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Abstract 

The current thesis aimed to: 1) explore whether alpha peak frequency (APF) as measured with               

electroencephalography (EEG) might be indicative of an internal clock. No systematic           

relationship between APF and temporal decision making was found, which suggests that a             

straightforward interpretation of APF reflecting the brain’s internal clock is too simplistic. 2)             

examine the role of oscillatory power on performance monitoring and temporal decision making.             

We found no evidence that medial frontal cortex used oscillatory power to influence subsequent              

processing in down-stream regions after an error was committed. Instead, we found            

phase-based connectivity after an error although the implications on behavioral adjustments           

remain unexplored. In the temporal decision making experiments we found increased theta            

power in correct compared to incorrect judgements after the short time interval had elapsed,              

which might suggest that theta power reflects evidence accumulation of temporal information. 3)             

examine the role of climbing neural activity in temporal decision making as reflected by slow               

evoked potentials (SEPs) in the EEG. No consistent evidence across the different experiments             

was observed, which suggests that SEPs do not reflect temporal evidence accumulation in the              

current time estimation task and differences are instead reflected in theta power differences. 
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CHAPTER 1  

GENERAL INTRODUCTION 

 
 

Our every day is filled with decisions and evidence-accumulation. Sometimes, decisions           

are made about time intervals, and evidence is accumulated on passing time, for example              

when waiting for a traffic light to switch from red to green. Decision making is thought to                 

rely on the accumulation of noisy sensory evidence. After enough noisy evidence has             

accumulated a decision boundary is reached and motor behavior might ensue as a result              

of the decision-making process. In this thesis I aim to examine whether similar neural              

mechanisms underlie temporal and non-temporal decision making. More specifically, I will           

explore the role of neural oscillations and event related potentials as measured with             

electroencephalography (EEG) in temporal evidence accumulation and in the termination          

of automated behavior.  

Drift diffusion models have extensively been used to explain decision making processes            

(Ratcliff, 1978; 2001; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff et al.,              

2016; Smith & Ratcliff, 2004). More recently, these models have been used to explain              

temporal decision making (Balci & Simen, 2016; Simen et al., 2011, Simen et al., 2013).               

These modelling approaches suggest there might be shared neural mechanisms between           

temporal and non-temporal decision making, but research in this field is lacking.            

Interestingly, the medial prefrontal cortex has been linked to inhibitory and cognitive control             

(e.g. Ridderinkhof et al., 2004) and the same region might play a role in temporal evidence                

accumulation (Petter et al., 2016). Especially theta (4-7 Hz) oscillations have been            

hypothesized to play an important role in inhibitory and cognitive control (Cavanagh &             



Frank, 2014) as well as in interval timing (Parker et al., 2014; Heskje et al., 2019). I aim to                   

further establish the role of theta activity from the medial prefrontal cortex in terminating              

automated behavior by examining the relationship between single-trial activity from this           

region and behavioral adjustments that followed when automated behavior was not           

properly terminated. Next, I ask whether this termination process is related to the             

termination of temporal evidence accumulation. To do this, I will examine how temporal             

evidence accumulation differs when participants reach different response boundaries (i.e.          

correct and incorrect responses) in a temporal discrimination task.  

To introduce the topics of this thesis to the reader, the general introduction is divided into                

three overarching topics: 1) time estimation, 2) decision making and 3) neural signatures.             

The general introduction starts with a historical overview of computational models that aim             

to explain time perception. This overview is followed by a brief discussion of different              

experimental designs to study time perception. Then, I discuss computational models of            

decision making. Next, I hone in on drift diffusion models and how these computational              

models might be related to temporal and non-temporal decision making. After discussing            

the computational models I move on to discuss neural implementations of these            

computational models. To this end, I first discuss evidence for decision making based on              

ramping neural activity and then oscillatory activity. Finally, I briefly discuss how the             

evidence from oscillatory activity has inspired new computational models of time           

perception, which brings me back to the discussion of (recent) computational models of             

time perception. Finally, I conclude the introduction with the aims of the different empirical              

chapters. 

 



Historic overview of timing models 

Pacemaker-accumulator models 

Pacemaker-accumulator models are the first attempt of a mathematical model to describe            

participants’ behavior at discriminating intervals of slightly different duration (Merchant &           

delaFuente, 2014, chapter 3 by Hass & Durstewitz). In these models, pulses are emitted at               

short intervals such that the pacemaker has a regular average frequency and the pulses              

are accumulated to represent a value for the time that has passed (Creelman, 1960). In               

Creelman’s study participants performed a forced choice paradigm, where on each trial            

two intervals were presented in sequence and participants reported which interval was            

longer. The original paper of Creelman uses signal detection theory (SDT) to explain how              

errors arise: a time interval T is compared to T+ΔT and both intervals are represented by                

the number of pulses accumulated after their respective intervals (Figure 1.1). The            

representation can only be perfect if an observer is capable of detecting the exact on- and                

offset of the different intervals and if they accurately store the amount of pulses in working                

memory, which they can retrieve again after they have accumulated the pulses of the              

second interval (Creelman, 1960). Creelman acknowledged that an observer is unlikely to            

do this perfectly and therefore, the representations of both intervals will overlap, especially             

with smaller values of ΔT (Figure 1.1). 

 



 

Figure 1.1. Signal detection theoretic explanation for forced choice time interval discrimination by             

Creelman (1960). Time interval T and T+ΔT are compared by the participants, who needs to report which of                  

the intervals is longer. The intervals are represented by a normal distribution with a mean and variance equal                  

to ƛT. ƛ represents the rate of the pacemaker. Taken from Creelman, 1960. 

 

Mathematically, Creelman explained that an interval of j ms can be represented as a              

normal distribution with mean and variance of ƛj. ƛ is a constant that represents the               

frequency of the pacemaker. Longer intervals, T+ΔT, also have larger means and variance             

and the larger variance contributes to a wider normal distribution. For each trial the              

difference between the representations can be calculated: 

 

       (1)d′
1,2 = √2ƛ ΔT

√2T+ΔT
 

 



The pacemaker in the model proposed by Creelman described above was hypothesized to             

function at a mean frequency following a Poisson process (this Poisson process is             

approximated by a normal distribution when ƛT is large). 

An alternative model was proposed by Treisman (1963) that contained a pacemaker that             

was deterministic, an oscillator, where the frequency of the pacemaker was thought to             

represent arousal. Treisman argued that it would be easier to keep track of time with a                

deterministic accumulator (Treisman, 2013). Moreover, he noted that neural pacemakers          

had been described. He also noted that oscillations of various frequencies could be             

observed in the electroencephalogram (EEG) and that heartbeat and respiration were           

inherently rhythmic as well. Treisman provided his pacemaker-accumulator with a          

hierarchical structure that consisted of a counter, comparator and store (Figure 1.2). The             

comparator of Treisman’s model is a decision process that, just as Creelman’s model,             

follows signal detection theory (Treisman, 2013). Therefore, the most important difference           

between Creelman’s and Treisman’s models discussed thus far is the stochastic vs.            

deterministic functioning of the pacemaker, and, to some extent, the flexibility of the             

pacemaker.  



 

Figure 1.2. Treisman’s model of the internal clock. Taken from Treisman, 1963 and Block & Zakay, 1996. 

 

Scalar Expectancy Theory 

One influential variant of the pacemaker-accumulator models is the Scalar Expectancy           

Theory (SET, Gibbon, 1977). SET has gained a lot of traction, because it explains the               

scalar property of time perception, i.e. Weber’s law (Hass & Durstewitz, 2014). Weber’s             

law is well known in psychophysics and sensory perception and it suggests that the              

discriminability between two events is linearly related to the magnitude of the standard             

stimulus (Getty, 1975; Grondin, 2001). Mathematically, this can be written as: ,           ϕ ϕ  Δ = K  

where is the difference threshold, is the standard stimulus and is the Weber ϕ  Δ       ϕ       K     

fraction (Grondin, 2001). The generalized form of Weber’s law, , also takes         ϕ ϕ  Δ = K + a    

into account as a source of sensory noise, which interferes with the temporal  a             



discrimination. Weber’s law can also be represented by a constant coefficient of variation (             

), where variability is proportional to the mean (Allan, 1998). Another law that applies to/μσ                

time perception is the Psychophysical Law, which states that there is a power relationship              

between real, elapsed time and subjectively, experienced time (Allan, 1998; Grondin,           

2001). The exponent of this power law has been calculated for many different experiments              

and has been found to vary between 0.9 and 1.1 (Grondin, 2001; Allan, 1998). Note that a                 

power law with an exponent of 1 would lead to linear time, where the physical time would                 

correspond directly with psychological time. One important observation that time is           

experienced nonlinearly comes from time bisection tasks (Staddon & Higa, 1999). In time             

bisection tasks, participants are trained on two standard intervals, one short and one long              

in duration. When participants are well able to distinguish between the standard intervals,             

participants are presented with intermediate intervals and participants decide for each           

interval whether it is more similar to the short ( ) or the long ( ) standard. This method         T s     T l     

allows the experimenter to find the indifference interval ( , i.e. bisection point) for a        T p       

participant. When the indifference interval is presented, the participant is equally likely to             

report that the interval is similar to the short and the long interval. Participants often have                

their indifference interval close to the geometric mean of the short and long interval:              

. Interestingly, scalar timing would predict the indifference interval at theT p = (T )s ·T l
1/2            

harmonic mean: . Finally, linear time would predict the indifference interval at  T p = 2T ·Ts l
T  + Ts l

          

the arithmetic mean. 

SET is hypothesized to consist of three modules in the form of a clock, memory and                

decision process. The clock functions in a similar fashion to the pacemaker-accumulator            

proposed by Treisman: a Poisson process of successive pulses forms the pacemaker            



(Grondin, 2001). In addition to the pacemaker the clock consists of a switch, which is               

flipped by external information to start the interval timer (the pacemaker), and an             

accumulator, which sums the pulses of the pacemaker. After the clock module, the             

memory module is reached. This memory module consists of working memory and            

reference memory. The output from the accumulator is temporarily stored in working            

memory and the value is compared to the reference memory. The reference module             

contains long term stores of several, different (interval) lengths. The output of the memory              

module is fed into the decision module. The decision module is thought to apply a decision                

rule based on a ratio comparison of the pulses in working memory and the pulses in                

reference memory. However, which decision rule is applied depends on the task (Allan,             

1998). It is the decision module where overt behavior is produced based on the outcome of                

the decision rule (Wearden, 1999). Wearden formulated the decision rule for comparing a             

standard or reference tone to tones that could be short, longer or of the same length as the                  

reference tone as follows: 

  

        (2)ts t| * −  | / < b*  

 

where is the sample from the reference memory, is the presented tone and is the s*        t      b*   

threshold value, which varies from trial to trial.  

 

Experiments to study time perception 

A lot of different experiments have been designed to study human time perception, starting              

with the difference between prospective and retrospective time estimation. In prospective           



interval timing tasks participants are aware that they have to report durations of time              

before exposure to the time interval. Previous work has found that these tasks are better               

explained by attentional processes (Block & Zakay, 1997; Zakay & Block, 2004).            

Retrospective timing tasks are tasks where participants do not beforehand know that they             

have to report the time interval. These tasks have been found to rely on working memory                

processes (Block & Zakay, 1997; Zakay & Block, 2004). In both retro- and prospective              

timing tasks duration estimation and reproduction of the time interval can be used.             

Prospective timing tasks are much more common in the time estimation literature            

(Grondin, 2014), partially because these tasks can also use production tasks and interval             

comparison tasks.  

In temporal production tasks, participants are instructed to produce intervals of a certain             

length (e.g. 0.5 or 8 s). The interval can be delineated by the participant with two button                 

presses (at the start and end of the time interval), or the interval starts with a sound or the                   

display of a visual stimulus and the participant only uses a button press to end the elapsed                 

time interval. In synchronization tasks participants need to synchronize their response to a             

second stimulus that delineates a time interval, or participants need to produce a response              

in the same frequency (i.e. if the interstimulus interval －the time between the first and               

second stimulus－ is 0.8 s participants should press the button 0.8 s after the second               

stimulus). A special case of a synchronization task is the rhythmic tapping task where              

participants tap in beat with e.g. a metronome and participants continue the beat after the               

metronome has stopped.  

In temporal discrimination tasks participants discriminate between intervals. The         

comparison method presents two durations sequentially and participants decide whether          



the intervals are the same or different. The experimenter can keep one interval duration              

fixed, i.e. the standard, or she can vary both intervals. In the single stimulus task,               

participants are presented with an interval that is either the short or the long standard               

duration and participants respond by judging the stimulus as short or long. Especially             

interval comparison tasks, such as time bisection tasks which I introduced earlier, are             

powerful tools as they allow two alternative forced choice designs and estimation of             

psychometric functions. The experimenter can plot the probability the participant          

responded long as a function of the presented time intervals. This procedure leads to an               

S-shaped curve and the bisection point is the point where 50% of intervals are classified               

as long.  

 

Models of decision making 

Irrespective of the timing task used, participants make a decision to e.g. classify a time               

interval as long or short, or to end a production trial by pressing or releasing a button.                 

When the decision is made between two response options, sequential sampling models            

allow integration of both accuracy and response times into a single theoretical framework             

(Ratcliff & Smith, 2004). Note that this differs from SDT discusses earlier, because SDT              

only takes accuracy into account (Green & Swets, 1966; Ratcliff & Smith, 2004).             

Sequential sampling models assume that the decision process consists of sequential           

samples of the stimulus, because the stimulus is presented in a noisy fashion by the brain.                

To reach a decision, a critical amount of evidence needs to be accumulated. This decision               

bound determines which of the two possible decisions are made and the time it takes to                

reach the decision is reflected in the response time (Ratcliff & Smith, 2004). Sequential              



sampling models predict that response times are longer and accuracy is lower for stimuli              

that are more difficult to distinguish (Ratcliff & Smith, 2004). Different sequential sampling             

models exists and they distinguish themselves (among other ways) in the application of the              

stopping rule. The stopping rule can be absolute, where one response option needs to              

reach a certain threshold, or relative, where one response option needs to accrue more              

evidence than the other. 

 

 

Figure 1.3. Taxonomy of sequential sampling models. Reproduced from Ratcliff & Smith, 2004. 

 

Random Walk Models 

Random walk models fall under the class of models that apply a relative stopping rule               

(Ratcliff & Smith, 2004), such that evidence in favor of one response option is evidence               

against the other response option. In its simplest form, signal accumulation would be             

completely random, e.g. like white noise, where all evidence sampling would be            

independent: , where captures the value of the evidence at time and X t = εt   X t         t   ε  



captures a random value from e.g. a Gaussian distribution. However, it is more likely that               

biological systems are represented by models that take into account the accrued evidence,             

i.e. a random walk, a running sum of independent observations such that: , which            X t = ∑
t

s=1
εs   

can be written as: (Wagenmakers et al., 2004). These decision models are    X t = X t − 1 + εt          

often compared to a drunkard that has an equal probability of walking (or swaying) left or                

right. This comparison can be further extended by adding drift to the drunkard’s behavior,              

e.g. when he is missing his right shoe. An important limitation of random walk models is                

that they cannot explain the often-observed response time effect for error responses:            

errors have shorter response times than correct responses. 

 

Drift Diffusion Models 

Diffusion models are a type of sequential sampling model that stems from the class of               

random walk models. Earlier I pointed out that sequential sampling models and SDT differ,              

because SDT only takes accuracy and not response time into account. However, diffusion             

models can be seen as an extension of SDT, where a step in the accumulation process                

can be seen as a sample from one of the distributions that are described in SDT (the bell                  

shaped curves in Figure 1.1; Mulder et al., 2014). In diffusion models evidence is accrued               

continuously over time (Ratcliff, 1978; Ratcliff & Smith, 2004), rather than in discrete time              

steps. Evidence is accumulated from a starting point, , and the accumulation will continue        z       

until a response boundary is reached (Figure 1.4). The starting point reflects the             

participant’s preference for one response option over the other (Forstmann et al., 2016).             

The response boundary can be negative or positive (Ratcliff & Rouder, 1998). The total              



time needed to come to a response consists of some fixed encoding time, plus the time it                 

takes to reach one of the response boundaries from the starting point, plus a fixed               

response execution time (Forstmann et al., 2016). The slope of the evidence            

accumulation, i.e. the amount of evidence that is accumulated per unit time is known as               

the drift rate, (Ratcliff & Smith, 2004) also known as (Ratcliff & Rouder, 1998). The drift   ξ        v        

rate is dependent on the quality of the information coming from the stimulus (Philiastides et               

al., 2006), on attention (Bogacz et al., 2006) or on subject abilities (Forstmann et al.,               

2016). Figure 1.4 shows that the drift rate is not fixed over time, but instead varies.                

Importantly, both SDT and DDM aim to separate which parts of the decision making              

process are under strategic control, i.e. the criterion in SDT and the distance between the               

boundaries and where the starting point is in drift diffusion models, versus parts of the               

decision making process which are not under strategic control, i.e. in SDT and drift rate          d′       

in DDM (Forstmann et al., 2016). The variability of the drift is assumed to be normally                

distributed (Ratcliff & Rouder, 1998). The within-trial variance in drift rate is known as the               

diffusion coefficient, (Ratcliff & Smith, 2004) and is a model parameter in the form of the  s2               

standard deviation, (Ratcliff & Rouder, 1998). If the variability is large enough, the  s             

accumulated evidence can cross the response boundary of the other stimulus, leading to             

an erroneous response. Drift rate also varies over trials, captured by another model             

parameter, , represents variability, which is hypothesized to be normally distributed η           

(Ratcliff & Rouder, 1998). For example, identical stimuli might be better attended on one              

trial than on another, which changes the drift rate over trials. 

 



 

 

Figure 1.4. Drift diffusion model. Evidence accumulation starts at and follows a random walk with evidence         z        

being updated continuously. The accumulated evidence can reach the response boundary at , yielding a            a    

correct response, or the response boundary at 0, yielding an error response. Three different observations are                

illustrated by T. Adapted from Ratcliff & Rouder, 1998. 

 

If participants move their response boundaries away from their starting points, they will be              

more accurate, because the accumulated evidence is less likely to cross the response             

threshold of the opposite response boundary by chance. But this strategy will also increase              

response times (Ratcliff & Smith, 2004; Forstmann et al., 2016). As such, boundary             

separation reflects the speed-accuracy trade-off the participant is currently performing at           

(Forstmann et al., 2016). It is important to note that stimuli that have a large, positive drift                 

rate are less likely to reach the opposite decision boundary, whereas stimuli that have an               

intermediate drift rate are more likely to reach the opposite decision boundary by mistake              

(Ratcliff & Rouder, 1998). Stimuli with large, positive drift rates are easy to detect and               

these stimuli lead to relatively short response times and a lot of accurate responses,              



whereas stimuli with intermediate drift rates are difficult and they will have longer response              

times and more error responses (Ratcliff & Rouder, 1998). Examples might be where the              

different intensities of a visual stimulus are presented – the more intense stimulus provides              

more evidence, and the drift is more rapid towards the detection boundary. Note that              

different drift rates also bias the model to predict slower response times for erroneous              

responses. Therefore, in order to account for erroneous response times that are shorter             

than correct response times, the starting point of the model needs to be able to vary on a                  

trial-by-trial basis or as a function of strategy (Ratcliff & Rouder, 1998; Ratcliff & Smith,               

2004).  

 

Ornstein-Uhlenbeck model 

The Ornstein-Uhlenbeck (OU) model is similar to the drift diffusion model described above             

(see Figure 1.3). However, the OU model has an extra parameter , or , which           β   λ   

represents the decay of evidence accumulation over time where the accumulation is falling             

back to the starting point (Ratcliff & Smith, 2004). Bogacz et al. (2006) showed that for the                 

drift diffusion model: 

 

       (3)x dt dWd = A + c  

 

where and denotes the change in for a small time interval . In this case x (0) = x0   xd      x       td     

the drift rate is represented by and represents white noise. Whereas for the OU      A   W        

model: , where is a parameter that accelerates or decelerates to x λx )dt dWd = ( + A + c   λ        x   

a response boundary depending on its sign (Bogacz et al., 2006). When is set to 0, the            λ       



OU model and the Wiener drift diffusion model, where the rate of accumulated evidence is               

constant, become interchangeable (Ratcliff & Smith, 2004). Champions of the OU model            

have argued that this model is superior over the Wiener drift diffusion model, because the               

decay term might be more neurally plausible (Usher & McClelland, 2001). Neural firing             

rates of single cells saturate as a function of stimulus intensity and when the stimulus is                

removed the firing rate decreases (Ratcliff & Smith, 2004).  

 

Accumulator model 

The accumulator model has a long history in the sequential sampling models, but it was               

shown in 2004 by Ratcliff & Smith that the accumulator model cannot account for very fast                

errors that are sometimes observed in decision making tasks (Brown & Heathcote, 2008).             

The linear ballistic accumulator uses linear, independent response accumulators to explain           

patterns in response time distributions (Brown & Heathcote, 2008). The “leaky competing            

accumulator” model was proposed by Usher & McClelland (2001), which consisted of an             

accumulator process that fluctuated from trial-to-trial due to random variability in both the             

starting point and drift rate (Brown & Heathcote, 2008). In addition to these two sources of                

random variability, Usher & McClelland also added two non-linear processes to the            

evidence accumulation, namely passive decay of evidence as a function of time and             

response competition, such that evidence for one response boundary is negative evidence            

for the other response boundary (Brown & Heathcote, 2008). More recently, these            

additions to evidence accumulation were further simplified when Brown & Heathcote           

(2008) suggested that they could explain response times on perceptual decision making            

tasks without the non-linear processes.  



 

Drift diffusion model for interval timing 

Thus far, I have explored the models historically bound to time estimation, such as              

pacemaker-accumulator models and SET. But time estimation, and interval timing in           

particular, has been linked to drift diffusion models that were designed to explain decision              

making. In 2011 Rivest & Bengio extended the drift diffusion model with a learning rule,               

which allowed rapid learning to generalize to new time intervals. The authors hypothesized             

that ramping neural activity is used to predict when a reward will be received in time, such                 

that the animal will respond (e.g. start licking) when it has accumulated enough evidence              

that a reward is about to occur (Rivest & Bengio, 2011).  

In the same year, another group independently linked drift diffusion models to time             

estimation (Simen et al., 2011). To account for time scale invariance of time estimation              

time-related DDMs assume that the drift-diffusion process consists of the sum of two             

opposing Poisson processes (Balci & Simen, 2016). The time-related DDM assumes that:            

i) interspike intervals are exponentially distributed with rate parameter , ii) the spike times         λ      

of different pacemaker neurons are independent, iii) neural integrators sum spikes over            

time and iv) inhibitory and excitatory input to the accumulator are proportional (i.e. the              

opposing Poisson processes; Balci & Simen, 2016; Simen et al., 2011). The general DDM              

equation in 3 can be rewritten to (Balci & Simen, 2016; Simen et al., 2011, Simen et al.,                  

2013):  

 

x 1 )λ⋅dt ⋅dW  d = ( − γ + √((1 )λ)+ γ  
 



To explain interval timing with the drift diffusion model a two-stage model is proposed (see               

also Morita et al., 2019): the first stage uses evidence accumulation to explain time              

estimation and the second stage uses the traditional drift diffusion process to explain the              

decision process (Balci & Simen, 2016; Simen et al., 2011, Simen et al., 2013). The first                

stage might be implemented by ramping neural activity as measured with the contingent             

negative variation (CNV; see below), which should scale with the length of the to-be-timed              

interval. The second stage might be implemented through ramping activity that is related to              

the decision process as measured with the centroparietal positivity (CPP; see below). 

 

Drift diffusion models and Go/No-go tasks 

The models of decision making discussed so far are applicable to typical tasks of decision               

making, which use a two-choice procedure. In these tasks a stimulus is presented and the               

participant decides whether this stimulus belongs to category A or B. In other decision              

making tasks participants respond to a Go stimulus and withhold responses to a No-go              

stimulus. These so-called Go/No-go tasks exist in different variants. Interestingly,          

participants sometimes perform better on Go responses (i.e. shorter response times and            

higher accuracy) than on corresponding responses on the two-choice task (Gomez et al.,             

2007). Donders (1868/1969) first tried to explain the difference between these responses            

through a simple additive formula: the response time of the two-choice procedure is longer              

than the go/no-go procedure due to response selection. However, many researchers have            

since argued that the go/no-go procedure also includes a response selection when            

participants decide to respond or rather to withhold that response (e.g. Ulrich et al., 1999).  



Participant’s performance is often measured as the amount of commission errors made,            

i.e. when participants responded to a No-go stimulus where they should have withheld             

their response. Commission errors are thought to provide a handle on inhibitory control             

and as such, Go/No-go tasks have been used in clinical settings to assess inhibitory              

control in patient populations (e.g. in ADHD, autism, bipolar disorder, schizophrenia and            

mild traumatic brain injury; Ratcliff et al., 2018). However, response times and accuracy             

alone do not always provide a satisfactory explanation of behavior. Fast responses on Go              

stimuli are indicative of efficient processing (Ratcliff et al., 2018), but this behavior is often               

seen in combination with higher rates for commission errors. High accuracy on No-go             

stimuli, on the other hand, is often seen together with slow response times to Go stimuli.                

Sequential sampling models can combine response times and accuracy into a single            

decision process (Ratcliff et al., 2018), which might make it easier to identify optimal              

performance on a go/no-go task. 

When modeling Go/No-go data with a DDM the withhold response threshold is best             

modelled with an implicit boundary, i.e. the DDM only has an explicit boundary for Go               

responses and an implicit boundary for No-go responses (Gomez et al., 2007). Gomez and              

colleagues (2007) found that the DDM with an implicit boundary was a better fit to the data                 

than the single decision boundary DDM. Because participants should not respond to the             

No-go stimulus (and because participants sometimes fail to respond to go stimuli, i.e.             

misses), the choice probability data is fit without the response time distributions of the              

no-go responses. Gomez et al. (2007) used a combination of two-choice and go/no-go             

procedures with lexical decision making to examine the claim that the go/no-go task is              

more suited to study cognitive processes than two-choice tasks in the context of lexical              



decision making. If anything, Gomez et al. (2007) found evidence for the opposite:             

two-choice tasks provide richer data, because of the response time distributions for both             

decision boundaries. However, Gomez et al. (2007) did find that go/no-go data can be              

fitted with DDM. 

More recently, Ratcliff et al. (2018) showed that accuracy and response time distributions             

of go/no-go procedures can also be approximated with DDMs without collecting data on a              

two-choice procedure in the same participants (as Gomez and colleagues did in 2007). As              

in Gomez et al. (2007), Ratcliff and colleagues (2018) used only the choice probabilities              

and not the response times for no-go responses (i.e. correct rejections and misses). Both              

studies found similar results: the Go/No-go data was better explained by an implicit No-go              

boundary than by a single boundary model (Ractliff et al., 2018; Gomez et al., 2007). This                

suggests that Go/No-go data is more complex than the simple additive formula Donders             

proposed.  

 

SART and sequential sampling models 

A special case of the Go/No-go task is the sustained attention to response task (SART). In                

the standard version of this task participants need to press a button in response to the                

presentation of non-target numbers (Robertson et al., 1997). When the target number “3”             

is presented participants need to withhold their response. Different versions of the task             

exist, such as the SARTFIXED where the trials are constantly presented in the same order               

(cycling through 1-9) and the upcoming target can be easily predicted. Or the SARTRANDOM              

where presentation of the digits is random. Other variations concern the length of the              

inter-trial interval, which can be fixed or random. Finally, the task may use different stimuli               



rather than digits. Regardless of these task differences, a typical response pattern can be              

observed where participants typically respond with: i) a fast button press on trials where a               

go stimulus (1-9, but not 3) was presented, ii) participants make a high number of               

commission errors by pressing the response button on the presentation of the no-go             

stimulus (3) and iii) participants miss few trials (i.e. they almost never omit a response to a                 

Go stimulus). The SART is thought to induce a speed-accuracy tradeoff (Robertson et al.,              

1997; Hawkins et al., 2019), such that participants with faster response times make more              

commission errors.  

One important limitation of evidence accumulation models, such as the sequential           

sampling models discussed above, is that the underlying assumption of the model is that              

each decision is reached through a process of evidence accumulation (Hawkins et al.,             

2019). The qualitative description of commission errors in the SART are often ascribed to              

an automated response bias. Participants commit false alarms, because they are biased to             

respond with a button press (Robertson et al., 1997). One way of dealing with modeling of                

the response time data is to include contaminant responses by drawing a subset of trials               

with response times from a uniform distribution between the minimally and maximally            

observed response times (Ratcliff & Tuerlinckx, 2002).  

Hawkins and colleagues (2019) recently tried to fit the go/no-go DDM from Gomez et al.               

(2007) and Ratcliff et al. (2018) to SART data. They collected behavioral data in humans               

with the SARTRANDOM and found that the go/no-go DDM does not accurately explain the              

entire RT distribution. The RT distributions showed that participants quite often show            

responses that are quicker (<150 ms) than what is typically observed in decision making              

paradigms. This finding suggests that participants might not truly rely on evidence            



accumulation processes from the stimulus during a SART, instead participants are relying            

on guesses without processing the stimulus. It also highlights the importance of examining             

full RT distributions. Interestingly, earlier modelling attempts of go/no-go data excluded           

responses with response times shorter than 300 ms (Gomez et al., 2007; Ratcliff et al.,               

2018). 

 

Climbing neural activity for decision making and temporal estimation 

We have discussed modeling approaches of response time and accuracy in perceptual            

decision making. Here, I will discuss different perceptual decision making tasks and the             

neural mechanisms that underlie the different stages of the decision process. Sensory            

information about an external stimulus is initially encoded by neurons in primary sensory             

cortex, whereas calculations on － or comparisons of this information with information form             

(e.g.) working memory － takes place in higher-order regions, such as association cortex             

(Gold & Shadlen, 2001).  

 

Vibrotactile frequency discrimination and random dot motion tasks 

Single-cell recordings from non-human primates have provided the earliest evidence          

discriminating the short-lived representation of stimulus features in primary sensory          

regions and sustained representations in association cortex (Gold & Shadlen, 2001;           

Heekeren et al., 2004). In vibrotactile frequency discrimination tasks monkeys need to            

decide whether the frequency of the first tactile stimulus (f1) is lower or higher than the                

frequency of the second tactile stimulus (f2). Neurons in primary somatosensory cortex            

(S1) often: i) increase their firing rate with increased stimulation frequency and ii) modulate              



their activity according to the periodicity of the stimulus (Gold & Shadlen, 2001). This              

strongly suggests that S1 activity reflects information about the stimuli, but not about the              

comparison or the decision. Activity of the neurons in medial and ventral premotor cortex              

has been found to persist throughout the interval between the first and second physical              

stimulation (i.e. the delay period). In addition, some of the neurons’ activity has been found               

to reflect a comparison between f1 and f2 (Gold & Shadlen, 2001).  

The Random Dot Motion (RDM) task sets itself apart from the vibrotactile frequency             

discrimination task by eliminating the need for working memory, because it allows decision             

making processes to take place with the presentation of a single visual stimulus (Gold &               

Shadlen, 2001). The visual stimulus consists of dots with some proportion that move in              

one direction or another (sometimes the opposing direction) and task difficulty was            

manipulated by altering the percentage of dots that move coherently. Monkeys indicate            

their response through an eye movement to the left or right of the dot pattern. Sensory                

information is processed in area MT/V5, while neurons in the lateral intraparietal area (LIP)              

are thought to track the decision variable (Gold & Shadlen, 2001; Roitman & Shadlen,              

2002).  

A pattern that is typically observed in tasks like the RDM is that activity in LIP and                 

frontal-eye fields (FEF) dips upon stimulus presentation (Gold & Shadlen, 2007). After this             

initial dip, activity ramps up or tapers further down depending on whether evidence is              

accumulating for a response towards or away from the receptive field of the neuron.              

Moreover, the speed with which the activity ramps up is related to the quality of the                

sensory information (Hanks & Summerfield, 2017). Finally, it has been shown that activity             

in FEF and LIP reaches a threshold if monkeys have to wait before they are allowed to                 



respond (Hanks & Summerfield, 2017). Taken together these findings suggest that some            

oculomotor neurons represent the drift rate as modelled in the DDM. 

 

Human neuroimaging and electrophysiology 

Non-human primate (NHP) research is well suited for invasive recordings, but it is             

challenging to teach complex decision-making tasks to NHPs. Moreover, single-cell          

recordings often span only a limited range of brain regions. Heekeren and colleagues             

(2004) therefore extended the single-cell recordings in non-human primates to whole brain            

neuroimaging with fMRI in humans by using a more complex perceptual decision making             

task with faces and houses. The face and house images were masked with noise. Activity               

of the posterior portion of the left dorsolateral prefrontal cortex (DLPFC) positively            

correlated with performance (Heekeren et al., 2004). Moreover, activity in this region was             

higher for easier than for hard decisions and activity in this region was correlated with the                

absolute difference in activity for house- and face-selective regions (Heekeren et al.,            

2004). Research from the same group showed involvement of the same DLPFC when the              

task was more similar to the RDM task used in monkey electrophysiology (Heekeren et al.,               

2006). In line with the experiments in NHP, Heekeren and colleagues showed that blood              

oxygenation level-dependent (BOLD) amplitude was higher when stimulus evidence was          

stronger (Heekeren et al., 2008). Although the fMRI experiments discussed here provide            

an important link between non-human primate electrophysiology and human decision          

making processes, the low temporal resolution of fMRI cannot readily separate evidence            

accumulation and decision variable processes (Gold & Shadlen, 2001).  



Electroencephalography (EEG) has higher temporal resolution and has been used to           

examine the distinct processing stages in perceptual decision making. VanRullen & Thorpe            

(2001) used event related potentials (ERPs) and a version of a Go/no-go task to tease               

apart the distinct stages of the decision process. Participants were instructed to release a              

button if participants saw an animal in a naturalistic scene. In a second task, participants               

were instructed to release a button if they saw a means of transportation. Crucially, the               

distractors in the first task (means of transportation) were the targets in the second task               

and vice versa. This task design afforded disentangling of ERP responses to low-level             

visual stimulation and ERP responses to higher-level cognitive decisions. VanRullen &           

Thorpe (2001) found that differences in the ERP could be observed 75-80 ms after              

stimulus onset that were related to stimulus category, which were independent of the task              

instructions. The early ERP was followed by a slower ERP at ~150 ms that correlated with                

task instruction, which was independent of stimulus category and correlated with           

participants’ decision. 

In 2006 Philiastides et al. used a task that was more similar to the task of Heekeren et al.                   

(2004) discussed above, but Philiastides and colleagues used EEG to look at the relative              

timing of decision making. Participants performed two experiments: In the first task            

participants judged whether a stimulus that was embedded in noise contained a car or a               

face (similar to Heekeren et al.). In the second task, participants were presented with a cue                

that instructed participants to discriminate cars and faces or the color of the stimulus              

(green or red). Different noise levels manipulated the task difficulty of the car/face             

discrimination. Differentiating cars from faces and green from red stimuli both showed a             

N170, a negative ERP component that peaks ~170 ms. A later component dubbed the              



D220, an ERP component related to task difficulty that peaks ~220 ms, was only present               

when comparing more and less difficult car/face discrimination trials. And there was no             

difference in the D220 when discriminating red and green stimuli, because this task was              

easy. These findings suggest that the D220 is inversely related to stimulus evidence             

(Philiastides et al., 2006). The researchers also observed a late component after the D220,              

at ~300 ms. This late component was highly correlated with the mean drift rate and it                

shifted backwards in time for more difficult stimuli (Philiastides et al., 2006). The same              

group of researchers used a similar analysis on single-trial data by applying a data-split              

based on the amplitude of the late component (Ratcliff et al., 2009). The group of trials with                 

a more positive late component had a higher drift rate than trials with less positive late                

components. 

The late component described by Philiastides et al. (2006) was corroborated by a study              

from Bode and colleagues (2012). Bode et al. used a support vector machine learning              

approach to link single-trial EEG activity to perceptual decision making. They used            

inanimate object categories, rather than faces to show that EEG can still be used to               

decode decisions even when processing is less focal (i.e. inanimate objects are processed             

less focally than faces). In line with the findings of Philiastides and colleagues (2006),              

Bode et al. (2012) also observed choice encoding ~300 ms post-stimulus. In addition,             

when participants were presented with pure noise trials, upcoming decisions could be            

reliably decoded from the EEG (Bode et al., 2012). Modelling different versions of the DDM               

to these noise trials indicated that the DDM with variable starting point best explained              

these trials. Interestingly, the starting point on these noise trials was shifted in the direction               

of the choice on the previous trial (Bode et al., 2012).  



In summary, the EEG papers discussed so far showed that combining sequential sampling             

models like the DDM with macroscopic brain activity measured with EEG yields valuable             

insights. Activity ~300 ms post-stimulus was shown to covary with the amount of sensory              

evidence. Recent research with EEG even suggests there is an event related potential that              

directly reflects the drift rate. To show this, O’Connell and colleagues (2012) used a              

paradigm where the stimulus underwent gradual changes and participants responded with           

a button press when they noticed the target dimmed. The stimulus flickered at 21.25Hz as               

to evoke a steady-state visual-evoked potential (SSVEP), which allowed the researchers to            

examine sensory encoding of contrast over time (O’Connell et al., 2012). The researchers             

divided the data of each participant into fast, medium and slow responses and showed that               

the centro-parietal positivity (CPP) was closely related to response times. First, O’Connell            

and colleagues showed that the CPP builds up over time differently for the different              

response bins. Second, they showed that action execution takes place when the CPP             

reaches a criterion level (O’Connell et al., 2012). Finally, they showed that the CPP also               

closely tracked integration of evidence in an auditory variant of the task and when              

participants were asked to count the number of targets rather than responding with a              

button press on each trial. These task changes suggest that this CPP reflects a domain               

general mechanism. Interestingly, O’Connell et al. (2012) showed that the CPP is closely             

related to the P300, a positive ERP component at ~300 ms, when the target stimulus had a                 

sudden onset (see also Twomey et al., 2015). Recently, van Vugt et al. (2019) showed that                

the build-up of the CPP correlates with the drift rate and that this link extends beyond                

perceptual decision making to memory based decision, which further highlights the general            

involvement of the CPP during evidence accumulation.  



 

CNV and perception of time 

Now that we have reviewed the relationship between climbing neural activity and            

perceptual decision making I will move on to discuss the contested relationship of climbing              

neural activity in the form of the CNV and its role in time estimation. 

A classic study by Walter and colleagues (1964) first linked the CNV to temporal              

expectations. In this seminal study, two stimuli (S1-S2) were presented with a time interval              

in the second range between them. Walter et al. (1964) showed that a sustained negative               

potential appeared over midfrontal electrodes when participants had to respond to the            

presentation of the second stimulus. The CNV peaked just before the presentation of the              

second stimulus. However, if participants were instructed not to respond to the second             

stimulus, the CNV disappeared. Interestingly, the CNV remained present when participants           

responded to the second stimulus and hence learned the stimulus contingency between            

S1-S2, but were later in the experiment instructed to stop responding to the second              

stimulus, for about 30 trials. After those 30 trials the CNV was extinguished (Walter et al.,                

1964). 

Macar and colleagues (1999) have linked the CNV not only to temporal expectation, but to               

timing in temporal discrimination and production tasks. The CNV was evoked when            

participants were instructed to discriminate or produce time intervals in the second range             

(~2.5s), but there was no CNV when participants performed a control task that was devoid               

of time judgements (Macar et al., 1999). It has been proposed that the CNV reflects the                

accumulator of the pacemaker-accumulator models discussed earlier (Macar & Vidal,          

2004; 2009). However, Kononowicz & van Rijn (2011) failed to confirm important            



predictions of this idea: if the CNV represents the temporal accumulator, participants’ CNV             

amplitude and slope should predict temporal discrimination abilities and the CNV should            

not show any habituation effects. 

Regardless, recent findings suggest that the CNV plays a role in duration judgements.             

Wiener and colleagues (2012) used repetitive transcranial magnetic stimulation (rTMS)          

and showed that stimulation induced changes in CNV amplitude correlated with an            

increased tendency to judge a comparison interval as long. This effect was only present for               

rTMS of the right supramarginal gyrus (rSMG) but not for midline occipital/parietal junction             

stimulation (Wiener et al., 2012). Subjective bias in responding was measured as the             

constant error term of the psychometric curve (i.e. the difference between the bisection             

point and the standard interval). For participants with larger positive bias (i.e. those             

participants with a tendency to judge the second duration as short irrespective of its              

physical length) rSMG stimulation had less effect on CNV amplitude. Interestingly, rSMG            

stimulation affected both the CNV and the N1 － an early component associated with              

attentional orienting － but only the CNV correlated with bias. Taken together, these             

findings suggest that bias is related to changes in drift rate rather than starting point               

(Wiener et al., 2012). 

In summary, evidence accumulation (i.e. drift rate) might be represented by ramping neural             

activity. There is some evidence that suggests that the CPP might reflect drift rate for               

decision making processes in general and that the CNV might reflect similar aspects of              

temporal evidence accumulation. It is important to note that single-cell recordings showed            

increases and decreases in ramping activity depending on whether the evidence was            

accumulating to a saccade toward or away from the neuron’s receptive field. When             



measured at the scalp, as with EEG, these neuronal populations might cancel each other              

out (Philiastides et al., 2006). 

 

Oscillations during perceptual decision making/evidence accumulation 

Above we have reviewed the data on event related potentials related to temporal and              

perceptual decision making, but when we collect EEG data we do not only possess              

information about phase-locked or evoked activity. We also have information about the            

power, phase and frequency of oscillations in the EEG.  

Van Vugt et al. (2012) related decreasing activity in the theta (4-9 Hz) band with evidence                

accumulation when participants performed a random dot motion task. When participants           

performed a decision-making task on very similar stimuli that did not need continuous             

evidence accumulation, this relationship was absent (van Vugt et al., 2012). In addition,             

Van Vugt and colleagues showed that the slopes of the decreasing theta band activity over               

parietal regions correlated with drift rates estimated from the behavioral data of individual             

participants.  

Polonía et al. (2014) compared value- and perception-based decision making and found            

that gamma (30-90 Hz) oscillations over parietal regions play an important role in evidence              

accumulation for both value-based and perceptual decision making. This finding was in            

line with previous research that showed that enhancement in the gamma (64-100 Hz) band              

as measured with magnetoencephalography (MEG) predicted participants’ choices        

(Donner et al., 2009). In addition, Donner and colleagues found that beta (12-36 Hz) band               

suppression over contralateral motor region was predictive of participants’ choices.  



The involvement of the beta band in evidence accumulation remains controversial,           

because it has been suggested that the lateralized beta activity over motor cortex does not               

represent evidence accumulation in and of itself, but instead reflects the translation of an              

evidence accumulation signal from downstream regions into a response preparation signal           

(Wyart et al., 2012). Wyart and colleagues (2012) found that the beta (10-30 Hz) activity               

had more properties of a response preparation signal, that implemented decisions based            

on evidence accumulated in the delta (1-3 Hz) band instead. Specifically, Wyart et al.              

(2012) showed that sensory evidence is not accumulated in a purely linear fashion but              

instead fluctuates rhythmically such that evidence presented at a preferred phase of the             

delta oscillation is weighted more heavily than evidence presented at the non-preferred            

phase. 

 

Oscillations in perceptual resolution 

Recent research suggests that alpha oscillations dictate the temporal resolution of the            

visual system (VanRullen, 2016; VanRullen & Koch, 2003), adding to the idea that alpha              

oscillations are important for temporal relationships in the brain. The relationship between            

alpha oscillations and the temporal resolution of the visual system was “revamped” by the              

discovery that visual perception correlates with alpha phase (Dubois et al, 2009;            

Mathewson et al., 2009; Busch et al., 2009; but see Ruzzoli et al., 2019 for a failure to                  

replicate these effects). Participants were more likely to perceive a stimulus at certain             

phases of the alpha oscillation than others. Behavioral oscillations at ~7 Hz were also              

described such that the time between an orienting stimulus and a task relevant stimulus              

influenced perception (VanRullen & Dubois, 2011, see also Fiebelkorn et al., 2013 and             



Landau & Fries, 2012 for behavioral oscillations at different frequencies). Certain parts of             

the alpha oscillation are deemed more excitable than others and this idea was supported              

by neural firing probabilities that matched these more and less excitable phases (Haegens             

et al., 2011; Bollimunta et al., 2011). Moreover, gamma power related to alpha phase in a                

similar fashion (Osipova et al., 2008). Taken together, these findings suggest that            

oscillations in neural activity are tightly linked to perception. 

Relatedly, earlier studies of alpha frequency and decision making showed that alpha            

frequency negatively correlated with response times, such that higher alpha frequency           

(indicative of more effective processing) correlates with faster responses (Surwillo, 1961;           

1966a and b). However, this relationship might possibly be explained by confounds such             

as age, intelligence or brain anatomy (Klimesch et al., 1996; VanRullen, 2018). Recent             

studies more convincingly suggested that the frequency of alpha oscillations play a role in              

visual perception and temporal binding (Samaha & Postle, 2015; Cecere et al., 2015).             

Samaha & Postle (2015) used within-subject analysis, which discounts possible          

explanations due to inter-subject variability.  

The working hypothesis that relates alpha frequency to perception is that when two stimuli              

fall on the same alpha cycle, the stimuli are more likely to bind together into a single                 

percept, but when alpha frequency is lower and the two stimuli fall on different alpha               

waves, the stimuli are more likely to be perceived as two separate events (Samaha &               

Postle, 2015; VanRullen et al., 2016; White, 2018). The internal clock hypothesis of alpha              

oscillations from Treisman (1963) is somewhat comparable to the idea that alpha            

oscillations dictate the temporal resolution of the visual system. When alpha frequency is             

high, we sample our environment more often than when alpha frequency is low. As a               



consequence, participants would be more likely to overestimate the time that has passed             

when alpha frequency is high (because they accumulate more cycles). When alpha            

frequency is low, participants would be more likely to underestimate the same time             

interval. 

 

Oscillations in time estimation 

Historically, alpha oscillations have been implicated in time estimation. Specifically, the           

frequency of alpha oscillations (see previous paragraph). Here, I will first discuss the             

influential idea of Treisman (1963) that alpha frequency might serve as the brain’s             

pacemaker. Then, I will discuss more recent findings that ascribe a role to other frequency               

bands in different timing tasks. 

 

Alpha frequency as pacemaker 

The suggestion that alpha oscillations serve as a pacemaker finds its origin in a study that                

first linked body temperature to time estimation. Hoagland showed that increased body            

temperature led to both temporal underestimation (Hoagland, 1933) and increased alpha           

frequency (Hoagland, 1936a, 1936b and 1936c). Werboff directly examined the          

relationship between alpha oscillations and time estimation in 1962. Participants timed           

temporal intervals of 2 and 8s by pressing a button at the on- and offset of the timed                  

interval. Participants that had higher alpha power at rest (eye-closed) were more likely to              

overestimate time compared to participants with low alpha power at rest (Werboff, 1962).             

In addition, Werboff found that a relative change in overall frequency (i.e. not specific to               

the alpha range) correlated with temporal estimations such that higher overall frequencies            



correlated with temporal underestimation (Werboff, 1962). It is important to note that this             

relationship goes in the opposite direction of the working hypothesis laid out in the              

previous paragraph. However, as stated, Werboff used a measure of overall frequency            

changes. Next, Anliker (1963) found that when participants became drowsy, their alpha            

power decreased and their 3s tapping intervals lengthened. This finding has been            

interpreted to suggest that synchronized alpha oscillations represent the pacemaker in           

temporal accumulation (e.g. Herbst & Landau, 2016; Matell & Meck, 2004; Oprisan &             

Buhusi, 2011).  

And finally, Surwillo (1966) reported a case study of a participant that had a visible alpha                

rhythm in their EEG 99% of the time, which allowed the researcher to estimate the length                

of individual alpha cycles. Surwillo showed that in this participant longer alpha cycles (i.e.              

lower alpha frequency) correlated with longer produced time intervals (10 s). However, this             

was only a case study. Treisman (1984) tried to replicate and extend these effects in more                

participants, but was unable to do so. He found that the variability in temporal estimation               

was much higher than the variability in alpha frequency.  

 

Beta power and time estimation 

A recent interval production timing task looked at the relationship between oscillatory            

activity in different frequency bands and the length of the produced interval (Kononowicz &              

van Rijn, 2015). Beta oscillations were first linked to temporal estimation in monkeys             

(Bartolo et al., 2014). LFP recordings in the striatum showed that beta (12-30 Hz)              

oscillations were prominently present during the continuation phase of a          

synchronization-continuation task. In this task macaque monkeys synchronize their tapping          



in beat with a metronome during the synchronization phase and the monkeys continue             

their tapping after the metronome has stopped in the continuation phase (Bartolo et al.,              

2014). Moreover, the same group of researchers later showed that both regular and             

irregular sequences of taps evoked a transient beta burst, but that only the internally paced               

regular sequence evoked sustained beta oscillations (Bartolo & Merchant, 2015).          

Kononowicz & van Rijn (2015) asked whether beta oscillations played a similar role in              

human participants and in longer interval durations. Participants timed ~2.5 s intervals by             

pressing a button at the on- and offset of the interval. Kononowicz & van Rijn (2015)                

subdivided the trials in short and long durations based on trial-to-trial variability. Pre- and              

post-first key press beta power positively correlated with produced time intervals           

(Kononowicz & van Rijn, 2015). In addition, they found that theta power was negatively              

correlated with produced time intervals (Kononowicz & van Rijn, 2015). 

Kulashekhar and colleagues (2016) used a different paradigm to study the contribution of             

different frequency bands to time estimation. In their task, participants were instructed to             

either keep color information or temporal information in working memory. This time/color            

paradigm was developed by Coull (2004) and allows the examination of temporal            

estimations in the absence of motor confounds (Wiener et al., 2018). When participants             

kept temporal information in working memory stronger beta power was recorded with MEG             

than when participants kept color information in working memory (Kulashekhar et al.,            

2016). Source reconstruction indicated that the supplementary motor area (SMA),          

posterior parietal cortex (PPC), dorso- and ventrolateral PFC represent the neural           

correlate of duration estimation (Kulashekhar et al., 2016). 



The studies discussed so far linked beta power as recorded with M/EEG to time              

estimation, but a recent study went beyond the correlational relationship by trying to induce              

enhanced beta power with transcranial alternating current stimulation (tACS). Wiener and           

colleagues (2018) stimulated at alpha (10 Hz) and beta (20 Hz) frequencies over             

frontocentral electrodes and found that the beta stimulation led to increased reports of long              

durations. Moreover, they used the drift diffusion model for interval timing discussed above             

to relate beta power changes with behavioral changes. Interestingly, Wiener et al. (2018)             

found that beta power was related to changes in the starting point of the drift diffusion                

process and not to the drift rate or the decision boundaries.  

 

Multiple oscillator models of time perception 

I have mostly discussed time perception models that have a long history, e.g.             

pacemaker-accumulator model and scalar expectancy theory, but here I want to discuss            

more recent models that ascribe important roles to oscillatory activity. In its simplest form,              

the models discussed below are extensions of pacemaker-accumulator models with          

several pacemakers (i.e. oscillators; Ivry & Richardson, 2002). 

 

Multiple-oscillator model  

One behavioral observation that is poorly explained by pacemaker-accumulator models is           

that certain intervals are more readily discriminated than others, i.e. the nonlinearity            1

1 Collyer et al. (1992) used an experiment where participants were instructed to tap along               
to a beat (synchronized tapping). After 50 beats, the beat stopped and participants were              
instructed to keep tapping their finger in the same rhythm for 50 additional taps              
(continuation tapping). Collyer and colleagues found that in general the data for the             
continuation tapping was well approximated by an identity function, because the           
continuation tapping was comparable to the interstimulus intervals. However, they also           



between physical time and temporal representations (Crystal et al., 1997; Crystal, 1999).            

Moreover, single oscillators might not be reliable for the timing of longer time intervals,              

since the exact spike time of a neuron depends on the neuron’s membrane potential. The               

membrane potential will fluctuate more over longer periods of time than over short periods              

of time and as such will influence the exact spike time of the neuron (Miall, 1996). Multiple                 

oscillators have been proposed to overcome both issues (Miall, 1989; Church &            

Broadbent, 1990). Church & Broadbent proposed different oscillator periods, which          

increase in powers of two (i.e. 200, 400, 800, 1600 ms etc.). Instead of an accumulator as                 

in the pacemaker-accumulator models discussed earlier, the multiple oscillator model          

contains a status indicator (Church & Broadbent, 1990). These status indicators read the             

phase of the oscillation across a population of oscillators, rather than counting the cycles              

(i.e. beats) of the oscillation. As such, the output is binary, detecting when the oscillators               

(or some proportion of them) are all in phase (Miall, 1996) and both working memory and                

reference memory consist of matrices of connection weights rather than sample           

distributions (Church & Broadbent, 1990). 

 

Striatal beat frequency model 

The striatal beat frequency (SBF) model incorporates the beat frequency model of Miall             

(1989) and links to the neurobiology of the basal ganglia (Matell & Meck, 2004). In the SBF                 

distributed, cortical regions contain neural populations that oscillate in different intrinsic           

frequencies (1-15 Hz; Petter et al., 2016) and the medium spiny neurons, which are              

observed some residual variance that fluctuated in an oscillatory fashion as a function of              
interstimulus time (Collyer et al., 1992). In 1994 Collyer and colleagues replicated their             
earlier results and provided an explanation in the form of the multiple-oscillator model             
(Collyer et al. 1994; Church & Broadbent 1990, 1991). 



located in the striatum, act as coincidence detectors (Paton & Buonomano, 2018). Striatal             

involvement in interval timing is supported by the firing behavior of striatal neurons (Buhusi              

& Oprisan, 2014). Phasic dopaminergic activity of the ventral tegmental area and the             

substantia nigra are hypothesized to reset cortical oscillations and medium spiny neurons            

(Petter et al., 2016), and as such serve as a start-gun to signal the interval time (Buhusi &                  

Meck, 2005). The role of dopamine in interval timing will be discussed in more detail in the                 

paragraph after exploring the role of the medial frontal cortex in performance monitoring             

and interval timing. 

 

Medial frontal cortex 

The medial prefrontal cortex is thought to play an important role in decision making,              

including conflict monitoring, error detection and inhibitory control (Carter et al., 1998;            

Ridderinkhof et al., 2004). It is important to note though that inhibitory control has also               

been interpreted as a form of conflict monitoring (Donkers & van Boxtel, 2004;             

Nieuwenhuis et al., 2003). The medial frontal cortex is thought to be activated when              

unfavorable outcomes are achieved (Ridderinkhof et al., 2004). Part of the medial frontal             

cortex, the anterior cingulate cortex, is thought to generate the error-related negativity            

(ERN; Herrmann et al., 2004). In addition to phase-locked activity as captured in the ERN,               

the medial frontal cortex is also thought to be the source of non-phase-locked theta (~4-7               

Hz) oscillations (Tsujimoto et al., 2006). As such, the ACC is seen as an important hub in                 

the performance monitoring system (Ridderinkhof et al., 2004; Rushworth et al., 2004;            

Rushworth et al., 2007).  



In addition to the role that the medial frontal cortex plays in error processing, which is                

largely fulfilled by the ACC, the medial frontal cortex in the primate brain encompasses the               

pre-supplementary motor area (pre-SMA), the supplementary motor area (SMA) and the           

supplementary eye fields (SEF; Rushworth et al., 2004; Rushworth et al., 2007). The             

pre-SMA and SMA play a crucial role in the planning, execution and control of actions,               

especially movements with temporal structure (Schwartze et al., 2012). Functionally, the           

pre-SMA and SMA can be distinguished due to their roles in internally and externally              

generated movement, respectively (Schwartze et al,. 2012). Recent intracranial recordings          

actually identified the pre-SMA as the generator of the ERN by showing that the              

intracranial variant of the ERN occurred earlier and had a larger amplitude in the pre-SMA               

than in the ACC (Fu et al., 2019). 

The medial frontal cortex also plays an important role in interval timing. Matell and              

colleagues (2003) showed that some ACC neurons in rats modulate their firing as a              

function of interval length. Recently, this role was further substantiated when Kim et al.              

(2013) found similar results in rats in the absence of any possible motor confounds. Taken               

together, these findings suggest that the medial frontal cortex might be part of an internal               

clock (Kim et al., 2013). A neuroimaging study that contrasted brain activity in timing tasks               

with and without an explicit motor component also showed consistent activation of (a.o.)             

the medial frontal cortex in the ACC and SMA (Pouthas et al., 2005; Stevens et al., 2006).                 

In addition, electrophysiological recordings in monkeys showed that neurons in the           

pre-SMA were involved in interval timing (Mita et al., 2009). All in all, some regions of the                 

medial frontal cortex, namely the ACC, SMA and pre-SMA, seem involved in performance             

monitoring and interval timing. 



 

The role of dopamine in interval timing and performance monitoring 

Previous research showed that the internal clock can be influenced through the            

administration of dopamine agonists and antagonists (Meck, 2006), such that dopamine           

agonists speed up and antagonists slow down the internal clock. In contrast, cholinergic             

manipulations affect the memory stage of interval timing tasks (Buhusi & Meck, 2005). In              

addition, patients with Parkinson’s Disease (Parker et al., 2014), Huntington’s disease           

(Paulsen et al., 2004) and schizophrenia (Rammsayer et al., 1990; Tracy et al., 1998),              

which are all diseases thought to affect the dopamine system, have impaired timing             

abilities (Buhusi & Meck, 2005). In interval timing, the interval is thought to be timed               

through the firing of a start-gun at the onset of the interval in the form of a dopaminergic                  

burst, which phase resets and synchronizes cortical oscillations (Buhusi & Meck, 2005;            

Matell & Meck, 2004). In addition to interval timing dopamine is also thought to play a key                 

role in performance monitoring (Holroyd & Coles, 2002; Ullsperger, 2010; Ulsperger et al.,             

2014). Moreover, Mueller and colleagues (2011) recently showed that low and high versus             

medium dopamine levels were related to behavioral adjustments after errors.  

 

Theta oscillations 

Theta oscillations (~4-7 Hz) from medial frontal cortex are thought to reflect cognitive             

control (Cavanagh & Frank, 2014). More specifically, theta power is thought to play an              

important role in performance monitoring, as theta oscillations in the medial frontal cortex             

have larger amplitudes after an error was committed compared to correct button presses             

(Debener et al., 2005; Luu et al., 2004). In addition, theta oscillations have been linked to                



interval timing. Parker and colleagues (2015) showed that theta power increased upon cue             

presentation when human participants and rats were instructed to perform an interval            

timing task. Importantly, this oscillatory pattern was not present in dopamine depleted rats             

or in patients with Parkinson’s Disease (Parker et al,. 2015).  

 

Current thesis 

The aim of the current thesis was three-fold. First, the aim was to explore whether EEG                

activity might be indicative of an internal clock. From the literature overview in the general               

introduction, it has become clear that the frequency of alpha oscillations are thought to              

play an important role in the speed of information processing (Treisman, 1963;            

Kononowicz & van Wassenhove, 2016) through: i) the hypothesized relationship between           

alpha frequency and the temporal resolution of the visual system (vanRullen, 2016) and ii)              

the relationship between response time and alpha frequency (Surwillo, 1961). To this end,             

EEG data was collected in two experiments where participants judged whether the elapsed             

time between a tone and a visual stimulus was short or long. The different experiments               

examined slightly different temporal intervals to assess whether any difference in correct            

and incorrect temporal judgements were general to timing mechanisms, or whether these            

differences were specific to the time intervals tested in the different experiments. The             

relationship between alpha frequency and interval timing has been examined before, but            

advances in the methodological estimation of alpha frequency justify renewed interest in            

this question. In this first empirical chapter an automated measure of alpha peak frequency              

was used and instantaneous frequency was calculated to increase the temporal sensitivity.            

If alpha frequency represents the internal clock, alpha peak frequency (APF) is expected to              



be higher on overestimated short interval trials compared to correct short interval trials,             

whereas APF is expected to be lower on underestimated long interval trials compared to              

correct long interval trials.  

Second, the aim of the current thesis was to further the understanding of theta oscillations               

from midfrontal electrodes in performance monitoring and in temporal decision making.           

From the general introduction it has become clear that the medial frontal cortex is thought               

to play an important role in performance monitoring and in interval timing. Specifically, the              

power of theta oscillations has been related to both behaviors, as enhanced theta power is               

observed directly after errors and in interval timing tasks (Parker et al., 2014). In this thesis                

the aim was to examine how medial frontal cortex exerts control over downstream regions              

after an error is committed. To this end, participants performed a go/no-go task while their               

EEG was collected. Post-error slowing (PES) was used as a behavioral measure of             

adjustments after errors. If medial frontal cortex exerts its influence on behavioral            

adjustments directly, we would predict a correlation between midfrontal theta power and            

PES. Alternatively, medial frontal cortex might exert its influence on downstream regions            

through functional connectivity with sensory regions (e.g. through amplitude-amplitude         

coupling as found by Mazaheri et al., 2009). In that case, we would expect a correlation                

between the strength of the functional connectivity and behavioral adjustments.  

In addition, power changes in the time estimation task from the first empirical chapter were               

examined. This third empirical chapter examined whether theta band power was related to             

temporal judgments. Theta power in medial frontal cortex increased when a cue was             

presented that instructed participants to perform an interval timing task (Parker et al.,             

2014). However, it remains to be elucidated whether theta power reflects activity of the              



internal clock (possibly pre-SMA) over the duration of the timed interval, reflecting the             

accumulation of temporal evidence. From the general introduction, it has become clear            

that previous literature has also implicated beta power in the indexing of interval timing              

(Kononowicz & van Rijn, 2015). Beta power measured before the reproduced interval            

correlated with longer reproductions. This suggests that higher beta power might reflect a             

slowly running internal clock, as participants let more time pass by before their threshold is               

reached to close the reproduced interval (Kononowicz & van Rijn, 2015). In this chapter              

power in different frequency bands was compared between correct and incorrect temporal            

judgments. 

Third, the role of climbing neural activity in temporal decision making was examined. In              

perceptual (non-temporal) decision making, the centro-parietal positivity (CPP) has been          

found to track the accumulation of noisy sensory evidence (Kelly & O’Connell, 2013). In              

temporal decision making, the contingent negative variation (CNV) has been implicated           

(Macar et al., 1999) and contested (Kononowicz & Penney, 2016; Kononowicz & van Rijn,              

2011; Kononowicz & van Rijn, 2014; van Rijn et al., 2011). However, these slow potentials               

have never been studies simultaneously in a temporal decision making study that shares             

many characteristics with non-temporal decision making studies as used in the study of the              

CPP. In the last empirical chapter, the time estimation experiments are analysed to study              

the contribution of the CPP and CNV in temporal decision making. In addition, error-related              

potentials are examined within the realm of temporal decision-making. If temporal errors            

are processed similarly to non-temporal errors, we would expect a larger error-related            

negativity for incorrect compared to correct responses.  



CHAPTER 2  

Alpha frequency and temporal judgements 

 

The paradigm of Chapters 2, 4 and 5 has been used for a manuscript that is currently on                  

biorxiv (https://doi.org/10.1101/224386). However, the manuscript on biorxiv is written         

about Experiment 1 and only focuses on time-frequency power. It is important to note that               

the same preprocessing pipeline and paradigm is used in Chapters 2, 4 and 5 as in the                 

manuscript on biorxiv.  

ABSTRACT 

It remains to be elucidated how humans are capable of keeping track of time on short (1-2                 

s) time scales. Already in the sixties it was hypothesized that alpha frequency might reflect               

the internal clock, mostly fuelled by findings that correlated alpha peak frequency and             

response times. Recently, alpha frequency has been linked to the resolution of the visual              

system and recent methodological advances beg a re-evaluation of the relationship           

between alpha frequency and the internal clock. Here, we used a temporal discrimination             

task where participants judged 1 vs. 1.5 s intervals in Experiment 1 and 1.5 vs 2 s intervals                  

in Experiment 2. If alpha peak frequency reflects the internal clock higher alpha frequency              

should correspond to overestimation of physical time, whereas lower alpha frequency           

should correspond to underestimation of physical time. In long interval (2 s) trials of              

Experiment 2 participants were found to have higher instantaneous alpha frequency for            

correct compared to incorrect judgments, but this effect flipped after the short interval had              

https://doi.org/10.1101/224386


elapsed. Moreover, the relationship between alpha frequency and subjective experience of           

time did not replicate in any of the other conditions. In addition, if alpha frequency               

represents the speed of information processing a negative correlation between alpha           

frequency and response times should emerge. Instead, higher alpha frequency was           

consistently correlated with slower responses. Finally, we analyzed aggregate datasets to           

substantiate null-findings in our data. Higher alpha frequency was observed in correct            

compared to incorrect responses to the long (1.5 s) interval in Experiment 1. 

 

2.1 INTRODUCTION 

Scientific research has contributed immensely to our understanding of how mammailians           

are capable of keeping track of 24-hour rhythms. The suprachiasmatic nucleus is thought             

to play a crucial role in time-keeping of these time intervals (Reppert & Moore, 1991).               

However, how humans are able to keep track of time on shorter time scales (seconds to                

minutes), remains poorly understood (Kononowicz & Van Wassenhove, 2016). An          

influential theory that was developed in the 60ies and gained traction in recent years is that                

the brain contains an accumulator that collects pulses to estimate time (Treisman, 1963;             

Surwillo, 1966; Kononowicz & Van Wassenhove, 2016). More specifically, it has been            

proposed that alpha oscillations might provide the beat or the pulses of this internal clock               

mechanism (Treisman, 1963; Treisman, 1984; Glicksohn et al,. 2009).  

Even though this hypothesis has been around for over 60 years empirical evidence             

supporting this idea seems sparse. Previous research however has related alpha (~10 Hz)             

activity to perceptual accuracy and reaction times (Dustman & Beck, 1965; Callaway &             

Yeager, 1960), which might indicate some relationship between the speed of the            



information processing system and alpha activity (but see Klimesch et al., 1996 for an              

alternative explanation of the earlier findings). Alpha oscillations are a suited candidate for             

such a mechanism, because pacemakers of the alpha rhythm have been described in the              

thalamus (Andersen et al., 1968). Moreover, the thalamus is well-known for its            

interconnectedness with other brain regions (Jones, 2001). As such, pacemaker cells in            

the thalamus that function at an alpha rhythm might enslave cortical regions and underlie a               

cortical, distributed pacemaker (Hughes and Crunelli, 2005; Klimesch, 2012). 

Indirect evidence that information processing in the brain undergoes a rhythmic process            

stems from recent research, which has identified behavioral oscillations where stimulus           

detection was better at certain time points than others (~7 Hz; Busch & VanRullen, 2010;               

Fiebelkorn et al., 2013; Landau & Fries, 2012; Landau et al., 2015; VanRullen et al., 2007).                

It is important to note that the exact frequencies in these studies range from ~4-8 Hz.                

Moreover, these behavioral oscillations have been described mostly in spatial attention           

paradigms. Although a recent study extended these findings to feature-based attention (Re            

et al., 2019). Taken together, these studies might suggest that information processing in             

the brain is bound by an alpha rhythm (VanRullen, 2016). 

In addition to behavioral oscillations, the influence of alpha phase as recorded with MEG or               

EEG, has been studied extensively. Several studies have supported the idea that stimulus             

detection and alpha phase are coupled (Ai & Ro, 2014; Busch et al., 2009; Mathewson et                

al., 2009; Milton & Pleydell-Pearce, 2016). This suggests that alpha oscillations might be             

related to more and less excitable cortical states and this idea was further substantiated by               

findings relating local field-potentials in the alpha band to neural firing probability (Haegens             

et al., 2011), where neurons were found to be more likely to fire in the trough compared to                  



the peak of the alpha oscillation. However, a recent registered report failed to replicate the               

relationship between alpha phase and stimulus detection (Ruzzoli et al., 2019). 

Top-down control over the excitable phases of the alpha oscillations would suggest            

timekeeping mechanisms that might rely on alpha activity. Although there are some            

inconsistencies in the literature with regards to top-down control of alpha phase (van             

Diepen et al., 2015), recent research suggests that when task difficulty is sufficiently high,              

top-down control of alpha phase adjustments can be observed (Samaha et al., 2015;             

Solís-Vivanco et al., 2018). Another line of research investigated the role of alpha             

frequency in separating and integrating multisensory information. Cecere and colleagues          

(2015) showed that individual alpha frequency (IAF) correlated with the sound-induced           

double-flash illusion, where participants with a lower IAF, and hence longer alpha cycles,             

experienced the sound-induced double-flash illusion across a longer inter-beep interval          

(i.e. longer inflection point). Moreover, application of tACS to speed up or slow down IAF               

with 2 Hz affected the sound-induced double-flash illusion such that speeding up of IAF led               

to shorter inflection points and slowing down of IAF led to longer inflection points (Cecere               

et al., 2015). In addition, Samaha & Postle (2015) showed that IAF correlated with              

two-flash fusion thresholds, such that faster IAF yielded more accurate two-flash           

discrimination behavior. 

Ronconi & Melcher (2017) used rapid presentation of sensory stimuli, also referred to as              

entrainment, to influence IAF to examine the causal relationship between IAF and            

integration and segregation of visual information. Importantly, they showed that stimuli that            

were presented within the same phase of the theta/alpha oscillation were more likely to be               

integrated into a single percept, whereas stimuli that were presented at opposing phases             



of the theta/alpha cycle were more likely to be segregated into two separate percepts              

(Ronconi & Melcher, 2017). However, Ronconi & Melcher (2017) found only partial support             

for the idea that speeding up of the IAF through entrainment would lead to better               

discrimination performance (in fact, the findings from their first experiment were in the             

opposite direction such that speeding of the IAF was correlated with poorer discrimination             

performance). All in all, these findings hint at a possible relationship between alpha             

frequency and the resolution of the visual system. Although it is important to note that the                

original findings of both Samaha & Postle (2015) and Cecere et al. (2015) were not               

replicated in a recent attempt to combine these studies in a full parametric design (Bürgers               

& Noppeney, in prep). Moreover, Bayes factors consistently supported the null, suggesting            

that the relationship between IAF and the integration or segregation of audio-visual            

information is less straightforward than previously thought (Bürgers & Noppeney, in prep). 

For the hypothesis that alpha frequency serves as the temporal pacemaker of the brain,              

the findings discussed so far need to be extended beyond the (audio-)visual system.             

Surwillo (1961) showed that lower IAF correlated with longer response times (RT) and that              

higher IAF correlated with shorter RT (see also Jin et al., 2006). Again, these findings were                

later found not to replicate by Boddy (1971). However, when participants learned to speed              

up or slow down their IAF based on biofeedback, participants were faster or slower              

depending on their IAF such that when participants sped up their IAF, response times              

became faster (Woodruff, 1975). Previous research showed that the alpha frequency           

differs between participants and is relatively stable within a participant (Haegens et al.,             

2014), which supports the idea that IAF reflects a general timing mechanism. Moreover,             

Haegens and colleagues (2014) found that alpha peak frequency scaled with cognitive            



load in a working memory task, such that higher load corresponded to higher peak              

frequency. In addition, Moran et al. (2010) showed that alpha peak frequency correlated             

with working memory performance such that participants with higher working memory          

performance had higher peak frequency. Taken together, these findings suggest that           

higher IAF might be indicative of faster or more efficient information processing.  

Limited research has directly examined the link between IAF and temporal decision            

making. Treisman (1984) found no direct relationship between temporal production          

intervals and IAF (but see Treisman et al., 1994). However, Glickson et al. (2009) found               

that taking interhemispheric differences in IAF into account led to a correlation between a              

left-right interhemispheric IAF index and produced durations. To shed light onto these            

contradictory findings, the current EEG study examined the relationship between alpha           

frequency and interval discrimination. To this end, an automated procedure was used to             

estimate IAF to exclude effects due to the large amount of researcher-degrees of freedom              

researchers typically encounter when estimating IAF (Corcoran et al., 2018). In addition,            

instantaneous frequency was used to track moment-to-moment changes in alpha peak           

frequency (Cohen, 2014; Mierau et al., 2017). If alpha frequency represents an internal             

clock we expect to see higher alpha frequency for overestimated time intervals and lower              

alpha frequency for underestimated time intervals. Moreover, if alpha frequency represents           

the general speed of the operating system, we would expect higher alpha frequency to be               

associated with shorter response times and lower alpha frequency with longer response            

times. 

 



2.2 MATERIALS & METHODS 

2.2.1 Participants 

Twenty-three healthy adults participated in Experiment 1. Data from five participants were            

excluded (three participants made too few, i.e. <20, errors in the short interval, one              

participant made too few errors in the long interval and one participant made too few errors                

in both intervals). Eighteen datasets were therefore used for further analyses (13 females,             

mean age: 26 years, range: 19-40 years, 3 left handed). Sixteen adults (all right handed)               

participated in Experiment 2; none had participated in Experiment 1. Data from 3             

participants was excluded (two participants made too many errors, >75%, on the short             

interval and one participant made too few errors, i.e. <20, on the long interval). Thirteen               

datasets were used for further analyses (10 females, mean age: 19 years, range: 18-21              

years, all right handed). 

Participants had normal or corrected-to-normal vision and hearing and they had no known             

history of neurological disorders. In concordance with university guidelines, participants          

were paid £6 or 1 participation credit per hour. Participants gave written informed consent              

before data collection. Ethical approval was provided by the Ethics Committee of the             

University of Birmingham. 

2.2.2 Paradigm 

We utilized a novel two-forced-choice temporal judgement paradigm where the          

participant’s task was to estimate whether the time between an auditory stimulus and a              

visual stimulus was short or long (1 s versus 1.5 s in Experiment 1 and 1.5 s versus 2 s in                     



Experiment 2), via a button press (Figure 2.1). The paradigm was programmed in Matlab              

(Natick, MA) using Psychophysics Toolbox extension (Brainard, 1997; Kleiner et al, 2007;            

psychtoolbox.org). The auditory stimulus was a pure tone of 1000 Hz, which was             

administered through headphones (Sennheiser, HD 280 PRO) and lasted for 50 ms            

(including a 5 ms rise and fall shaped by a Blackman window). The tone signified the start                 

of the interval, which was followed by a visual stimulus that indicated the end of the                

interval. The visual stimulus was a Gabor patch (angle 5° clockwise, contrast 80%, spatial              

frequency 10 Hz, phase 0°), which lasted for 50 ms. Short and long intervals were               

randomly interspersed. 

 

 

 

Figure 2.1 Experimental paradigm for Experiment 1. Participants performed a discrimination task            

estimating the time interval between the tone and the visual stimulus. Trials were initiated with the presentation                 

of a 1000 Hz pure tone for 50 ms. The tone was followed by a Gabor patch, which lasted for 50 ms, at 1 or 1.5                          

s after the tone was presented in Experiment 1 and at 1.5 or 2 s for Experiment 2. Participants judged whether                     

the interval between the tone and the visual stimulus was short or long by pressing a button. Participants had                   

900ms to respond. After the response (or after 900 ms) a new trial was initiated. A light grey placeholder was                    

always on the screen to minimize eye movements. ITI = inter-trial interval.  

 



After the visual stimulus participants responded with a button press, using the index (left              

button) or middle (right button) finger of their right hand to indicate long or short intervals.                

Response buttons were randomly counterbalanced across participants. If participants did          

not respond within 900 ms, a screen was displayed that read “Too slow! Please respond               

faster.” Participants were pushed to respond fast to enhance the likelihood that they would              

make errors. The dataset of Experiment 1 presented here contains data of 9 participants              

that pressed the left mouse button for the long interval and 9 participants that pressed the                

right mouse button for the long interval. The dataset of Experiment 2 presented here              

contains data of 7 participants that pressed the left mouse button for the long interval and                

6 participants that pressed the right mouse button for the long interval. 

Participants were seated in front of a computer screen and the distance from the monitor               

to the participants’ eyes was passed onto the stimulus computer, such that the visual              

stimulus was always presented at a visual angle of ~4°. To assure participants kept their               

eyes on the screen a light grey placeholder was presented centrally on the grey              

background (Figure 2.1). The placeholder was 5% larger than the Gabor patch, so the              

Gabor patch fell inside the placeholder.  

Participants practiced for 3 blocks that consisted of 12 trials each. Participants received             

feedback after each block. The EEG recording started by collecting resting state data with              

eyes open and eyes closed for 30 s each. This procedure was performed twice, randomly               

starting with either eyes closed or eyes open data collection. The resting state EEG data               

was not used for the purpose of this study. Following this, participants performed 16 blocks               

of 60 trials, yielding a total of 960 trials per participant. Each block lasted ~3 min and                 

participants were instructed to rest their eyes in between blocks. The refresh rate of the               



screen was 60 Hz and all timings of the experiment were set as multiples of this refresh                 

rate. 

2.2.3 Behavior 

Behavioral measures consisted of response times and error rates. Response times were            

calculated from visual stimulus onset until response. Errors were calculated for each            

interval condition separately by calculating the percentage of errors relative to the total             

number of trials in that condition. Statistical analyses were performed on response times             

and errors, where the subject-specific averages were subjected to repeated-measures          

ANOVA. For response time the factors were interval (short or long) and response (correct              

or incorrect). Post-hoc analyses were performed through dependent samples t-tests. For           

error rates we also used dependent samples t-tests to compare error rates of the short and                

long interval. 

In addition to response times and error rates, I examined signal detection theory measures              

of behavior. I examined a measure of participants’ performance as indicated by d’ (Green              

& Swets, 1966; Macmillan & Creelman, 2004), where d’ is a measure of sensitivity or the                

ability to separate the long and short time intervals: 

     (1)(H) (FA)d′ = z − z  

When intervals are easy to discriminate, d’ will be high and when task difficulty is high and                 

intervals are difficult to distinguish d’ will be low. Bias ( ) is a measure of a participant’s          β        

inclination to prefer one response option over another:  

     (2)β =  − 2
z(H) + z(FA)| |  



When is close to 0, participants don’t show a preference for one response over the other. β                

A negative indicates a bias towards the long interval response and a positive indicates  β            β  

a bias towards the short interval response.  

Finally, the response time distributions of correct and incorrect responses to short and long              

intervals were compared through visual inspection for the different experiments. An           

exemplar participant for each experiment is shown in the results section. To assess             

whether there were differences in the overlap between RT distributions of correct            

responses to the short and long interval the Bhattacharyya coefficients were calculated            

(Bhattacharyya, 1943). To this end, the response time distribution of the long intervals was              

moved by 500 ms such that the response times aligned with interval onset time for both                

short and long intervals (i.e. response time relative to the offset of the short time interval).                

The overlap term was scaled for differences in trial counts. The different experiments were              

compared by applying an independent samples t-test to assess whether there were            

differences in overlap between the experiments.  

2.2.4 Temporal jitter in experimental paradigm 

Testing of the timing of the stimuli showed an off-set of the presentation of the visual                

stimulus (i.e. the offset of the time interval). The visual stimulus was presented with a               

random jitter of ~40 ms, meaning it could be presented between 980 and 1020 ms after the                 

tone onset, where the visual stimulus onset should have been 1000 ms. The error was               

discovered before the data collection of Experiment 2. However, it was decided not to              

change the paradigm for data collection of the second experiment. A remaining open             



question is how much this temporal jitter affects the estimation of supra-second time             

intervals. 

2.2.5 Alpha peak frequency and instantaneous frequency 

To estimate alpha peak frequency we used an automated approach (Corcoran et al., 2018)              

that smooths the power spectral density (PSD) and estimates the alpha peak frequency.             

PSD were computed in the post-tone interval (500-1000 ms after tone onset for short              

interval trials in Experiment 1, 500-1500 ms after tone onset for long interval trials in               

Experiment 1, 500-1500 ms after tone onset for short intervals in Experiment 2 and              

500-2000 ms after tone onset for long intervals in Experiment 2) and averaged over trials               

separately for short and long intervals and response outcomes (correct, incorrect). It            

remains to be elucidated how many alpha sources exist and where there are located in the                

brain. Here, two different sets of electrodes were used to estimate alpha peak frequency.              

One region of interest was frontocentral: Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2,                

FC6, C3, Cz, C4, F5, F1, F2, F6, FC3, FCz, FC4, C5, C1, C2, C6 and the other was                   

parieto-occipital: POz, O1, O2, PO5, PO3, PO4, PO6, PO7, PO8, Oz, Pz, P1, P3, P5, P2,                

P4, P6. 

Power estimates were normalized by dividing power at each frequency with the average             

power in the 3-30 Hz range (Corcoran et al., 2018; Cross et al., 2018 biorxiv). The alpha                 

band was defined from 6-14 Hz. The normalized PSD was smoothed by applying a              

Savitzky-Golay filter (SGF; Benwell et al., 2019; Corcoran et al., 2018; Keitel et al., 2018;               

Savitzky and Golay, 1964), which uses a least-squares polynomial fitting procedure. The            

parameters of the automated fitting procedure related to the SGF were set according to the               



default settings used in Corcoran et al. (2018): Fw represents the filter width of the SGF                

and was set to 11, the polynomial degree k of the SGF was set to 5. Savitzky & Golay                   

(1964) showed that their procedure smooths noisy data, while maintaining the shape and             

height of the waveform peaks (Schafer, 2011). The polynomial family is described by: 

(n) np = ∑
N

k=0
ak k    (3) 

A subset of samples of 2 + 1 are centered around = 0 (Schafer, 2011). The     M      n      

mean-squared error for the subset of samples are given by: 

    (4)EN = ∑
M

n = −M
( p(n) x[n] )−  2  

   (5) =  ∑
M

n = −M
n  x[n]( ∑

N

k = 0
ak k −  )2

 

The output for the next subset of samples is obtained by moving one sample to the right                 

(Schafer, 2011).  

For a given polynomial with degree the output can be calculated through discrete      N        

convolution (Schafer, 2011): 

      (6)[n] [m]x[n ]y =  ∑
M

m = −M
h − m  

        (7)[n ]x[m]=  ∑
n + M

m = n − M
h − m  

Differentiation of in (2) and setting this derivative for each of the + 1 coefficients to 0   EN           N      

allows the determination of the optimal coefficients for the polynomial in (1): 

      (8) n  ∂ai
∂EN =  ∑

M

n = −M
2 i n  x[n]( ∑

N

k = 0
ak k −  ) = 0  



After applying the SGF the first and second derivatives from the filtered data are obtained               

to locate local minima and maxima in the PSD. The first derivative describes the            (x)g′    

slope of a tangent line to a function , such that:(x)g  

        (9)(x) g′ =  lim
Δx→0 Δx

Δg(x)  

and when this slope is 0, the function is at a peak or trough. Moreover, a peak in        (x)g            (x)g  

will be preceded by positive values of before 0 and followed by negative values of       (x)g′          

 after 0. And vice versa for a trough in .(x)g′ (x)g   

Inflection points in can be described by the same zero-crossings approach in the   (x)g            

second derivative. The second derivative describes whether is concave up or       (x)g      

concave down. The second derivative is simply the derivative of the first derivative: 

       (10)(x) g′′ =  lim
Δx→0 Δx

Δg (x)′  

and when is 0, the slope of is constant, indicating an inflection point. Taken  (x)g′′       (x)g         

together, the first and second derivatives are used to identify peaks and their boundaries in               

the PSD. 

The peaks and boundaries obtained were compared to the background noise, which was             

estimated with a first order polynomial (regression line) to the normalized, log-transformed            

PSD (i.e. before SGF application). If the peaks were >1 standard deviation away from the               

regression line (default setting of minP, Corcoran et al., 2018), the peak was determined a               

true peak, as it was far enough removed from the background noise. In addition, the peak                

needed to be 20% higher than other peak candidates (default setting of pDiff, Corcoran et               

al., 2018). Before combining the peaks of different channels, the peaks at each channel              

were scaled according to , which was defined as:Q  



       (11)Q = i −i2 1

SD(f ) df∫
i2

i1

P

 

Where is the scaled average power within the peak interval bounded by . Note Q              i ,[ 1 i2]   

that this is different from the bounds of the frequency range of interest as the peak interval                 

bounds can be much narrower, and does not take into account secondary peaks. Higher              

values of are indicative of narrower peaks. Finally, the within subject channel estimates  Q             

are scaled according to their values and a weighted average is obtained. The minimum     Q           

number of channels used for cross-channel average, cMin, was set to 2 (the default setting               

used in Corcoran et al., 2018). 

As explained in the introduction of this chapter, a higher temporal resolution of the              

frequency of the oscillation might be obtained by estimating instantaneous frequency           

(Cohen, 2014; Mierau et al., 2017). To this end the data was bandpass filtered in the                

frequency range of interest between 7-14 Hz with transition zones of 15%. A Hilbert              

transform was applied to obtain the analytic signal over the entire epoch (from -1 s before                

tone onset until +3.5 s after tone onset). Then, the phase angle time series were extracted                

and the temporal derivative was calculated (Cohen, 2014):  

      (12)(t) arg{H{s(t)}}f =  1d
2πdt  

where H{s(t)} is the Hilbert transform of the EEG signal s(t) filtered in the alpha band and                 

arg{H{s(t)}} is the unwrapped instantaneous phase angle time series. Finally, 10 median            

filters (linearly spaced between 10-400 ms as recommended by Cohen, 2014) were            

applied to filter out artefacts that are produced by taking the temporal derivative of the               

phase angle time series.  

 



2.2.6 Statistics 

Non-parametric cluster-based permutation statistics were applied to the instantaneous         

frequency when comparing correct and incorrect responses to correct for multiple           

comparisons across electrodes and time points (Maris and Oostenveld, 2007). The time            

window of interest spanned from 500 ms after tone onset until the presentation of the               

visual stimulus. Clusters were obtained when more than two neighbouring electrodes           

exceeded a threshold of p < .025 from a two-tailed dependent samples t-test.             

Instantaneous alpha frequency comparisons of correct and incorrect responses were          

tested two-tailed (p < .025). The Monte Carlo p-values of each cluster were obtained by               

randomly swapping condition labels within participants 2500 times. This randomization          

procedure is used to create a null distribution, which is subsequently used for comparison              

to the observed effect. For correlation analyses, we compared Fisher’s z-transformed           

correlation values to 0.   

For alpha peak frequency correct and incorrect responses to short and long intervals were              

compared separately through dependent samples t-tests. This statistical analysis was          

performed separately for the different experiments and the different regions of interest            

(fronto-central and posterior-occipital, see above). A mixed effects ANOVA was applied           

when combining the alpha peak frequency measures across both experiments to increase            

the power of the analysis. The mixed effects ANOVA had a 2 × 2 design, with experiment                 

as between-subjects factor (Experiment 1 vs. Experiment 2) and interval length as the             

within-subjects factor (short vs. long interval). The difference in alpha peak frequency            

between correct and incorrect responses was used as input to the mixed effects ANOVA. 

 



2.2.7 Instantaneous frequency and response time 

Next, we asked whether fluctuations in instantaneous frequency were associated with           

response times. To this end, we calculated Spearman’s ranked correlation between           

instantaneous frequency at each time point and electrode with response time. We            

z-transformed the rank correlation according to the formula in 2.2.5. We compared the             

z-scores for correct and incorrect responses and short and long intervals to 0 through a               

cluster based permutation test by collapsing over the time interval that was indicated by              

the previous analysis where we compared instantaneous frequency of correct and           

incorrect responses. If alpha frequency represents both the internal clock and the speed of              

the system we would expect shorter response times when the instantaneous frequency is             

higher and longer response times when the instantaneous frequency is lower. 

 

2.2.8 Fixed effects analyses 

To substantiate any null-findings a more sensitive analysis was performed by treating the             

data from all participants as coming from one single aggregate dataset. To this end, the               

epochs were cut from tone onset until visual stimulus onset and the trials were              

concatenated for each channel. The data was normalized through z-scoring: 

        (13) z = σ
x − x  

where is the concatenated trial data at that channel, is the averaged activity across x          x       

the concatenated trial time points, and is the standard deviation of that activity. After   ×     σ          

normalizing the individual participant data, the data is concatenated across participants in            

an aggregate dataset.  



The covariance matrix of the aggregate dataset was obtained and eigenvalue           

decomposition was applied to the covariance matrix (i.e. principal component analysis).           

Next, the three eigenvectors (or eigenvariates) with the largest eigenvalues were used as             

the unmixing matrix, which were projected onto the aggregate dataset. Then the aggregate             

dataset was divided back into trials time points and the trials were split into the      ×           

conditions (short interval, correct response; short interval, incorrect response; long interval,           

correct response; long interval, incorrect response) they belonged to. Finally,          

instantaneous frequency was acquired from the data for each principal component           

separately. Cluster-based permutation statistics were used to correct for multiple          

comparisons over time (from 500 ms after tone onset until visual stimulus onset). Correct              

and incorrect responses for the short and long interval conditions were compared            

separately and the data were treated as coming from a single subject with independent              

samples t-test. 

 

2.3 RESULTS 

2.3.1 Behavior 

Participants judged whether the time interval between a tone and a visual stimulus was              

short or long. For Experiment 1 (Figure 3.2A, left) we found that participants were faster on                

correct (μ = 354 ms) than incorrect (μ = 420 ms) responses, which came about as a main                  

effect of response (F(1,17) = 69.807, p < .001, ηp2 = .804). We also found that participants                 

were faster on long (1.5 s, μ = 360 ms) than short (1 s, μ = 415 ms) interval trials, as                     

indicated by a main effect of interval length (F(1,17) = 35.538, p < .001, ηp2 = .676).                 



Finally, we found that participants were fastest on correctly perceived long trials, through a              

significant interaction effect of response x interval length (F(1,17) = 40.882, p <.001, ηp2 =               

.706). Post-hoc analyses showed that participants were faster (t(17) = -11.45, p <.001) on              

correct (μ = 291 ± 11 ms, mean ± SEM) compared to incorrect (μ = 429 ± 16 ms) trials for                     

the long interval, but there was no significant difference (t(17) = .3862, p <.7) between               

correct (μ = 418 ± 15 ms) and incorrect (μ = 412 ± 23 ms) judgements on the short interval. 

 

 

Figure 2.2 Response times and error rates for temporal discrimination of both experiments. Participants              

were fastest for correctly judged long interval trials in Experiment 1 (A; left). Participants were also fastest on                  



correctly judged long interval trials in Experiment 2 (A; right). Participants responded faster in correct (light                

grey) compared to incorrect judgements of the short interval in Experiment 2, but not in Experiment 1. For                  

Experiment 1 (B; left) we found that participants made significantly more errors in the long (1.5 s) interval than                   

in the short (1 s) interval. For Experiment 2 (B; right) we found no significant difference in error rates between                    

long (2 s) and short (1.5 s) intervals. Error bars on all plots represent 1 standard error of the mean over                     

participants, opaque lines and open dots represent single participant data, whereas the mean is represented in                

thick black lines. For response times the median was chosen to represent single participant’s data. 

 

For Experiment 2 (Figure 2.2A, right) we found roughly a similar pattern where participants              

responded fastest to correctly judged long interval trials, although participants now           

responded faster to short interval trials incorrectly judged as long compared to correctly             

judged as short. As a result, participants were not significantly faster on correct (μ = 338                

ms) than incorrect (μ = 364 ms) responses, as shown by a trending main effect of                

response (F(1,12) = 4.658, p = .052, ηp2 = .280). As in Experiment 1, participants were                

faster (μ = 326 ms) on long interval trials compared to short (μ = 376 ms) interval trials,                  

which came about as a main effect of interval length (F(1,12) = 61.033, p <.001, ηp2 =                 

.836). Finally, we found that participants were fastest on correctly perceived long trials,             

through a significant interaction effect of response × interval length (F(1,12) = 40.146, p              

<.001, ηp2 = .770). Post-hoc analyses showed that participants were faster (t(12) = -5.42, p               

<.001) on correct (μ = 260 ± 10 ms) compared to incorrect (μ = 392 ± 26 ms) trials for the                     

long interval and we observed the opposite pattern for the short interval trials where              

participants were faster (t(12) = 5.1, p <.001) for incorrect (μ = 336 ± 18 ms) compared to                  

correct (μ = 416 ± 19 ms) responses.  



Visual inspection of the full response time distributions of Experiment 1 showed an             

approximately normal distribution for response times to the short interval. Whereas           

responses to the long interval showed a clearer peak for earlier responses (Figure 2.3).              

The normally distributed response times for the short duration make it more difficult for a               

drift diffusion model to fit well to these data (Guy Hawkins, email communication, October              

2019). 

  



 

 

Figure 2.3 Response time distribution for an exemplar participant. Responses to the short interval 
presentation were approximately normally distributed (A), whereas responses to the long interval were more 
clustered around earlier response times (B). Correct responses in blue, incorrect responses in red. 

 

Visual inspection of the response time distributions of Experiment 2 showed very similar             

dynamics to the response time distributions of Experiment 1, with the exception of a larger               

leading edge for the long interval choices. Note that it was more difficult to choose an                

exemplar participant as behavior was more variable in experiment 2 than in experiment 1              

(see error rates in Figure 2.2). In the long (2s) interval of Experiment 2 participants showed                

more response times below 200 ms (Figure 2.4). 

 

 



Figure 2.4 Response time distribution of an exemplar participant for Experiment 2. Responses to the               

short interval presentation were approximately normally distributed (A), whereas responses to the long interval              

were more clustered around earlier response times (B). When comparing these RT distributions to the               

distributions in Figure 2.3 the most striking difference is the leading edge in the correct long interval                 

judgements. Correct responses in blue, incorrect responses in red. 

 

To assess whether there were differences in response time distributions between the            

different experiments I calculated the Bhattacharyya coefficients for correct responses.          

These coefficients provide a measure of similarity of the response time distributions.            

Importantly, correct responses times were compared for short and long intervals by locking             

them to the real (short) or probable (long) presentation of the tone. Independent samples              

t-test showed that the coefficients were larger for experiment 2 (0.23 ± 0.1, mean ±               

standard deviation) than for experiment 1 (0.16 ± 0.08; t(29) = 2.1, p = .045; Figure 2.5),                 

which means that the response time distributions were more similar in Experiment 2 than              

in Experiment 1. 

 



 

Figure 2.5 Overlap in correct response time distributions for short and long intervals was larger for                

Experiment 2 than 1. Error bars represent standard error of the mean. 

 

Taken together, our response time data suggests that participants respond fastest to long             

interval trials that are experienced as long. Importantly, this effect is dependent on context              

given that we observed a different pattern for 1.5 s intervals in Experiment 1 (as the long                 

interval) compared to Experiment 2 (as the short interval).  

In addition to response times, we also looked at error rates. In Experiment 1 participants               

made more errors (Figure 2.2B, left; t(17) = -4.32, p <.001) in the long (1.5 s, μ = 27.8 ±                    

2.9%) compared to the short (1 s, μ = 11.0 ± 1.6%) interval. In Experiment 2 participants                 

did not make significantly (Figure 2.2B, right; t(12) = -0.467, p >.6) more errors in the long                 

(2 s, μ = 30.4 ± 5.0%) or in the short (1.5 s, μ = 27.1 ± 3.4%) interval. In summary,                     

participants made ~23% errors on these tasks and participants made less errors on the 1 s                

interval than on longer intervals.  



Finally, I examined signal detection theory measures of performance. d’ values indicate            

whether participants are able to discriminate between short and long intervals (Figure 2.6             

left plot of A and B). An independent samples t-test showed that participants obtained              

higher d’ for Experiment 1 (μ = 1.9 ± 0.4, mean ± standard deviation) than Experiment 2 (μ                  

= 1.2 ± 0.6; t(29) = 4.1, p < .001). Bias is a measure of participants’ tendency to report one                    

response over another (Figure 2.5 right plot of A and B). Participants showed a larger               

response bias in Experiment 1 (μ = 0.3 ± 0.3) than in Experiment 2 (μ = 0.0 ± 0.3; t(29) =                     

2.3, p = 0.023). Moreover, participants had a response bias to responding short in              

Experiment 1 as indicated by a dependent samples t-test that compared the bias to 0               

(t(17) = 4.5, p < .001). The response bias did not differ from 0 in Experiment 2 (t(12) = 0.3,                    

p > .05). 

 

 



Figure 2.6 Signal detection theory measures of behavior. d’ is a measure of participants ability to                

discriminate between long and short intervals (A and B, leftward plot) and . provides a measure of a                  

participant’s tendency to respond one response option over another (A and B, rightward plot). d’ was                

significantly higher for Experiment 1 than Experiment 2 (compare leftward plot of A and B). was also                  

significantly higher for Experiment 1 than Experiment 2 (compare rightward plot of A and B). was significantly                  

different from 0 in Experiment 1 (rightward plot in A), indicating that participants had a bias to respond that they                    

experienced a short interval.  

 

2.3.2 Alpha frequency and the internal clock 

We first calculated instantaneous frequency to examine whether the speed of alpha            

oscillations correlated with over- or underestimation of interval discrimination. If the speed            

of alpha oscillations relates to the speed of the internal clock, higher alpha frequencies              

should relate to temporal overestimation and lower alpha frequencies to underestimation.           

To this end, instantaneous frequency of correct and incorrect judgments to short and long              

interval trials were compared separately. In Experiment 1 no differences between correct            

and incorrect responses were observed in the short (1 s; one negative cluster with p = .14)                 

or long (1.5 s; two negative cluster with smallest p = 0.18) interval (Figure 2.7A and B). In                  

Experiment 2 the short (1.5 s) intervals showed no differences between correct and             

incorrect responses (Figure 2.7C; 5 positive clusters with smallest p = .13). The long (2 s)                

interval trials had instantaneous alpha frequency estimates that were higher for correct (μ             

= 10.13 ± 0.10 Hz) than for incorrect (μ = 10.03 ± 0.095 Hz) responses over a                 

left-lateralized occipito-parietal cluster (Figure 2.7A; black/white inset). The difference in          

alpha frequency was significant (p = .009) and largest from 1122-1304 ms post-tone onset.              

This finding supports the hypothesis that lower alpha frequency is related to temporal             



underestimation. However, contrary to this hypothesis, a significant cluster (p = .006) with             

the opposite effect over the same electrodes appeared from 1694-1902 ms, such that             

instantaneous frequency was higher in incorrect (μ = 10.13 ± 0.086 Hz) responses than              

correct (μ = 10.03 ± 0.081 Hz) responses (Figure 2.7D).  

 

Figure 2.7 Instantaneous frequency for different interval lengths for Experiment 1 and 2. Participants              

discriminated trials of different lengths and instantaneous alpha frequency was estimated between 500 ms              

after tone onset (black line with speaker icon) until visual stimulus onset (black line with Gabor patch).                 

Participants correctly (blue lines) or incorrectly (red lines) identified the interval length. In Experiment 1 there                

was no difference in instantaneous alpha frequency between correct and incorrect responses for the short (A)                

or the long interval (B). In Experiment 2 there was no difference in the short interval (C), but there was a                     



significant difference between correct and incorrect responses for the long interval (D). A positive cluster was                

identified, which was most pronounced from 1122-1304 ms after tone-onset. Instantaneous alpha frequency in              

this time window correlated positively with response times for correct and incorrect responses (see insets). In                

addition, a negative cluster was identified, which was most pronounced from 1694-1902 ms after tone-onset.               

Instantaneous alpha frequency in this time window correlated positively with response times for correct              

responses (see inset). This pattern was not observed for incorrect responses. * represent electrodes with               

significant correlation values, dotted lines represent significant time points. 

Next, we asked whether the differences in instantaneous frequency we observed in the             

longer interval of Experiment 2 were associated with response times. If instantaneous            

alpha frequency reflects the speed of the internal clock, and as such is a reflection of the                 

speed of information processing, we would expect shorter response times for trials with             

higher alpha frequency. However, if alpha frequency independently reflects the internal           

clock, and is not related to the speed of information processing, we would expect slower               

response times when less pulses are accumulated in the correct trials and longer response              

times when more pulses are accumulated in the incorrect trials. However, the results we              

obtained followed a mix of these predictions (Figure 2.7D; insets). For correct responses             

we found that in the early time window alpha frequency was positively associated (p = .01)                

with response times (z = 0.598 ± 0.146). For incorrect responses we found that in the early                 

time window alpha frequency was positively associated (p = .004) with response times (z =               

1.199 ± 0.245). In the later time window we found a positive association (p = .002)                

between correct responses and response times (z = 0.745 ± 0.124). We did not find a                

significant association between response times and alpha frequency for incorrect          

responses in the later time window. 



After examining instantaneous alpha frequency we examined alpha peak frequency (APF)           

for task-related activity. Although APF does not have the temporal resolution           

instantaneous frequency has, the APF measure is easier to interpret. We examined the             

period after the evoked response to the tone has died out (500 ms after tone onset) until                 

visual stimulus onset. Figure 2.8 shows the APF for occipito-parietal (top row) and             

fronto-central (bottom row) electrodes. We did not find any significant effects when we             

compared correct and incorrect responses on the long or short interval for either             

experiment or topographical region of interest (posterior-occipital or fronto-central; Table          

2.1). Combining the data of both experiments in a mixed effects ANOVA on the difference               

in APF between correct and incorrect responses with interval length as a within-subjects             

factor (short and long intervals) and experiment as the between subjects factor also did not               

yield any significant effects for APF estimated at fronto-central (p > .1) or posterior-occipital              

(p > .4) electrodes. 

Table 2.1 Alpha peak frequency for the different trial types in both experiments. FC = frontro-central, PO                 

= posterior-occipital, C = correct, I = incorrect. 

 Interval Response FC APF Statistics PO APF Statistics 

Exp 1 Short C 9.20 ± 1.82 t(14) = 
1.74  
p  = .1 

9.80 ± 1.50 t(13) = 
0.20  
p  = .85  I 9.06 ± 1.98 9.65 ± 1.65 

Long C 9.14 ± 1.86 t(15) = 
0.83  
p  = .42 

9.52 ± 1.78 t(16) = 
1.32  
p  = .21  I 9.33 ± 2.17 9.20 ± 1.92 

Exp 2 Short C 8.78 ± 1.60 t(11) = 
-0.1 
p = .92 

7.96 ± 1.27 t(8) =  
0 .09  
p = .93  I 8.52 ± 1.03 7.84 ± 1.27 

Long C 9.51 ± 1.89 t(11) = 
-0.8  
p  = .45 

7.73 ± 1.41 t(8) = -0.08  
p = .94 

 I 8.69 ± 1.83 8.01 ± 1.57 



 

 



Figure 2.8 Alpha peak frequency for posterior-occipital and fronto-central electrodes. Red lines            

represent means without taking missing values into account. Black lines and open circles represent individual               

participant data.  

 

2.3.3 Aggregate data analysis 

To increase the sensitivity of the analyses and to substantiate the null-finding of the APF               

an aggregate dataset was created. To this end individual participant’s data was normalized             

and all trials belonging to the same experiment were treated as belonging to one              

(aggregate) participant. The data dimensionality was reduced through principal component          

analysis and 3 eigenvectors with the highest eigenvalues were selected for further            

analyses. Instantaneous alpha frequency was calculated on each component separately.          

For Experiment 1 the 3 components explained 72.82% of the variance. Moreover,            

instantaneous alpha frequency of component 2 (variance explained: 18.09%) differed          

significantly for correct and incorrect responses for long interval trials (Figure 2.9A, bottom             

row, middle column, p = .008). The difference between correct and incorrect responses             

was most pronounced from 1272-1500 ms after tone-onset. Component 1 (Figure 2.9A,            

bottom row, left column; variance explained: 39.46%) and 3 (Figure 2.9A, bottom row, right              

column; variance explained: 15.27%) did not show differences for the long interval. Neither             

of the components showed any significant differences for the short interval (Figure 2.9A,             

top row). 

For Experiment 2 the 3 components explained 63.51% of the variance. But there were no               

significant differences between correct and incorrect responses for the short or long            



intervals for any of the components (Figure 2.9B; no clusters, variance explained per             

component: 34.10%, 15.17% and 14.23%). 

 

 

Figure 2.9 Instantaneous alpha frequency as calculated for aggregate dataset. An aggregate dataset was              

obtained by normalizing power for each participant and collapsing the data across participants. A PCA was                

applied to extract the three eigenvectors with the highest eigenvalues. Instantaneous frequency was extracted              

for each component separately. Data of Experiment 1 is shown in A, where the top row shows instantaneous                  

frequency for the different components for the short interval, correct responses in blue and incorrect responses                

in red. No differences were found. Bottom row shows instantaneous frequency for the long interval trials. A                 

significant difference was found for the second component, where alpha frequency was higher for correct than                

incorrect responses from 1272-1500 ms after tone onset (dotted lines). B shows the same analysis on the                 

aggregate data of Experiment 2. No significant differences were found for any component or interval length. **                 

indicate significance, Gabor patch and black line indicate the end of the to-be-timed interval. Statistical               

analyses were performed from 500 ms after tone onset up until visual stimulus onset. 

 

2.4 DISCUSSION 

In line with previous results, we found that participants are capable of judging empty              

intervals in a temporal discrimination task (we found similar error rates to Gontier et al.,               



2013, who used 450 and 550 ms time intervals). Importantly, we found that temporal              

discrimination depends on the context created by the task, because our experiments            

allowed us to compare how participants responded to 1.5 s intervals that functioned as the               

short or the long interval, in the two experiments. In Experiment 1 participants responded              

faster to 1.5 s (long) intervals if they correctly identified them as long, while in Experiment                

2 participants responded faster to 1.5 s (short) intervals if they incorrectly identified them              

as long. This suggests that context is important for the subjective experience of elapsed              

time. Note though, that different participants participated in both Experiments, which might            

also explain differences in performance between the experiments. In addition to response            

time and error rate differences, signal detection theory analyses showed that participants            

performed better in Experiment 1 than 2, as indicated by higher d’ from Experiment 1 than                

2. In addition, participants showed a larger response bias in Experiment 1 than 2, where               

participants were more likely to respond they experienced a short interval irrespective of             

the physical stimulus.  

Previous research has suggested that sub- and supra-second time intervals might rely on             

different processes, such that <1 s intervals might be processed in the motor circuitry,              

whereas >1 s intervals might rely on cognitively controlled processes through prefrontal            

and parietal brain regions (Lewis & Miall, 2003). Interestingly, we found in Experiment 1              

that participants were much better at estimating time for 1 s intervals compared to 1.5 s                

intervals (lower error rates and higher d’). Previous research has shown that participants             

are better at time estimation for short intervals compared to longer ones (Gontier et al.,               

2013). However, in Experiment 2 we found no significant difference in error rates for 1.5               

and 2 s intervals. In addition, participants were fastest to respond to long interval trials that                



were correctly judged as long for both experiments. However, in Experiment 2 we found              

that participants were also faster on short intervals that were incorrectly judged as long.              

We did not observe this pattern for 1 s (short) intervals in Experiment 1, because here                

participants took the same amount of time to respond for correct and incorrect judgements.              

Taken together, these findings suggest that something special might be going on with 1 s               

intervals. 

One potential explanation why participants are better at time estimation for 1 s time              

intervals in our paradigm might be that the relative difference between intervals is largest              

with the 1 s interval (i.e. the difference between the long and short interval in Experiment 1                 

is 500 ms, which is 50% of the 1 s interval, in Experiment 2 the difference between the                  

short and long interval is also 500 ms, but that is only 33% of the 1.5 s interval).                  

Alternatively, it might be that 1 s interval timing relies more on an automatic system, which                

largely depends on motor circuitry, whereas longer (>1 s) intervals rely on cognitively             

controlled systems, which are seated in prefrontal and parietal brain regions (Lewis &             

Miall, 2003). However, our response time data does not fully support this explanation. If              

participants were performing 1 s interval timing through a more automated system, we             

would expect response times for this interval to be shorter. We observed the opposite              

effect of response times in our data, where participants were slower for 1 s interval timing.                

Unless, the motor circuitry involvement in judging 1 s time intervals might hamper motor              

preparation and therefore might prevent any fast responses to 1 s intervals.  

Time estimation as temporal evidence accumulation might explain our data better:           

Participants might have a template in working memory of the short interval and when the               



short interval has elapsed, participants prepare a response for the long judgement. This             

explains why participants respond faster when they correctly judge a long interval as long.              

When participants incorrectly judge a long interval as short, they did not accumulate the              

noisy evidence of the elapsed time properly leading to the underestimation. In that case              

participants did not prepare the response, which makes them slower on incorrectly judged             

long interval trials. And the opposite is true for short intervals judged as long: participants               

accumulated evidence too quickly and therefore overestimated the elapsed time, but they            

did prepare their response. An open question is why, in line with the previous, participants               

respond faster on 1.5 s short intervals judged as long (incorrect) compared to short              

(correct) in Experiment 2, but do not speed up on 1 s short intervals judged as long                 

(incorrect) compared to short (correct) in Experiment 1. Perhaps the 1 s interval in              

Experiment 1 is too short to allow for evidence accumulation and response preparation to              

afford any differences in response times. Or, as explained above, the 1 s interval timing               

might rely on motor circuitry which prevents motor preparation. But future research which             

controls for the relative difference between time intervals is necessary to draw a             

conclusion. Interestingly, the comparison of overlap of the response time distributions for            

correct responses to the short and long interval of both experiments showed that there was               

significantly more overlap in RT distributions for the second compared to the first             

experiment. This suggests, in line with the predictions of scalar timing theory (STT), that              

for longer intervals (i.e. Experiment 2) decisions have a wider distribution. It might be that               

participants make a probabilistic judgement in Experiment 2, instead of the categorical            

decision participants make in Experiment 1. However, an important limitation of the            

analysis and therefore the interpretation of this finding is that the analysis assumes a fixed               



response latency, i.e. non-decision time, across participants. Although this does not           

explain why the RT distributions were found to be more similar in the second than in the                 

first experiment. 

In the current chapter we showed that instantaneous frequency differed for long (2 s)              

interval trials of Experiment 2. Contrary to our expectation that instantaneous frequency            

would be lower for long interval trials in which time was underestimated (i.e. judged as               

short) compared to trials that were judged correctly (as long), we found that instantaneous              

frequency first followed this expectation (note that this effect was marginally significant)            

and then flipped such that instantaneous frequency was higher for underestimated trials.            

Moreover, we expected that instantaneous frequency would show an inverse relationship           

with response time (but see for an alternative interpretation below), i.e. we expected faster              

response times when instantaneous alpha frequency was higher, but we only found            

support for a positive correlation between instantaneous frequency and response times.           

However, the differences in instantaneous frequency were not replicated in any of the             

other conditions, or experiments, or with the alpha peak frequency (APF) measure. When             

we repeated the instantaneous alpha frequency analyses on an aggregate dataset, we            

found that alpha frequency was higher for correct compared to incorrect responses in the              

long interval of Experiment 1. This finding was in line with our hypothesis where lower               

alpha frequency would be related to underestimation of time that passed by. However,             

these findings did not replicate for the short interval or for aggregate data of Experiment 2.  

Previous research from the 60ies suggested that alpha frequency and response times            

should show an inverse relationship (Dustman & Beck, 1965; Callaway & Yeager, 1960).             



From this, it was argued that alpha frequency might represent the speed of information              

processing. However, Klimesch and colleagues (1996) have argued that this relationship           

between APF and response times can be explained by power differences that occur during              

alpha desynchronization. As such, they showed that the relationship between APF and            

response times was spurious (Klimesch et al., 1996). Alpha frequency has also been             

hypothesized to reflect the internal clock (Treisman, 1963). In our data, we focused on the               

relationship between APF and temporal judgements, but we did not find an effect of APF.               

Previous research suggested that APF and time estimation might not show a one-to-one             

relationship (Treisman, 1984). However, more recent research suggested that it is the            

left-right asymmetry of APF that correlated with produced durations (Glicksohn et al.,            

2009). In our data we did not look at left-right APF asymmetry, but we did examine APF                 

separately for fronto-central and posterior-occipital electrodes. However, our data do not           

support a direct relationship between APF and temporal decision making. 

In addition to APF we also looked at instantaneous alpha frequency as this measure has a                

higher temporal sensitivity (Mierau et al., 2017; Cohen, 2014). We found a significant             

difference in instantaneous frequency for responses to long interval trials of Experiment 2.             

Interestingly, instantaneous alpha frequency was higher in correct responses before the           

short time interval had unfolded, followed by higher instantaneous alpha frequency for            

incorrect responses after the short interval was over. These effects make it hard to              

interpret the effect of instantaneous alpha frequency on time estimation. In addition, the             

effect was not replicated in any of the other time intervals. It might be that the shift in                  

instantaneous alpha frequency came about through the expected onset of the visual            

stimulus in the short interval trials. In addition, we looked at instantaneous alpha frequency              



of aggregate data and found higher instantaneous alpha frequency for correct compared to             

incorrect responses to long interval trials of Experiment 1. Taken together, there is some              

support for the idea that lower alpha frequency leads to underestimation of long time              

intervals. However, the support is limited since we did not observe consistent effects             

across intervals.  

Interestingly, the limited effects observed in the current experiments were observed in long             

interval trials in both cases. A follow-up study should combine several (>2) interval lengths              

within an experiment, to see if the current findings are related to the hazard-rate that               

changes between short and long interval trials. Previous research has linked           

instantaneous alpha frequency to alpha amplitude (Nelli et al., 2017), contrary to previous             

claims that alpha frequency and alpha power are independent measures (Cohen, 2014).            

This finding further hampers the interpretation of our results. In Chapter 4 we show that               

there was no significant alpha power difference in the time interval in which we observed               

the instantaneous frequency effect. However, it might be that a power effect is present, but               

not consistent enough to be picked up by cluster based permutation statistics. 

The low sample size of the second experiment is a short-coming of the current experiment.               

Another important limitation of the current design is that we cannot rule out response              

biases. We counterbalanced response buttons over participants, but we did not           

counterbalance responses within participants. It could therefore be that participants prefer           

judging intervals as short or long and we cannot control for it in our current design, as                 

evidenced by , a measure of response bias, that was significantly different from 0 for               

Experiment 1. Moreover, the current design also makes it impossible to discern whether             



participants keep a template of the short or long interval in their mind. Alternatively, we               

could have used a two-interval forced choice (2IFC) design. However, these designs make             

comparing EEG signals for the different conditions more challenging as participants are            

presented with two intervals on each trial.  

Instantaneous frequency has been hypothesized to be related to a decrease in spiking             

thresholds and an increase in spike timing variability for lower frequencies (Cohen, 2014).             

In addition, instantaneous frequency has been hypothesized to be associated with           

integration and segregation of information in the visual system (Samaha & Postle, 2015).             

Nelli and colleagues (2017) suggested that a change in instantaneous frequency,           

specifically slowing of the peak frequency, allows the desynchronization in the alpha band             

that is necessary for communication. Taking these findings together, it might be argued             

that slower alpha leads to longer windows of information integration, and thus possibly             

more processing. From this it might follow that instantaneous frequency might be positively             

correlated with response times as we observed in our data. However, our data does not               

provide evidence for the idea that instantaneous alpha frequency represents the internal            

clock. 

  



 

CHAPTER 3 

Do theta oscillations from medial frontal cortex correlate with behavioral 

adjustments after errors? 

 
 

ABSTRACT 

Previous research suggests that the medial frontal cortex plays an important role in             

performance monitoring. This makes the medial frontal cortex an excellent candidate to            

exert cognitive control over downstream regions after an error was committed. In addition,             

previous research suggests there is functional connectivity between medial frontal cortex           

and occipital regions through theta-alpha amplitude coupling. This finding suggests that           

the medial frontal cortex might influence processing in downstream sensory regions           

including visual cortex. However, contradictory findings about the relationship between          

midfrontal theta activity and subsequent behavioral adjustments have been found. Some           

studies found that higher midfrontal theta power correlated with faster responses on            

subsequent trials, while others found that midfrontal theta correlated with slower           

responses. In this chapter I aim to examine this relationship in more detail. Moreover, I aim                

to understand how the functional connectivity between medial frontal cortex and           

parieto-occipital regions is related to behavioral adjustments after an error. How does the             

medial frontal cortex exert its influence over these downstream regions? And how does the              

functional connectivity relate to behavioral adjustments? In line with previous results we            



found that participants show behavioral adjustments after errors as measured through           

post-error slowing. In addition we showed that theta power is higher and alpha power more               

suppressed after false alarms than hits. Contrary to previous findings we did not find              

functional connectivity between frontal theta and occipital alpha. Moreover, midfrontal theta           

power was not correlated with post-error slowing. 

 

3.1 INTRODUCTION 

Some of our daily acts have become quite habitual, which can lead to mistakes, for               

example when sending an email without the attachment. The ability to overcome            

distractions and/or competing (e.g. habitual) responses in favor of coordinated,          

goal-directed actions is called cognitive control (Alexander & Brown, 2010; Ridderinkhof et            

al., 2004; Shenhav et al., 2013). Cognitive control can be subdivided into: action selection,              

response inhibition, performance monitoring and reward-based learning (Ridderinkhof et         

al., 2004). When cognitive control fails, an error might be committed leading to post-error              

behavioral adjustments on subsequent trials in the form of higher accuracy scores            

(post-error accuracy; PEA) and longer response times (post-error slowing; PES; Laming           

1979; Rabbitt, 1966; Rabbitt & Rodgers, 1977). 

Behavioral adaptation on post-error trials might serve an adaptive purpose to prevent            

future errors. The conflict-monitoring theory is an influential adaptive theory in which            

Botvinick et al. (2001) proposed that coactivation of the correct and incorrect responses             

triggers activation of the anterior cingulate cortex (ACC), which subsequently increases the            

threshold to respond (Botvinick et al., 2001; Wessel, 2018). The increased respond            



threshold makes participants more cautious in executing automated behavior, i.e. they           

respond slower and more accurately. In contrast, the orienting theory proposed that errors             

are rare events, which － similarly to oddball events － elicit an orienting response (i.e., a                

response that consists of physiological changes, such as pupil dilation and increased heart             

rate, that are elicited by events relevant to goal-directed behavior; Notebaert et al. 2009).              

The orienting response is followed by reorienting to the task at hand and this process costs                

time thereby leading to PES (Notebaert et al., 2009). The orienting theory is supported by               

findings of: i) lower PEA (e.g. Hajcak & Simons, 2008; Hajcak et al., 2003; Rabbitt &                

Rodgers, 1977), which suggests that an error is not always followed by more cautious and               

more accurate responses and ii) post-correct slowing, which is observed in paradigms            

where correct responses are rare (Notebaert et al., 2009). Post-correct slowing suggests            

that PES is not specific to behavioral adjustments after an error, but might be a general                

occurrence of behavioral adjustments after an unexpected event instead. 

At the neural level the ACC, a region on the medial wall of the prefrontal cortex, is thought                  

to play an important role in performance monitoring (Carter et al., 1998; Dehaene et al.,               

1994; Devinsky et al., 1995). Neurons in the cingulate are generators of theta band activity               

(e.g. Tsujimoto et al., 2016) and electroencephalography (EEG) records this activity at            

midfrontal electrodes on the scalp (Gevins et al., 1997). Increases in midfrontal theta (4-7              

Hz; MFθ) activity on false alarm trials relative to hit trials have been commonly observed in                

response-locked data (e.g. van Driel et al., 2012; Mazaheri et al., 2009). A recent              

meta-analysis found evidence in support of the intuitive idea that higher MFθ correlates             

positively with PES on trials that follow the error (Cavanagh & Shackman, 2015). However,              

a recent study that looked at the correlation between MFθ and post-error slowing found the               



opposite effect (Valadez & Simons, 2018, see also Narayanan et al., 2013): greater MFθ              

power was associated with less slowing on the post-error trial.  

A possible explanation for these divergent findings may be the way PES is calculated              

(Schroder et al., 2019). Dutilh and colleagues (2012) showed that the traditional measure             

of PES, which takes the difference between response time (RT) on trials that follow false               

alarms and trials that follow hits (PESTRADITIONAL = MRTPost-error - MRTPost-correct), is affected by              

time-on-task (e.g. fatigue or motivation). To counter time-on-task effects Dutilh et al. (2012)             

proposed to calculate PES as the difference between hits preceding the false alarm and              

hits following the false alarm (PESROBUST = MRTPost-error - MRTPre-error). Valadez & Simons             

(2018) used PESROBUST but the meta-analysis of Cavanagh & Shackman (2014) correlated            

MFθ with RT on the post-error trial directly (PESError Trial in Schroder et al., 2019). Moreover,                

the meta-analysis of Cavanagh & Shackman (2014) combined many different studies in            

their analyses, but Valadez & Simons (2018) performed their analyses on an Eriksen             

flanker task. Different processes may underlie errors on a flanker task (Maier et al., 2019),               

where target processing is influenced by congruent or incongruent distractors, compared           

to errors on a go/no-go task, where errors are likely due to prepotent response tendencies               

(Robertson et al., 1997). 

Previous research used drift diffusion modeling (DDM) to understand what mechanism           

underlies PES (Dutilh et al., 2011). DDMs use response time distributions and accuracy             

scores to understand what latent psychological processes underlie behavior. DDMs          

assume that noisy sensory evidence is accumulated until enough evidence is accumulated            

in favor of one of the response thresholds. Dutilh and colleagues (2011) found that PES is                



related to response caution, i.e. after an error participants become more cautious, which             

supports the conflict-monitoring theory of Botvinick et al. (2001). Cavanagh & Shackman            

(2014) also interpreted the correlation of MFθ and PES along these lines: Higher MFθ              

represents a shift in the starting point of the DDM. Valadez & Simons (2018) proposed that                

MFθ is related to the speed of evidence accumulation (i.e. drift rate) on post-error trials               

such that higher MFθ leads to a steeper drift rate on the following trial.  

Turning next to the potential mechanisms by which MFθ might affect evidence            

accumulation, previous research showed that response-locked midfrontal theta increases         

are followed by alpha (~8-12 Hz) suppression on false alarm compared to hit trials (Carp &                

Compton, 2009; van Driel et al., 2012; Mazaheri et al., 2009). Moreover, Mazaheri and              

colleagues (2009) found that stronger increases in MFθ activity were correlated with larger             

parieto-occipital alpha suppression. Importantly, stronger alpha suppression has been         

linked to higher cortical excitability (Mazaheri & Jensen, 2010; van Dijk et al., 2008).              

Functional connectivity between MFθ and parieto-occipital alpha suggests that MFθ might           

influence sensory processing in lower-order regions by adapting cortical excitability of           

those downstream regions. Although the functional connectivity provides some insight into           

the network dynamics of cognitive control, it does not directly address the question how              

MFθ influences sensory processing or attention processes in down-stream regions during           

post-error behavioral adjustments.  

The first aim of the current study therefore was to correlate single-trial measures of              

midfrontal theta activity collected with a go/no-go task with single-trial measures of            

PESROBUST (see also Navarro-Cebrian et al., 2013 or van den Brink et al., 2014 for an                



application of PESROBUST). The second aim of the current study was to examine how              

midfrontal theta exerts its influence over motor and sensory regions on post-error trials. If              

MFθ implements the response caution in post-error trials directly, we would expect that             

single-trial MFθ is positively correlated with PES. Alternatively, MFθ might implement           

response caution by manipulating cortical excitability in primary sensory regions. In this            

case, we might not observe a direct relationship between MFθ and PES, but we would               

predict a positive correlation between the strength of functional connectivity as measured            

between MFθ and parieto-occipital alpha on the one hand and PES on the other. 

3.2 MATERIALS & METHODS 

3.2.1 Participants and EEG Procedure 

A total of 19 participants participated in this study (13 female), with a mean age of 28 years                  

(SD ≈ 11 years). Participants had normal or corrected-to-normal vision and were            

right-handed according to their Annett Hand Preference Questionnaire (AHPQ; Annett,          

1970) scores. Before commencing the experimental procedure, participants gave written          

informed consent in accordance with the local ethics committee guidelines of the            

University of Birmingham. The EEG cap (WaveGuardTM 10-20 system, ANT Neuro, 2016)            

with 64 Ag/AgCl electrodes was fitted to the participant and the impedance of the              

electrodes was adjusted to be below 20 kΩ. Scalp channels were referenced to electrode              

CPz during the recording and data was sampled at 500 Hz. Horizontal eye movements              

were measured with horizontal EOG channels, which were placed on the left and right              

outer canthi of the participant. Participants received a brief explanation of the task before              

they were moved to the testing room. In the testing room, participants performed a short               

practice block of 50 trials, to assure they understood the task before commencing the              



actual experiment. Participants performed 10 blocks of 200 trials, leading to a total of 2000               

trials.  

3.2.2 Stimuli 

In this experiment we used a modified version of the Go/No-Go task, implemented with              

Presentation software (Figure 3.1; Presentation, Version 0.70, Neurobehavioral Systems,         

Inc.). In a Go/No-Go task participants are required to press a button on most trials (Figure                

3.1A; “Go”) and to withhold a response on some trials (Figure 3.1B; “No-Go”). Typically,              

participants make false alarms (FA), by responding to a No-Go stimulus, because the             

frequent appearance of the Go stimulus is lulling participants into an automatic tendency to              

respond. In this task participants were presented with 1330 Go trials and 670 No-Go trials               

(i.e. 33.5% No-Go trials per block). 

 

 



Figure 3.1 Go/No-Go paradigm. Participants were presented with Go stimuli (red, blue or green circle) on                

66.5% of trials, which required participants to respond through a button press with their right index finger (A).                  

Go trials could lead to hits (99.7% on average) and misses, but misses were very rare (0.3% on average; C).                    

The no-go stimulus consisted of a black circle (B), which was presented on 33.5% of trials and led to correct                    

rejections (90.1% on average) if participants withheld their response or false alarms (9.9% on average) if                

participants incorrectly pressed the button (C). We examined the EEG signal of the period directly following a                 

button press (i.e. hits and false alarms). Stimuli were always ~1.4° (not to scale in this figure). 

 

Participants were seated ~80 cm from the computer screen. In this experiment, the Go              

stimulus consisted or a red, green or blue circle with a visual angle of ~1.4°. The No-Go                 

stimulus consisted of black circle of the same size. Participants responded by pressing the              

left mouse button (Razor Synapse) with their right index finger. Stimuli were presented for              



1000 ms or until a response was made. After the button press or stimulus offset, an                

inter-trial interval of 700 ms followed before the start of the next trial. 

3.2.3 EEG data preprocessing 

The acquired EEG data was preprocessed offline and analysed in Matlab with custom             

scripts and functionality from the EEGLAB (Version 14.1.1; Delorme & Makeig, 2004) and             

Fieldtrip (Oostenveld et al., 2011; http://fieldtrip.fcdonders.nl) software packages. A         

high-pass filter of 0.1 Hz was applied to the data as implemented through the eegfiltnew               

functionality of EEGLAB. The data was then sliced in epochs locked to the button press               

from -1 to +2.5 s. A baseline correction in the temporal domain of -100 to 0 ms was applied                   

to attenuate slow drifts. Manual inspection of the data was used to remove trials that: i )                

contained eye blinks upon stimulus presentation, ii ) contained electrode jumps or iii ) slow             

drifts. In total an average of ~18.5% of data was removed due to excessive noise. The                

average reference was calculated from the cleaned data through the reref functionality of             

EEGLAB. EOG, M1 and M2 were not included in the average reference. After manual trial               

rejection, independent component analysis (ICA; Bell & Sejnowski, 1995) was used to            

subtract blinks and muscle artefacts from the data. To this end, data was transferred to               

Fieldtrip and a principle component analysis (PCA) of 15 components was applied to             

reduce data dimensionality. The ICA was performed with the runica method as            

implemented in Fieldtrip.  

After preprocessing the data, 1 participant was excluded because they missed more than             

5% of trials, 2 participants were excluded because they made more than 10% false alarms               

and finally 1 participant was excluded because they made less than 20 false alarms.              

http://fieldtrip.fcdonders.nl/


Fifteen participants remained and all of the analyses presented below were performed on             

these 15 participants unless noted otherwise. For the EEG analyses trial counts and             

response times were matched by taking a subset of hits that corresponded to the trial               

counts and RT of false alarms, to make sure that any differences between hits and false                

alarms were not due to response time differences between these trial types. 

3.2.4 Behavioral analyses 

The table in Figure 3.1C shows that Go stimuli could be followed by a go-response (i.e.                

button press), which counted as a hit, or the stimulus could be followed by no response                

(i.e. no button press), which was counted as a miss. No-go stimuli could be followed by no                 

response, which was counted as a correct rejection, or the stimulus could be followed by a                

go-response, which was counted as a false alarm. False alarms happened on 9.9% of the               

no-go stimuli. Double errors (a false alarm after a false alarm) were very rare and were not                 

taken into account for any further analyses. Misses were also rare in this task (Figure 3.1),                

which makes the data unsuitable for modelling with drift diffusion models. 

Signal detection theory analysis was used to calculate d’ and bias (Green & Swets, 1966;               

Macmillan & Creelman, 2004), where d’ is a measure of sensitivity or the ability to separate                

the go stimulus from the no-go stimulus: 

        (1)(H) (FA)d′ = z − z  

When stimuli are easy to discriminate, d’ will be high and when task difficulty is high and                 

stimuli are difficult to distinguish d’ will be low. In line with previous research I expect to                 

observe a high d’, because the go/no-go stimuli are easy to discriminate (Kaiser et al.,               



2003; Schulz et al., 2007; Wiemers & Redick, 2019). Bias ( ) is a measure of a          β       

participant’s inclination to prefer one response option over another:  

       (2)β =  − 2
z(H) + z(FA)| |  

When is close to 0, participants don’t show a preference for one response over the other. β                

A negative indicates a bias towards the go response. In line with previous research I  β              

expect to find a negative bias, because participants were presented with more go than              

no-go stimuli (Young et al., 2018). Perfect hit (H = 1) and false alarm (FA = 0) rates were                   

corrected with the rule (Stanislaw & Todorov, 1999).N2
1  

Response times were calculated as the difference between stimulus onset and button            

press for false alarms and hits. A dependent samples t-test was used to assess statistical               

differences. Previous research has consistently found that participants are faster on false            

alarms than hits for go/no-go tasks (van Driel et al., 2012; Manly et al., 1999; Mazaheri et                 

al., 2009; Robertson et al., 1997), which I expected to replicate in the current study.               

Interestingly, some researchers have interpreted these results as a higher likelihood of            

errors for short RTs (e.g. Mazaheri et al., 2009 under the heading Behavioral Data).              

However, recent examination of response time distributions showed that this conclusion           

was made prematurely (Hawkins et al., 2019). Hawkins and colleagues (2019) indeed            

found that participants are on average faster on false alarms than hits, but due to the                

task-structure of the sustained attention to response task short RTs were in fact more likely               

to belong to hits than false alarms. To examine response time distributions for the              

go/no-go task in more detail I plotted defective cumulative distribution functions (CDFs) for             

hits and false alarms. For defective CDFs the final position on the y-axis of a response                



distribution is determined by the total probability of that response (i.e. the CDF is scaled to                

the hit rate for hits and the false alarm rate for false alarms). This allows comparison of the                  

cumulative distributions of two populations that have unequal sizes. 

In addition, we examined whether participants adjusted their behavior upon making a false             

alarm. To this end, we calculated two measures of post-error slowing: PESTRADITIONAL =              

MRTPost-error - MRTPre-error and PESROBUST = MRTPost-error - MRTPre-error, where MRT stands for             

median response time. Previous research has shown that PESROBUST might be more robust             

against time-on-task effects such as motivational and drowsiness fluctuations (Dutilh et al.,            

2011). Van den Brink and colleagues (2014) showed that both measures of PES are highly               

correlated. We expected to observe PES with both measures and we expected to replicate              

the previous correlation between these measures. We used dependent samples t-tests to            

assess statistical significance by comparing PES to 0. 

3.2.5 EEG analyses 

In order to eliminate volume conduction a spherical spline surface Laplacian was applied             

to obtain current source density data (Perrin et al., 1989). Then, power was estimated              

using the FieldTrip function ‘ft_freqanalysis_mtmconv’ for each trial by performing a fast            

Fourier transform (FFT) with a Hanning taper and a sliding time window. The time window               

was adapted to the frequency of interest (∆T = 3/f). The frequency range of interest               

spanned from 2 to 30 Hz in steps of 1 Hz. I used non-parametric cluster based permutation                 

statistics to compare false alarms and hits. False alarms and hits were matched on trial               

counts and response times.  



To assess whether low-frequency differences were due to oscillatory activity and not due             

to phase-locked differences evoked by the response a control analysis was performed. To             

obtain the non-phase-locked power, the evoked response was subtracted from single trial            

data and then the time-frequency decomposition was applied as described above. There            

are different ways to get to the non-pase-locked (or induced) power and this method was               

chosen due to its ease of implementation and application in previous papers (Cohen &              

Donner, 2013; Cohen, 2014). 

3.2.6 Correlation with behavior 

The functional localizer of any power differences between false alarm and hit trials was              

used to examine whether post-error neural signatures would correlate with behavioral           

adjustments on trials following false alarms. This analysis was performed only for those             

frequency bands that showed a significant difference between false alarm and hit trials.             

We performed this analysis by calculating Spearman’s ranked correlation value between           

power in the frequency band of interest on the false alarm trial and response time on the                 

subsequent trial for every time point at every electrode. We normalized the correlation             

values by calculating Fisher’s z-score following two steps: 

5 n( )z = . * l 1−r
1+r  

where ln is the natural logarithm and r is the Spearman correlation. Next, we divided z by                 

the given standard error: 

σ = 1
−3)√(N

 

This yielded z-scored topographies at every time point and we used non-parametric cluster             

based time-locked statistics to assess whether there was a significant difference between            



the average z-score (averaged over the time window of interest) by comparing this to 0               

(and/or to the z-scored correlation values obtained for hit trials; Maris and Oostenveld,             

2007, see below). 

For the theta to alpha anti-correlation we first correlated theta power at the electrodes that               

showed the largest theta difference at 4 Hz from 0-200 ms between hits and false alarms,                

the theta seed, with all other electrodes at alpha power at 10 Hz for all time points (from -1                   

to + 2.5 s). We choose these frequencies of interest because they were in line with what                 

we observed in our data and what was observed in previous research (Mazaheri et al.,               

2009). Moreover, we wanted to limit the chance of spurious correlations because the             

frequencies of interest were too close together. We therefore chose frequencies of interest             

that were as far away from each other as possible, but that still fell comfortably within the                 

frequency bands identified by the functional localizer. Note though, that spurious           

correlations due to frequency smearing would come about as a positive correlation and we              

expect a negative correlation where higher theta power leads to lower alpha power. Power              

at 4 Hz was averaged from 0-200 ms post-response and was correlated with 10 Hz power                

at each electrode and time point separately across trials. Similar to the correlation analysis              

with response times, we calculated Spearman’s ranked correlation values and applied           

Fisher’s z transform. We averaged the z-scores across the different seed electrodes and             

assessed whether these z-scores were significantly different from 0 (or significantly           

different to the z-scored correlation values obtained for hit trials) with non-parametric            

cluster-based permutation statistics, 200-500 ms after the button press.  



To increase the sensitivity of the power-power correlation analysis and to reduce the             

chance of missed effects due to volume conduction, the analysis was repeated on             

orthonormalized data. To this end, a Gram-Schmidt process was applied in the time             

domain, after calculating the current source density in the preprocessing pipeline (see Hipp             

et al., 2012 for an application on MEG data). For each of the three seed electrodes (FCz,                 

FC2 and Cz) and for each trial separately, the single-trial activity at the seed electrode,               

e.g. FCz, was projected onto all other electrodes separately, e.g. Oz. Then, the projection              

was subtracted from the data at electrode FCz to obtain the orthogonal signal. The same               

procedure was applied in the opposite direction (i.e. from Oz to FCz) and the average of                

the orthogonal signal was stored and used to extract  power as previously (see above).  

3.2.7 Debiased weighted PLI as a measure of functional connectivity 

In addition to the power-power connectivity analysis described in the previous section, a             

phase based measure of functional connectivity was used to assess the connectivity from             

midfrontal electrodes to other regions. Debiased weighted phase lag index (dwPLI; Stam            

et al., 2007; Vinck et al., 2011) was used to assess functional connectivity from midfrontal               

electrodes (FCz and Cz) and from parieto-occipital electrodes (PO3 and PO4) to all other              

electrodes for hits and false alarms (separately for the electrodes and conditions            

mentioned). The PLI measures how the phase angle differences are distributed on the             

imaginary axis of the complex plane. PLI is calculated as the absolute value of the sign of                 

the imaginary part of the cross-spectral density. PLI can range from 0 to 1, where 0                

indicates of random phase angle differences or zero phase-lag (i.e. volume conduction)            

and 1 indicates a perfect lag between electrodes. dwPLI is a variant of PLI, where the sign                 



of the phase angles are scaled with the magnitude of the imaginary component, such that               

phase angle differences close to the real axis (i.e. with phase angle differences close to 0°                

or 180° or 0 phase lag) are given less weight and a positive bias for low PLI values is                   

controlled (Vinck et al., 2011). dwPLI was calculated with the ft_connectivity_wpli function            

of FieldTrip. 

 

3.2.8 Non-parametric cluster-based statistics 

We used non-parametric cluster-based statistics (Maris and Oostenveld, 2007) for          

significance testing, because this method corrects for the multiple comparison issue that            

arises when having many electrodes and time points. For time-frequency comparisons of            

false alarm and hit trials, the power was averaged over the frequencies and time points of                

interest at each electrode. Clusters were obtained when more than two neighbouring            

electrodes exceeded a threshold of p < .025 from a two-tailed dependent samples t-test.              

The Monte Carlo p -values of each cluster were obtained by randomly swapping condition             

labels within participants 2500 times. This randomization procedure is used to create a null              

distribution, which is subsequently used for comparison to the true effect. For correlation             

analyses, we compared false alarm and hit trials to each other or to 0. We specified in the                  

text below whether we averaged over a time window of interest or whether we explored the                

time window of 0-0.5 s after the button press. 



3.3 RESULTS 

3.3.1 Participants slow down after commission errors 

In line with previous research, participants were significantly faster on false alarm trials             

(see Figure 3.2A for RT distributions of an exemplar participant; M = 258.7 ms ± SD =                 

24.2, where M is the mean across participants of the median within participants and SD is                

the standard deviation across participants) than on hit trials (M = 305.3 ms ± SD = 23.8,                 

t(14) = 8.90, p < .001). Moreover, signal detection analyses showed that participants were              

well able to discriminate go- and no-go stimuli, as indicated by the high d’ (M = 4.32 ± SD                   

= 0.50). In addition, participants had a tendency towards the go response, as indicated by               

the negative  (M = -0.84 ± SD = 0.22).β  

Previous research showed that faster average responses on false alarms than hits does             

not necessarily mean that fast responses are more likely to be erroneous (Hawkins et al.,               

2019). Defective cumulative density functions of the current data showed that participants            

are not more likely to commit an error than to make a correct response on fast responses                 

(Figure 3.2). 

To make sure that behavioral and EEG measures of post-error trials were not affected by               

differences in response time on the error trials, we matched response times of hits to the                

response times of false alarms.  



 

Figure 3.2 Defective cumulative density functions for hits and false alarms of single participants. On               

average participants respond faster on false alarms than hits (not shown here, but see Figure 3.3), but                 

inspection of the cumulative density functions plotted until the hit (blue) and false alarm (red) rates indicates                 

that a fast response is not more likely to be erroneous. Panels show individual participant data, where                 

cumulative probability is plotted as a function of response time. Above the plot the probability of a hit (i.e.                   

p(go|go)) and false alarm (i.e. p(go|nogo)) is shown for each participant. 

 



Both measures of PES showed that participants slowed down after committing an error             

(Figure 3.3C). PESTRADITIONAL takes the difference between hits that followed false alarms            

and hits that followed hits. Participants were 19.9 ms (SD = 32.7 ms) slower on hits that                 

followed false alarms than on hits that followed hits (t(14) = 2.36, p = .035). PESROBUST is                 

calculated as the difference between hits that followed and hits that preceded the false              

alarms. Participants were 29.5 ms (SD = 29.1 ms) slower on hits that followed false alarms                

than on hits that preceded the false alarm (t(14) = 3.92, p = .0015). Moreover, Spearman                

ranked correlation showed that both measures of PES were significantly correlated (Figure            

3.3D, r = 0.72, p = .0027). 

Finally, we found that hits that preceded false alarms (M = 285.1 ms ± SD = 20.1) were                  

significantly faster than hits that preceded hits (M = 308 ms ± SD = 25.5; t(14) = -4.05, p =                    

.0012; Figure 3.3C). 



 

Figure 3.3 Behavioral results on Go/No-Go task. Full response time distributions showed that participants              

made little responses faster than 200 ms. Response time distribution of hits (in blue) and false alarms (in red)                   

for an exemplar participant is shown in A. Signal detection analyses showed that participants are good at the                  

task, as shown by d’ scores (B, left). Participants also expressed a bias toward the go response (B, right).                   

When response times (RT) were matched for hits and false alarms on the current trial (N), participants were                  

significantly faster on hits that preceded (N-1) false alarms compared to hits (C). PESTRADITIONAL is measured as                 

the difference between hits that followed false alarms and hits that followed hits. Participants were significantly                

slower on hits that followed false alarms compared to hits that followed hits (C). PESROBUST is measured as the                   

difference between hits that preceded and hits that followed the false alarm. Participants were significantly               

slower on hits that followed false alarms compared to hits that preceded false alarms (C). PESTRADITIONAL and                 

PESROBUST were significantly correlated with each other (D). * indicate significance such that * = p < .05, ** = p                     



< .01 and *** = p < .001. Error bars represent standard error of the mean, dots represent individual participants                    

(which show the median for response times in C), thick lines represent the mean across participants. 

 

3.3.2 Increased theta power and decreased alpha power after committing a false alarm             

compared to hits 

I compared false alarms and hits locked to the response to examine whether there are               

post-response differences in neural signatures as measured with EEG after an erroneous            

vs. correct button press. Cluster-based permutation statistics identified a positive cluster (p            

= 4×10-4) that spanned several frequencies from the delta to alpha frequencies (2-14 Hz;              

Figure 3.3B). The cluster extended from 0-500 ms after the response and spanned across              

most electrodes. In line with previous research I found that this difference was most              

pronounced in the theta range (3-7 Hz; Figure 3.3B), from 50-200 ms and over electrode               

FCz, FC2 and Cz (Figure 3.4C). Moreover, I found a negative cluster (p = .029; Figure                

3.4A, cluster ii) that spanned the alpha/low beta range (8-20 Hz), where power is lower               

after false alarms compared to hits from 200-450 ms post-response. The negative cluster             

spanned parietal, parieto-occipital and occipital electrodes. The negative difference was          

most pronounced in the alpha band (9-13 Hz; Figure 3.4D) over occipital electrodes             

(Figure 3.4E). 

In line with previous results, the difference between false alarms and hits in the theta range                

seems to be driven by higher power over midfrontal electrodes for false alarms compared              

to hits (Figure 3.5). The difference between false alarms and hits in the alpha range seems                



to be driven by lower alpha power over occipital regions for false alarms than hits (Figure                

3.6). 

To make sure that the differences between false alarms and hits are oscillatory in nature, a                

control analysis was done, where the same cluster-based permutation analysis was           

performed on data where the time-frequency representation of the evoked related potential            

(ERP) was subtracted from the total power (Cohen, 2014; Cohen & Donner, 2013). By              

subtracting the ERP from single trial data and subsequently performing time-frequency           

decomposition, the phase-locked power (ERP) is subtracted from the total power and the             

non-phase-locked power remains. As in the total power, a positive cluster (i.e., cluster i              

from the total power analysis, p = 4×10-4) from 0-500 ms, spanning 2-14 Hz and all frontal                 

and central electrodes was identified (Supplementary Figure 3.1; cluster i). A negative            

cluster (i.e., cluster ii from the total power analysis, p = .055) in the alpha range (9-13 Hz,                  

300-450 ms spanning right lateralized parieto-occipital electrodes) no longer reached          

statistical significance (Supplementary Figure 3.1; cluster ii). But when comparing total and            

non-phase-locked power it becomes clear that the ERP has only a small influence on the               

difference between false alarms and hits (Supplementary Figure 3.2 and 3.3). 



 

Figure 3.4 Post-response differences in midfrontal theta and parieto-occipital alpha between false            

alarms and hits. In line with previous results non-parametric cluster-based statistics identified a positive and               

negative post-response difference between hits and false alarms. The multiplot shows the time-frequency             

representations at each channel, where non-significant time-frequency points are masked (A, critical p-value at              

.05). For visualization purposes I honed in on the significant difference as indicated by the cluster-based                

permutation analysis. The positive difference (cluster i) was most pronounced over FCz, FC2 and Cz (C) and                 

spanned the delta and theta band from 3-7 Hz from 50-200 ms after the button press (B). The negative                   

difference (cluster ii) was most pronounced over parieto-occipital electrodes (E) and peaked later in time than                

the positive difference (200-450 ms; compare B and D). The negative difference was most pronounced in the                 

higher alpha range 9-13 Hz (D). 



Figure 3.5 Early post-response differences between false alarms and hits in the theta range. The               

individual conditions are shown for the largest positive differences between false alarms and hits (cluster i from                 

Figure 3.3). Average activity from electrodes FCz and Cz is shown for individual conditions (A, false alarms                 

and B, hits) and the difference (C, false alarms-hits). Topographic plots (D,E,F) show the average activity of                 

the black squares averaged from 50-200 ms after the button press and 3-7 Hz. Topographic plots have the                  

same scales as the time-frequency representations (A,B,C). 

 

Figure 3.6 Later post-response differences between false alarms and hits in the alpha range. The               

individual conditions are shown for the largest negative differences between false alarms and hits (cluster ii                



from Figure 3.3). Average activity from parietal, parieto-occipital and occipital electrodes is shown for individual               

conditions (A, false alarms and B, hits) and the difference (C, false alarms-hits). Topographic plots (D,E,F)                

show the average activity of the black squares averaged from 200-450 ms after the button press and 9-13 Hz.                   

Topographic plots (D,E,F) have the same scales as the time-frequency representations (A,B,C). 

3.3.3 Gauging the relationship between post-error neural signatures and post-error slowing 

In line with previous results (Mazaheri et al., 2009; van Driel et al., 2012) I found that                 

midfrontal theta power was higher and parieto-occipital alpha power lower after committing            

a false alarm compared to a hit. Next, I asked whether the post-response differences were               

correlated with PES. I used the difference between false alarms and hits as a functional               

localizer to assess whether the significant channel × time × frequency region correlated             

with PES. To this end, I calculated the Fisher’s z-transformed correlation between            

single-trial values of PES and each channel × time × frequency point that survived multiple               

comparison corrections in the false alarms vs. hits contrast (Figure 3.4).  

For the positive cluster, I calculated the Spearman correlation between power at each             

channel × time point that was part of the positive cluster and PESROBUST (channels: Fp1,               

Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2,                   

CP6, P3, AF7, AF3, AF4, AF8, F5, F1, F2, F6, FC3, FCz, FC4, C5, C1, C2, C6, CP3, CP4,                   

P1, PO5, PO3, FT7, FT8, TP7; time points: 0-500 ms; averaged over frequency: 2-14 Hz;               

Figure 3.4, cluster i). Next, I tested whether these correlation values were statistically             

different from 0 or from the correlation values obtained from power on hit trials and RT on                 

post-hit hits. To test this, I either calculated the mean of all z-transformed Spearman              

correlations across all channel × time points and compared these to the correlation values              

obtained with hits or to 0 with dependent samples t-tests. Alternatively, I used             



cluster-based permutation statistics to make the comparisons without collapsing over          

channel × time points. However, neither analysis indicated any significant results. For the             

negative cluster I used the same approach (channels: CP6, Pz, P4, P8, POz, O1, O2,               

CP4, P1, P2, P6, PO5, PO3, PO4, PO6, PO7, PO8, Oz; time points: 200-450 ms;               

averaged over frequency: 8-20 Hz; Figure 3.4, cluster ii). Again, I did not observe any               

significant results.  

I repeated the analyses described for more traditional frequency bands, instead of the             

channel × time × frequency region of interest identified by the functional localizer of hits vs                

false alarms. Loosely based on previous research, I calculated the correlation values            

between power and PES for the delta (2-3 Hz), theta (4-7 Hz), alpha (8-14 Hz) and beta                 

(15-30 Hz) frequency bands. For delta and theta frequency bands I used FCz and Cz               

electrodes. For the alpha band I used parieto-occipital electrodes. But no significant results             

were observed for either dependent sample t-tests that compared the means over time             

(averaged over 0-200 ms for the delta and theta bands and 200-400 ms for the alpha                

band) and channels. Or cluster-based permutation statistics without collapsing over time or            

channels. Finally, I repeated the analysis for all channel × time × frequency points by               

calculating the z-transformed correlation value between power at each channel × time ×             

frequency point and PES. I used cluster-based permutation statistics to compare the            

correlation values of post-error and post-hit trials, but found no significant effects. 

The z-transformed correlation values are plotted averaged over midfrontal (FCz and Cz)            

electrodes and over parieto-occipital (Oz, O1, O2, POz, PO3, PO4) electrodes in Figure             

3.7. 



 

Figure 3.7 Post-error slowing is not significantly correlated with power at midfrontal or parieto-occipital              

electrodes. Power at each channel × time × frequency point after a false alarm was correlated with PESROBUST                  

across trials and the correlation values were z-transformed. For hits power at each channel × time × frequency                  

point was correlated with RT of the post-hit hits. Cluster-based permutation statistics were used to compare the                 

conditions, but no clusters survived corrections for multiple comparisons. Z-transformed correlation values over             



midfrontal (FCz and Cz) electrodes are shown in the top row (A, B, C) and for parieto-occipital (Oz, O1, O2,                    

POz, PO3, PO4) electrodes in the bottom row (D, E, F). 

3.3.4 Functional connectivity from midfrontal to parieto-occipital regions 

Previous research showed a negative correlation between theta power at frontal           

electrodes and alpha power at occipital electrodes with the sustained attention to response             

task (Mazaheri et al., 2009). I calculated the correlation between theta (4 Hz) power at a                

seed electrode and alpha (10 Hz) power at all other electrodes. I used FCz, FC2 and Cz                 

as seed electrodes as these electrodes showed the largest power difference in the             

contrast between false alarms and hits. I compared the z-transformed correlation values            

from false alarms to 0 with cluster-based permutation testing and I compared the values              

from false alarms to hits. With this approach I was unable to replicate the pattern of                

functional connectivity in the visual go/no-go task (Figure 3.8). Because the negative            

cluster (cluster ii in Figure 3.4) observed in the contrast between false alarms and hits also                

included low beta power ranges, I repeated the analyses with beta (18 Hz) power at all                

other electrodes, but again no amplitude-amplitude coupling survived corrections for          

multiple comparisons (data not shown). 

 



Figure 3.8 Midfrontal theta power at 4 Hz was not significantly anti-correlated with higher frequencies.               

Power at 4 Hz was averaged from 0-200 ms and across electrodes that showed the largest power difference                  

between false alarms and hits (white stars, FCz, FC2 and Cz). Across trials power was correlated to 10 Hz                   

alpha power at all other electrodes. The correlation values were z-transformed and non-parametric             

cluster-based statistics were used to examine whether there was a negative correlation between midfrontal              

theta and occipital alpha with correlation values averaged from 200-500 ms post-response. False alarm trials               

showed an anticorrelation between midfrontal theta and occipital power (A), but the effect was too weak to                 

reach the cluster threshold. 

To exclude the possibility that any anti-correlations were missed due to volume            

conduction, a Gram-Schmidt process was applied to single-trial data (see methods; Hipp            

et al., 2012). This analysis did not change the absence of the anti-correlation observed              

above (Supplementary Figure 3.4). It is possible that the Laplacian transform of the data              

already accounted for any shared variance between the different channels.  

3.3.5 Phase based functional connectivity 

In addition to the power-power connectivity analysis presented in 2.3.4 phase-based           

functional connectivity was also examined by computing debiased weighted phase lag           

index (dwPLI; Stam et al., 2007; Vinck et al., 2011). To assess whether there were               

differences in functional connectivity after an error was committed dwPLI was averaged            

across the midfrontal electrodes (FCz, FC2, Cz) that showed the largest power difference             

between hits and false alarms. Cluster-based permutation statistics showed that functional           

connectivity was significantly higher in false alarms than in hits. Three different clusters             

were identified by cluster-based permutation statistics: The first cluster was right           

lateralized, in the frequency range of 2-4 Hz and from 50-500 ms after the response (p =                 



.0004; Figure 3.9), the second cluster was a left lateralized cluster from 2-4 Hz, from 0-450                

ms (p = .0004; Figure 3.10) and the third cluster was a midfrontal cluster from 5-10 Hz,                 

from 100-200 ms post-response (p = .001; Figure 3.11).  

Next, I used a similar analysis with the seed electrodes over left and right occipital areas                

(PO7 and PO8). This analysis again identified larger functional connectivity after a false             

alarm than after a hit. The difference was most pronounced across a small centro-partietal              

cluster at 4 Hz, from 350-450 ms post-response (p = .05; Figure 3.12). 

 

 

Figure 3.9 Functional connectivity from midfrontal electrodes to right lateralized cluster of electrodes             

for false alarms but not hits. dwPLI was averaged across the midfrontal electrodes that showed the largest                 

difference between hits and false alarms to assess phase-based connectivity differences between false alarms              

and hits. dwPLI was averaged across the electrodes that were identified in the cluster-based permutation               

approach (F) and dwPLI values are shown for false alarms (A), hits (B) and the difference (false alarms - hits,                    

C). The topographies in D-F were obtained by averaging over the time window indicated by the cluster-based                 

permutation approach from 50-500 ms post-response and frequencies from 2-4 Hz. White stars indicate the               



seed electrodes FCz, FC2 and Cz. Black stars indicate electrodes that survived corrections for multiple               

comparisons. 

 

 

Figure 3.10 Functional connectivity from midfrontal electrodes to left lateralized cluster of electrodes 

for false alarms but not hits. Same conventions as 2.9, 2-4 Hz, 0-450 ms post-response. 

 

 



Figure 3.11 Functional connectivity from midfrontal electrodes to midfrontal cluster of electrodes for 

false alarms but not hits. Same conventions as 2.9., 5-10 Hz, 100-200 ms post-response. 

 

Figure 3.12 Functional connectivity from occipital electrodes to centro-parietal cluster of electrodes for 

false alarms but not hits. Same conventions as 2.9., 4 Hz, 350-450 ms post-response. 

 

3.4 DISCUSSION 

The current chapter aimed to understand how cognitive control implements behavioral           

adjustments to prevent future errors. Midfrontal theta oscillations are hypothesized to fulfil            

an important role in performance monitoring and as such offer a likely candidate to              

implement behavioral adjustments after an error is committed. Previous research has           

presented evidence that larger midfrontal theta signals can lead to either post-error            

slowing or speeding. Moreover, several different measures of post-error adjustments have           

been used in the literature. Here, I focused on post-error slowing (PES) measured as the               

difference in response time (RT) between the hit that followed and the hit that preceded               

false alarms.  



Behaviorally, the data showed that participants are faster on average when they commit a              

false alarm than a hit. The likelihood that a fast response is a hit however, does not                 

automatically follow from that, as evidenced by the defective cumulative density functions            

(CDFs). The data showed that for most participants fast responses are equally likely to              

belong to hits or false alarms, as the defective CDFs were mostly overlapping. If one takes                

into account the likelihood of go and no-go stimuli, fast responses were actually three              

times more likely to belong to hits than false alarms. This finding is in line with a recent                  

report from Hawkins and colleagues (2019) and highlights the importance of studying            

response time distributions in full. 

When calculating PES as the difference in RT on hits that preceded vs. followed false               

alarm trials (known as PESROBUST), participants showed significant PES. There was also a             

significant difference between hits that followed hits vs. hits that followed false alarms             

(known as PESTRADITIONAL). In line with previous research (van den Brink et al., 2014), both               

measures of PES were highly correlated. Moreover, false alarms were preceded by faster             

hits than hits. Signal detection measures of performance showed that participants could            

easily discriminate go and no-go stimuli and participants had a tendency to execute the go               

response.  

Taken together, these behavioral data suggest that errors on a visual go/no-go task are              

heralded by speeding of responses on preceding hits. In addition, when examining            

post-error neural dynamics it is important, whenever possible, to match RTs and trial             

counts of hits to false alarms.  

In line with previous research we found higher power shortly after the response for false               

alarms compared to hits. The largest difference was observed over midfrontal electrodes in             



the theta range from 50-200 ms after the response. This difference was followed by lower               

power for false alarms than hits. And this negative difference was largest over occipital              

electrodes in the alpha range from 200-450 ms. Previous research has suggested that the              

medial frontal cortex exerts cognitive control over downstream regions through long-range           

theta mediated connections (Mazaheri et al., 2009). If theta activity reflects more cognitive             

control, one would predict that more theta activity is (directly or indirectly through             

interactions with occipital regions) related to behavioral adjustments on subsequent trials.           

A meta-analysis provided some evidence of a positive relationship between midfrontal           

theta (MFθ) and response times on the subsequent trial (Cavanagh & Shackman, 2014).             

However, most studies included in the meta-analyses did not use the PESROBUST measure.             

Moreover, recent studies have found a negative relationship between MFθ and post-error            

RT (Narayanan et al., 2013; Valadez & Simons, 2018). However, in the current chapter I               

did not find significant relationships between MFθ and post-error RT.  

A possible explanation of the lack of effects in the current chapter is that I used a go/no-go                  

task whereas Valadez & Simons (2018) used an Eriksen flanker task. It is important to               

note that Valadez & Simons also RT matched the errors and hits, as I did, but the main                  

difference in methodological approaches is that Valadez & Simons used a quantile split             

and compared the fastest and slowest quantile to each other, whereas I used false alarms               

without any data splits. However, it might be that behavioral adjustments after errors on              

flanker tasks are different from adjustments after errors on go/no-go tasks. A flanker error              

comes from incongruent information from the flankers, whereas a go response to a no-go              

stimulus likely comes from unsuccessful inhibition of the go response. Future research            

should elucidate whether post-error behavioral adjustments are different in different tasks. 



Based on previous research (Mazaheri et al., 2009), I also expected to observe a negative               

correlation between MFθ and parieto-occipital alpha power after false alarms. However, I            

did not observe any negative correlations between MFθ and parieto-occipital alpha power            

that survived corrections for multiple comparisons. It is known that MEG and EEG are              

differentially sensitive to underlying sources, such that radial sources are not picked up on              

by MEG. It is possible that the MFθ from EEG and MEG stem from different sources, such                 

that the EEG is more likely to reflect activity from the ACC whereas the MEG source is                 

more likely to be pre-SMA (M.X. Cohen, personal communication). 

In addition to the power-power correlation analysis a phase-based functional connectivity           

analysis was performed to examine whether midfrontal electrodes would be functionally           

coupled to occipital regions. Debiased weighted phase lag index (dwPLI) was larger for             

false alarms than hits when FCz, FC2 and Cz were used as seed electrodes. There was                

functional coupling to the left and right fronto-temporal hemispheres in the delta band and              

there was functional coupling at midfrontal electrodes at 5-10 Hz. in line with previous              

findings (Cavanagh et al., 2009; Hanslmayr et al., 2008; Oehrn et al., 2014), I hypothesize               

that medial frontal cortex connectivity with dorsolateral prefrontal cortex in the (high) theta             

range might reflect frontal control updating, whereas the delta connectivity with SMA and             

motor cortex might reflect response adjustments. When PO7 and PO8 were used as             

occipital seed electrodes theta connectivity emerged between occipital regions and a           

centroparietal region for false alarms, but not hits. I hypothesize this reflects parietal             

influences on sensory regions that might be related to attentional updating (Behrmann et             

al., 2004). However, an important shortcoming of the dwPLI is that this is not a directed                

measures. As such, it is unclear which regions is leading and which region is following. 



An important limitation of the current chapter is its small sample size in both participant               

numbers and false alarm trials. Future studies should aim to collect a larger dataset with               

more false alarms and more double-errors to apply computational modeling by fitting            

drift-diffusion models and measuring EEG data in the same experiment. It will be             

interesting to see how EEG measures and computational modelling parameters relate to            

one another in paradigms that examine behavioral adjustments after errors. In addition, a             

limitation is the uncertainty about the sources underlying the effects described here.            

Intracranial studies that directly record from anterior cingulate cortex, dorsolateral          

prefrontal cortex, parietal cortex and primary occipital cortex might provide better insight            

into the functional connectivity between these regions after errors. 

 

Supplementary Figures 

 

Supplementary Figure 3.1 Phase-locked power was subtracted from the total power to obtain             

non-phase-locked power. Convetions in this plot are the same as in Figure 3.4. Note that the second cluster                  

had a p-value of .055 and as such, all power values are masked. The positive cluster, cluster i in A, spanned                     

almost all frontal and central electrodes and ranged from 2-14 Hz from 0-500 ms post-response. The biggest                 

difference was observed between 4-9 Hz from 50-200 ms post-response (B), over FCz, FC2 and Cz (C). The                  



negative cluster, cluster ii in A no longer reaches statistical significance. Over parieto-occipital regions (E), the                

difference between false alarms and hits was most pronounced in the alpha band from 9-13 Hz from 300-450                  

ms (D). 

 

 

Supplementary Figure 3.2 Phase-locked power was subtracted from the total power to obtain             

non-phase-locked power, shown here for midfrontal electrodes. Time-frequency representation of the total            

power, the phase-locked and non-phase-locked power at midfrontal electrodes (Fz, F1, F2, FCz, FC1, FC3,               

Cz, C1, C2) are visualized side-by-side. The ERP in the middle row was scaled arbitrarily to show the shape of                    

the ERP on top of the phase-locked activity. Note that the ERP mostly affects lower frequencies in the delta                   

range. 

 



 

Supplementary Figure 3.3 Phase-locked power was subtracted from the total power to obtain             

non-phase-locked power, shown here for occipital, parieto-occipital and parietal electrodes. Same as in             

Supplementary Figure 3.2 but now for occipital, parieto-occipital and parietal electrodes (Oz, O1, O2, POz,               

PO3, PO4, PO5, PO6, PO7, PO8, Pz, P1, P2, P3, P4, P5, P6, P7, P8). Note that some alpha power stems                     

from phase-locked activity (middle row), but also note that the difference between total power and               

non-phase-locked power is small.  

 

 

Supplementary Figure 3.4 Functional connectivity between midfrontal electrodes at 4 Hz and all other              

electrodes at 10 Hz after Gram-Schmidt orthonormalization in the time-domain. Conventions are the             

same as in Figure 3.8. As negative correlations might be more difficult to detect due to volume conduction, an                   



orthonormalization procedure was applied to the time domain data. However, this normalization did not aid the                

detection of an anti-correlation between midfrontal theta and occipital alpha after errors.  

 

  



CHAPTER 4 

Oscillatory power and temporal judgements 

 
 

ABSTRACT 

Previous research showed that theta (~4-7 Hz) oscillations play an important role in             

interval timing in both rats and humans. These oscillations were recorded from medial             

frontal cortex and dopamine depletion abolished the involvement of theta oscillations and            

interval timing abilities. In addition, beta oscillations have been hypothesized to play an             

important role in indexing interval timing. Taken together, previous work suggests that            

phasic dopaminergic activity can be measured with scalp EEG as theta or beta power              

increases. This chapter examined the relationship between oscillatory power and temporal           

decision making by contrasting correct and incorrect responses during two very similar            

timing experiments, which were different from the interval timing tasks used in previous             

work. Interestingly, we find theta power increases in correct judgements of long interval             

trials after the short interval has elapsed. Importantly, this data was consistent between the              

different experiments. In addition, we found alpha and beta suppression that was related to              

temporal judgement, irrespective of interval length, where alpha/beta power was higher for            

trials that were subjectively experienced as short. These findings were consistent for short             

and long interval trials in Experiment 1. However, this effect did not replicate in Experiment               

2. Finally, we show that in correct long interval judgements higher theta power correlated              

with shorter response times. This suggests that when more temporal evidence was            

accumulated, as reflected in theta power over midfrontal electrodes, participants more           

readily responded. 



 

4.1 INTRODUCTION 

Time perception and human experience are tightly bound and play an important role in our               

everyday life (e.g. when playing whack-a-mole at a fun fair). Understanding how we             

perceive the passage of time has been an endeavour in psychology and neuroscience for              

over half a century (Matthews & Meck, 2016; James, 1890). And although it is well known                

that the human brain has a dedicated brain region for circadian rhythms (Turek, 1985), the               

neural underpinnings of time perception on shorter time scales (~1 s) remain to be              

elucidated (Muller & Nobre, 2014). Recently, Parker and colleagues (2014) reported an            

important role for the power of delta and theta oscillations in medial frontal cortex. They               

showed that low-frequency power increased in both humans and rats upon the            

presentation of a cue that indicated that subjects needed to perform an interval timing task.               

Moreover, this effect was absent in patients with Parkinson’s Disease and in rats after              

dopamine depletion (Parker et al., 2014). Taken together, these results suggest that            

low-frequency power from the medial frontal cortex might reflect dopaminergic activity from            

deeper brain structures and might serve as a start-gun to interval timing (Kononowicz,             

2015). 

Other research has extended the relevance of the power of oscillatory activity beyond the              

delta and theta band. In a self-paced key-press task trial-to-trial beta power, over a              

central-motor electrode site, positively correlated with the length of produced durations,           

while theta band oscillations were found to be negatively correlated to produced durations             

(Kononowicz & van Rijn, 2015). Crucially, the correlation between beta power and interval             

duration was already present during the pre-interval period (before the first button press).             



However, given changes of the beta rhythm locked to the onset of motor responses              

(Pfurtscheller & Lopes da Silva, 1999), it remained to be elucidated if beta oscillations are               

involved in temporal judgements.  

The role of beta band oscillations was further substantiated by a recent working-memory             

study. Kulashekhar et al. (2016) extended the findings of Kononowicz & van Rijn (2015)              

when they found that beta band power increased while storing and retrieving temporal but              

not colour information. This important finding suggests that beta oscillations are indeed            

involved in temporal judgements, specifically in the memory encoding and retrieval of            

temporal information. However, Schlichting and colleagues (2018) recently asked whether          

beta oscillations are specifically related to time perception or to magnitude perception in             

general. Interestingly, they found no difference in beta power when participants made            

judgments about time or numerosity, contesting the straightforward relationship between          

beta power and time perception (Schlichting et al., 2018). 

Previous research in monkeys also found a relationship between increased beta power            

and longer durations between consecutive taps (Bartolo et al., 2014; Bartolo & Merchant,             

2015). A possible interpretation of the relationship between beta power and interval timing             

was provided in the framework of dopamine levels (Kononowicz & van Rijn, 2015). Higher              

beta power might reflect low dopamine levels (Jenkinson & Brown, 2011) and low             

dopamine levels are related to a slowing of subjective timing (Meck, 1996; Lewis & Miall,               

2006). In a production task, high beta power and low dopamine levels would lead to longer                

interval productions, because subjective time is passing more slowly. Alternatively, beta           

power might index temporal evidence accumulation (Balci and Simen, 2014; Luzardo et            

al., 2011; Simen et al., 2013; Kononowicz & van Rijn, 2015).  



Interestingly, evidence accumulation of noisy sensory information over time in          

non-temporal decision making has been related to both alpha (~8-12 Hz) and beta band              

oscillations (Kelly & O’Connell, 2013; Rohenkohl & Nobre, 2011; Donner et al., 2009).             

Kelly and O’Connell (2013) showed that alpha oscillations had an inverse relationship with             

the slope of the centro-parietal positivity (CPP), which is thought to reflect the             

accumulation rate at which noisy sensory evidence is accumulated. Rohenkohl & Nobre            

(2011) showed that alpha power was higher for temporally unexpected compared to            

expected events. Taken together, these findings suggest that higher alpha power           

negatively affects sensory processing in temporal and non-temporal decision making, but it            

remains unclear what role the power of alpha oscillations play in time perception. Previous              

research showed that alpha (8-14 Hz) power correlated with produced time intervals, such             

that higher power was correlated with shorter temporal intervals (Makhin & Pavlenko,            

2003). However, this finding was not replicated in a reproduction task by Kononowicz &              

van Rijn (2015), where alpha power was not related to reproduced intervals. 

All in all, these studies indicate that the power of theta, alpha and beta band oscillations                

might play a role in temporal and non-temporal decision making. In the current EEG study               

power in these frequency bands and its relationship to correct and incorrect temporal             

judgements were examined. Participants were required to judge the time between a tone             

and a visual stimulus as 1 or 1.5 s in Experiment 1 and 1.5 or 2 s in Experiment 2. The 2 ×                       

2 design of interval length (short and long) and response (correct and incorrect) allows the               

comparison of over- and underestimation to correctly accumulated temporal information. If           

oscillatory (theta/alpha/beta) power is related to interval length or evidence accumulation           

of temporal information, a pattern should emerge where intervals judged as long,            



irrespective of the physical interval length, should have higher (theta/alpha/beta) power           

than intervals judged as short. If (theta/alpha/beta) power from medial frontal cortex            

(possibly pre-SMA) reflects the activity of the internal clock, we would expect higher power              

in correctly judged temporal intervals than in incorrectly judged intervals.  

 

4.2 MATERIALS & METHODS 

The paradigm has been described in detail in Chapter 2. The exclusion criteria were the               

same as before and the same data is analyzed for Experiment 1 and 2 as in Chapter 2,                  

albeit in a different way. Please refer to Chapter 2 for the behavioral results and analyses.                

Here, we compared power differences between correct and incorrect responses for theta            

(3-6 Hz), alpha (7-14 Hz) and beta (15-25 Hz) power. These frequency bands were loosely               

based on previous literature (Palva & Palva, 2007; Weisz et al., 2011; Zumer et al., 2014)                

and we used a cluster-based randomization approach to correct for multiple comparisons            

(Maris and Oostenveld, 2007). 

4.2.1 Preprocessing: TFR analyses 

Using EEGLAB, the data was divided in epochs from -1000 to 3500 ms from tone onset.                

Subsequently, the data was baselined from -100 to 0 ms to remove any slow drifts. Missed                

trials were discarded. Based on visual inspection trials were removed for the following             

reasons: muscle artefacts, noise (i.e. electrode jumps or other electrode related noise),            

horizontal eye movements and blinks at visual stimulus presentation. The cleaned data            

was then average referenced (excluding bipolar electrodes), from which electrode CPz           

was reconstructed. Ocular artefacts were removed in FieldTrip using independent          

component analysis (ICA, infomax algorithm) incorporated as the default “runica” function.           



Prior to the ICA, a PCA (15 components) was performed on the data to reduce               

dimensionality of the data. 

 

4.2.2 Time Frequency Representation 

Using the FieldTrip function ‘ft_freqanalysis_mtmconv’ time frequency representation        

(TFR) of power was obtained for each trial by performing a fast fourier transform using a                

Hanning taper in combination with a sliding time window. The time window was adapted to               

the frequency of interest (ΔT = 3/f). The frequency range of interest was from 2 to 40 Hz in                   

steps of 1 Hz. TFRs were calculated for the long and short interval and for correct and                 

incorrect responses separately, leading to 4 different subsets of trials. After we assessed             

that there were no differences in baseline (i.e. pre-cue) oscillatory power for our frequency              

bands of interest between correct and incorrect responses, data in each condition was             

normalized to be the relative change in power according to the following formula, 

 

p ∆ =  P r
(P −P ) t r  

 

where was the mean power during the pre-cue period (700 – 200 ms before tone P r                

onset)  and  was the power at each specific time point.P t  

 

4.2.3 Statistics: TFR analyses 

The differences in oscillatory power between conditions were statistically assessed by           

means of the cluster level (channels and time-points) randomization approach (Maris and            

Oostenveld, 2007).  Here, the power of the frequencies of interest in each channel and              



time point within the time intervals of interest, were clustered according to exceeding a              

threshold of p < .05 obtained from a two tailed dependent samples t-test. The time interval                

of interest was from tone onset until visual stimulus onset for all frequency bands. Next,               

the Monte Carlo p-values of each cluster were obtained by randomly swapping the             

condition labels within participants 2500 times. A difference between conditions was           

deemed significant if the cluster p-value was smaller than .025 (two-sided test). 

 

4.2.4 Single-trial analyses  

In addition to the trial-average analyses described above, we asked whether the            

differences between correct and incorrect responses were behaviorally meaningful beyond          

the distinction between correct and incorrect responses. We examined whether single trial            

power values correlated with response time. To this end, we used Spearman’s ranked             

correlation to correlate response times and power. Ranked correlation was used, because            

power data is not normally distributed (Cohen, 2014; Cohen & Donner, 2013). We             

transformed the obtained correlation values to z-scores with Fisher’s z-transform. To avoid            

double-dipping we looked within responses and compared obtained correlation estimates          

to 0 through cluster based permutation tests, rather than comparing the z-scored            

correlation values of correct and incorrect responses to each other. We used 10000             

iterations for the permutation test and we set the critical alpha value to .05 because we                

had directional hypotheses (one-sided test). We expected higher theta power to correlate            

with faster response times. Theta power was averaged over 3-6 Hz and the z-scored              

correlation values were averaged over the time windows of interest we obtained from the              

comparison of correct and incorrect trials. 



4.3 RESULTS 

For the behavioral results please refer to Chapter 2. In short, in Experiment 1 participants               

responded fastest to correctly judged long (1.5 s) interval trials. In Experiment 2             

participants responded faster when they judged a trial as long irrespective of the true trial               

length. 

In Experiment 1 participants judged a 1 s interval correctly as short or incorrectly as long                

(Figure 4.1A). First we examined the baseline period of 700-200 ms before tone onset for               

differences for the different frequency bands of interest. We observed no clusters for any              

of the frequency bands. We baseline corrected our data and compared correct and             

incorrect responses for the different frequency bands from tone onset until visual stimulus             

onset.  

For the short (1 s) interval of Experiment 1 we found that beta power averaged over 15-25                 

Hz was significantly (p = .011) higher for correct (μ = -0.223 ± .020, with mean over                 

significant electrodes and time points and standard error of the mean across participants)             

than incorrect (μ = -0.286 ± .028) responses from 750-1000 ms (Figure 4.1B and C). For                

the alpha band averaged over 7-14 Hz we observed a similar effect such that alpha power                

was higher (p = .023) for correct (μ = -0.208 ± .024) than incorrect (μ= -0.289 ± .035)                  

responses from 750-950 ms. The 95% confidence interval of the p -value of the alpha band               

effect did include the .025 critical value. However, running 10000 iterations instead of 2500              

did not change this. 



Figure 4.1 Time-frequency representation averaged across all electrodes for correct and incorrect            

responses when participants judge 1 s time intervals. The tone evoked a response in the low frequency                 

ranges followed by sustained power decreases in the higher frequency ranges (A). The difference plot shows                

that power values are higher for correct compared to incorrect responses (B) and this difference was significant                 

(p = .011) in the beta range from 750-1000 ms and marginally significant (p = .023) in the alpha range from                     

750-950 ms after tone onset (C). Block box in B shows the extent of the clusters in time and stars/crosses in C                      

show electrodes that were part of the cluster at the time points depicted. 

To make sure that these differences in alpha and beta bands were not caused by               

differences in trial count (participants had on average 400 correct trials versus 50 incorrect              



trials), we matched the trial counts for correct and incorrect responses and reran the              

analysis (note that we only performed this analysis for matching trial counts on the short               

interval with Experiment 1, because all other conditions had less severe trial count             

differences such that on average there was >1 incorrect trial collected for each 3 correct               

trials). Trial counts were matched by randomly drawing a sub-selection of correct            

responses such that the trial count matched the number of incorrect responses. We             

performed this control analysis once and the effect remained for both frequency bands             

(cluster extent was topographically similar and lasted from 750-900 ms for the beta band, p               

= .01, μ = -0.227 ± .026 for correct and μ = -0.303 ± .031 for incorrect responses; and                   

750-1000 ms for the alpha band, p = .012, μ = -0.167 ± .028 for correct and μ = -0.279 ±                     

.034 for incorrect responses). 

In addition to 1 s intervals, participants also judged a 1.5 s interval correctly as long or                 

incorrectly as short in Experiment 1 (Figure 4.2A). We used a similar approach to the 1 s                 

interval and first examined if there were any baseline differences, by testing the baseline              

window of 700-200 ms before tone onset for differences for the frequency bands of              

interest. No differences were observed, therefore we baseline corrected the data and used             

cluster based permutation statistics.  

We found significantly (p = .01) more theta power averaged from 3-6 Hz from 1050-1500               

ms after tone onset for correct (μ = -0.13 ± .030) compared to incorrect (μ = -0.20 ± .026)                   

responses (Figure 4.2B and C top). For alpha power averaged from 7-14 Hz we found               

significantly (p < .01) lower power for correct (μ = -0.248 ± .034) compared to incorrect (μ =                  

-0.184 ± .031) responses from 600-1250 ms after tone onset (Figure 4.2B and C middle).               



For beta power averaged from 15-25 Hz we found significantly (p < .001) lower power for                

correct (μ = -0.252 ± .022) compared to incorrect (μ = -0.195 ± .019) responses from                

550-1500 ms after tone onset (Figure 4.2B and C bottom). 

 



Figure 4.2 Time-frequency representation averaged across all electrodes for correct and incorrect            

responses when participants judge 1.5 s time intervals. The tone evoked a response in the low frequency                 

ranges followed by sustained power decreases in the higher frequency ranges (A). The difference plot shows                

that power values are lower for correct compared to incorrect responses for higher frequencies, but power                

values were higher for correct compared to incorrect responses for lower frequencies (B). Topographies of the                

significant differences are shown in C. Block boxes in B shows the extent of the cluster in time and stars in C                      

show electrodes that were part of the cluster at the time points depicted. D shows the topographies of                  

electrode clusters that showed a (trending) correlation with response times. 

For Experiment 2 we ran the same analyses. Here, participants judged a 1.5 s interval               

correctly as short or incorrectly as long (Figure 4.3A). No significant differences were             

observed between correct and incorrect responses in the baseline or in the time window of               

interest (from tone onset to visual stimulus onset; Figure 4.3B). 

In Experiment 2 participants also judged a 2 s interval correctly as long or incorrectly as                

short (Figure 4.4A). Again, we did not find any differences in the baseline period, so we                

baseline corrected our data. We found that theta power averaged over 3-6 Hz was              

significantly (p < .001) higher for correct (μ = -0.091 ± .049) than incorrect (μ = -0.185 ±                  

.047) responses from 1400-2000 ms.  

Taken together, we found for both Experiment 1 and Experiment 2 that theta power was               

higher for correct than incorrect responses in the long time interval. This difference             

became significant around the end time of the short interval. We therefore asked whether              

theta power might be associated with response times. To this end we used Spearman              

correlation and correlated averaged theta power over 3-6 Hz with response times over             

trials for each participant at each time point and each electrode. The correlation values              



were z-scored and subsequently compared to 0 with cluster based permutation statistics.            

We expected that if theta power represented accumulated evidence in line with previous             

research, response times would be shorter for higher theta power.  

Figure 4.3 Time-frequency representation averaged across all electrodes for correct and incorrect            

responses when participants judge 1.5 s time intervals. The tone evoked a response in the low frequency                 

ranges followed by sustained power decreases in the higher frequency ranges (A). The difference is plotted in                 

B. 

 



For Experiment 2 we found that theta power significantly (Figure 4.4D; p = .0014)              

correlated with response times, such that higher theta power was associated with faster             

response times (μz = -0.665 ± .150 for the significant cluster with standard error of the                

mean over participants). We did not observe this relationship for incorrect responses. For             

Experiment 1 we found that theta power showed a trend (Figure 4.2D; p = .085) in the                 

correlation with response times for correct responses (μz = -0.482 ± .17). In Experiment 1               

we found that theta power in incorrect responses positively correlated, albeit marginally            

significant, with response times (p = .051; μz = 0.463 ± 0.136; Figure 4.2D) such that                

higher theta power predicted longer response times. Taken together, these findings           

suggest that higher theta power after the short time window has elapsed leads to faster               

responses when participants correctly judge a long interval. And we found partial support             

for the reverse: higher theta power after the short time window has elapsed leads to slower                

responses when participants incorrectly judge a long interval. 



 

Figure 4.4 Time-frequency representation averaged across all electrodes for correct and incorrect            

responses when participants judge 2 s time intervals. The tone evoked a response in the low frequency                 

ranges followed by sustained power decreases in the higher frequency ranges (A). In the lower frequency                

range power was higher for correct compared to incorrect responses (B). Topographies of the significant               

difference in the theta range are shown in C. Block box in B shows the extent of the cluster in time and stars in                        



C show electrodes that were part of the cluster at the time points depicted. D shows the topography of the                    

electrodes that had correlation values that were significantly ( p = .0014) different from 0. 

 

4.4 DISCUSSION 

With the analyses discussed in this chapter we compared power differences between            

correct and incorrect responses on an interval discrimination paradigm. We consistently           

found higher theta power in long interval trials after the short time interval had elapsed for                

correct compared to incorrect responses. In Experiment 2 this theta signature was also             

associated with response times such that higher theta power was indicative of shorter             

response times for correct responses. This finding was partially supported by the data of              

Experiment 1 where short response times on correct responses were marginally           

significantly associated with higher theta power. In Experiment 1 we also found that higher              

theta power was associated with slower responses on incorrect judgements, albeit           

marginally significant, but we did not observe this pattern in Experiment 2. In addition to               

the theta power effects, we also found that alpha and beta power were significantly lower               

for correct than incorrect responses on the long interval trials of Experiment 1. Moreover,              

the beta power effect reversed on short interval trials of Experiment 1 such that beta power                

was higher for correct than incorrect responses. However, the effect of alpha and beta              

power did not replicate in Experiment 2. 

4.4.1 Theta power difference between correct and incorrect long intervals 

In the long time intervals of both experiments we found that theta power was higher for                

correct than incorrect responses after the short time interval had elapsed. Scalp-recorded            

EEG is sensitive to volume conduction, which makes it hard to read the topographies of               



the theta activity difference (van den Broek et al., 1998). However, the topographies             

suggest a lateralized frontal activity pattern for the data in Experiment 1 and a more               

widespread topographic difference in the data from Experiment 2 (compare Figures 4.4C            

and 4.2C, top). For future work looking at interval discrimination and EEG, it might be               

advisable to apply a spatial filter such as the surface Laplacian to reduce volume              

conduction (e.g. Wong et al., 2018 and Chapter 3 of the current thesis). 

Theta power has been linked to working memory and cognitive control (Jensen & Tesche,              

2002; Fell & Axmacher, 2011; Sauseng et al., 2009; Cohen & Donner, 2009) and theta               

power is also hypothesized to play a role in interval timing (Gu et al., 2015). In addition,                 

theta power was found to differ for different temporal expectations, such that theta power              

was highest during critical moments, when temporal expectation was also highest (Cravo            

et al., 2011). Recent research in rats showed that hippocampal theta was related to              

duration discrimination (Nakazono et al., 2015) and an EEG study in humans showed that              

midfrontal theta power negatively correlated with produced intervals (Kononowicz & van           

Rijn, 2015). We found that theta power was higher for correct compared to incorrect              

responses on long interval trials, which supports the notion that theta oscillations play a              

role in interval timing.  

Alternatively, the theta effect might come about through differences in attention. Previous            

research has linked theta power to attentional demand (Sauseng et al., 2007), where             

higher theta power was associated with more demanding conditions. It might be that             

longer intervals are more attention demanding, but this would not necessarily explain the             

difference in theta power between correct and incorrect responses on long interval trials.             



Theta oscillations in human neocortex have also been related to cortical excitability            

(Jensen & Colgin, 2007; Canolty et al., 2006). It might be that participants are              

accumulating more temporal evidence when cortical excitability is high, which leads to the             

observed pattern of higher theta power for correct responses on long interval trials.             

However, this finding does not explain why we don’t observe a reversed pattern of this               

effect on short interval trials. 

4.4.2 Theta power and response time correlations 

Interestingly, we did observe associations between theta power and response times.           

Higher theta power after the short interval had elapsed was correlated to shorter response              

times on correct trials in Experiment 2. In Experiment 1 we observed a similar pattern,               

albeit only trending significant. In Experiment 1 we also observed the, marginally            

significant, opposite pattern for incorrect responses, such that higher theta power led to             

longer response times. Previous research has also linked higher theta power and faster             

response times (Delorme et al., 2007). However, cortical excitability does not fully account             

for our findings. If theta power reflected cortical excitability, we would expect a negative              

correlation between theta power and response times irrespective of the response. But our             

finding of the positive correlation between incorrect responses and response times suggest            

that theta power reflects actual temporal evidence accumulation. When theta power is            

high, evidence in favour of long time intervals is accumulated, which makes participants             

respond slower on incorrect trials with high theta power. 



4.4.3 More alpha/beta suppression for trials judged as long in Experiment 1 

For experiment 1 we also found alpha and beta power to be more suppressed on correct                

than incorrect trials in the long interval. In addition, alpha and beta power showed the               

opposite effect in short interval trials. However, none of these effects replicated in             

Experiment 2. Recent evidence suggests that beta oscillations play an important role in             

time estimation (Kononowicz & van Rijn, 2015), where beta power was found to correlate              

with produced interval lengths. The most convincing evidence for beta involvement in a             

temporal discrimination task stems from Kulashekhar and colleagues (2016) that found           

that beta power was higher when temporal information was kept in working memory             

compared to colour information. Moreover, a recent reanalysis suggested that beta           

oscillations may be linked to keeping a standard interval in working memory rather than to               

perceived duration as such (Wiener et al., 2018). Wiener and colleagues (2018) extended             

this reanalysis by applying transcranial alternating current stimulation at alpha and beta            

bands, where they showed that participants were more likely to judge a stimulus as long               

during beta stimulation. These findings are in line with the results we observed in              

Experiment 1. When beta power is higher, participants are more likely to overestimate the              

short interval and when beta power is lower, participants are more likely to underestimate              

the long interval. However, it is unclear why we did not observe this pattern in Experiment                

2. 

Our data in Experiment 1 was suggestive of a general mechanism for beta power, where               

higher beta power led participants to judge the elapsed time as long. For alpha oscillations               

we observed a similar effect. Alpha power was higher for short trials that were incorrectly               



judged as long and alpha power was higher for long trials that were correctly judged as                

long.   



CHAPTER 5 

The CNV (and other slow evoked potentials) and temporal judgements 

 
 

ABSTRACT 

This chapter aims to examine event-related potentials in a temporal decision-making task.            

Previous research has suggested that the accumulation of temporal evidence is reflected            

in slow evoked potentials, which might reflect climbing neural activity. In this chapter two              

almost identical experiments were used, where participants judged a time interval, which            

was demarcated by a tone and a visual stimulus, as short or long (Experiment 1: 1 vs. 1.5                  

s, Experiment 2: 1.5 vs. 2 s). This so-called single stimulus discrimination task allows the               

comparison of correct and incorrect temporal judgements. Behaviorally, participants had          

higher error rates for the second experiment, which is in line with Weber’s law where               

higher error rates are predicted for longer time intervals. In the EEG, a significantly larger               

slow-evoked potential was observed over parietal electrodes for correct compared to           

incorrect judgements of a 2 s interval. However, no effects were observed in other              

conditions. Response-locked data identified several differences across conditions, but         

these differences mostly coincided with the offset of the to-be-timed interval, i.e. the visual              

stimulus. When the data was locked to the visual stimulus the post-stimulus N2 amplitude              

was larger for incorrect compared to correct responses for the 1.5 s interval in Experiment               

1. Post-error related signals showed larger a error-related negativity (ERN) over frontal            

electrodes for incorrect compared to correct responses for long, but not short, intervals.             

The error-related positivity (Pe), interestingly, was larger for incorrect compared to correct            

responses for short intervals, and this pattern was reversed for long intervals. 



5.1 INTRODUCTION 

Time perception and evidence accumulation can be studied through event related           

potentials (ERPs). These signals are obtained by averaging cortical activity recorded with            

electroencephalography (EEG) across many trials. Non-phase locked oscillatory activity is          

averaged out and the activity that remains is thought to be evoked (i.e. phase locked and                

time-locked) by the stimulus or task demands (Coles & Rugg, 1995). In the literature of               

time perception, climbing neural activity is often seen as a potential neural substrate of the               

accumulator as hypothesized by scalar timing theories (STT; Gibbon et al., 1984). In STT              

a pacemaker generates pulses, which are subsequently stored in an accumulator and the             

accumulator is read out in order to judge how much time has passed. Climbing neural               

activity, as indexed through slowly evolving ERPs, might reflect the accumulation process            

of temporal information (Macar et al., 1999; Macar & Vidal, 2009; Macar & Vitton, 1972;               

Pfeuty et al., 2005). 

The Contingent Negative Variation (CNV) is a slow (i.e. in the range of several hundreds of                

milliseconds) negative-going potential that has been related to time estimation since its            

discovery (Walter, 1964). The relation between time perception and the CNV was further             

developed by Macar and colleagues (1999), who found that the CNV at electrode FCz              

positively correlated with produced intervals on a trial-by-trial basis. This finding led to the              

appealing hypothesis that the CNV reflects the accumulation of temporal information           

(Macar et al., 1999; Pfeuty et al., 2003). However, a direct relationship between the CNV               

and time estimation was called into question after more recent research was unable to              

replicate the original correlation and instead found that the CNV diminished with            

time-on-task (i.e. the CNV showed habituation; Kononowicz & van Rijn, 2014; Kononowicz            



& Penney, 2016). If the CNV is related to time estimation, one would not expect the                

amplitude of the CNV to decrease with time-on-task as this would negatively affect             

temporal estimation ability. These recent findings led to the suggestion that the CNV is              

instead related to time-based response preparation (Kononowicz & van Rijn, 2014; van            

Rijn et al., 2011). But this interpretation of the CNV was also recently called into question                

when Mento and colleagues (2013) used a passive task (i.e. no motor responses were              

required), where participants were over-exposed to a time interval of 1500 ms and less              

often exposed to a time interval of 2500 or 3000 ms. In this experiment the CNV became                 

more pronounced (i.e. the opposite of habituation) with time-on-task, even in the absence             

of a motor component (Mento et al., 2013). Taken together, these results show that the               

role of the CNV in time estimation is not fully understood, although it seems unlikely that                

there is a straightforward relationship between the accumulator, as proposed by STT, and             

the CNV. 

A theoretical framework that has gained substantial attention in the last 2 decades in              

decision making neuroscience is sequential sampling. Sequential sampling models         

suggest that noisy sensory evidence is accumulated until the balance is tipped in favour of               

one decision outcome over the other (Kelly & O’Connell, 2013). Interestingly, these models             

show strong similarities to the STT because both models depend on evidence            

accumulation over time. A recent decision-making study (O’Connell et al., 2012), where            

participants detected a gradually developing change in the stimulus, identified a possible            

accumulation signal: the centro-parietal positive potential (CPP). This signal was found to            

correlate both with cumulative evidence and response times (O’Connell et al., 2012).            

O’Connell and colleagues showed that the CPP underlies the accumulation of noisy            



sensory information in non-temporal decision making, but it is currently unknown whether            

this ERP also reflects evidence accumulation of temporal information. Moreover, previous           

research has described a late component of the earlier described CNV with a more              

centro-parietal topography (Trillenberg et al., 2000; Verleger et al., 1999), compared to the             

frontal topography described in other studies (e.g. Kononowicz & van Rijn, 2014; Macar et              

al., 1999; Pfeuty et al., 2003). Taken together, these studies suggest that temporal             

evidence for the accumulation process should not be limited only to fronto-central            

electrodes, but should test central and parietal topographical locations. 

In addition to ERPs locked to the onset of the to-be-timed interval (i.e. the CNV), previous                

research has also investigated offset-locked ERPs. The offset-locked ERPs most studied           

in temporal decision making are the N1-P2 complex and the late positive component of              

timing (LPCt). Kononowicz and van Rijn (2014) used temporal comparison intervals that            

were more or less similar to the standard interval by varying the length of the comparison                

interval at 3 shorter and 3 longer levels. They showed that the sensory-evoked N1-P2              

complex reflected the similarity of the standard and comparison interval, because the            

N1P2-complex was larger for comparison intervals that were less similar (i.e. the more             

extreme levels) to the standard interval. Importantly, this also held for comparison intervals             

that were longer than the standard interval, which suggested that timing processes            

continued after the elapsing of the standard interval and the resolution of the CNV              

(Kononowicz & van Rijn, 2014). The offset-locked LPCt appeared as a large positive             

deflection over prefrontal electrodes (Paul et al., 2003) or central/centro-parietal electrodes           

(Lindbergh & Kieffaber, 2013). Lindbergh & Kieffaber (2013) showed that the LPCt scaled             

with the subjective experience of elapsed time. In addition, Paul et al. (2003) showed that               



the LPCt increased as a function of stimulus duration but only if the short comparison               

interval was presented before the long comparison interval and not vice versa. Paul et al.               

(2003) suggested that the LPCt might reflect the comparator as proposed by STT. All in all,                

offset-locked ERPs present a relatively understudied field of temporal discrimination          

research and it remains an open question whether N1-P2 differences also arise when the              

same physical stimulations leads participants to different responses. 

Several MR-neuroimaging studies have focused on the brain regions involved in time            

perception. An influential meta-analysis showed that automated time perception (i.e. time           

intervals <1 s) mostly relies on the cerebellum, whereas cognitively controlled time            

perception of supra-second time intervals rely mostly on cerebral regions (Lewis & Miall,             

2003). Pouthas and colleagues (2003) contrasted functional MRI of short and long time             

interval estimation and found that a caudate-preSMA circuit may reflect a clock            

mechanism, the anterior cingulate may reflect decision making and premotor-inferior          

frontal regions may reflect response related processes. In addition, rodent studies have            

shown that the medial prefrontal cortex plays an important role in interval timing (Kim et al.,                

2009; Kim et al., 2013; Narayanan et al., 2012; Xu et al., 2014). This same region plays an                  

important role in action monitoring (Luu et al., 2000) and is thought to be the source of the                  

error-related negativity (ERN). Luu and colleagues (2000) showed that the ERN was more             

pronounced when temporal response criteria were not met. However, how errors in            

temporal decision making influence the error signals like the ERN remains poorly            

understood.  

Hence, the aim of this chapter was to examine whether temporal decision making might              

give rise to a slow evoked potential over centro-parietal regions like the late CNV or the                



CPP, specifically by comparing correct and incorrect temporal judgements. In these           

experiments I used a time estimation paradigm where participants were exposed to            

intervals of two different lengths and participants had to classify each interval as short or               

long. If the CNV tracks subjective timing, one would expect that the CNV would be more                

pronounced when participants judge an interval as long compared to short, irrespective of             

the physical stimulus duration. Likewise, if the CPP tracks temporal evidence           

accumulation, one would expect similar results for the CPP. In addition, since previous             

research suggested that offset-locked ERPs might reflect temporal decision-making, I also           

looked at offset-locked ERPs, when each interval should be compared to a reference             

interval implicitly kept in working memory. Finally, I looked at whether error signals can be               

recorded reliably, as has been done for many instances of non-temporal decision making             

(Gehring et al., 1993; Ridderinkhof et al., 2004). 

 

5.2 MATERIALS & METHODS 

5.2.1 Participants, paradigm & behavior 

The data from Chapter 2 was reanalyzed here. Please refer to Chapter 2 for more               

information about the participants, paradigm & behavior. 

 

5.2.2 EEG Data Acquisition  

EEG was acquired using the EEGO Sports system (ANT Neuro, Enschede, Netherlands)            

and Waveguard caps housing 64 Ag/AgCl electrodes arranged in a 10/10 system layout             

(including left and right mastoids, CPz as reference and AFz as ground). Impedances were              

kept below 20 kΩ, and the data was acquired using a sampling rate of 500 Hz. EOG was                  



collected for horizontal eye movements, by placing bipolar electrodes on the outer canthi             

of the left and right eye. ECG was collected for heart rate data, by placing one bipolar                 

electrode on the right chest, one bipolar electrode on the left abdomen and an electrode on                

the left collar bone served as the ground. This latter electrode acted as a ground electrode                

for the ECG signal. Offline data analysis took place in Matlab with eeglab functions              

(version 13.1.1b; Delorme & Makeig, 2004) and the FieldTrip software package           

(Oostenveld et al., 2011). 

5.2.3 Preprocessing 

Using EEGLAB, the data were epoched around -1000 to 3500 ms from tone onset.              

Subsequently, the epochs were baselined from -100 to 0 ms to remove any slow drifts.               

Missed trials were discarded. Based on visual inspection trials were removed for the             

following reasons: muscle artefacts, noise (i.e. electrode jumps or other electrode related            

noise), horizontal eye movements and blinks at visual stimulus presentation. The cleaned            

epochs were then average referenced (excluding bipolar electrodes), from which electrode           

CPz was reconstructed. Ocular artefacts were removed in FieldTrip using independent           

component analysis (ICA, infomax algorithm) incorporated as the default “runica” function.           

Prior to the ICA, a PCA (15 components) was performed on the data to reduce the                

dimensionality of the data. 

 

5.2.4 ERP analysis and statistics 

To assess whether there were differences in early evoked responses to correctly and             

incorrectly estimated time intervals I compared the N1 and P2 ERPs and the N1-P2              

complex, which were evoked by the visual stimulus that marked the offset of the time               



interval. Visual inspection of ERPs averaged over correct and incorrect responses were            

used to define a region of interest. For both short and long intervals and for Experiment 1                 

and 2 electrodes O1, O2, PO5, PO6, PO7 and PO8 over occipital regions showed the               

largest responses to visual stimulation. Visual inspection of averaged correct and incorrect            

responses at these electrodes were used to select a time window of interest for the N1 and                 

P2. Dependent samples t-tests were used to compare mean amplitude over the time             

interval and electrodes of interest for correct and incorrect responses. Statistical tests were             

performed separately for short and long intervals and Experiment 1 and 2. 

For the tone-locked CNV/CPP I examined a predefined region of interest. For the CNV I               

focused on midfrontal electrodes: FCz, FC1, FC2, Cz, C1 and C2 and for the CPP I                

focused on centroparietal electrodes: CPz, CP1, CP2, CP3, CP4, Pz, P1, P2, P3 and P4. I                

examined the time interval from 500 ms after tone onset until the visual stimulus onset, in                

part to lower the number of time points to compare, but also to rule out potential spill-over                 

into the CNV/CPP from differences in the processing of the tone. Next, I examined the               

same time windows without a predefined region of interest. In addition, I applied a more               

powerful analysis by combining the data of both experiments in a mixed ANOVA. Data at               

midfrontal electrode FCz was averaged from 500 ms after tone onset until visual stimulus              

onset. A 2 × 2 mixed ANOVA with interval length and experiment was applied to difference                

values of correct - incorrect responses. For response-locked examinations of the           

CNV/CPP I performed similar cluster-based analyses described earlier without         

pre-specifying a spatial region of interest and focused on data from 1 s and 1.5 s before                 

the response for the first and second experiment, respectively. 



For examination of the visually evoked N1 and P2 visual inspection of averaged ERPs of               

correct and incorrect responses were used to select a time window and electrodes of              

interest. Mean amplitudes were averaged over time, 170-206 ms post-stimulus for the N1             

and 232-262 ms post-stimulus for the P2 for experiment 1 and 180-210 ms and 240-270               

ms for experiment, respectively, and occipital electrodes: O1, O2, PO5, PO6, PO7 and             

PO8. Baseline corrections of 50 ms pre-stimulus until stimulus onset were applied in a              

condition specific way to assure that potential CNV differences did not contribute to             

differences in N1 and P2 amplitude (Kononowicz & van Rijn, 2014). In addition, and in line                

with previous research (Kononowicz & van Rijn, 2014), the N1-P2 complex was calculated             

as the sum of the absolute values of the N1 and P2. Dependent samples t-tests were                

applied to assess differences between correct and incorrect responses of mean           

amplitudes. In addition, a mixed ANOVA was applied to allow for a more powerful analysis.               

A 2 × 2 mixed ANOVA was applied with interval length and experiment as factors with the                 

difference between correct and incorrect N1-P2 complexes averaged over occipital          

electrodes.  

To exclude the possibility that effects at the level of the N1, P2 and N1-P2 amplitude were                 

not affected by response times, I regressed out response times. To this end, I applied a                

linear regression of single-trial ERP amplitudes at each time and channel point for correct              

and incorrect responses with response times, which were log transformed and centered            

around 0 by subtracting the average response times over correct and incorrect responses.             

After applying the linear regression the residuals were divided back into correct and             

incorrect responses. Importantly, trials counts were matched for all analyses that used            

linear regression to regress out response times as this approach is much more sensitive to               



trial count differences than normal ERP analyses. For the N1-P2 complex, regressing out             

response times was done by taking the difference between the residuals of correct and              

incorrect responses and subtracting the residuals of the P2 difference from the N1             

difference. 

To assess differences in error-related processing, a similar approach to inspection of N1             

and P2 differences was applied: Visual inspection of response-locked ERPs averaged over            

correct and incorrect responses identified time windows of interest. Cluster based           

permutation statistics were used to control for multiple comparisons across electrodes. For            

the error-related negativity (ERN) data was averaged from 0-64 ms and 0-70 ms             

post-response for experiment 1 and 2, respectively. And from 94-140 ms and 104-154 ms              

for the error related positivity (Pe). 

The differences in event-related potentials between responses were statistically assessed          

by means of the cluster level (channels and time-points) randomization approach (Maris            

and Oostenveld, 2007).  Here, the activity in each channel and time point within the time               

intervals of interest (i.e. from tone onset to visual stimulus onset), were clustered according              

to exceeding a threshold of p < .05 obtained from a two tailed dependent samples t-test.                

Next, the Monte Carlo p-values of each cluster were obtained by randomly swapping the              

condition labels within participants 2500 times. A difference between conditions was           

deemed significant if the cluster p-value was smaller than .025 (two-sided test). 

 

5.2.5 Correlating ERPs and response times 

We expected that any differences between correct and incorrect responses might reflect            

variation in the internal clock. If the internal clock also reflects the speed of the whole                



system, we would expect a relationship between the slow evoked response and response             

times. To examine this relationship, we performed a median split analysis. We compared             

the ERPs of fast and slow responses on correct trials with cluster based permutation              

statistics and did the same for incorrect trials. We examined the time window of interest               

from tone onset to visual stimulus onset and we averaged over the significant time window               

from the cluster based permutation test from 3.2.6. Next, we examined this association by              

correlating response times with trial-to-trial amplitude fluctuations. Median-split analyses         

are less sensitive to true effect and trial-by-trial analyses do not need the data to be split                 

arbitrarily (Cohen, 1983). To this end, we took the average amplitude of the time window               

that showed a significant difference in the cluster based permutation approach. We            

performed this analysis both within our topographically significant region and for each            

electrode.  

For the topographically significant region we took the average amplitude both over the time              

points and electrodes that reached significance in the cluster based permutation test. For             

each participant we calculated the ranked correlation of response time and average activity             

and used Fisher’s z-transform to normalize the data (see 2.2.5). At the group level we               

compared the z-transformed correlation values to 0 with a t-test. 

We also calculated Spearman’s ranked correlation value at each electrode and each time             

point by correlating response times over trials with the amplitude value at each time point               

and electrode. Fisher’s z-transform was applied and then we used cluster based            

permutation statistics to compare these correlation values to 0.  



Finally, we performed a fixed effects analysis by calculating the Spearman correlation for             

the average amplitude of the significant cluster and response times, irrespective of            

individual participants.  

 

5.3 RESULTS 

5.3.1 Event-related potentials 

i) Offset-locked potentials 

First, I examined whether there were differences in visually evoked responses to the offset              

of correct- and incorrectly timed intervals. Previous research showed that comparison           

intervals that were physically more different from the standard interval evoked larger            

N1-P2 complexes than comparison intervals that were more similar to the standard interval             

(Kononowicz & van Rijn, 2014). Here, I examined whether there are also differences in the               

N1, P2 and N1-P2 complex for physically identical stimulation, but with different subjective             

experiences. I compared correct and incorrect responses to short and long intervals            

separately for the intervals and experiments. I compared mean amplitude values over            

occipital electrodes (O1, O2, PO5, PO6, PO7, PO8) for time windows based on the              

averaged activity across correct and incorrect responses (N1 time window: 170-206 and            

180-210 ms; P2: 232-262ms and 240-270 ms, for Experiment 1 and Experiment 2,             

respectively; Figure 5.1 and 5.2).  

For the short interval of Experiment 1 I did not observe differences between correct and               

incorrect responses for the N1 or P2 over occipital regions (Figure 5.1A, B and C). The                

long interval of Experiment 1 did not show any significant difference for correct compared              



to incorrect judgements in the N1, but I did find a smaller P2 for correct compared to                 

incorrect responses (Figure 5.1D, E and F). 

 

 

Figure 5.1 Larger P2 visually evoked responses to the offset of the time interval for incorrect compared                 

to correct responses. There were no significant differences in visually evoked N1 and P2 for the short interval                  

(A). The visually evoked ERP to correct responses is shown in blue and incorrect responses in red. Over                  

occipital regions, the topography also looked similar (B shows the topography of the N1 and C shows the                  

topography of the P2). For the long interval there was no difference in the N1, but the P2 was more                    

pronounced for incorrect than correct responses (D).  

 

For Experiment 2 there were no differences between correct and incorrect responses for             

the short or the long interval in either the N1 or P2 (Figure 5.2). 



 

Figure 5.2 No differences in visually evoked responses to the offset of the time interval in Experiment                 

2. Same conventions as Figure 5.1. 

 

I also examined the N1-P2 complex, but I observed no difference in correct and incorrect               

responses for the short or long interval of either experiment (Table 5.2). Moreover, a mixed               

ANOVA indicated that there was no effect of experiment on the N1-P2 complex (p = 0.7),                

nor was there an interaction between interval and experiment (p = 0.6).  

To assess whether differences between correct and incorrect temporal judgement as           

indicated by differences in N1 and P2 mean amplitude was contaminated by response time              

differences between the conditions, I regressed out the response times (Table 5.1 and             

5.2). Even after regressing out response times there was a significant difference in P2              

amplitude between correct and incorrect judgements of the long interval in Experiment 1.  

 



Table 5.1 N1 and P2 amplitudes and statistics. This table shows the amplitude averaged over occipital                

electrodes (see main text) in a time window based on visual inspection of the average visually evoked ERP of                   

correct and incorrect responses. I = interval length in s; R = response, C = correct, I = incorrect; Reg is ERP                      

after regressing out response times 

 I R N1 Stats N1 Reg* Stats P2 Stats P2 Reg* Stats 

Exp 
1 

1.0 C -1.5 ± 2.3 t(17) = 
-1.6 
p = 0.13 

-0.4 ± 0.8 t(17) = 
-2.0 
p = 0.07 

3.3 ± 2.1 t(17) = 
-0.3 
p = 0.76 

-0.1 ± 0.8 t(17) = 
-0.8 
p = 0.45 I -1.1 ± 2.5 0.4 ± 0.8 3.4 ± 2.6 0.1 ± 1.0 

1.5 C -2.0 ± 1.9 t(17) = 
-1.5 
p = 0.15 

-0.2 ± 0.5 t(17) = 
-1.8 
p = 0.09 

1.4 ± 1.8 t(17) = 
-3.9 
p < .001 

-0.4 ± 0.4 t(17) = 
-3.8 
p = .002 I -1.7 ± 1.7 0.2 ± 0.5 2.2 ± 2.2 0.4 ± 0.4 

Exp 
2 

1.5 C -2.1 ± 2.4 t(12) = 
-0.16 
p = 0.87 

-0.1 ± 0.2 t(12) = 
-1.5 
p = 0.15 

1.3 ± 2.7 t(12) = 
-0.47 
p = 0.64 

0 ± 0.6 t(12) = 
-0.1 
p = 0.92 I -2.1 ± 2.4 -0.1 ± 0.2 1.4 ± 2.3 0 ± 0.6 

2.0 C -1.9 ± 2.3 t(12) = 
-0.64 
p = 0.53 

-0.1 ± 0.3 t(12) = 
-0.83 
p = 0.42 

1.4 ± 2.4 t(12) = 
-0.51 
p = 0.62 

-0.1 ± 0.3 t(12) = 
-1.13 
p = 0.28 I -2.1 ± 2.3 0.1 ± 0.3 1.5 ± 2.7 0.1 ± 0.3 

* Residuals are symmetrical along the x-axis for the correct and incorrect responses. 

 

  



Table 5.2 N1-P2 complex. The N1-P2 complex was determined for the ERP data as the sum of the absolute                   

values of the N1 and P2, which were the minimum and maximum amplitude values respectively in time                 

windows based on the average ERP to correct and incorrect responses. Same conventions as table 5.1. 

 Interval Response N1-P2 Stats N1-P2 Reg** Stats 

Exp 1 1.0 C 7.2 ± 3.7 t(17) = -0.36 
p = .72 

-0.5 ± 1.8 t(17) = -1.1 
p = .27 

I 7.3 ± 3.1 

1.5 C 5.6 ± 3.3 t(17) = -1.95 
p = .068 

0.3 ± 1.2 t(17) = -1.2 
p = .26 

I 6.1 ± 3.8 

Exp 2 1.5 C 5.9 ± 3.4 t(12) = -0.03 
p = .98 

-0.2 ± 1.2 t(12) = -0.5 
p = .65 

I 5.9 ± 3.6 

2.0 C 5.4 ± 3.0 t(12) = -0.46 
p = .66 

0.05 ± 1.0 t(12) = 0.2 
p = .85 

I 5.6 ± 3.1 

** To extract residual values for the N1-P2 complex, I took the difference between residuals at time points 
where the average ERP was at its minimum (N1) or maximum (P2) in the time windows of interest (see main 

text). The N1-P2 complex was calculated as the difference between the value indicated at the N1 and P2. 
 
 

Taken together, these findings suggest that the offset of the time intervals, which was              

marked with a visual stimulus in our paradigm, was processed differently for correct and              

incorrect responses to the long interval in the first experiment. However, this finding was              

only reflected in the P2, not in the N1-P2 complex or in any of the other experimental                 

conditions. 

 

ii) CNV and CPP 

Next, I asked what role the CPP and the CNV play in temporal decision-making in this                

single stimulus task design. To this end, I first examined a frontrocentral (FCz, FC1, FC2,               

Cz, C1 and C2) and a centroparietal (CPz, CP1, CP2, CP3, CP4, Pz, P1, P2, P3 and P4)                  

cluster of interest by averaging over electrodes. I used cluster-based permutation statistics            



to assess whether there were differences between correctly and incorrectly judged time            

intervals, while simultaneously correcting for multiple comparisons over time. To exclude           

any influences of potential differences in evoked responses to the tone I examined the time               

windows from 500 ms after the tone onset until the visual stimulus onset, i.e. the time                

interval offset.  

For Experiment 1 I did not observe any significant differences between correct and             

incorrect responses for the short and long interval at frontocentral or centroparietal            

electrodes (Figure 5.3). Both intervals showed an increase in amplitude over centroparietal            

and frontopolar electrodes and a decrease in amplitude over occipital electrodes (Figure            

5.3E and F), but there was no difference between correct and incorrect temporal             

judgements.  

 



Figure 5.3 No difference in CNV and CPP for correct and incorrect responses at frontocentral and                

centroparietal electrodes for Experiment 1. Cluster-based permutation statistics did not identify any            

significant differences between correct and incorrect temporal judgements for short and long intervals in              

Experiment 1 at either frontocentral or centroparietal electrodes. ERPs locked to the onset of the tone are                 

shown over frontocentral (A and B) and centroparietal (C and D) electrodes for the short (A and C) and long (B                     

and D) interval. Correct responses are shown in blue and incorrect responses are shown in red. The                 

topographies (E and F) show the averaged activity across time for the correct (left) and incorrect (middle)                 

responses and the difference (correct - incorrect, right). 

 

I applied the same approach to the data of Experiment 2 and again found no significant                

differences between correct and incorrect responses (Figure 5.4). The topographies          

showed a similar pattern for the short interval of Experiment 2 as compared to the               

topographies of Experiment 1, but the frontopolar increase was not visible for the long              

interval of Experiment 2. 



 

Figure 5.4 No difference in CNV and CPP for correct and incorrect responses at frontocentral and                

centroparietal electrodes for Experiment 2. Conventions for this figure are the same as in Figure 5.3. 

 

 

Next, I explored the difference between correct and incorrect responses without a            

predefined region of interest. In this analysis the cluster-based permutation approach           

corrected for multiple comparisons across time and space (i.e. electrodes). For Experiment            

1 we compared time-locked activity from 500 ms after the tone onset until the visual               

stimulus (at 1 or 1.5 s) was presented. The clusters we observed did not reach significance                

for the short or the long interval (Figure 5.5A and B). 

For Experiment 2 we used the same approach (with the visual stimulus coming on at 1.5 or                 

2 s) and found a positive cluster (Figure 5.5D and E; p = .01) for long (2 s) interval trials                    



when we compared correct to incorrect responses that survived multiple comparisons           

corrections. The difference between correct (μ = 0.142 ± .05 μV) and incorrect (μ = -0.153                

± .06 μV) responses was most pronounced over a right lateralized parieto-occipital cluster             

(Figure 5.5E, right). Interestingly, the difference was largest around the end of the short              

(1.5 s) interval from 1458-1532 ms (Figure 5.5D). We did not find any significant              

differences for the short (1.5 s) interval. This finding suggests that for interval             

discrimination of 2 s intervals the CPP might play a role. 

Figure 5.5 A larger tone locked CNV for correct compared to incorrect responses for the long interval                 

of Experiment 2. The cluster-based permutation approach was performed from 500 ms after tone onset until                

visual stimulus onset. For the long (2 s) interval trials of Experiment 2 we found a significant positive difference.                   

We plotted the amplitude averaged over the electrodes that showed the largest difference (E, most rightward                



plot, black dots) as a function of time for correct (blue) and incorrect (red) responses for each interval and                   

experiment (A-D). 

To combine the data of both experiments a mixed-effects ANOVA was applied to data from               

FCz averaged from 500 ms past tone-onset until visual stimulus onset. The mixed ANOVA              

indicated that there was no effect of experiment on the CNV amplitude (p = 0.11), nor was                 

there an interaction between interval length and experiment (p = 0.5).  

 

 iii) Response locked ERPs 

I examined response locked ERPs for correct and incorrect responses in a temporal             

decision-making task. I examined the CNV/CPP locked to the response and used            

cluster-based permutation statistics to examine the time window from 1s before the            

response until the response. Similarly, to the tone locked analyses of the CNV/CPP I              

examined a frontocentral and a centroparietal region of interest. When averaging over            

these spatial regions of interest I observed no clusters. Next, I examined the differences              

between correct and incorrect responses without averaging over electrodes. For          

Experiment 1 I observed no difference in the CNV/CPP locked to the response for the               

short interval between correct and incorrect responses (Figure 5.6A and C). For the long              

interval there were 3 clusters that survived corrections for multiple comparisons. A positive             

and negative cluster were most pronounced for overlapping time windows from 804 to 756              

ms before the response (Figure 5.6B and D, cluster i, p = .025 for the positive and p = .015                    

for the negative cluster, Fp1, Fpz, F3, Fz, FC1, FC2, C3, Cz, C4, AF3, F5, F1, FC3, FCz,                  

FC4, C1, C2 black dots in Di, P7, P4, P8, POz, O1, O2, P5, P6, PO5, PO3, PO4, PO6,                   

PO7, PO8, Oz white dots in Di). Closer to the response, from 202 to 128 ms pre-response,                 



there was a negative cluster where the CNV was more pronounced for incorrect compared              

to correct responses across central electrodes (Figure 5.6B and D, cluster ii, p = .021, Fz,                

FC1, FC2, C3, Cz, C4, CP2, F1, FC3, FCz, FC4, C1, C2 white dots in Dii). 

Figure 5.6 Response locked CNV/CPP for Experiment 1 showed several differences for correct and              

incorrect judgements of the long interval. The CNV of the short interval showed no differences between                

correct (in blue) and incorrect (in red) responses (A). Topographies show the averaged activity from 1s before                 

until the response (C). For the long interval 3 clusters indicated a significant difference between correct and                 

incorrect responses. A positive and negative cluster overlapped in time (cluster i) and a negative cluster closer                 

to the response (cluster ii). Topographies show the activity for the time points that were indicated to show the                   

largest differences by the cluster based permutation statistics. 

 

The same analysis was performed on the data of Experiment 2. I found a larger response                

locked CNV/CPP for correctly judged short intervals compared to incorrectly judged short            

intervals from 354 to 190 ms pre-response (Figure 5.7C, p = .009, CP1, CP2, P3, Pz, POz,                 



O1, C1, CP3, P5, P1, P2, PO5, PO3, PO4, PO7, Oz, black dots). The opposite effect was                 

observed for the long interval, where the response locked CNV/CPP was larger for             

incorrect compared to correct judgements of the long interval from 204 to 138 ms              

pre-response (Figure 5.7D, p = .026, C3, Cz, C4, CP1, CP2, P3, Pz, P4, POz, C2, CP3,                 

CP4, P1, P2, PO3, PO4, white dots). 

 

Figure 5.7 Response locked CNV/CPP for Experiment 2 showed differences for correct and incorrect              

judgements of both the short and long interval. The CNV of the short interval showed a positive difference                  

between correct (in blue) and incorrect (in red) responses over parieto-occipital electrodes (C). Topographies              

show the averaged activity from over the time window indicated by the cluster based permutation statistics (C                 

and D). There was no difference over frontocentral electrodes (A). For the long interval a negative cluster                 

indicated a significant difference between correct and incorrect responses.  

It is important to note that the significant differences in Experiment 2 and cluster ii of                

Experiment 1 fall between presentation of the visual stimulus and the response. Rather             

than reflecting true differences in CNV/CPP the differences might reflect processing           

differences of the visual stimulus that demarcated the end of the time interval. 



Finally, I examined error-related activity as reflected by the error-related negativity (ERN)            

and the error-related positivity (Pe). To this end, I examined the ERN and Pe by selecting                

two time windows based on the average of correct and incorrect responses. For             

Experiment 1 there was a difference between correct and incorrect responses for the Pe,              

94 to 140 ms post-response, over left-temporal electrodes (p = .018, T7, CP5, P7, C5,               

FT7, TP7, black dots in Figure 5.8C) and over midfrontal electrodes (p = .0056, FC1, FC2,                

Cz, C4, CP2, FCz, FC4, C1, C2, white dots in Figure 5.8C) for the short interval. I did not                   

find a difference between correct and incorrect responses in the time window of the ERN,               

0 to 64 ms post-response, for the short interval. For the long interval of Experiment 1 I                 

found a significant positive difference between correct and incorrect responses in the time             

window of the ERN over frontal electrodes (p = .0008, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5,                  

FC6, AF3, AF4, AF8, F5, F1, F2, F6, FC4, FT8, black dots Figure 5.8D, top row) and a                  

significant negative difference over parietal electrodes (p = .006, CP5, CP1, CP2, P3, Pz,              

POz, CP3, CP4, P5, P1, P2, PO5, PO3, PO7, white dots Figure 5.8D, top row). In addition                 

to these differences in the ERN time window I also observed differences in the Pe time                

window. Cluster based permutation statistics identified a positive difference which was           

most pronounced over midfrontal electrodes (p = .009, Fz, F4, FC1, FC2, AF4, F1, F2,               

FCz, FC4, black dots Figure 5.8D, bottom row) and a negative difference which was most               

pronounced over occipital electrodes (p = .05, POz, O1, Oz, O2). 



 

Figure 5.8 Error-related activity for Experiment 1 shows significant differences between correct and             

incorrect responses. The Pe was more pronounced for incorrect (red line) compared to correct (blue line)                

responses to the short interval (A) over midfrontal electrodes (C) and vice versa over left-temporal electrodes.                

There was no significant difference between correct and incorrect responses in the time window of the ERN for                  

the short interval. For the long interval there were significant differences in the time window of the ERN and the                    

Pe (B), where the ERN was more pronounced for incorrect compared to correct responses over frontal                

electrodes (D). However, the Pe was more pronounced for correct compared to incorrect responses over               

midfrontal electrodes (D). 

 

The same analyses for Experiment 2 did not identify differences in the time window of the                

ERN, from 0 to 70 ms post-response, nor for the Pe, from 104 to 154 ms, for the short                   

interval. Although the cluster-based statistics did identify a cluster for the Pe, it did not               

survive correction for multiple corrections (p = .06, Figure 5.9C bottom row). For the long               

interval there was a significant difference in the ERN time window over right-lateral             



fronto-temporal electrodes (p = .04, FC6, F6, FC4, C6, FT8, black dots Figure 5.9D). There               

was also a significant difference in the Pe time window over parietal electrodes (p = .04,                

C4, CP2, Pz, C2, CP4, P2, white dots Figure 5.9D).  

 

Figure 5.9 Error-related activity for Experiment 2 shows significant differences between correct and             

incorrect responses. The Pe was more pronounced for incorrect (red line) compared to correct (blue line)                

responses to the short interval (A, but this effect did not survive corrections for multiple comparisons across                 

electrodes, p = .06). There was no significant difference between correct and incorrect responses in the time                 

window of the ERN for the short interval. For the long interval there were significant differences in the time                   

window of the ERN and the Pe (B), where the ERN was more pronounced for incorrect compared to correct                   

responses over right frontal electrodes (D, black dots). The Pe was more pronounced for correct responses                

than incorrect responses over parietal electrodes (D, white dots). 

 



5.3.2 Correlations of ERPs and behavior 

Finally, I asked whether differences in CPP/CNV amplitude was predictive of response            

times (Figure 5.9). To this end, we performed a simple median split analysis, where we               

compared fast and slow responses separately for correct and incorrect responses.           

However, we did not find any significant differences for either correct or incorrect             

responses when comparing fast and slow responses. A median split can lower our ability              

to detect true effects (Cohen, 1983; MacCallum et al., 2002). To overcome this issue, we               

correlated single trial activity averaged over the electrodes and time points from the cluster              

that was indicated by the permutation test (see Figure 5.5) with response times of each               

trial through a ranked correlation. We used Fisher’s z-transformation to normalize the            

correlation values. At the second level we compared the correlation values to 0 and we               

compared the correlation values of correct and incorrect responses to each other. None of              

these analyses showed significant differences. In addition, we used the same approach of             

calculating ranked correlations between response time and EEG activity for each time            

point and channel. We then used a cluster based permutation approach to assess whether              

the Fisher’s z-transformed correlation values were different between correct and incorrect           

responses and we compared them to 0. Again, we found no significant differences. In a               

final step, we performed a fixed effect analysis (Figure 5.10), where we correlated             

response times with EEG activity collapsed over participants. Ranked correlation values           

did not reach significance for the correct or incorrect trials. 

 



 

Figure 5.10 Event related potentials collapsed across participants ordered in response time bins. Data              

of all participants were divided in 75 trial bins (yielding 48 bins for correct and 21 bins for incorrect responses,                    

respectively) based on response times and the event-related potential, averaged over significant electrodes             

from the cluster based permutation test, was calculated for each bin. Dotted lines indicate significant time                

window from the previous cluster based analysis. Time 0 s is tone onset and time 2 s is visual stimulus onset.                     

The difference between correct and incorrect responses does not seem to correlate with response times. 

 

5.4 DISCUSSION 

This chapter shows that the data of our time estimation experiments is accompanied by a               

difference in slow-evoked ERP activity. For long (2 s) interval trials in Experiment 2 we               

found that activity over right-lateralized (Üstün et al., 2017; Pouthas et al., 2005)             

parieto-occipital cortex was higher for correct than incorrect responses. Strikingly, the two            

response types differed in amplitude around the offset of the short (1.5 s) interval. We               

propose that the centro-parietal positive potential tracks the elapsed time similar to the             

evidence accumulation as discovered by O’Connell et al. (2012). However, we did not find              



any differences in slow potentials for the other conditions in either experiment. Moreover,             

the difference between correct and incorrect responses on the 2 s interval shows a right               

lateralized topography, but the topography of correct responses looks more fronto-central.           

This might suggest that for our paradigm we are examining a positive CNV, rather than a                

CPP.  

In addition to analyses of the CNV locked to the tone onset, which demarcated the start of                 

the time interval, I examined the CNV/CPP locked to the response. For the long intervals               

of both Experiments I found higher amplitudes on incorrect compared to correct responses             

over centro-parietal electrodes. A similar region showed higher amplitudes for correct           

compared to incorrect responses for the short intervals, but this effect was only significant              

for short interval trials of the second experiment. Moreover, all these effects appeared at              

times of the visual stimulus onset, making these effects more difficult to interpret. It might               

be that these are not necessarily CNV/CPP effects, but differences in the processing of the               

visual stimulus. Importantly, this analysis also identified an effect much earlier in the long              

interval of the first experiment, which was probably not affected by the visual stimulus as               

this effect appeared earlier than the presentation of the visual stimulus.  

Taken together, the data showed a CNV/CPP-like difference in both experiments for the             

long interval. However, the effect in the first experiment was response locked, whereas the              

effect in the second experiment was locked to the tone. Moreover, in the first experiment               

the amplitude of the CNV was more pronounced for incorrect compared to correct             

responses over midfrontal electrodes and vice versa at occipital electrodes. The tone            

locked data of the second experiment revealed a more pronounced CNV for correct             



compared to incorrect judgements over parietal electrodes. These differences between          

correct and incorrect responses make a straightforward interpretation of CNV/CPP-like          

patterns difficult. A possible explanation might be that a CNV and a CPP are affecting the                

averaged ERPs differently, and where the CNV is going down, the CPP might be going up.                

However, this is not in line with previous research from interval-timing paradigms where a              

clear CNV was observable over centrofrontal electrodes (e.g. Gontier et al., 2013;            

Kononowicz & van Rijn, 2014). It is currently unclear why the ERPs of the current               

experiment did not show more deviations but stayed close to values around 0 µV (but see                

the limitations below for a possible explanation). 

In addition to slow-evoked ERP activity, I looked at differences in visually evoked N1 and               

P2 amplitudes. Previous research showed that comparison intervals that are physically           

more different from the standard interval have larger N1-P2 complexes (Kononowicz & van             

Rijn, 2014). Here, I examined whether this is also true for intervals that evoke subjectively               

different experiences, but are physically identical. To this end, I compared correct and             

incorrect judgements of different time intervals. I did not find any significant differences             

between correct and incorrect judgements. The N1-P2 amplitude for correct compared to            

incorrect responses to the long interval of Experiment 1 approached significance.           

Moreover, the P2 amplitude was larger for incorrect compared to correct responses for the              

long (1.5 s) interval of Experiment 1. A straightforward interpretation of this effect is              

complicated, because I did not observe any significant differences for other conditions. In             

addition, off-set locked ERPs might be contaminated by response time differences           

between conditions. However, I used a linear regression to regress out any differences in              

response times and the P2 difference seemed independent of response time difference            



between correct and incorrect responses. Alternatively, it might be that this P2 effect is              

indicative of a true effect, where a larger N1-P2 is evoked for visual stimuli that demarcate                

the interval offset, when time is under-estimated, but that I did not have enough              

participants in the second experiment to pick up on this effect. 

Finally, we looked at error-related activity in temporal decision making. Interestingly, the            

error-related negativity (ERN) and the error-related positivity (Pe) showed the most           

consistent results of all ERP signals discussed so far for Experiment 1 and 2. The long                

intervals of both experiments showed smaller ERNs but larger Pes for correct compared to              

incorrect responses. For the short interval there was no difference in the ERN time              

window, but the Pe was larger for incorrect responses in both experiments, although it only               

reached significance in Experiment 1. Previous research suggests a dissociation for the            

ERN and Pe based on conscious awareness of errors. Overbeek et al. (2005) suggested              

that the ERN arises when an error is committed, but that the Pe is only present for errors                  

that reach awareness. However, more recent findings showed that the distinction between            

the ERN and Pe is not that straightforwardly related to conscious awareness of the error               

(Hewig et al., 2011). The experiments in the current chapter did not examine to what               

extent participants were aware of errors.  

One potential explanation for differences between short and long intervals in error-related            

signals is that processing of errors is quicker in long than in short intervals. And as such,                 

error-related signals only become evident in short interval estimations further away from            

the response (i.e. later in time, at the P2 time window). If a participant has a short interval                  

in mind as a template of the to-be-timed interval, an overestimation of a short interval               



(hence reported as long) can be less readily identified as an underestimation of a long               

interval (which was reported as short). This might explain why there were no apparent              

differences for the ERN for short intervals, which were only observed for long intervals. 

The differences at the level of the Pe are more complicated to explain. The Pe was larger                 

for incorrect responses to the short interval, but the Pe was actually smaller for incorrect               

compared to correct responses to long intervals. Especially, this last part is puzzling as              

previous research has shown that errors typically elicit an ERN followed by a Pe, but long                

interval trials here showed differences for the ERN, and not the Pe. It would be very                

interesting to see how these differences in the Pe relate to subjective reports of              

participants on their perceived correctness. Unfortunately, I did not collect information on            

this in the current experiments.  

5.4.1 Limitations 

The most important limitation of the current experiments were the timing issues that were              

identified in the paradigm after data collection of the first experiment. Participants’ behavior             

suggests that they were still able to perform well on the task. However, interpretation of               

ERPs that are short-lived, i.e. the N1, P2, ERN and Pe, will be quite severely affected by                 

temporal jitter in the current design.  

Another limitation in our data which might be related to the temporal jitter is that we did not                  

observe any clear slow-evoked potentials. An outstanding question is whether these           

effects were caused by the temporal jitter or whether in a temporal decision-making task              

such as the current design, the CNV and CPP are accumulating evidence which is              

reflected in slow-evoked potentials that are not separable at the scalp-level at which EEG              



is collected. As such, the negative going potential of temporal expectation and movement             

preparation normally captured by the CNV is countered by a positive going potential of              

(temporal) evidence accumulation as captured by the CPP. Future research should try to             

combine computational modelling and neural modelling of the CNV and the CPP to explore              

the feasibility of this explanation. 

Taken together, our data show that time estimation does not seem to be linked to the                

slow-evoked potentials in the EEG in a straightforward manner. Although the analyses            

performed here did identify a difference in slow-evoked potentials for the 2 s interval when               

comparing correct and incorrect responses. This effect was not present in any of the other               

conditions. Moreover, this effect was not related to response times of correct and incorrect              

judgements of the 2 s interval. In addition, a difference was observed for correct and               

incorrect responses to the 1.5 s interval when the data was locked to the response. Similar                

electrodes seemed to be involved in bost experiment, but the effect was in opposite              

directions, i.e. the CPP was larger for correct responses in the 2 s intervals, whereas the                

effect was flipped in the 1.5 s intervals. The timing issues of the current task design do not                  

allow strong conclusions to be drawn from the data presented here, as it is currently               

unknown how human behavior is affected by temporal jitter in the range of tens of               

milliseconds on 1-2 s time intervals.   



CHAPTER 6  

GENERAL DISCUSSION 

 
 

The overarching goal of the current thesis was to examine the role of oscillations and               

slow-evoked potentials as measured with electroencephalography (EEG) in temporal         

evidence accumulation and the termination of automated behavior. Specifically, theta band           

oscillations from the medial frontal cortex were hypothesized to play a role in behavioral              

adjustments after commission errors and in temporal decision making. In Chapter 2 we             

examined a long-standing hypothesis that suggests that alpha frequency reflects the           

pacemaker of the internal clock, by comparing correct and incorrect judgements in a             

temporal decision making task. In Chapter 3 we examined how theta oscillations from             

medial frontal cortex were related to behavioral adjustments after errors as measured with             

post-error slowing. In Chapter 4 we examined if oscillatory power in the theta (and              

alpha/beta) bands reflect the pacemaker of the internal clock by re-analyzing the data of              

Chapter 2. In Chapter 5 we examined whether slow-evoked potentials reflected temporal            

evidence accumulation in the same data. 

Before placing the findings of the Chapters into the literature at large I will briefly               

summarize the findings for each of the Chapters. 

Chapter 2: Alpha frequency and temporal judgments 

It is well-known that animals have a dedicated brain region to keep track of circadian               

rhythms. However, it remains to be elucidated how humans are capable of keeping track of               

time on short (~1-2 s) time scales. In 1961 Surwillo described a relationship between alpha               



frequency and response times, which led to the suggestion that alpha frequency might             

reflect the speed of information processing in the brain (Treisman, 1963). Moreover, recent             

findings have linked alpha frequency to the resolution of the visual system when Samaha              

& Postle (2015) showed that instantaneous alpha frequency was correlated with the            

segregation of visual information when alpha frequency was high and integration of visual             

information when alpha frequency was low. Here, we used a temporal discrimination task             

where participants judged 1 vs. 1.5 s intervals in Experiment 1 and 1.5 vs 2 s intervals in                  

Experiment 2, which were delimited by a tone and a visual stimulus. If alpha peak               

frequency reflects the pacemaker of the internal clock higher alpha frequency should            

correspond to overestimation of physical time, whereas lower alpha frequency should           

correspond to underestimation of physical time. We found limited support for this prediction             

in our data when we showed that instantaneous alpha frequency was higher in correct              

than incorrect judgements of the long (2 s) interval of Experiment 2. However, this effect               

flipped in the opposite direction after the short time interval had elapsed. Moreover, higher              

alpha frequency was positively correlated with response times, such that shorter cycles of             

the alpha oscillation correlated with slower responses. This is opposite the prediction that             

alpha frequency reflects the speed of information processing.  

Chapter 3: Do theta oscillations from medial frontal cortex correlate with behavioral            

adjustments after errors? 

The medial frontal cortex is thought to play an important role in performance monitoring,              

which makes this region an excellent candidate to influence sensory processing in primary             

sensory regions after commissions errors. Theta (~4-7 Hz) power oscillations are thought            



to be generated in the medial frontal cortex (e.g. Cohen, 2011), but as of yet no clear                 

relationship between this neural signature and behavioral adjustments as measured with           

post-error slowing (PES) have been described. In Chapter 3 we examined the relationship             

between midfrontal theta and PES, but found no evidence for a clear relationship.             

Moreover, contrary to previous results from Mazaheri and colleagues (2009), we did not             

observe any amplitude-amplitude coupling between midfrontal theta and occipital alpha          

(~8-12 Hz) power. 

Chapter 4: Oscillatory power and temporal judgements 

Previous research implicated oscillatory power in different frequency ranges to temporal           

decision making. The data from Chapter 2 was re-analyzed with a focus on differences in               

power between correct and incorrect temporal judgments. Previous research identified a           

role for theta power oscillations in interval timing when theta power was shown to increase               

upon the presentation of a cue that signified that participants should time an interval              

(Parker et al., 2014). In addition, alpha power oscillations were lower at expected             

compared to unexpected moments in time (Rohenkohl & Nobre, 2011). Finally, beta power             

was higher when participants reproduced longer time intervals (Kononowicz & van Rijn,            

2015). In Chapter 2 we examined power in these frequency bands when comparing correct              

and incorrect temporal judgements. We found higher theta power in correct compared to             

incorrect responses in long interval trials of Experiment 1 (1 vs. 1.5 s) and 2 (1.5 vs 2 s                   

intervals). In addition, we found suppressed alpha and beta power for long compared to              

short judgements irrespective of physical interval length in Experiment 1, but this effect did              

not replicate in Experiment 2. 



Chapter 5: The CNV (and other slow evoked potentials) and temporal judgements 

In the last empirical chapter we examined whether the contingent negative variation (CNV)             

or the centro-parietal positivity (CPP) played a role in temporal decision making. Previous             

research suggested that the CNV might play a role in time estimation (a.o. Macar et al.,                

1999), where it was thought that climbing neural activity underlying the CNV might reflect              

temporal evidence accumulation. However, this relationship was scrutinized when earlier          

findings did not replicate and the CNV showed habituation over the course of the              

experiment (Kononowicz & van Rijn, 2014). If the CNV would reflect the pacemaker of the               

internal clock, habituation would be detrimental to timing abilities. Around the same time             

studies appeared that identified the CPP as the neural correlate of evidence accumulation             

in perceptual decision making (O’Connell et al., 2012). In Chapter 5 we examined whether              

temporal decision making might be explained by the CNV or CPP by re-analyzing data              

from Chapter 2. We found a higher amplitude over parietal electrodes for correct compared              

to incorrect temporal judgments in the long interval trials of Experiment 2. However, this              

finding did not replicate for short interval trials or in Experiment 1. 

  

Alpha peak frequency and the internal clock 

The current thesis aimed to identify an internal clock by examining EEG collected in two               

experiments, where participants were engaged in a temporal decision making task. A            

long-standing hypothesis has been put forward by Treisman (1963; 2013) in the sixties,             

where it was proposed that the frequency of alpha oscillations might reflect the pacemaker              

of the internal clock. This hypothesis was partially fuelled by the relationship alpha             



frequency had with response times (a.o. Surwillo, 1961), where faster alpha frequencies            

were related to faster responses. Recent findings have related alpha frequency to the             

temporal resolution of the visual system (Cecere et al., 2015; Samaha & Postle, 2015;              

vanRullen, 2016). Moreover, recent advances in the estimation of alpha frequency might            

allow more sensitivity to subtle effects (Cohen, 2014; Mierau et al., 2017).  

In Chapter 2 we did not find conclusive evidence to support the claim that alpha frequency                

reflects the internal clock or the speed of information processing. Alpha peak frequency             

(APF) was measured with an automated procedure as proposed by Corcoran and            

colleagues (2018). It should be noted that this procedure yielded good fits for most              

participants at frontocentral and posterior-occipital electrodes. Corcoran et al. (2018)          

showed that compared to previous approaches such as Gaussian fits on the power             

spectrum (Haegens et al., 2014), the automated peak-fitting procedure found more peaks            

across participants. Irrespectively, we did not observe any significant differences in APF            

between correct and incorrect temporal judgements for each of the experiments or of the              

interval lengths. Nor did we find any effects when we combined the data across both               

experiments in a mixed effects ANOVA.  

In addition to the automated approach to calculate APF we calculated instantaneous alpha             

frequency (Cohen, 2014). In line with our hypothesis, we found that participants had higher              

instantaneous alpha frequency over a left lateralized parieto-occipital region in correct           

compared to incorrect judgments of a 2 s interval (long interval in Experiment 2). However,               

this effect flipped direction after the short interval had elapsed, such that instantaneous             

alpha frequency was higher for incorrect compared to correct responses. This finding is             

difficult to reconcile with the idea that alpha frequency reflects the internal clock. It might               



be that instantaneous alpha frequency in this case is reflecting surprise as the participant              

might have expected the visual stimulus to be presented as the short interval unfolded.              

Previous work has related alpha oscillations to temporal expectations and it would be             

interesting to see how alpha relates to the hazard rate (Rohenkohl & Nobre, 2011). 

Moreover, instantaneous alpha frequency was positively correlated with response times          

such that higher instantaneous alpha frequency resulted in slower responses for correct            

and incorrect responses. If alpha frequency represents the internal clock, higher alpha            

frequency would lead to more accumulated pulses, which does not fit with the positive              

relationship between response time and instantaneous alpha frequency in correct          

responses to the long interval trials (higher alpha frequency — more accumulated            

evidence — should lead to faster responses). If alpha frequency would represent the             

speed of information processing, responses should be faster when instantaneous alpha           

frequency is high. However, Klimesch and colleagues (1996) already showed that a direct             

relationship between alpha peak frequency and response times could be explained by            

differences in alpha power. Interestingly, we did not observe power differences in this             

condition (as we uncovered in Chapter 4). 

In order to substantiate any null findings in the relationship between alpha frequency and              

the temporal decision making task the analyses were repeated on aggregate data, where             

the data of one experiment were treated as belonging to one participant. Through this              

analysis higher instantaneous alpha frequency was observed for correct compared to           

incorrect responses to the long interval of Experiment 1. The difference was significant             

after the short interval had elapsed. It should be noted that the effects of the analysis on                 

the aggregate data were found in the data of Experiment 1 (1 and 1.5s intervals), whereas                



the effects described earlier were found in the data of Experiment 2 (1.5 and 2 s intervals).                 

Moreover, the effect in Experiment 2 after the short time window had elapsed showed a               

higher instantaneous frequency for incorrect compared to correct judgements, which was           

in the opposite direction of the effect in the aggregate data of Experiment 1. In the current                 

analyses it is tempting to directly compare data from both experiments, but a different              

group of participants participated in both experiments. Taken together, the current data            

makes it difficult to reach any satisfactory conclusion on the relationship between            

instantaneous alpha frequency and temporal decision making.  

The interpretation of the current data is hampered by the temporal jitter in the paradigm.               

However, it remains to be elucidated to what extent a jitter of 20-40 ms will affect temporal                 

judgements in the seconds range. Another limitation of the current data is that several              

different cortical sources of alpha might exist, which are lumped together in the EEG              

recording. A laplacian transform could have helped to attenuate volume conduction (Perrin            

et al., 1989). Alternatively, magnetoencephalography (MEG) or intracranial EEG would be           

less sensitive to distortion of several alpha sources by the skull. 

To further examine the relationship between alpha frequency and the internal clock, future             

research might examine a combination of trait and state APF with a temporal bisection              

paradigm, where several interval lengths are tested. Participants with higher trait alpha            

peak frequency would be expected to better discriminate different time intervals. State            

alpha frequency differences should lead to over- and underestimation of different time            

intervals. Alpha frequency should be measured with source localized M/EEG, but           

preferably with intracranial recordings over parietal and/or medial frontal regions. 

 



Medial frontal cortex involvement  

The second aim of the current thesis was to examine how the medial frontal cortex (MFC)                

is involved in performance monitoring and temporal decision making. Previous research           

showed that theta (~4-7 Hz) power is increased after the presentation of a cue that               

signifies participants need to time a temporal interval (Parker et al., 2014). This power              

increase was observed in the MFC of humans and rats. Moreover, dopamine depletion in              

rats and human patients with Parkinson’s Disease did not show theta increases (Parker et              

al., 2014; Parker et al., 2015), which suggests that this signal might reflect dopamine              

levels. This is important, because dopamine has been linked to interval timing extensively             

through pharmacological studies that have shown that the internal clock can be sped up or               

slowed down through the administration of dopamine agonists and antagonists,          

respectively (Balci, 2014; Matell & Meck, 2004; Meck, 2006). 

MFC is also thought to play an important role in performance monitoring (Ridderinkhof et              

al., 2004) and this region has been identified as the generator of the error related               

negativity (ERN) (Gehring et al., 1999). Theta power as measured at midfrontal electrodes             

is likely stemming from MFC and is higher shortly after an erroneous button press              

compared to a correct one (Cohen, 2011; Mazaheri et al., 2009). In Chapter 3 we asked                

how medial frontal cortex influences down-stream, sensory regions after an error is            

committed. In this work behavioral adaptation after an error is measured through post-error             

slowing (PES). Mazaheri and colleagues (2009) showed that midfrontal theta was           

correlated with occipital alpha in a sustained attention to response task (SART; Robertson             

et al., 1997), such that higher theta power after an error was correlated with stronger alpha                

suppression. This work inspired the hypothesis that medial frontal cortex might be sending             



a wake-up call to primary sensory regions and when this functional coupling (theta-alpha             

power anti-correlation) is more pronounced, participants might show more response          

caution on the next trial.  

 

Fast responses and errors 

The behavioral data of Chapter 3 showed, in line with previous research (a.o. Mazaheri et               

al., 2009), that participants respond faster on average on false alarms than on hits.              

Importantly, the defective CDFs showed that fast responses were not necessarily more            

likely to belong to a false alarm than to a hit. Previous research has reached the same                 

conclusion when analysing behavioral data of the SART (Hawkins et al., 2019). An             

influential hypothesis with regards to the SART is that participants make errors because             

they are lulled into an automated response bias (Robertson et al., 1997; Manly et al., 1999;                

Mazaheri et al., 2009). Mazaheri and colleagues stated that their finding of faster mean              

response times for false alarms than hits: “replicates previous studies showing that errors             

are more likely for short RTs” (Mazaheri et al., 2009, under results, behavioral data). The               

defective CDFs in Hawkins et al. (2019) showed that this might not be the case.  

The go/no-go data of Chapter 3 also showed an important difference with the SART data               

from Hawkins and colleagues (2019), who reported a high amount of trials with response              

times <200 ms (reflected by the leading edges in their Figure 2). This pattern in the                

response time distributions was not evident in our data where participants had very few              

responses faster than 200 ms (there was also no leading edge in the response time               

distributions across all trials). Interestingly, the leading edge in the data of Hawkins et al.               

(2019) resulted in poor fits by conventional drift diffusion modelling. Instead the data was              



better explained by a rhythmic race model. Previous fits of drift diffusion models on              

go/no-go data used lexical decision making data (Gomez et al., 2007; Ratcliff et al., 2018),               

where responses <300 ms were excluded. Systematic exploration of different experimental           

set-ups is necessary to examine when participants show automated response biases and            

a direct comparison of the SART to non-numerical go/no-go experiments seem promising.            

Previous attempts to systematically vary trial lengths and no-go probability showed that            

automated response tendencies are most pronounced in fast-paced trial structures with a            

low no-go probability (Wessel, 2018).  

Detection of an error leads to subsequent behavioral adjustments in post-error trials, but if              

response times are not matched between hits and false alarms, post-error neural signals             

might reflect regression toward the mean (Valadez & Simons, 2018), instead of differences             

between false alarms and hits. In addition to the defective CDFs, signal detection             

measures of behavior showed that participants had a clear bias to the go response as               

indicated by the low β value. Taken together, our behavioral findings highlight the             

importance of taking into account full response time distributions. Future research should            

attempt computational modelling to explain post-error behavior. It should be noted that our             

current design yielded very few misses in general and very few double errors in specific,               

which should be taken into account by future research when attempting computational            

modelling approaches (see Dutilh et al., 2012 for an application to a large lexical decision               

making dataset). 

Previous research indicated the relevance in calculating PES by taking into account the             

speed on the preceding trial (Dutilh et al., 2012). Traditionally, PES is measured as the               

difference in response times between post-error and post-correct trials. The proposed           



measure of PES measures PES as the difference on the pre-error and post-error trials              

(Dutilh et al., 2012). Our data showed, in line with previous results (van den Brink et al.,                 

2014), that both measures of PES are highly correlated, which suggests that the exemplar              

participants in Dutilh et al. (2012) might represent extreme cases where both measures of              

PES were not in accordance. Nonetheless, the robust PES measure might account for             

attentional fluctuations across the course of the experiment and is therefore the            

recommended measures when examining behavioral adjustments after errors. 

 

Behavioral outcomes in temporal decision making 

In the time estimation experiments the behavioral data showed that participants were            

faster on correct trials to the long interval of Experiment 1, whereas the data of Experiment                

2 indicated that participants were faster when they judged an interval as long irrespective              

of the physical duration. In addition, participants in Experiment 1 had a clear bias to               

responding short, as indicated by a positive criterion, which was not replicated in             

Experiment 2. Finally, we showed that participants had response time distributions that            

showed more overlap in Experiment 2 than in Experiment 1. This final finding relates to               

scalar expectancy theory (SET), which predicts that longer (re)produced intervals will have            

wider distributions than short intervals (Gibbon, 1977). Here, we showed that this scalar             

property might apply to response times in temporal decision making. It would be interesting              

to further explore this relationship by collecting data in the same participants on interval              

timing, temporal and non-temporal decision making tasks. 

 



Midfrontal theta 

In Chapter 3 we replicated previous findings by showing that theta power over frontal              

regions is higher and alpha power is lower over occipital regions for false alarms than hits                

(Mazaheri et al., 2009; van Driel et al,. 2012). It remains to be elucidated how medial                

frontal cortex regulates down-stream regions after an error is committed to prevent future             

errors to occur. Mazaheri and colleagues (2009) suggested that midfrontal theta power            

might be functionally coupled to occipital alpha power, which could mediate the regulation             

of cortical excitability in primary sensory regions. However, contrary to Mazaheri and            

colleagues (2009), we did not observe any amplitude-amplitude coupling between          

midfrontal theta and occipital alpha. It should be noted that Mazaheri and colleagues             

(2009) did not match response times of hits and false alarms. As such, it might be possible                 

that Mazaheri et al. (2009) picked up on general slowing processes after fast responses              

rather than slowing specific to post-error trials. Alternatively, it might be that MEG is more               

sensitive to amplitude-amplitude coupling than EEG. This latter explanation seems unlikely           

however, as orthonormalization and Laplacian transform of our data did not aid capturing             

the hypothesized negative correlation between midfrontal theta and occipital alpha. 

In Chapter 4, the power in different frequency bands was examined for differences             

between correct and incorrect temporal judgements. For theta (3-6 Hz) band power we             

consistently (in Experiment 1 and 2) found higher theta power for correct judgements of              

the long interval compared to incorrect judgements. In addition, higher frontal theta power             

correlated with shorter response times on correct trials in both experiments and with             

slower responses in incorrect judgements of the long interval in Experiment 1 (but not in               

Experiment 2). Van Vugt and colleagues (2012) previously found that 4-9 Hz theta             



oscillations were related to the drift rate of the drift diffusion model in perceptual decision               

making. Importantly, they showed that steeper drift rates were correlated with theta power             

desynchronization. Although it is tempting to relate temporal and non-temporal decision           

making it should be pointed out that we did not calculate drift diffusion model parameters in                

our data. One could argue that the faster response times would be more likely to belong to                 

trials with steeper drift rates. In those trials, the response boundary is reached quicker,              

which leads to the shorter response times. Interestingly, our data shows the opposite             

pattern for temporal decision-making compared to the perceptual decision-making findings          

of van Vugt et al. (2012). Future research would benefit from combining computational             

modelling of temporal decision making and EEG to further explore these discrepancies. 

An alternative explanation of the theta power differences between correct and incorrect            

judgements of the long intervals might be reflected in a combination of motor preparation              

and attention-like processes. When participants are paying more attention to the task at             

hand, they are more aware that the short time interval has elapsed and they start               

preparing for the button press for long interval judgements. This would explain the negative              

correlation between theta power and response times. As such, theta power might reflect             

an urgency to respond (Cisek et al., 2009). Moreover, the theta power differences are              

accompanied by more pronounced alpha/beta suppression for correct compared to          

incorrect responses, which might also be indicative of motor preparation. However, this            

effect in higher frequency ranges did not replicate in Experiment 2. In a follow-up study it                

would be fruitful to vary response options on a trial-by-trial basis to reduce the possibility of                

motor preparatory biases in the EEG. 

 



Non-phase locked power 

To examine the non-phase-locked power differences between false alarms and hits, the            

time-frequency representation of the event related potential (ERP) was subtracted from the            

total power (note that this is identical to subtracting the ERP of the single trial activity in the                  

time domain and then calculating the time-frequency decomposition). In line with previous            

results (Cohen & Donner, 2013), we found that the ERP had little effect on midfrontal               

theta. Instead, the ERP was mostly captured by delta activity ~2-3 Hz. Interestingly, we              

found that oscillatory activity in the alpha band was moderately affected by the subtraction              

of the ERP. Previous research has suggested an important role for asymmetric alpha             

oscillations and slow evoked potentials (van Dijk et al., 2010; Mazaheri & Jensen, 2008;              

Nikulin et al., 2010; Schalk, 2015). It might be that the later part of the ERP reflects                 

asymmetric alpha oscillations and that subtraction of the time-frequency representation          

affects alpha power. However, it might also be that occipital alpha is a weaker signal than                

post-error midfrontal theta and that the small N of our sample affected alpha power more               

than theta power. Moreover, it is important to note that the difference between false alarms               

and hits was significant if the comparison analysis was performed in a prespecified alpha              

range after subtraction of the ERP.  

 

Phase-based functional connectivity 

To further explore the functional connectivity of the medial frontal cortex to primary sensory              

regions after commission errors, we examined phase-based connectivity measures in the           

form of debiased weighted phase-locking index (dwPLI). Functional connectivity from          

medial frontal cortex was higher after false alarms than hits and this connectivity was              



confined to the delta (2-3 Hz) range. Medial frontal cortex was functionally coupled to the               

left and the right hemisphere. When examining functional connectivity from          

parieto-occipital electrodes that showed large differences in alpha power between false           

alarms and hits we found that these electrodes seemed functionally coupled to a             

centro-parietal region at 4 Hz. Unfortunately, dwPLI does not allow any inferences about             

directionality. Future research would benefit from intracranial recordings in order to assess            

how medial frontal cortex activity is related to activity in primary sensory regions after              

errors.  

 

Climbing neural activity 

The final aim of the current thesis was to examine whether slow-evoked potentials like the               

contingent negative variation (CNV) and the centro-parietal positivity (CPP) were related to            

temporal decision making. Previous research showed that the CNV might be related to             

interval timing (Macar et al., 1999), but a straightforward interpretation of this relationship             

was called into question when Kononowicz & van Rijn (2011) were unable to replicate the               

original findings and instead showed that the CNV showed habituation over the duration of              

the task. The CPP was described as a reflection of a decision variable accumulating              

evidence in a perceptual decision-making task (O’Connell et al., 2012), but it is unknown              

whether the CPP might reflect evidence accumulation during temporal decisions. The data            

of Chapter 5 showed a difference over centro-parietal electrodes with higher amplitudes for             

correct compared to incorrect judgements of the long intervals in Experiment 2. However,             

we did not replicate this finding in any of the other conditions. 

 



Conclusion 

The research presented in the current thesis aimed to identify an internal clock that can be                

read out with EEG. In addition, we tried to solidify the role of theta oscillations from the                 

medial frontal cortex in performance monitoring and temporal decision making. The           

presented data does not with certainty identify an internal clock. Future research should be              

collected from intracranial recordings where different sources of alpha activity can be            

separated. Moreover, a Laplacian transform should be considered when examining          

slow-evoked potentials. In the empirical chapters on temporal decision making processes,           

data was collected in two experiments with an almost identical paradigm that allowed             

validation of any observed effects across both experiments. Higher theta power was            

consistently found in long interval trials that were correctly judged as long compared to              

incorrect judgements and this difference became significant after the short time interval            

had elapsed. Future research should further address this result, by randomly varying the             

response options on a trial-by-trial basis to exclude motor preparation as a potential             

confound.  
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