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Abstract: We propose necessary and sufficient conditions for an integer matrix to be decomposable in
terms of its Hermite normal form. Specifically, to each integer matrix, we associate a symmetric integer
matrix whose reducibility can be efficiently determined by elementary linear algebra techniques, and
which completely determines the decomposability of the first one.
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1. Introduction

For integer valued matrices, the notion of decomposability can be stated analogously
to the real case (see Definition 1). The main difference here is that unimodularity is required
for the transformation matrices. This is necessary to preserve the Z-module structure
generated by the columns of the matrix. Thus, if one wants to keep the group structure
unchanged, pure linear algebra techniques cannot be applied to study the decomposability
of an integer matrix.

Let m < n be two positive integers. Given an m X 1 integer matrix A, we can consider
the submonoid S of Z™ generated by the non-negative combinations of the columns of A.
A decomposition of A yields a decomposition of S, and vice versa. In [1], the authors deal
with the computation of the decompositions of S, if possible, using the (integer) Hermite
normal form as the main tool. Following this idea, we relate the decomposition of any
integer matrix and the decomposition of its Hermite normal form (Proposition 1). This
leads to our main result (Theorem 1) which states that if H is the Hermite normal form of
an integer matrix A, the necessary and sufficient condition for A to be decomposable is that
a certain symmetric matrix is reducible in the usual sense (see Definition 3). Now, we can
adapt the combinatorial and linear algebra machinery to determine if A is decomposable:
note that, for a symmetric real matrix, it is possible to decide if it can be decomposed into a
direct sum of smaller symmetric real matrices by analyzing the connectivity of a certain
associated graph, which is closely related to the spectral properties of the graph. All this
allows us to propose an algorithm (Algorithm 1) for the computation of the decomposition
of the matrix A, if possible.

Apart from practical computational considerations, we emphasize that, given an
integer matrix A, we propose a new approach by associating A with a simple graph
whose connectivity determines its decomposition. Consequently, this can be used to
determine the decomposition of any finitely generated commutative submonoid of Z",
as an alternative method to [1]. Recall that the study of finitely generated commutative
submonoids of Z™ is of great interest due to its close relation with Toric Geometry (see [2,3]
or [4], and the references therein). Moreover, in this context, integer decomposable matrices
have their own importance; to mention a couple of illustrative examples we observe that
decomposable graphical models have associated integer decomposable matrices, as can be
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deduced from [5] (Theorem 4.2), and that decomposable semi-groups correspond to direct
products of certain algebraic (toric, in a wide sense) varieties.

Algorithm 1: HNF-decomposition.

Input: An m x n integer matrix A.
Output: A unimodular matrix P and a permutation matrix Q such that

P~1AQ = H; @ ... ® H; with H; into Hermite normal form for every i.

1. Set H=HNF(A) and let Py be a unimodular matrix, such that P, 1A = H;

2. Define the square matrix tim(H) and set B = tim(H) + tim(H) ';

3. Let D be the diagonal matrix whose elements in the main diagonal are entries of
B(11...1)" and define L = D — B. If n — rank(L) = 1, then return P = P and
Q equal to the identity matrix;

Let R be the reduced row echelon form of L and letk = 0;
5. Forj=1tondo

If the j-th column, vj, of R is a non-pivot column; then

-~

i Set k = k + 1 and /; equal to the cardinality of supp(v;);

ii. Let Qi be the n x (£ + 1)-matrix whose columns are
{ej} U{e; | i € supp(v;)}, where e; denotes the n-dimensional
vector that has the i-th coordinate equal to 1 and all the other
coordinates equal to 0.

6. SetQ=(Qil...[Q);
Let P; be the unimodular matrix such that P, ' (HQ) = HNF(HQ);
8. Return P = PyP; and Q.

N~

2. On Decomposable and Reducible Integer Matrices
Let m < n be two positive integers.

Definition 1. Let A € Z™*". We say that A is decomposable if there exist a unimodular matrix
P and a permutation matrix Q such that P~* AQ decomposes into a direct sum of matrices.

As mentioned in the introduction, the main purpose of this note is to study decompos-
able matrices in terms of their Hermite normal form. Let us recall the notion of Hermite
normal form of an integer matrix.

Definition 2. Let A € Z"*" of rank r. The Hermite normal form of A, HNF(A), is the unique
matrix H = (h;j) € Z"™*", such that A = PH, for a unimodular matrix P, satisfying the following
three conditions:

(a)  there exists a sequence of integers jy,...,jr such that 1 < j; < ... < j» < n, and for each
1 <i <rwe have h;j = 0 for all j < j; (row echelon form);

(b)  for1 <k <i<rwehave0 < hyj < h;j (the pivot element is the greatest along its column
and the coefficients above are non-negative);

(c) thelast m — r rows of H are zero.

We say that A is in Hermite normal form when A = HNF(A).

There are well-known efficient algorithms for the computation of the Hermite nor-
mal form of an integer matrix (see, e.g., [6]). They are implemented in the usual com-
puter algebra systems; for example, in GAP ([7]) and Mathematica ([8]), the commands
HermiteNormalFormIntegerMat and HermiteDecomposition, respectively, compute the
Hermite normal form of an integer matrix.
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Example 1. The Hermite normal form of

2 -4 2 5 -6
A=12 -2 2 5 -3
0 -2 1 2 -3

10 -2 2 0010
HNF(A)=| -1 1 0 |A=|{0 2 0 0 3 [,
-1 1 1 00120
10 -2
where the matrix | —1 1 0 | is the product of the elementary matrices transforming the
-1 1 1

matrix A into its reduced row echelon form as above, in such a way that the unimodular matrix in
Definition 2 is
1

10 -2\ 1 -2 2
P=1 -1 1 0 =11 -1 2
-1 1 1 0 -1 1

The next propositions provide necessary and sufficient conditions for an integer matrix
to be decomposable in terms of its Hermite normal form.

Proposition 1. Let A € Z"*" and let H = HNF(A). Then, A is decomposable if and only if H
is decomposable.

Proof. Let P; be a unimodular matrix such that P~ 1A = H. If A is decomposable, then
A1®...®A = Pz_lAQ = Pz_lPlHQ = (P1_1P2)_1HQ, for a unimodular matrix P, and a
permutation matrix Q. Now, since P~ 1P2 is unimodular, we have that H is decomposable.
Conversely, assume that H is decomposable, so there exist a unimodular matrix P; and
a permutation matrix Q;, such that P;lHQl =H&...6H;. Thus, HH & ...® H; =
Py 'P71AQ; = (P1Ps) "' AQ; and we are done. [

In the following, we use the symbol T to denote the transpose operation.

Proposition 2. Let H be an m x n integer matrix in Hermite normal form. Then, H is decompos-
able if and only if there exist permutation matrices P and Q, such that PT HQ decomposes into a
direct sum of matrices.

Proof. First, we observe that if the rank of H is r < m, then the last m — r rows of H are
zero. As these rows do not affect the condition of H to be decomposable, we assume that
H has rank m.

The sufficiency part is obvious since the permutation matrix P is unimodular and
PT = P~1. Conversely, if H is decomposable, there exist a unimodular matrix R and
a permutation matrix Q such that R1THQ = A1 ®...® A;. For simplicity, we assume
that t = 2. Let P; and P, be unimodular matrices, such that Hy := P 1(A110)QT and

Hy := P, }(0]A2)Q" are in Hermite normal form, and define the following matrix

B:= ( g; ) =(PaP) (A6 A)Q" =(P['A 6P 1 A2)QT.

Since the rank of B is m, each row of B contains a pivot element of H; or H,. If we move
the row containing the first (leftmost) pivot element to the first place, the row containing
the second pivot element to the second place and so forth, the resulting matrix is necessarily
in Hermite normal form. Thus, there exists a permutation matrix P such that PB = H, by
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the uniqueness of the Hermite normal form. Therefore, H = PB = P(P| A Py 1A))QT
and we conclude that PT HQ decomposes into P Ao, @ Py 1a,. O

Example 2. By Proposition 2, we can easily see that the matrix A in Example 1 is decompos-
able. Indeed,

100 2 0 1[0 0
0 0 1 |HNF(A) 01 2[00
010 000[2 3

coocor

cor oo

o ocoo

cooro

—oooo
Il

For symmetric matrices, decomposability can be refined to the more restrictive notion
of reducibility. This notion has a rich combinatorial nature, because of its relationship with
graph theory, as we will see later on.

Definition 3. A symmetric matrix B € Z"*" is reducible if there exists a permutation matrix Q such
that QT BQ decomposes into a direct sum of square matrices. Otherwise B is said to be irreducible.

The following result gives a necessary and sufficient condition for an integer matrix to
be decomposable in terms of the reducibility of a certain related symmetric matrix. To state
our result we need a piece of notation.

Notation 1. Let H be an m X n integer matrix in Hermite normal form. With the same notation
as in Definition 2, we write im(H) for the n x n triangular integer matrix whose j;-th row is the
i-rowof H, i =1,...,m, and zeros elsewhere.

The following example illustrates the above notation.

Example 3. If

11 -2 00
H=11 0 2 1 0 0 |,

00 0 3 2

then

11 -2 00
0 2 1 00
tim(H)=| 0 0 0 0O
00 0 3 2
00 0 00

Observe that the matrix tim(H) is not necessarily in Hermite normal form.

Lemma 1. Let H be an m X n integer matrix in Hermite normal form. If H is decomposable,
then there exists a permutation matrix Q such that QT tim(H)Q decomposes into a direct sum of
triangular matrices; in particular, im(H) is decomposable.

Proof. By Proposition 2, there exist permutation matrices Py and Q, such that Pj HQ
decomposes into a direct sum of matrices. Clearly, adding rows and columns to P con-
veniently, we may construct an n X n permutation matrix P; such that Pl—r tim(H)Q =
H{ G...P H{. Matrices Hl{, i = 1,...,t are not necessarily triangular. However, since
tim(H) is triangular, there exists a permutation matrix P, such

(PyP) " tim(H)Q = P, (P tim(H)Q) = H; & ... ® H;
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where H; is triangular for every i € {1,...,t}. Now, since (P;P,) " tim(H)Q and tim(H)
are both triangular, we conclude that P} P, and Q are identical up to permutation of the
zero rows of (P P,) " tim(H)Q. O

Theorem 1. Let A be an m x n integer matrix. If H = HNF(A), then A is decomposable if and

only if
tim(H) + tim(H) "

is reducible.

Proof. By Proposition 1, we may assume that A = H. Now, if H is decomposable, by
Lemma 1, there exists a permutation matrix Q, such that Qr tim(H)Q = H1 @ ...® H,
with H;, i = 1,...,t, triangular. Therefore,

Q' (tim(H) 4+ tim(H) ")Q = Q" tim(H)Q+ Q" tim(H)'Q =

= Q" tim(H)Q+(Q" tim(H)Q) " =
=H®..0H+(H®..0H) =
=Hi®..0H+H &..0H =
=(H +H)e+...+e(H +H),

and we conclude that tim(H) + tim(H) " is reducible.

Conversely, if tim(H) + tim(H) " is reducible, then there exists a permutation matrix
Q, such that QT (tim(H) + tim(H) " )Q = H; @ ... ® H;. Now, since tim(H) is triangular,

we have that Q" (im(H) — tim(H) " )Q = H} & ... & HJ, with H! having the same order
than H;, for eachi € {1,...,t}, respectively. So, it follows that

QT tim(H)Q = Q" (; (tim(H) + tim(H)T> - %(tim(H) - fim(H>T)>Q -
- %((H1+H{)@...@(Ht+Ht')),

and we conclude that tim(H) is decomposable. [J
Example 4. We already know that the matrix A in Example 1 is decomposable. Thus, in the

light of Theorem 1, the symmetric matrix B := tim(HNF(A)) + tim(HNF(A)) " must be
reducible. Indeed,

40010

04003

B=|o0o0 22 0|,

10200

03000

and

4 0 1]0 0 10000
02 2[00 000710
Q"BQ=|1 2 00 0|, with Q=] 01 0 0 0
0004 3 00100
00 0[30 00001

3. The Simple Graph of a Integer Matrix. HNF-Decomposition Algorithm

An important advantage of dealing with symmetric matrices is their strong combina-
torial meaning: any symmetric matrix B = (b;j) € Z"*" can be considered as the adjacency
matrix of an undirected graph Gp with n vertices {1, ...,n}, such that {i, j} is an edge of
gp if and only if i # jand b;; # 0.
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Note that we are not concerned with diagonal elements and magnitudes of B to
construct Gp.

Example 5. The graph Gp corresponding to the matrix B in Example 4 is

2 5
—0

Notice that Gg is not connected in this case.

Clearly, a symmetric matrix B is reducible if and only if the graph Gp is not connected. Thus,
by Theorem 1, we can study the reducibility of an integer matrix A by means of the graph
Gp for B = tim(HNF(A)) + tim(HNF(A)) " as follows.

Corollary 1. Let A € Z"*" and set B = tim(HNF(A)) + tim(HNF(A)) ". Then A is decom-
posable if and only if Gp is not connected.

Note 1. Given A € Z™*", the graph Gp, with B = tim(HNF(A)) + tim(HNF(A)) ", can be
constructed directly from H = HNF(A). Indeed, with the notation of Definition 2, it suffices to
observe that {i,j} € Gp if, and only if, hj ; # 0. Therefore, all the information concerning the
decomposability of A is encoded in H.

We finalize this note by giving an algorithm for the computation (if possible) of
the decomposition of an m X n integer matrix into the direct sum matrices in Hermite
normal form.

Let G be the adjacency matrix of an undirected simple graph G. Recall that the degree
of the i-vertex of G is

d,‘ = Z 1,

{ijteg
and the Laplacian matrix of G is D — G, where D is the diagonal matrix with diagonal
entries (dy,...,dn).
The second part of the following result is well-known; however, for lack of a reference
we sketch a proof.

Proposition 3. Let G be an undirected simple graph on n vertices. Then, G has t connected
components if and only if the Laplacian matrix of G has rank n — t. In this case, the connected
components of G are completely determined by the reduced row echelon form of the Laplacian matrix

of G.

Proof. The first statement follows from the well-known matrix-tree theorem (see, e.g., [9]
(Section 1) and the references therein). Let us analyze the second statement with a little
more detail. First, we observe that the Laplacian matrix of a connected graph on n vertices
is an order n symmetric matrix of rank n — 1 whose columns sum to zero. So, its reduced
row echelon form is equal to

10 ... 0 -1
01 0 -1
00 ... 1 -1
0 0 0 0

Thus, if V is the reduced row echelon of the Laplacian matrix of a (non-necessarily
connected) undirected simple graph on n vertices, then if the j-th column, v;, of V is not
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a pivot column, the set of vertices of the connected component containing the vertex j is
{j} U supp(v;), where supp(v;) := {i | v;; # 0} denotes the support of v;. [

Example 6. Consider the graph G with vertex-set {1,2,3,4,5} and edges {1,4},{2,5},{3,4}.
The Laplacian matrix of G is

1 0 0 -1 0
o 1 0 0 -1
o 0 1 -1 o0
-1 0 -1 2 0
0o -1 0 0 1
and its reduced row echelon form is
100 -1 0
010 0 -1
R=(001 -1 0
000 0 O
000 0 O

Now, we can read from R that G has the following two connected components: the subgraph
with vertices {4,1,3} and the subgraph with vertices {5,2}.

The previos proposition is the last piece needed to ensure the correctness of Algorithm 1.
We discuss below some aspects of Algorithm 1.

Comments to Algorithm 1:

*  Steps (1)-(6) provide unimodular matrices Py and Q, such that Py lAQ="p (A1 @
...® A;), for some permutation matrix p;

e Clearly t = n — rank(L); moreover, we have that rank(L) = Yk _; ¢x;

e Ifn—rank(L) = 1 then A is not decomposable. In this case A7 = HNF(A) and Q
is the identity matrix. Otherwise, if A is decomposable, we cannot guarantee that
P = I, and that the matrices A;, i = 1,...,t, are in Hermite normal form. However,
since HNF(A;) @ ... ® HNF(A¢) = HNF(A; & ... ® A;), by the uniqueness of the
Hermite normal form, step (7) provides the matrix P; such that P, 1P(; 1AQ is in
Hermite normal form as desired;

e By Note 1, we may replace the Step (2) by
(2) Let B be the adjacency matrix of the graph G with vertices {1,...,n} such that

{i,j} € Gifand only if h;, ; # 0.

This is advantageous for small 7.

e An HNF-decomposition, if it exists, is not unique. It depends on the choice of the
order of the columns of the matrices Q;, i = 1,...,t and the order in which these
matrices are placed.

Example 7. The matrix

1011200
H— 010000 3
00 3 0030
0002120

is in Hermite normal form and its associated graph G (see Note 1) is
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3 6 2
[ ]

Therefore, H is a decomposable matrix. Of course, we do not need to construct the graph G to
compute an HNF-decomposition of H.

In order to compute effectively two matrices P and Q such that P~ HQ is in HNF-decomposed
form, we compute the reduced row echelon form, R, of the Laplacian matrix of Gp, for
B = tim(H) + tim(H) ',

-1
0 —
-1
-1
-1
0
0

=

|
[l elololNolNoll S
[N eleolNoNel "
[N e NNl o o)
OO O R OOOo
[=Ne o NN Ne)
[N eNeNeNelN ™)

Now, following Steps (5)—(7) in Algorithm 1, we may take the matrix Q equal to
(egler|es|es|es|ey|er), in this case, the corresponding matrix P is

0 1 00
00 01
30 -1 0
2 0 -1 0
Now, we can check that
1 03 -2 —-1(0 0
01 1 1 210 0
-1 o
P HQ = 006 —6 -3|00
000 0 0[31

As mentioned above, other choices of Q determine a different P and, consequently, another
HNF-decomposition, equivalent to the one given.

4. Conclusions and Future Work

Using the Hermite normal form as the main tool, we have obtained a theoretical
criterion to determine whether a given integer matrix decomposes into a direct sum of
lower order integer matrices.

This criterion allows us to associate a simple graph to the integer matrix whose
connectedness determines the decomposition of the integer matrix and facilitates the
formulation of an algorithm to decompose an integer matrix into a direct sum of matrices
in Hermite normal form, provided such decomposition exists.

Our results have immediate applications to the study of affine semi-groups and semi-
group algebras; in fact, this was our original motivation for tackling this problem. However,
we believe that our results can be generalized to matrices with entries in any Euclidean
ring further than Z.

Since we were only interested in decomposition issues, we underestimated a lot of
information from B when constructing the graph Gg. Alternatively, B can be considered
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as the adjacency matrix of an (undirected) weighted graph Gg with n vertices {vy,...,v,},
where the weight of the edge {v;, v;} is b;j. This alternative graph is sensitive to all the
information recorded in the entries of B. One might wonder if this alternative graph can be
used to provide information for integer matrices, beyond decomposability and reducibility.
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