Gall et al., 2014). Individuals with ADPKD develop fluid filled cysts from the 

renal tubule epithelial cells (Cornec-Le Gall et al., 2014).  They may develop 

hypertension, hepatic cysts, pancreatic cysts, seminiferous tubule cysts, mitral valve 

prolapse, abdominal wall herniae and intracranial aneurysms (Cornec-Le Gall et al., 

2014; Pagon et al., 1993).  85% of individuals with ADPKD have a heterozygous 

pathogenic variant in PKD1 and the remaining approximately 15% of individuals have a 

variant in PKD2. End stage renal failure (ESRD) is reported to occur with a median age 

at onset of 58 years for PKD1 and 79 years for PKD2 (Cornec-Le Gall et al., 2013).  For 

non-truncating PKD1 variants the median age at ESRD onset was 67.9 years, and 55.6 

years for truncating PKD1 mutations (Cornec-Le Gall et al., 2013). There is however a 

broad age range with a small number of patients presenting in the neonatal period 

(Harris and Torres, 2014).  Some of this variability is due to a second hypomorphic 

mutation in these earlier presentations (Bergmann et al., 2011; Rossetti et al., 2009). 

Polycystin 1 (PC1) is a receptor like protein and polycystin 2 (PC2) is a Ca2+ cation 

channel protein (Harris and Torres, 2014). These 2 proteins are thought to interact and 

play a role in Ca2+ regulation (Harris and Torres, 2014).  They are felt to be very 

important in later embryogenesis for differentiation of tubular epithelium as well as 

recovery from acute injury (Harris and Torres, 2014). 
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Autosomal Recessive Polycystic Kidney Disease (ARPKD) is much less common, 

affecting 1 in 20,000 people (Harris and Torres, 2014).  Individuals typically present with 

very enlarged cystic kidneys, generally identified antenatally or soon after birth .  

However, similar to ADPKD the range can be broad, with patients presenting in later 

childhood or adulthood reported (Harris and Torres, 2014).  Patients also have 

congenital hepatic fibrosis, which is generally not seen in ADPKD. Some patients have 

pulmonary hypoplasia secondary to oligohydramnios, with 30% of patients consequently 

dying within the first year of life.  ARPKD is caused by mutations in PKHD1. 

 

Cysts in ADPKD are lined by a single layer of epithelial cells derived from all elements 

of the nephron, but mainly the collecting ducts (Jiang et al., 2006).  Glomerular cysts are 

generally not seen (Jiang et al., 2006).  Biliary dysgenesis is responsible for the liver 

cysts seen in ADPKD (Vujic et al., 2010).  Interestingly, the Pkd1 knockout mice do not 

develop liver disease, although older heterozygotes do develop cysts in the liver (Vujic 

et al., 2010). 

 

More recently two other genetic causes of polycystic kidney disease have been 

reported.  Heterozygous mutations in GANAB cause a variable ADPKD with polycystic 

liver disease phenotype, which affects PKD1 protein maturation (Porath et al., 2016).  

Mutations in DZIP1L have been reported in 4 families with an autosomal recessive PKD 

phenotype, which was variable, including both PKD and polycystic liver disease (Lu et 
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al., 2017).  The cilia in affected cells showed decreased levels of PKD1 and PKD2 

proteins on the ciliary membrane compared to controls. 

 

Family 28 appeared to have ARPKD by analysing their pedigree, but clinically they did 

much better than would be expected for this condition.  Whole exome sequencing was 

performed to identify the molecular basis for their condition.  At the time of this analysis 

DZIP1L had not been identified.  A homozygous PKD1 mutation was identified in this 

family.   

 

5.3 Clinical Description of Family 28 

 

The proband was born to first cousin consanguineous parents.  During the pregnancy, 

antenatal ultrasound scans identified bilateral enlarged hyperechogenic kidneys, which 

was felt to be consistent with ARPKD. Sequencing of PKHD1 was performed, but no 

variant was identified. Her most recent renal function aged 5 years was normal.  She is 

hypertensive with no evidence of left ventricular hypertrophy, which is currently treated 

with lisinopril.  She was previously thought to have autosomal recessive polycystic 

kidney disease (ARPKD), but her phenotype is milder than other children with ARPKD. 

An MRI brain was performed due to initial concerns regarding the possibility of a 

ciliopathy, but this was normal.  Other problems include asthma, and coeliac disease. 

Her neurodevelopment is normal.  There is therefore unlikely to be no syndromic cause 

for her renal cystic disease. She is thriving with a height running along the 91-98th 
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centile and weight on the 50th centile. On examination, she had a single 12mm 

depigmented macule lower right abdomen and a few small pigmented macules right 

upper thigh and left lower leg near the knee with overlapping toes.  Also see the HPO 

phenotype summary table and code (Appendix 11.3 and 11.4).  Both parents and her 

unaffected sibling have had normal renal ultrasound scans.  

 

The first cousin of the proband was born to consanguineous first cousin parents.  On 

renal ultrasound scan, he has large echogenic kidneys bilaterally with multiple small 

peripheral cortical cysts.  The size of these cysts has remained stable. He has a normal 

appearance to his liver and spleen. He has had normal renal function tests and 

urinalysis.  Like his affected cousin he takes medication for hypertension.  The 

Sequencing of HNF1β was unable to identify any causative mutations. Both parents and 

her unaffected sibling have had normal ultrasound scans. 

 

5.4. Result 

 

WES revealed 81 rare homozygous variants (2 nonsense, 4 frameshift, 61 missense, 2 

non frameshift deletion, 5 splicing and 7 unknown variants) in the proband (see 

Appendix 11.5.28). None of these were reported in to be pathogenic in ClinVar or 

HGMD. Amongst the homozygous variants, I prioritized a variant in the PKD1 gene 

(c.11975C>T p.Ala3992Val) in the proband (see figure 5.1).  This variant results in the 

substitution of a highly conserved amino acid alanine to valine.  This variant is not 
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reported in ClinVar or the population variation databases, exome variant server, 1000 

genomes, or Gnomad.  This prediction tool scores are as follows: Polyphen 1, SIFT 0, 

GERP 0.84, mutation assessor 0.67, and phylop 0.97.  The physiochemical change is 

however, small.   It is likely to be a hypomorphic variant that would cause disease only 

in the homozygous state.  Both parents were heterozygous for this variant.  The cousin 

was also found to be homozygous for this variant.  His parents were also heterozygous.  

The unaffected sibling was not homozygous for this variant. 
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Table 5.2: Comparison of phenotypes for patients with biallelic PKD1 variants  

Patient Age 

PC 

Ante-

natal 
USS 

Postnatal 

Imaging 

Clinical Course PKD1 Variant 

Both parent carriers unaffected 

IV:13 Fetus BEHKs  HTN on lisinopril Homozygous 
A3992V 

IV:2 Fetus ND BEHKs 
multiple small 
peripheral 

cortical cysts 

HTN on lisinopril Homozygous 
A3992V 

Vujic et al 
 

Fetus 
at 

27/40  

BEHKs ND At birth 36/40 
CPAP for RDS  

ACEi for HTN 
8y  normal 
growth & GFR 

R3277C  
R2220W 

Fetus  Hecho. 

Oligo-
hydram

nios 

MRI 1 year: 

marked BEK 
diffuse 

tubular 
dilation and 
small cysts.  

At birth 34/40 

pulmonary 
hypoplasia. 

HTN,  
normal GFR  

Vujic et al Fetus BEHKs ND ESRD at 8.5y 

Renal transplant  

Homozygous 

V1045M and 
T1570M  

I1 P192 

Rossetti 

ND ND 30y: Multiple 

small cysts, 
clubbed 

calyces 

 Homozygous 

N3188S 

II2 P192 
Rossetti 
et al 

Fetus BEHKs Multiple cysts 
scattered 
throughout. 

No liver cysts  

GFR 67ml/min 
per 1.73m2 at 
15.5 years 

Homozygous 
N3188S 

II3 P192 
Rossetti 

et al 

9 
years 

ND Several 
cortical cysts. 

No liver cysts 

GFR 86ml/min 
per 1.73m2 at 

15 years 

IIV M390 
Rossetti 

et al 
 
 

 

11 
years 

ND MSK. 
Bilateral renal 

cysts. 
3 liver cysts. 

Multiple UTIs R3105W  
R2765C 

One parent affected 
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III1 P438 
Rossetti 
et al 

Fetus BEHKs  At 17:  
multiple small 
cysts, no 

CMD 

5 months HTN Q2158X  
R3227C 

III2 P117 
Rossetti 

et al 

Fetus 
(31/40) 

BECKs 8cm kidneys 
at 10m. 

2 years HTN. 
GFR 

89ml/1.73m2 at 
15y. 

Y3819X  
R2765C 

III1 P118 

Rossetti 
et al 

Fetus Massive

ly 
BECKs 

ND Died perinatally 

pulmonary 
hypoplasia 

7915dup20 

R2765C 

Family E 
Bergmann 

et al 

ND ND BECKs: 
multiple small 

cysts, 1 large 
cyst RK 

Chronic renal 
insufficiency 

Y2753X  
R2255C 

Family F 

Bergmann 
et al 

ND ND Renal Hecho 

loss of CMD.  
1 large cyst 

LK. 
DPM. 

Congenital 

hepatic fibrosis 
with 

complications. 

R1351fs  

L2696R 

Family G 
Bergmann 

et al 

Birth  ND BEHKs and 1 
hepatic cyst  

5y: normal GFR. 
HTN quintuple 

Rx 

L1400fs  
R4138H 

Fetus Hecho 
 

Multiple renal 
cysts 

HTN triple Rx. 
Normal RF 

II2 M34 

Rossetti 

ND ND Multiple 

uniform size 
cysts.  Mild 
dilatation of 

the calyces. 

ESRF at 75 

years. 
No liver cysts 

Homozygous 

R3277C 

II3 M34 
Rossetti 

ND ND Multiple 
uniform size 

cysts. No 
liver cysts. 

Renal transplant 
at 62 years. 

 

Audrezet 

et al 
Patient 1 

Ante-

natally 

Hecho 

 

UnK Creatinine 35 at 

79 months 

R1602fs 

R3272H 

Audrezet 
et al 

Patient 3 

22/40 Hecho 
 

TOP 
Cysts of 

tubules and 
glomeruli. 

TOP R3277C  

Audrezet 

et al 
Patient 6 

15/40 Hecho 

kidney 
size: 

+14sd 

TOP TOP Leu727P  

T3945M 
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Audrezet 
et al 
Patient 8 

32/40 Hecho 
kidney 
size: 

+3sd 

UnK Creatinine 34 at 
2 months 

C2370S  
R4154C  

Audrezet 
et al 

Patient 29 

22/40 Hecho 
kidney 

size: 
+10sd 

UnK Stage 2 CRF Q861X  
E4025G 

Audrezet 

et al 
Patient 31 

22/40 Hecho 

kidney 
size: 
+3sd 

UnK Creatinine 24 at 

1 month 

W1958X 

R4154C  

Audrezet 

et al 
Patient 39 

22/40 Hecho 

 

TOP: DPM 

Severe renal 
cysts of all 

nephronic 
structures.  

TOP Q2243fs 

R4154C 

 

Legend: ACEi angiotensin-converting enzyme inhibitor, Aff affected, BECKs Bilateral 

enlarged cystic kidneys, BEHKs Bilateral enlarged hyper-echogenic kidneys, CMD 

corticomedullary differentiation, CPAP continuous positive airway pressure, del deletion, 

DPM ductal plate malformation, Hecho Hyperechogenicity, fsM frameshift mutation, 

HTN hypertension, LK left kidney, MSK medullary sponge kidneys, MM missense 

mutation, ND not documented, NS nonsense mutation, PC presentation, PDA patent 

ductus arteriosus, RDS respiratory distress, RF renal function, RK right kidney, Rx 

treatment, Unaff unaffected, USS ultrasound scan, UTI urinary tract infection, y years  

Summary of the antenatal and postnatal findings in affected patients reported here and 

the medical literature with biallelic PKD1 variants.  Family H Bergman et al not included 

because the 2 variants identified in PKD1 were in cis.  15 families are reported by 

Audrezet et al, but only 7 of the families are listed here with known, pathogenic, likely 
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pathogenic or other interesting variants (Audrézet et al., 2016; Bergmann et al., 2011; 

Rossetti et al., 2009; Vujic et al., 2010). 

 

Figure 5.1: Protein structure of PKD1 with population and ClinVar variant annotation 

from Decipher with variant location 
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5.5. Discussion 

 

Homozygous mutations in PKD1 and PKD2 leading to complete protein loss is 

embryonically lethal (Lu et al., 1997; Wu et al., 2000).  Within family 28 are two 

individuals with biallelic hypomorphic variants in PKD1.  All heterozygous parents were 

unaffected with normal renal ultrasound scans.  

 

Another individual in the department was similarly diagnosed with a biallelic variant in 

PKD1.  The proband is a 30-year-old gentleman who presented at birth with large cystic 

kidneys bilaterally.  The phenotype was felt to be consistent with autosomal dominant 

polycystic renal disease, but he unusually presented at birth  with renal cystic disease.  

At the age of 14 years he had a renal ultrasound that showed enlarged kidneys 

bilaterally, full of very small cysts with some cysts measuring 1 cm in size. At the age of 

24 years of age, both kidneys were enlarged at 17cm in size full of cysts. He has a 

normal renal function.  However, he takes losartan for hypertension.  A renal biopsy 

performed at 2 months of age demonstrated that most of the renal tissue biopsied was 

replaced by cysts, the majority of which were hugely dilated Bowman’s capsules 

containing normal or sometimes shrunken glomerular tufts.  There was also tubular 

atrophy and interstitial fibrosis present, with some hyperplasia of the collecting ducts, 

and the other tubules were normal.  This result was felt to be in keeping with the 

characteristics of adult onset polycystic disease.  The histology did not have any 
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hallmarks of infantile polycystic disease. His parents have both had normal renal 

ultrasound scans. He has a healthy older brother, who has also had a normal renal 

ultrasound scan.  He was found to have a homozygous c.7412C>T p.Pro2471Leu 

variant in exon 18 of the PKD1 gene.  This is absent in population databases and has 

been reported previously as pathogenic in the literature (Bouba et al., 2001). 

 

Bilineal heterozygotes with both PKD1 and PKD2 variants was first reported in a large 

pedigree in 2001 (Pei et al., 2001).  There are previous reports of individuals with 

biallelic ADPKD with at least 1 hypomorphic mutation in PKD1 or PKD2 (see table 5.2) 

(Audrézet et al., 2016; Bergmann et al., 2011; Losekoot et al., 2012; Rossetti et al., 

2009; Vujic et al., 2010).  The hypomorphic mutations appear to not cause renal cystic 

disease, or at most very mild disease, in  the heterozygous state.  Digenic inheritance 

and triallelic inheritance has also been reported but this is beyond the scope of this 

discussion.   

 

There have been several other similar autosomal dominant genes, which have now 

been reported with an autosomal recessive phenotype.  A good example of this is 

MFN2 discussed later in chapter 7.  MFN2 is a well-known cause of autosomal 

dominant axonal hereditary sensory and motor neuropathy (HMSN) or Charcot Marie 

Tooth (CMT).  Nicholson et al reported 3 patients with severe HMSN with homozygous 

or compound heterozygous mutations in MFN2 (Nicholson et al., 2008a).  Subsequently 

other patients have been described with autosomal recessive HMSN (Carr et al., 2015; 
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Polke et al., 2011; Tan et al., 2016).  Generally, a more severe phenotype is seen in 

these individuals with an earlier age at onset of the condition.  Homozygous or 

compound heterozygous variants in PKD1 and PKD2 present with a similar phenotype 

to those individuals with heterozygous variants, but generally with an earlier age at 

onset, and more severe disease, but this is not always the case.  Prenatal onset 

ADPKD has been reported without a second identified variant, even with a known family 

history of ADPKD without prenatal onset (Audrézet et al., 2016). 

 

Mouse models of ADPKD show similar findings to those seen in humans.  Knockout 

homozygous null Pkd1 mutant mice are embryonically lethal with the mice dying in late 

gestation (Jiang et al., 2006).  Functional studies using mice with wild type, 

p.Arg3277Cys (RC) or null mutation were assessed.  The Pkd1+/null mice 

(haploinsufficiency with 50% reduction in mature protein levels compared to Pkd1+/+ 

mice) had no abnormality, the Pkd1RC/RC mice (60% reduction in protein level) gradually 

developed cysts, and the Pkd1RC/null mice (80% reduction in protein levels) had early 

onset rapidly progressive cystic disease (Hopp et al., 2012).  This suggests a threshold 

level for cyst formation in PKD. 

 

The cysts formed in biallelic ADPKD are generally small and homogenous, resembling 

those in ARPKD, compared to the heterogeneous size of the cyst formation in ADPKD.  

A second-hit model for cyst development in ADPKD has been postulated, which would 

support this observation.  Homogenous cysts are seen in biallelic ADPKD due to almost 
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simultaneous cyst development,  whereas the heterogenous cyst formation in 

heterozygous ADPKD is likely due to successive cyst development after acquiring a 

second somatic hit (Cornec-Le Gall et al., 2014).  The second hit in heterozygotes 

occurs later and therefore they have later onset disease, whereas patients with biallelic 

ADPKD have their two hits from conception and therefore have more severe early onset 

disease (Bergmann et al., 2011).  Piontek et al showed that mice in whom Pkd1 

inactivation occurred before day 13 had severely cystic kidneys, whereas those with 

later inactivation had milder later onset disease (Bergmann et al., 2011; Piontek et al., 

2007).   

 

The two-hit model is unlikely to be the full explanation with other genetic and 

environmental influences playing a part (Bergmann et al., 2011; Jiang et al., 2006).  A 

better explanation considers the amount of functional PC1 to be important.  Renal cyst 

formation is therefore inversely related to PC1 function levels, over a certain threshold 

for cyst formation, which would be consistent with the above second-hit model and 

allows for additional genetic and environmental factors that may influence these 

functional levels (Audrézet et al., 2016; Harris and Torres, 2014).  This would therefore 

explain why an individual with prenatal-onset ADPKD may be identified in a known 

ADPKD family.  PKD1, PKD2, HNF1B and PKHD1 were sequenced in 38 probands with 

prenatal onset ADPKD and a known familial mutation (36 families had a PKD1 varian t, 2 

families a PKD2 variant and one family had an unknown variant) to assess the 

frequency of additional variants (Audrézet et al., 2016).  Additional variants in PKD1 

were identified in 15 of these patients, but the remaining patients had no second 
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mutation identified to explain their early onset ADPKD.  Other genetic and/or 

environmental factors may later be identified in these other families.  

 

Patients with biallelic ADPKD generally do not have ductal plate malformations or 

hepatitis fibrosis, which is characteristic of ARPKD.  This was reported in 2 patients 

listed in table 1, Family F (Bermann et al) and Patient 39 (Audrezet et al).  Both patients 

had a frameshift mutation with a hypomorphic mutation, however other patients with a 

frameshift mutation did not report ductal plate malformations.   The cysts in ARPKD are 

generally formed in the collecting ducts.   Mice homozygous for hypomorphic mutations 

with about 20% of the polycystin 1 levels seen in wild type mice, had intact glomeruli 

and proximal tubules, but the distal structures did not develop normally and cysts were 

mainly formed from the collecting ducts postnatally (Jiang et al., 2006).  It was therefore 

postulated that the distal parts of the nephron require greater levels of PC1 than the 

proximal segments to develop normally (Jiang et al., 2006).  However, the patient 

described by Vujic et al showed cysts derived mainly from the proximal tubule (Vujic et 

al., 2010).   

 

In conclusion, biallelic ADPKD involving a homozygous hypomorphic mutation, 

generally results in a phenotype with more homogenous bilateral polycystic disease 

which presents earlier than heterozygotes, often in the antenatal or newborn period.  

The disease course is not as severe as patients with ARPKD.  Generally, individuals 

with biallelic hypomorphic mutations have less severe disease than those with a 
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nonsense or frameshift mutation.  It is likely that in PKD the PC1 levels are inversely 

related to cystic disease, with cysts developing once a certain threshold has been 

reached.  This may be explained by a second-hit, either constitutive or a later somatic 

mutation, or other genetic and environmental factors. 
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CHAPTER 6: RESULTS; NEUROLOGICAL DISORDERS 

6.1. Introduction 

 

This fourth result chapter looks at several consanguineous families with a rare 

neurological disorder to try to identify the disease-causing variant explaining their 

phenotype.  There is no specific theme to these disorders, they range from early onset 

infantile epileptic encephalopathy, to congenital insensitivity to pain, and 

neurodegenerative disorders.  This chapter will explore these diagnoses in further 

detail. 
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6.2. Overview 

Table 6.1. Overview of Neurological Related Disorders 

Family 

number 

Clinical  

Diagnosis 

Molecular  

Diagnosis 

11 
 

Cerebellar atrophy and 
Intermittent ataxic episodes 

No variant identified 

13 

 

Cerebellar ataxia and peripheral 

neuropathy 

SETX homozygous variant   

 

16 
 

Congenital insensitivity to pain 
and obesity 

No variant identified 

17 

 

Neurodegenerative with 

epilepsy 
 

No variant identified 

18 

 

Early onset infantile epileptic 

encephalopathy 
 

No variant identified 

19 
 

Neurodegenerative 
Syndrome 

No variant identified 
 

20 

 

Infantile spasms  

 

No variant identified 

21 
 

Recurrent encephalopathy  
and ataxia 

Candidate TRIO homozygous variant 
 

23 Spastic diplegia 

 

PEX16 homozygous variant 

24 Cerebellar ataxia 
 

No variant identified 

25 INAD like 

 

No variant identified 

26 Leukodystrophy POLR1C homozygous variant 
 

29 Ataxia, short, hearing loss,  

and neuropathy 

SLC9A1 homozygous variant 

31 Infantile spasms 
 

No variant identified 

35 Progressive Cerebellar Atrophy LONP1 homozygous variant 
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Family 23 are a consanguineous family previously seen by a retired colleague.  The 

proband presented with progressive motor impairment from the age of 2 years, which 

manifested as spastic paraparesis.  Progressive swallowing and speech difficulties were 

subsequently seen.  A brain MRI scan demonstrated diffuse leukodystrophy.  

Investigations had included normal very long chain fatty acids (VLCFAs), biotinidase 

levels, lactate, cerebrospinal fluid and plasma glycine levels, acylcarnitines, amino acids 

and lysosyme enzymes.  Single gene Sanger sequencing had not identified any variants 

in the GJA12 and PLP1 genes.  I was unable to identify the disease-causing variant on 

WES performed in this patient.  The patient was subsequently enrolled in the 100,000 

genomes project (described further in the general discussion 8.3.).  I was asked to 

review the results from the 100,000 genomes project and present at the multi -

disciplinary genomics meeting.  A homozygous novel missense variant in the PEX16 

gene had been identified as part of this project.  Biallelic variants in PEX16 are 

associated with Zellweger syndrome, a peroxisomal disorder which more typically 

presents with hypotonia in the neonatal period though a range of clinical severity has 

been reported.  This patient would phenotypically fit with a mild Zellweger syndrome.  

VLCFAs would normally demonstrate raised C26:0 and C26:1 in plasma, as well as 

raised ratios of C24/C22 and C26/C22 (Pagon et al., 1993).  The normal VLCFAs in this 

patient had originally led me to discount this PEX16 variant in the WES result.  When 

this variant was also identified in the 100,000 Genomes project, I reviewed the medical 

records from the Birmingham Children’s Hospital.  There were two previous VLCFAs 

results, performed prior to the normal result recorded in the clinical genetic notes, which 

represented a borderline result demonstating slightly increased C24 and C24:C22 ratios 
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with a comment questioning whether this could be dietary related.  After discussion with 

the clinical biochemist, it was entirely possible that these earlier borderline biochemical 

results could be seen in mild Zellweger syndrome.  I therefore felt the PEX16 

homozygous variant was a candidate disease-causing variant in this family consistent 

with the patient’s phenotype and subsequent updated biochemical results.  This family 

highlight the importance of careful documentation of all results, even if a previous 

borderline abnormality, as this can influence the subsequent diagnosis from WES or 

WGS. 

 

Family 29 includes two siblings in a consanguineous Turkish family with clinical features 

of ataxia, short stature, hearing loss, and neuropathy.  Both siblings had a variant in the 

SLC9A1 gene, c.1273G>A p.Arg425Cys, with a high Bass summary score of 0.645. The 

Bass score is an internal pathogenicity summary score of the in silico data to aid variant 

interpretation.  We have been unable to confirm the parents are both heterozygous for 

this variant.  The variant was not listed in the population databases. There is one report 

in the medical literature of a different homozygous variant in the same gene, 

p.Gly305Arg, associated with a very similar clinical phenotype called Lichtenstein-Knorr 

syndrome, including childhood onset progressive sensorineural hearing loss and 

progressive cerebellar ataxia in three siblings from a Turkish consanguineous family 

(Guissart et al., 2015).   Two siblings with cerebellar ataxia have subsequently also 

been reported with a homozygous truncating variant in SLC9A1, c.862del 

p.Ile288Serfs*9 (Iwama et al., 2018).  The gene encodes the NHE1 protein, which is the 

main Na+/H+ exchanger in the plasma membrane of mammalian cells (Li et al., 2014).  
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The arginine at position 425 has been shown to be critical for the proteins structure and 

function by neutralizing the helical dipole (Li et al., 2014).  This therefore suggests that 

this homozygous variant in SLC9A1 is likely to be the disease-causing variant in this 

family, but further work is required to better understand its implications. 

 

Family 26 have 2 siblings with hypomyelinating leukodystrophy. I found a homozygous 

missense substitution (c.581A>C, p.His194Pro) in POLR1C gene on review of the WES 

results.  There were eight other patients reported in the clinical literature with 

pathogenic variants within this gene.  POLR1C interacts with POLR3A and B, which is a 

known cause of hypomyelinating leukodystrophy, hypodontia, and hypogonadotrophic 

hypogonadism.  In the eight reported patients, all eight had hypomyelinating 

leukodystrophy, three had hypodontia, but no one was reported with hypogonadotrophic 

hypogonadism, although several were too young for this to be clinically apparent. Both 

siblings in family 26, had caries in their permanent teeth, but no hypodontia.  This 

missense variant was also present in two siblings in the homozygous state amongst the 

DDD open access patients.  I contacted the local team regarding the additional patients 

in DDD, to consider reviewing the family for common ancestry using a SNP array to look 

at the origin of this variant, but the clinicians were not interested in pursu ing this further.  

A larger phenotype study would be very beneficial and was being carried out by a 

Canadian group.  Family 26 decided against further collaboration with this research 

group.  This variant in currently classed by the clinical laboratory as a variant of 

uncertain significance.  However, based on the clinical phenotype it is likely that this will 

subsequently be classified as a disease-causing variant. 
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Family 21 have a homozygous missense variant in TRIO, c.199C>T p.Pro67Ser.  Both 

parents are clinically unaffected and heterozygous for this variant.  TRIO is highly 

expressed in the brain including the cerebellum, which may therefore explain the 

proband’s ataxia (Pengelly et al., 2016).  The protein is extremely important in 

neurodevelopment and could therefore potentially explain the epileptic encephalopathy 

and developmental delay seen in the proband (Pengelly et al., 2016).  The TRIO 

knockout mouse is embryonically lethal late in development (O’Brien et al., 2000).  It 

may be that these variants are hypomorphic as seen in other disorders such as PKD 

(see discussion).  This gene is associated with autosomal dominant mental retardation 

syndrome 44 in heterozygotes with this disorder, which manifests as global 

developmental delay, microcephaly, behavioural problems, and seizures in 1 patient (Ba 

et al., 2016; “OMIM - Online Mendelian Inheritance in Man,”; Pengelly et al., 2016).  

Dental anomalies with overcrowding or delayed dentition, digital anomalies with short 

tapering fingers and clinodactyly, and facial asymmetry or micrognathia have been 

described in patients with TRIO related intellectual disability (Ba et al., 2016; “OMIM - 

Online Mendelian Inheritance in Man,”; Pagon et al., 1993; Pengelly et al., 2016).  The 

proband in Family 21 does not have microcephaly (head circumference on the 11th 

percentile), dental or digital anomalies, although these have not been reported in all 

patients, and currently there are only a small number of patients reported with this 

condition, so the phenotypic spectrum is unclear. It is possible that an autosomal 

recessive form of TRIO-related intellectual disability may have a different phenotype if 

these variants are hypomorphic.   This is reported in GnomAD with a MAF of 0.00038 
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(94 out of 246024).  The missense constraint Z score for TRIO is 5.32, which is over 

level considered significant (>3.09).  Even the loss of function variants described in 

TRIO could be undiagnosed in the heterozygous state in the Gnomad population in view 

of the borderline to mild intellectual disability seen (Ba et al., 2016).  TRIO is a 

biologically plausible cause of the intellectual disability seen in the proband, but 

additional functional work is required to investigate this further.  

 

Overall a likely or potential diagnosis has been identified in 6 out of 16 families (37.5%).  

I will discuss the results for Family 13 and 35 in more detail in the remainder of this 

chapter. 
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6.3. Family 13 

6.3.1. Clinical Description 

 

The proband was the first child to consanguineous first cousin Bangladeshi parents.  At 

the age of 17 years, he first noticed that he was tripping up more easily than previously.  

He went onto develop cerebellar ataxia with nystagmus, lower limb weakness, abnormal 

movements and numbness.  Consistent with this, on examination, he had an ataxic high 

stepping gait, reduced power in his lower limbs with normal tone, normal muscle bulk 

and absent reflexes, hand tremor, dysdiadochokinesis, sustained nystagmus on lateral 

gaze with broken pursuit and saccadic eye movements, dysarthria and reduced 

vibration sensation. He also reported mild memory impairment.  Also see the HPO 

phenotype summary table and code (Appendix 11.3 and 11.4).  There were no other 

similarly affected people in his family. 

 

Subsequent investigations identified that he had atrophy of his posterior fossa on MRI 

head imaging, though the pontine and midbrain structures were normal. 

Neurophysiology showed sensory axonal neuropathy of the lower limbs with a moderate 

right-sided carpal tunnel syndrome.  Wilson’s disease was considered because he had 

raised liver enzymes including an ALT of 133 U/L (normal range 5-41 U/L) initially with a 

low caeruloplasmin of 0.12g/L (normal range 0.2-0.45g/L) a slightly low copper of 

10.2micromol/L and abnormal movements.   Further evaluation revealed that he did not 

have Kayser-Fleischer rings, his urinary copper excretion was within normal limits on 
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two occasions and his liver enzymes subsequently returned to normal. He did not have 

any identified mutations in SCA1, 2, 3, 6, 7, 17, Frataxin, DRPLA or POLG1.   

 

6.3.2. Result 

 

WES revealed 81 rare homozygous variants (1 nonsense, 6 frameshift, 61 missense, 1 

splicing, 1 non-frameshift deletion, 1 non-frameshift insertion, and 1 unknown variant) in 

the proband (see Appendix 11.5.13). None of these were reported in to be pathogenic in 

ClinVar or HGMD. Amongst the homozygous truncating variants, I prioritised the 

frameshift variant, c.5243delT p.Phe1748Serfs*3, which was identified in the SETX 

gene. Variants in SETX are associated with Ataxia with Oculomotor Apraxia type 2 

(AOA2). This variant has not been reported in any population databases including ExAC 

and ESP.  The variant has not been previously associated with disease, but other 

frameshift variants have been reported in the same exon  of SETX.  Both parents were 

found to be heterozygous carriers for this variant.  Sanger sequencing confirmation has 

been performed in the proband only.  

 

To evaluate this further, I performed alpha fetoprotein measurements, which showed 

raised levels of 64ng/mL (normal range 0-10).  This is consistent with a diagnosis of 

AOA2 and gives further weight to the pathogenicity of the homozygous frameshift 

mutation in SETX. 
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6.3.3. Discussion 

 

AOA2 is characterised by progressive cerebellar atrophy, axonal sensorimotor 

neuropathy, oculomotor apraxia with onset between 10 and 22 years (Anheim et al., 

2009; Criscuolo et al., 2006; Moreira et al., 2004).  The proband’s clinical features would 

therefore be consistent with a diagnosis of AOA2, although he did not have any 

demonstrable oculomotor apraxia.  Most individuals in the initial report by Moreira et al 

(2004) had this feature, but only 51% of patients have oculomotor apraxia in a large 

subsequent review of 90 patients (Anheim et al., 2009) and was only present in 2/10 

patients reported in another smaller review paper (Criscuolo et al., 2006). The proband 

presented in adolescence similarly to other patients with AOA2.  AOA1 by contrast 

tends to present earlier in childhood.  The proband was reported by a neurologist to 

have choreiform movements, though a hand tremor only was latterly evident. Chorea 

has been reported in 9.5% of patients with AOA2 (Anheim et al., 2009). Some patients 

have also similarly reported mild cognitive impairment (Criscuolo et al., 2006). 

 

Alpha fetoprotein (AFP) levels are raised in 99% of patient during their clinical course 

and generally remained at relatively stable levels (Anheim et al., 2009).  A patient was 

reported with normal AFP after 27 years of disease progression, though his similarly 

affected siblings did have raised levels (Anheim et al., 2009).  It is recommended that 

SETX is sequenced in an ataxic patient with an AFP of >7g/L (Anheim et al., 2009). 
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Fogel et al (2014) looked at gene expression levels in patient with SETX variants with 

both AOA2 and ALS4.  PSG4, a pregnancy-specific glycoprotein and tumour marker, 

had the greatest increase in expression levels (Fogel et al., 2014).  He therefore 

postulated that the AFP levels may be similarly raised due to alterations in gene 

expression levels secondary to the SETX homozygous variant (Fogel et al., 2014). In 

view of this, AFP levels were performed in the proband and found to be raised, 

consistent with a diagnosis of AOA2. 

 

SETX encodes the DNA/RNA helicase, senataxin. SETX is responsible for recognising 

and repairing DNA damage.  There are several other similar autosomal recessive ataxia 

disorders in which the causative gene is also recognising and repairing DNA damage. 

These include, the gene ATM and Ataxia Telangiectasia, Mre11 and A-T like disorder, 

as well as Aprataxin and AOA1 (Becherel et al., 2013; Yeo et al., 2014). These 

conditions have many phenotypic similarities.  SETX is involved in the response to 

oxidative stress (Richard and Manley, 2014).  Variants in SETX cause an increase in 

the number of R loops in the genome, which are postulated to lead to genomic 

instability and DNA damage (Becherel et al., 2013; Fogel et al., 2014; Richard and 

Manley, 2014; Yeo et al., 2014).  R loops are areas of the genome with one strand of 

template DNA and the other complementary strand is RNA rather than a strand of DNA 

(Becherel et al., 2013; Fogel et al., 2014; Richard and Manley, 2014; Yeo et al., 2014). 

These may occur at transcription termination sites, for example.  The accumulation of R 

loops appears to be limited to proliferating cells rather than neural tissue and is 
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therefore not likely to contribute to the neurodegeneration (Yeo et al., 2014).  Further 

work to understand the pathogenesis is required. 

 

Truncating variants in SETX were identified in 10 out of the first 15 patients reported 

with AOA2 (Moreira et al., 2004).  It is postulated that loss of function mutations 

therefore cause AOA2 consistent with a autosomal recessive condition (Fogel et al., 

2014). It is therefore highly likely that the novel homozygous truncating variant identified 

in the patient is disease-causing.  Heterozygous missense variants in SETX have also 

been associated with autosomal dominant juvenile amyotrophic lateral sclerosis type 4.   

Missense variants have also been reported on AOA2.   Variants causing ALS4 do not 

seem to cluster in different regions of the gene (Anheim et al., 2009). Heterozygous 

parents of patients with AOA2 do not have neurological features, similarly to the parents 

in family 13.  It is postulated that patients with  ALS4 have gain of function variants that 

modify the function of SETX consistent with autosomal dominant disease (Chen et al., 

2004; Fogel et al., 2014).  Consistent with this hypothesis, Fogel et al (2014) 

demonstrated some differences in gene expression profiles between these two 

conditions. 
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6.5. Family 35 

6.4.1. Clinical Description 

 

The proband is the first child to two healthy consanguineous parents. The parents are 

first cousins once removed. They have had 4 subsequent pregnancies, one molar 

pregnancy, 2 healthy children and 1 similarly affected child.  The proband was born at 

term via ventouse delivery after a pregnancy complicated by renal pelvic dilatation only.  

He had a sternocleidomastoid tumour of the neck, which responded to physiotherapy 

treatment.  He had swallowing difficulties at weaning but was able to gain weight 

normally.  He had normal development until the age of 13 months.  At this age he was 

able to crawl and cruise around the furniture.  

 

At 13 months of age the proband developed a flu -like illness.  During this illness he lost 

his balance.  He was managed with intravenous methylprednisolone and 

immunoglobulins. He reportedly was able to crawl unsteadily after this episode.  At th e 

age of 3 years he was able to recognise his alphabet and count to 10. After a further flu -

like illness, he seemed to loose further developmental skills.  At the age of 7, he was 

able to crawl, stand with support, and understand two stage commands.  He had no 

words.  In addition, the proband has an intermittent convergent squint with normal 

vision, normal hearing, and microcephaly.  On examination he has low truncal tone with 

increased tone in the limbs.  Also see the HPO phenotype summary table and code 

(Appendix 11.3 and 11.4). 
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The proband has been fully investigated for his developmental regression, including a 

normal muscle biopsy with a normal histopathological appearance and respiratory 

chain, microarray comparative genomic hybridization test, PLA2G6 and mitochondrial 

gene mutation screen, and there was no expansion mutation in SCA1, 2, 3, 6, or 7.  An 

MRI brain scan has demonstrated cerebellar atrophy.  

 

The second affected female sibling has cataracts with strabismus, and visual 

impairment, which were surgically removed at the age of three months.  In addition, she 

has developmental delay, with no evidence of regression, truncal hypotonia and 

increased tone in both of her limbs.  She also has cerebellar atrophy detectable on MRI 

brain scan. At the age of 3 years, she could speak in two-word sentences, and cruise, 

but could not walk without support.  The sibling has been separately investigated for the 

cause of her congenital cataracts.  She has had a cataract gene panel performed, which 

did not identify a disease-causing variant.  

 

In summary, there are two affected siblings in Family 35 with truncal hypotonia, 

increased tone in the limbs and cerebellar atrophy. The proband had additional 

developmental regression and the sibling, additional cataracts.  It is likely that they have 

the same autosomal recessive condition to explain their clinical problems, which is 

similar to Marinesco-Sjogren syndrome.   The family had been included in a previous 

research study by Andrea Nemeth, looking into the cause of the cerebellar atrophy, but 
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no disease-causing variant was identified at the time, which would likely have included 

SIL1 sequencing.  

6.4.2. Results 

 

WES revealed 32 rare homozygous variants (29 missense, 1 non-frameshift deletion, 1 

splicing and 1 unknown variant) in the proband (see Appendix 11.5.35). None of these 

were reported in to be pathogenic in ClinVar or HGMD. Amongst these variants, I 

prioritised a homozygous missense variant in exon 15 of the LONP1 gene (c.2282C>T, 

p.Pro761Leu).  This has been found in the heterozygous state in 3 out of 245642 

individuals, with a MAF of 0.00001 in GnomAD. The variant had a Bass summary score 

of 0.58.  It was predicted to be damaging by PolyPhen, SIFT and MutationTaster.  It is 

not reported in ClinVar or in the medical literature. Both parents are heterozygous for 

this variant.  Individuals with biallelic variants in LONP1 were originally described in a 

multisystemic disorder with a predominant skeletal phenotype, called CODAS 

syndrome. This acronym stands for Cerebral including hypotonia and developmental 

delay, Ocular including cataracts, Dental with delayed dentition, Auricular with 

malformed external ears and hearing loss, and Skeletal anomalies including short 

stature and coronal clefts (Dikoglu et al., 2015). Cerebellar atrophy and hypoplasia have 

been reported (Inui et al., 2017).  It is therefore possible that this represents the 

disease-causing variant in this family, which will be discussed further in the discussion 

(6.4.3.).  This variant was subsequently reported in the medical literature associated 

with a similar neurodegenerative phenotype, which therefore makes it more likely this is 

the disease-causing variant in the family (Nimmo et al., 2019). 
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6.4.3. Discussion 

 

Family 35 have a likely autosomal recessive disorder explaining their cerebellar atrophy, 

truncal hypotonia, and limb hypertonia.  Visual problems are also seen in both siblings, 

with congenital cataracts in the second affected sibling, and an intermittent convergent 

squint in the proband.  The proband has been found to have a homozygous variant in 

the LONP1 gene, which is associated with CODAS syndrome.  This is typically a multi -

system disorder, rather than a neurological disorder.  Both cataracts and cerebellar 

atrophy have been reported as clinical features within this phenotype.  I will therefore 

explore, whether this could be the disease-causing variant in Family 35. 

 

Homozygous and compound heterozygous missense variants in LONP1 were first 

associated with CODAS syndrome in ten individuals with typical features of this 

condition, including a founder variant in the Pennsylvania Amish community (Strauss et 

al., 2015). Within the Amish community, laryngeal obstruction, was commonly reported, 

resulting in neonatal death in three individuals (Strauss et al., 2015).  Biallelic nonsense, 

and in-frame deletion variants were subsequently reported in LONP1 in seven further 

individuals with CODAS syndrome (Dikoglu et al., 2015).  This second group of patients 

generally had a less severe phenotype, with all patients having early onset cataracts 

and an epiphyseal dysplasia, with other variable clinical features including crumpled 
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ears, developmental delay, short stature, congenital heart defect, though only one 

individual had dental anomalies (Dikoglu et al., 2015). Two individuals had cerebellar 

hypoplasia (Dikoglu et al., 2015).   

 

More atypical phenotypes have since been reported.  Biallelic variants in  LONP1 have 

been reported in patients with congenital nuclear cataracts only (Khan et al., 2015).  In 

2017 an atypical CODAS was reported in an individual with compound heterozygous 

variants in LONP1 and imperforate anus, bilateral congenital cataracts, hypotonia, 

intellectual disability, regression, cerebellar atrophy and choreo-athetoid movements 

(Inui et al., 2017).  The progressive nature of the disease with regression and cerebellar 

atrophy had not been previously described in CODAS syndrome (Inui et al., 2017).  

Subsequently, there has been a recent report of two siblings with the same 

homozygous missense variant in the LONP1 gene, c.2282C>T, p.Pro761Leu (Nimmo et 

al., 2019).  These two siblings had a very similar presentation to the proband in Family 

35 with episodes of developmental regression, hypotonia, severe intellectual disability 

and progressive cerebellar atrophy (Nimmo et al., 2019). A muscle biopsy had shown 

scattered cytochrome c oxidase-negative staining and mitochondrial inclusions were 

observed (Nimmo et al., 2019).  The proband in Family 35 had a reportedly normal 

muscle biopsy.  The published siblings had reduced pyruvate dehydrogenase (PDH) 

activity on fibroblast analysis, which was shown to be secondary to increased levels of a 

subunit of PDH called phosphorylated E1α (Nimmo et al., 2019).  This subunit inhibits 

PDH activity (Nimmo et al., 2019). The authors therefore suggested that this 

homozygous missense variant causes a functional PDH deficiency, thereby affecting 
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the production of energy in the cells, and subsequently causing neurologic impairment 

and neurodegeneration (Nimmo et al., 2019).  This therefore means that this missense 

variant in LONP1 is a very good candidate for the disease-causing variant in Family 35.  

 

LONP1 is an important mitochondrial protein with multiple roles including as a protease 

involved in selective degradation of abnormal or damaged proteins, a chaperone protein 

involved in contributing to the stability of protein complexes, and a mitochondrial DNA 

binding protein involved in controlling expression of mitochondrial genes (Bota and 

Davies, 2016; Dikoglu et al., 2015; Strauss et al., 2015).  Lonp1 knockout mice were 

embryonically lethal by inhibiting cell proliferation (Quirós et al., 2014).  LONP1 is 

upregulated in acute oxidative stress and is therefore most highly expressed in the most 

metabolically active organs such as the brain, heart, liver and skeletal muscle (Bota and 

Davies, 2016).  LONP1 is downregulated in aging and more prolonged episodes of 

oxidative stress, demonstrating its role in neurodegenerative disorders (Bota and 

Davies, 2016).  There appears to be a range of clinical features seen in individuals with 

LONP1 variants, from severe CODAS, to moderate with a few clinical features including 

neurological, ocular and skeletal, to ocular only (Dikoglu et al., 2015; Inui et al., 2017; 

Khan et al., 2015; Khan and AlBakri, 2018; Nimmo et al., 2019; Strauss et al., 2015).  

The skeletal and structural anomalies in CODAS are not typical of mitochondrial 

disorders. A similar phenotype was seen in EVEN-PLUS syndrome associated with 

variants in HSPA9, which is another mitochondrial chaperone protein (Royer-Bertrand 

et al., 2015). A skeletal dysplasia and neurodegenerative condition have also co-existed 

in another mitochondrial disorder, Spondyloepimetaphyseal dysplasia associated with 
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AIFM1 variants (Mierzewska et al., 2017).   The clinical features seen in Family 35, are 

similar to those seen in other mitochondrial disorders.  Many of the biochemical 

hallmarks of mitochondrial disorders have not been seen in patients with CODAS, 

although a recently reported individual with a compound heterozygous missense variant 

had congenital lactic acidosis, recurrent apnoeas and possible seizures, and muscle 

weakness, had low activity of complexes I and IV on muscle biopsy with low levels of 

mitochondrial DNA (Peter et al., 2018). The mitochondria were also shown to be 

enlarged with swollen intracristal or intercristal compartments and electron-dense 

inclusions on electron microscopy of lymphoblast cell lines in affected individuals with 

CODAS syndrome, as well as demonstrable reduced LONP1 enzyme activity (Strauss 

et al., 2015).  Mitochondrial dysfunction was also described above by Nimmo et al 

(2018).  It is therefore clear that mitochondrial dysfunction is evident in patients with 

biallelic variants in LONP1, even if this has not been directly observed in Family 35. 

 

In summary, Family 35 have more of a neurological phenotype associated with LONP1 

biallelic variants.  Although lacking many of the hallmarks of a mitochondrial disease, 

there certainly are any overlapping features between these disorders and the clinical 

spectrum of CODAS.  This family highlight the importance of remembering the range of 

severity of clinical phenotype that often emerges when using WES to elucidate the 

cause of disease in clinical genetics, although care must be taken to not make a 

condition fit inappropriately. 
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CHAPTER 7: RESULTS; MULTI-SYSTEM DISORDERS 

 

Findings reported in this chapter have previously been published in a journal article 

(Rocha et al., 2017). 

 

7.1. Introduction 

 

This final result chapter looks at several consanguineous families with a rare multi -

system disorder to try to identify the disease-causing variant explaining their phenotype.  

There is no specific theme to these disorders, they are each considered to be unique 

phenotypes, which may have a novel underlying mechanism. 

 

7.2. Overview 

 

Table 7.1. Overview of patients with Multi-System Disorder 

Family 

number 

Clinical  

Diagnosis 

Molecular  

Diagnosis 

9 
 

Multiple Symmetrical  
Lipomatosis 

MFN2 homozygous variant 
 

22 Jeune syndrome IFT80 homozygous variant 

 

30 Fryns syndrome 
 

No variant identified 
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I studied 3 families with multisystem disorders.  I identified the likely pathogenic 

disease-causing variant in 2 out of the 3 families (67%).  The proband in Family 22 

presented with clinical features suggestive of Jeune asphyxiating thoracic dystrophy.  

Exome sequencing identified a homozygous missense variant in IFT80 c.2101C>G 

p.Arg701Pro (rs137853116), predicted to be deleterious, found within a highly 

conserved region of the gene, and not present in population variation databases.  This 

has also been reported in another consanguineous Pakistani family with Jeune 

asphyxiating thoracic dystrophy (Beales et al., 2007).  It has also been seen in a patient 

with the same condition amongst the DDD open access patients.  It is therefore likely to 

explain the clinical phenotype seen in the patient, which will therefore not be discussed 

further within this report.  This chapter will instead focus on multi-system disorders as 

exemplified by Family 9 and also the process of analysis trialled in Family 30. 
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7.3. Family 9 

7.3.1. Introduction 

 

Lipodystrophies are a group of heterogeneous conditions, characterised by loss of body 

fat, which may be either inherited or acquired, generalised, affecting the whole body, or 

partial, affecting part of the body such as the limbs (Garg, 2011; Nolis, 2014).   The 

commonest cause of lipodystrophy is acquired in patients with human 

immunodeficiency virus (HIV) treated with Highly Active Antiretroviral Therapy (HAART) 

(Nolis, 2014).    Increased fat deposition is seen in this acquired type of lipodystrophy in 

the posterior neck, upper chest and abdomen, with loss of fat peripherally from the 

limbs and face (Cossarizza et al., 2001). 

 

Mutations in mitofusin 2 (MFN2) are a very well described cause of Hereditary Sensory 

and Motor neuropathy (HMSN) also known as Charcot-Marie-Tooth disease (CMT), 

usually producing an axonal neuropathy (Nicholson et al., 2008b; Pagon et al., 1993; 

Polke et al., 2011; Tazir et al., 2013).  Heterozygous mutations causing autosomal 

dominant HMSN are most common, but autosomal recessive HMSN has also been 

reported.  HMSN is a genetically heterogeneous condition.  Patients may present with a 

neurological phenotype of progressive distal muscle weakness, decreased or absent 

tendon reflexes, pes cavus, and distal sensory loss (Pagon et al., 1993; Verhoeven et 

al., 2006). Electrophysiological testing using nerve conduction studies (NCS) can 

confirm this diagnosis by demonstrating reduced motor nerve conduction velocities in 
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type 1 demyelinating form of HMSN and decreased amplitudes in the axonal form of 

HMSN in which axonal degeneration can be seen histologically (Verhoeven et al., 

2006).   

 

7.3.2. Clinical Description 

 

This multiply consanguineous Irish traveller family presented with an interesting, and 

unique lipodystrophy.  I have reviewed the proband, sibling and parents to undertake 

deep phenotyping.  There are a number of other affected family members who were not 

accessible due to family dynamics (see discussion).  

 

The typical lipodystrophy seen in the affected members within this family was described 

by the consanguineous parents illustrated by family photographs.  Typically, the first 

clinical sign of the condition, was the development of striae over the back in childhood.  

After puberty, generally, mild loss of adipose tissue from the hands and arms has been 

seen, with fat accumulation around the neck, upper chest and upper arms.  This fat 

forms a collar-like appearance around the neck with a buffalo hump.  The face and 

lower limbs do not appear to be affected generally.  This fat deposition continued to 

gradually increase in adulthood.  This had caused complications including airway 

obstruction.  The maternal uncle had reportedly died at 34 years of age from airway 

obstruction peri-operatively during routine hip surgery.  I did not have access to his 

medical records and was therefore unable to substantiate this description. Also see the 
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HPO phenotype summary table and code (Appendix 11.3 and 11.4).  There are 5 other 

reportedly affected family members including the paternal grandmother.   

 

Affected family members have reportedly required de-bulking surgery of the adipose 

tissue in the neck and a tracheostomy to maintain a patent airway. This does not fit 

neatly into any of the other previously described types of lipodystrophy.  The phenotype 

described had a similar appearance to the acquired lipodystrophy described above 

secondary to treatment with HAART.  Additionally, there was some phenotypic similarity 

to multiple symmetrical lipomatosis (MSL).  MSL is rare condition, more typically seen in 

middle aged males with excessive alcohol consumption.  The clinical phenotype 

described is that of multiple non-encapsulated lipomas in the upper arm, upper chest 

and neck region, which may or may not be associated with an associated axonal 

neuropathy (Chong et al., 2003; Klopstock et al., 1997). Some individuals with MSL 

have been shown to have mitochondrial dysfunction as well as mitochondrial DNA 

deletions and the MERRF variant m.8344A>G (Berkovic et al., 1991; Klopstock et al., 

1997).  Both of these adipose overgrowth disorders are felt to arise from the brown fat, 

which is similarly distributed, and contains a greater number of mitochondria than white 

fat (Herbst, 2012).  This family clearly had an autosomal recessive condition to explain 

their lipodystrophy rather than a mitochondrial genome or environmental cause, but the 

underlying biological process may be similar in view of the similar clinical phenotype. 
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The proband was 16 years of age at her follow up clinical review.  She had evidence of 

lipodystrophy, including mild loss of adipose tissue in the hands, and adipose tissue 

deposition around the neck, upper back, and upper arms.   The sibling was 15 years of 

age.  At his previous initial review, he did not have any signs of lipodystrophy.  

Subsequently, at follow up, he was mildly with striae over his back, mild adipose tissue 

loss from his lower arms, a small buffalo hump and a full neck. 

 

I gained consent to review the medical records only of the paternal grandmother.  She 

had a lipodystrophy identical to the phenotypic description above.  She had a long-term 

tracheostomy to prevent airway obstruction.  An MRI of her neck has demonstrated 

diffuse fatty infiltrate of the tongue base causing a narrowing of the airway.  Excessive 

adipose tissue deposition was noted.  A lipomatosis lesion was also noted in the right 

supraclavicular fossa 4cm by 4cm.  

 

7.3.2. Result 

 

WES revealed 26 rare homozygous variants (1 frameshift, 12 missense, and 13 splicing 

variants) in the proband (see appendix 11.5.9). 1 of these were reported in to be 

pathogenic in ClinVar or HGMD, a homozygous mutation in MFN2 c.2119C>T 

(p.Arg707Trp).  This was present in both siblings.  MFN2 is a ubiquitously expressed 

transmembrane GTPase. The variant seen in this family (p.Arg707Trp) is found in the 

2nd heptad repeat (HR2) domain at C terminus of MFN2 (see diagram 7.1) responsible 



149 
 

for homotypic interactions and heterotypic with MFN1.  At the time of analysis, variants 

in MFN2 were only known to cause the HMSN phenotype described above.  This 

variant had been previously reported as a cause of autosomal recessive HMSN (see 

below).  This result was confirmed on Sanger sequencing.  Segregation analysis 

confirmed that both parents were heterozygotes for this mutation, but further family 

studies were not possible.  In addition, at the time of initial analysis, only the elder 

sibling was showing signs of lipodystrophy and it was therefore not clear whether this 

variant simply represented an incidental finding.   

 

Figure 7.1: Linear depiction of human MFN2 and structure of Bacterial Dynamin -Like 

Protein acting as a model of human MFN2a. Adapted from Figure 1 (Rocha et al., 2017)  

 

 

 

Key of structural domains 

MFN2 variants are shown in red. 
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Knockout of Mfn2 in mice is embryonically lethal (Chen et al., 2003).  At the time of 

initial analysis, the c.2119C>T missense variant seen in family 9 had previously been 

reported in 4 other individuals from 2 families with autosomal recessive HMSN (Calvo et 

al., 2009; Nicholson et al., 2008b).  In the first family, the same homozygous c.2119C>T 

missense variant was described in a female individual who had had features of HMSN 

from the age of 2 (Nicholson et al., 2008b).  She had additional features listed within a 

table of lipodystrophy, mild hearing loss, and kyphosis (Nicholson et al., 2008b).  These 

additional features were not discussed further in the paper, which focused mainly on the 

neurological phenotype.  Both parents were reportedly asymptomatic heterozygotes 

(Nicholson et al., 2008b).  In the second family, 3 siblings aged between 19 and 25 

were reported with a moderate HMSN phenotype presenting before the age of 10 

(Calvo et al., 2009).  They were compound heterozygotes for the p.Arg707Trp variant 

and another missense variant, p.Gly108Arg, which is located in the GTPase domain 

rather than the HR2 domain for p.Arg707Trp (Calvo et al., 2009).  Both parents were 

also shown to be asymptomatic heterozygotes (Calvo et al., 2009).  There was no 

lipodystrophy reported in the siblings (Calvo et al., 2009).  I contacted the author to 

clarify if a lipodystrophy had subsequently developed, but they were unable to clarify 

this further.  Phenotypic heterogeneity associated with different variants in the same 

gene is described and has been increasingly seen since the advent of NGS methods 

(Gilissen et al., 2011).  I therefore postulated that the location of this variant in the 

homozygous state must cause a lipodystrophy phenotype, because Family 9 and the 

family reported by Nicholson et al were the only individuals known to have this 

homozygous variant, and both had a lipodystrophy (Nicholson et al., 2008b).  I 
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contacted the author of the paper.  He informed me that a research paper was being 

written about his family and another family in Canada, but they did n ot wish to 

collaborate.  This meant that this was highly likely to be the disease-causing variant in 

this family, but we still needed to prove this biochemically. 

 

After identifying this result, the family were reviewed again (see above).  In addition to 

looking for signs of lipodystrophy, I assessed the patients for neurological deficit.  The 

proband had clinical features suggestive of an early peripheral neuropathy only. She 

described an increased tendency to trip over. On clinical examination she had absent 

vibration sense in her feet and absent ankle reflexes.  Nerve conduction studies were 

arranged to clarify whether she did indeed have features of HMSN, but this was normal.  

The sibling did not have any symptoms or clinical signs of a neuropathy. Nerve 

conduction studies will also be arranged in this patient and showed normal nerve 

conduction.  The parents also had a normal neurological system.  Review of the medical 

records for the paternal grandmother confirmed that her nerve conduction studies had 

been consistent with severe sensory motor axonal neuropathy.   

 

Individuals with MSL may also have hyperlipidemia, fatty liver, hyperuricemia, 

hypothyroidism, and diabetes mellitus (Herbst, 2012).  Glucose tolerance testing 

demonstrated that both siblings had normal glucose tolerance with elevated insulin 

levels suggesting insulin resistance, not yet requiring treatment. 
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This homozygous missense variant was biologically plausible as the cause of the 

patient phenotype seen in this family.  MFN2 acts in the mitochondria. Both MSL and 

the HAART associated lipodystrophy have been linked to dysfunction of the 

mitochondria.  This family therefore, appeared to represent a novel phenotype for a 

known HMSN disease gene with variants in MFN2 explaining the whole phenotype.  

Further biological studies were performed after collaboration with a research team in 

Cambridge, under the premise that the phenotype was likely to represent an 

abnormality of the brown adipose tissue.  I therefore organised for the affected siblings 

in Family 9 to have an adipose tissue biopsy from affected tissue for analysis by Robert 

Semple’s laboratory (results described in discussion 7.3.3.).  In the meantime, as 

expected, this MSL-like phenotype was reported with the same homozygous missense 

variants in MFN2 (Sawyer et al., 2015).  This, therefore confirmed that the 

homozoygous missense variant identified in MFN2, was the disease-causing variant 

explaining the clinical phenotype described in Family 9 and discussed further below.  

 

7.3.3. Discussion 

 

The clinical features of lipodystrophy seen in this family, with mild fat loss from the 

upper limbs and massively excessive fat accumulation around the neck, upper truck and 

upper arms did not fit neatly into the other previously described types of lipodystrophy.  

The appearance was most like MSL and HAART related lipodystrophy, which was 

therefore suggestive of a mitochondrial-related pathology.  The MFN2 variant was 

therefore postulated to be the disease-causing variant with this representing a novel 
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phenotype at that time.  Variants in MFN2 are well known to cause HMSN.  Patients 

with MFN2 variants generally have CMT type 2 with axonal loss (Tazir et al., 2013; 

Verhoeven et al., 2006).  The paternal grandmother in Family 9 had a severe sensory 

and motor axonal neuropathy on NCS.  This is consistent with a diagnosis of CMT type 

2 and would be compatible with a disease-causing variant in MFN2.  The proband had 

absent ankle reflexes on clinical examination, although her NCS were within normal 

limits.  Her sibling did not demonstrate any signs of HMSN. Another patient with this 

homozygous variant did not develop features of HMSN until the age of 53 years 

(Sawyer et al., 2015).  Calvo et al commented that this biallelic variant including the 

HR2 domain of MFN2 seemed to be associated with a less severe form of axonal CMT, 

which is consistent with the presentation in this family (Calvo et al., 2009).  It is likely 

that the individuals in Family 9 with homozygous variants in  MFN2 will develop a 

moderate neuropathy in their lifetime.   

 

MFN2 encodes an ubiquitously expressed transmembrane GTPases found in the outer 

membrane of the mitochondria, which is involved in homotypic mitochondria-

mitochondria fusion, tethering of mitochondria to the endoplasmic reticulum, apoptosis, 

and mitophagy (Pareyson et al., 2015; Rocha et al., 2017; Sawyer et al., 2015).  It also 

makes heterotypic interactions with MFN1.  In the absence of either Mfn1 or Mfn2, there 

will be substantially less mitochondrial fusion in cells, resulting in mitochondrial 

fragmentation (Chen et al., 2003). The p.Arg707Trp variant is found within the HR2 

domain at the carboxy-terminal coiled coil domain of MFN2, which is thought to be 

important for homotypic and heterotypic interactions of MFN2 (Rocha et al., 2017; 
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Sawyer et al., 2015). Good mitochondrial functioning is required by the peripheral 

nerves (Pareyson et al., 2015).  Variants in MFN2 had only been associated with a 

neurological phenotype, despite its ubiquitous expression, possibly due to 

compensation by MFN1, another protein similarly involved in mitochondrial fusion, in 

most tissues except the peripheral nerves, where its expression is low (Detmer and 

Chan, 2007; Pareyson et al., 2015; Sawyer et al., 2015).  MFN1 levels were shown to 

be low in brown fat, which was originally thought to be the affected tissue in affected 

individuals with MFN2 adipose tissue overgrowth (Sawyer et al., 2015).   

 

Mitochondria have been implicated in one of the several mechanisms postulated to 

cause HIV associated lipodystrophy (Cossarizza et al, 2001).  Mitochondrial dysfunction 

has also been seen in some patients with MSL secondary to a MERRF mutation, 

m.A8344G (Chong et al, 2003).  The appearance of the adipose tissue in patients with 

MSL resembles brown fat, which has a high energy requirement (Chong et al, 2003).  

Chong et al reviewed the literature in 2003 and found that 28% of patients with MSL had 

a mitochondrial mutation. Sawyer et al demonstrated the mitochondria dysfunction 

using cells carrying the MFN2 homozygous p.Arg707Trp variant, which showed a 

reduced ability to form homotypic interactions between the mitochondria (Sawyer et al., 

2015).  It is therefore likely that the homozygous MFN2 variant identified in Family 9 is 

causing both the HMSN and the lipodystrophy.   
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Sawyer el al were the first to report this novel second phenotype in 3 patients with MSL 

also harbouring the same homozygous missense variant, p.Arg707Trp, in MFN2 (S1-3 

in table 7.2) (Sawyer et al., 2015).  S1 and S2 are brothers who developed MSL with 

lipomatosis neck, upper back and chest in their 20s, which continued to grow in size, 

similar to the history described in Family 9 and the family photographs visualised at 

clinical review (Sawyer et al., 2015).  This also included the tongue hypertrophy, which 

gave difficulties swallowing, as described in II:2 of Family 9 (Sawyer et al., 2015). 

Multiple liposuction operations were required, with only a temporary benefit before 

regrowth occurred, which was also described in other family members in Family 9 

(Sawyer et al., 2015). S2 did not actually notice any lipomatosis until the age of 45 

(Sawyer et al., 2015).  The parents of S1 and S2 were fifth-degree cousins of Irish 

descent, had no features of HMSN or MSL and were deceased at the time of publication 

(Sawyer et al., 2015).  It is possible that the p.Arg707Trp variant is a founder variant 

originating in Ireland.  S3, also previously reported by Nicholson et al (see 7.3.2. 

Results), developed lipomatosis in her late 20s, which developed to accumulate 

posterior to her cervical spine right down to her lumbar region, with further deposition 

over the anterior body and even upper thigh (Nicholson et al., 2008b; Sawyer et al., 

2015).  This was more widespread than the distribution reported in Family 9.  Further 

patients with this MFN2-related MSL have subsequently been reported and are 

summarised in table 7.2 below.  This conclusively demonstrates that the homozygous 

p.Arg707Trp missense variant is the disease-causing variant in Family 9.  I will now 

focus the discussion on the phenotypic description of this newly described condition. 
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Table 7.2: Comparison of P1, P2, & Patients Reported with p.Arg707Trp mutation   

No. Sex 

MFN2 

variant 
(protein) 

HMSN 
 

MSL 
 

DM 

or 
IR 

Fatty 
liver 

Other TG Leptin 
Adipo 
nectin 

Lactate 
Histology EM 

affected t 

P1 F 
R707W 

R707W 
× 

√ 

(12) 
√ x Irregular 

menses 
N N/↓ ↓ NR 

Thick cyto rim, ↑ 

Fragmented M 

P2 M 
R707W 
R707W 

× 
√ 

(15) 
√ x Nil N N/↓ ↓ NR 

Thick cyto rim, ↑ 
Fragmented M 

S1 M 
R707W 
R707W 

√   
(53) 

√ 
(20s) 

√ NR Nil N ↓ ↓ ↑ NR 

S2 M 
R707W 
R707W 

√ 
√ 

(45) 
NR NR 

Bowed 

legs 
infancy 

NR NR NR ↑ NR 

S3 F 
R707W 
R707W 

√     
(2) 

√ 
(20s) 

NR NR Talipes 
HL 

N NR NR ↑ NR 

R1 F 
R707W 

R343del 

√ 

(<10) 

√   

(5) 
√ NR Hypog ↑ ↓ ↓ ↑ NR 

R4 F 
R707W 

R707W 
NR 

√ 

(13) 
√ NR Scoliosis 

RTD 
↑ ↓ ↓ ↑ NR 

Cp1 F 
R707W 

R707W 

√   

(ch) 

√ 

(30) 
√ √ 

HL 
Breast 

Ca 

↑ ↓ ↓ NR 
Thick cyto rim, ↑ 
Fragmented M 

Cp2 M 
R707W 
R707W 

√   
(26) 

√ 
(11) 

√ √ 
Hypothyr 

Precoc 
Puberty 

↑ ↓ NR NR NR 

Cp3 F 
R707W 
R707W 

√   
(65) 

√ 
(35) 

√ √ Hypothyr ↑ ↓ ↓ NR NR 

Cp4 F 
R707W 

R707W 

√   

(ch) 

√ 

(25) 
√ √ 

Thyr Ca 

Breast 
Ca 

↑ ↓ ↓ NR Thick cyto rim, ↑ 
Fragmented M 

Cp5 F 
R707W 
R707W 

√   
(54) 

√   
(6) √ √ HL N ↓ ↓ NR NR 

Cp6 F 
R707W 
R707W 

√   
(ad) 

√  
(2) 

Fast 

gly 
NR Nil ↑ NR NR NR NR 

Ca1 M 
R707W 

Ex7-8del 
√   

(24) 
√ NR NR OA NR NR NR NR NR 
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No. Sex 

MFN2 

variant 
(protein) 

HMSN 
 

MSL 
 

DM 

or 
IR 

Fatty 
liver 

Other TG Leptin 
Adipo 
nectin 

Lactate 
Histology EM 
affected t 

C1 M 
G108R   
R707W 

√ × NR NR NR NR NR NR NR NR 

C2 F 
G108R   

R707W 
√ × NR NR NR NR NR NR NR NR 

C3 M 
G108R   
R707W 

√ × NR NR NR NR NR NR NR NR 

B1 M R707W 
√   

(44) 
NR NR NR NR NR NR NR NR NR 

Br1 F R707W 
√     

(7) 
NR NR NR NR NR NR NR NR NR 

 

Legend table 7.2: () age of reported onset, ad adulthood, Ca cancer, ch childhood, DM 

diabetes mellitus, EM electron microscopy, Ex exon, HL hearing loss, hypog 

hypogonadotrophic hypogonadism, LM light microscopy, M mitochondria, N normal, NR 

not reported, OA optic atrophy, precoc precocious, resist resistance, RTD renal tubular 

dysfunction, t tissue, thyr thyroid  

P1-2 Family 9, S1-3 (Sawyer et al., 2015), C1-3 (Calvo et al., 2009), B1 (Braathen et al., 

2010), Br1 (Brožková et al., 2013), Ca1 (Carr et al., 2015), Cp1-6 (Capel et al., 2018) 
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Rocha et al subsequently reported 4 patients, including the two siblings from Family 9 

as patient 2 and 3 (see table 7.2. for comparison) (Rocha et al., 2017). HMSN 

presented between 2 and 65 years in this group of patients with MFN2 related MSL 

where present, and in those in whom it was not present, it may present as they get older 

(Calvo et al., 2009; Capel et al., 2018; Carr et al., 2015; Rocha et al., 2017; Sawyer et 

al., 2015). There are no reported patients with MFN2 related MSL without at least one 

variant including p.Arg707Trp, in fact the majority are homozygous for this variant 

despite looking for other variants in MFN2 (Calvo et al., 2009; Capel et al., 2018; Carr et 

al., 2015; Rocha et al., 2017; Sawyer et al., 2015).  It will be interesting to see whether 

this changes as more patients are identified.  In patients with a biallelic variant in MFN2 

including p.Arg707Trp, multiple symmetrical lipomatosis was apparent between 5 and 

45 years, excluding the 3 siblings described by Calvo et al (Calvo et al., 2009; Capel et 

al., 2018; Carr et al., 2015; Rocha et al., 2017; Sawyer et al., 2015).  The 3 siblings 

were however, reported in their mid-20s, and it is therefore possible that MSL had not 

yet developed (Calvo et al., 2009). For these compound heterozygous patients 

however, the second variant is the missense variant p.Gly108Arg, which is found within 

the GTPase domain (Calvo et al., 2009). The other two compound heterozygous 

patients reported have a deletion, for R1 this involved a single amino acid at a critical 

hinge region, and for Ca1 this involved exon 7 and 8, neither of which affect the HR2 

domain (Carr et al., 2015; Rocha et al., 2017).  At the time of publication, Sawyer et al 

(2015) postulated that only those with a homozygous p.Arg707Trp variant would have a 

MSL phenotype, which we now known not to be the case.  No other biallelic variants 

had been reported in the HR2 domain other than those described above with MSL 
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(Rocha et al., 2017).  It is therefore possible that a HR2 domain biallelic variant or 

compound heterozygous variant incorporating a variant in the HR2 domain and a 

deletion cause MSL (Rocha et al., 2017).  Or that any patient with a biallelic variant, 

including at least one variant in the HR2 domain, will develop MSL in their lifetime.  

Further study is required to elucidate this more accurately.  

 

Heterozygous p.Arg707Trp variants are a known cause of CMT2 (see table 7.2.). The 

parents of S3, and C1-3 have had normal NCS.  Br1 was heterozygous for the 

p.Arg707Trp variant and developed CMT at 7, although a second variant could not be 

entirely excluded (Brožková et al., 2013).  Br1’s mother is said to be unaffected despite 

being heterozygous for this variant too, but she has not been physical ly examined or 

had NCS (Brožková et al., 2013).  B1 was also reportedly heterozygous for the 

p.Arg707Trp variant and developed CMT2 at 44 years (Braathen et al., 2010).  The 

parents of P1 and P2 have no symptoms of CMT. It has been suggested that 

heterozygotes for this variant have mild neuropathy presenting between the 2nd and 5th 

decade (Brožková et al., 2013).  This may therefore suggest incomplete penetrance in 

the heterozygous state or later onset of mild disease, which may or may not be 

identified in an individual’s lifetime.  Or alternatively this variant may only be pathogenic 

in the biallelic state, and in the 2 heterozygotes reported, the second variant was not 

detected.  This also requires further study.  
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I will now concentrate on the patients with MFN2 related MSL.  Leptin levels were low in 

patients S1, R1, R4, Cp1-5, and the two patients from Family 9 had low to normal levels 

(Capel et al., 2018; Rocha et al., 2017; Sawyer et al., 2015).  Leptin treatment may 

therefore be potentially beneficial (Rocha et al., 2017).  Adiponectin levels were also low 

in all patients in whom it was documented, which is representative of a pattern seen 

usually in generalised lipodystrophy or extreme insulin resistance (Capel et al., 2018; 

Rocha et al., 2017).  Insulin resistance and type 2 diabetes mellitus was present in most 

patients with associated features including acanthosis nigricans, and male hair 

patterning (Capel et al., 2018; Rocha et al., 2017; Sawyer et al., 2015).  Adiponectin 

and leptin are hormones normally released by adipose tissue, and therefore in the face 

of overgrown adipose tissue, we would expect these hormonal levels to be increased 

not reduced (Rocha et al., 2017).  This, together with the insulin resistance, suggests 

that the overgrown adipose tissue is not functioning normally (Rocha et al., 2017). 

Additional features suggestive of mitochondrial dysfunction included raised lactate 

levels, hearing loss, hypothyroidism and optic atrophy (Capel et al., 2018; Rocha et al., 

2017; Sawyer et al., 2015).  Cp1, Cp4, Cp5 had relatively widespread centromedullary 

cystic lesions previously reported in patients with congenital generalized lipodystrophy 

(Capel et al., 2018). Other clinical features seen included raised triglyceride levels, fatty 

liver, irregular periods, partial hypogonadotropic hypogonadism, scoliosis, talipes, 

breast and thyroid cancer (see table 7.2.) (Capel et al., 2018; Rocha et al., 2017; 

Sawyer et al., 2015).  The significance of the breast and thyroid cancer are unclear.   
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Adipose tissues from the two siblings in Family 9 were described by Rocha et al and 

compared to 5 age-matched controls (Rocha et al., 2017).  Affected tissue samples 

were also reviewed in Cp1 and Cp4 and compared to 3 healthy control patient (Capel et 

al., 2018). Histological assessment revealed the affected tissue was more compatible 

with white fat than brown fat, because adipocytes were unilocular and negative for the 

presence of uncoupling protein 1, a protein typically seen in brown fat in R2 and 3, 

weakly expressed in Cp1 Cp4 and controls (Capel et al., 2018; Rocha et al., 2017).  

Although, multilocular cells were seen occasionally in Cp1 and Cp4, but not in control 

samples (Capel et al., 2018).  Inflammatory infiltrate and an increased number of small 

blood vessels were also seen in Cp1 and Cp4 when compared to controls (Capel et al., 

2018).  The electron microscope showed thickening of the cytoplasmic rim of the 

adipocytes with increased numbers of round (not tubular), enlarged mitochondria, with 

fragmentation compared to a thin cytoplasmic rim and ovoid mitochondria in the control 

samples (Capel et al., 2018; Rocha et al., 2017).  RNAseq results suggested that the 

increased numbers of fragmented mitochondria had reduced function with reduced 

levels of mRNA detected from the mitochondria-encoded genes, and there was a partial 

compensation with increased transcription of nuclear-encoded mitochondrial genes 

(Rocha et al., 2017).  Also, surprisingly, apoptotic signatures were reduced, and cell 

survival signatures were increased (Rocha et al., 2017).  Leptin mRNA and protein 

expression, adiponectin mRNA and protein expression were severely reduced 

compared to controls consistent with the blood levels, whereas Mfn2 protein levels were 

similar to controls (Capel et al., 2018; Rocha et al., 2017).  Comparison was made with 

histology and RNAseq in skin cells, which showed no difference from controls 
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demonstrating the tissue-specific phenotype seen in MFN2 variants despite ubiquitous 

expression (Rocha et al., 2017). The overgrowth is therefore, the result of suppressed 

apoptosis and increased cell survival signalling (Rocha et al., 2017).   

 

Rocha el al (2017) wondered whether the overgrown adipose tissue with the 

appearance of white fat, could indeed represent dysfunctional, ‘whitened’ thermogenic 

adipocytes.  CITED1 and FGF21 are thermogenic markers which were increased in Ca1 

and Ca4, which was then recapitulated in the RNAseq results, demonstrating 

overexpression of these two genes (Capel et al., 2018).  These patients also had very 

high levels of FGF21 in the blood when compared to healthy controls (Capel et al., 

2018). A group of other patients with a generalized lipodystrophic syndrome had been 

previously shown to have raised FGF21 levels in blood, but the patients with MFN2 

related MSL had significantly higher FGF21 levels than even this group of individuals 

(Capel et al., 2018).  This result is further supported by the PET-CT scan results, which 

demonstrated increased spontaneous glucose uptake in some patients, but lower than 

levels expected in brown adipose tissue.  This suggests that the overgrown adipose 

tissue may have some thermogenic activity, and therefore some brown fat 

characteristics, which requires further study.  It has also been suggested by Capel et al 

(2018) that the increased FGF21 could play a compensatory role to limit metabolic 

complications of this condition, including raised glucose and triglyceride levels. 

 



163 
 

Finally, there was evidence of increased mTOR activity on RNAseq in patients R2 and 

R3, suggesting that treatment with mTOR inibitors may be beneficial, and needs further 

investigation (Rocha et al., 2017).  Sirolimus (mTOR inhibitor) treatment has been 

beneficial in mice with mitochondrial disease (Johnson et al., 2013; Rocha et al., 2017). 

 

In conclusion, MFN2 related MSL is a multisystemic condition seen in patients with 

p.Arg707Trp homozygous variants and also patients with compound heterozygous 

variants including the p.Arg707Trp missense variant and a deletion.  This results in 

adipose tissue overgrowth with an axonal neuropathy in most.  The adipose tissue 

overgrowth occurs due to increased adipocyte proliferation, increased cell survival and 

reduced apoptosis in these cells. The overgrown adipose tissue is hypofunctional as 

seen by the low leptin, adiponectin levels and insulin resistance.  MFN2 is important for 

the function of the mitochondria.  Increased numbers of fragmented hypofunctional 

mitochondria are seen in the overgrown tissues.  Mitochondrial dysfunction is further 

evident with raised lactate, hearing loss, and optic atrophy in some individuals. 

Decreased levels of leptin and adiponectin, and high levels of FGF21 in the blood may 

be a hallmark of patients with MFN2-associated MSL (Capel et al., 2018).  Upregulation 

of the mTOR pathway also suggests a future potential beneficial therapy with mTOR 

inhibitors, such as sirolimus (Rocha et al., 2017).  Further study to identify a treatment 

for this condition is extremely important to Family 9 and would be beneficial to all these 

patients described to date.  A regular multi-disciplinary follow up assessment is required 

in these patients to detect the complications in a timely manner. 
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7.4. Family 30 

7.4.1. Introduction 

 

Fryns syndrome is a multi-system autosomal recessive disorder.  It was first described 

by Fryns et al in 1979 and has subsequently been described as a condition in which the 

following clinical features may be seen: congenital diaphragmatic hernia, small thorax 

with pulmonary hypoplasia, relatively coarse face, hypertelorism, short and broad nose, 

micrognathia, macrostomia, low set dysmorphic ears, hypoplastic terminal phalanx and 

toes with hypoplastic nails (Fryns et al., 1979; Lin et al., 2005; Meinecke and Fryns, 

1985; Pagon et al., 1993). Other features may include: a prenatal history of 

polyhydramnios, structural brain abnormalities, congenital heart defect, renal cysts, 

intestinal atresiae and malrotation, omphalocele, microphthalmia, cloudy cornea, cleft lip 

and/or cleft palate, developmental delay, and genital abnormalities (Fryns et al., 1979; 

Lin et al., 2005; Meinecke and Fryns, 1985; Pagon et al., 1993).  This condition was 

initially thought to be lethal, but instead it is now known to have a high early mortality 

rate (Pagon et al., 1993).  At the time of recruitment, no gene had been associated with 

Fryns syndrome.  

 

7.4.2. Clinical Description 

 

Family 30 are a multiply consanguineous family with four clinically affected siblings.  

They present with features consistent with a diagnosis of Fryns syndrome.  Their clinical 
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features include: congenital diaphragmatic hernia, anal atresia, intestinal malrotation , 

omphalocele, renal cysts and/or hydronephrosis, micropenis, cryptorchidism, cleft 

palate, micrognathia, ear abnormality, talipes, short distal phalanx and toes with 

hypoplastic nails.  The affected offspring have either died in utero or shortly after birth.  

These clinical features would meet 6 out of the 6 clinical criteria for Fryns syndrome, 

with 4 out of 6 meeting the narrow diagnostic criteria, including diaphragmatic hernia, 

significant pulmonary hypoplasia, distal digit hypoplasia, characteristic facies, affected 

siblings, and at least one other feature (Lin et al., 2005).  Also see the HPO phenotype 

summary table and code (Appendix 11.3 and 11.4).  There has been no post-mortem 

performed on the affected children or fetuses.  The first cousin healthy parents have 1 

healthy surviving child. A karyotype had been performed on the affected children.  The 

condition was affecting siblings only, in a consanguineous family, with both males and 

females affected. We therefore assumed the inheritance is autosomal recessive.  

 

Other diagnoses had been considered, but felt unlikely, including chromosomal 

abnormalities, Simpson-Golabi-Behmel syndrome, Donnai Barrow syndrome and 

Matthew Wood syndrome.  Prior to WES analysis I organised STRA6 sequencing in 

both parents, but no heterozygous variants were identified.  
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7.4.2. Result 

 

There were no stored DNA samples on the affected children.  I was eventually able to 

locate a stored fibroblast sample, but unfortunately the scientists only managed to 

extract a small, very fragmented DNA sample for analysis.   We were therefore unable 

to perform WES on an affected patient’s sample.  I therefore performed WES on the two 

parental samples in the hope that we would be able to identify the disease-causing 

variant.  I assumed this to be autosomal recessive and therefore sought a heterozygous 

variant, most likely the same heterozygous variant within the same gene in both 

parents.  I utilised the method (described below) reported by Ellard et al., 2015, but 

without success.  I also looked for variants in candidate genes with similar presentations 

to Fryns syndrome, including the PIGN gene and the other known GPI‐pathway genes.  

I have not been able to identify the disease-causing variant within this family.   

 

7.4.3. Discussion 

 

Family 30 are a multiply consanguineous family with four deceased, affected 

individuals, who each have clinical features consistent with the diagnostic criteria for 

Fryns syndrome (Lin et al., 2005).  There was previously no known genetic cause for 

Fryns syndrome.  Biallelic genetic variants in the PIGN gene have recently been 

described in patients with Fryns syndrome, although this is likely to be a genetically 

heterogeneous condition (Alessandri et al., 2018; McInerney‐Leo et al., 2016; 



167 
 

Thompson and Cole, 2016).  PIGN encodes one of the proteins involved in 

glycosylphosphatidylinositol (GPI) biosynthesis, previously associated with Mabry 

syndrome, which anchors proteins to the outer layer of the cell membrane (McInerney‐

Leo et al., 2016).  A compound heterozygous variant has subsequently been reported in 

the PIGV gene, another gene encoding a protein involved in GPI biosynthesis, in a 

family with overlapping features of Mabry syndrome and Fryns syndrome (Reynolds et 

al., 2017).  No variants were identified in this group of genes encoding components of 

the GPI biosynthesis pathway in the heterozygous state in both parents.  This suggests 

that there is further genetic heterogeneity in Fryns syndrome, or that the variant was in 

a non-coding region.  

 

There was not adequate DNA available for WES in an affected individual.  I therefore 

performed parental WES to try to identify the disease-causing variant explaining the 

diagnosis of Fryns syndrome in this family.   

 

It is not unusual for those working in Clinical Genetics to be faced with a family who 

have recently been lost a child with a multiple congenital anomaly syndrome, whose 

child has either been terminated because of these lethal anomalies, died in utero or in 

the neonatal period.  These families are often very eager to identify the disease-causing 

variant in the family, especially in families with multiply affected siblings, to enable them 

to utilise the PIGD or other prenatal testing options described in the introduction.  For 

many families, embarking on a further pregnancy, without this information, is extremely 
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difficult.  There may be no DNA sample from the affected child, it may be there is only a 

small quantity of precious DNA from the affected individual, or the sample may be of 

inadequate quality for NGS studies. This is a similar scenario to the presentation in 

Family 30. 

 

A strategy for utilising parental WES for diagnosing lethal autosomal recessive 

conditions in unrelated parents was described in 2015, in families with a history of 

having had more than one affected child and therefore suggestive of an autosomal 

recessive condition (Ellard et al., 2015).  In the eight unrelated couples, they identified 

an average of 1.0 gene with a different heterozygous variant in the same gene in which 

the affected child may be a compound heterozygote, after filtering, and an average of 

0.75 genes with the same heterozygous variant in which the affected child may be 

homozygous (Ellard et al., 2015).  The list of potential variants would be higher in a 

consanguineous family like Family 30, making the application of this method more 

difficult.  They were able to identify the disease-causing variants in 3 families using this 

method (Ellard et al., 2015).  I therefore tried to recapitulate this method to analyse the 

WES results in the parents of Family 30. 

 

A subsequent follow up paper described th is Exeter bioinformatics pipeline in more 

detail (Stals et al., 2018).  They described the analysis of 50 families, including 11 

couples with known consanguinity, and 21 families with only a single affected child 

(Stals et al., 2018).  At the variant filtering stage, they remove variants with a MAF of 
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>0.001 (rare variant subset) and >0.0001 (very rare subset) in ExAC or Exome variant 

server, synonymous variants, intronic variants not near a conserved splice site, where 

the parents are homozygotes, known artefact, no annotation with gene name, variants 

not passing quality filters, and genes starting with MUC, HLA or LINC (Stals et al., 

2018).  In addition to this they also retained all variants recorded as pathogenic in 

ClinVar or HGMD Pro (Stals et al., 2018).  They then, as before, created a list of likely 

autosomal recessive variants in which the parents both had a heterozygous variant in  

the same gene, which was either the same or a different variant (Stals et al., 2018).  

Subsequently each of these variants was considered by reviewing OMIM, the medical 

literature, in silico tools using Alamut, and then the variants were classified according to 

the American College of Medical Genetics and Genomics (ACMG) (Richards et al., 

2015).  This pipeline is very similar to a method I had used, although my cut off MAF 

had been less rigorous at 0.01, I did not use the ACMG variant classification guidelines 

(see general discussion 8.1.1.), and I did not have access to HGMD Pro, or Alamut, 

although I did have results from the in silico analysis.  I had a 17 gene shortlist (see 

appendix 11.5.30), but none of these genes had relevant phenotypes of interest.  The 

success rate in the published paper was 52% (26/50 couples)(Stals et al., 2018). 

 

The strategy employed by Stals et al (2018) remains a very useful tool despite, its lack 

of success in Family 30. This is particularly useful for families like Family 30, in whom 

WES is not possible in the affected individual either because there is no DNA stored, or 

the remaining DNA sample is too small for WES analysis.  This remaining DNA is 

therefore very precious, and can be saved for subsequent confirmation of the likely 
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causative variant using Sanger sequencing.  Especially pertinent for  families 

contemplating a recurrence risk of 25%.  This method of parental WES analysis is 

therefore likely to be extremely valuable to clinical geneticists utilising NGS for 

diagnosis of a lethal fetal condition (Stals et al., 2018). 
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CHAPTER 8: DISCUSSION 

 

A key role of a clinical geneticist is to diagnose rare diseases in patients, which then 

enables the patient to receive information about their condition, appropriate 

management, reproductive genetic counselling, cascade family genetic counselling and 

hopefully appropriate treatment in the future.  This project aimed to utilise the benefits of 

next generation sequencing, using WES, to identify the most efficient process for rare 

variant interpretation and disease gene identification, and to define the role of deep 

clinical phenotyping in the interpretation of comprehensive NGS analysis. The role of 

next generation sequencing in clinical genetics is best first considered by reviewing the 

overall diagnostic rate in this project. 
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8.1. Discussion of Overall Results 

Table 8.1: Summary of overall results by disorder category  

Ch 
No. 

Group of 
disorders 

Genetic 
Diagnosis  

Candidate 
gene only 

identified 

Total no. 
of 

patients 

Percentage 
genetic 

diagnosis 

Percentage 
overall 

diagnosis (%) 

3 Immune-
related 
disorders 

3 1 10 30 40 

4 Connective 
tissue 
disorders 

3 0 5 60 60 

5 Renal 

disorders 

1 1 2 50 100 

6 Neurological 
disorders 

6 1 15  40 46.7 

7 Multi-

system 
disorders 

2 0 3 67 67 

8 Overall 15 3 35 42.9 51.4  
Key: Ch chapter, No. number 

 

Figure 8.1: Graphical depiction of the overall results by category 
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The confirmed genetic diagnostic rate for this project is 42.9%.  In the introduction to 

this project I discussed the DDD project, which commenced just prior to my own project.  

In the initial cohort of 1133 patients, a full or partial diagnosis was made in 454, giving 

an overall diagnostic rate of 40%, which is a similar rate to this project (Wright et al., 

2018).  This comparison is interesting, but although there are some similarities between 

these projects, there are also important differences. The majority of diagnoses in my 

project were made by the detection of homozygous variants in autosomal recessive 

disease genes whereas in the DDD project the highest diagnostic rate was made 

amongst individuals with monoallelic de novo variants in dominant disorders (the DDD 

study used trio sequencing as the default investigation).  In the Saudi Arabian 

population, which has high rates of consanguinity, it was reported that 27% of inherited 

disease diagnoses were autosomal dominant or de novo autosomal dominant 

conditions compared to 71% autosomal recessive disorders (Monies et al., 2017a).  In 

my project 14/15 (93%) diagnoses were homozygous autosomal recessive disorders.  It 

is possible that in the remaining, undiagnosed patients, that there are other autosomal 

dominant disorders that I have not identified and, in particular, the diagnosis of de novo 

pathogenic variants is limited in the absence of a trio sequencing analysis strategy.   

 

The very first study looking at the application of WES in clinical genetics had a 

diagnostic rate of 50% with 6 out of 12 patients reaching a diagnosis (Need et al., 

2012).  If we compare this result to other WES studies we see a range of diagnostic 

rates from 25 to 37%: a pilot study at Baylor laboratory had a molecular diagnostic rate 

of 25%, 28.8% for GenDx, 29% for the FORGE Canadian study, 30% at Ambry 
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genetics, 34% in Saudi Arabia, and 36.7% in intensive care infants in Houston, and 

(Eldomery et al., 2017; Farwell et al., 2015; Meng et al., 2017; Monies et al., 2017a; 

Retterer et al., 2016; Sawyer et al., 2016).  In a study of an undiagnosed rare disease 

cohort from Spain there was a high diagnostic rate of 67% (20/30), which the authors 

attributed to having a more selective group, with stringent inclusion criteria (López-

Martín et al., 2018). As one might suspect therefore the diagnostic rate seems to be 

very dependent on the composition of the population group studied, the degree of pre-

study investigation and whether the proband only or whether the proband and their 

relatives are analysed.  However, overall, the diagnostic rate from my project, when 

compared to the similar WES projects, is very good. 

 

In my project the diagnostic rates was variable between different phenotypic groups. It 

is difficult to interpret these intergroup differences because some groups were small 

(e.g. the diagnostic rate in multisystem disorders was 67% (2 out of 3 patients) 

compared 30% (3/10) in patients with immunological disorders).  However, it is tempting 

to speculate that disorders with a distinctive phenotype because of multisystem 

involvement may be easier to diagnose than those for which the phenotype is less 

specific.  The immune-related disorders cohort (many of which are autoinflammatory 

disorders) are an evolving group, which are less well characterised from the genetic 

perspective.  This could provide a source of novel diagnoses or it may be that some of 

these conditions have a multifactorial aetiology and therefore no clear Mendelian 

diagnosis to be made. Interestingly, the Canadian WES project found their highest 

diagnostic rate to be within the ciliopathy group, which would be comparable to the 



175 
 

multi-system disorder group here, and the lowest rate in their immunological disorder 

group with a rate of 11.8% (Sawyer et al., 2016).  The study by GeneDx found their 

highest diagnostic rate was amongst their deafness group, which was not a category in 

this project, with a diagnostic rate of 55%, and immunological disorders was an other low 

rating category with a diagnostic rate of 15.8% (Retterer et al., 2016).  Therefore, my 

findings are consistent with other similar studies. 

 

Some patients without a diagnosis may have remained undiagnosed because the 

relevant variant could not be definitively classified as deleterious (e.g. previously 

unreported missense variants or variants in genes with no associated human or mouse 

phenotype, and gene products of unknown function) or went undetected (synonymous 

variants would have bene filtered out by my variant analysis strategy, structural variants 

and non-coding variants would not have been detected and some coding sequences 

are not well captured or sequenced). Therefore, I suggested recruitment to the 100,000 

genomes project for all undiagnosed patients (discussed later).    

 

 

8.2. General Discussion 

 

Within this project I have identified several families with disease-causing autosomal 

recessive disorders, in well-known autosomal dominant disease genes.  An autosomal 

dominant heterozygous variant may exert its effect as a consequence of 



176 
 

haploinsufficiency from the reduced amount of the affected protein, by a dominant 

negative effect by interfering with the normal protein (discussed in OI introduction  4.2), 

or gain of function, which may lead to an additional detrimental function for the encoded 

protein (Monies et al., 2017b). The variants causing autosomal recessive disease are 

more typically loss-of-function (Monies et al., 2017b).   When an autosomal recessive 

disease is seen in a known autosomal dominant disease-gene, there are two main 

possibilities; the patient has the same more severe phenotype when biallelic, therefore 

likely consistent with haploinsufficiency, or a novel disease phenotype to the known 

autosomal dominant disease, likely representing a different molecular mechanism 

(Monies et al., 2017b). 

 

A good example of the different phenotypes that may be seen in the same gene, is that 

of BRCA2, in its autosomal dominant heterozygous state it causes a hereditary breast 

and ovarian cancer, and in contrast in its autosomal recessive state it causes a 

developmental disorder resulting in Fanconi anaemia (“OMIM - Online Mendelian 

Inheritance in Man”).  MFN2, described in this project, exemplifies both of two different 

scenarios described above (Monies et al., 2017b). Heterozygous MFN2 variants have a 

well-established HMSN phenotype.  This has also been seen with biallelic variants, 

possibly tending towards in an earlier age of onset, with a more severe phenotype 

(Nicholson et al., 2008b).  However, in contrast, Family 9, and other similar families, 

with a specific type of biallelic variant, may also have a neuropathy, but they have a 

different additional more significant phenotype, resulting in an overgrowth of adipose 

tissue with an MSL-like phenotype (Rocha et al., 2017; Sawyer et al., 2015).  I have 



177 
 

also described Family 28 with homozygous PKD2 hypomorphic variants with a more 

severe phenotype generally than that seen in the ADPKD, but less severe than the well-

known ARPKD (caused by biallelic variants in a different gene).  Family 6 have a 

biallelic COL1A2 variant, which results in a similar, more severe phenotype to that seen 

in the autosomal dominant form of the disease.   I have also considered whether the 

variant in Family 21 could be hypomorphic in the heterozygous state, but further 

functional work is required to determine this further.  This must be considered when 

reviewing NGS data in clinical genetics, particularly the potential for a different 

phenotype seen in the autosomal dominant and autosomal recessive conditions within 

the same gene. 

 

Since the advent of NGS greater phenotypic variability for many conditions has been 

reported.  This can sometimes influence the outcome of NGS.  For example, Family 23 

and the homozygous PEX16 variant resulting in a mild Zellweger syndrome with initial 

inconclusive biochemical results.  Even with the knowledge of the range of phenotypic 

severity of certain disorders, it is easy to dismiss the disease-causing variant in the face 

of incompatible results.  However, it is also very important to not inappropriately make a 

genetic diagnosis fit erroneously, which can have much greater consequences for the 

patient and family management. 

 

It is important to consider the possibility of de novo monoallelic disorders in 

consanguineous families.  The proband in family 27 had Adams-Oliver syndrome, which 
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can be autosomal dominantly or autosomal recessively inherited.  We found that this 

patient had a de novo variant in the NOTCH1.  The DDD project found 6% of patients 

with autozygosity levels equivalent to those seen in first cousin, or closer relations, had 

a potentially pathogenic de novo disease-causing variant (DDD study, PMC, 2017).  A 

mean prevalence of 0.34% was identified for de novo dominant disorders in the general 

population, affecting 1 in 295 births (DDD study, PMC, 2017).  A strong paternal age 

affected was confirmed, although the parents in this family were relatively young, with a 

combined age-related prevalence of 0.28% in this family using the DDD data (DDD 

study, PMC, 2017).  This demonstrates the importance of considering de novo dominant 

disorders in every patient to whom NGS analysis is being employed for diagnosis, 

unless incompatible with the pedigree analysis. 

 

One of the limitations for diagnosis of a deceased proband, is the inability to perform 

sequencing without a DNA sample of adequate quality and quantity.  This was the case 

for Family 30, with multiply affected deceased children with clinical features were 

consistent with Fryns syndrome.  While I did manage to eventually locate a fibroblast 

sample for DNA extraction from one of the affected cases, the quality and quantity of 

DNA was not suitable for NGS analysis.  Parental-only WES can be performed in these 

circumstances.  This analysis has been termed “molecular autopsy by proxy” (Monies et 

al., 2017a).  This is particularly useful in families, such as Family 30, where autosomal 

recessive disease is most likely. Unfortunately, I was unable to identify the disease-

causing variant within this family.  However, in this example, the variant may be in a 

gene not yet associated with a human disease since the molecular aetiology for Fryns 
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syndrome is not fully understood. This “molecular autopsy by proxy” will however, be 

invaluable to enable clinicians to utilise WES for these families who may be desperate 

for a molecular diagnosis (Monies et al., 2017a). 

 

 

8.2.1. ACMG guidelines for variant reporting 

 

In 2015 the American College of Medical Genetics and Genomics and the Association 

for Molecular Pathology published a joint consensus recommendation for the reporting 

of sequence variants (Richards et al., 2015).  Different levels of evidence were 

classified separately for benign and pathogenic. Pathogenic evidence was ranked as 

very strong (PVS1), strong (PS1–4), moderate (PM1–6), or supporting (PP1–5) 

(Richards et al., 2015).  Benign evidence was ranked as standalone (BA1), strong 

(BS1–4) or supporting (BP1–6) (Richards et al., 2015).  This encompasses evidence 

described in the introduction, such as the presence in population and disease variant 

databases, medical literature review, familial segregation studies, genotype-phenotype 

correlation, computational predictive tools and functional studies.  A framework to 

classify the variants based on this evidence was drawn up (see diagram 8.2.) 
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Figure 8.2. Variant Classification 

1. Benign  

2. Likely benign (90% confidence the variant is benign) 

3. Variant of Uncertain Significance 

4. Likely pathogenic (90% confidence the variant is pathogenic) 

5. Pathogenic 

 

These guidelines are quite stringent, resulting in more variants being classified as 

variants of uncertain significance.  This does however, give clinicians more confidence 

in the results that are classified as likely pathogenic or pathogenic.  Since the 

conclusion of this project, this variant classification system has now been adopted by 

the UK genetic laboratories for the classification of all variants reported.  One of its 

limitations in application is to variants in novel disease genes, such as Family 2 with the 

OTULIN variant or novel phenotypes for known disease phenotypes, such as Family 9 

and the MFN2 variant.  Examples of using this classification can be seen below in table 

8.2.  Based on the body of evidence now in the medical literature however, these 

variants in MFN2 and OTULIN are classed as pathogenic and likely pathogenic 

respectively.  In view of this, I have not used this variant classification system 

throughout this project. 
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Table 8.2: ACMG classification of variants detailed in the results chapters 

Family 

number 

Variant Original ACMG 

classification 

Current ACMG 

Classification 

2 OTULIN: c.815T>C, 
p.Leu272Pro 

Uncertain significance 
PM2, PP1, PP3 

Likely Pathogenic 
PS3, PM2, PP1, PP3, 

PP4 

34 DNASE1L3: 
c.290_291delTG, 

p.Thr97Ilefs*2 

N/A Pathogenic 
PVS1, PS1, PM1, PP4 

3 TMEM38B: c.507G>A 
p.Trp169*  

Uncertain significance 
PM2, PP1, PP3 

Pathogenic 
PVS1, PS3, PM2, PP1 

6 COL1A2: c.370G>A, 
p.Gly124Ser 

N/A Likely Pathogenic 
PM1_STR, PM2, PM5, 

PP4 

28 PKD1: c.11975C>T 
p.Ala3992Val 

N/A Uncertain Significance 
PM2, PP1, PP3, PP4 

13 SETX c.5243delT 

p.Phe1748Serfs*3 

N/A Pathogenic 

PVS1, PM2, PP4 

35 LONP1: c.2282C>T, 
p.Pro761Leu 

Uncertain significance 
PM2, PP3 

Likely Pathogenic 
PS1, PS3, PM2 

9 MFN2: c.2119C>T 
p.Arg707Trp 

Uncertain significance 
PM2, PP3, PP5 

Pathogenic 
PS1, PS3, PM1, PM2, 

PP3, PP4, PP5 

 

8.2.2. Bioinformatics Programmes 

 

As discussed above, there are a number of bioinformatics tools available to aid 

interpretation of exome sequencing data, including POLYPHEN and SIFT (Ng et al, 

2001; Adzhubei et al, 2010).  More recently bioinformatics programs have tried to 

incorporate phenotypic analysis, family-based analysis, and/or variant analysis into a 

single instrument.  I considered using several tools to aid analysis. PhenIX ranks WES 

variants based on pathogenicity and similarity of the patients phenotype to that 
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described for the Mendelian disease (Zemojtel et al, 2014); Agile suite of programs 

have several programs to assist in data filtering and analysis, including a program which  

can use WES data to identify autozygous regions to aid identification of the causal 

mutation in consanguineous families (Carr et al, 2012; Carr et al, 2013a; Carr et al, 

2013b); and SPRING identifies whether a single nucleotide variant is likely to be 

pathogenic by combining several functional effect scores with the likelihood that a given 

variant is disease-causing using sources such as the gene ontology and pathway 

information (Wu and Jiang, 2014).  Phenotype based analysis normally utilises HPO 

terms, but this is limited by the specificity of the HPO terms available in the ontology.  

There is a drive to improve the phenotypic terminology, which will improve the output of 

all phenotype-based analytical tools.  By the end of the project I had not utilised any of 

these bioinformatic tools either due to security concerns with patient data upload, poor 

performance in a feasibility project performed by an MSc student, unsuitable for current 

project or genome build incompatibility.   
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Table 8.3 Comparison Table of the WES variant identification bioinformatics tools 

Legend: Com command, Web internet based. 

Tool Web 
based 

Patient File 
uploaded 

Phenotype 
analysis 

Family 
analysis 

Variant 
analysis 

Problems 

Exomiser 
+ phenix 

Web/       
Com line 

Yes, deleted 
straightaway 

Yes No Yes Best for 
known genes                                  
Performed 

poorly in MSc 
project 

Exomiser 

+ phive 

Web/       

Com line 

Yes, deleted 

straightaway 

Yes No Yes Best for 

known genes                                  
Performed 

poorly in MSc 
project 

PhenGen Web/       
Com line 

Yes, for 
several days 

Yes Yes Yes Patient file 
upload to 

web page 
required 

Phevor Web 

based 
only 

Yes, for 

several days 

Yes Yes Yes Need to pre-

filter VCF  

Agile Download 
program  

N/A No Auto 
-zygosity 

mapping  

Possible Need BAM 
file ideally.  

Data file too 
large 

SPRING Web/       

Com line 

No Query 

disease 
only 

No Yes List of 

candidate 
SNVs only 

Galaxy Web only Yes No  Yes Yes Patient file 

upload to 
web page 
required 

Sapientia Web only Yes, 

securely 

Yes Yes Yes Not 

compatible 
with GRCh38 

currently      

 

Homozygosity mapping within a family can be very powerful to aid identification of the 

disease-causing variant from next generation sequencing results.  This can be done 
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using a Single Nucleotide Polymorphism (SNP) array analysis or specific tools aimed at 

utilising next generation sequencing results to generate this data.  In Family 2 the 

homozygous disease-causing variant was identified within one of two areas of shared 

homozygosity amongst the affected individuals only, which provided further evidence 

that the OTULIN variant was likely to be causative.  Performing additional SNP arrays is 

possible but incurs additional cost and analysis.   

 

Wakeling et al demonstrated that 79% of pathogenic variants were found in one of the 

largest region of homozygosity using SavvyHomozygosity and SavvyVcfHomozygosity 

(Wakeling et al., 2018).  Woods el al had previously found that the disease-causing 

homozygous variant was found in the longest region of homozygosity in 8 out of 48 

individuals (17%) studied (Woods et al., 2006).  The premise behind searching in the 

larger regions of homozygosity, is that these larger regions are most likely to have 

occurred from a more recent consanguineous union, whereas smaller regions of 

homozygosity are less likely to contain the disease-causing variant because they are 

more likely to be ancestral and as such have greater longevity in the population, thus 

have a greater likelihood of already being subjected to natural selection (Pemberton et 

al., 2012; Woods et al., 2006).  The Savvy suite of tools were not available for use 

during this project.  It would be interesting to apply these tools to the families within this 

project.  I did however, use an in-house bioinformatic tool to look at variants within a 

large homozygous run, but I did not find that the disease-causing variants identified in 

these families correlated with a high scoring region of homozygosity.  WES is not, 

however, ideal for identification of homozygous runs.  Wakeling et al found that the 
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disease-causing variant was more likely to be within one of the 10 largest regions of 

homozygosity if the patients had a <8% homozygosity in their genomes and the variants 

were more than 3Mb from the telomere.  Most of the consanguineous unions in this 

project were first cousin marriages, and therefore the offspring would be expected to 

have 1/16 (6.25%) of their genome homozygously inherited by descent, which would 

therefore be conducive to this analysis.  Woods et al actually found that on average the 

rate of homozygosity was around 11% within the Pakastani or Arab group in  unions of 

first cousins, which is not surprising given the multiple consanguinity seen within the 

pedigree (Woods et al., 2006).  This may therefore be a limitation to this analysis.  

Where present, however, this provides supportive information. 

 

8.1.3. Deep Phenotyping Critical to Diagnosis 

 

Phenotypic analysis is a very important part of NGS analysis.  I have found in this 

project, that filtering the list of potential variants according to the patient’s phenotype 

has been very effective for identification of the disease-causing variant.  When 

performing this analysis, it is important to remember that a novel allele-disease 

phenotype association may be overlooked.  Family 9 with the lipodystrophy and MFN2 

variant exemplify this well.  At the time of first analysis, no lipodystrophy phenotype had 

been clearly linked to this gene.  When considering the mitochondrial underlying 

aetiology and other similar phenocopies of their condition, it because clear that this 

MFN2 homozygous missense variant could be a novel phenotype for this gene.  Further 

evidence for this supposition subsequently came from deeper phenotyping with 
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biochemical analysis, transcriptomics, and histological assessment, as well as 

additional case reports.   

 

The phenotyping in Family 2 was crucial to the subsequent molecular diagnosis.  When 

considering why the proband was thriving and his cousins were deceased, it became 

clear that a TNF-related pathogenicity was key to the underlying molecular mechanism 

in view of the successful treatment of the disease with TNF-alpha blockade in the 

proband. This enabled me to be more confident that homozygous missense variant in 

OTULIN was the disease-causing variant in this family despite the lack of human 

disease phenotype reported for this gene at that time.  This ensured that the phenotype 

helped successfully identify the genotype when analysing NGS results. 

 

There are many people who advocate a genome first approach.  This can be 

advantageous, but there are of course limitations to this.  For example, WES may not 

actually be required because the clinical geneticist may recognise the clinical phenotype 

resulting in single gene sequencing or single gene panel sequencing.  With the 

increased potential for incidental finding and variants of uncertain clinical significance 

with more extensive sequencing, performing a genome first in these circumstances 

would be inappropriate.  It is also important to not make the phenotype fit with the 

genotype result, thus remaining objective when reviewing the patient.  Otherwise, this 

can lead to erroneously making a diagnosis in the patient, who may then receive 

incorrect management, and therefore missing the correct diagnosis in the patient.  
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Additional corroborative evidence however, in the knowledge of the phenotype can be 

beneficial.  For example, for Family 13, I was able to demonstrate a raised AFP level, 

which was additional evidence to confirm this novel variant was disease-causing.  

 

Blended phenotypes can be difficult to unpick where more than one genetic diagnosis in 

a patient may produce a combined phenotype that can be difficult to unravel (Wright et 

al., 2018).  This is particularly likely in multiply consanguineous family.  For example, I 

have discussed the various phenotypes seen in Family 3 with OI and a homozygous 

nonsense variant in TMEM38B.  The proband has a metabolic syndrome, two siblings 

have myopathic features and one sibling has congenital heart defects.  It is difficult to be 

certain how many different diagnoses are present within this family and how much can 

be attributed to phenotypic variation within a relatively recently described rare disease.  

In contrast, Family 9, discussed above, had a family history of peripheral neuropathy 

and a lipodystrophy, which had the same underlying molecular genetic aetiology once 

fully explored.  Dual diagnoses only represent a small number of individuals.  Even 

amongst the consanguineous population of Saudi Arabia, only 1.5% had a dual 

diagnosis (Monies et al., 2017a).  Dual diagnoses and blended phenotypes, however, 

need to be considered in the analysis of NGS in clinical genetics. 
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8.1.4. Family analysis 

 

Extended family segregation studies associated with deep phenotyping of every family 

member can be extremely useful in interpretation of next generation sequencing results.  

This type of assessment is the cornerstone of clinical genetics.  One of the main 

limitations of this study has been the ability to do this.  For example, within Family 9, 

with the homozygous MFN2 missense variant, there are a number of affected 

individuals in three generations of Family 9 with a wide range of ages.  It would have 

been extremely beneficial to deeply phenotype all these individuals.  However, the 

dynamics within this consanguineous traveler family limited phenotyping to the single 

nuclear family unit only.  Family dynamics are common limitations to variant 

interpretation in clinical genetics. 

 

Another limitation to further analysis of the patient and family phenotype in this study 

has been the difficulty of re-contacting patients once time has elapsed from the initial 

consent process.  For some families, they remember well the initial consent to the 

project, they are extremely pleased to hear that a potential molecular genetic diagnosis 

has been made and are very keen to help with further assessment and phenotyping.  

Family 2, both the family of the proband and the cousins’ parents, have been extremely 

pleased to help and understand the ORAS condition in their family.  For other families, 

having a genetic diagnosis can be very difficult to deal with.  They may not want, 

therefore, to have the confirmatory Sanger sequencing to confirm that both parents are 

carriers, similar to the parents in Family 13.  Another example can be seen with Family 
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6.  We have found a candidate variant in COG3, which could be worth exploring further.  

Since consenting to the project and identification of this variant the proband has died 

and the family did not want to pursue the diagnosis further because this was no longer 

important to them.   

 

In the introduction I discussed the explosion of new genetic diagnoses that has occurred 

secondary to NGS methods. In the DDD project alone their initial diagnostic rate in the 

first 1133 patients improved from 27% to 40% more recently (Wright et al., 2018, 2015).  

This is in part due to the new diagnoses that have been made in the three-year time 

interval.  A Baylor genetics research project, reviewing 74 undiagnosed families with 

WES performed in a diagnostic laboratory, were able to identify a diagnosis in 27 

families (36%) secondary to novel disease gene identification, newly described 

conditions since the original analysis, dual diagnosis, copy number variant analysis, 

uniparental disomy identification and additional family analysis (Eldomery et al., 2017).  

10% of individuals in another study, looking at 40 individuals with a previously 

uninformative WES result, were diagnosed purely due to newly described genes or 

phenotypes (Wenger et al., 2017).  They demonstrate that there are about 250 new 

gene–disease associations each year, therefore it is not surprising that re-analysis of 

sequencing data is beneficial (Wenger et al., 2017). In Family 35 with the LONP1 and 

Family 29 with the SLC9A1 variant, the corrobatory evidence for pathogenicity has 

increased during the write-up phase of this project. This highlights the importance of re-

analysis of WES data.  In addition, during the thesis awaited stage of the project, a 
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genetic diagnosis was made in Family 11 from re-analysis of the WES due to a novel 

gene publication (see Figure 8.3.). 

Figure 8.3. Genetic Diagnosis in Family 11 (Danhauser et al., 2018; Ghosh et al., 2018) 

  

Mild learning difficulties HP:0001256 

Cerebellar atrophy HP:0001272 

Episodic ataxia HP:0002131 

Paroxysmal dystonia HP:0002268 

Peripheral axonal neuropathy 
HP:0003477 

Sensorineural hearing loss HP:0000407 

 

First Cousin Caucasian Parents 

Klinefelter Syndrome 

Progressive cerebellar atrophy with 

episodic exacerbation 

 

Molecular Genetic Diagnosis: Neurodegeneration, childhood-onset, 
stress-induced, with variable ataxia and seizures in Family 11 

Highlighting important of Re-analysis of WES data 

Biallelic Variants in ADPRHL2 

Degenerative Stress-Induced Epileptic 

Ataxia Syndrome 
 

Intellectual disability HP:0001249 

Developmental regression HP:0000750 

Cerebellar atrophy HP:0001272 

Cerebral atrophy HP:0002059 

Episodic ataxia HP:0002131, which is 
exacerbated by illness and stress 

Peripheral axonal neuropathy 

HP:0003477 

Seizures HP:0001250 (some) 
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Sudden Death HP:0001699  

Sugg 

 
Re- analysis WES data: 

Homozygous frameshift 
g.36091735InsT (p.Q142fs) in 

ADPRHL2 
Novel Disease Gene: ADPRHL2 

Danhauser et al., 2018  

Ghosh et al., 2018 
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It is important to consider the impact of re-analysis of results for the patients, families 

and clinicians involved.  This means that a negative result is never truly negative, which 

can be difficult for families to deal with, when they may wish to move on with their lives.  

Equally, problems can arise if a diagnosis is subsequently withdrawn (Wright et al., 

2018).  To try to prevent the latter problem, DDD has produced a DDG2P gene list, 

which details only the genes considered to be definite or probable developmental 

disorder genes, dependent upon adequate evidence in peer-reviewed journal (Wright et 

al., 2018, 2015).  This list is then used to analyse the WES data.  This has been 

extremely useful for the development of developmental disorder gene panels and 

analysis of NGS results in clinical genetics within the National Health Service (NHS). 

Re-contacting families is facilitated practically by the NHS national database to enable 

access to the relevant patient’s most up to date address, especially if several years has 

elapsed.  However, patients may be difficult to engage after a prolonged period.  In 

addition to this, the psychological impact of re-contacting the families can be difficult to 

gauge, when we hope to do no harm at the very least.  We need to consider how to 

counsel the patients for this uncertainly and how to manage re-communication of new 

NGS diagnoses.  These difficulties are likely to be ongoing problems that need further 

consideration in this new genomic era. 

 

A systemic review considering re-contacting patients with results tried to address this 

consideration in more detail.  They concluded that the legal precedent and guidelines 

for re-contacting patients was lacking, and it is not currently considered part of standard 

care.  Often the arguments against re-contacting families focused on the practical 
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difficulties including, contact details, staffing, time consideration and funding. Where 

patient experience was considered, the outcome was generally felt to be positive. They 

therefore felt that clinical genetics should now be considering when we should be re-

contacting families, and establishing international guidelines detailing these 

circumstances.  I certainly agree that in this genomic era, where a new diagnosis can be 

made on data that may only be a couple of years old, we should have clear pathways 

for re-contacting patients with updated results.  This must be part of the conversation 

when consenting patients for NGS results in clinical genetics (in this research study 

patients had the option of deciding whether or not they wanted to be re-contacted with 

relevant results).  

 

8.1.5. Data sharing 

 

When identifying a novel disease or disease phenotype, identification of further patients 

with similar phenotypes can be very important to aid further interpretation.  Previously 

this has been very dependent on chance.  Patients with novel disease phenotypes 

would be presented at large conferences in the hope that a clinician would recognise 

similar phenotypes in their own patients.  This was very much dependent on the chance 

of the right clinician seeing the specific poster at the right time in the specific conferen ce 

and remembering their patient with that phenotype.  For example, I presented Family 2 

at the 2014 Manchester Dysmorphology meeting and the 2015 European Society of 

Human Genetics without success (see section 11.7.1. and 11.7.2.).  However, at the 

later meeting I was able to see a poster confirming the same MSL like phenotype in 3 
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patients with the same homozygous MFN2 variants I had found in Family 9, which was 

later published (Sawyer et al., 2015).  At the time I was aware of a group working on this 

disorder after contacting the lead author from the paper by Nicholson et al  (2008), who 

informed me that the lead researcher did not want to collaborate at this stage.   I was 

then able to contact this group directly, but they still did not want to collaborate because 

they were near publication. 

 

A much better way of identifying clinicians who are interested in the same gene is 

through larger, well established data sharing sites.  Gene Matcher is one such site used 

by a large number of researchers now, which is likely to make a significant impact in 

identification of novel disorders in the coming years (www.genematcher.org) (Sobreira 

et al., 2015).  This was useful for identification of additional affected patients with 

disease-causing variants in novel disease genes identified from the research based re-

analysis described above by the Baylor genetic laboratory (Eldomery et al., 2017).  

Unfortunately, I have used this site to look for other researchers interested in OTULIN, 

COG3 and NLRC3, without success so far.   

 

Decipher (https://decipher.sanger.ac.uk/) is another useful site for the identification of 

similar affected patients.  This site was very beneficial in enabling me to be confident in 

the molecular diagnosis for Family 26 who had homozygous missense variant in 

POLR1C.  I was able to identify two additional patients through decipher with the exact 

same variant in POLR1C and a similar phenotype to Family 26  and that also described 

http://www.genematcher.org/
https://decipher.sanger.ac.uk/
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in the literature (Thiffault et al., 2015).  Data sharing with other clinicians and 

researchers is therefore extremely beneficial to aid interpretation of NGS data in clinical 

genetics. 

 

8.1.6. Incidental findings 

 

In one family an incidental SDHB was variant (c.725G>A p.Arg242His) was detected.  

This has been found in 2 out of 246208 individuals on GnomAD with a MAF of 0.00001 

and has been reported on ClinVar as pathogenic.  This is associated with the cancer-

predisposing syndrome, Hereditary Paraganglioma-Phaeochromocytoma Syndromes.  

The patient did not have any clinical features of this condition  and so it was not 

permissible to feedback this result to the patient as the ethical approval and consent 

form, specify that only results associated with the patient’s clinical phenotype are 

returned.   

 

The SDHB gene is one of the medically actionable genes detailed in the ACMG 

guidelines for reporting of secondary findings from genomic sequencing. This guideline 

was published, and used more widely, since the inception of this project.  We are 

however, bound by our original ethically approved consent, and unable to report this 

variant. Similarly, the DDD project, which was set up at a similar time to this project, will 

only feedback results that are relevant to the patient’s phenotype, and will not feedback 

other findings including medically actionable results or non-paternity.  
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What is the potential scale of these incidental or secondary looked for findings?  It is 

important first to clarify the difference between an incidental and secondary finding.  An 

incidental finding is a result identified through the interpretation of NGS data, which is 

not the primary cause for genetic testing.  A secondary finding involves actively looking 

for variants in certain genes considered clinically actionable.  They are incidental 

findings (not related to the disease being investigated), but rather than being purely 

incidentally found, they are actively sought out with appropriate consent.  I have 

identified an incidental finding in 1 out of 36 families, representing 2.7% of this patient 

group.  The same rate of secondary findings were reported in a Dutch cohort, with 1 in 

38 (2.7%) healthy individuals having a likely pathogenic variant in the ACMG medically 

actionable genes (Haer-Wigman et al., 2019).  A lower rate was found amongst the 

Saudi population, with 1.2% of patients undergoing WES in Saudi Arabia having an 

ACMG secondary finding identified (Monies et al., 2017a).  

 

In clinical genetics, the potential for incidental findings also occurred prior to the advent 

of NGS.  For example, the genome wide array CGH, performed in a child with 

developmental delay, which identifies a deletion involving the BRCA1 or BRCA2 gene.  

This would still typically be reported back to the patient.  The 100,000 Genomes Project 

has specific consent to detail whether the patient and parents wish to receive additional 

secondary findings (described above).  Reporting of secondary and incidental findings 

has now been incorporated into the consent process in clinical genetics, with a separate 

section to consent to receive, or not receive these additional findings. Whether it is 
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possible to truly consent to receiving these additional or incidental findings, is beyond 

the scope of this project.  Currently, since the ACMG guidelines were produced, it is 

standard practice in clinical genetics, when consenting a patient to perform genetic 

testing, to discuss the possibility of identifying an incidental, or secondary finding, and to 

ask the patient to decide whether they would like to receive this type of result or not.  
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8.2. 100,000 Genomes Project 

 

WGS is the next option to try to identify the disease-causing variant in the remaining 20 

families without a firm diagnosis.  This was available through recruitment to the 100,000 

genomes project, which was offered to patients through Genomics England.  Prior to the 

closure of this project, I reviewed every undiagnosed family to ensure that, where 

appropriate, they had been informed of this project and given the opportunity to 

participate.   

 

The potential for additional diagnoses from the 100,000 genomes project is unclear.  

Clearly sequencing the whole of the genome to include the non -coding region, versus 

only up to 3% of the genome through WES, enables clinicians to be hopeful for 

additional diagnoses that may not have been identified through WES, particularly 

structural variants and non-coding sequence variants.  However, the vast number of 

benign variants increases when performing WGS rather than WES, and our 

bioinformatic understanding to enable accurate interpretation of non-coding disease-

causing variant is very limited.  In fact, the 100,000 genomes project has mainly limited 

their analysis to large groups of gene panels dictated by the phenotype recorded, which 

will limit the project’s ability to identify additional diagnoses.  It also highlights the critical 

importance of accurately recording the patient’s phenotype.  The vast scale of the 

100,000 genomes project, will potentially enable the project to make novel diagnoses 

possible. Identification of novel disease genes will be through the research groups, 

called Genomics England Clinical Interpretation Partnerships (GeCIPs).  These groups 
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will perform complimentary research projects to aid interpretation of the results from this 

project. 

 

What is the likely potential to make additional diagnoses in the 100,000 genomes 

project, in patients who have already had WES?  This is yet unclear, since the results 

are still being analysed.  Even in the coding regions, there may be potential for 

diagnosis, if there was low coverage of certain regions of the genome or structural 

variants, which may be better detected by WGS. The DDD project so far know of only 6 

‘missed’ diagnoses in their cohort (Wright et al., 2018).  I have already discussed Family 

23 with the homozygous PEX16 variant, which I had previously discounted in view of 

the documented normal VLCFA results.  After this result came back from the 100,000 

genomes project, I further reviewed the biochemical laboratory results, which revealed 

two previous borderline results prior to the final normal result documented.  Rather than 

showing the power of WGS to make additional diagnoses, this emphasises the 

importance of clear documentation in the patient’s notes of normal, borderline and 

abnormal results.  

 

We can also consider the WGS500 study.  This was a preparatory project, performing 

WGS in 500 patients to understand the potential benefit for employing this sequencing 

method in clinical practice (Taylor et al., 2015).  In a subset of 156 patient with a severe 

likely genetic disease, the group identified a likely pathogenic variant in 33 of these 

patients (21% of the total) (Taylor et al., 2015).  The majority of the variants identified 
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were in genes and therefore within the capability of detection from WES, but may have 

been outside the target region for WES, or in a region of low coverage (Taylor et al., 

2015).   Other variants identified included non-coding variants, large deletions and 

uniparental disomy (Taylor et al., 2015).   

 

It is therefore possible that the 100,000 genomes project may be able to help make 

additional diagnoses in this cohort of undiagnosed patients.  This may be through newly 

described conditions since the closure of this project, through the sheer power of the 

project compared to this much smaller project, through sequencing of regions poorly 

covered by WES in coding regions of the genomes, by identifying variants in non-coding 

variants, or copy number variants, which are better identified by WGS.  This is the future 

direction for many of the undiagnosed patients from this project to receive diagnoses 

either from the 100,000 genomes project directly, or subsequent research analysis 

through the GeCIPs.   
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8.3. Functional Work 

 

The majority of the affected patients within this project are expected to have autosomal 

recessive disease.  Many of these families have relatively unique phenotypes, which 

can make it difficult to make a definite diagnosis in the family, even if the disease-

causing variant has been correctly identified.  Identifying patients with the same novel 

condition can be enhanced by data sharing as previously discussed.  Another method 

for doing this, is to increase the power of the study, which was employed by the much 

larger DDD project using statistical genotype and phenotype analysis amongst a cohort 

of 4,125 patients to identify four novel autosomal recessive disorders (Akawi et al., 

2015).  This is a small project and therefore this level of analysis is not possible, thus 

limiting the potential for novel disease identification.  Collaboration is therefore the key 

to this.  I have therefore collaborated with other research groups to provide additional 

evidence for pathogenicity of disease-causing variants within this project.  

 

The variants causing autosomal recessive disease are typically loss-of-function, which 

means that knockout mouse models are potentially helpful to provide further evidence 

for causality of a variant (Monies et al., 2017b).  Family 2 had a novel human disease, 

that I felt was caused by the homozygous OTULIN variant identified on WES and 

previously from autozygosity mapping studies.  Collaboration with David Komander’s 

group was extremely beneficial because the mouse model recapitulated the human 

phenotype, and thus enabled us to describe this novel human disease (Damgaard et al., 

2016).  This collaboration continues to be beneficial as we consider the liver phenotype 
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that has been identified in the mouse and try to clarify whether this could be relevant to 

Family 2 and other patients with ORAS.  Biological treatments such as infliximab, can 

be extremely beneficial, but there is always the potential for the patient to develop 

antibodies to the treatment, and thus making the treatment ineffectual in the patient.  

Working with mouse models and the pharmaceutical company in th is case, may 

potentially identify novel treatments in ORAS families, if the biological agent no longer 

treats the patient disease.   

 

Additional functional studies were also performed in Family 9 (Rocha et al., 2017).  This 

provided wider additional insights into the biology of adipose tissue.  It also identified 

potential areas to pursue for treatment of this adipose tissue overgrowth.  I have 

advised the clinicians involved in the care of Family 9 to observe for the metabolic 

consequences of this condition, including the possibility of leptin deficiency, which may 

require treatment in the future.  There is also the possibility that mTOR blockade may 

influence the course of the disease, which needs to be considered further.  The main 

focus for diagnosis in Family 9, was to identify a potential treatment for these ch ildren 

before the disease becomes more severe.  The future consideration for study of this 

disease is to make a mouse model to recapitulate the disease and identify potentially 

beneficial treatments. Therefore, as well as proving pathogenicity of a variant, functional 

studies, can provide additional hopes for therapy of the genetic disease. 
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CHAPTER 9: CONCLUSION 

 

This project has demonstrated the utility of NGS in diagnosis of rare inherited diseases, 

which will hopefully reduce the diagnostic odyssey in this group of patients.  Identifying 

the disease-causing variants is important for the patient with the rare disease and their 

families to enable the provision of more accurate genetic counselling, prognostic 

information, more tailored clinical management, reproductive options, and ultimately 

direct gene or biological therapies. 

 

I have identified known disease variants, a novel gene (OTULIN), a novel disease 

phenotype for a known gene (MFN2), phenotypic expansion of disease severity 

(PEX16), autosomal recessive disease genes in previously known autosomal dominant 

genes (PKD1), and blended phenotypes (Family 3).  Phenotype based analysis has 

been crucial in this project to identify the disease-causing variant.  I have also 

demonstrated the importance of collaborative work to prove pathogenicity for causative 

gene variants with additional functional work or identifying a case series to provide 

additional information in the medical literature. Re-analysis of NGS data is also 

important with the rapid identification of new disease genes, although the practically of 

doing this within Clinical Genetics needs further consideration.  For those families 

without a diagnosis, Whole Genome Sequencing is likely to be the next step in their 

diagnostic odyssey. 
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CHAPTER 11: APPENDICIES 

11.1 Figure 11.1 Patient Information Leaflet 
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11.2 Figure 11.2 Consent form 
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11.3. Phenotype Summary Table 

Table 11.1 Coding key for HPO terms listed in Table 11.2 

System HPO terms HPO terms 

All HP:0011421 Death in adolescence  

  HP:0003819 Death in childhood  

  HP:0001522 Death in infancy  

  HP:0003677 Slow progression  

Growth HP:0008915  Childhood-onset truncal obesity   

  HP:0004325  Decreased body weight   

  HP:0000823 Delayed puberty  

  HP:0001508  Failure to thrive   

  HP:0001531  Failure to thrive in infancy   

  HP:0004324  Increased body weight   

  HP:0000256    Macrocephaly     

  HP:0008845  Mesomelic short stature   

  HP:0000252  Microcephaly   

  HP:0001513 Obesity  

  HP:0003510   Severe short stature    

  HP:0004322   Short stature    

  HP:0001824  Weight loss   

Craniofacial HP:0011071 Abnormality of permanent molar 

morphology  

  HP:0000164                 Abnormality of teeth                  

  HP:0000463 Anteverted nares  

  HP:0000248 Brachycephaly  

  HP:0000670                Carious teeth                 

  HP:0000175  Cleft palate   

  HP:0000490      Deeply set eye       

  HP:0000684  Delayed eruption of teeth   

  HP:0000678                Dental crowding                 

  HP:0000703 Dentinogenesis imperfecta  

  HP:0005280                   Depressed nasal bridge                    

  HP:0000268 Dolichocephaly  

  HP:0002307           Drooling            

  HP:0000286 Epicanthus  

  HP:0040199  Flat midface   

  HP:0000218 High palate  

  HP:0000685           Hypoplasia of the teeth            

  HP:0000527  Long eyelashes   
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  HP:0000276                            Long face                             

  HP:0000343  Long philtrum   

  HP:0000303         Mandibular prognathia          

  HP:0000347 Micrognathia  

  HP:0000665                           Narrow forehead                            

  HP:0000160 Narrow mouth  

  HP:0000194 Open mouth  

  HP:0011327 Posterior plagiocephaly  

  HP:0011107        Recurrent aphthous stomatitis         

  HP:0005989 Redundant neck skin  

  HP:0000664        Synophrys         

  HP:0010804 Tented upper lip vermilion  

  HP:0000574        Thick eyebrows         

  HP:0000687 Widely spaced teeth  

  HP:0002645 Wormian bones  

Cognitive 
Behavioural and 
developmental 

HP:0001344    Absent speech     

  HP:0002381  Aphasia   

  HP:0000717 Autism  

  HP:0002194 Delayed gross motor 
development  

  HP:0000750    Delayed speech and language 

development     

  HP:0000750 Developmental regression  

  HP:0001260    Dysarthria     

  HP:0001263 Global developmental delay  

  HP:0001249     Intellectual disability      

  HP:0010864     Intellectual disability, severe      

  HP:0001256     Mild learning difficulties      

  HP:0002167    Neurological speech impairment     

  HP:0007301  Oromotor apraxia   

  HP:0011098  Speech Apraxia   

Neurological HP:0006846  Acute encephalopathy   

  HP:0001274  Agenesis of the corpus callosum   

  HP:0000718 Aggressive behaviour  

  HP:0001284 Areflexia  

  HP:0001251 Ataxia  

  HP:0011445     Athetoid cerebral palsy      

  HP:0002136              Broad-based gait               

  HP:0001272           Cerebellar atrophy            

  HP:0002059            Cerebral atrophy             



233 
 

  HP:0007305              CNS demyelination               

  HP:0003429 CNS Hypomyelination  

  HP:0100543 Cognitive impairment  

  HP:0012185   Constrictive median neuropathy    

   

HP:0003693 

Distal amyotrophy  

  HP:0002460  Distal muscle weakness   

  HP:0001332   Dystonia    

  HP:0011203 EEG with abnormally slow 

frequencies  

  HP:0010851                                      EEG with burst suppression                                       

  HP:0011185   EEG with focal epileptiform 

discharges    

  HP:0010883 EEG with focal slow waves  

  HP:0010845                            EEG with generalised slow 

activity                             

  HP:0012000 EEG with generalised spikes  

  HP:0200134  Epileptic encephalopathy   

  HP:0002131   Episodic ataxia    

  HP:0002373                         Febrile seizures                          

  HP:0007359   Focal seizures    

  HP:0002066   Gait ataxia    

  HP:0001290 Generalised hypotonia  

  HP:0002123 Generalised myoclonic seizures  

  HP:0002069                  Generalised tonic clonic 

seizures                   
 HP:0002171 Gliosis 

  HP:0001301  Hemiplegia   

  HP:0012302 Herpes simplex encephalitis  

  HP:0002079    Hypoplasia of the corpus 
callosum     

  HP:0002521          Hypsarrythmia           

  HP:0012469                                              Infantile spasms                                               

  HP:0002140 Ischaemic stroke  

  HP:0002415 Leukodystrophy  

  HP:0011181 Low voltage EEG  

  HP:0002354 Memory impairment  

  HP:0001324   Muscle weakness    

  HP:0001253 Muscular hypotonia  

  HP:0008936 Muscular hypotonia of the trunk  

  HP:0001336           Myoclonus            

  HP:0003458  Myopathic abnormalities   
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  HP:0002058  Myopathic facies   

  HP:0007021    Pain insensitivity     

  HP:0002268  Paroxysmal dystonia   

  HP:0003477  Peripheral axonal neuropathy   

  HP:0002073                 Progressive Cerebellar ataxia                  

  HP:0007024 Pseudobulbar paralysis  

  HP:0007335 Recurrent encephalopathy  

  HP:0007274 Recurrent meningitis  

  HP:0001315                     Reduced tendon reflexes                      

  HP:0002322 Resting tremor  

  HP:0001250 Seizures  

  HP:0010871 Sensory Ataxia  

  HP:0003390   Sensory axonal neuropathy    

  HP:0000763             Sensory neuropathy              

  HP:0002360  Sleep disturbance   

  HP:0001264    Spastic diplegia     

  HP:0002510 Spastic tetraplegia  

  HP:0002273 Tetraparesis  

  HP:0001727 Thromboembolic stroke  

  HP:0030051       Tip-toe gait        

Eye Defects HP:0008323          Abnormal rod and cone 
electroretinogram           

  HP:0000591  Abnormality of the sclera   

  HP:0000498  Blepharitis   

  HP:0000592  Blue sclera   

  HP:0000518               Cataracts                

  HP:0006934     Congenital nystagmus      

  HP:0000524  Conjunctival telangiectasia   

  HP:0100704     Cortical visual impairment      

 HP:0020045 Esodeviation 

  HP:0000565 Esotropia  

  HP:0000666     Horizontal nystagmus      

  HP:0007817 Horizontal supranuclear gaze 

palsy  

  HP:0000540                     Hypermetropia                      

  HP:0000545                        Myopia                         

  HP:0000639     Nystagmus      

  HP:0000648               Optic atrophy                

  HP:0000543 Optic disc pallor  

  HP:0001138 Optic neuropathy  

  HP:0000508       Ptosis        

  HP:0000556  Retinal dystrophy   
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  HP:0000554                           Uveitis                            

  HP:0000505           Visual impairment            

Ear defect HP:0000377  Abnormaility of the pinna   

  HP:0030025  Auricular pits   

  HP:0000405 Conductive hearing loss  

  HP:0000365     Hearing impairment      

  HP:0400004  Long ear   

  HP:0000369 Low-set ears  

  HP:0000396 Overfolded helix  

  HP:0000358  Posteriorly rotated ears   

  HP:0000411  Protruding ear   

  HP:0000407  Sensori-neural hearing loss   

Respiratory  
HP:0000776         

Congenital diaphragmatic hernia          

  HP:0012735      Cough       

  HP:0006528   Cystic lung disease    

  HP:0002875 Exertional dyspnea  

  HP:0001601        Laryngomalacia         

  HP:0002643        Neonatal respiratory distress         

  HP:0000768  Pectus Carinatum   

  HP:0002204  Pulmonary embolism   

  HP:0002206  Pulmonary fibrosis   

  HP:0002205       Recurrent respiratory infections        

Cardiovascular HP:0000822   Hypertension    

  HP:0001712    Left ventricular hypertrophy     

  HP:0002564    Malformation of the heart and 

great vessels     

  HP:0001658  Myocardial infarction   

Gastro-intestinal HP:0002027                       Abdominal pain                        

  HP:0002867 Abnormality of the ileum  

  HP:0002023   Anal atresia    

  HP:0002608                  Celiac disease                   

  HP:0001081  Cholelithiasis   

  HP:0002611             Cholestatic liver disease              

  HP:0100281     Chronic colitis      

  HP:0002091   Constipation    

  HP:0002014     Diarrhoea      

  HP:0002015                 Dysphagia                  

  HP:0002910           Elevated liver transaminases            

  HP:0100594 Esophageal web  

  HP:0011968                 Feeding difficulties                  

  HP:0002020                Gastro-esophageal reflux                 
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  HP:0011471          Gastrostomy tube feeding in 
infancy           

  HP:0001397               Hepatic steatosis                

  HP:0002240 Hepatomegaly  

  HP:0001433 Hepatosplenomegaly  

  HP:0000023 Inguinal hernia  

  HP:0002566 Intestinal malrotation  

  HP:0005235    Jejunal atresia     

  HP:0004385  Malabsorption   

  HP:0001539 Omphalocele  

  HP:0004385     Protracted diarrhoea      

  HP:0011473 Villous atrophy  

  HP:0002580 Volvulus  

  HP:0002013                      Vomiting                       

Genito-urinary HP:0001919          Acute kidney injury           

  HP:0000028  Cryptorchidism   

  HP:0010945                        Fetal pyelectasis                         

  HP:0000097        Focal segmental 

glomerulosclerosis         

  HP:0000099  Glomerulonephritis   

  HP:0000790                    Hematuria                      

  HP:0000126 Hydronephrosis  

  HP:0000054    Micropenis     

  HP:0005562                Multiple renal cysts                 

  HP:0000113 Polycystic kidney dysplasia  

  HP:0000149 Polycystic ovaries  

  HP:0000103             Polyuria              

  HP:0000093 Proteinuria  

  HP:0000010          Recurrent UTIs           

  HP:0001917                 Renal amyloidosis                  

  HP:0000803               Renal cortical cysts                

  HP:0000869  Secondary amenorrhoea   

  HP:0003774 Stage five chronic kidney 

disease  

  HP:0000029      Testicular atrophy       

Cutaneous HP:0000956                 Acanthosis nigricans                  

  HP:0001061       Acne        

  HP:0001057   Aplasia cutis congenita    

  HP:0008386 Aplasia/ hypoplasia of the nails  

  HP:0007598               Bilateral single transverse 
palmar creases                

  HP:0000957    Café au lait spot     
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  HP:0000965              Cutis marmorata               

  HP:0000964         Eczema          

  HP:0007605  Excessive wrinkling of palmar 
skin   

  HP:0009937 Facial hirsutism  

  HP:0002230   Generalised hirsutism    

  HP:0000953                  Hyperpigmentation of the skin                   

  HP:0001010                    Hypopigmentation of the skin                     

  HP:0001053             Hypopigmented skin patches HP             

  HP:0007432        Intermittent generalised 
erythematous papular rash         

  HP:0002164 Nail dysplasia  

  HP:0012322        Perifolliculitis         

  HP:0000988       Skin rash        

  HP:0001065 Striae distensae  

  HP:0001025       Urticaria        

Connective 
tissues 

HP:0009125  Lipodystrophy   

  HP:0012490  Panniculitis   

Immunological HP:0003453 Antineutrophil antibody positivity  

  HP:0003493    Antinuclear antibody positivity     

  HP:0004431     Complement deficiency      

  HP:0002721   Immunodeficiency    

  HP:0002716 Lymphadenopathy  

  HP:0011107  Recurrent aphthous stomatitis   

  HP:0002783   Recurrent lower respiratory tract 
infections    

  HP:0003262 Smooth muscle antibody 

positivity  

  HP:0011110 Tonsillitis  

Blood HP:0001070  Abnormal immunoglobulin level   

  HP:0001903 Anaemia  

  HP:0004315       IgG deficiency        

  HP:0001875  Neutropenia   

  HP:0011897    Neutrophilia     

  HP:0004841    Reduced factor XII activity     

  HP:0004406 Spontaneous, recurrent 

epistaxis  

Endocrine HP:0040075  Hypopituitarism HP  

  HP:0000821 Hypothyroidism  

  HP:0100651 Type I diabetes mellitus  

Metabolism HP:0011034  Amyloidosis   
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  HP:0010837     Decreased serum ceruloplasmin      

  HP:0011227  Elevated C-reactive protein level   

  HP:0003565   Elevated erythrocyte 
sedimentation rate    

  HP:0001954 Episodic fever  

  HP:0003073           Hypoalbuminaemia            

  HP:0001955 Unexplained fevers  

Musculoskeletal HP:0003312 Abnormal form of the vertebral 

bodies  

  HP:0000924   Abnormality of the skeletal 
system    

  HP:0005616                           Accelerated skeletal maturation                            

  HP:0001226               Acral ulceration and 
osteomyelitis leading to 

autoamputation of digits                

  HP:0000705  Amelogenesis imperfecta   

  HP:0006390 Anterior tibial bowing  

  HP:0010185 Aplasia/hypoplasia of the distal 

terminal phalanges of the toes  

  HP:0003365 Arthalgia of the hip  

  HP:0005059                          Arthralgia/Arthritis                           

  HP:0012453     Bilateral wrist flexion contracture      

  HP:0003865  Bowed humerus   

  HP:0100490               Camptodactyly of the finger                

  HP:0001836   Camptodactyly of the toe    

  HP:0100749        Chest pain         

  HP:0001217    Clubbing     

  HP:0011303 Convex contour of sole  

  HP:0003417 Coronal cleft vertebrae  

  HP:0002812                Coxa vara                 

  HP:0002750                        Delayed skeletal maturation                         

  HP:0003042  Elbow dislocation   

  HP:0002987 Elbow flexion contracture  

  HP:0002980 Femoral bowing  

  HP:0002359               Frequent falls                

  HP:0003273      Hip contracture       

  HP:0030043 Hip Subluxation  

  HP:0005639 Hyperextensible hand joints  

  HP:0003307 Hyperlordosis  

  HP:0002659  Increased susceptibility to 
fractures   

  HP:0003796 Irregular iliac crest  

  HP:0001382                 Joint hypermobility                  



239 
 

  HP:0006380      Knee flexion contracture       

  HP:0002751                 Kyphoscoliosis                  

  HP:0001377    Limited extension of elbow     

  HP:0100807         Long fingers          

  HP:0003394                           Muscle cramps                            

  HP:0003326                               Myalgia                                

  HP:0010557 Overlapping fingers  

  HP:0001845 Overlapping toe  

  HP:0001763             Pes planus              

  HP:0000926 Platyspondyly  

  HP:0002757                 Recurrent fractures                  

  HP:0004349                     Reduced bone mineral density                      

  HP:0001838  Rocker bottom foot   

  HP:0002651                 Scoliosis                  

  HP:0010034  Short first metacarpal   

  HP:0009882    Short distal phalanx of finger     

  HP:0100864 Short femoral neck  

  HP:0003834  Shoulder dislocation   

  HP:0000246 Sinusitis  

  HP:0001762       Talipes equinovarus        

  HP:0001883     Talipes      

  HP:0100550    Tendon rupture     

  HP:0002944 Thoracolumbar scoliosis  

  HP:0002982       Tibial bowing        

  HP:0002953  Vertebral compression fractures   
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11.2 Phenotype Summary table of recruited Patients using HPO terms 

Family Family 

member 

All Growth Craniofacial Cognitive 

Behavioural, 
developmental 

1 1   HP:0000252 
HP:0004322 

HP:0001508      

                            HP:0001263   
HP:0001249     

2 1   HP:0004322 
HP:0004325  

                            HP:0001263 
HP:0001249 

HP:0000750    

2 2   HP:0000252 
HP:0004322  
HP:0001508  

                            HP:0001263 
HP:0001249     

3 1   HP:0001513                                    

4 1   HP:0004322                                     

5 1   HP:0003510 
HP:0004325  

                            HP:0001263 
HP:0010864  

5 2   HP:0003510                               HP:0001263  
HP:0001249     

6 1   HP:0000256    HP:0000164        HP:0002194  

7 1   HP:0000252 
HP:0004322 
HP:0004325  

HP:0005280                   HP:0001263 
HP:0001249 
HP:0000750    

8 1                                         

9 1   HP:0008915                                

9 2   HP:0000256                                      

10 1   HP:0000252 

HP:0004322 
HP:0001508 
HP:0000823 

             

HP:0000678                

HP:0001263 

HP:0001256     

11 1   HP:0000256    HP:0000276                            HP:0001256 

HP:0000750 
HP:0011098  

12 1                                         

12 2                                         

13 1 HP:0003677                                 HP:0001260    
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14 1   HP:0000252  
HP:0008845  
HP:0003510  

HP:0004325  

HP:0000684  
HP:0000703 
HP:0000194  

HP:0000248 
HP:0011327 

HP:0002645 

HP:0012736  
HP:0002187 
HP:0001344    

15 1   HP:0004322 
HP:0001531  
HP:0000823 

  HP:0012736  
HP:0002187 
HP:0001344 

HP:0000750   

15 2   HP:0004322  

HP:0001531  
HP:0000823 

HP:0000760                      

16 1   HP:0004324                                    

17 1   HP:0000252                                HP:0001263 

HP:0001249 
HP:0001260  

17 2   HP:0001513  HP:0000303         HP:0001263 
HP:0001249     

18 1   HP:0000252   
HP:0004325  

HP:0000490 
HP:0000463 

HP:0000343 
HP:0000218 
HP:0010804 

HP:0000347 
HP:0000527 

HP:0005989 
HP:0000268 

HP:0001263      

19 1       HP:0000687 
HP:0002307           

HP:0002381 
HP:0000750 

HP:0007301 

20 1   HP:0000252                                HP:0010864     

21 1       HP:0000286 

HP:0000160 
HP:0040199 

HP:0000248 

HP:0001263 

HP:0010864     

22 1         

23 1                                   HP:0002167    

24 1                                   HP:0001249     

24 2                                   HP:0001249 
HP:0001260    



242 
 

25 1 HP:0011421 HP:0000252   
HP:0001508  

                            HP:0010864 
HP:0007301  

25 2 HP:0003819 HP:0000252   

HP:0001508  

                            HP:0010864 

HP:0007301  

26 1                                         

27 1                                         

28 1   HP:0001531  HP:0000665                                 

28 2                                         

29 1   HP:0000252 
HP:0004322  

HP:0004325  

HP:0000670                HP:0001263 
HP:0001249 

HP:0000750 
HP:0000717 

29 2   HP:0000253 
HP:0004323  
HP:0004326  

HP:0000671 
HP:0011071 
HP:0000664        

HP:0001264 
HP:0001249 
HP:0000751 

HP:0001260    

30 1 HP:0001522     HP:0000175 

HP:0000347         

      

31 1                                         

31 1                                         

32 1   HP:0001824  HP:0000685 

HP:0011107            

      

33 1   HP:0001513  HP:0000574        HP:0001263      

34 1                                         

35 1       HP:0001263 
HP:0000750 

 

Family Family 

member 

Neurological Eye Defect  Ear Defect  Respiratory 

1 1 HP:0001250 
HP:0001290  

HP:0001251                                          

                                         

2 1                                                HP:0000518            HP:0002643        

2 2                                                HP:0000518 
HP:0000591 

              

3 1                                                HP:0000591               

4 1                                                                                         
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5 1 HP:0001264 
HP:0007274 
HP:0001274    

                                HP:0002206 
HP:0006528     

5 2                                                                                         

6 1 HP:0001284  
HP:0003693 

HP:0002460                                  

HP:0000591                 

7 1 HP:0002079    HP:0000543 
HP:0000498           

              

8 1                                                HP:0008323 
HP:0001138  

              

9 1                                                                                         

9 2                                                                                         

10 1 HP:0001301                                                                         

11 1 HP:0001251 

HP:0002131 
HP:0002268 

HP:0003477 
HP:0001272          

HP:0000639     HP:0000407 

HP:0000369 
HP:0000411  

HP:0000768  

12 1 HP:0011203 

HP:0006846 
HP:0012302 
HP:0007305      

                                         

12 2 HP:0011203 

HP:0006846 
HP:0012302 

HP:0007305      

                                         

13 1 HP:0002354 
HP:0002322 
HP:0001251 

HP:0001284 
HP:0001324 

HP:0001284  
HP:0002066 
HP:0003390 

HP:0012185 
HP:0001272           

                                         

14 1 HP:0001290                                         HP:0000540 

HP:0006934 

HP:0000405 

HP:0000396 

         

15 1 HP:0100543 

HP:0001250 
HP:0010845 

HP:0008936 
HP:0002140 
HP:0002510 

HP:0100704           HP:0400004  HP:0002204 

HP:0002205       
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HP:0002510 
HP:0002510                                 

15 2 HP:0003458  

HP:0000763            

                                         

16 1  HP:0002373 
HP:0007021                               

HP:0000545 
HP:0000592  

              

17 1 HP:0002373  

HP:0002069 
HP:0000718 

HP:0003477                     

                

17 2 HP:0002373  
HP:0002070 

HP:0003477                     

                

18 1 HP:0002123 
HP:0200134  
HP:0012469  

HP:0010851 
HP:0200134  

HP:0001290                                         

HP:0000648 HP:0000358 HP:0001601 

19 1 HP:0002354 
HP:0002123 
HP:0010883 

HP:0001336 
HP:0010871 

HP:0002273 
HP:0001301 
HP:0007024 

HP:0002360 
HP:0003458 

HP:0002059            

HP:0000524 
HP:0007817                                        

              

20 1 HP:0002123 
HP:0200134 
HP:0012469 

HP:0002521 
HP:0012000  

HP:0011181 
HP:0008936 
HP:0002509 

HP:0001272           

HP:0100704 
HP:0000648               
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21 1 HP:0200134  
HP:0007335 
HP:0007359 

HP:0011185 
HP:0008936 

HP:0001251 
HP:0002058 
HP:0030051 

HP:0001727    

HP:0000508                     

22 1 HP:0012469       

23 1 HP:0001264 
HP:0001348 
HP:0002360 

HP:0002415      

HP:0000639                   

24 1 HP:0001252 
HP:0002073 

HP:0002136                              

                                         

24 2 HP:0001253 
HP:0002074 

HP:0001264 
HP:0001348 
HP:0002136 

HP:0007305              

                                         

25 1 HP:0011445 
HP:0003429 

HP:0001272           

HP:0000505 
HP:0000565 

HP:0000556                    

     HP:0000768 

25 2 HP:0011445 
HP:0003430 
HP:0001272           

                                         

26 1 HP:0100543 

HP:0001336 
HP:0001251 

HP:0001332 
HP:0002415 
HP:0003429 

HP:0001273           

                                         

27 1                                                                                         

28 1                                                                           HP:0000369          

28 2                                                                                         

29 1 HP:0001290  
HP:0001251 

HP:0001315 
HP:0002136  

HP:0003390                     

HP:0000666     HP:0000365          
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29 2 HP:0001291 
HP:0001252 
HP:0001316 

HP:0002137                              

                                         

30 1                                                                           HP:0000377 HP:0000776 

31 1 HP:0012469                                                                                       

31 1                                                                                         

32 1                                                HP:0000554               

33 1                                                                           HP:0030025          

34 1 HP:0002360                                                            HP:0012735 

HP:0002875 

35 1 HP:0006846 

HP:0001290 
HP:0001251 
HP:0001272 

HP:0002171 

HP:0000639 

HP:0020045  

    

 

Family Family 
member 

Cardiovascular Gastro-
intestinal 

Genito-
urinary 

Cutaneous 

1 1      HP:0002014  
HP:0002240  
HP:0002910  

HP:0002910      

                        HP:0001053 
HP:0001010 

2 1      HP:000023                         HP:0000953 
HP:0009654 

2 2        HP:0001919  
HP:0000010                

                     

3 1 HP:0001658  HP:0001397               HP:0000869 
HP:0000149 

HP:0000956 
HP:0001065  
HP:0001061 

HP:0009937    

4 1                                                                          

5 1      HP:0002910                       

HP:0000028    
HP:0000029       

HP:0001010 

HP:0001061 

5 2                                                        HP:0001010 

6 1                                                     HP:0007605 

7 1      HP:0002014 HP:0000097 

HP:0003774 
HP:0000010               

HP:0000953 
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8 1                                                                          

9 1      HP:0002240                         HP:0000965 

9 2                                                     HP:0002230 

10 1      HP:0002013 
HP:0002014 
HP:0002240 

HP:0100594 
HP:0011473 

HP:0002867         

                                             

11 1                                                     HP:0000965 

12 1                                                                          

12 2                                                                          

13 1      HP:0002910                                              

14 1      HP:0011968 

HP:0011471 
HP:0002020                

                                             

15 1      HP:0004385 

HP:0004385 
HP:0002091 

HP:0011968 
HP:0011473 
HP:0100281     

                        HP:0009937 

15 2      HP:0004385 
HP:0004385 
HP:0011968 

HP:0001433 
HP:0001081 

HP:0011473 

HP:0000103 HP:0007432 

16 1      HP:0002091 
HP:0002580 
HP:0005235                 

HP:0000010 HP:0000964 
HP:0002164 

17 1                                                                          

17 2                                                                          

18 1      HP:0002611             HP:0010945 HP:0007598 

19 1                                                                          

20 1      HP:0011968 
HP:0011471                  

                                             

21 1                                                                          

22 1         

23 1      HP:0002015                                                              

24 1                                                                          
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24 2                                                     HP:0007598 

25 1      HP:0011968                                                              

25 2      HP:0011968                                                              

26 1                                                                          

27 1                                                     HP:0000965 
HP:0001057 

HP:0008386 

28 1 HP:0000822   HP:0002608                  HP:0000803 
HP:0000113 
HP:0000010    

HP:0001053 
HP:0000957                   

28 2                             HP:0000803 

HP:0000114           

                     

29 1                                                                          

29 2                                                                          

30 1      HP:0002023 

HP:0002566 
HP:0001539  

HP:0005562 

HP:0000028 
HP:0000054 
HP:0000126 

HP:0008386 

31 1                                                                          

31 1 HP:0002564                                                                        

32 1 HP:0001712                           HP:0001917 
HP:0000099 

HP:0000093 
HP:0000790                    

HP:0001025 

33 1                                                     HP:0012322 

34 1      HP:0002013                      HP:0000099 
HP:0000093 
HP:0000790                    

HP:0000988 

35 1         
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Family Family 
member 

Connective 
tissues 

Immunological Blood Endocrine 

1 1   HP:0002721 HP:0001903   

2 1 HP:0012490 HP:0003453 
HP:0003262 
HP:0002721 

HP:0011897        

2 2 HP:0012490           HP:0011897   

3 1                      

4 1                      

5 1   HP:0002721 HP:0001903   

5 2   HP:0002721          

6 1                      

7 1             HP:0004315   

8 1   HP:0002721          

9 1 HP:0009125                    

9 2                      

10 1             HP:0001903   

11 1                      

12 1                      

12 2                      

13 1                      

14 1                      

15 1   HP:0002783 HP:0001875  

HP:0001903 

HP:0040075 

HP:0000821 
HP:0100651 

15 2   HP:0011107 HP:0001070 

HP:0001875 
HP:0004841 

HP:0040075 

16 1                      

17 1                      

17 2                      

18 1                      

19 1   HP:0003493          

20 1                      

21 1                      

22 1         

23 1                      

24 1                      

24 2                      

25 1                      

25 2                      
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26 1                      

27 1                      

28 1                      

28 2                      

29 1                      

29 2                      

30 1                      

31 1                      

31 1                      

32 1 HP:0009125 HP:0004431 

HP:0002716 

HP:0004406 

HP:0001903 

  

33 1   HP:0011110 
HP:0002716 

         

34 1              HP:0001903   

35 1         

 

Family Family 
member 

Metabolism Musculoskeletal 

1 1                                                  

2 1 HP:0003073 

HP:0011227 
HP:0003565 

                                  

2 2 HP:0011227 
HP:0003565 

HP:0005059 

3 1                HP:0004349 

HP:0002659 
HP:0002982               

4 1                HP:0004349  
HP:0002659  

HP:0002757 
HP:0002980 
HP:0003865 

HP:0002953                 

5 1                HP:0100490 

5 2                                                  
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6 1                HP:0005059 
HP:0002659 
HP:0002757 

HP:0001382 
HP:0100550 

HP:0003834 
HP:0003312 
HP:0100864 

HP:0100490 
HP:0011303 

HP:0001763 
HP:0001836            

7 1 HP:0003073      HP:0005616                         

8 1                                                  

9 1                                                  

9 2                                                  

10 1 HP:0003073      HP:0002750 
HP:0001217 

11 1                HP:0002359 

HP:0003042 
HP:0001377 

12 1                                                  

12 2                                                  

13 1 HP:0010837 HP:0002359 

HP:0003394 
HP:0002943 
HP:0000246 

14 1                HP:0004349 
HP:0002659 
HP:0002757 

HP:0005639 
HP:0000926 

HP:0003417 
HP:0002944 
HP:0003796  

HP:0006390 
HP:0002812 

HP:0010034 
HP:0006380 
HP:0003273      

15 1 HP:0100651 

HP:0011227 
HP:0003565 

HP:0001954 

HP:0002812 
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15 2 HP:0011227 
HP:0003565 
HP:0001954 

HP:0005059             

16 1                HP:0001226 

17 1                                                  

17 2                HP:0001762 

18 1                HP:0010557  

HP:0001838  
HP:0002987 

HP:0006380 

19 1                                                  

20 1                HP:0030043  
HP:0002944 
HP:0003307 

HP:0012453      

21 1                                                  

22 1     

23 1                                                  

24 1                HP:0001763 

24 2                HP:0001763 

25 1                HP:0002751 

25 2                HP:0002651 

26 1                                                  

27 1                HP:0009882               

28 1                HP:0100807 
HP:0001845 
HP:0001883 

28 2                HP:0001883 

29 1                HP:0000705 

29 2                                                  

30 1                HP:0009882 

HP:0010185 
HP:0001883 

31 1                                                  

31 1                HP:0000924 

32 1 HP:0011227 
HP:0003565 

HP:0011034 
HP:0001955 

HP:0003326 
HP:0005059                
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33 1 HP:0011227 
HP:0003565 
HP:0001955 

HP:0100749  
HP:0003365 

34 1 HP:0003565   HP:0003326         

35 1     

 

11.4 Tables of filtered variants for each individual family  

Table 11.4.1 Family 1 Filtered Variants 

Position Change GT Gene Effect DbSNP Clin 
Var 

12:70747693 T>TA HOM CNOT2 Frame 

-shift 

rs35192504 
 

19:16855411 T>TG HOM NWD1 Frame 
-shift 

  

10:3208567 T>TGCAC 

GCTAGGG 
AAGAGAG 

A 

HOM PITRM1 Frame 

-shift 

rs4266975 
 

5:139931628 A>AGT HOM SRA1 Frame 
-shift 

rs3085220 
 

19:17397485 GTGTGTG 
TGTGTGT 

GTT>G 

HOM ANKLE1 Frame 
-shift 

  

7:133886253 CA>C HOM LRGUK Frame 
-shift 

  

7:142143722 CCT>C HOM TRBV6-7 Frame 

-shift 

 
 

17:30469470 CCCGCC 
GCCG>C 

HOM ENSG0000 
0214708 

Deletion  
 

19:7504973 A>ACAT 

GGG 

HOM ARHGEF18 Insertion  
 

12:7045891 A>ACAG 
CAGCAG 

HOM ATN1 Insertion rs60216939 
 

1:154842199 G>GGCT 

GCTGCT 
GCTGCT 

HOM KCNN3 Insertion rs58327065 
 

15:89386715 T>C HOM ACAN Missense  
 

10:99019316 A>T HOM ARHGAP19 Missense  
 

3:112358380 C>G HOM CCDC80 Missense  
 

8:65527771 A>G HOM CYP7B1 Missense  
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19:11314765 C>T HOM DOCK6 Missense  
 

10:99019316 A>T HOM ENSG0000 

0269891 

Missense  
 

2:239040104 G>A HOM ESPNL Missense rs140616772 
 

10:85993888 C>A HOM LRIT1 Missense  
 

19:50763907 G>A HOM MYH14 Missense  
 

11:4566878 G>A HOM OR52M1 Missense rs138834789 
 

3:110796077 C>T HOM PVRL3 Missense  
 

2:241517259 G>A HOM RNPEPL1 Missense  
 

8:73921242 T>C HOM TERF1 Missense  
 

17:73824966 G>T HOM UNC13D Missense  
 

19:11917594 T>C HOM ZNF491 Missense rs150689659 
 

7:143085695 C>A HOM ZYX Missense rs146818692 
 

19:16268207 TA>T HOM HSH2D Splicing rs5827321 
 

13:47469577 CACATG 

CTCTTTA 
TTACCAG 
TGCGAAT 

ATAGCTG 
GGAAACT 

AATGCCA 
CTCACCA 
T>C 

HOM HTR2A Splicing  

4:55592215 A>G HOM KIT Splicing  
 

11:20668480 C>T HOM SLC6A5 Splicing rs144357826 
 

4:41945831 C>T HOM TMEM33 splicing 
  

 

Table 11.4.2 Family 2 Filtered Variants 

See published paper 11.6: Table S2. Homozygous variants in ORAS patients 

Damgaard et al, 2016) 

Chr Start Ref Alt GT Gene Effect 

3 15876057 T - HOM ANKRD28 Splicing 

1 20313291 T C HOM PLA2G2D Missense 

1 153108866 - CTGCTGCT 

GCTGCTG 

HOM KCNN3 Insertion 

1 218345897 C T HOM IARS2 Missense 

1 220869301 G C HOM MIA3 Missense 

1 223673599 C A HOM LBR Missense 
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1 246789053 - TA HOM OR2T29 Frameshift 

2 168812070 - GGGCCG HOM STK39 Insertion 

2 219786639 C T HOM ABCB6 Splicing 

3 33619497 G C HOM CLASP2 Missense 

3 45242305 A - HOM TMEM158 Frameshift 

3 54888407 TC - HOM CACNA2D3 Splicing 

3 135452128 - G HOM RYK Frameshift 

3 196991227 AGA - HOM MUC4 Deletion 

4 3046460 - GCA HOM HTT Insertion 

4 14613991 - GCCGCC HOM CPEB2 Insertion 

4 14614036 - GCC HOM CPEB2 Insertion 

5 14422479 A T HOM TRIO Splicing 

5 14743368 T C HOM OTULIN Missense 

5 79067816 T C HOM CMYA5 Missense 

5 79068878 G A HOM CMYA5 Missense 

5 98157103 G T HOM RGMB Missense 

6 1557040 - CGG HOM FOXC1 Insertion 

7 44630434 GTA - HOM OGDH Splicing 

8 22022655 G - HOM NUDT18 Frameshift 

8 120289959 G - HOM MAL2 Frameshift 

9 6855 - GTGGTGCTG HOM WASH1 Insertion 

10 15769982 C G HOM ITGA8 Missense 

11 6388805 A T HOM APBB1 Missense 

11 7803299 T A HOM OR5P3 Missense 

11 11305255 G A HOM GALNTL4 Missense 

11 35154767 G C HOM CD44 Missense 

11 35284347 T C HOM SLC1A2 Missense 

12 110521161 CTG - HOM ATXN2 Deletion 

13 20460500 - TGGGCG HOM LATS2 Insertion 

13 45022414 G T HOM FAM194B Missense 

13 71338684 CCGCCG - HOM DACH1 Deletion 

14 76563540 CTGCTG - HOM C14orf4 Deletion 

15 40089634 - CGCC HOM PLA2G4E Frameshift 

17 3605158 - TCAGGTGGC 
CCCGCCCTCA 

HOM ITGAE Splicing 

17 36600147 - AGCTGTGGGT 

CCAGCTGCTG 
CCAGCCT 

HOM KRTAP9-1 Insertion 

17 43470073 - G HOM COPZ2 Frameshift 

17 43470084 - GG HOM COPZ2 Frameshift 

19 411668 C G HOM SHC2 Missense 

19 54847198 CGCTCC - HOM SCAF1 Deletion 
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19 55523964 T C HOM KCNC3 Missense 

19 58477893 G A HOM LOC646508 Missense 

20 1540047 GGT - HOM SIRPB1 Deletion 

20 61794611 G C HOM RTEL1;RTEL1 Missense 

20 61799116 T G HOM TNFRSF6B Splicing 

21 33811230 A C HOM GART Missense 

21 37300741 C T HOM DSCR6 Splicing 

22 21318945 G T HOM GGTLC2 Missense 

 

Table 11.4.3 Family 3 Filtered Variants 

Position Change GT Gene Effect DbSNP Clin 
Var 

10:3208567 T>TGCACGCT 
AGGGAAGAG 

AGAGGAA 

HOM PITRM1 Frameshift rs4266975  

19:56125165 G>GC HOM ZNF865 Frameshift 
 

 

12:7045891 ACAGCAGCAG 
CAGCAG>A 

HOM ATN1 Deletion rs377147612  

13:72440538 T>TGCCGCC HOM DACH1 Insertion 
 

 

1:154842199 G>GGCTGCTG 
CTGCTGCTG 

CT 

HOM KCNN3 Insertion rs58327065  

19:55494559 G>GCTA HOM NLRP2 Insertion 
 

 

3:40503520 A>ACTGCTGC 

TG 

HOM RPL14 Insertion rs147295890  

9:990963 G>T HOM DMRT3 Missense rs199600890  

19:40321404 A>G HOM DYRK1B Missense rs34587974  

4:57179403 C>T HOM KIAA1211 Missense 
 

 

7:42977102 C>T HOM MRPL32 Missense 
 

 

19:45898883 G>A HOM PPP1R13L Missense 
 

 

9:13188785 G>T HOM MPDZ Missense rs111794040  

19:45864824 G>A HOM ERCC2 Missense 
 

 

8:38880766 A>G HOM ADAM9 Missense 
 

 

4:36085023 C>T HOM ARAP2 Missense rs199670262  

20:3660162 G>A HOM ADAM33 Missense 
 

 

12:11420454 T>C HOM PRB3 Splicing rs11054202  

11:46342259 A>AG HOM CREB3L1 Splicing rs67904785  

10:50534969 A>AACACACA 
CACACAC 

HOM C10orf71 Splicing rs66701434  

17:72540796 G>A HOM CD300C Stopgain rs144695162  
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9:108484867 G>A HOM TMEM38B Stopgain 
 

 

22:19865895 A>C HOM TXNRD2 Stopgain rs202059967  

 

Table 11.4.4 Family 4 Filtered Variants 

Chr Position Gene Effect DbSNP Ref Alt GT ClinVar 

16 20770164 ACSM3 Missense rs145080272 G C HOM  

1 114677968 AMPD1 missense 
 

T A HOM  

1 179393979 AXDND1 missense rs139341288 G C HOM  

17 80183913 CARD14 missense 
 

G A HOM  

16 19542695 CCP110 missense rs570527798 A G HOM  

1 27382554 CD164L2 missense rs2474297 C T HOM  

1 27382530 CD164L2 missense rs2504779 C T HOM  

19 44513190 CEACAM20 missense rs1465723 C T HOM  

1 114725326 CSDE1 missense 
 

A T HOM  

7 142865498 EPHB6 missense rs8177146 G T HOM  

8 144355665 FBXL6 missense 
 

C T HOM  

19 39906242 FCGBP missense 
 

T C HOM  

1 159813554 FCRL6 missense rs148328479 G A HOM  

8 143213308 GPIHBP1 missense rs11538389 T G HOM  

7 74797697 GTF2IRD2 missense rs707394 G C HOM  

7 74797024 GTF2IRD2 missense 
 

G T HOM  

16 28989581 LAT missense rs138166678 C T HOM  

1 150308112 MRPS21 missense rs10480 T C HOM  

1 146069630 NBPF10 missense 
 

G C HOM  

1 148126839 NBPF11 missense rs2064455 C G HOM  

1 146974762 NBPF12 missense 
 

C A HOM  

1 149071659 NBPF9 missense  C T HOM  

1 149071644 NBPF9 missense  T C HOM  

1 149063750 NBPF9 missense  C A HOM  

16 81141373 PKD1L2 unknown rs117006360 G A HOM  

17 50168409 SGCA missense rs35130237 C A HOM Uncertain  

20 46350521 SLC35C2 missense rs143795303 T C HOM  

8 144415811 SLC39A4 missense 
 

A G HOM  

7 75501512 SPDYE5 missense rs62477724 G C HOM  

19 54074853 TARM1 missense  T C HOM  

10 49945053 TIMM23B missense  G C HOM  

21 10592359 TPTE missense rs212146 A G HOM  

7 142929454 TRPV5 missense 
 

T C HOM  

1 173873492 ZBTB37 missense rs143211330 C A HOM  
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19 44497294 ZNF180 missense rs2571108 A G HOM  

3 75741362 ZNF717 missense rs149568659 T C HOM  

 

Table 11.4.5 Family 5: Homozyogus rare variants present in both affected siblings 

Position Change GT gene Effect DbSNP Clin 
Var 

5:150513996 C>T HOM ANXA6 Missense 
 

 

8:145541635 T>C HOM DGAT1 Missense rs146196839  

8:144942804 TG>T HOM EPPK1 Frameshift 
 

 

9:128025962 ACAGCACTC 
CATCTGTAGG 

TATGTCTGT>A 

HOM GAPVD1 Splicing rs143312600  

2:136598443 A>G HOM MCM6 Missense rs55660827  

10:3208567 T>TGCACGCTA 
GGGAAGAGAG 
AGGA 

HOM PITRM1 Frameshift rs4266975  

8:144688309 C>T HOM PYCRL Missense rs144848854  

1:169454907 G>A HOM SLC19A2 Missense 
 

 

 

Table 11.4.6 Family 6 Filtered Variants 
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Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

8 66444705 ADHFE1 Frameshift rs567577128 T - HOM  

9 136677540 AGPAT2 Missense rs563539429 C T HOM  

8 67277415 ARFGEF1 Missense 
 

T C HOM  

2 9368479 ASAP2 Missense 
 

C T HOM  

15 83018162 BTBD1 Missense rs781192572 T G HOM  

2 47090289 C2orf61 Missense rs541454105 C T HOM  

1 207126743 C4BPA Missense rs775885891 A G HOM  

1 27382554 CD164L2 Missense rs2474297 C T HOM  

1 27382530 CD164L2 Missense rs2504779 C T HOM  

19 44513190 CEACAM20 Missense rs1465723 C T HOM  

7 94404738 COL1A2 Missense 
 

G A HOM  

8 67193537 CSPP1 Missense rs546683385 T G HOM  

7 142865498 EPHB6 Missense rs8177146 G T HOM  

1 1243474 FAM132A Missense rs202178204 T C HOM  

8 144355665 FBXL6 Missense 
 

C T HOM  

19 39906242 FCGBP Missense 
 

T C HOM  

19 39902274 FCGBP Missense 
 

G C HOM  

19 39902287 FCGBP Missense 
 

A G HOM  

17 74866908 FDXR Missense rs1688149 C T HOM  

17 74866471 FDXR Missense rs690514 T C HOM  

7 74797697 GTF2IRD2 Missense rs707394 G C HOM  

2 171976274 HAT1 Missense rs73976541 T C HOM  

19 54158305 LENG1 Missense 
 

T C HOM  

12 85098493 LRRIQ1 Missense rs747103001 T C HOM  

4 140482408 MGAT4D Missense rs111869533 T C HOM  

1 66984736 MIER1 Missense rs371342631 C T HOM  

1 150308112 MRPS21 Missense rs10480 T C HOM  

1 146135471 NBPF10 Missense rs3926769 T C HOM  

1 146974762 NBPF12 Missense 
 

C A HOM  

16 81141373 PKD1L2 Unknown rs117006360 G A HOM  

9 136472074 SEC16A Missense rs374240602 T C HOM  

8 144415811 SLC39A4 Missense 
 

A G HOM  

8 144414297 SLC39A4 Missense 
 

C G HOM  

5 35793322 SPEF2 Missense 
 

C A HOM  

2 45413238 SRBD1 Missense rs556291003 C G HOM  

9 133360384 SURF2 Missense 
 

G A HOM  

19 54074853 TARM1 Missense 
 

T C HOM  

5 110667280 TMEM232 Missense rs554845418 G C HOM  

21 10592359 TPTE Missense rs212146 A G HOM  

7 142929454 TRPV5 Missense 
 

T C HOM  

17 81647906 TSPAN10 Frameshift  
 

- TAAC HOM  

1 2645487 TTC34 Missense rs768127990 G C HOM  

5 113515301 YTHDC2 Missense rs185928501 A G HOM  
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Table 11.4.7 Family 7 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

15 63716328 HERC1 Missense rs541583356 C T HOM 
 

12 120304012 SIRT4 Missense 
 

A G HOM 
 

7 36439210 ANLN Missense rs199806594 T C HOM 
 

12 121420246 RNF34 Frameshift 
 

AA - HOM 
 

3 75741293 ZNF717 Missense rs141084845 G A HOM 
 

15 75682381 CSPG4 Missense rs143855050 C T HOM 
 

1 149071659 NBPF9 Missense 
 

C T HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

10 79712351 NUTM2B Missense rs451438 T C HOM 
 

7 72728896 TYW1B Stopgain rs3015858 C T HOM 
 

1 149071644 NBPF9 Missense 
 

T C HOM 
 

1 148972321 PDE4DIP Missense rs1628172 C T HOM 
 

13 45516144 COG3 Frameshift 
 

CT - HOM 
 

1 156384556 RHBG Frameshift rs71591938 - C HOM 
 

11 124250452 OR8G1 Stopgain rs4268525 C G HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

19 44513190 CEACAM20 Missense rs1465723 C T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

19 39902287 FCGBP Missense 
 

A G HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

19 54158305 LENG1 Missense 
 

T C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

1 149063750 NBPF9 Missense 
 

C A HOM 
 

7 74779322 NCF1 Missense 
 

A G HOM 
 

11 124225570 OR8G2 Missense rs2512268 C T HOM 
 

11 124225572 OR8G2 Missense rs2466612 A G HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

9 133402955 STKLD1 Missense 
 

G A HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

19 44497294 ZNF180 Missense rs2571108 A G HOM  

19 44479350 ZNF180 Missense rs2253563 G C HOM  
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12 11186063 TAS2R42 Missense  T C HOM 
 

10 49945053 TIMM23B Missense  G C HOM 
 

21 10592359 TPTE Missense rs212146 A G HOM 
 

7 72744551 TYW1B Stopgain  - A HOM 
 

7 72728899 TYW1B Missense  A C HOM 
 

19 44497294 ZNF180 Missense rs2571108 A G HOM 
 

19 44479350 ZNF180 Missense rs2253563 G C HOM 
 

 

Table 11.4.8 Family 8 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

16 20559434 ACSM2B Missense rs74479331 A G HOM 
 

8 144379425 ADCK5 Missense rs533374578 C A HOM 
 

2 201492473 ALS2CR11 Missense rs184129762 A G HOM 
 

2 197078765 ANKRD44 Missense rs61752172 T G HOM 
 

2 200605559 AOX1 Missense rs373426863 G A HOM 
 

12 123744700 ATP6V0A2 Missense rs532258057 A G HOM VUS 

7 99967247 AZGP1 Missense rs143279151 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

15 42728706 CDAN1 Missense rs529452785 A C HOM 
 

19 44513190 CEACAM20 Missense rs1465723 C T HOM 
 

16 21136440 DNAH3 Missense rs760379497 C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

19 39906242 FCGBP Missense 
 

T C HOM 
 

1 15360494 FHAD1 Missense rs137894128 G A HOM 
 

11 72195749 FOLR1 Splicing rs144637717 T C HOM Conflicting 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

11 94104605 HEPHL1 Missense rs148114445 C A HOM 
 

5 52915467 ITGA1 Missense rs576217087 A G HOM 
 

19 54158305 LENG1 Missense 
 

T C HOM 
 

1 11045485 MASP2 Missense rs41307788 C T HOM Conflicting 

2 201680936 MPP4 Missense rs759225136 C G HOM 
 

11 68891350 MRPL21 Missense 
 

A G HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

11 47338586 MYBPC3 Missense rs730880563 C T HOM VUS 

16 28752539 NPIPB9 Missense rs750279492 G A HOM 
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11 124250452 OR8G1 Stopgain rs4268525 C G HOM 
 

11 124225570 OR8G2 Missense rs2512268 C T HOM 
 

16 21687618 OTOA Missense rs142850013 G A HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

2 131263430 POTEE Missense rs775831296 A G HOM 
 

22 30532806 SEC14L6 Missense rs556277502 C G HOM 
 

11 63143377 SLC22A24 Splicing rs1939749 C T HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

19 54160472 TMC4 Missense 
 

C G HOM 
 

21 10592359 TPTE Missense rs212146 A G HOM 
 

7 72728899 TYW1B Missense 
 

A C HOM 
 

 

Table 11.4.9 Family 9 Filtered Variants 

Position Change GT Gene Effect DbSNP ClinVar 

1:12726036 C>G HOM AADACL4 Missense rs142659885  

10:46321904 C>T HOM AGAP4 Missense rs202104169  

2:219081983 T>TTGGG HOM ARPC2 Splicing 
 

 

3:182620350 CTT>C HOM ATP11B Frameshift .  

1:179335264 A>G HOM AXDND1 Splicing 
 

 

1:179335265 T>G HOM AXDND1 Splicing 
 

 

9:72000704 A>T HOM FAM189A2 Splicing 
 

 

7:112724949 G>GA HOM GPR85 Splicing 
 

 

1:152185790 T>C HOM HRNR Missense rs76102381  

1:152186178 C>T HOM HRNR Missense rs4845748  

1:152187562 A>C HOM HRNR Missense rs61814936  

1:152190720 C>T HOM HRNR Missense rs7514457  

1:12069698 C>T HOM MFN2 Missense rs119103267 Yes 

19:17516586 C>CT HOM MVB12A Splicing 
 

 

1:146465262 A>G HOM NBPF12 Splicing 
 

 

1:148004795 C>G HOM NBPF14 Splicing 
 

 

10:81603929 C>T HOM NUTM2E Missense   

11:7716918 C>G HOM OVCH2 Splicing   

11:7717216 A>C HOM OVCH2 Splicing   

2:108479487 A>T HOM RGPD4 Missense   

2:108479487 A>T HOM RGPD4 Missense rs199689341  

2:113145814 C>T HOM RGPD8 Missense rs200737546  
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6:108243119 GAAAA>G HOM SEC63 Splicing 
 

 

1:185137464 T>TAA HOM SWT1 Splicing 
 

 

20:43355998 C>G HOM WISP2 Missense rs142405609  

5:124080872 AG>A HOM ZNF608 Splicing 
 

 

 

Table 11.4.10 Family 10 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT Clin 
Var 

3 128908237 ACAD9 Missense rs549861940 C T HOM 
 

18 46253736 C18orf25 Deletion 
 

CTG - HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

3 97874168 CRYBG3 Missense rs764284373 A G HOM 
 

17 37624364 DDX52 Missense 
 

C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

19 39902287 FCGBP Missense 
 

A G HOM 
 

10 48180858 FRMPD2 Missense rs61840030 C T HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

14 31483548 GPR33 Stopgain rs17097921 G A HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

8 2101041 MYOM2 Missense 
 

G A HOM 
 

1 146974762 NBPF12 Missense 
 

C A HOM 
 

1 149071659 NBPF9 Missense 
 

C T HOM 
 

11 54603136 OR4C46 Missense rs11246609 T C HOM 
 

11 124225570 OR8G2 Missense rs2512268 C T HOM 
 

11 124225572 OR8G2 Missense rs2466612 A G HOM 
 

22 15708029 POTEH Missense rs2845206 T C HOM 
 

1 12920302 PRAMEF7 Missense 
 

C G HOM 
 

1 156384556 RHBG Frameshift rs71591938 - C HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM 
 

9 133402955 STKLD1 Missense 
 

G A HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

12 11186063 TAS2R42 Missense 
 

T C HOM 
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10 49945053 TIMM23B Missense 
 

G C HOM 
 

21 10592359 TPTE Missense rs212146 A G HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

7 72728896 TYW1B Stopgain rs3015858 C T HOM 
 

7 72744551 TYW1B Stopgain 
 

- A HOM 
 

7 72728899 TYW1B Missense 
 

A C HOM 
 

4 9245168 USP17L17 Missense rs758453564 G C HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

 

Table 11.4.11 Family 11 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

16 21403569 NPIPB3 Unknown 
 

T C HOM  

16 81141373 PKD1L2 Unknown rs117006360 G A HOM  

11 66560624 ACTN3 Stopgain rs1815739 C T HOM Confli 
-cting 

1 171208951 FMO2 Stopgain rs6661174 C T HOM  

22 26027319 MYO18B Missense rs149103381 C T HOM  

1 20722874 SH2D5 Missense rs763650474 G A HOM  

1 33725350 CSMD2 Missense rs61735686 C G HOM  

1 20353827 VWA5B1 Missense 
 

T G HOM  

1 27879739 THEMIS2 Missense rs41284294 T C HOM  

1 201210246 IGFN1 Missense rs74891027 G A HOM  

4 9211890 USP17L10 Missense rs753269470 C T HOM  

4 9210859 USP17L10 Missense rs181084641 C T HOM  

4 9211468 USP17L10 Missense rs368919398 A C HOM  

1 12725527 AADACL3 Missense rs7513079 T G HOM  

1 12719616 AADACL3 Missense rs3010877 C T HOM  

1 12760937 C1orf158 Missense rs1132185 C T HOM  

1 27382530 CD164L2 Missense rs2504779 C T HOM  

1 27382554 CD164L2 Missense rs2474297 C T HOM  

9 41996327 CNTNAP3B Missense rs62554986 A T HOM  

9 41894095 CNTNAP3B Missense  T A HOM  

8 144355665 FBXL6 Missense  C T HOM  

19 39902558 FCGBP Missense  A G HOM  

19 39902287 FCGBP Missense  A G HOM  

20 35434589 GDF5 Missense rs224331 C A HOM  

8 143213308 GPIHBP1 Missense rs11538389 T G HOM  

10 46550427 GPRIN2 Missense rs3127679 T C HOM  

10 46549613 GPRIN2 Missense rs3127822 A G HOM  
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7 74797697 GTF2IRD2 Missense rs707394 G C HOM  

7 74797024 GTF2IRD2 Missense 
 

G T HOM  

2 171976274 HAT1 Missense rs73976541 T C HOM  

7 130733862 KLF14 Missense rs111400400 G A HOM  

7 130733894 KLF14 Missense 
 

G T HOM  

1 150308112 MRPS21 Missense rs10480 T C HOM  

1 146066541 NBPF10 Missense  T G HOM  

5 141101254 PCDHB3 Missense  C G HOM  

5 141137592 PCDHB5 Missense rs400562 C T HOM  

7 142773417 PRSS2 Missense rs201787957 G A HOM  

14 21523492 SALL2 Missense rs1263810 G C HOM  

7 102285204 SH2B2 Missense rs803074 C G HOM  

8 144415811 SLC39A4 Missense  A G HOM  

8 144414297 SLC39A4 Missense  C G HOM  

10 49945053 TIMM23B Missense 
 

G C HOM  

19 44477666 ZNF180 Missense rs1897820 G C HOM  

19 44497294 ZNF180 Missense rs2571108 A G HOM  

19 44479350 ZNF180 Missense rs2253563 G C HOM  

1 36091735 ADPRHL2 Frameshift   - T HOM  

16 88533296 ZFPM1 Frameshift   - CC HOM  

1 16759590 MST1L Frameshift  rs200532237 - C HOM  

22 36191798 APOL4 Frameshift   CT - HOM  

11 72139111 FOLR3 Frameshift   TA - HOM  

12 121626866 ORAI1 Splicing  GC 
CCC 

- HOM  

17 7513775 POLR2A Splicing  CA - HOM  

6 148514458 SASH1 Splicing  - A HOM  

 

Table 11.4.12 Family 12 

Chr Start Gene Effect avsnp144 Ref Alt ClinVar 

17 69035739 ABCA9 Missense rs61744902 A G  

16 20543260 ACSM2B Missense rs142632912 T G  

2 215349546 ATIC Missense rs76436141 C T  

10 50068136 FAM21A Missense  C T  

19 39906242 FCGBP Missense  T C  

22 37135335 IL2RB Missense rs116250343 C T  

6 17850345 KIF13A Missense rs140337156 G A  

1 146135471 NBPF10 Missense rs3926769 T C  

9 137216285 NDOR1 Missense rs75647712 A G  
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2 151583715 NEB Missense  G A  

13 52143915 NEK3 Frameshift  T -  

11 124250452 OR8G1 Stopgain rs4268525 C G  

12 54588434 PPP1R1A Missense rs182798718 G A  

12 11267400 PRB3 Frameshift 
 

- G  

18 63712604 SERPINB11 Stopgain rs4940595 G T  

5 151317022 SLC36A2 Missense rs61572410 G T  

9 39358957 SPATA31A1 Missense rs10125162 C T  

9 39360952 SPATA31A1 Missense rs62550833 G A  

20 63543478 SRMS Missense rs116061089 G A  

9 69248154 TJP2 Missense rs28556975 T C  

3 75741293 ZNF717 Missense rs141084845 G A  

3 75741362 ZNF717 Missense rs149568659 T C  

 

Table 11.4.13 Family 13 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT Clin 
Var 

10 47503470 AGAP9 Missense rs200283865 G A HOM  

10 47502991 AGAP9 Missense  C T HOM  

10 47502343 AGAP9 Missense  T C HOM  

10 47502604 AGAP9 Missense  A G HOM  

10 47502650 AGAP9 Missense  G C HOM  

2 73448098 ALMS1 Deletion  CTC - HOM  

10 47474375 ANXA8 Missense  C A HOM  

22 36191798 APOL4 Frameshift  CT - HOM  

22 38087153 BAIAP2L2 Insertion  - GGTG 
TCATG 

HOM  

22 38087150 BAIAP2L2 Insertion  - ATGG 

GTGTC 

HOM  

9 68256920 CBWD3 Splicing  G C HOM  

17 36013244 CCL23 Missense  T C HOM  

1 27382554 CD164L2 Missense rs2474297 C T HOM  

5 176584197 CDHR2 Missense rs115353627 A G HOM  

19 44524136 CEACAM20 Missense rs7260180 T C HOM  

19 41686928 CEACAM7 Missense rs8102488 T A HOM  

9 41996327 CNTNAP3B Missense rs62554986 A T HOM  

11 57815409 CTNND1 Missense  C A HOM  

19 55358535 FAM71E2 Frameshift   - G HOM  

8 144355665 FBXL6 Missense  C T HOM  



267 
 

19 39902274 FCGBP Missense  G C HOM  

19 39902287 FCGBP Missense  A G HOM  

19 39902558 FCGBP Missense  A G HOM  

17 74866908 FDXR Missense rs1688149 C T HOM  

17 74866471 FDXR Missense rs690514 T C HOM  

1 171208951 FMO2 Stopgain rs6661174 C T HOM  

11 72139111 FOLR3 Frameshift 
 

TA - HOM  

8 143213308 GPIHBP1 Missense rs11538389 T G HOM  

9 136338656 GPSM1 Missense  G A HOM  

7 74797024 GTF2IRD2 Missense  G T HOM  

2 171976274 HAT1 Missense rs73976541 T C HOM  

4 6084967 JAKMIP1 Splicing rs56874913 - AA HOM  

7 130733862 KLF14 Missense rs111400400 G A HOM  

7 130733894 KLF14 Missense  G T HOM  

19 7032419 MBD3L5 Missense  G C HOM  

1 150308112 MRPS21 Missense rs10480 T C HOM  

1 155208991 MTX1 Missense rs760077 T A HOM  

8 2101041 MYOM2 Missense 
 

G A HOM  

1 146994509 NBPF12 Missense rs202167770 C G HOM  

10 46027444 NCOA4 Missense rs10761581 A C HOM  

16 21404696 NPIPB3 Unknown  G A HOM  

16 21404704 NPIPB3 Unknown  G C HOM  

16 21404714 NPIPB3 Unknown  T G HOM  

16 21404724 NPIPB3 Unknown  T C HOM  

16 22534808 NPIPB5 Missense  T C HOM  

12 121626866 ORAI1 Splicing  GCCCC - HOM  

5 141101254 PCDHB3 Missense  C G HOM  

5 141180333 PCDHB8 Missense rs2740583 C T HOM  

1 149021033 PDE4DIP Missense  C A HOM  

17 7513775 POLR2A Splicing  CA - HOM  

12 11393837 PRB2 Missense rs745957159 G C HOM  

12 11393206 PRB2 Missense rs781281667 C T HOM  

7 102496501 RASA4B Missense rs757444689 T C HOM  

10 120355038 RPL21 Missense rs12781587 T A HOM  

14 21523492 SALL2 Missense rs1263810 G C HOM  

6 148514458 SASH1 Splicing -9 - A HOM  

9 132326355 SETX Frameshift  -9 A - HOM  

7 102285204 SH2B2 Missense rs803074 C G HOM  

13 77698132 SLAIN1 frameshift 
insertion 

rs201380414 - GG HOM  

2 32171369 SLC30A6 Missense rs534453447 G A HOM  
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8 144415811 SLC39A4 Missense -9 A G HOM  

8 144414297 SLC39A4 Missense -9 C G HOM  

5 1213527 SLC6A19 Missense rs202220597 C T HOM  

5 491913 SLC9A3 Missense rs566685003 C T HOM  

9 42187569 SPATA31A6 Missense rs11537002 C G HOM  

9 42186134 SPATA31A6 Missense rs12552679 T G HOM  

7 102348423 SPDYE6 Missense -9 T C HOM  

9 133360384 SURF2 Missense -9 G A HOM  

21 10592359 TPTE Missense rs212146 A G HOM  

21 10592359 TPTE Missense rs212146 A G HOM  

21 10592359 TPTE Missense rs212146 A G HOM  

21 10592359 TPTE Missense rs212146 A G HOM  

2 32787127 TTC27 Missense rs552911750 G A HOM  

4 9211212 USP17L10 Missense -9 C T HOM  

7 75073650 WBSCR16 Missense rs6955671 C T HOM  

16 88533296 ZFPM1 Frameshift -9 - CC HOM  

16 88533297 ZFPM1 Ins -9 - CCC HOM  

19 44497294 ZNF180 Missense rs2571108 A G HOM  

19 44479350 ZNF180 Missense rs2253563 G C HOM  

19 44477666 ZNF180 Missense rs1897820 G C HOM  

3 75738575 ZNF717 Missense rs1962893 G A HOM  

 

Table 11.4.14 Family 14 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT Clin 

var 

7 21773913 DNAH11 Missense rs566490774 C A HOM  

21 32515159 EVA1C Missense rs199918768 C T HOM  

10 17849701 MRC1 Missense rs606231248 G A HOM Other 

22 40419116 MKL1 Missense rs200792263 A C HOM  

7 143719852 TCAF2 Missense rs62486260 C T HOM  

7 143719852 TCAF2 Missense rs62486260 C T HOM  

7 143719852 TCAF2 Missense rs62486260 C T HOM  

17 21702902 KCNJ18 Missense 
 

G A HOM  

21 33353770 IFNAR1 Missense rs369713150 C T HOM  

4 150850786 LRBA Missense rs761765555 C T HOM  

2 240042532 PRR21 Missense  G A HOM  

2 240042488 PRR21 Missense  G C HOM  

17 21702905 KCNJ18 Missense  G A HOM  

15 101652279 TM2D3 Missense rs181135440 G A HOM  
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15 101652279 TM2D3 Missense rs181135440 G A HOM  

2 240042504 PRR21 Missense  G A HOM  

9 133071387 CEL Missense  A C HOM  

16 22534154 NPIPB5 Missense rs28561499 C T HOM  

9 77357708 VPS13A Missense 
 

C T HOM  

7 5370382 TNRC18 Missense rs200279443 C G HOM  

2 240042475 PRR21 Missense 
 

C T HOM  

18 31134130 DSC1 Missense rs199512546 C T HOM  

6 16327684 ATXN1 Missense rs11969612 A C HOM  

14 105144964 JAG2 Missense rs767092332 G A HOM  

16 22534185 NPIPB5 Missense 
 

C T HOM  

14 96237073 BDKRB2 Splicing rs746820715 G A HOM  

1 146126409 NBPF10 Splicing rs61816394 G C HOM  

12 

121626866 ORAI1 Splicing  GC 

CCC 

- HOM  

17 7513775 POLR2A Splicing  CA - HOM  

1 

153261531 LOR Insertion  - GGC 

GGC 
GGC 

TCT 

HOM  

22 

29489604 NEFH Insertion  - TGA 
GAA 

GGC 
CAA 
GTC 

CCC 

HOM  

16 22534730 NPIPB5 Insertion  - TAT HOM  

1 145872994 ANKRD35 Missense rs41315701 T C HOM  

1 27382554 CD164L2 Missense rs2474297 C T HOM  

1 27382530 CD164L2 Missense rs2504779 C T HOM  

9 41996327 CNTNAP3B Missense rs62554986 A T HOM  

10 94842866 CYP2C19 Missense rs3758581 A G HOM  

8 144355665 FBXL6 Missense 
 

C T HOM  

17 74866908 FDXR Missense rs1688149 C T HOM  

8 143213308 GPIHBP1 Missense rs11538389 T G HOM  

10 46550013 GPRIN2 Missense rs3127683 T C HOM  

10 46549613 GPRIN2 Missense rs3127822 A G HOM  

10 46550427 GPRIN2 Missense rs3127679 T C HOM  

7 74797697 GTF2IRD2 Missense rs707394 G C HOM  

7 74797024 GTF2IRD2 Missense 
 

G T HOM  

2 171976274 HAT1 Missense rs73976541 T C HOM  

17 21702953 KCNJ18 Missense 
 

C A HOM  
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1 150308112 MRPS21 Missense rs10480 T C HOM  

1 146135471 NBPF10 Missense rs3926769 T C HOM  

1 149071644 NBPF9 Missense 
 

T C HOM  

10 46027444 NCOA4 Missense rs10761581 A C HOM  

5 141101254 PCDHB3 Missense  C G HOM  

5 141180333 PCDHB8 Missense rs2740583 C T HOM  

10 120355038 RPL21 Missense rs12781587 T A HOM  

8 144414297 SLC39A4 Missense  C G HOM  

8 144415811 SLC39A4 Missense  A G HOM  

7 75073650 WBSCR16 Missense rs6955671 C T HOM  

19 44386639 ZNF285 Missense rs12610859 C T HOM  

4 131416 ZNF718 Missense 
 

G C HOM  

1 171208951 FMO2 Stopgain rs6661174 C T HOM  

7 149818100 SSPO Stopgain  - A HOM  

16 21405078 NPIPB3 Unknown  G A HOM  

16 81141373 PKD1L2 Unknown rs117006360 G A HOM  

 

Table 11.4.15 Family 15: Homozygous rare variants present in both affected siblings 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

18 13731854 RNMT Missense rs769888601 C G HOM  

19 54735274 KIR3DL3 Missense 
 

T C HOM  

19 23145949 ZNF730 Frameshift rs529180941 - T HOM  

11 54603136 OR4C46 Missense rs11246609 T C HOM  

12 11186063 TAS2R42 Missense  T C HOM  

19 15682425 CYP4F12 Missense rs2285888 C T HOM  

19 54158305 LENG1 Missense  T C HOM  

19 54074853 TARM1 Missense  T C HOM  

22 42141208 CYP2D6 Unknown  C T HOM  

22 42141217 CYP2D6 Unknown  C T HOM  

22 42141261 CYP2D6 Unknown  C T HOM  

22 42141587 CYP2D6 Unknown  G A HOM  

22 42141231 CYP2D6 Unknown  T C HOM  

22 42127941 CYP2D6 Missense rs16947 G A HOM Drug 

Response 

7 74798013 GTF2IRD2 Missense  G A HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM  

7 142865498 EPHB6 Missense rs8177146 G T HOM  
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Table 11.4.16 Family 16 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

16 21405078 NPIPB3 Unknown 
 

G A HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

20 35176805 PROCR Stopgain rs541848028 C T HOM 
 

1 171208951 FMO2 Stopgain rs6661174 C T HOM 
 

8 66457095 ADHFE1 Missense rs376912450 C T HOM 
 

8 68446397 C8orf34 Missense rs533895950 A G HOM 
 

19 40617195 LTBP4 Missense rs541226628 G A HOM 
 

19 45698873 QPCTL Missense rs145016874 C T HOM 
 

19 36819278 ZNF790 Missense 
 

G A HOM 
 

19 38305437 YIF1B Missense 
 

T C HOM 
 

10 68827772 STOX1 Missense 
 

A C HOM 
 

8 28716532 EXTL3 Missense rs573052861 G A HOM 
 

20 31908595 TTLL9 Missense rs184016363 G A HOM 
 

19 7032419 MBD3L5 Missense 
 

G C HOM 
 

8 65622312 ARMC1 Missense rs771008579 T A HOM 
 

9 137199456 TPRN Missense rs149753507 G A HOM 
 

16 22534292 NPIPB5 Missense 
 

C G HOM 
 

1 201210394 IGFN1 Missense rs202092854 C A HOM 
 

1 201210502 IGFN1 Missense 
 

C A HOM 
 

1 201210546 IGFN1 Missense 
 

A G HOM 
 

1 201210525 IGFN1 Missense rs202174330 A G HOM 
 

1 201210477 IGFN1 Missense 
 

A G HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

19 44497294 ZNF180 Missense rs2571108 A G HOM 
 

19 44477666 ZNF180 Missense rs1897820 G C HOM 
 

19 44479350 ZNF180 Missense rs2253563 G C HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

9 41996327 CNTNAP3B Missense rs62554986 A T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

10 46549613 GPRIN2 Missense rs3127822 A G HOM 
 

10 46550427 GPRIN2 Missense rs3127679 T C HOM 
 

10 46550040 GPRIN2 Missense rs11204659 C A HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

7 74798013 GTF2IRD2 Missense 
 

G A HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
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1 150308112 MRPS21 Missense rs10480 T C HOM 
 

1 146069569 NBPF10 Missense 
 

C T HOM 
 

1 149063750 NBPF9 Missense 
 

C A HOM 
 

5 141184136 PCDHB16 Missense 
 

C A HOM 
 

5 141184133 PCDHB16 Missense rs17844651 A G HOM 
 

5 141184153 PCDHB16 Missense rs2697532 G A HOM 
 

5 141184188 PCDHB16 Missense 
 

A C HOM 
 

5 141101254 PCDHB3 Missense 
 

C G HOM 
 

5 141180333 PCDHB8 Missense rs2740583 C T HOM 
 

5 141188034 PCDHB9 Missense rs11167743 T C HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

7 102348423 SPDYE6 Missense 
 

T C HOM 
 

9 133360384 SURF2 Missense 
 

G A HOM 
 

10 49945053 TIMM23B Missense 
 

G C HOM 
 

7 75073650 WBSCR16 Missense rs6955671 C T HOM 
 

9 66919319 ZNF658 Missense 
 

T C HOM 
 

9 66919305 ZNF658 Missense 
 

G A HOM 
 

9 66919316 ZNF658 Missense 
 

A G HOM 
 

9 66919310 ZNF658 Missense 
 

T A HOM 
 

9 66919296 ZNF658 Missense 
 

A G HOM 
 

19 4511713 PLIN4 Frameshift rs747124466 T - HOM 
 

12 121626866 ORAI1 Splicing 
 

GCCCC - HOM 
 

17 7513775 POLR2A Splicing 
 

CA - HOM 
 

6 148514458 SASH1 Splicing 
 

- A HOM 
 

 

Table 11.4.17 Family 17 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt ClinVar 

17 36013244 CCL23 Missense 
 

T C 
 

1 27382554 CD164L2 Missense rs2474297 C T 
 

7 142865498 EPHB6 Missense rs8177146 G T 
 

8 144355665 FBXL6 Missense  C T 
 

19 39906242 FCGBP Missense  T C 
 

17 74866471 FDXR Missense rs690514 T C 
 

17 74866908 FDXR Missense rs1688149 C T 
 

8 143213308 GPIHBP1 Missense rs11538389 T G 
 

2 171976274 HAT1 Missense rs73976541 T C 
 

10 17849701 MRC1 Missense rs606231248 G A 
 

1 150308112 MRPS21 Missense rs10480 T C 
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8 2101041 MYOM2 Missense  G A 
 

1 12920302 PRAMEF7 Missense  C G 
 

18 63712604 SERPINB11 Stopgain rs4940595 G T 
 

8 144414297 SLC39A4 Missense  C G 
 

9 133402955 STKLD1 Missense  G A 
 

19 54074853 TARM1 Missense  T C 
 

10 49945053 TIMM23B Missense  G C 
 

 

Table 11.4.18 Family 18 Filtered Variants 

Chr Start Gene Effect avsnp144 Ref Alt GT ClinVar 

13 77698132 SLAIN1 Frameshift rs201380414 - GG HOM 
 

1 248638310 OR2T35 Missense rs143981271 C T HOM 
 

1 248638309 OR2T35 Missense rs150878651 G A HOM 
 

19 39906242 FCGBP Missense 
 

T C HOM 
 

10 48180858 FRMPD2 Missense rs61840030 C T HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

1 146069630 NBPF10 Missense 
 

G C HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

17 74866908 FDXR Missense rs1688149 C T HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

1 146974762 NBPF12 Missense 
 

C A HOM 
 

11 124225570 OR8G2 Missense rs2512268 C T HOM 
 

11 124225572 OR8G2 Missense rs2466612 A G HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

12 11186063 TAS2R42 Missense 
 

T C HOM 
 

19 54173068 TMC4 Missense 
 

T C HOM 
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Table 11.4.19 Family 19 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

19 40667979 NUMBL Deletion rs758624756 TGC 
TGC 

TGC 
TGC 
TGT 

- HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

11 124225179 OR8G2 Missense rs2466614 G A HOM 
 

11 124225570 OR8G2 Missense rs2512268 C T HOM 
 

11 124225572 OR8G2 Missense rs2466612 A G HOM 
 

5 141101254 PCDHB3 Missense 
 

C G HOM 
 

1 205918866 SLC26A9 Missense rs3811428 C T HOM 
 

19 54173068 TMC4 Missense 
 

T C HOM 
 

7 142912583 TRPV5 Missense 
 

T C HOM 
 

19 44386639 ZNF285 Missense rs12610859 C T HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

3 75738859 ZNF717 Missense rs151311432 A C HOM 
 

11 124250452 OR8G1 Stopgain rs4268525 C G HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

 

Table 11.4.20 Family 20 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

8 141494938 MROH5 Splicing rs6578193 C T HOM 
 

19 57492212 ZNF419 Splicing rs2074071 G A HOM 
 

7 100773854 ZAN Frameshift 
 

G - HOM 
 

10 117210250 KCNK18 Frameshift rs765485428 T - HOM 
 

12 76031158 PHLDA1 Deletion rs755808437 TGC 
TGC 

- CHET 
 

12 76031161 PHLDA1 Deletion 
 

TGC - CHET 
 

5 1221252 SLC6A19 Deletion rs760474536 TCT - HOM 
 

14 77027442 IRF2BPL Insertion rs778015822 - TGT HOM 
 

10 99831784 ABCC2 Missense rs144521346 G C HOM 
 

10 93404215 MYOF Missense rs778168720 A G HOM 
 

3 49125008 LAMB2 Missense rs764009381 G A HOM 
 

2 37260260 PRKD3 Missense rs200951892 C T HOM 
 

4 185415857 UFSP2 Missense rs142500730 A T HOM 
 

3 49115274 USP19 Missense rs150605229 G A HOM 
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18 57706561 ATP8B1 Missense rs34719006 C T HOM Path 
VUS 

3 49664477 BSN Missense rs149315260 C T HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

21 42770791 PDE9A Missense rs75225742 T G HOM 
 

19 58128917 ZNF329 Missense rs34681367 T C HOM 
 

19 56191870 ZSCAN5B Missense rs757976812 C T HOM 
 

5 140552044 SRA1 Missense rs202193903 C G HOM 
 

15 88856792 ACAN Missense rs12899191 A G HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

1 12725527 AADACL3 Missense rs7513079 T G HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

10 50129923 FAM21A Missense 
 

C A HOM 
 

19 39906242 FCGBP Missense 
 

T C HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

17 74866908 FDXR Missense rs1688149 C T HOM 
 

9 65737984 FOXD4L4 Missense rs10796795 G C HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

10 46549613 GPRIN2 Missense rs3127822 A G HOM 
 

8 2101041 MYOM2 Missense 
 

G A HOM 
 

1 149082016 NBPF9 Missense 
 

A T HOM 
 

5 141101254 PCDHB3 Missense 
 

C G HOM 
 

9 133360384 SURF2 Missense 
 

G A HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

7 142912583 TRPV5 Missense 
 

T C HOM 
 

7 100773851 ZAN Missense rs78193191 A G HOM 
 

19 44477666 ZNF180 Missense rs1897820 G C HOM 
 

19 44479350 ZNF180 Missense rs2253563 G C HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

3 75738859 ZNF717 Missense rs151311432 A C HOM 
 

6 132538470 TAAR9 Stopgain rs2842899 A T HOM 
 

10 116624043 PNLIPRP2 Unknown -9 G A HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

 

  



276 
 

Table 11.4.21 Family 21 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

3 64550972 ADAMTS9 Missense rs80311637 C T HOM 
 

10 47503470 AGAP9 Missense rs200283865 G A HOM 
 

10 47502781 AGAP9 Missense -9 T C HOM 
 

10 47502343 AGAP9 Missense -9 T C HOM 
 

10 47502604 AGAP9 Missense -9 A G HOM 
 

10 47502991 AGAP9 Missense -9 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

19 44513190 CEACAM20 Missense rs1465723 C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense -9 C T HOM 
 

19 39906242 FCGBP Missense -9 T C HOM 
 

19 39902287 FCGBP Missense -9 A G HOM 
 

17 74866908 FDXR Missense rs1688149 C T HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

7 74797024 GTF2IRD2 Missense -9 G T HOM 
 

7 74798013 GTF2IRD2 Missense -9 G A HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

16 21647413 IGSF6 Missense rs189739425 T C HOM 
 

19 54847989 KIR2DS2 Missense -9 G C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

1 146140007 NBPF10 Missense -9 C T HOM 
 

1 146135471 NBPF10 Missense rs3926769 T C HOM 
 

1 146974762 NBPF12 Missense -9 C A HOM 
 

16 14872311 NOMO1 Missense -9 A C HOM 
 

1 248638309 OR2T35 Missense rs150878651 G A HOM 
 

1 248638310 OR2T35 Missense rs143981271 C T HOM 
 

11 54603136 OR4C46 Missense rs11246609 T C HOM 
 

2 200920259 ORC2 Missense rs541263745 G A HOM 
 

12 81375821 PPFIA2 Missense -9 G C HOM 
 

12 27672474 PPFIBP1 Missense rs76499984 A G HOM 
 

8 144414297 SLC39A4 Missense -9 C G HOM 
 

8 144415811 SLC39A4 Missense -9 A G HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM 
 

19 54074853 TARM1 Missense -9 T C HOM 
 

12 11186063 TAS2R42 Missense -9 T C HOM 
 

10 49945053 TIMM23B Missense -9 G C HOM 
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19 54173068 TMC4 Missense -9 T C HOM 
 

19 54160472 TMC4 Missense -9 C G HOM 
 

5 14270866 TRIO Missense rs146453151 C T HOM   

12 121960614 WDR66 Missense rs149064276 G A HOM 
 

19 57492212 ZNF419 Splicing rs2074071 G A HOM 
 

 

Table 11.4.22 Family 22 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

2 55180508 CLHC1 Splicing rs114931154 A T HOM 
 

18 46253736 C18orf25 Deletion 
 

CTG - HOM 
 

8 24489230 ADAM7 Missense rs200420185 C T HOM 
 

17 36013244 CCL23 Missense 
 

T C HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

14 102964517 CDC42BPB Missense rs200090522 T C HOM 
 

19 44513190 CEACAM20 Missense rs1465723 C T HOM 
 

10 68432283 DNA2 Missense rs201999986 C T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

19 39906242 FCGBP Missense 
 

T C HOM 
 

10 48180858 FRMPD2 Missense rs61840030 C T HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

7 74798013 GTF2IRD2 Missense 
 

G A HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

3 160268535 IFT80 Missense rs137853116 C G HOM Path 

1 14960756 KAZN Missense rs763136249 C T HOM 
 

10 17849701 MRC1 Missense rs606231248 G A HOM Other 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

1 19256051 MRTO4 Missense rs138723852 G A HOM 
 

1 146974762 NBPF12 Missense 
 

C A HOM 
 

1 149063750 NBPF9 Missense 
 

C A HOM 
 

19 3453859 NFIC Missense rs201510249 C T HOM 
 

4 2941692 NOP14 Missense rs61740573 G A HOM 
 

2 43697264 PLEKHH2 Missense rs200313721 G A HOM 
 

8 103998243 RIMS2 Missense rs182266368 G A HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

9 39360952 SPATA31A1 Missense rs62550833 G A HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM 
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19 54074853 TARM1 Missense 
 

T C HOM 
 

12 11186063 TAS2R42 Missense 
 

T C HOM 
 

19 54173068 TMC4 Missense 
 

T C HOM 
 

19 54160472 TMC4 Missense 
 

C G HOM 
 

1 25343040 TMEM50A Missense rs3093647 C T HOM 
 

19 44497294 ZNF180 Missense rs2571108 A G HOM 
 

19 44479350 ZNF180 Missense rs2253563 G C HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

 

Table 11.4.23 Family 23 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

11 66560624 ACTN3 Stopgain rs1815739 C T HOM Conflict 

2 62864775 EHBP1 Missense rs140051312 T C HOM  

11 62607764 EML3 Missense rs751526266 C T HOM  

13 37008146 EXOSC8 Missense 
 

C A HOM  

13 32247435 FRY Missense rs533637252 G A HOM  

4 48550633 FRYL Missense rs764716269 C T HOM  

3 112125243 GCSAM Frameshift  rs747627067 A - HOM  

4 44691670 GUF1 Missense 
 

G A HOM  

10 30626121 LYZL2 Stopgain rs568515405 G T HOM  

1 146135471 NBPF10 Missense rs3926769 T C HOM  

12 6514287 NCAPD2 Missense rs201733141 C T HOM  

16 4463755 NMRAL1 Missense rs375960349 C T HOM  

10 79711875 NUTM2B Missense rs61863495 T C HOM  

10 79712351 NUTM2B Missense rs451438 T C HOM  

11 124250452 OR8G1 Stopgain rs4268525 C G HOM  

1 52384560 ORC1 Missense rs547441862 T C HOM  

11 45913855 PEX16 Missense   T G HOM  

19 15472096 PGLYRP2 Missense 
 

G C HOM  

12 11267400 PRB3 Frameshift 
 

- G HOM  

1 156384556 RHBG Frameshift rs71591938 - C HOM  

19 16862452 SIN3B Missense rs564988933 C T HOM  

8 133040076 SLA Missense rs200019421 G A HOM  

7 142929454 TRPV5 Missense 
 

T C HOM  

2 61204353 USP34 Missense rs188105570 C T HOM  
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Table 11.4.24 Family 24: Homozygous rare variants present in both affected siblings 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

16 81141373 PKD1L2 Missense rs117006360 G A HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

9 39360952 SPATA31A1 Missense rs62550833 G A HOM 
 

10 49945053 TIMM23B Missense 
 

G C HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

 

Table 11.4.25 Family 25: Homozyogus rare variants present in both affected siblings 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

19 39906242 FCGBP Missense 
 

T C HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

7 74798013 GTF2IRD2 Missense 
 

G A HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

10 49945053 TIMM23B Missense 
 

G C HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

19 44479350 ZNF180 Missense rs2253563 G C HOM 
 

19 44497294 ZNF180 Missense rs2571108 A G HOM 
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Table 11.4.26 Family 26 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

18 46253736 C18orf25 Deletion 
 

CTG - HOM 
 

1 12719616 AADACL3 Missense rs3010877 C T HOM 
 

10 47502343 AGAP9 Missense 
 

T C HOM 
 

14 34773641 BAZ1A Missense 
 

A C HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

12 96740035 CFAP54 Missense rs115819507 G A HOM 
 

12 96743779 CFAP54 Missense rs111287403 C T HOM 
 

1 16049817 CLCNKB Missense rs148870670 G T HOM 
 

6 43047017 CUL7 Missense rs564703357 C T HOM 
 

15 22882981 CYFIP1 Missense rs139635799 C T HOM 
 

15 22903836 CYFIP1 Missense 
 

C T HOM 
 

17 37624364 DDX52 Missense 
 

C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

5 95428662 FAM81B Missense rs1541797 G A HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

19 39899634 FCGBP Missense 
 

C T HOM 
 

19 39906242 FCGBP Missense 
 

T C HOM 
 

19 39899636 FCGBP Missense 
 

A C HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

13 38850041 FREM2 Missense 
 

C A HOM 
 

5 177435064 GRK6 Missense rs143935970 G A HOM 
 

7 74798013 GTF2IRD2 Missense 
 

G A HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

8 2101041 MYOM2 Missense 
 

G A HOM 
 

1 146135471 NBPF10 Missense rs3926769 T C HOM 
 

1 146974762 NBPF12 Missense 
 

C A HOM 
 

2 24758086 NCOA1 Missense rs150066931 A G HOM 
 

9 137214866 NDOR1 Missense rs144580113 A T HOM 
 

12 112967487 OAS3 Missense rs539747098 C T HOM 
 

1 248638310 OR2T35 Missense rs143981271 C T HOM 
 

1 248638309 OR2T35 Missense rs150878651 G A HOM 
 

3 16286445 OXNAD1 Missense 
 

A G HOM 
 

6 43520353 POLR1C Missense rs776965617 A C HOM   

10 97381435 RRP12 Missense rs139484717 C T HOM 
 

10 97400324 RRP12 Missense rs201596788 T G HOM 
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6 35955504 SLC26A8 Missense rs566366898 C T HOM 
 

15 45486716 SLC30A4 Missense rs201823030 T C HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

9 133402955 STKLD1 Missense 
 

G A HOM 
 

1 24383997 STPG1 Missense rs200647962 T C HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

10 49945053 TIMM23B Missense 
 

G C HOM 
 

1 27334251 TMEM222 Missense rs150291870 T G HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

9 132400231 TTF1 Missense rs148256256 A C HOM 
 

1 12368532 VPS13D Missense 
 

A G HOM 
 

3 75741362 ZNF717 Missense rs149568659 T C HOM 
 

18 63712604 SERPINB11 Stopgain rs4940595 G T HOM 
 

6 44282544 TCTE1 Stopgain rs138414421 G A HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

 

Table 11.4.27 Family 27 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

8 141494938 MROH5 Splicing rs6578193 C T HOM 
 

17 7513775 POLR2A Splicing 
 

CA - HOM 
 

6 148514458 SASH1 Splicing 
 

- A HOM 
 

11 72139111 FOLR3 Frameshift 
 

TA - HOM 
 

16 88533296 ZFPM1 Frameshift 
 

- CC HOM 
 

1 16759590 MST1L Frameshift  rs200532237 - C HOM 
 

9 136508276 NOTCH1 Missense   C T HOM   

19 7032419 MBD3L5 Missense 
 

G C HOM 
 

8 144138810 HGH1 Missense 
 

G C HOM 
 

10 45825953 AGAP4 Missense 
 

C T HOM 
 

3 75737230 ZNF717 Missense rs141124538 T C HOM 
 

4 9226202 USP17L13 Missense 
 

G A HOM 
 

1 149584102 PPIAL4C Missense 
 

C T HOM 
 

8 144379425 ADCK5 Missense rs533374578 C A HOM 
 

1 145872994 ANKRD35 Missense rs41315701 T C HOM 
 

1 145873487 ANKRD35 Missense rs6670984 G A HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

9 41996327 CNTNAP3B Missense rs62554986 A T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

17 74866908 FDXR Missense rs1688149 C T HOM 
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17 74866471 FDXR Missense rs690514 T C HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

10 46550427 GPRIN2 Missense rs3127679 T C HOM 
 

10 46549613 GPRIN2 Missense rs3127822 A G HOM 
 

7 74798013 GTF2IRD2 Missense 
 

G A HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

1 146135471 NBPF10 Missense rs3926769 T C HOM 
 

1 146974762 NBPF12 Missense 
 

C A HOM 
 

1 149071644 NBPF9 Missense 
 

T C HOM 
 

5 141101254 PCDHB3 Missense 
 

C G HOM 
 

5 141180333 PCDHB8 Missense rs2740583 C T HOM 
 

10 120355038 RPL21 Missense rs12781587 T A HOM 
 

8 144415811 SLC39A4 Missense 
 

A G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

10 49945053 TIMM23B Missense 
 

G C HOM 
 

4 131416 ZNF718 Missense 
 

G C HOM 
 

19 21808727 ZNF43 Stopgain 
 

C T HOM 
 

1 171208951 FMO2 Stopgain rs6661174 C T HOM 
 

 

Table 11.4.28 Family 28 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT Clin 

Var 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM  

16 21404635 NPIPB3 Unknown 
 

T A HOM  

16 21404639 NPIPB3 Unknown 
 

G A HOM  

16 21404219 NPIPB3 Unknown 
 

C A HOM  

16 21404629 NPIPB3 Unknown 
 

G T HOM  

16 21404630 NPIPB3 Unknown 
 

T G HOM  

16 21405126 NPIPB3 Unknown 
 

C T HOM  

5 177307847 MXD3 Stopgain rs750671130 C A HOM  

9 65738362 FOXD4L4 Stopgain 
 

G A HOM  

8 104491058 LRP12 Missense rs374702794 C T HOM  

12 21642075 LDHB Missense rs532712842 G A HOM  

9 68357302 PGM5 Missense 
 

G T HOM  

12 50731453 DIP2B Missense 
 

G C HOM  

1 200603909 KIF14 Missense rs373895990 C T HOM  
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16 3767765 CREBBP Missense rs555109138 C A HOM  

16 2090912 PKD1 Missense -9 G A HOM  

1 200663972 DDX59 Missense rs558924701 C T HOM  

10 113577182 HABP2 Missense rs78201625 C T HOM  

10 128116523 MKI67 Missense rs41306644 C T HOM  

5 179113943 ADAMTS2 Missense rs756227371 T C HOM  

1 205918866 SLC26A9 Missense rs3811428 C T HOM  

19 21808757 ZNF43 Missense 
 

T G HOM  

4 139719526 MAML3 Missense rs762492535 T G HOM  

1 207584841 CR1 Missense rs574578676 G A HOM  

15 74821119 LMAN1L Missense rs138585415 C T HOM  

12 42097591 GXYLT1 Missense rs770582666 G C HOM  

4 9243880 USP17L17 Missense rs758355781 T G HOM  

2 240042136 PRR21 Missense 
 

G A HOM  

10 79706060 NUTM2B Missense rs199845914 C T HOM  

3 75741293 ZNF717 Missense rs141084845 G A HOM  

10 120355038 RPL21 Missense rs12781587 T A HOM  

4 131416 ZNF718 Missense 
 

G C HOM  

19 44386639 ZNF285 Missense rs12610859 C T HOM  

19 44497294 ZNF180 Missense rs2571108 A G HOM  

7 100773851 ZAN Missense rs78193191 A G HOM  

10 49945053 TIMM23B Missense 
 

G C HOM  

10 46584599 SYT15 Missense rs3127785 G C HOM  

8 144414297 SLC39A4 Missense 
 

C G HOM  

8 144415811 SLC39A4 Missense 
 

A G HOM  

1 120890035 PPIAL4B Missense 
 

G A HOM  

5 141188034 PCDHB9 Missense rs11167743 T C HOM  

5 141180333 PCDHB8 Missense rs2740583 C T HOM  

5 141101254 PCDHB3 Missense 
 

C G HOM  

5 141184133 PCDHB16 Missense rs17844651 A G HOM  

5 141184136 PCDHB16 Missense 
 

C A HOM  

5 141184153 PCDHB16 Missense rs2697532 G A HOM  

10 46027444 NCOA4 Missense rs10761581 A C HOM  

1 149063750 NBPF9 Missense 
 

C A HOM  

1 149071644 NBPF9 Missense 
 

T C HOM  

1 146074378 NBPF10 Missense 
 

T G HOM  

1 150308112 MRPS21 Missense rs10480 T C HOM  

7 130733862 KLF14 Missense rs111400400 G A HOM  

7 130733894 KLF14 Missense 
 

G T HOM  

8 142664633 JRK Missense rs2976399 T C HOM  

2 171976274 HAT1 Missense rs73976541 T C HOM  
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7 74797697 GTF2IRD2 Missense rs707394 G C HOM  

7 74797024 GTF2IRD2 Missense 
 

G T HOM  

7 74798013 GTF2IRD2 Missense 
 

G A HOM  

10 46549613 GPRIN2 Missense rs3127822 A G HOM  

8 143213308 GPIHBP1 Missense rs11538389 T G HOM  

20 35434589 GDF5 Missense rs224331 C A HOM  

17 74866471 FDXR Missense rs690514 T C HOM  

17 74866908 FDXR Missense rs1688149 C T HOM  

8 144355665 FBXL6 Missense 
 

C T HOM  

17 79731150 ENPP7 Missense rs8074547 C T HOM  

9 41996327 CNTNAP3B Missense rs62554986 A T HOM  

1 27382554 CD164L2 Missense rs2474297 C T HOM  

17 36013244 CCL23 Missense 
 

T C HOM  

1 206116320 AVPR1B Missense rs33990840 C G HOM  

1 145872994 ANKRD35 Missense rs41315701 T C HOM  

22 23622099 DRICH1 Deletion 
 

CAT - HOM  

6 89867988 CASP8AP2 Deletion rs781114556 GAC 

ATC 
TTT 

GCC 
CAG 

- HOM  

1 196994128 CFHR5 Frameshift rs565457964 - A HOM  

7 2513251 LFNG Frameshift 
 

- GATG HOM  

19 4511713 PLIN4 Frameshift rs747124466 T - HOM  

7 100773854 ZAN Frameshift 
 

G - HOM  

1 202567832 PPP1R12B Splicing 
 

- T HOM  

17 7513775 POLR2A Splicing 
 

CA - HOM  

12 121626866 ORAI1 Splicing 
 

GCC 
CC 

- HOM  

9 65682859 CBWD5 Splicing 
 

T C HOM  

13 30713842 ALOX5AP Splicing 
 

- TG HOM  

 

Table 11.4.29 Family 29 Filtered Variants 

Chr Start Gene Effect avsnp144 Ref Alt GT ClinVar 

1 175098515 TNN Missense rs756343208 C T HOM 
 

1 27107657 SLC9A1 Missense   G A HOM   

11 16341047 SOX6 Missense rs142511858 C T HOM 
 

14 91974664 TRIP11 Missense rs141259390 G A HOM 
 

1 51322136 TTC39A Missense rs765707131 G T HOM 
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1 119948561 NOTCH2 Missense 
 

G A HOM 
 

1 53461589 DMRTB1 Missense rs138758029 C T HOM 
 

17 36013244 CCL23 Missense 
 

T C HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

1 27382530 CD164L2 Missense rs2504779 C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

17 74866908 FDXR Missense rs1688149 C T HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

7 74798013 GTF2IRD2 Missense 
 

G A HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

7 74797024 GTF2IRD2 Missense 
 

G T HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

1 150308112 MRPS21 Missense rs10480 T C HOM 
 

8 2101041 MYOM2 Missense 
 

G A HOM 
 

19 11416089 RGL3 Missense rs167479 T G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM 
 

19 54173068 TMC4 Missense 
 

T C HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

19 44497294 ZNF180 Missense rs2571108 A G HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

 

Table 11.3.30 Family 30: Heterozygous rare variants present in both parents 

Chr Start Gene Effect avsnp144 Ref Alt GT ClinVar 

13 42313061 AKAP11 Missense rs778705489 G A HET 
 

11 77093730 CAPN5 Missense 
 

G A HET 
 

16 89649443 CHMP1A Missense rs185258649 G A HET 
 

19 1037719 CNN2 Missense rs199741851 G T HET 
 

19 1037716 CNN2 Missense rs200177867 T C HET 
 

19 1037671 CNN2 Missense rs199840457 A G HET 
 

19 1037680 CNN2 Missense rs200505828 C T HET 
 

11 122851780 CRTAM Missense 
 

G A HET 
 

4 168471824 DDX60L Missense rs755913066 G A HET 
 

6 37021533 FGD2 Stopgain 
 

C T HET 
 

5 154898477 GEMIN5 Missense rs35899504 C T HET 
 

12 42106012 GXYLT1 Stopgain rs77688235 G A HET 
 

12 42106000 GXYLT1 Missense rs78540738 C A HET 
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12 42106035 GXYLT1 Missense rs79888973 A G HET 
 

12 42106023 GXYLT1 Missense rs76034661 A C HET 
 

12 42106015 GXYLT1 Missense 
 

A T HET 
 

11 47625713 MTCH2 Missense rs76666113 A G HET 
 

11 47622719 MTCH2 Stopgain 
 

C T HET 
 

11 47638743 MTCH2 Missense 
 

A G HET 
 

11 47625686 MTCH2 Missense rs78071782 A G HET 
 

11 47638749 MTCH2 Stopgain 
 

T A HET 
 

8 100712378 PABPC1 Missense rs202060459 G A HET 
 

8 100712713 PABPC1 Missense 
 

C T HET 
 

8 100709214 PABPC1 Missense rs766099049 G A HET 
 

8 100712696 PABPC1 Missense 
 

G A HET 
 

8 100712669 PABPC1 Missense 
 

T C HET 
 

8 100709464 PABPC1 Missense 
 

G A HET 
 

6 138930042 REPS1 Missense rs373049732 G A HET 
 

4 102905528 SLC9B1 Stopgain rs77618489 T A HET 
 

4 102905612 SLC9B1 Stopgain rs200075071 G A HET 
 

10 86960006 SNCG Missense rs781623510 G A HET 
 

7 67083465 TYW1 Stopgain 
 

G A HET 
 

7 67067402 TYW1 Missense 
 

C T HET 
 

7 93358405 VPS50 Missense 
 

C T HET 
 

7 73834973 WBSCR27 Missense 
 

T G HET 
 

 

Table 11.4.31 Family 31: Pathogenic and Likely Pathogenic Variants on ClinVar 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

6 26092913 HFE Missense rs1800562 G A HET Conflicting 

1 15445717 CTRC Missense rs121909293 C T HET Conflicting 

6 18130687 TPMT Missense rs1142345 T C HET Pathogenic 

1 114693436 AMPD1 Stopgain rs17602729 G A HET Pathogenic 

6 18138997 TPMT Missense rs1800460 C T HET Pathogenic 

11 66560624 ACTN3 Stopgain rs1815739 C T HET Conflicting 

7 101128436 SERPINE1 Missense rs6092 G A HET Pathogenic 

11 68794860 CPT1A Missense rs2229738 C T HET Conflicting 

5 1294051 TERT Missense rs61748181 C T HET Conflicting 

1 155236376 GBA Missense rs2230288 C T HET Conflicting 

14 94380925 SERPINA1 Missense rs17580 T A HET Other, 

Pathogenic 

8 142912850 CYP11B2 Missense rs61757294 A G HET Pathogenic 

15 82538982 RPS17 Synonymous rs6991 A G HET Conflicting 
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Table 11.4.32 Family 32: Pathogenic and Likely Pathogenic Variants on ClinVar 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

1 152312601 FLG Frameshift rs558269137 ACT 

G 

- HET Pathogenic 

|VUS 

5 178211964 PHYKPL Missense rs142181517 T A HET Pathogenic 

1 15445717 CTRC Missense rs121909293 C T HET Other 

|Pathogenic 

13 50945445 RNASEH2B Missense rs75184679 G A HET Pathogenic 

3 129528906 RHO Missense rs28933394 C T HET Pathogenic 

1 46189457 POMGNT1 Splicing rs386834024 C A HET Likely 

pathogenic 

18 59480228 CCBE1 Missense rs121908250 A T HET Pathogenic 

13 48411859 LPAR6 Missense rs121434309 C T HET Pathogenic 

11 64751627 PYGM Frameshift rs769960481 A - HET Likely 
pathogenic 

1 97883329 DPYD Missense rs1801265 A G HET Pathogenic 

 

Table 11.4.33 Family 33: Pathogenic and Likely Pathogenic Variants on ClinVar 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

12 52571381 KRT74 Missense rs147962513 A G HET Pathogenic 

10 97584837 HOGA1 Missense rs764396564 C T HET Pathogenic 

19 7125507 INSR Missense rs1799816 C T HET Pathogenic 
/other 

3 15645186 BTD Missense rs13078881 G C HET Pathogenic 

7 87452957 ABCB4 Missense rs58238559 T C HET Pathogenic 

17 12996585 ELAC2 Missense rs5030739 C T HET Pathogenic 

17 7224973 ACADVL Missense rs148584617 G A HET Other/ 

Likely 
pathogenic 

12 6333477 TNFRSF1A Missense rs4149584 C T HET Conflicting 

1 197090994 ASPM Synonymous rs143931757 A G HET Pathogenic 
/VUS 

9 6589230 GLDC Synonymous rs121964976 C T HET Pathogenic 

2 166277030 SCN9A Missense rs12478318 T G HET Pathogenic 
/ other 
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Table 11.4.34 Family 34 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

17 7513775 POLR2A Splicing 
 

CA - HOM 
 

1 158766425 OR6N1 Frameshift 
 

G - HOM 
 

22 36191798 APOL4 Frameshift 
 

CT - HOM 
 

3 58205500 DNASE1L3 Frameshift rs751206379 TG - HOM   

11 72139111 FOLR3 Frameshift 
 

TA - HOM 
 

7 100773854 ZAN Frameshift 
 

G - HOM 
 

4 78911414 BMP2K Missense 
 

T C HOM 
 

16 30583200 ZNF785 Missense rs35215913 A C HOM 
 

8 144379425 ADCK5 Missense rs533374578 C A HOM 
 

1 145873487 ANKRD35 Missense rs6670984 G A HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

17 74866908 FDXR Missense rs1688149 C T HOM 
 

17 74866471 FDXR Missense rs690514 T C HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

10 46549613 GPRIN2 Missense rs3127822 A G HOM 
 

7 74797697 GTF2IRD2 Missense rs707394 G C HOM 
 

2 171976274 HAT1 Missense rs73976541 T C HOM 
 

8 142664633 JRK Missense rs2976399 T C HOM 
 

17 38297242 MRPL45 Missense rs11559007 C T HOM 
 

5 141101254 PCDHB3 Missense 
 

C G HOM 
 

5 141137592 PCDHB5 Missense rs400562 C T HOM 
 

14 21523492 SALL2 Missense rs1263810 G C HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

19 54074853 TARM1 Missense 
 

T C HOM 
 

12 11186144 TAS2R42 Missense 
 

C T HOM 
 

12 11186063 TAS2R42 Missense 
 

T C HOM 
 

10 49945053 TIMM23B Missense 
 

G C HOM 
 

7 100773851 ZAN Missense rs78193191 A G HOM 
 

10 47368615 ZNF488 Missense 
 

G A HOM 
 

10 47368085 ZNF488 Missense rs3814160 G A HOM 
 

1 171208951 FMO2 Stopgain rs6661174 C T HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
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Table 11.4.35 Family 35 Filtered Variants 

Chr Start Gene Effect DbSNP Ref Alt GT ClinVar 

17 7426367 C17orf74 Deletion rs751636242 CGC 
CGC 

CGC 

- HOM 
 

1 27382554 CD164L2 Missense rs2474297 C T HOM 
 

4 2449967 CFAP99 Missense rs3108494 C T HOM 
 

7 142865498 EPHB6 Missense rs8177146 G T HOM 
 

8 144355665 FBXL6 Missense 
 

C T HOM 
 

19 7689276 FCER2 Missense rs145322667 C T HOM 
 

19 39906242 FCGBP Missense 
 

T C HOM 
 

19 39883386 FCGBP Missense 
 

C T HOM 
 

8 143213308 GPIHBP1 Missense rs11538389 T G HOM 
 

10 46550427 GPRIN2 Missense rs3127679 T C HOM 
 

10 46549613 GPRIN2 Missense rs3127822 A G HOM 
 

9 5164001 INSL6 Missense rs773353870 T C HOM 
 

19 5694425 LONP1 Missense rs373182816 G A HOM   

19 4538112 LRG1 Missense rs144112190 C T HOM 
 

1 146974762 NBPF12 Missense 
 

C A HOM 
 

10 46027444 NCOA4 Missense rs10761581 A C HOM 
 

19 54906696 NCR1 Missense 
 

C A HOM 
 

5 141101254 PCDHB3 Missense 
 

C G HOM 
 

16 81141373 PKD1L2 Unknown rs117006360 G A HOM 
 

17 7513775 POLR2A Splicing 
 

CA - HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

8 144414297 SLC39A4 Missense 
 

C G HOM 
 

7 75501512 SPDYE5 Missense rs62477724 G C HOM 
 

5 140552044 SRA1 Missense rs202193903 C G HOM 
 

12 11186063 TAS2R42 Missense 
 

T C HOM 
 

12 11186144 TAS2R42 Missense 
 

C T HOM 
 

7 142929454 TRPV5 Missense 
 

T C HOM 
 

7 142912583 TRPV5 Missense 
 

T C HOM 
 

7 100773851 ZAN Missense rs78193191 A G HOM 
 

19 44477666 ZNF180 Missense rs1897820 G C HOM 
 

19 44479350 ZNF180 Missense rs2253563 G C HOM 
 

19 44386639 ZNF285 Missense rs12610859 C T HOM 
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Key: 

Alt alternate, CHET compound heterozygous, Conflicting reported as benign and 

pathogenic on ClinVar, Chr chromosome, Deletion nonframeshift deletion, Frameshift 

frameshift deletion and/or insertion, GT genotype, HET heterozygous, HOM 

homozygous, Insertion nonframeshift insertion, Ref reference  
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