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Abstract 

The polycyclic musk compounds Galaxolide (HHCB) and Tonalide (AHTN) are the most frequently 

consumed fragrance materials applied in many household and personal care products. These substances 

have been detected in all environmental compartments and, due to their inherent lipophilicity, they easily 

bioaccumulate in aquatic organism. The aim of this PhD thesis was to assess the risk of environmental 

concentrations of HHCB and AHTN in the marine environments. In order to provide a more complete 

assessment on marine biota, empirical approach based on data of ecotoxicological assays was explored 

based on environmental risk assessment (ERA) scheme. In this case, it was intended to employ organisms 

from different trophic levels like microalgae, echinoderms, bivalves, shrimps, and fish. This diversification 

in the species allows assessing how organisms with different biological complexity can be affected. In 

addition, different endpoints were used for each species, taking as basis the sensitivity and relevance of the 

endpoints. Another important aspect considered to select the endpoints was their level of biological 

organization, so that the responses measured were based on acute and chronic exposure, focusing on 

growth, survival, development, behaviour, and biomarkers at the biochemical and molecular levels.  

The results obtained in this thesis show that environmental concentrations of both compounds are 

detrimental to microalgae growth posing significant risk to Phaeodactylum tricornutum and Isochrysis 

galbana. It was also observed that environmental concentrations of HHCB and AHTN significantly altered 

the early life stages endpoints such as fertilization, larval development, and survival in tested species. 

Furthermore, this thesis has proven that in a scenario of heterogenous pollution where lethality is not 

expected to occur, HHCB and AHTN may trigger spatial avoidance, which might reduce the local 

biodiversity of ecosystems due to emigration to safer environments. Sublethal effects assessed in bivalves 

after chronic exposure to HHCB and AHTN showed that these substances are bioavailable to marine 

organisms and they have the potential to induce oxidative stress, genotoxicity, neurotoxicity and alter the 

health status of marine organisms. It was also observed that both compounds modulated endocrine 

disruption biomarkers in small fish. Despite the significant alterations in endocrine disruption biomarkers 

induced by both compounds, AHTN appeared to be a more potent inhibitor of endocrine activity in the 

marine environments. 

This PhD Thesis has demonstrated the adverse effects of environmental concentrations of HHCB and 

AHTN in marine ecosystems. Therefore, the data presented in this study should be integrated with other 

available data required for policy actions that will aid the conservation and management of the sea.      
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Resumen 

Los compuestos de almizcle policíclico galaxolida (HHCB) y tonalida (AHTN) son los componentes de 

azmicles que se aplican con más frecuencia en muchos productos domésticos y de cuidado personal. Estas 

sustancias se han detectado en todos los compartimentos ambientales y, debido a su lipofilicidad inherente, 

se bioacumulan fácilmente en organismos acuáticos. El objetivo de esta tesis doctoral fue evaluar el riesgo 

de concentraciones ambientales de HHCB y AHTN en los ambientes marinos. Con el fin de proporcionar 

una evaluación más completa de la biota marina, se exploró un enfoque empírico basado en datos de ensayos 

ecotoxicológicos siguiendo el esquema de evaluación de riesgos ambientales (ERA). Se emplearon 

organismos de diferentes niveles tróficos como microalgas, equinodermos, bivalvos, camarones y peces, 

para evaluar cómo organismos con diferente complejidad biológica podrían verse afectados. Otro aspecto 

importante considerado a la hora de determinar las respuestas a tiempo final fue su nivel de organización 

biológica, por lo que las respuestas medidas se basaron en la exposición aguda y crónica, enfocándose en 

el crecimiento, supervivencia, desarrollo, comportamiento, biomarcadores a nivel bioquímico y molecular. 

Los resultados obtenidos muestran que la concentración ambiental de ambos compuestos es perjudicial para 

el crecimiento de microalgas, lo que representa un riesgo significativo para Phaeodactylum tricornutum e 

Isochrysis galbana. También se observó que las concentraciones ambientales de HHCB y AHTN alteraron 

significativamente los puntos finales de las primeras etapas de la vida, como la fertilización, el desarrollo 

larvario y la supervivencia en las especies probadas. Además, se ha demostrado que en un escenario de 

contaminación heterogénea donde la letalidad no es esperada, HHCB y AHTN pueden desencadenar una 

evasión espacial que podría empobrecer los ecosistemas locales debido a la emigración a ambientes menos 

impactados. Los efectos subletales evaluados en bivalvos después de la exposición crónica a HHCB y 

AHTN mostraron que estas sustancias están biodisponibles para los organismos marinos y tienen el 

potencial de inducir estrés oxidativo, genotoxicidad, neurotoxicidad y alterar el estado de salud de los 

organismos marinos. También se observó que ambos compuestos modulaban biomarcadores de disrupción 

endocrina en peces. A pesar de las alteraciones significativas en los biomarcadores de disrupción endocrina 

inducidas por ambos compuestos, la AHTN pareció ser un inhibidor más potente de la actividad endocrina 

en los ambientes marinos. 

Esta tesis doctoral ha demostrado los efectos adversos de concentración ambiental de HHCB y AHTN en 

los entornos marinos. Por lo tanto, los datos presentados en este estudio deben integrarse con otros datos 

disponibles necesarios para las acciones políticas que ayudarán a la conservación y gestión del mar. 
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1.1. General Overview 

The marine environment covers about 71% of the earth’s surface and contains more biodiversity than the 

terrestrial and freshwater ecosystems altogether. Marine biodiversity is supported by the unique complex 

network of interactions given energy and material transfers between the biotic and abiotic components, 

which foster stability amongst marine communities. The biological networks, where the success of species 

is directly or indirectly connected through biological interactions, constitutes ecosystem function, through 

which ocean and coastal ecosystems provide natural benefits (fisheries, recreations, industrial raw 

materials, etc) upon which humans depend (Sun et al., 2016). Since the last industrial revolution era, 

anthropogenic activities have become the nexus of threats to the stability of marine ecosystems and its 

capacity to support life due to transport of agricultural chemicals from farm sites, domestic and industrial 

effluents as well as atmospheric deposition of contaminants. 

The impacts of legacy contaminants on the marine ecosystems from industrial and agricultural chemicals 

such as polyvinyl chlorides (PVCs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 

(PAHs), pesticides and insecticides have been documented as pollutants in the marine environment (Carls 

et al., 2008; Coteur et al., 2001; Donkin et al., 1997; Filipak Neto et al., 2008; Hylland, 2006; Jansson et 

al., 1993; Karacik et al., 2009; Mayer et al., 1977; Wang and Wang, 2005; Zhang et al., 2016). They have 

been found to bioaccumulate in marine organisms and several studies have shown that they cause various 

effects such as growth inhibition, behavioural changes, oxidative stress, hepatotoxicity, embryotoxicity, 

carcinogenicity, genotoxicity, neurotoxicity and mortality in marine microalgae, invertebrates and fish 

(Carls et al., 2008; Coteur et al., 2001; Donkin et al., 1997; Filipak Neto et al., 2008; Hylland, 2006; Karacik 

et al., 2009; Mayer et al., 1977; Wang and Wang, 2005; Zhang et al., 2016). In the last two decades, 

evidence has emerged regarding presence of chemicals that were previously not on priority list for 

environmental monitoring consequent to improved technology in analytical chemistry that allows 

quantification of environmental chemicals at nanoscale. These groups of chemicals are part of everyday 

life because they are consumed as personal care products, pharmaceutical active substances, antimicrobial 

agents/disinfectants, and preservatives, otherwise known as contaminants of emerging concern (CECs). 

 

1.2. Contaminants of Emerging Concern (CECs) 

CECs have been defined by the United States Environmental Protection Agency (USEPA) as new 

substances not captured within regulatory framework for monitoring and whose impacts on human and the 

environment is poorly understood (Montes-Grajales et al., 2017). They are used for various household and 
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personal care purposes as part of our everyday life and therefore increasing their concentrations in 

environmental matrices. For most CECs, the route of entrance is mainly via wastewater treatment plants 

(WWTPs) effluents (Bueno et al., 2012; Díaz-Garduño et al., 2017; Picot Groz et al., 2014), where they 

follow water gradient to wide scale presence in the marine environment. These contaminants are unique 

environmental pollutants because many of them have the capacity to elicit biological effects at low 

concentration. Amongst other CECs, pharmaceutical and personal care products (PPCPs) are the most 

frequently detected in environmental matrices. 

Pharmaceutical products (PPs) have attracted attention in different regions across the globe (Barnes et al., 

2008; Focazio et al., 2008; Kleywegt et al., 2019) and in the year 2000, the European Union Water 

Framework Directives identified 33 priority substances of concern including PPs and specifically added 

diclofenac, iopamidol and carbamazepine in 2007 to the list while ibuprofen, clofibric acid, triclosan, 

phthalates and bisphenol A were proposed to be added to the list (Ebele et al., 2017). They have been 

measured in different aquatic ecosystems, confirming their ubiquity and reported concentrations are 

consistently higher in hospital, domestic and industrial sewage treatment plants (STP) followed by 

freshwater and marine environments (Alidina et al., 2014; Bendz et al., 2005; Brausch and Rand, 2011; 

Diaz-Garduño et al., 2016; Ebele et al., 2017; González-Alonso et al., 2017; Gonzalez-Rey et al., 2015; 

Kay et al., 2016; Lei et al., 2018; Loos et al., 2013; McEneff et al., 2014; Mezzelani et al., 2018; Pereira 

et al., 2015; Weigel et al., 2004). They have been detected in groundwater (Sui et al., 2015), drinking water 

(Yang et al., 2017) and in adipose tissues of many aquatic organisms (Klosterhaus et al., 2013; McEneff et 

al., 2014; Mezzelani et al., 2016a, 2016b; Picot Groz et al., 2014; Xie et al., 2019). Recent studies have 

demonstrated an increase in the number of PPs measured in the aquatic ecosystems (Garduño et al., 2016 

and others). 

Varieties of personal care products (PCPs) have also been detected in the aquatic environment, including 

disinfectants, insect repellants, preservatives, UV-filters, and fragrances. Unlike PPs that are used internally 

at a prescribed dosage, PCPs are externally applied, and the quantity used is at personal discretion and need, 

thus accounting for their high concentrations in WWTPs effluents and receiving water body (Brausch and 

Rand, 2011). Most frequently detected PCPs and their metabolites include triclosan, triclocarban, N,N-

diethyl-m-toluamide (DEET), paraben, 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC), to mention a few 

and their environmental occurrence and toxicity has been reviewed by Brausch and Rand (2011). The 

current research focuses on the toxicity of polycyclic musk compounds in the marine environment. Below, 

a brief description of the various classes of synthetic musk compounds (SMCs) is discussed and their 

occurrence, bioaccumulation, and toxicity in the aquatic ecosystems in general is reviewed.  
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1.3. Fragrances 

Fragrances are low molecular weight (<300) chemical compounds which are applied in a wide range of 

personal care products such as body lotions, deodorants, washing soap and detergents, perfumes, 

toothpastes, various cosmetics, etc (Reiner and Kannan, 2011) to give a characteristic and acceptable scent. 

Fragrances are derived from musk – a wide range of natural and synthetic products. Natural musks are 

extracted from fatty tissues of plants and animals which are sacrificed to extract musky organs. This practice 

has contributed to reduction in musk deer abundance and has therefore been banned. SMCs, on the other 

hand, are chemically produced to reflect the same physical characteristics as natural musk. They are 

classified based on the functional group used in the formulation and consists of nitro musk compounds, 

polycyclic musk compounds, macrocyclic musk compounds and alicyclic musk compounds. Brief literature 

reviews are provided for nitro musk compounds and extensive review of polycyclic musk compounds with 

analysis of their physiochemical parameters, usage, environmental occurrence, and effects are discussed 

below. 

 

1.3.1.  Synthetic Musk Compounds (SMCs) 

The evolution of SMCs dated back to the 19th century when Baur stumbled on a nitro compound that 

possessed a good scent while working on explosives. He further improved on the synthesis to produce the 

first known synthetic musk named after him – musc Baur (Sommer, 2004). Other SMCs synthesized with 

alkylated nitrobenzene derivatives were grouped together as nitro-musk compounds (NMCs), they are 

composed of methylated nitrates and acetylated benzene rings and include musk ketone (4-tert-butyl-2,6-

dimethyl-3,5-dinitroacetophenone), musk xylene (1-tert-butyl-,5-dimethyl-2,4,6-trinitrobenzene), musk 

ambrette (2,6-dinitro-3-methoxy-4-tert-butyltoluene), musk moskene (1,1,3,3,5-pentamethyl-4,6-dinitro-

2H-indene) and musk tibetene (1-tert-butyl-3,4,5-trimethyl-2,6-dinitrobenzene). Their structural formular 

and physiochemical properties are presented in Table 1.1.  

NMCs are highly lipophilic and possess high n-octanol/water partition coefficient (LogKow) and, 

consequently, they are persistent in the environment and can bioaccumulate in human and aquatic 

organisms. However, musk xylene and musk ketone are the most frequently detected in different 

environmental matrices at high concentrations. The environmental performance of this class, including 

bioaccumulation and toxicity revealed they are persistent, bio-accumulative and toxic. Wet weight 

bioconcentration potential (BCFw) of up to 5,820 and 6,740 were measured in Japanese carp after 10 weeks 

laboratory exposure, respectively, to 10 µg/L and 1 µg/L of musk xylene (Chemical Inspection and Testing 
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Institute, Japan, 1992). Different nitro musk compounds have been measured in several aquatic organisms 

from freshwater and marine environment as well as human adipose tissues (Gatermann et al., 1999; 

Gatermann et al., 2002; Müller et al., 1996; Suter-eichenberger et al., 1998). Primary demyelination, central 

and peripheral nervous systems damage characterized by degeneration of myelin and axon in rat fed with 

musk ambrette have been reported (Spencer et al., 1984). NMCs were found to exert toxic effects related 

to carcinogenicity, mutagenicity, neurotoxicity, and genotoxicity (Luckenbach and Epel, 2005; Mersch-

Sundermann et al., 1996; P. S. Spencer et al., 1984) and have therefore been restricted as fragrance materials 

in the perfumery industry. 

 

Table 1.1: Chemical structures and characteristics of the nitro musks category. 

Common 

Name 

Chemical Structure CAS No Log 

KOW 

Molecular 

Weight 

(g/Mol) 

Boiling 

Point (0C) 

Vapour 

Pressure 

(Pa) 

Musk 

Ambrette 

(MA) 

 

  

83-66-9 5.7 268.269 185 0.00333 

Musk 

Ketone 

(MK) 

 

 

81-14-1 5.8 294.307 395.00 0.00004 

Musk 

Xylene 

(MX) 

 

 

 

 

81-15-2 

 

4.9 297.267 200-202 0.00003 

Musk 

Tibetene 

(MT) 

 

 

 

145-39-1 5.9 266.297 391.01 0.00076 
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1.3.2. Polycyclic musk Compounds 

The polycyclic musk compounds (PMCs) were synthesized to replace the nitro functional group due to their 

instability in alkaline medium and photochemical reactivity. PMCs are bi-cyclic aromatic compounds 

which comprised of acetylated and highly methylated pyran, tetralin and indane skeletons (Sumner et al., 

2010). Although the industrial synthesis of this group are moderately difficult, they are, however, 

considered very important fragrance materials in perfumery due to binding capacity to fabrics and their 

characteristic musky scent (Swidish Society for Nature Conservation, 2000). Galaxolide (1,3,4,6,7,8-

Hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-g-2-benzopyran-HHCB) and tonalide (7-acetyl-1,1,3,4,4,6-

hexa- methyl-1,2,3,4-tetrahydronaphthalene-AHTN) are the most consumed polycyclic musk globally and 

others include phantolide (6-acetyl-1,1,2,3,3,5-hexamethyl-indane-AHMI), celestolide (4-acetyl-1,1-

dimethyl-6-tert.-butylindane-ADBI), traseolide (5-acetyl-1,1,2,6-tetramethyl-3-iso-propyldihydroindane-

ATII) and cashmeran (6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone-DPMI). Their chemical 

structures and some physical characteristics are presented below (Table 1.2). Other SMCs are macrocyclic 

and alicyclic musk compounds. At the moment, their usage in the perfumery industry is as best experimental 

and therefore have not been classified as CECs.  
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Table 1.2: Chemical structures and characteristics of the polycyclic musk category. 

Common 

Name 

Chemical 

Structure 

CAS No LogKOW Molecular 

Weight 

(g/Mol) 

Water 

Solubility 

(mg/L) 

Vapour 

Pressure 

(Pa) 

Galaxolide 

(HHCB) 

 

1222-05-5 5.9a 258.404 1.75a 0.0727a 

Tonalide 

(AHTN) 

 

1506-02-1 5.7a 258.405 1.25a 0.0608a 

Celestolide 

(ADBI) 

 

13171-00-1 5.4 244.378 0.22 0.019 

Phantolide 

(AHMI) 

 

15323-35-0 5.9 244.378 

 

0.9 

 

0.132 

Traseolide 

(ATII) 

 

68140-48-7 6.3 258.405 0.3 0.009 

Cashmeran 

(DPMI) 

 

33704-61-9 5.9 206.329  5.20 

a. Balk and Ford (1999a) 

 

1.3.3.  Occurrence and concentrations of synthetic musk compounds 

Source network for SMCs entrance into the aquatic environment is described in Figure 1. SMCs are 

released into the environment during production, compounding, application in consumer products and 
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most importantly from household uses. Although the quantity released during production, compounding 

and industrial application into the aquatic environment is minimal (European Commission, 2008b, 2008a), 

it is expected that release from end users into the aquatic environment from wastewater water treatment 

plants effluents, direct input and via atmospheric deposition will be higher (Figure 1). 

 

 

 

Environmental concentration of synthetic musk belonging to the nitro group was first found in the Tama 

river, near Tokyo Japan in 1981 (Peck et al., 2006). Further investigations revealed that the nitro group is 

highly persistent and possesses high bioaccumulation potential (Zhang et al., n 2013; Zhang et al. 2013b). 

Figure 1: Diagram showing source network for Synthetic musk compounds (SMCs) entrance into the  

aquatic ecosystems 
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This group has been demonstrated to be genotoxic and carcinogenic (Nair et al., 1986) and thus, placed 

under restricted use by European Chemical Agency.  

The most widely consumed PMCs are HHCB and AHTN. According to European Union Risk Assessment 

Report (EUAR) for HHCB and AHTN (European Commission, 2008a, 2008b), each of HHCB and AHTN 

has one production site in Europe. As of 2000, between 1000 and 5000 ton/y of undiluted HHCB and 

AHTN was produced in Europe. The estimated quantity of these substances used in 1996 was 

approximately 8000 ton (Chen et al., 2010). Data from Research Institute for Fragrance Materials (RIFM) 

revealed that between 1993 and 2006 average quantity of HHCB and AHTN used in Europe was 1648 

ton/y and 454 ton/y, respectively, and 25% percent of each substance being applied in production of 

detergent for industrial and domestic cleaning purposes (European Commission, 2008b, 2008a). In the 

United States, all fragrances consumed has been doubled since 1990 (Roosens et al., 2007) and increased 

by 25% between 1996 and 2000, from estimated quantity of 5200 to 6500 ton (Peck et al., 2006). Recent 

data from EPA showed that the USA consumed approximately 1600 and 1700 metric tons per year of 

HHCB in 2008 and 2011, respectively, and the rate is estimated to keep increasing, due to increase in 

market demand for fragrance materials (USEPA, 2014). The quantity of HHCB and AHTN is equal to 

95% of total market volume of fragrance materials (Balk and Ford, 1999a; Pedersen et al., 2009). Europe 

consumption of HHCB and AHTN in 1995 alone is approximately 15.5 mg/day (Rimkus, 1999). In Italy, 

the consumption of HHCB and AHTN has been estimated at 7.23 and 1.81 g per year per capita, 

respectively (European Commission, 2008b). 

These compounds have been found in various environmental compartments (Table 1.3): air, water and 

sediment (Fromme et al., 2001; Peck et al., 2006; Peck and Hornbuckle, 2006). Owing to their external 

applications, they do not undergo metabolic transformation and as such are released untransformed into the 

aquatic ecosystem via sewage treatment plants, direct atmospheric deposition, leaching from landfills and 

untreated sewage disposal from private properties (Figure 1) (Fromme et al., 1999; Ramskov et al., 2009). 

Furthermore, most sewage treatment plants are not adapted to completely eliminate SMCs from municipal 

and industrial wastewater. Investigations have shown that only about 50% of the total SMCs are eliminated 

from sewage treatment plants, while the rest enter the receiving rivers and oceans via sewage outfall 

(Heberer, 2002; Lee et al., 2010) and are diluted along the river gradient downstream (Ricking et al., 2003). 

Their occurrence in seawater, which in some cases distant from source (WWTP), is an evidence of their 

persistence, although atmospheric deposition could be a vital source of SMCs in marine environments. 

Also, for many cities on the coasts, treated sewage materials are discharged over a short distance into coastal 

ecosystems and owing to the partial removal of SMCs from WWTPs, these areas could be inundated with 

these contaminants. 
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Table 1.3:  Measured environmental concentrations of galaxolide (HHCB) and tonalide (AHTN) in the 

environmental compartments. 

Country 

Environmental 

compartments 
HHCB AHTN Reference 

Canada STP Effluent (ng/L) 205 - 1300 110 - 520 Ricking et al., 2003 

England Tamar Estuarine (ng/L) 6.00 - 30 3.00 - 15 Sumner et al., 2010 

England STP Effluent (ng/L) 987 - 2089 55 - 159 Sumner et al., 2010 

England SPM (dry wgt) (ng/g) 12.00 - 29 1.00 - 11.00 Sumner et al., 2010 

England Sediment (ng/g dry wt) 11.00 - 17.00 2.00 - 10.00 Sumner et al., 2010 

Germany Surface water (ng/L) 70 - 1590 20 - 530 Frommme et al., 2001 

Germany STP Effluent (ng/L) LOD - 13330 LOD - 4360 Frommme et al., 2001 

Germany Sediment (ng/g) 15 - 3150 20 - 1100 Frommme et al., 2001 

Germany Surface water (ng/L) 20 - 12500 30 - 6800 Hebere, 2002 

Germany Surface water (ng/L) 10 - 180 10.00 - 70 Dsikowitzky et al., 2002 

Germany SPM (ng/g) 5000 - 191000 2 - 1399000 Dsikowitzky et al., 2002 

Germany North Sea (ng/L) 0.09 - 4.8 0.08 - 2.6 Bester et al., 1998 

Germany Elbe Estuary (ng/L) 95 - 136 65 - 200 Bester et al., 1998 

Italy Molgora River (ng/L) 0.05 - 1141 <0.25 - 364.42 Villa et al., 2012 

Italy suspended sediments (ng/g) <0.0007 - 17993 0.00035 - 4321 Villa et al., 2012 

Netherlands Rhine river (ng/L) 10 - 220 10 - 130 Breukel & Balk, 1996 

Netherlands suspended sediments (ng/g) 50 - 160 100 - 540 Breukel & Balk, 1996 

Spain STP Effluent (ng/L) LOD - 1225 LOD - 146 Rosal et al 2010 

Spain STP Effluent (ng/L) 1800 - 9000 100 - 900 Bueno et al 2012 

Spain STP Effluent (ng/L) 4750 780 Pintado-Herrera et al, 2014 

Spain River Water (ng/L) 1890 190 Pintado-Herrera et al, 2014 

Spain Effluent (ng/L) 5603 1583 Diaz-Garduno et al., 2017 

Sweden STP Effluent (ng/L) 157 - 423 42 - 104 Ricking et al., 2003 
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The measured environmental concentrations of PMCs recorded in various parts of Europe and America 

are presented in Table 1.3. These concentrations are approximations of the exact concentrations of these 

compounds in various environmental compartments due to the sensitivity and selectivity of the 

instrumental and analytical approaches used in their determination. The chromatographic (GC) approach 

has been widely embraced owing to its compatibility with sample preparation techniques that necessitate 

subsequent liquid desorption or thermal desorption of the analytes and thus can be used with various 

sample preparation techniques (Vallecillos et al., 2015). However, this approach has limitations related to 

identification and quantification of targeted musk fragrances due to the complexity of environmental 

matrices. Again, because chromatographic peaks of musk fragrances sometimes co-elute with matrix 

components, it be difficult to separate them with one-dimensional GC. GC in combination with chemical 

ionization (CI) is quite sensitive for nitro musk fragrances and their amino metabolites (Peck and 

Hornbuckle, 2006). Ion trap (IT) in MS or tandem MS/MS modes is the second most selected analyzer to 

determine PCMs, NMs and MCMs in different kinds of samples because of its ability to achieve higher 

selectivity and sensitivity (Vallecillos et al., 2015). In most of the environmental concentrations presented 

in Table 1.3, GC-MS with a quadrupole as the analyzer technique in terms of instrumental analysis of 

PCM fragrances was used in environmental samples. However, microextraction techniques have recently 

been developed as environment-friendly methodologies in analyzing PCMs in environmental water and 

solid samples. 

 

1.3.4. Bioaccumulation of synthetic musk compounds 

Most emerging contaminants are difficult to monitor directly because of their low concentrations in the 

environment, ranging from nano- to micro- units and, therefore, not well graded in accordance with their 

potential to elicit toxic effects in organisms. However, available data though insufficient suggest that these 

substances do exist, and they could represent a threat to the marine ecosystems. Chemical monitoring alone 

seems not sufficient to be relied upon in deriving good quality standards for the marine environment. In 

addition, biological monitoring may provide a good complement to bridging this gap by studying 

contaminants accumulation in organisms.  

Environmental contaminants are distributed in organisms via the skin, buccal cavity, nostrils, and other 

permeable membranes into the system. Their fate in organisms depends, amongst others, on certain physical 

and chemical characteristics such as lipophilicity, polarity, ionization, chemical structure, molecular mass, 

as well as the lifecycle stage of the organism during exposure. Most polycyclic compounds are lipophilic 
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and thus can penetrate the phospholipid bilayer of cell membranes and bind with other cellular molecules. 

Depending on other factors, xenobiotics can be metabolized or accumulated in various tissues within an 

organism: liver, adipose tissues, kidneys, and gills. 

The term bioaccumulation is used to describe the uptake of xenobiotics directly from the environment 

and/or via food intake and it is an indicator of potential persistence and toxicity of contaminants (Wang, 

2016). Bioaccumulation of PMCs from different aquatic organisms such as mussels, crustaceans, and fish 

from freshwater and marine environments sampled from the wild have been documented (Fromme et al., 

1999; Fromme et al., 2001; Rimkus et al., 1997; Rüedel et al., 2006) and, in most of the studies, HHCB 

and AHTN remained the predominant PMCs detected. Concentrations of HHCB and AHTN as high as 

6400 ng/L and 2130 ng/L lipid weight, respectively, have been measured in bream fish from the Elbe River 

in Germany (Rüedel et al., 2006). Similarly,  Fromme et al. (2001) found HHCB in eels at concentrations 

with a value range of 445 – 6470 µg/kg lipid weight from Rivers Spree, Dahme and Havel, Germany. Under 

laboratory condition, the bioaccumulation factor based on wet weight (BAFw) for various SMCs in fish 

were 4200 – 5100 for musk xylene (Rimkus et al., 1997), 1584 for HHCB and 597 for AHTN (Balk and 

Ford, 1999b). BAFw measured in eels from surface waters in Berlin with a high proportion of municipal 

sewage effluents were 995 and 1421 for HHCB and AHTN, respectively (Heberer, 2002). Gatermann et al. 

(2002) reported the values SMCs in four fish species from a pond receiving water from sewage treatment 

plants and detected a concentration of 40000 ng/L for musk xylene, while HHCB and AHTN were lower 

than previous values. The authors concluded that the wide variation in values of SMCs detected in different 

species could be due to species dependent accumulation and metabolism of contaminants in fish 

(Gatermann et al., 2002). 

There are few reports on the environmental concentrations of PMCs in marine environments and the only 

compounds reported are HHCB and AHTN (Bester et al., 1998). It is doubtful that the dearth of information 

regarding the presence of PMCs in the marine environment reflect the actual status of these substances for 

the marine ecosystems because of the increasing consumption globally and Europe in particular; and 

secondly because many cities are located on the coast and have their sewage treatment plants directly 

emptying into the marine environment. Notwithstanding, reports have shown they bioaccumulate in marine 

organisms (Kannan et al., 2005; Moon et al., 2011, 2012). Moon et al. (2012) reported bioaccumulation 

profiles of polycyclic aromatic hydrocarbons and SMCs in liver tissues and bubbler from minke whales and 

common dolphins from Korean coastal waters. They noted that, in all the samples of liver tissues and 

bubbler from minke whales and dolphins from the coastal waters, HHCB were found to be predominant 

with no exception. The concentrations in ng/g lipid weight found in the liver tissues and bubbler of both 

organisms ranged from <2.3 to 169 and <2.3 to 50; and 24 to 187 and 19 to 72 of HHCB and AHTN, 
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respectively. The highest concentrations of both compounds were found in the liver and bubbler of minke 

whales.  

To further our understanding of the biomagnifications potential of PMC and to identify those species that 

accumulate higher concentrations through their diet and habitat, Nakata (2005) measured SMCs in 

lugworm, mussel, crustacean, fish, marine birds and mammals from tidal flat and shallow water areas of 

Ariaka Sea, Japan. In all the samples analyzed, HHCB and AHTN were the dominant compounds while 

NMCs were undetected. An earlier investigation of oysters in 61 locations around Japanese coastal waters 

reported the predominance of HHCB and AHTN (Nakata et al., 2007). HHCB concentrations in organisms 

from the Ariaka Sea were 3 to 10-fold higher than those of AHTN and the highest concentrations were 

found in clams, ranging from 258 ng/g (lipid wt.) to 2730 ng/g (lipid wt.), followed by crustaceans and fish 

in the tidal flat. However, the results could not establish any correlation between HHCB concentrations in 

clams and the organisms in the successive trophic levels in the food chain (Nakata et al., 2007), suggesting 

that the concentrations in the organisms in higher trophic levels where more of bioconcentration rather than 

biomagnifications, which further corroborated the ubiquity of these compounds in marine environment. 

 

1.3.5.  Toxicity of synthetic musk compounds 

Environmental chemicals interact with biotic components to produce biological effects. Naturally, 

organisms are equipped with internal mechanisms to mediate the effects and protect themselves from 

irreversible damage. This process releases signals used in ecotoxicological studies as early warning 

mechanisms to protect the organism at individual level before population level effects occur. Like other 

environmental contaminants, the potential toxicity of SMCs was evaluated even before they were first 

detected in environmental samples. In 1964, Davis, Taylor, Jones and Brouwer (cited by Nair et al., 1985) 

found that rat feed with musk ambrette in a sub-chronic assay had retarded growth, testicular atrophy and 

gradual paralysis of the hind limb. Subsequent investigation by Spencer et al. (1984) detected the neurotic 

effect of musk ambrette in rats. Furthermore, musk ambrette and musk xylene were tested for mutagenicity 

in Salmonella typhimurium strains TA100 and TA98 strains with and without rat liver S-9 activation 

system. Musk ambrette was found to cause a concentration-dependent increase in mutagenicity in S. 

typhimurium TA100 requiring the activation with rat-liver S-9 fraction (Nair et al., 1986). Female zebrafish 

dietary exposure to musk ketone for 8 weeks to two different dose levels before spawning were found to 

reduce body weight and length, coupled with reduced liver and gonad somatic index (Carlsson and 

Norrgren, 2004). Again, dose-dependent reduction in fecundity, increased early life-stage mortality and 

reduced median survival time was also reported in zebrafish (Carlsson and Norrgren, 2004). Consequently, 
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NMCs widely returned genotoxic and mutagenic effects and acute toxicity in early life stages (Api et al., 

1995; Api et al., 1996). 

Toxicity data of PMCs, especially HHCB and AHTN in marine environments are incipient and previous 

studies demonstrated that both substances are potentially toxic to aquatic organisms, including early stages 

of some organisms. Toxicity of xenobiotics on early life stages has serious ecological consequences because 

inhibition of embryo development, growth and survival could limit the recruitment capacity of the 

individual species, contributing to population decline. Population decline at any trophic level, for example 

primary consumers, will facilitate alteration in the community structure. 

Exposure of algae, crustaceans, mollusks, earthworm and fish to HHCB and AHTN showed that both 

substances might inhibit growth of algae (Balk and Ford, 1999b; Ding et al., 2020). The microalga, 

Pseudokirchneriella subcapitata exposed to HHCB (0.0625 - 1.0 mg/L) and AHTN (0.042 - 0.85 mg/L) 

inhibited microalgae growth up to 56%, producing NOEC values of 0.201 mg/L and 0.374 mg/L, 

respectively (Balk and Ford, 1999b). Recently, Ding et al. (2020) demonstrated that HHCB inhibited the 

growth of the microalgae Navicula sp. and Scendesmus quadricauda, producing IC50 values of 0.050 mg/L 

and 0.336 mg/L, respectively. Similarly, acute toxicity reported for other organisms like crustaceans, 

mollusks, earthworm and fish, returned LC50 values higher than environmental relevant concentrations 

(Artola-Garicano et al., 2003; Balk and Ford, 1999b; Gooding et al., 2006). Lethal and sublethal toxicity 

of HHCB and AHTN to glochidial (larval) and juvenile life stages of the freshwater mussel Lampsilis 

cardium showed that at 24 h dose-response mortality was detected, producing LC50 values ranging from 

454 to 850 μg/L for AHTN and from 1000 to >1750 μg/L for HHCB (Gooding et al., 2006). In another 

study, HHCB and AHTN were found to inhibit larval development after 5 days exposure of marine copepod 

(A. tonsa) at median effect concentration (EC50) of 0.026 mg/L for AHTN and 0.056mg/L for HHCB 

(Wollenberger et al., 2003). 

Although the above literatures suggested that PMCs are not acutely toxic to organisms at environmental 

relevant concentrations, there are, however, sublethal effects of ecological relevance already detected. For 

example, 0.02 mg/L of HHCB impaired larval development of the copedop Nitocra spinipes (Breitholtz et 

al., 2003) and Gooding et al. (2006) reported life stage dependent effects.  

 

Aquatic sediments are often reservoirs of chemical contaminants that can potentially elicit detrimental 

effects to aquatic organisms, both pelagic and benthic, and consequently have toxic impacts across aquatic 

ecosystems. The concentrations of chemicals in sediments may be several orders higher than in water layers 

because contaminants that may not dissolve in water, can adsorb to particulate matter and may cause 
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significant effects in benthic organisms. Therefore, investigating sediment toxicity of PMCs is essential to 

understanding the impact these substances may impose on benthic and pelagic aquatic biota. Results of 

sediment toxicity test with HHCB on the freshwater mud snail Potamopyrgus antipodarum revealed that 

on exposure to 30 and 100 μg/g, HHCB reduced juvenile survival by 10% and 20%, respectively, and other 

endpoints such as low reproductive potential, reduced feeding in adults and juveniles as well as reduced 

growth rate were identified as potential effects triggered by HHCB (Pedersen et al., 2009). Similarly, the 

earthworm Eisenia fetida exposed to AHTN (>8.2 μg/cm2) and HHCB (>3.2 μg/cm2) showed 

morphological symptom of sick earthworm at 24 h, and 100% mortality after 48 h of exposure to AHTN 

(>85.9 μg/cm2) and HHCB (> 53.7 μg/cm2) (Chen et al., 2011). 

 

1.4. Hypothesis and Objectives 

The widespread applicability of PMCs as fragrance materials in household and personal care products 

together with external application and disperse use contribute to their ubiquity in environmental matrices. 

The PMCs, such as HHCB and AHTN, have been detected in marine environments in different parts of the 

world and the main route of entrance being sewage treatment plants and atmospheric deposition. They are 

lipophilic, have high octanol-water partition coefficient and could be persistent or pseudo-persistent in 

marine environments. The interaction and potential toxicity they may exert on marine biota, particularly 

sedentary species that are continuously exposed to these compounds and impacts on early life stages of 

marine species and marine algae growth is elusive. 

 

1.4.1.  Hypothesis 

The present research work is focused on the following hypothesis: 

• On a short-term exposure, environmental concentrations of HHCB and AHTN may inhibit growth 

of microalgae such as Phaeodactylum tricornutum, Tetraselmis chuii, Isochrysis galbana and 

Raphidocelis subcapitata. HHCB and AHTN may significantly affect the fertilization success, 

larvae development of sea urchin (Paracentrotus lividus), motility and survival of artemia (Artemia 

franciscana), larvae development of mussels (Mytilus galloprovincialis), increase mortality of yolk 

sac larvae of fish (Sparus aurata) and may also interfere in the spatial displacement of organisms 

(namely the shrimp Palaemon varians) from their habitat and trigger population immediate decline 

of marine organisms. 
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• Under chronic exposure, HHCB and AHTN may alter biochemical changes in the clams Ruditapes 

philippinarum that may cause significant physiological impacts such as oxidase stress, genetic 

damage and neurotoxicity. Exposure to these substances may also modulate gene expression of 

endocrine biomarkers in yolk sac larvae of the fish Cyprinodon variegatus. 

 

1.4.2. Objectives 

The main objectives of the present research work are: 

• To determine the short-term effects of environmental concentrations of HHCB and AHTN on 

marine organisms such as Paracentrotus lividus, Artemia franciscana, Mytilus galloprovincialis, 

Sparus aurata early life stages, growth inhibition of the marine microalgae, Phaeodactylum 

tricornutum, Tetraselmis chuii, Isochrysis galbana, following EU guideline to characterize the risk 

of both compounds in the marine ecosystems. 

 

• To determine the spatial avoidance of the shrimps P. varians in response to the repellence caused 

by the exposure to a contaminant gradient of HHCB and AHTN in a non-forced, multi-compacted 

exposure systems as a complementary approach to risk assessment and estimate the population 

immediate decline of the shrimps. 

 

• To determine the sub-lethal effects of the exposure to environmental concentrations of HHCB and 

AHTN using the bioindicator species Ruditapes philippinarum. An integrated biomarker approach 

is applied to determine biochemical changes in biomarkers related with biotransformation, 

oxidative stress, genotoxicity and neurotoxicity. 

 

• To assess the effects of HHCB and AHTN at the molecular level on yolk sac larvae of Cyprinodon 

variegatus after 96 h exposure, using qPCR to quantify gene expression levels of endocrine 

biomarkers. 

 

• To provide an overview about the potential risk of HHCB and AHTN on the structure and 

functioning of the marine aquatic ecosystems. 
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The above objectives were set to provide understanding of the potential toxicity of low concentrations of 

HHCB and ANTN in the marine environments.  
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1.5. Structure of the thesis 

The present PhD thesis entitled “Ecotoxicological assessment of galaxolide and tonalide as contaminants 

of emerging concern in marine ecosystems” has been divided into eight chapters which are explained below. 

Chapter 1: This chapter includes general introduction of the research area, highlighting the significance of 

the marine ecosystems and the species richness it holds, followed by diversity of contaminants of emerging 

concern and their threat to marine biota. The types of synthetic musk compounds and their physiochemical 

properties were also explained. The occurrence of synthetic musk compounds in the marine environments 

was elucidated, identifying all possible routes of entrance, detection and concentration in the media and 

tissue accumulation in organisms. Thereafter, toxicity data of synthetic musk compounds in different 

environmental compartments were presented with emphasis on the effect assessment data of the polycyclic 

musk compounds, galaxolide and tonalide in the aquatic environment. The hypothesis and objectives of the 

thesis were highlighted followed by the structure of the thesis.     

Chapter 2: This chapter focuses on the methodological approach used for the development of this thesis. 

Here, the theoretical framework of environmental risk assessment was explained followed by the array of 

test organisms and the endpoints used. This chapter also deals with the different bioassays that were 

performed, the variety of biomarkers used and the analytical methods for each biomarker that was assessed. 

Chapter 3: This chapter entitled presented all the research work that was performed during the PhD thesis 

development. 

Section 3.1 is entitled “Acute toxicity and overview of the potential risks of galaxolide and tonalide on 

structure and functioning of marine ecosystems” addressed the impacts of short-term exposure of marine 

microalgae, invertebrates, and fish to environmental concentrations of galaxolide and tonalide by measuring 

endpoints related to microalgae growth and early life stages of invertebrates and fish to quantitatively 

estimate the risk to marine biota. This chapter includes the article published by Ehiguese et al. (2021, 

Processes 9, 371). 

Section 3.2: This section entitled “Spatial avoidance as a complementary tool for environmental risk 

assessment of galaxolide and tonalide in marine environment” deals with the avoidance response of the 

shrimp Palaemon varians exposed to a contaminant gradient of galaxolide and tonalide under a multi-

compartmented non-forced exposure system that allows the shrimps to escape from a more contaminated 

compartment to less contaminated area. This chapter includes the article published by Ehiguese et al. (2019, 

Chemosphere 232, 113 – 120)    
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Section 3.3: This section entitled “The sub-lethal effects of environmental concentrations of galaxolide and 

tonalide on the manila clams Ruditapes philippinarum” highlighted the sub-lethal effects induced by 

environmental concentrations of galaxolide and tonalide on the adult manila clams R. philippinarum by 

measuring a battery of biomarkers after chronic exposure. This chapter includes the article published by 

Ehiguese et al. (2020, Marine Environmental Research 160). 

Section 3.4: This Chapter entitled “The use of molecular biomarkers to assess the endocrine disrupting 

potential of galaxolide and tonalide in marine organisms” presents results of the study on the effects of 

galaxolide and tonalide on biosynthesis of steroidogenic hormones in yolk sac larvae of the sheepshead 

minnow Cyprinodon variegatus. This chapter includes the article published by Ehiguese et al. (2021, 

Environmental Research 196). 

Chapter 4: This chapter includes the general discussion, highlighting the relevance of this PhD thesis and 

presents future perspectives. 

Chapter 5: This chapter highlighted the major conclusions derived from this PhD thesis. 
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2. Methodological Approach 

For the development of the current PhD Thesis, several methodologies widely used in environmental risk 

assessments (ERA) were employed. In order to provide a more complete assessment about the potential 

risks of the polycyclic musk compounds galaxolide (HHCB) and tonalide (AHTN) on marine biota, 

empirical approach based on data of ecotoxicological assays was explored based on ERA scheme. In this 

case, it was intended to employ organisms from different trophic levels like microalgae, echinoderms, 

bivalves, shrimps, and fish. This diversification in the species allows assessing how organisms with 

different biological complexity can be affected. In addition, different endpoints were used for each species, 

taking as basis the sensitivity and relevance of the endpoints. Another important aspect considered to select 

the endpoints was their level of biological organization, so that the responses measured were based on acute 

and chronic exposure, focusing on growth, survival, development, behavior, and biomarkers at the 

biochemical and molecular levels. Some details about the ecotoxicological endpoints described in the 

following chapters of the current thesis have been discussed below. 

 

2.1.  Environmental Risk Assessment 

The emergence of new chemicals in addition to existing substances used for industrial, agricultural, and 

domestic purposes are at an alarming rate and are continuously increasing. In fact, according to Chemical 

Abstract Service (CAS), approximately 4000 new substances were added to the chemical register each day 

in addition to more than 33 million chemicals and over 59 million sequences registered from 1907 to 

January 2008 (Binetti et al., 2008). Considering possible chemical contaminations, this implies serious 

consequences for human and environmental safety and, as such, information regarding potential chemical 

hazards is important for human and environmental protection. Therefore, protocols for environmental risk 

assessment (ERA) of chemicals aiming at regulating and managing the potential impacts that their 

production and usage might impose on different environmental compartments are in force in different 

geography. As the aquatic ecosystems is the ultimate sink for contaminants pollutants either by direct 

discharge or through hydrologic and atmospheric processes (van der Oost et al., 2003), important regulatory 

documents as the Registration Evaluation Authorization and Restriction of Chemicals (REACH) (European 

Commission, 2006), the Integrated Pollution Prevention and Control (IPPC) (EC, 2008) and the Water 

Framework Directives (WFD) (EC, 2000) aim to safeguard the environments from chemical perturbations. 

Specifically, WFD is a specific legal document enacted for the protection of inland surface waters, 

transitional waters, coastal waters, and groundwater in its member states. The document provided a general 

framework for ecological protection and a minimum chemical standard for all surface waters (ECD, 2000). 
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Figure 2.1: Environmental risk assessment procedure. Source: EC, 2003 

 

ERA is the process of quantifying the likelihood that contaminants or anthropogenic activities will cause 

adverse effects on ecosystems and their components with a degree of certainty using scientific 

methodologies (van der Oost et al., 2003). The ERA process involves a scientifically driven risk analysis 

and a more politically oriented risk management; and could be performed on retrospective or introspective 

basis. Although most ERA is concerned with predictive assessment of environmental concentrations and 

effects, attention is presently more focused on retrospective assessment, evaluating sources of contaminants 

(e.g., effluent, spill), exposure and effects. Risk analysis of contaminants in the aquatic environment as 

described by European Union Technical Guidance Document on Risk Assessment (EC, 2003) involves 

hazard identification, exposure assessment, risk characterization and risk classification (Figure 2.1). In 

retrospective ERA, risk characterization is computed using measured environmental concentrations (MEC) 



39 
 

instead of predicted environmental concentration (PEC). Toxicity data obtained from single species or 

several species exposure representing different trophic levels, divided by an appropriate assessment factor 

are used to calculate predicted no effect concentration (PNEC). The ratio of MEC and PNEC gives a 

quantitative estimate (risk quotient) upon which risk can be classified. 

In this research, extensive literature survey of MEC of the polycyclic musk compound HHCB and AHTN 

was undertaken. Most data found were performed in Europe and one in Canada. Details are presented in 

Table 1.3 (Chapter 1) and have been discussed above. PNEC data used in this study were derived from 

laboratory toxicity tests. The ratio of MEC and PNEC were computed to derive the risk quotient and risk 

classification of HHCB and AHTN in marine ecosystems. 

 

2.2. Acute toxicity tests 

Contaminants in the marine environments affect life in several ways, depending on the concentration and 

the duration of exposure. Exposure to high concentration on a short-term tends to lethality, mostly to 

sensitive species and even resistant organisms may become sensitive at some stages in their life cycle. 

Therefore, short-term exposure to contaminants for effect should not only be concern with endpoints related 

to lethality but sub-lethal effects at a stage in the life cycle of the test organism. Sub-lethal effects related 

to the ability to survive, growth and reproduce will affect population size and reduction in sensitive 

population may lead to changes in the community structure, that can alter ecosystem functioning (Fleeger 

et al., 2003). 

ERA for the aquatic ecosystems combines assessment of exposure and effect data generated from acute and 

chronic toxicity tests. As a result, acute toxicity tests were conducted in static bioassay with microalgae, 

invertebrates, and fish to generate effective concentrations (EC) for HHCB and AHTN. Following the 

procedure described by Garrido- Perez et al. (2008), 72 h growth inhibition tests were performed with the 

microalgae Phaeodactylum tricornutum, Tretraselmis chuii and Isochrysis galbana (Table 2.1), change in 

biomass was measured indirectly through absorbance and data were expressed as percentage of growth 

inhibition. These microalgae have been used as sensitive tools for ERA of effluents (Díaz-Garduño et al., 

2017), pesticides (Magnusson et al., 2010), pharmaceutical and personal care products (Aguirre-Martínez 

et al., 2015; Ferreira et al., 2007).
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Table 2.1: Description of bioindicator species, toxicity tests and endpoints. 

Organism  Species  Trophic level Toxicity test (duration) Image  
 

 

 

Algae 

 

 

 

Phaeodactylum 

tricornutum 

 

 

 

 

 

Primary 

producer 

 

 

 

Growth inhibition (72-h) 

 

 

 

 

 

 

Algae  

 

 

 

Tetraselmis chuii 

 

 

 

Primary 

producer 

 

 

 

Growth inhibition (72-h) 

 

 

 

 

 

 

 

 

Algae  

 

 

 

Isochrysis 

galbana 

 

 

 

Primary 

producer 

 

 

 

Growth inhibition (72-h) 

 

 

 

 

 

 
 

 

 

 

Algae 

 

 

 

Raphidocelis 

subcapitata 

 

 

 

Primary 

producer 

 

 

 

Growth inhibition (72-h) 

 

 

 

 

 

 

 

Artemia  

 

 

Artemia 

franciscana 

 

 

Primary 

consumer 

 

 

Motility and survival  

 

 

 

 

 

 

 
 

 

 

Sea urchin 

 

 

 

 

Paracentrotus 

lividus 

 

 

Primary 

consumer 

 

 

 

 

 

 

Larval development (48-

h) 
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Organism  Species  Trophic level Toxicity test (duration) Image  
 

 

Mussels 

 

 

Mytilus 

galloprovincialis 

 

 

 

Filter feeder 

Primary 

consumer 

 

 

Larval development (48-

h) 

 

 

 
 

 

Clams  

 

 

Ruditapes 

philippinarum 

 

 

Filter feeder 

Primary 

consumer 

Sub-lethal effects: 

xenobiotics 

biotransformation 

(EROD & GST), 

Oxidative stress (GPx, 

GR, LPO), DNA 

damage, neuroendocrine 

toxicity (AChE, COX) 

and TL 

(21-days) 

 
 
 

 

 

 

Shrimp 

 

 

Palaemon 

varians 

 

 

Secondary 

consumer 

 

 

Spatial avoidance  

 

 

 

 

 
 

 

Fish  

 

 

Sparus aurata 

 

 

Carnivores 

Secondary 

consumer 

 

 

Survival test 

(96-h) 

 

 

 

 
 

 

Fish 

 

 

Cyprinodon 

variegatus 

 

Omnivore  

Secondary 

consumer 

 

Sub-lethal effect: 

endocrine disruption 

(cyp19 & vtg1) 

(3-days) 

 

 

 

 

A battery of acute toxicity tests with invertebrates were performed with the brine shrimp Artemia 

franciscana, the sea urchin Paracentrotus lividus, and the mussel Mytilus galloprovincialis, beside the tests 

with yolk sac larvae of the fish Sparus aurata (Table 2.1). For each test, early life stages of the organisms 

were exposed to environmental concentrations of HHCB and AHTN. The acute toxicity tests were 

performed following standard protocols and endpoints related to fertilization success, larvae development, 

motility and mortality were evaluated. 
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For each test, ICx/ECx (concentrations that cause growth inhibition or any effect) values were calculated 

using the ICPIN statistical program, provided by USEPA on its website, for the analysis of toxicity data of 

the chemicals.  

 

2.3. Spatial avoidance test 

Traditional toxicity testing involves exposure of organisms to environmental stressors in a closed condition, 

known as forced exposure, where the organisms are continually exposed to the test substance. Under this 

condition, the endpoints recorded may be totally linked to the toxic effects of the stressor. On the other 

hand, spatial avoidance is an endpoint measured in a non-forced exposure system that permits emigration 

of organisms from a noxious environmental condition to a safer area, thus indicating the aversive character 

of the samples (Jutfelt et al., 2017; Tierney, 2016). This approach has been used as a behavioral response 

to simulate how organisms will potentially respond to a scenario of heterogeneous pollution in the marine 

environments, detecting and avoiding potentially dangerous contaminant concentrations. 

Determination of active avoidance was first performed by Shelford and Allee (1913), but spatial avoidance 

to assess organisms’ behavioral response to contaminants was later performed with fish in tubes containing 

contaminants and clean water at both ends, thus allowing the fish to detect differences in contamination 

levels and to move to less contaminated environment (Jones, 1947). Different exposure systems including 

two compartments, steep gradients, laminar flow chambers, avoidance/preference chambers, fluvarium 

systems and dilution gradients involving several compartments have been developed and employed to 

assess contamination-driven avoidance (Folmar, 1976; Gunn and Noakes, 1986; Hartwell et al., 1989; 

Moreira-Santos et al., 2008; Richardson et al., 2001; Smith and Bailey, 1990; see also review by Jutleft et 

al., 2017).  
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Figure 2.2: Non-forced multi-compartmented static exposure system used in the avoidance tests (Islam et 

al., 2019). 

 

The use of the free-choice, non-forced, multi-compartmented exposure system (Figure 2.2) developed by 

Lopes et al. (2004), in which contamination gradients or patches are simulated, have also proven to be a 

suitable approach to assess how contaminants can interfere in the spatial distribution of organisms (see 

review by Araújo et al., 2016b, Araújo and Blasco, 2019). Laboratory exposure of fish, amphibians, 

decapods, mollusks, dipterans, copepods and annelids to fungicides, effluents, metals and organic 

compounds to determine avoidance responses at sublethal concentrations in a free-choice multi-

compartmented exposure system have been reported and indicated that contaminants potentially can, at 

some extent, drive the spatial distribution and habitat selection processes by organisms (Araújo et al., 

2016a, 2014b, 2014c, 2014a; Dornfeld et al., 2009; Moreira-Santos et al., 2008; Rosa et al., 2012; Silva et 

al., 2017).  This non-forced, multi-compartmented approach simulates a realistic heterogeneous 

contamination scenario where organisms are not restricted to continuous exposure like in the forced 

exposure, thus providing a complementary approach to environmental risk assessment based, not 

exclusively on toxicity, but on contamination-driven displacement patterns of organisms. 

 

2.4. Chronic toxicity test and the use of biomarkers in ERA 

Occurrence and concentrations of contaminants in environmental matrices is determined by chemical 

monitoring, yet the presence of chemical substances in a compartment of an aquatic ecosystem does not 

necessarily mean toxic effects. Therefore, it must be confirmed that there is a connection between external 

levels of exposure, internal levels of tissue contamination and early adverse effects (van der Oost et al., 

2003). Early warning signs (biomarkers) for detecting adverse effects are important to protecting ecosystem 

health because risk management based on population effects in response to contamination mitigation may 
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be irreversible. Therefore, simple and rapid tools capable of giving relevant information regarding toxicity 

of a contaminant in any environmental compartment is required. Biomarkers are quantitative measures in 

body fluids, cells or tissues indicating biochemical change that potentially alter the physiology of organisms 

consequent to exposure to contaminants or other environmental stressors (Hook et al., 2014; Lionetto et al., 

2019; van der Oost et al., 2003). They are good indicators that organisms have been exposed to xenobiotics 

and have been distributed within tissues, causing toxic effects at sensitive sites. 

Biomarkers used in both laboratory and field experiments can supply essential relationships between 

laboratory toxicity and field assessment and it offers many advantages for comparing the relative toxicity 

of specific chemicals or complex effluents (van der Oost et al., 2003). Advantageously, they serve as 

intermediates between contaminant sources and higher level effects and, very importantly, give information 

on the potential toxicity of pollutants rather than mere quantification of their presence (Hook et al., 2014). 

Biomarkers have been used in ERA of many legacy contaminants in aquatic ecosystems. Luna-Acosta et 

al. (2015) used biomarkers to establish the potential relationships between organic contaminants 

accumulated in the soft tissues of juvenile oysters, defense response and physiological condition by 

transplanting oysters in different sites of the Marennes–Oléron Bay. The authors determined correlation 

between PAHs and DDT body burdens, antioxidant, and immune-defense responses in the oysters. 

Furthermore, many studies on potential toxicity of organic contaminants such as endosulfan, phenanthrene, 

aroclor 1254, PAHs have been linked with oxidative stress and DNA damage in aquatic organisms under 

laboratory conditions (Griffitt et al., 2007; Park et al., 2009; Rodgers et al., 2020; Tao et al., 2013; Zhang 

et al., 2014). Biomarkers have also become very useful in detecting the potential toxicity of contaminants 

of emerging concern, domestic and industrial effluents in aquatic ecosystems. Recently, activities of 

pharmaceutical and personal care products in the aquatic ecosystems were studied by examining different 

biomarkers in echinoderm, bivalves, mollusks, and fish; effects related to oxidative stress, DNA damage, 

neurotoxicity, endocrine disruptions were linked with exposure to these contaminants (Aguirre-Martìnez et 

al., 2015; Aguirre-Martínez et al., 2016, 2015b; Desbiolles et al., 2018; Yu et al., 2013). Despite the 

usefulness of biomarkers in ERA, limitations related to species representativeness, cascade effects of one 

biomarker on other biomarkers responses and data interpretation are challenges confronting the usefulness 

of biomarkers (Hook et al., 2014; van der Oost et al., 2003). Therefore, caution must be exercised when 

interpreting results of laboratory toxicity tests (Hook et al., 2014). 

Biomarkers are broadly categorized into biomarker of exposure, which indicate the degree an organism is 

exposed to environmental contaminant or its metabolites, or the product of an interaction between a 

chemical agent and target molecule or cell that can be measured in a compartment within an organism 
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(Hook et al., 2014; van der Oost et al., 2003).  Biomarker of effect indicates quantifiable biochemical, 

physiological alterations or other changes in an organism exposed to environmental contaminants or its 

metabolites producing effects linked to adverse health status or disease (Hook et al., 2014; van der Oost et 

al., 2003). On the other hand, biomarkers of susceptibility reflect the changes in an organism that makes it 

susceptible to environmental contaminants. Biomarkers of exposure and effect have been widely 

incorporated in field and laboratory studies and have provided useful information for environmental risk 

management of many contaminants. 

 

2.4.1. The use of clams as model organism for biomarker-based evaluation of marine 

contamination 

Coastal ecosystems and transitional waters are the most known biologically reproductive ecosystems and 

consist of rich biodiversity due to high food supply, nutrients, and sunlight availability, and they are home 

to many marine plants and animals. Yet, they are the most contaminated ecosystems due to anthropogenic 

activity, constantly being inundated with contaminants from agricultural runoffs, industrial and municipal 

discharges. Therefore, in a point source pollution scenario, the ability of an organism to survive depends 

on its capacity to fight (from a physiological point of view) against or fly (from a behavioral point of view) 

from contamination. While pelagic organisms might rapidly avoid such areas by emigrating, sedentary 

species like bivalves are only partially able to drift in part and are constantly exposed to contaminants, 

making them good bioindicator species for biomonitoring of coastal ecosystems. 

The clams Ruditapes philippinarum (Table 2.1) are euryhaline marine benthos that originated from the 

Indo-Pacific region but have been introduced into coastal waters along the Atlantic and Mediterranean 

corridors for aquaculture purposes. They are highly successful and have been found to dominate native 

species (R. decussatus) in Europe (Moschino et al., 2010). As infauna suspension filter-feeders inhabiting 

sandy-mud bottoms, they burrow into sediments and thrust their inhalant siphon at or below the sediment 

surface to feed (Kanaya et al., 2005; Moschino et al., 2012). They feed mainly on particulate organic 

matters, microphytobenthos and sediment organic matters (Dias et al., 2019; Komorita et al., 2014). 

Because of their feeding behavior and ecology, inhabiting water, and sediment interface, they have been 

recommended as good bioindicator species for investigating sediment and water contamination (Li et al., 

2006; Moschino et al., 2012). 

The use of R. philippinarum as a model organism for biomarker-based assessment of marine contamination 

gained traction in the last decades and has widely been used to investigate the potential toxicity of pesticides 
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(Tao et al., 2013), metals (Aouini et al., 2018; Ji et al., 2019; Santana et al., 2017; Wang et al., 2011), 

wastewater effluent (Díaz-Garduño et al., 2018, 2016; Maranho et al., 2015a; 2015b), pharmaceutical 

products (Aguirre-Martinez et al., 2013; 2016; Almeida et al., 2015; Matozzo et al., 2012; Milan et al., 

2013; Trombini et al., 2019) and nanoparticles (De Marchi et al., 2017; Marisa et al., 2018, 2016; Volland 

et al., 2015). Therefore, this research explores the possibility of the clams to provide useful information 

required for the ERA of HHCB and AHTN in marine environments after chronic exposure by evaluating 

biochemical alterations in digestive gland and gonad tissues. 

 

2.4.2. Biomarkers used in this study 

Biomarkers for assessing the impacts of contaminants or environmental stressors on organisms can be 

measured at different levels of biological organization and includes biochemical, molecular, physiological, 

histopathological, and behavioral changes. This study determined biochemical, molecular and behavioral 

changes in marine organisms exposed to environmental concentrations of HHCB and AHTN. Hook et al. 

(2014) recommended a combination of suites of biomarkers measured across multiple levels of function to 

allow better estimation of the contaminant eliciting changes in fitness with concomitant changes in cellular 

function and fitness. Additionally, redundancy in measures would likely reduce the probability of a false 

positive that could occur owed to a spurious result in a single measure. The suite of biomarkers used in this 

study are discussed below. 

  

2.4.2.1. Ethoxyresorufin-O-deethylase (EROD) 

The marine ecosystems are constantly inundated with contaminants emanating from anthropogenic 

activities, consequently subjecting the inhabiting organisms to stress of combating the effects of 

contaminants. An important step involved in coping with the stress of environmental contamination is to 

metabolize xenobiotics to excretable and harmless form. This toxicants biotransformation mechanism is 

mediated by the cytochrome P450-dependent monooxygenase (MO) or mixed-function oxidase (MFO) 

system (van der Oost et al., 2003). The cytochrome P450 isoforms are a large and versatile assemblage of 

enzymes that possess membrane bound heme-protoporphyrin (Rewitz et al., 2006; Sharifian et al., 2020). 

Depending on their location in the cell, they can be classified into two including microsomal P450s which 

is resident in the membrane of endoplasmic reticulum and function in phase I biotransformation of 

exogenous lipophilic substances, notably PAHs, pesticides, drugs, and other substances with similar 

chemical structure. The second class of cytochrome P450 are the mitochondrial P450s which are presumed 
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to metabolize endogenous substances like steroid hormones. However, reports have demonstrated that some 

mitochondrial P450s are actively involved in biotransformation of exogenous substances (Rewitz et al., 

2006). Cytochrome P450 enzymes catalyze different reactions, including oxidation, reduction, and 

hydrolysis. Phase I xenobiotic biotransformation is an oxidative reaction catalyzed by cytochrome P450-

dependent MFO system in a reaction cycle initiated by substrate binding with the prosthetic heme ferric ion 

in the enzyme leading to reduction via electron transfer from NADPH reductase. The process is catalyzed 

by the addition of an atom of dioxygen to the substrates (van der Oost et al., 2003; Rewitz et al., 2006; 

Sharifian et al., 2020). 

Among the enzymes that catalyze phase I xenobiotics biotransformation, EROD seems to be the most 

sensitive probe for measuring the response of the cytochrome P4501A in aquatic organisms (van der Oost 

et al., 2003). Biochemical measurement of EROD activity is assayed fluorometrically, initiated by NADPH 

to detect changes in 7-hydroxyresorufin, determined as the quantity of resorufin produced per mg protein 

per minute (Gagné, 2014). This cost-effective method is rapid and produces valuable information on 

xenobiotics bioavailability. EROD activity has been employed in numerous fields and laboratory 

assessment of a variety of aromatic polycyclic compounds and other chemicals with structural similarity, 

because these compounds can activate the Aryl hydrocarbon receptor. Notably, PAHs have been reported 

to induce EROD activity in fish (Fuentes-Rios et al., 2005; Joachim et al., 2017; Vieweg et al., 2017), 

shrimps (da Silva Rocha et al., 2012), clams (Zhang et al., 2014) and scallops (Guo et al., 2017a; Jin et al., 

2014; Xiu et al., 2016). Similarly, pesticides and other organic micropollutants have been reported to induce 

EROD activity in marine organisms (Almeida et al., 2010; Larguinho et al., 2014; Tao et al., 2013). 

The applicability of EROD activity in ERA of contaminants span beyond legacy contaminants. In the last 

decades, increasing evidence has shown the relevance of EROD activity as a biomarker of exposure to 

emerging contaminants including pharmaceutically active and personal care products. Exposure of the 

polychaeta Hediste diversicolor to several pharmaceutical products for 14-day, fluoxetine, 17α-ethynyl 

estradiol and propranolol showed significant increase EROD activity (Maranho et al., 2014). Similarly, 

other pharmaceutical and personal care products have been reported to have increased EROD activity in 

bivalves and fish (Aguirre-Martinez et al., 2013; Grabicova et al., 2013; Li et al., 2012; Martín-Díaz et al., 

2009; Zhang et al., 2020). Therefore, application of this biomarker will help us understand the 

bioavailability and biotransformation of HHCB and AHTN in the marine environments. 
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2.4.2.2. Glutathione-S-transferase (GST) 

The byproducts of phase I metabolism are not in all cases excretable and in some instances could be more 

toxic than the parent compounds and, therefore, need to go through phase II metabolism. This phase 

involves conjugation reactions where nonpolar compounds are conjugated with a polar functional group 

resulting in a non-bioactive, excretable form (Omiecinski et al., 2011). However, xenobiotics possessing 

carboxyl, hydroxyl and amine functional groups are directly detoxified via phase II conjugation reaction 

without initial phase 1 detoxification (Sharifian et al., 2020; van der Oost et al., 2003). The conjugation of 

xenobiotics is catalyzed by the enzymes “transferases”, GST being the most widely studied biomarker of 

phase II metabolism. GST catalyzes the conjugation of electrophilic substances and metabolites of phase I 

metabolism with glutathione for subsequent detoxification. In addition to phase II detoxification, GST plays 

a significant antioxidant function, mopping up reactive oxygen species (ROS) that could attack important 

proteins and nucleic acids molecules due to chemical and environmental stress. Varieties of GST 

isoenzymes (alpha, mu, pi, theta, zeta and sigma-like GST) have been identified in aquatic organisms 

associated with intracellular detoxification and defense mechanism (Bathige et al., 2014; Omiecinski et al., 

2011; Umasuthan et al., 2012; van der Oost et al., 2003). 

For biochemical analysis of GST as biomarker of environmental contamination, total GST is mostly assayed 

using 1-chloro-2,4-dinitobenzene (CDNB) as substrate. Other substrates have also proven to be useful in 

assessing the induction of GST activity in aquatic organisms exposed to xenobiotics. While selecting 

biomarkers for assessing environmental contamination, the molecular biology of the model organism must 

be known to understand the capacity of the organism to give relevant information due to exposure to 

environmental chemicals. Out of 15 GST isoforms found in plants and animals, 7 (µ, Ω, δ, θ, ρ, π and GST 

microsomal) have been characterized and isolated in gills, hemolymph, digestive gland and gonads of R. 

philippinarum (Bathige et al., 2014; Umasuthan et al., 2012), hence the choice of this species in this study. 

The induction and/or inhibition of GST catalytic activity in aquatic organisms after exposure to 

contaminants have been widely reported and van der Oost et al. (2003) reviewed the significant and 

suitability of GST activity in fish for ERA. GST catalytic activity in R. philippinarum have been used to 

study the environmental effects of metals (Aouini et al., 2018; Wang et al., 2011), pharmaceutical products 

(Aguirre-Martínez et al., 2016; Maranho et al., 2014; Matozzo et al., 2012; Trombini et al., 2019) and 

nanoparticles (De Marchi et al., 2017; Marisa et al., 2018, 2016; Volland et al., 2015). 
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2.4.2.3. Glutathione Peroxidase (GPx) and Glutathione Reductase (GR) 

ROS are endogenous byproducts of metabolism, generated in the cell of aerobic organisms during normal 

cellular activities related to phosphorylation, mitochondria and microsomal transport chains and oxido-

reductase enzymes activities (Regoli and Giuliani, 2014). ROS are radical and non-radical oxygen species 

such as superoxide anion, hydrogen peroxide and hydroxyl radical and are essential in cell-signaling and 

homeostasis, balanced by antioxidant enzymes to guarantee cellular integrity. However, environmental 

change such as hypoxia condition, elevated water temperature, water acidification, increased pH and 

contaminants exposure can strongly potentiate the intracellular production of oxyradicals via the induction 

of CYP 450 pathway (Regoli and Giuliani, 2014). Therefore, exposure to PMCs is suspected to produce 

similar effects, being highly lipophilic (Balk and Ford, 1999). 

Elevated oxyradicals in the cell might overwhelm the coping capacity of antioxidants, consequently, leading 

to cytotoxic adverse effects including oxidative stress (Regoli and Giuliani, 2014; Sureda et al., 2011). 

Furthermore, antioxidants scavenge the interaction of oxyradicals with important biomolecules in a 

complex network involving scavengers and antioxidant enzymes including GPx and GR. GPx is one of the 

most important antioxidant enzymes responsible for breaking the product of superoxide dismutase (H 2O2) 

into water, giving off oxygen in the process. GPx catalytic activity requires reduced glutathione (GSH) as 

electron donor, and GSH is oxidized in the process to glutathione disulfide (GSSH) (Regoli and Giuliani, 

2014). In the reaction loop, GSSH is catalytically converted back to GSH by GR in the presence of NADPH 

as a cofactor. GR maintains the balance between GSH and GSSH ratio, the criticality of any alteration in 

GR enzymatic activity impinges this equilibrium, reducing glutathione scavenging potential with 

concomitant oxidative stress. 

Biochemical analysis of GPx and GR follows the measurement of fluorescein in a highly sensitive 

fluorescence. Consequently, the induction or inhibition of GPx and GR in marine organisms exposed to 

environmental chemicals is a useful biomarker in ERA and have been widely employed in laboratory and 

field studies. 

 

2.4.2.4. Lipid Peroxidation (LPO) 

LPO is the oxidative degradation of lipid molecules initiated by oxyradicals in the cells of organisms. As 

earlier discussed, exposure to contaminants potentiates ROS in the cell, which are converted to harmless 

products by antioxidants. However, antioxidants enzymes can be overwhelmed by excess ROS, limiting 

their coping capacity and consequently degrading the cell membrane phospholipid bilayer that protects the 
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cell by its selective permeability. Lipid peroxidation occurs when ROS attack lipids such as polyunsaturated 

fatty acids (PUFAs) by replacing hydrogen atoms from its methylene bridge with oxygen, to form fatty acid 

radicals and water. The fatty acid radicals react with oxygen to produce peroxyl fatty acid radicals and these 

unstable radicals continue to propagate by reacting with free fatty acid radical and lipid peroxidation. 

Peroxidation of lipid bilayer in the cell membrane is significant to organism’s physiology, interfering with 

cellular integrity by reducing the cell’s selective permeability to substances that might pose danger to 

nuclear materials in the cell. 

The endpoints of lipid peroxidation are production of reactive aldehydes such as malondialdehyde (MDA) 

and 4-hydroxynonenal (4HNE) (Ayala et al., 2014). MDA is widely used as a potent marker of LPO and 

can be measured biochemically following the thiobarbituric acid reactive substance (TBARS) procedure 

(Wills, 1987). The method involves heating biological samples with reagents consisting of trichloroacetic 

acid and thiobarbituric acid, using tetramethoxypropane (TMP) as a standard solution. MDA in the 

biological sample reacts with the reagent to form a pink chromogen, quantified spectrophotometrically at 

516 nm (excitation) and 600 nm (emission) filter (Aguirre-Martínez et al., 2016). 

LPO has been extensively used as indices of oxidative damage in aquatic organisms exposed to 

contaminants in both field (Rodríguez-Ortega et al., 2002; Sureda et al., 2011) and laboratory (Aguirre-

Martínez et al., 2016; Maranho et al., 2014; Silva et al., 2012) studies. 

  

2.4.2.5. DNA Damage 

Oxidative stress due to chemical exposure has been known to effectuate DNA damage. DNA is a highly 

reactive molecule, and it is susceptible to endogenous and exogenous chemical modifications. Most 

endogenous DNA damage occur during hydrolysis and oxidation of the chemically reactive DNA with 

water and ROS, respectively. This process has been demonstrated to contribute to hereditary diseases and 

cancer predisposition in humans (Ayala et al., 2014; Perrone et al., 2016). On the other hand, exogenous 

DNA damage occurs consequent to exposure to physical, chemical and environmental agents leading to 

excess ROS production in the cells. Overabundance of ROS causes approximately 100 different oxidative 

base lesions and 2-deoxyribose modifications and has been linked with human diseases (Ayala et al., 2014). 

Furthermore, chronic exposure to chemical agents can compromise DNA backbone potentiating single 

strand breaks. 

For environmental monitoring purposes, DNA strand breaks or damages are measured in organisms as a 

biomarker of exposure and effect to genotoxic substances and provide opportunity to evaluate genotoxic 
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chemicals in aquatic ecosystems, providing information regarding environmental health and also serve as 

early warning signals of environmental contamination. Although DNA damage as a biomarker of 

environmental contamination does not provide any specific mechanism of effect, its applicability to many 

cell types makes it an important biomarker of exposure to genotoxicants. 

A number of approaches have been used to quantify DNA damage in the laboratory. This study employed 

the DNA precipitation assay described by Olive (1988) based on 2% SDS-KCl precipitation of DNA-

Protein crosslink, which uses fluorescence to measure DNA strands (Gagnè et al., 1995). When DNA 

breaks because of exposure to contaminants, the strands are released from cellular protein into the 

supernatant when centrifuged at low speed (Aguirre-Martínez et al., 2016). It is then possible to quantify 

the amount of double or single stranded DNA at the end of the assay (Gagnè et al., 1995). This method is 

reliable own to its rapidity and cost-effectiveness and have been widely used in field and laboratory studies 

to assesses genotoxicity of effluents, PAHs, pesticides, pharmaceuticals, and personal care products in the 

aquatic environments (Gagné et al., 2017; Guo et al., 2017b; Mamaca et al., 2005; Xiu et al., 2016). 

  

2.4.2.6. Acetylcholinesterase (AChE) 

AChE is a cholinergic enzyme present at the postsynaptic cleft of neuromuscular junction and catalyzes the 

hydrolytic metabolism of the neurotransmitter acetylcholine (Gaitonde et al., 2006). In environmental 

biomonitoring, AChE has widely been used as a biomarker to diagnose the exposure of organisms to 

neurotoxic substances that can bind with AChE active site, preventing its catalytic deactivation of 

acetylcholine. The mechanism of action follows that when action potential develops, acetylcholine is 

released from the presynaptic cleft into the synaptic cleft and is catalytically degraded by AChE into choline 

and acetate, therefore transmitting neural messages across the cells. However, AChE inhibitors interfere 

with this process by binding to AChE catalytic sites, leading to build up of acetylcholine (Gaitonde et al., 

2006; Sturm et al., 2000; van der Oost et al., 2003). 

AChE inhibition has been reported in bioindicator species exposed to organic compounds, metals, 

pharmaceutical and personal care products in field and laboratory studies (Aguirre-Martínez et al., 2016; 

Maranho et al., 2015; Matozzo et al., 2005; Stefano et al., 2008). Chronic AChE inhibition has the 

propensity for continuous nerve firing, alteration of postsynaptic cell function, and cholinergic toxicity 

(Nallapaneni et al., 2008; Pope et al., 2005; Song et al., 2004; Waseem et al., 2010). Therefore, early 

detection of exposure to AChE inhibitors in marine environments measured in bioindicator species could 

facilitate protection of ecosystems health. 
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AChE catalytic activity can be measured in post-mitochondrial fraction using 5,5-Dithiobis (2-nitrobenzoic 

acid) (DTNB) solution to determine the absorbance of AChE (Guilhermino et al., 1996). Although this 

method could be prone to interference, yet, it is sensitive, rapid and cheap, making it suitable as a biomarker 

of neurotoxicity in the marine ecosystems.       

  

2.4.2.7. Cyclooxygenase (COX) 

Cox is a bifunctional enzyme of the fatty acid oxygenases belonging to the myeloperoxidase superfamily, 

responsible for oxidation of arachidonic acid to prostaglandins (Chandrasekharan and Simmons, 2001; 

Sales and Jabbour, 2003). Prostaglandin biosynthesis is thought to be catalyzed by two COX-isoenzymes 

(COX-1 and COX-2); however, COX-3 has been isolated in mammals, regarded as spliced variant of COX-

1 and play a different role in eicosanoid biosynthesis (Sales and Jabbour, 2003; Sharma et al., 2019). COX-

1 is constitutively expressed and plays an active role as analgesic of inflammation by non-steroidal anti-

inflammatory drugs (NSAID), while COX-2 is inductively expressed. 

COX is a major target of anti-inflammatory drugs; its inhibition is analgesic to symptoms of inflammation 

and has therefore been used as a biomarker of inflammation in environmental monitoring (Díaz-Garduño 

et al., 2018). Various pharmaceutical products have been reported as inducer of COX in Corbicula fluminea 

(Aguirre-Martínez et al., 2018), M. edulis (Gagné et al., 2017), H. diversicolor (Maranho et al., 2015) and 

Oryza latipes (Flippin et al., 2007). As well, wastewater effluent induced COX activity in R. philippinarum 

(Díaz-Garduño et al., 2018) and Elliptio complanata (Gagné et al., 2007), suggesting that other 

contaminants apart from pharmaceuticals may alter COX activity in marine organisms. In addition, COX 

plays a vital role in reproductive physiology and pathology. Its synthesis of prostaglandins is involved in 

the control of oogenesis and spermatogenesis in aquatic invertebrates (Di Costanzo et al., 2019) and 

controls the effect of serotonin in the spawning process in bivalves (Matsutani and Nomura, 1987). COX 

catalytic activity is assayed in the laboratory following the oxidation of 2,7-dichlorofluoresceine in the 

presence of arachidonate (Fujimoto et al., 2002) and formation of fluorescein is quantified fluorometrically 

at 485/530 nm. The methodology provides a rapid and cost-effective means to assess alteration of COX 

activity in organisms exposed to environmental contaminants. 

 

2.5. Molecular biomarkers of endocrine disruption 

A wide variety of contaminants in the marine environments are endocrine disruptors because they interfere 

with the biosynthesis, transport, metabolism, or removal of natural hormones responsible for maintaining 
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homeostasis and regulation of developmental processes in marine organisms even at low concentrations 

(Goksøyr, 2006; Scholz and Mayer, 2008). The impacts of endocrine disrupting chemicals (EDCs) in fish 

physiology and reproductive health are enormous as these chemicals can alter sex determination, interfere 

with growth, lower immunity, and reduced survivability. Most research on the effects of EDCs in fish are 

focused on the steroid reproductive hormones simply because these hormones control important endpoints 

in environmental risk assessment of potential EDCs and, again, sex different in fish is very labile from 

embryonic stage as these chemicals tends to interfere and result in skewed sex ratio. However, because 

hormones are secreted by internal glands and transported as chemical messengers in blood to target cells, 

using plasma concentrations of hormones as endocrine disruption endpoints are challenging and laborious. 

Research has shown that endocrine disruption is vividly connected with molecular interactions and 

consequently expression of appropriate biomarkers can be used to predict reproductive effects of EDCs. 

Using small fish provides a huge advantage in this regard because they are easy to handle in the laboratory, 

they are cost effective, easy to breed with many young and short life-cycles (Scholz and Mayer, 2008).  

Like all vertebrates, reproduction in fish is controlled by the brain-pituitary-gonadal axis where signals 

from brain control the release of luteinizing hormone and follicle stimulating hormone from the pituitary 

gland. These gonadotropin hormones control the synthesis and release of steroid hormones from the gonads 

that are responsible for the control of sexual behavior, development of secondary sexual characteristics and 

gametes development and maturation. Therefore, biomarkers directly involved in the steroidogenesis and 

steroid biosynthesis are important molecular endpoints of endocrine disruption in fish. As a result, this PhD 

thesis studied two important steroidogenic molecular biomarkers that play key roles in fish reproduction to 

elucidate the endocrine disrupting potential of HHCB and AHTN in marine environments. 

Relative expressions of cyp19 and vtg1 are molecular biomarkers of endocrine disruption. Cyp19 gene 

codes for the cytochrome P450 enzyme aromatase, an important biomarker of endocrine disruption in 

teleost (Cheshenko et al., 2008). Aromatase is the enzyme involved in the conversion of androgen to 

estrogen which play a key role in the control of sexual differentiation, maturation and reproduction 

(Cheshenko et al., 2008). Cyp19 is regarded as a major target for endocrine disrupting chemicals because 

modulation of its expression and function may potentially disrupt the level of estrogen production 

(Cheshenko et al., 2008; Kazeto et al., 2004) and it is frequently assessed in fish because its susceptibility 

to endocrine disruptors is conserved throughout life (Le Page et al., 2011). On the other hand, vtg1 is an 

estrogen receptor element gene that regulates vitellogenin synthesis in its promoter region and it is largely 

expressed in the liver of adult fish (Tingaud-Sequeira et al., 2012; Tran et al., 2019) but studies have shown 

that this gene is active in 24 hour post fertilized embryos (Hao et al., 2013; Muth-Köhne et al., 2016). 

Therefore, alteration in vtg1 expression will reduce vitellogenin production which could lead to significant 
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reduction in oocyte quality and maturation in female teleost (Muth-Köhne et al., 2016). Also, expression 

of both genes provides understanding of mechanism of action and represent molecular initiating events in 

the adverse outcome pathways of endocrine disrupting chemicals. 
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3.1. Acute toxicity and overview of the potential risks of galaxolide 

and tonalide on structure and functioning of marine ecosystems 
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Summary 

This section addressed the short-term toxicity of environmental concentrations of the polycyclic musk 

compounds (PMCs) Galaxolide (HHCB) and tonalide (AHTN) in the marine environments. HHCB and 

AHTN have been detected in various environmental compartments and in biological tissues. Yet, there are 

limited data regarding the ecotoxicity of these compounds in the marine environmental, making difficult to 

fully assess the risk they might pose to marine biota. Therefore, the aim of this study was to assess the 

effects of these substances on Paracentrotus lividus, Artemia franciscana, Mytilus galloprovincialis, 

Sparus aurata early life stages, and growth inhibition of the marine microalgae, Phaeodactylum 

tricornutum, Tetraselmis chuii, Isochrysis galbana when exposed to a range of concentrations of 0.005 – 5 

µg/L of each compound. Then, to use the endpoints data to characterize their environmental risk to marine 

biota following EU guidelines. Therefore, endpoint related to growth inhibition of the exposed microalgae 

were measured after 72-h exposure. For the early life stages tests, endpoints related to A. franciscana 

motility and survival, P. lividus fertilization and larval development, M. galloprovincialis larval 

development and S. aurata survival were measured after exposure to HHCB and AHTN using static 

bioassays.  

The results obtained in this study showed that environmental concentrations of HHCB and AHTN have 

minimal to moderate effects on microalgae growth, and in some cases, the growth was confounded by the 

presence of the organic solvent used in the dissolution of the tested chemicals. Also, the growth inhibition 

results showed that microalgae are differentially sensitive to both compound because only P. tricornutum 

and I. galbana were found to be at risk due to the presence of these substances in the marine environments. 

For the early life stages tested, it was clear that both compounds have no effects on artemia motility and 

survival because all the tested concentrations returned over 90% motility and survival of the young Artemia. 

Furthermore, P. lividus larval development proved to be the most sensitive endpoints and both substances 

significantly reduced M. galloprovincialis and P. lividus larval development. Even though fish survival test 

is mostly used for regulatory purpose to prioritize chemicals, the impact of HHCB and AHTN on the 

survival of S. aurata was moderately sensitive making it impossible to calculate the median effective 

concentrations. Because the goal of environmental protection is to protect the most sensitive species, P. 

tricornutum and I. galbana growth inhibition tests, and P. lividus and M. galloprovincialis larval 

development were recommended for screening of these substances and other contaminants of emerging 

concern in the marine environments.  

The results of this study have been published in a peer reviewed journal as an open access publication 

entitled “The effects and risk assessment of the polycyclic musk compounds Galaxolide® and Tonalide® on 
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marine microalgae, invertebrates and fish (Ehiguese et al., 2021. Processes 9, 371. 

https://doi.org/10.3390/pr9020371). The accepted manuscript formated to the journal recommended 

reference style is presented below.  

The author’s personal contribution included conceptualization, methodology, samples analyses, data 

curation, project management, original draft preparation, writing and editing of manuscript as well as first 

and corresponding authorship of the article. 

The experimental set up were carried out at the Laboratorio 8 - INMAR, Physical Chemistry Department, 

University of Cadiz, Puerto Real Campus, Spain. 
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Introduction 

Polycyclic musk compounds (PMCs) have been included in the priority lists of the European Commission 

existing substances regulation [1]. PMCs are synthetic chemicals, produced in large quantities as a 

replacement for nitro musks, which have been banned because of their environmental persistence and 

adverse effects on humans and the environment [2]. They have wide applicability in household and personal 

care products such as detergents, shampoos, lotions, perfumes, as well as additives in cigarettes and fish 

baits [2], [3]. Due to their high water solubility, inherent lipophilicity and biological stability, coupled with 

external application and the fact that they do not undergo biotransformation, it is not surprising to find them 

as contaminants in aquatic ecosystems at concentrations ranging from ng/L to µg/L [4].  

In particular, the PMCs marketed as Galaxolide® (HHCB) and Tonalide® (AHTN) represent about 95% of 

total fragrance materials in the perfume industry [5] and are the most commonly detected PMCs in 

environmental compartments and biological tissues [6]–[12]. Fromme et al. [8] detected HHCB and AHTN 

in surface water in Berlin (Germany) at concentration values ranging from 70 – 1590 ng/L and 20 – 530 

ng/L, respectively. Similarly, Heberer [3] also reported high levels of HHCB and AHTN in surface water 

in Berlin at concentrations ranging from 20 – 12500 ng/L and 30 -1100 ng/L, respectively. Moreover, these 

substances have been detected in surface waters in almost every country in Europe [8], [12], [13]. Although 

most studies were for the freshwater environment, there are data confirming their presence in the marine 

environment [6], [7], [11], [14], and reported values over 5 µg/L depending on the proximity to a sewage 

treatment plants (STP).  Sumner et al. [11] studied the transport of PMCs from an STP effluent into coastal 

waters and reported that the concentrations of HHCB and AHTN in the open sea depends on the distance 

from STP and the dilution power towards the open sea [11]. For instance, the authors measured the 

concentration of HHCB in STP effluent ranging from 987 – 2098 ng/L, being diluted towards the sea over 

2 km, to 6 – 28 ng/L. However, this level could be higher near urban coasts where STP effluents are directly 

discharged into coastal waters, which could represent a potential threat to the survival of nearshore 

organisms, an important part of the marine ecosystems.  

Bioaccumulation of PMCs, particularly HHCB and AHTN, have also been reported in marine organisms 

including crustaceans, bivalves, fish, marine birds and mammals [9], [15]–[17] at levels of environmental 

concern. The concern over the potential effects is not only related to the environment, but also the impacts 

on food safety and, consequently, public health. Therefore, Vandermeersch et al. [18] reviewed emerging 

contaminants in seafood, acknowledging that HHCB and AHTN were the most commonly detected PMCs, 

with concentrations reaching 160 and 45 µg/g lipid weight in mollusks and fish, respectively [19]. Similarly, 

in the framework of the FP7 ECsafefood project, where 62 commercial seafood samples (mackerel, tuna, 
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salmon, seabream, cod, monkfish, crab, shrimp, octopus, perch and plaice) in the European Union were 

analysed for residues from personal care products, HHCB was detected at concentrations ranging from 2.5 

– 414.4 µg/kg dry weight, with the highest concentration measured in fish (sole) and AHTN found at 

concentrations ranging from 2.5 – 12.2 µg/kg dry weight [20]. Furthermore, HHCB and AHTN have the 

potential to elicit adverse effects in marine organisms due to the bio-concentration factors (based on lipid 

content) of 3504 and 5017 [8] as consequence of high octanol water partition coefficients (LogKow) of 5.9 

and 5.7 [21], respectively. 

Data on the acute, sub-chronic and chronic aquatic toxicity of HHCB and AHTN are available for algae, 

crustaceans, mollusks, bivalves and various fish [22]–[31]. Although the majority of the studies were 

focused on freshwater ecosystems, Breitholtz et al. [22] and Wollenberger et al. [30] investigated the acute, 

sub-lethal and lethal effects of these substances on the marine copepods, Nitocra spinipes and Acartia tonsa, 

respectively. While Wollenberger et al. [30] concluded that HHCB and AHTN inhibited larval development 

in A. tonsa at low concentration and should be considered very toxic, Breitholtz et al. [22] reported low 

adverse effects in N. spinipes.  

Several attempts have been made to assess the environmental risk of HHCB and AHTN in the aquatic 

environment. Balk and Ford [5] provided an insight by using acute and chronic toxicity data from freshwater 

and terrestrial organisms to estimate the environmental risk, but with no reference to the marine 

environment. Other environmental risk assessments (ERAs) performed so far [1], [32]–[34] revealed a 

paucity of ecotoxicity data for the marine environment needed to effectively assess the risk of these 

substances.  

The aim of this research was to assess the potential environmental risk of HHCB and AHTN in the marine 

environment by exposing organisms from different trophic levels at early life stages to environmental 

concentrations of HHCB and AHTN. Therefore, acute toxicity tests were performed using marine 

organisms such as microalgae (Phaeodactylum tricornutum, Tretraselmis chuii and Isochrysis galbana), 

crustaceans (Artemia franciscana), echinoderms (Paracentrotus lividus), bivalves (Mytilus 

galloprovincialis) and fish (Sparus aurata), and a candidate freshwater alga – Raphidocelis subcapitata. 

Secondly, the potential risks these substances might exert on the marine ecosystems were estimated 

following European Chemical Agency (ECHA) guidelines [35]. Furthermore, understanding the toxicity of 

HHCB and AHTN in lower trophic organisms will help to predict possible bottom-up and top-down effects, 

which could lead to a functional and structural disruption of the ecosystems [36]–[39]. The species used in 

the current study have been used to examine the effects of effluents from sewage treatment plants [40], 

[41], metals [42], [43], organic solvents [44] and inorganic chemicals [45], [46] in marine environments. 
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Also, these species have been endorsed by international organisations for ERA of contaminants due to their 

sensitivity[35] [47]–[50].  

 

2. Materials and Methods 

2.1. Chemical selections 

Analytical grade HHCB and AHTN were purchased from Sigma Aldrich, Spain. The physiochemical 

properties, preparations in organic solvent and determination of exposure concentrations followed details 

found in Ehiguese et al. [51]. In brief, HHCB and AHTN were dissolved in dimethyl sulfoxide (DMSO) 

(0.001% v/v) in glass vials to form a stock solution. Concentrations (0.005, 0.05, 0.5 and 5.0 μg/L) of each 

substance were prepared by diluting the stock solutions in 18.2 MΩ-cm Nanopure water. 

 

2.2. Acute Toxicity Test 

2.2.1. Microalgae growth inhibition test 

Microalgae growth inhibition tests were performed using three marine and one freshwater species, 

following the procedure reported by Garrido-Perez et al., [52]. Inocula of P. tricornutum, T. chuii and I. 

galbana (marine species) were provided by the Laboratory of Marine Culture of the University of Cádiz, 

Spain, and R. subcapitata (strain 61.81) was provided by the Culture Collection of Algae at Goettingen 

University, Germany. Seawater microalgae culture media was prepared by adding nutrients (macro- and 

micronutrients and vitamins) according to f/2 medium [53] to synthetic seawater according to the formula 

from USEPA [50]. For the freshwater species, the culture media were prepared according to the 

concentrations of COMBO Media [54] in Nanopure water. Before exposure to HHCB and AHTN, an 

inoculum from each species of microalgae was cultured in fresh media and in the same chamber of assay 

(19±1 ºC; 11000 lux; photoperiod 14/10 light/day). Inocula were maintained for three days to reach the 

exponential growth phase, in order to provide acclimatised and healthy cells for the tests.  

An aliquot of 0.25 mL of each inoculum was added to 3.75 mL of the culture media spiked with different 

concentrations of contaminants. The exposure was performed in triplicates including two controls: (1) 

culture media without contaminants (normal growing of the microalga in a fresh medium), and (2) culture 

media without contaminants but including DMSO (to test the toxic effects of the organic solvent). The 

addition time of the microalgae was as short as possible, to ensure that they had similar biomass at the initial 
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time. After 30 min inoculation, the initial biomass (B0) was measured, representing time zero (T0). The 

biomass was measured indirectly through absorbance at 680 nm (maximum chlorophyll peak in a fresh 

culture of microalga), with a TECAN 2000 micro-well plate reader. This measurement was repeated at 24, 

48 and 72 h. The endpoint observed in this test was the inhibition of biomass growth at 72 h compared to 

the control. The minimal growth acceptable for the control was 16 times higher than the initial density.  

 

2.2.2. Artemia toxicity test 

The cysts of A. franciscana are certified biological material (AF450, INVE) and were acquired from 

Acuazul, S.C. (Spain). Before starting the trial, dehydrated artemia cysts were induced to hatch. In a one-

litre Erlenmeyer flask containing 300 mL of natural seawater (35 g/L salinity), approximately 100 mg of 

cysts were resuspended and left with aeration and continuous illumination throughout the hatching time, 

which occurs within 24-36 h. Once the artemia hatched, the aeration was removed. The hatched nauplii 

were placed in clean seawater to avoid moving empty or unhatched cysts. Therefore, all nauplii used in the 

test belong to the same cohort. The test was carried out in triplicates using Petri dishes made of glass, and 

60 mm diameter. On each plate 10 nauplii were placed using a glass Pasteur pipette to avoid stress to the 

nauplii. Subsequently, seawater spiked with each contaminant was added to a total volume of 10 mL. The 

test was conducted at 20±0.4 ºC and in the dark to minimize the swimming of the nauplii and the 

consumption of energy. The test lasted for 72 h and records were taken at 24, 48 and 72 h. The Artemia 

were counted using a stereomicroscope at a magnification of 2x and 4x, identifying dead specimens 

(mortality was recorded when they showed no sign of any movement of their limbs for 30 seconds) and 

those that presented motility problems such as movements in circles, asynchronous, among others. The test 

was considered acceptable when survival of over 80% was recorded in the control group after 72 h. 

 

2.2.3. Sea urchin toxicity test 

The sea urchin P. lividus fertilization and larval development tests were performed following procedures 

described by Fernandez and Beiras [55], and Environment Canada [48]. Individuals were collected from 

the uncontaminated rocky subtidal environment off the Bay of Cádiz (Spain) at 1.5 – 2 m depth. They were 

immediately transported to the laboratory in a cooler box. Matured individuals were dissected, and eggs 

and sperm were collected using a micropipette. For the fertilization test, 10 µL of sperm were added to the 

aliquots containing 10 mL of the test concentrations arranged in sequence for 10 min; then, 1 mL of eggs 

was added to each test tube, swirled gently, and allowed to proceed for 10 min. The endpoint for fertilization 
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success was the presence of a fertilization membrane. A larval development test was performed by adding 

1 mL of fertilized eggs to beakers containing test solutions in triplicate, including the controls (seawater 

and DMSO), in dark conditions for 48 h. The test was considered valid when development in the control 

was ≥ 80% and the result expressed as percentage of normal pluteus stage, normalized to the corresponding 

seawater control. Both fertilization and larval development tests were conducted in a controlled chamber at 

a temperature of 20 ºC. 

 

2.2.4. Mussel larvae development test 

The mussels M. galloprovincialis were purchased from an aquaculture farm in north-western Spain. The 

depurated mussels were transported to the laboratory at 8 oC. Animals with matured gonads were held at 9 

ºC for two weeks to acclimate to the laboratory condition. The toxicity test was performed following the 

ASTM protocol for acute toxicity of saltwater bivalves [56]. Mussels were placed each in a beaker 

containing filtered seawater and induced to spawn by thermal stimulation at 19 ºC. Eggs and sperm were 

filtered to remove debris using 75 µm and 37 µm screens, respectively. Before fertilization, the egg and 

sperm quality and density were evaluated under a microscope. Aliquots of 10 µL of sperm were added to 

the eggs for fertilization (106/egg) and fertilization success was assessed under the microscope. Fertilized 

eggs were added to test solutions at 50 eggs/ml and incubated for 48 h at 16±0.2 ºC. The test was performed 

in triplicate including seawater and solvent controls (DMSO). Samples were fixed with 40% formalin at 

the end of the test and 100 larvae were counted under the microscope (X 40 magnification) per replicate 

distinguishing between normal developed larvae (D-shaped) and malformed larvae. Test results were 

accepted when normal developed larvae in control was ≥80%. 

 

2.2.5. Fish larva mortality test 

The effects of environmental concentrations of HHCB and AHTN on the survival of seabream (S. aurata) 

larvae was tested following OECD guidelines for fish early-life stage toxicity test [47]. Yolk-sac larvae (3 

– 5 h post hatch) of S. aurata were obtained from the laboratory of Marine Culture, Faculty of Marine and 

Environmental Sciences, University of Cádiz, Spain. Individuals (n = 70) of the yolk-sac larvae were added 

to each beaker (Pyrex©) containing 600 ml of seawater spiked with the concentrations of contaminants, and 

each treatment was run in triplicate. Seawater and solvent (DMSO) controls were also tested. The exposure 

proceeded for 96 h, physiochemical parameters were monitored using the CRISON CM35+ and 40MM+ 
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multiparameter probes (Crison-Hachs Lange S.L.U., Spain) and values recorded during the exposure were: 

Temperature (16.01±0.2 ºC), salinity (34.2±0.3‰), pH (7.7±0.2) and oxygen (>5 mg/L). The test was 

considered valid if mortality did not exceed 10% in the control group. Mortality in each treatment group 

was recorded and data were expressed as the percentage of survived larvae at each experimental condition. 

 

2.3. Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics, version 24.0. Significant differences between 

organisms exposed to the different concentrations of PMCs or to the organisms from control were checked 

using a one-way ANOVA followed by multiple comparisons of Turkey’s or Dunnett’s test. Statistically 

significant differences were set at p < 0.05. Spearman’s rank order of correlation was calculated between 

the measured effects and the exposure concentrations for pairwise comparison, setting significance levels 

at p < 0.05 and p < 0.01. In addition, SPSS Probit response model and PriProbit 1.63 softwares [57] were 

used to calculate the ICx/ECx (concentrations that cause growth inhibition or any effect, respectively, to x% 

of the population). 

The Risk Quotient (RQ) was derived from the ratio of the measured environmental concentrations (MECs) 

listed in Table 1 to the PNEC (predicted no effect concentration). PNEC is the effect concentrations (EC) 

or inhibition concentration (IC) obtained from the tests divided by an assessment factor (European 

Comission Joint Research Centre, 2003). 

 

RQ =
MEC

PNEC
 =

MEC
EC

1000    

 or 
MEC

IC/10
   (1) 

  

Where: 

 If RQ < 1 = no risk expected, and no further evaluation required 

 If RQ > 1 = potential risk and further evaluation is required 
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3. Results  

3.1. Microalgae growth inhibition tests  

Data of growth inhibition for microalgae are presented in Figure 1. There was no critical difference between 

microalgae exposed to seawater control and solvent control, although microalgal growth response was 

observed in the group treated with DMSO. In brief, it is possible to observe that toxicity of both compounds 

was minimal for the four microalgae, although AHTN seemed to be slightly more toxic. For P. tricornutum, 

growth inhibition for both compounds were observed in some concentrations. However, significant 

differences (p < 0.05) in growth in relation to the control only occurred with exposure to AHTN at 0.005 

μg/L by 16.2% (Figure 1A). On the one hand, T. chuii growth was inhibited by AHTN and the decrease in 

biomass was significantly (p < 0.01) concentration dependent (Table S1 – Supplementary Materials). On 

the other hand, the exposure to HHCB produced a stimulation (hormesis) in the growth (Figure 1B) and 

similar biphasic responses was seen in I. galbana biomass after exposure to both musk compounds (Figure 

1C). The freshwater microalgae, R. subcapitata growth decreased after exposure to HHCB and AHTN. In 

the case of AHTN, significant (p < 0.05) concentration dependent growth inhibition of R. subcapitata was 

observed (Table S1 – Supplementary Materials), and the highest inhibition occurred at 5 μg/L by 23.5%. 

In contrast, R. subcapitata growth inhibition by HHCB was more severe at 0.05 μg/L by 14.5% in relation 

to the control (Figure 1D). 

 

3.2. Artemia, sea urch, mussels and fish early life stage toxicity tests 

For the organisms tested for fertilization, larvae development, motility and mortality, the validity criteria 

for the control experiments (seawater control and solvent control – DMSO) were not exceeded. Moreover, 

there was no significant difference (p < 0.05) in responses detected in organisms exposed to seawater 

control and DMSO. 

The effects of HHCB and AHTN on survival and motility of A. franciscana are shown in Figure 2A and 

2B, respectively. Both responses showed no significant difference (p<0.05) compared to the control. For 

the A. franscana mortality test, percentage mortalities in the controls were 3.33% and 6.67% for seawater 

and DMSO, respectively. The effect of HHCB on the survival of A. franciscana was very minimal with the 

highest mortality of 10% recorded at a 0.5 µg/L HHCB. The effect of AHTN on A. franciscana mortality 

was also very low, with only 3.33% mortality at 0.05 and 0.5 µg/L. Other concentrations of AHTN tested 

had no effect on A. franciscana survival. Artemia motility test was not sensitive to either compound (Figure 

2B). 
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NA = Data not available. 

Table 1: Measured Environmental Concentrations (MEC) of Galaxolide (HHCB) and Tonalide 

(AHTN) in seawater from different locations. Measured values are in ng/L. Maximum values (bold) 

were used in calculating risk quotient (RQ). 

Country/Location HHCB  AHTN  Reference 

Germany (North Sea) 0.09 - 4.8 0.08 - 2.6 [6] 

Germany (Elbe Estuary) 95 - 136 65 - 200 [6] 

United Kingdom (Tamar Estuarine - 

Plym Sound) 6.00 - 30 3.00 - 15 [11] 

Spain (Bay of Cadiz) 230±0.1 NA [14] 

Singapore (Coastal water) 1.66 - 21.8 0.244 - 1.85 [58] 
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Figure 1, A - D: Microalgae exposed to galaxolide and tonalide for growth inhibition tests after 72 hours. 

Biomass (%) compared to the control of (A) P. tricornotum, (B) T. chuii, (C) I. galbana and (D) R. 

subcapitata (negative values corresponding to % growth inhibition). Asterisks (*) indicate significant 

difference (p<0.05) in relation to control. 

 

The effects of HHCB and AHTN on P. lividus fertilization and larval development tests are presented in 

Figure 2C and 2D, respectively. The percentage of sea urchin that were able to fertilize in the controls were 

89.50% and 90.00% for seawater and DMSO, respectively. Percentage fertilization of sea urchin tested 

with 0.005 µg/L, 0.05 µg/L, 0.5 µg/L and 5 µg/L HHCB were 86.33%, 82.33%, 81.00% and 82.33%, 

respectively. Under exposure to AHTN, sea urchin fertilization success recorded at 0.005 µg/L, 0.05 µg/L, 

0.5 µg/L and 5 µg/L were 89.00%, 83.33%, 86.33% and 86.33%, respectively. Although the effect is 

minimal, P. lividus fertilization failure induced by both substances was more pronounced for HHCB with 

significant effects at 0.05 – 5 µg/L, while a significant difference (p < 0.05) was only observed at 0.05 µg/L 

AHTN compared to control (Figure 2C). The results for the sea urchin larval development tested with 
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HHCB and AHTN are presented in Figure 2D. The percentages of larval development in the seawater and 

solvent controls were 83.50% and 81.50%, respectively. The number of oocytes that were able to develop 

to pluteus stage was significantly (p < 0.01) concentration dependent (Table S2 – Supplementary Materials) 

and a significant (p < 0.05) decrease in larvae development was recorded at 5 µg/L HHCB compared to the 

control (Figure 2D). The percentage of larval that were able to develop from morula stage to normal pluteus 

stage for 0.005 µg/L, 0.05 µg/L, 0.5 µg/L and 5 µg/L HHCB were 85.00%, 85.00%, 68.00% and 44.33%, 

respectively, while similar concentrations of AHTN reduced larvae development by 63.00%, 75.33%, 

54.67% and 62.33%, respectively.  

The results for the larval development toxicity test for M. galloprovincialis exposed to HHCB and AHTN 

are presented in Figure 2E. The number of fertilized eggs that developed after 48 h to D-veliger stage in the 

control was 98%. However, the embryotoxicity of HHCB to mussels was significantly (p < 0.01) 

concentration dependent (Table S2 – Supplementary Materials). From 0.05 – 5 µg/L HHCB, the percentage 

of abnormal larvae development was significantly (p<0.05) different from the control (Figure 2E) and the 

percentage effect increased to 19.88% in the highest concentration tested (5 µg/L). Similarly, significant 

toxicity of AHTN to embryos of M. galloprovincialis was observed in 0.5 µg/L and 5.0 µg/L with 

percentages of abnormal larvae of 8.36% and 11.63%, respectively (Figure 2E).  

The results for the larval development toxicity test for M. galloprovincialis exposed to HHCB and AHTN 

are presented in Figure 2E. The number of fertilized eggs that developed after 48 h to D-veliger stage in the 

control was 98%. However, the embryotoxicity of HHCB to mussels was significantly (p < 0.01) 

concentration dependent (Table S2 – Supplementary Materials). From 0.05 – 5 µg/L HHCB, the percentage 

of abnormal larvae development was significantly (p<0.05) different from the control (Figure 2E) and the 

percentage effect increased to 19.88% in the highest concentration tested (5 µg/L). Similarly, significant 

toxicity of AHTN to embryos of M. galloprovincialis was observed in 0.5 µg/L and 5.0 µg/L with 

percentages of abnormal larvae of 8.36% and 11.63%, respectively (Figure 2E).  
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Figure 2: A. franciscana 72 h mortality and motility, P. lividus fertilization and 48 h larval development, 

M. galloprovincialis 48 h larval development and S. aurata 96 h larval mortality tests exposed to galaxolide 

and tonalide. Asterisks (*) indicate significant difference (p<0.05) in relation to control. 
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The results of the effect of HHCB and AHTN on the survival of yolk-sac larvae of S. aurata larval after 96 

h exposure was significantly (p < 0.01) concentration dependent (Table S2 – Supplementary Materials) and 

the measured effect is presented in Figure 2F. After 96 h, the percentage mortality of yolk-sac larvae of S. 

aurata in seawater and DMSO controls was 5.33% each. Percentages of mortality in fish exposed to 0.005 

µg/L, 0.05 µg/L, 0.5 µg/L and 5 µg/L of HHCB were 8.67%, 12.00%, 10.67% and 13.33%, respectively. 

On the other hand, the percentage mortality of fish tested with the same range of concentrations of AHTN 

were 10.00%, 7.33%, 12.67% and 13.33%, respectively.  

 

3.3. Risk Quotient (RQ) 

Quantitative risk estimation of chemicals in the environment is achieved using monitoring data of MEC 

and PNEC, giving a risk quotient necessary for risk characterisation.  A literature survey of MEC for both 

polycyclic musk compounds were undertaken, and the values are presented in Table 1. Due to minimal 

effects detected in this study for all the species of microalgae, Artemia, sea urchin, mussels and fish, it was 

not possible to calculate the EC50 values and their respective confidence intervals, except for P. lividus 

larvae development tested with HHCB, producing an EC50 value and 95% confidence interval of 4.063 

(0.963 – 120.731) µg/L. The IC10/EC10 calculated for P. tricornutum, I. galbana, P. lividus and M. 

galloprovincialis, including the risk quotients using the MEC/PNEC ratio are presented in Table 2. The 

results of the microalgae growth inhibition and larval development tests showed that HHCB and AHTN 

posed high risk to the growth of P. tricornutum and M. galloprovincialis larval development at 

environmental relevant concentrations. Also, environmental concentrations of HHCB and AHTN pose 

ecological risk to P. lividus larval development and I. galbana growth, respectively (Table 2).  

 

4. Discussion  

The aim of this study was to evaluate the impacts of environmentally relevant concentrations of HHCB and 

AHTN on marine microalgae, Artemia, sea urchin, and mussels after short-term exposure and, where 

possible, characterise the risk following the ECHA guideline for ERA [35] Several in vitro and in vivo 

toxicity tests have been performed with these compounds using freshwater species [5], [24], [25], [28], 

[59], [60] and the only tests with marine species used high concentrations [22], [30], making it difficult to 

compare such results with actual environmental impacts. Furthermore, for evaluation of toxicity of 
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substances, it is imperative to use a varied battery of tests because organisms are not equally susceptible to 

the same toxic substance. 

Due to the instability of these substances under laboratory exposure, it is difficult to estimate the exact 

concentration causing toxic effects. Although we could not measure the concentrations of the exposure 

water and bioaccumulation because of practical constraints, studies have shown that after 3 h of exposure, 

over 30% was lost and this reduced to ca. 80% after 96 h [22], [30], [51], [61]. Again, there are currently 

no techniques to measure the concentrations of these substances in-situ; therefore, there is a probability that 

reported environmental concentrations are a fraction of the actual concentration in the marine environments 

eliciting biological effects, given that some amount could be lost before or during sample analysis in the 

laboratory. Consequently, risk estimation was based on maximum concentration reported.  

The effects of HHCB and AHTN on P. tricornutum, T. chuii, I. galbana and R. subcapitata showed that 

both compounds have limited effects (significantly similar to the control treatment) on microalgae growth 

(Figure 1). Although the statistical analysis indicated no differences between control with and without 

DMSO, the results for microalgae should be considered with caution, because in some situations inhibition 

or enrichment due to DMSO was observed. Therefore, we cannot reject the possibility that the effects 

observed in the presence of HHCB or AHTN was partially caused by DMSO.  
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Table 2: EC50 and EC10 (µg/L) and their respective confidence interval (CI), and estimated risk quotients of Galaxolide (HHCB) and Tonalide 

(AHTN) as the MEC (maximum value per location)/PNEC ratio. 

  Microalgae growth Embryo-Larval development 

  P. tricornutum I. galbana P. lividus M. galloprovincialis 

HHCB EC50 NC NC 4.063 (0.963 – 120.731 NC 

 EC10 0.127(NC) 5.22(NC) 0.004 (0.000 – 0.025) 0.188(0.074 – 0.390) 

 MEC/PNEC 0.378 – 18.110 0.009 – 0.440 1200 - 57500 25.532 – 1223.404 

 Risk Yes No Yes Yes 

      

ANTH EC50 NC NC NC NC 

 EC10 0.002(0.000 – 0.014) 0.328(NC)  0.006 (NC) 

 MEC/PNEC 24 - 1150 0.146 – 7.0122 NC 800 – 38333.330 

 Risk Yes Yes NC Yes 

NC = Not calculated.  
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Microalgae have been used in water quality assessments as in-situ bio-monitors because they are primary 

producers at the base of the ecological trophic arrangement and the basic supplier of oxygen in aquatic 

ecosystems [62]. Microalgae toxicity tests are useful in ERA and have gained international recognition leading 

to development of test guidelines for reliable and relevant toxicity data [63]. The potential of HHCB and 

AHTN to inhibit the growth of microalgae in the aquatic ecosystem have been scarcely reported. Previous 

studies revealed that significant acute toxicity of microalgae occurred at concentration greater than 100 µg/L 

or 500 µg/L depending on the species [5], [64] but our data suggest that even at low concentrations microalgae 

growth might be inhibited.   

The microalgae growth inhibition tests were mildly sensitive to HHCB and AHTN; IC10 values for most of the 

microalgae could not be calculated, except for P. tricornutum and I. galbana exposed to HHCB with IC10 

values of 0.127 and 5.220 µg/L, respectively (Table 2). In contrast, previous studies have reported higher EC50 

values of 0.050 mg/L for Navicula spp. and 0.336 mg/L for Scendesmus quadricauda exposed to HHCB [64]. 

This is because microalgae are not equally sensitive to contaminants. For example, in all the microalgae tested, 

we found that differential sensitivity was exhibited, the order of sensitivity to HHCB was P. tricornutum > I. 

galbana, and to AHTN was T. chuii > P. tricornutum > I. galbana. Similarly, differential sensitivity of two 

microalgae to HHCB was recently reported, whilst the microalgae, Navicula spp. are more sensitive to HHCB 

than S. quadricauda [64]. The basis for the differential sensitivity of microalgae to these contaminants is 

beyond the scope of the current investigation. Furthermore, HHCB and AHTN are lipophilic and known to 

bioaccumulate in marine organisms [5], [15], [64]. Remarkably, the effects of these compounds on microalgae 

growth has been adduced to bioaccumulation, altering antioxidant enzymes and biochemical processes, 

resulting to decrease microalgae growth [64].   

Artemia was not sensitive to either substance since the endpoints measured were not critically different from 

the control (Figure 2: A & B). This is because Artemia is known to be fairly resistant to toxic substances in 

comparison to other invertebrates and they respond differently to different environmental contaminants [65], 

[66]. 

HHCB significantly reduced the fertilization success of P. lividus as the concentrations increased. Meanwhile, 

AHTN had no significant effects on sea urchin fertilization success (Figure 2C). Sea urchin fertilization 

success depends on sperm fitness, motility potentiated by the axonemal engine in the flagellum, morphology 

and chemotaxic navigation [67]. For organoleptic substances, such as HHCB and AHTN, the latter might be 

the most compelling factor inducing reduction in sea urchin fertilization success since the exposure procedure 

involved prior treatment of sperm with the contaminants before the introduction of eggs. Between the two 

contaminants tested, HHCB had more significant effects on P. lividus fertilization by 19% reduction at 0.5 

µg/L, and we observed that only 0.05 µg/L AHTN significantly reduced sea urchin fertilization by 16.67% 

(Figure 2C). Importantly, the effect exerted by both contaminants on sea urchin fertilization success was below 

20%, presenting less toxic effects compared to other contaminants of emerging concern. For example, 500 
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ng/L propanol, 500 ng/L 17α-ethinylestradiol and 5000 ng/L gemfibrozil reduced sea urchin fertilization 

success by 24.1%, 36.9% and 26.9%, respectively [68]. Similarly, other contaminants of emerging concern 

belonging to pharmaceutical and personal care products have been reported to significantly affect sea urchin 

fertilization success at concentrations detected in the environment [69], [70]. 

Ecotoxicity studies with early life stages of aquatic organisms have been recommended as a faster and more 

cost-effective means of examining chemicals and environmental samples, because newly hatched larvae are 

sensitive to exogenous substances as the embryos lose their protective membranes and are fully exposed to 

potential xenobiotics [71]. P. lividus and M. galloprovincialis are well recognized in toxicity bioassays and 

are applied globally for the evaluation of toxicity of marine contaminants by the exposure of gametes to 

aqueous phases, such as surface waters and pore waters [69], [72] and elutriates [73]. Critical effects were 

detected in P. lividus and M. galloprovincialis larvae exposed to HHCB and AHTN compared to the control 

(Figure 2D and E). The effects of HHCB on sea urchin larvae development was significantly (p < 0.01) 

concentration dependent (Table S2 – Supplementary Materials) and significantly different (p < 0.05) compared 

to the control, with only 44.33% of larvae able to develop to pluteus stage after 48 h exposure to 5 µg/L HHCB. 

The sensitivity of sea urchins to environmental chemicals is widely reported and significant evidence showed 

that they represent an important biomonitoring tool for ecosystems health. Similarly, HHCB and AHTN 

significantly (p < 0.05) affected the development of M. galloprovincialis larvae when compared to the control 

(Figure 2E). However, when considered in relation to the number of oocytes exposed to each contaminant, the 

effects were minimal with the highest percentage of deformed and undeveloped oocytes being 19.88% and 

17.60% for HHCB and AHTN, respectively. Although P. lividus and M. galloprovincialis larvae development 

tests were similar, the effects recorded were more pronounced in sea urchin larvae than mussels.  

Significant (p < 0.01) concentration dependent responses (Table S2 – Supplementary Materials) were observed 

in S. aurata mortality tests with HHCB and AHTN (Table S2 – Supplementary Materials). Notwithstanding, 

the percentage mortality of S. aurata exposed to both fragrances not up to 20%, the highest effect being 13% 

for HHCB and AHTN at the highest concentration of 5 µg/L. Although this species and endpoints proved to 

be sensitive to other contaminants at low concentrations [40], [68], the impacts of environmental 

concentrations of the tested fragrances in this study were low. For chemical prioritization, fish early-life stage 

toxicity test is endorsed [47] because it’s a reliable and reproducible risk assessment tool that requires shorter 

exposure time and lower cost to perform. However, the sensitivity of fish embryotoxicity to some emerging 

contaminants remain doubtful as previous studies reported low sensitivity [68], [74].   

Risk characterization of contaminants is quantified using MEC/PNEC ratio and for aquatic environments 

(freshwater and marine), PNEC is estimated by dividing the ECx value by an assessment factor of 1000 for 

acute toxicity test and 10 for chronic toxicity test [35]. Although short term toxicity tests were performed in 

this study, an assessment factor of 1000 was used only for larval development test while an assessment factor 

of 10 was used for the microalgae because the exponential phase of microalgae growth was regarded as a full 



86 
 

life stage and therefore considered as a chronic test. Analyzing the RQs, HHCB represented potential high risk 

for the marine environment based on the EC50 estimated for P. lividus larvae development. Also, HHCB and 

AHTN posed high ecological risk to M. galloprovincialis larval development at environmental relevant 

concentrations. The larval development of P. lividus and M. galloprovincialis seem to be very sensitive to 

chemical exposure because previous studies of environmental contaminants in coastal waters have reported 

significant toxicity of industrial and domestic effluent [40], pharmaceutically active products [68], [75], UV-

filters [70] and organic pollutants [46], [72] to sea urchin and mussels larvae development. The quantitative 

risk estimate of HHCB obtained in this study for P. lividus using EC10 value (1200 - 57500) was higher than 

that of propanol (0.02 – 17.29), previously reported by Capolupo et al. [68]. We also found that both 

compounds posed high risk to P. tricornutum and I. galbana based on IC10 values recorded (Table 2). 

Microalgae have broadly been used in evaluation of ERA for other emerging contaminants. For example, I. 

galbana have been reported to be significantly affected by UV filters and pharmaceutical active ingredients 

[70], [75]. Fragrances have been demonstrated to pose high risk to microalgae in the marine environment, of 

which HHCB and AHTN were more toxic than musk xylene and musk ketone [7]. The adversity of measured 

environmental concentrations of HHCB and AHTN to P. tricornutum and I. galbana deserve attention because 

microalgae occupy the lowest trophic level of the marine food chain and, therefore, serve as food for higher 

trophic organisms. Again, HHCB and AHTN impacts on microalgae growth represent a potential bottom-up 

effect that might result in structural and functional disruption of the ecosystems [37]. Therefore, more studies 

are required to fully understand the environmental effects of these contaminants in the marine environments.   

 

5. Conclusion 

This study evaluated the potential risk of comparable measured environmental concentrations of HHCB and 

AHTN to microalgae and early life stages of marine organisms, including A. franciscana, P. lividus, M. 

galloprovincialis and S. aurata, adding to the dearth of information regarding the adverse effects of HHCB 

and AHTN in the marine environment. For all the species of microalgae, Artemia, sea urchin, mussels and fish 

tested, differential sensitivity was observed. Artemia motility and survival were the least sensitive endpoints 

affected by both substances and P. lividus larvae development was the most sensitive species/endpoint. From 

our data, the environmental risk of HHCB and AHTN was characterized as high for P. tricornutum, I. galbana 

growth, P. lividus and M. galloprovincialis larvae development. Therefore, more studies are required to 

understand the sub-lethal effects of these compounds in the marine environment.  
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3.2. Spatial avoidance as a complementary tool for environmental risk 

assessment of galaxolide and tonalide in marine environment 
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Summary 

Ecotoxicological data obtained from laboratory studies rely on endpoints from bioassays using forced exposure 

systems. In this sense, the exposed organisms are constantly in contact with the tested compounds without any 

option of escape to safer environments. This is not the case for motile organisms in the wild, because under a 

heterogenous point source pollution where contaminant gradient is established, organisms will avoid more 

toxic environments to a safer area. In this section, the spatial avoidance of the shrimp Palaemon varians was 

investigated using a multi-compartmented non-forced exposure system (NFS) where the shrimps were exposed 

to a contaminant gradient of either HHCB or AHTN. The multi-compartmented NFS consist of six 

compartments made of plastic bottles which was constructed by connecting the cut-out bases and mouths using 

glue, to obtain a six-compartmented system. To allow introduction of the test chemicals and organisms, an 

opening was carefully cut-out at the top of each compartment. Validation tests were performed using seawater 

and seawater spiked with the organic solvent (0.001%v/v Dimethyl sulfoxide – DMSO) by adding 1 L of 

seawater and seawater spiked with DMSO, and 3 shrimps to each compartment. Before the start of the 

avoidance response assay with HHCB or AHTN, plasticine blocker was placed at the junction of each 

compartment and 1 L of seawater spiked with different concentrations (0.00, 0.005, 0.05, 0.5, 5 and 50 µg/L) 

of each compound was added to each compartment. The assay was performed in quadruplicate with 18 shrimps 

per system. The positions of the shrimps per system were recorded every 20 mins for 3-h in the dark. A 24-h 

acute toxicity in a forced exposure system (FS) was performed with shrimps from the same stock using 

laboratory beakers. The percentage avoidance response data from NFS and percentage mortality data from the 

24-h acute toxicity test were integrated to compute the percentage of population immediate decline (PID). 

The results from the 24-h acute toxicity test in a FS showed that HHCB and ANTN were not very toxic to the 

shrimps and no concentration-dependent toxicity was observed. HHCB and AHTN elicited significant 

concentration-dependent spatial avoidance in the shrimps. Furthermore, the percentage PID calculated from 

the mortality and avoidance responses showed that in a scenario of environmentally relevant heterogenous 

contamination, population decline at local scale will be primarily driven by the avoidance behaviour. 

Therefore, environmental risk assessment of contaminants should integrate data from NFS and FS to avoid 

overestimation or underestimation of the risks these substances might pose to marine environments. 

This study has been published in a peer-reviewed journal with the title “Avoidance behaviour of the shrimp 

Palaemon varians regarding a contaminant gradient of galaxolide and tonalide in seawater” (Ehiguese, et al., 

2019. Chemosphere 232, 113–120. doi:10.1016/j.chemosphere.2019.05.196). The accepted manuscript 

formated to the journal recommended reference style is presented below. 

The author’s personal contribution included conceptualization, methodology, samples analyses, data curation, 

project management, original draft preparation, writing and editing of manuscript as well as first and 

corresponding authorship of the article. 
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The NFS and FS experiments were performed at the Institute of Marine Research of Andalusia, Puerto Real, 

and chemical analysis of the exposure media was performed at the Physical Chemistry Department, University 

of Cadiz, Puerto Real Campus, Spain. 
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1. Introduction 

Maintenance and restoration of ecological integrity is the primary objective of environmental risk assessment 

(Ramesh and Kaplana, 2015). Consequently, various regulatory agencies have established guidelines to protect 

water bodies within their jurisdiction for the sustainable use of aquatic resources (EC, 2000; EPA, 2002) and, 

as a result, levels of individual contaminants, water quality parameters, or description of changes in the water 

bodies’ conditions have been established in order to protect them. The United States Environmental Protection 

Agency’s (USEEPA) aquatic life criteria is derived from the criterion maximum concentration, with the aim 

of protecting aquatic ecosystems from severe acute effects, and from the criterion continuous concentration, 

that has been set to protect against long term effects on survival, growth, reproduction etc. (Beaman et al., 

2008). Data from ecotoxicity studies, through which the toxic effects of substances are assessed, are 

extrapolated from laboratory toxicity tests involving forced exposures, which implies a continuous exposure 

of the organisms to a specific concentration of chemicals or environmental samples (e.g. water, sediment, soil). 

The forced exposure approach makes it possible to identify the potential toxicity of contaminants, determine 

the concentration-response relationship and provide information about their mechanisms of action (Newman 

and Uger, 2002; Martinez-Haro et al., 2015). However, applying the forced exposure approach makes it 

difficult to check how contaminants affect the spatial distribution of organisms and their habitat selection 

processes for the cases in which they are able to flee from the contaminated areas, as it may occur (for mobile 

organisms and heterogeneous contamination scenarios) in natural environments (Ǻtland and Barlaup, 1995; 

Hansen et al., 1999; Moreira-Santos et al., 2008).  

Spatial avoidance involves the emigration of organisms from a noxious environmental condition to a safer 

area, thus indicating the aversive character of the area (Jutfelt et al., 2017; Tierney, 2016). Experimentation 

concerning active avoidance was first performed by Shelford and Allee (1913), but spatial avoidance to assess 

organisms’ behavioural response to contaminants was later performed with fish in tubes containing 

contaminants at one end and clean water at the other, thus allowing the fish to detect differences in 

contamination levels and to move to a less contaminated environment (Jones, 1947). Different exposure 

systems including two compartments, steep gradients, laminar flow chambers, avoidance/preference 

chambers, fluvarium systems and dilution gradients involving several compartments have been developed and 

employed to assess contamination-driven avoidance (Folmar, 1976; Gunn and Noakes, 1986; Hartwell et al., 

1989; Moreira-Santos et al., 2008; Richardson et al., 2001; Smith and Bailey, 1990; see also review by Jutleft 

et al., 2017). The use of the free-choice, non-forced, multi-compartmented exposure system developed by 

Lopes et al. (2004), in which contamination gradients or patches are simulated, have also proven to be a 

suitable approach to assess how contaminants can interfere in the spatial distribution of organisms (see review 

by Araújo et al., 2016b; Araújo and Blasco, 2019). Laboratory exposure of fish, amphibians, decapods, 

molluscs, dipterans, copepods and annelids to fungicides, contaminated effluents, metals and organic 

compounds to determine avoidance responses at sublethal concentrations in a free-choice multi-

compartmented exposure system have been reported, and have indicated that contaminants potentially can, to 
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some extent, drive the spatial distribution and habitat selection processes by organisms (Araújo et al., 2016a, 

2014b, 2014c, 2014a; Dornfeld et al., 2009; Moreira-Santos et al., 2008; Rosa et al., 2012; Silva et al., 2017). 

This non-forced, multi-compartmented approach simulates a realistic heterogeneous contamination scenario 

where organisms are not restricted to continuous exposure as they are in forced exposure, thus providing a 

complementary approach to environmental risk assessment based not exclusively on toxicity, but also on the 

displacement patterns of organisms.  

The polycyclic musk compounds (PMCs) – galaxolide (HHCB) and tonalide (AHTN) – are contaminants of 

emerging concern (CEC). They are applied in many personal care products including detergents, lotions, 

deodorants and shampoos, to mention just a few (Reiner and Kannan, 2011). In Europe, they constitute about 

95% of the total fragrance materials in the perfumery industry (OSPAR, 2004). The use of these substances 

has reportedly increased in recent years and Southern European countries are the highest consumers (Cunha 

et al., 2018; European Commission, 2008a, 2008b). PMCs are lipophilic and possess high octanol/water 

partition coefficient (KOW) values ranging from 5.4 – 6.3 (Cunha et al., 2018), so they are not readily soluble 

in water. The presence of these substances in environmental samples has been reported and effluents of 

wastewater treatment plants have been identified as the primary route of entrance into aquatic ecosystems 

(Petrie et al., 2014). The concentrations recorded are highest at wastewater treatment effluent pools (Chase et 

al., 2012; Díaz-Garduño et al., 2017) and decrease along the water course (Sumner et al., 2010). Although 

most environmental measurements with high concentrations (6 – 13330 ng/l) were from effluents and rivers 

(Chase et al., 2012; Dsikowitzky et al., 2002; Fromme et al., 2001; Lee et al., 2010; Reiner and Kannan, 2011; 

Zhang et al., 2008), up to 2098 ng/l of HHCB and 159 ng/l of  AHTN have been measured, respectively, in 

coastal waters (Sumner et al., 2010).  

Contamination by PMCs can be considered ubiquitous as they have been detected in many environments such 

as: air (Peck and Hornbuckle, 2006), sediments (Fromme et al., 2001; Heberer, 2002; Zhang et al., 2008), 

particulate suspended matters (Gatermann et al., 2002) and human adipose tissue (Kannan et al., 2005; Moon 

et al., 2012b). Hence, bioaccumulation of PMCs in a wide diversity of freshwater and marine organisms 

including cetaceans, sharks, fish and shellfish in Europe, Japan, Korea, China and the USA has been 

extensively studied (Gatermann et al., 2002; Lee et al., 2014; Moon et al., 2012a; Nakata, 2005; Nakata et al., 

2007; Picot Groz et al., 2014; Rüdel et al., 2006; Zhang et al., 2013). Assessment of the potential toxicity of 

HHCB and AHTN based on lethality from forced exposures, their chemical properties and ability to affect the 

human pheromone-endocrine system suggest they may alter the structure of a community and impoverish 

certain ecosystems (Breitholtz et al., 2003; Kallenborn et al., 1991; Rimkus et al., 1997; Wollenberger et al., 

2003). However, despite the risks of contamination that PMCs might pose to organisms, ecotoxicological 

assessments of PMCs in freshwater (Balk and Ford, 1999) and marine environments (Ehiguese et al, 

unpublished) are still only  incipient. Efforts to evaluate the potential of HHCB and AHTN to trigger avoidance 

in aquatic organisms has been even less explored. Therefore, the present study first addressed the potential of 

HHCB and AHTN to elicit avoidance response in the estuarine shrimp Palaemon varians causing emigration 
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to areas that are less contaminated. P varians is a euryhaline estuarine shrimp found mainly in shallow 

saltmarsh pools from west Baltic and British Isles southwards to the west Mediterranean. It is 

ecotoxicologically important for the trophic web as it can accumulate contaminants and acts as vector for the 

upper trophic levels (Rainbow et al., 2006). Previous studies in our laboratory have indicated that the presence 

of chemical contaminants may trigger their evasion to favourable areas.  To this end, a free-choice, non-forced, 

multi-compartmented exposure system was used (Araújo et al., 2014c) because it allows a contamination 

gradient of compounds to be simulated. The second aim was to predict the population immediate decline (PID) 

(Rosa et al., 2012) of P. varians when exposed to HHCB and AHTN by integrating avoidance and lethality in 

short-term experiments to evaluate whether the shrimps were able to detect toxicity and avoid potentially toxic 

concentrations before suffering acute effects.  

  

2. MATERIALS AND METHODS 

2.1. Test organisms 

Shrimps (1.0 to 1.5 cm length) were obtained from the Salina El Pópulo aquaculture farm in San Fernando 

(Southwest Spain) and immediately transported to the ecotoxicology laboratory of the Institute of Marine 

Sciences of Andalusia (ICMAN-CSIC), in Puerto Real (Spain). They were acclimated for 2 weeks in two 250 

L aquaria supplied with filtered (0.5 µm) seawater (deep-well seawater: pH of 7.5 and salinity of 35) in a flow-

through system with continuous aeration. The organisms were monitored regularly, and dead shrimps were 

removed immediately. No food was provided during laboratory acclimation. Laboratory conditions were 

20±0.5 ºC temperature and a 12:12 h light/dark photoperiod. 

 

2.2. Chemicals 

Analytical grade HHCB and AHTN (85.0% and 97.0% GC, respectively) were purchased from Sigma Aldrich 

Spain. Due to their low solubility in water, stock solutions were prepared using dimethyl sulfoxide (DMSO 

0.001%v/v). The stock solutions were diluted using nanopure water to reach the desired concentrations (0.005, 

0.05, 0.5, 5 and 50 µg/L). The filtered seawater used in the culture was spiked with each concentration for the 

tests.  
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2.3. Multi-compartmented exposure system    

A non-forced, multi-compartmented static assay system (Figure 1) was used in the avoidance experiments 

following the design used by Araújo et al. (2014c). In brief, six compartments made of plastic bottles were 

constructed (the dimensions are stated below), which were connected at the cut-out bases and mouths of the 

containers using glue (Sikaflex® construction sealant, Switzerland) to obtain a six-compartmented system. An 

opening was carefully cut out at the top of each compartment to facilitate the introduction of organisms and 

contaminant.  

 

 

Figure 1: Non-forced multi-compartmented static exposure system used in the avoidance tests (Islam et al., 

2019). 

 

2.4. Avoidance Tests 

To ascertain the non-interference of external factors in the avoidance tests and to verify random distribution 

of shrimps (no preference for any compartment), validation (control) tests with no contaminant were 

performed using seawater and seawater spiked with DMSO (0.001% v/v). The compartments were each filled 

with 1 L of seawater and then the shrimps (n = 3) were added to each compartment (18 shrimps in total per 

system) and the distributions of the organisms were recorded at each 20 min for 3 h. The tests were performed 

in quadruplicate. 

For each avoidance test with HHCB and AHTN, plasticine plugs were positioned at the junction of each 

compartment before filling them with seawater spiked with HHCB and AHTN. The gradients of contaminants 

were in the order of 0 (seawater), 0.005, 0.05, 0.5, 5 and 50 µg/L. Three shrimps were added to each 

compartment and then the plasticine plugs were removed. The tests were conducted in quadruplicate for each 

substance with 18 organisms per system (three organisms × six concentrations). The distribution of the 

organisms in each compartment was recorded at each 20 min for 3 h. The tests were conducted in the dark at 
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20 ºC. At the end of each test, samples of the HHCB and AHTN in each compartment were collected using 

clean dark amber bottles and stored at -20 ºC for analyses.  

 

2.5. Acute toxicity tests using forced exposure. 

Acute toxicity tests (24 h exposure) were performed with HHCB and AHTN. The concentrations used for each 

contaminant were 0.005, 0.05, 0.5, 5 and 50 µg/L including seawater and solvent (DMSO) controls. The tests 

were carried out in quadruplicate. Each aquarium used in the tests was filled with 1 L of seawater spiked with 

the contaminants. Three shrimps were added per aquarium totalling 12 shrimps per treatment. Mortality was 

recorded at 1, 3, 7 and 24 h. No aeration was provided. The temperature was 20±0.1 ºC. Initial and final 

dissolved oxygen levels were 5.9±0.1 and 5.2±0.2 mg/L, respectively. 

 

2.6. Sample collection and analyses 

Samples taken at the beginning and end of all the tests were analysed for HHCB and AHTN concentrations 

using stir bar sorptive extraction (SBSE) following a modification of the methodology described by Pintado-

Herrera et al. (2014). Prior to use, all polydimethylsiloxane bars (PDMS, 10 mm x 0.5 mm) were 

preconditioned by soaking them in a mixture of acetonitrile/methanol (80:20, v/v). Subsequently, these bars 

were placed in amber glass flasks containing the aqueous samples (350 ml). Internal standard 

(triphenylphosphate d15) was added to determine possible fluctuations during the extraction and analysis 

procedures and stirred at 900 rpm during 4 h at room temperature. After extraction, the bars were desorbed by 

liquid desorption (LD); the bars were sonicated for 30 min in vials containing 100 µL of ethyl acetate. Then, 

gas chromatography (SCION 456-GC, Bruker) and mass spectrometry (SCION TQ from Bruker with CP 8400 

Autosampler) were used to identify and quantify the compounds. Capillary gas chromatography analysis was 

carried out on a HP-5MS column (30 m×0.25 mm i.d.×0.25 μm film thickness of 5 % phenyl, 95 % 

polydimethylsiloxane), keeping the helium carrier gas flow at 1 mL/min. The mass detector acquired in 

multiple-reaction monitoring (MRM) mode. Details of the detection methodology can be found in Pintado-

Herrera et al. (2016). Calibration curves were constructed for each compound in the range of 0.005–50 μg/L. 

Method limits of quantification were calculated using a signal-to-noise ratio 10 to 1, respectively, for water 

samples that was lower than 0.04 ng/L. The recovery rate of the method was higher than 85% for both analytes. 

The mean concentration and standard deviation of the internal standard (triphenylphosphate d15) was 

46.7±10.6 μg/L. Concentrations of the contaminants measured in all the tests are presented in Table S1 – 

Supplementary Material. 
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2.7. Statistical analysis 

The percentage of organisms recorded in each compartment at different observation times were arcsine 

transformed. The random distribution of organisms in the seawater and solvent controls, and avoidance tests 

with the contaminants were evaluated using mixed designed (time as a repeated measure, within factor, and 

compartment as between factor) analysis of variance (ANOVA). Mauchly’s test was used to check the 

sphericity. Where sphericity was violated (the variances of the differences are not equal: p < 0.05), 

Greenhouse-Geisser correction was applied (see Tables S2a, S3a, S4a and S5a – Supplementary Material). 

Statistical (p < 0.05) differences between factors were checked using the Bonferronni test. The avoidance to 

HHCB and AHTN was determined by calculating the difference between the number of organisms expected 

(NE) and observed (NO) as described in Moreira-Santos et al. (2008). NE represents the number of organisms 

initially introduced into each compartment. As three shrimps were inserted into each compartment at the 

beginning of the test, for the compartment with the highest concentration NE was 3. As the next compartment 

had initially 3 organisms plus 3 organisms introduced in the adjacent compartment with the highest 

concentration, NE was 6. For the sixth compartment, which contained only control seawater with no 

contaminant, NE was 18. NO was calculated considering the number of organisms recorded per time per 

compartment including the organisms observed in the compartments with higher concentrations. The 

avoidance percentage for each compartment was computed as (Avoiders/NE) *100.  

Median lethal concentrations (LC50) and their respective confidence intervals (CI) from the forced exposure 

experiments and median avoidance concentrations (AC50) from the non-forced exposure ones were calculated 

using PriProbit 1.63 software (Sakuma, 1998). The population immediate decline (PID) was computed 

following the method described by Rosa et al. (2012). The avoidance and mortality percentages were 

integrated to calculate the PID (x in percent) induced by each HHCB and AHTN concentration that 

simultaneously caused a y mortality percentage (i.e. the 24 h LCy) and a w avoidance percentage (i.e. the 3 h 

ACw) as thus: 

 

X = [1 – (1 - y/100 * (1 – w/100)] * 100 

 

The PID was calculated on the premise that some organisms first emigrate (avoidance %) and that mortality 

is then calculated based on the remaining organisms that did not emigrate. PID50 was calculated following the 

above procedure for AC50 and LC50. 
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3. RESULTS 

3.1. Acute toxicity test 

The shrimp mortality recorded during the 24 h acute test with HHCB was not concentration-dependent and 

was highest (17%) for 0.005 and 0.5 µg/L. For AHTN, no mortality was observed at 0 and 0.5 µg/L, and it 

was around 8% at 0.005, 5 and 50 µg/L (Table S2 – Supplementary Material).  

 

3.2. Avoidance test 

No mortality was recorded in the non-forced experiments. The distribution of shrimps between the 

compartments over time was not significantly different (p < 0.005) for both seawater (p = 0.64, F(5,18) = 0.693) 

and DMSO (p = 0.99, F(5,18) = 0.085) controls (Tables S3b and S4b – Supplementary Material) and the 

distribution of shrimps between the compartments was not significantly different (p < 0.005) for the seawater 

control and the DMSO control (Tables S3c and S4c – Supplementary Material). In the absence of 

contaminants, the distribution of shrimps in both seawater and DMSO controls (Figure 2) was random 

(showing no preference for any compartment) during the 3 h exposure. 

In the tests with each contaminant, the shrimps’ distribution did not vary over time (Tables S5b and S6b – 

Supplementary Material). The statistical analysis of the shrimps’ distribution in the contaminant gradients of 

HHCB (F(5,18) = 7.388, p < 0.001) and AHTN (F(5,18) = 6.127, p < 0.002) revealed that the organisms 

significantly (p < 0.05) preferred the uncontaminated compartments (Tables S5c and S6c – Supplementary 

Material). Significant differences in the distribution of shrimps exposed to each substance are shown in Figure 

3. The mean percentage distribution of P. varians exposed to gradient of HHCB and AHTN after 3 h was 

28.9% and 30.2%, respectively, in uncontaminated compartments and it was over 4 times higher than the mean 

percentage distribution of organisms in compartment with the highest concentration (50 µg/L: 6.5% and 7.1% 

for HHCB and AHTN, respectively).  
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Figure 2: Mean percentage and standard deviation (n = 9 observation periods) of the number of shrimps 

Palaemon varians in the seawater and solvent (DMSO) control tests recorded in each compartment for 3 h. 

Different letters (upper case for seawater control and lower case for DMSO control) represent statistically 

significant difference. 

 

The avoidance behaviour, mortality and PID data of the shrimps exposed to the contaminant gradients of 

HHCB and AHTN for 3 h are shown in Figure 4. For both contaminants, a concentration-dependent avoidance 

response was observed. For HHCB, the mean percentage avoidance for the lowest concentration (0.005 µg/L) 

was 14.6% and increased significantly to 60.5% (p < 0.05) for the highest concentration (50 µg/L). The same 

trend was observed for AHTN from 16.2% (at 0.005 µg/L) to 57.1% (at 50 µg/L). The PID curve (Figure 4) 

from the non-forced exposure data followed the same trend with the avoidance behaviour for both substances, 

as no mortality was recorded in the non-forced tests (Figure 4).  
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Figure 3: Mean percentage (n = 9 observation periods) of shrimps Palaemon varians exposed to gradient 

concentrations of galaxolide and tonalide recorded in each compartment for 3 h. Different letters (upper case 

for galoxide and lower case for tonalide) represent significant difference. 
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Figure 4: concentration-response curves for the avoidance (non-forced exposure) and mortality (forced 

exposure) responses, and the estimated PID (Population Immediate Decline) for Palaemon varians exposed 

to galaxolide (HHCB) and tonalide (AHTN). Standard deviations were not presented for forced tests, because 

the mortality was calculated based on the total number of exposed organisms.  
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3.3. AC50, LC50, and PID50 

The values of AC50, LC50 and PID50 for HHCB and AHTN, based on mortality in the forced system and 

avoidance in non-forced exposure system, are shown in Table 1. The AC50 values (from non-forced exposure 

tests) obtained for HHCB and AHTN were 14.1 µg/L and 30.8 µg/L, respectively, and their corresponding 

LC50 values (from forced exposure tests) were >50 µg/L (no mortality was recorded). Since there was no 

mortality in the non-forced tests, the AC50 was equal to PID50. However, the AC50 values recorded for the non-

forced exposures were about twice as high as the PID50 values for both substances.   

 

Table 1: Values (in µg/L) and their respective confidence intervals of AC50, LC50, and PID50 (concentrations 

that cause 50% of avoidance, mortality and population immediate decline of exposed organisms) for the 

shrimp Palaemon varians exposed to galaxolide (HHCB) and tonalide (AHTN) in non-forced (NFS) and 

forced (FS) exposure systems.  

Substances AC50 (NFS) LC50 (NFS) PID50 (NFS) LC50 (FS) PID50 (FS) 

HHCB 14.1 (5.2 - 61.2) >50 14.1 (5.2 - 61.2) >50 6.3 (1.7 – 48.7) 

AHTN 30.8 (7.7 - 345.6) >50 30.8 (7.7 - 345.6) >50 18.8 (3.9 - 381.4) 

 

 

4. Discussion 

The present study assessed the potential of the musk fragrances, galaxolide and tonalide, to trigger avoidance 

response in the estuarine shrimp P. varians. The results of the control tests showed that the displacement of 

the shrimps inside the system in the absence of contaminants was non-preferential. This indicates that the 

shrimps did not present aggregation behaviour that could condition, to some extent, their movement pattern 

(Araújo et al., 2016a). Previous studies with shrimp have also shown that the freshwater shrimp Atyaephyra 

desmarestii (Araújo et al., 2018a) and the marine shrimps Litopenaeus vanamei (Araújo et al., 2016a) did not 

aggregate when exposed to uncontaminated water using a similar non-forced, multi-compartmented system. 

Studies with other organisms such as the crustacean Daphnia magna (Rosa; et al., 2008; Rosa et al., 2012), 

the freshwater fish Danio rerio (Araújo et al., 2016b, 2014b) and Poecilia reticulata (Silva et al., 2017), 

exposed to uncontaminated water in non-forced, multi-compartmented systems, also did not display significant 

differences in the distribution of organisms throughout the different compartments. This random distribution 

in the absence of contaminants validates the suitability of the experimental system to study the spatial 

avoidance behaviour of organisms exposed to contaminant gradients. 

Regarding the avoidance response, both compounds were detected by the shrimps and the potentially toxic 

concentrations were avoided. Palaemonidae are anatomically and physiologically adapted to detect the 
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presence of chemicals in their environment using both antennule and antennae (Machon et al., 2018), and as 

such, can select suitable habitats in the instance of chemical perturbation by avoiding contaminated area. 

Avoidance of both fragrances occurred at concentrations as low as 0.005 µg/L, indicating the high sensitivity 

of this response to reveal the risk of HHCB and AHTN. The mean avoidance percentages recorded for the 

lowest concentration (0.005 µg/L) of HHCB and AHTN were about 14 and 16%, respectively, and increased 

significantly in a concentration-dependent pattern to 60 and 57% at the concentration of 50 µg/L. Assessing 

the magnitude of this response, regarding how other marine species will react, is difficult due to the lack of 

studies on the avoidance responses of estuarine/marine organisms elicited by these compounds. The avoidance 

behaviour of marine shrimp and fish exposed in non-forced, multi-compartmented systems has been described 

for other compounds and it has revealed how suitable this system is for studying contamination-driven 

avoidance responses: around 80% of the estuarine shrimp Litopenaeus vannamei (whiteleg shrimp) and 60% 

of the marine fish Rachycentron canadum avoided contaminant gradients of copper assayed for 3 h (Araújo et 

al., 2016a). Regarding contaminants of emerging concern, studies of avoidance using non-forced, multi-

compartmented exposure systems have been mainly performed with fish. For instance, around 50% of a 

population of zebrafish (Danio rerio) avoided 1.4 mg/L of the fungicide (pyrimethanil) (Araújo et al., 2014d, 

2014b); 22% of the fish P. reticulata exposed under the same system for 4 h avoided triclosan concentrations 

as low as 0.2 µg/L (Silva et al., 2017); the AC50 for P. reticulata exposed to a bisphenol gradient was 0.15 

µg/L, below the values considered safe for aquatic biota (Silva et al., 2018); P. reticulata also avoided 

environmentally relevant atrazine concentrations (0.02 µg/L; Araújo et al., 2018b). Organisms’ behavioural 

response to the presence of a contaminant by avoiding contaminated sites is a protective strategy to prevent 

toxic impact and lethality (Gunn and Noakes, 1986; Lopes et al., 2004; Oliveira et al., 2013; Silva et al., 2017). 

The use of a non-forced exposure approach provides an idea of the immediate response that organisms can 

present due to the aversive characteristic of contaminants and of the possible loss of organisms due to the 

massive emigration towards less aversive habitats (De Lange et al., 2006; Rosa et al., 2012; Araújo et al., 

2016b). Although no effect at the individual level is expected to occur, the influence of a contaminant in the 

spatial distribution of organisms should be assessed carefully, as the consequences of the spatial avoidance are 

not restricted to the avoided ecosystem (Moreira-Santos et al., 2019). Whilst emigration from contaminated 

area is a solution for the avoiders (Moe et al., 2013), the consequences to ecosystem could lead to the loss of 

abundance and biodiversity (Lopes et al., 2004). The avoidance by the shrimps, that occupy an intermediate 

trophic level (Walker and Ferreira, 1985), might limit the amount of food available to organisms in the upper 

trophic strata and reduce the predation pressure on lower trophic levels. 

Data of mortality recorded after forced exposure for 24 h suggest that the concentrations used were not acutely 

toxic, which is in accordance with the argument about the low acute toxicity of HHCB and AHTN (Breitholtz 

et al., 2003; Wollenberger et al., 2003). The 24 h-LC50 value recorded for HHCB (401.7 µg/L) was similar to 

the 48 h-LC50 (470 µg/L) for the marine copepod Acartia tonsa (Wollenberger et al., 2003), and to the 96 h-

LC50 (288 µg/L) for Chironomus riparus (Artola-Garicano et al., 2003). However, a higher value (96 h-LC50: 
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>1000 µg/L) for the adult harpaticoid copepod Nitocra spinipes has been reported (Breitholtz et al., 2003). 

The shrimp P. varians proved to be more sensitive to AHTN (24 h-LC50 value of 88.11 µg/L) compared to N. 

spinipes (96 h-LC50: 610 µg/L; Breitholtz et al., 2003), C. riparus (96 h-LC50: >460 µg/L; Artola-Garicano et 

al., 2003) and A. tonsa (48 h-LC50: 2500 µg/L; Wollenberger et al., 2003). Although mortality was the only 

endpoint considered in the forced exposure systems, symptoms of stupefaction were also observed, which 

could impair the ability to avoid toxic environments. Subsequently, this and other potential sub-lethal effects 

under a forced exposure scenario should not be neglected. 

To elucidate the immediate impact of contaminant dispersion on aquatic environments at the local level, the 

PID was estimated by integrating mortality and avoidance responses. Clearly, avoidance played a greater role 

in the PID than mortality. Although these substances are classified as low risk in terms of lethality and, 

therefore, are believed not to pose a significant threat at the present environmental concentration levels 

(European Commission, 2008a; 2008b), it is evident that they may contribute to a significant population 

decline at a local scale and for a short exposure period by triggering avoidance. For instance, at the lowest 

concentration (0.005 µg/L) the population of shrimps declined by 28 and 30% for HHCB and AHTN, 

respectively, as against 16% from mortality data from forced exposures. Several authors have recommended 

the inclusion of spatial avoidance data measured in non-forced, multi-compartmented exposure systems as a 

complementary tool for ecological risk assessment. This might help to predict the ecological risk of 

contaminants more accurately; thus avoiding overestimation or underestimation of risk prediction by either 

the forced or non-forced approaches (Araújo et al., 2016b; Moreira-Santos et al., 2008; Rosa et al., 2012; Silva 

et al., 2017). In other studies where PID was estimated, avoidance also tended to occur at concentrations lower 

than mortality (Araújo et al., 2014a; Rosa et al., 2012; Silva et al., 2017), indicating that under conditions of 

gradual and heterogeneous contamination, the contaminated area might lose part of the organism population 

due to its fleeing from contamination with possible longer-term consequences on local ecosystem structure 

and functioning. In cases where the contaminant (either due to its mode of action or to the concentrations) was 

observed to cause stupefaction in the organisms (Gutierrez et al., 2012) and avoidance is prevented, the 

mortality in the short term might play a more important role for the PID (Araújo et al., 2014a, 2014c). 

 

Particularly in the cases of HHCB and AHTN, the shrimps were not sensitive in the forced exposure tests, but 

they were able to detect and avoid concentrations of those compounds in the non-forced exposure tests. This 

might indicate that avoidance helps to prevent even sub-lethal effects that organisms could suffer after a 

continuous exposure. Under conditions in which an HHCB or AHTN gradient exists, it would be expected 

that the distribution of the shrimps was, at least to some extent, conditioned by the presence of those 

contaminants. Since the AC50 obtained for HHCB is 28 times lower than the 24 h-LC50 for forced exposure, 

the prediction of the ecological risks of HHCB and AHTN based exclusively on data from forced exposure 

assays might provide a relevant vision of the potential toxicity of both compounds but fails to assess the 

complete effects at the community structure level (spatial distribution of the shrimps). Therefore, for 
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contaminants of emerging concern, spatial avoidance using the non-forced, multi-compartmented approach 

should be considered as an additional line of evidence in environmental risk assessments.  

 

5. Conclusion 

Shrimps were not acutely (mortality response) sensitive to the concentrations of both compounds tested. 

However, under non-forced exposure to HHCB and AHTN contaminant gradients, the shrimps detected 

different concentrations and avoided those potentially harmful. The population decline for short exposure to 

environmentally relevant concentrations of HHCB and AHTN was proven to be driven by the avoidance 

behaviour. It is recommended that ecological risk assessments of compounds of emerging concern, as well as 

non-emerging and legacy contaminants, integrate data from both forced and non-forced exposure approaches 

to avoid underestimation of their full potential risks.  
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3.3. Sub-lethal effects of environmental concentrations of galaxolide 

and tonalide on the manila clam Ruditapes philippinarum as 

bioindicator species 
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Summary 

Many contaminants in the marine environments are present at levels where they cause no obvious instant 

decimation of marine biota but elicit sub-lethal effects, which might result in critical ecological disturbance. 

They may interfere with biochemical functions by causing alteration in enzymatic activities leading to 

physiological disorder and reduced biotic potential after chronic exposure. The presence of polycyclic musk 

compounds in the marine environments have been detected at nano to microgram levels and are reported not 

critically lethal to marine organisms at this level. Therefore, this section addressed the sub-lethal effects of 

galaxolide (HHCB) and tonalide (AHTN) in the marine environments after chronic exposure. The clams 

Ruditapes philippinarum were exposed to 0.005, 0.05, 0.5, 5 and 50 µg/L of the musks in a semi-static 

renovation bioassay for 21 days. The exposed clams were sampled on days 3, 7, 14 and 21, and digestive gland 

and gonad tissues were harvested and preserved prior to further treatment. A battery of biomarkers related to 

contaminants biotransformation (Ethoxyresorufin-O-deethylase – EROD and glutathione-S-transferase – 

GST), oxidative stress (glutathione peroxidase- GPx, glutathione reductase – GR and lipid peroxidation – 

LPO), DNA damage, neuroendocrine toxicity (acetylcholinesterase – AChE and cyclooxygenase - COX) and 

energy reserves measured as total lipids (TL) were measured at each sample time-points. 

The results showed that environmental concentrations of HHCB and AHTN significantly induced EROD and 

GST activities and both compounds also significantly induced GPx activity assessed in the digestive glands of 

the clams. All the concentrations tested significantly increased lipid peroxidation on day 21 leading to 

significant DNA damage in the clams. Neuroendocrine function in the clams were modulated by both 

substances, HHCB induced AChE and COX activities and AHTN significantly inhibited AChE and COX 

activities at different time points. The impacts of the contaminants on energy reserve in clams was not very 

clear because variations in the amount of available energy in digestive gland and gonad were observed. 

The results of the biotransformation enzymes, oxidative stress parameters and genotoxicity have been 

published as a peer-reviewed article entitled “Potential of environmental concentrations of the musks 

galaxolide and tonalide to induce oxidative stress and genotoxicity in marine environment” (Ehiguese et al., 

2020. Marine Environmental Research. 10.1016/j.marenvres.2020.105019). The accepted manuscript 

formated to the journal recommended reference style is presented below.  

The author’s personal contribution included conceptualization, methodology, samples analyses, data curation, 

project management, original draft preparation, writing and editing of manuscript as well as first and 

corresponding authorship of the article. 

The bioassay, biomarkers analyses and chemical characterization of the exposure water were performed 

entirely at the Physical Chemistry Department, University of Cadiz, Puerto Real Campus, Spain.  
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1. Introduction 

The polycyclic musk compounds (PMCs) 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-(g)-2-

benzopyran (HHCB) branded Galaxolide® and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN) branded 

Tonalide® are bi-cyclic aromatic compounds. They are comprised of acetylated and highly methylated tetralin 

or indane skeletons (Sumner et al., 2010; Rick et al., 2003) and are lipophilic with high octanol-water partition 

coefficients (Kow) of 5.9 and 5.7 for HHCB and AHTN, respectively (Cunha 2012; Reiner and Kannan, 2011; 

Sumner et al., 2010). These substances are applied in a wide range of personal care products such as cosmetics, 

lotions, deodorants, detergents and more (Reiner and Kannan, 2011) because of their musky scent and fixative 

properties that enable them to bind to fabrics (Rimkus 1999; Reiner and Kannah, 2006). According to a 

European Commission risk assessment report, the production of HHCB and AHTN in Europe in the year 2000 

was between 1000 to 5000 ton/year (EC, 2008a, 2008b) and accounted for approximately 95% of fragrance 

material in the perfumery industry (Balk and Ford, 1999; Pedersen et al., 2009). Reports have shown that, 

since 1990, all fragrances consumed in the United States have doubled (Roosens et al., 2007) and increased 

by 25% between 1996 and 2000 (Peck et al., 2006). Because of their high production they have been placed 

on the “High Production Volume List” by the United States Environmental Protection Agency (US EPA) 

(Peck, 2006). 

Although HHCB and AHTN were first detected in aquatic environments (Eschke et al., 1994), recent studies 

have reported their presence in sediment and air (Fromme et al., 2001; Peck et al., 2006; Peck and Hornbuckle, 

2006). In effluents from sewage treatment plants (STPs), concentrations of  HHCB and AHTN have reached 

levels ranging from 1800 to 9000 ng·L-1 (Bueno et al., 2012; Díaz-Garduño et al., 2017). Those concentrations 

were similar to previous studies that reported environmental concentrations between 509 and 2337 ng·L-1 for 

AHTN and between 4750 and 13399 ng·L-1 for HHCB (Chase et al., 2012; Lee et al., 2010; Pintado-Herrera 

et al., 2014). Research has shown that approximately 50% to 90% of the total synthetic musks are eliminated, 

especially if tertiary treatments are employed, while the rest enters the receiving rivers and coastal waters 

(Heberer, 2002; Ricking et al., 2003; Lee et al., 2010). Since legislation requirements for effluents from 

Wastewater Treatment Plants (WWTPs) do not include tertiary depuration treatments [such as the multi-barrier 

treatment that can remove chemicals at 97%, and completely eliminate fragrances from wastewaters (Díaz-

Garduño et al., 2017)] as mandatory, concentrations that could have been trapped during tertiary depuration 

escape into aquatic ecosystems.  

To the best of our knowledge, only few studies have assessed PMCs’ presence in the marine environment 

(Bester et al., 1998; Sumner et al., 2010). However, reports have demonstrated that they are found to 

bioaccumulate in marine organisms (Kannan et al., 2005; Moon et al., 2011, 2012). HHCB and AHTN have 

been measured in the tissues of mussels, crustaceans, fish, marine birds and mammals (Kannan et al., 2005; 

Moon et al., 2011; 2012; Nakata, 2005) coupled with bioaccumulation factors of toxic concern (Rimkus et al., 

1997). The bioaccumulation factor values based on lipid weight calculated for HHCB in zebra mussels at the 
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Upper Hudson River (USA) was between 2610 and 4890 (Reiner and Kannan, 2011), and in Germany, 

bioaccumulation factor based on lipid weight calculated for AHTN was between 5100 and 40100 (Gatermann 

et al., 2002). Additionally, bioconcentration factor measured in Lepomis machrochirus for HHCB and AHTN 

in a laboratory study were 1584 and 597, respectively (Balk and Ford, 1999)Yet little is known about PMCs’ 

toxicity in aquatic ecosystems and some of the studies have focused on freshwater ecosystems, while others 

used concentrations higher than those considered environmentally relevant (Wollenberger et al., 2003; 

Breitholtz et al., 2003; Carlsson and Norrgren, 2004; Chen et al., 2011; Gooding et al., 2006; Parolini et al., 

2015; Pedersen et al., 2009). Environmental concentrations of HHCB and AHTN have been shown to 

experimentally elicit avoidance behaviour in the estuarine shrimps Palaemon varians when exposed to a 

gradient of both compounds in a free-choice multi-compartmented non-forced exposure system (Ehiguese et 

al., 2019). However, information about sub-lethal effects to marine organisms resulting from chronic exposure 

is incipient.  

The aim of this study was to determine the potential risk of HHCB and AHTN to the clam Ruditapes 

philippinarum after chronic exposure to environmentally relevant concentrations. The risk to this species was 

based on a battery of biomarkers of exposure and effect (oxidative stress and genotoxicity), such as 

ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), 

glutathione reductase (GR), lipid peroxidation (LPO) and DNA damage. R. philippanarum is an important test 

organism in ecotoxicology because it is readily available, inexpensive and its biology is well understood. 

These euryhaline infauna suspension feeders have been used in studies related to bioaccumulation of 

contaminants (Moschino et al., 2012; Santana et al., 2017), metal toxicity (Aouini et al., 2018; Ji et al., 2019; 

X. Liu et al., 2011), Ocean acidification (De Marchi et al., 2017; Velez et al., 2016; Xu et al., 2016), 

wastewater effluents as contaminants mixture (Díaz-Garduño et al., 2017; Maranho et al., 2015) and 

pharmaceutical and personal care products (Aguirre-Martinez et al., 2013; 2016, 2015; Almeida et al., 2015; 

Trombini et al., 2019). 

 

2. Materials and Methods 

2.1. Selection and concentrations of the polycyclic musks 

HHCB and AHTN were purchased from Sigma Aldrich, Spain. The characteristics of these substances are 

presented in Table 1. The concentrations (0.005, 0.05, 0.5, 5.0 and 50.0 μg/L) of HHCB and AHTN used in 

the experiments were carefully selected based on concentrations measured (maximum of 9 µg/L) in different 

environmental matrices (Bueno et al., 2012; Díaz-Garduño et al., 2017; Sumner et al., 2010). Initially, stock 

solutions were prepared and stored in dark bottles at 4 ºC. Each substance was dissolved in dimethyl sulfoxide 

(DMSO) in glass vial. 
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2.2. Organisms: acclimation and maintenance conditions 

A total of 360 specimens of R. philippinarum (average size: 42 ± 0.9 mm; n = 120) were purchased from an 

aquaculture farm in the Bay of Cádiz, (Ctaqua, Cadiz, Spain). Organisms were immediately transported to the 

laboratory for acclimation and kept in a 300 L aquarium for seven days. The aquarium was supplied with 

constant aeration and the specimens were fed ad libitum once every day with the microalgae Isochrysis 

galbana. The physical and chemical parameters (photoperiod of 12 h light/12 h dark; temperature: 15 ± 1 ºC; 

salinity: 34.6 ± 0.3; pH: 7.8 – 8.2; dissolved oxygen: >5 mg/L) in the aquarium were monitored daily. 

 

Table 1: Characteristics of HHCB and AHTN. 

Characteristics Galaxolide® (HHCB) Tonalide® (AHTN) 

Structural Formula   

Chemical Name 1,3,4,6,7,8-hexahydro-4,6,6,8,8-

hexamethylcyclopenta-ƴ-2-benzopyran 

6-Acetyl-1,1,2,4,4,7-

hexamethyltetralin 

CAS No 1222-05-5 21145-77-7 

Log Kow 5.9a 5.7a 

Water Solubility 1.75 mg/l 1.25 mg/l 

a Balk and Ford, 1999 

 

2.3. Experimental approach 

The bioassay was conducted in duplicates using a 10 L rectangular glass aquarium including sea water control 

and solvent control (DMSO, v/v 0.001%) to prevent any effect from the solvent (Aguirre-martínez et al., 

2016). Sixteen individuals were exposed in each replicate (32 individuals per treatment). Exposure to 

compounds lasted 21 days and was performed in a semi-static regimen with total renewal of each test substance 

every 3 days (days 3, 6, 9, 12, 15 and 18). The glass aquariums were filled with 8 L of sea water spiked with 

the stock solution. Physiochemical parameters were similar to the acclimation conditions reported above. The 

specimens were sampled on days 3, 7, 14 and 21 (n=6). 

 

 



127 
 

2.4. Water samples collection and analyses 

Water samples for each treatment were collected on days 0 and 3 using amber bottles and immediately stored 

at -20 ºC before determination of the concentrations of HHCB and AHTN. The methodology described by 

Pintado-Herrera et al. (2014) based on the SBSE-LD (stir bar sorptive extraction coupled to liquid desorption) 

by using polydimethylsiloxane bars (PDMS, 10 mm x 0.5 mm) was employed. The compounds were separated, 

identified and quantified using gas chromatography (SCION 456-GC, Bruker) coupled to a tandem mass 

spectrometry (SCION TQ from Bruker with CP 8400 Autosampler). Details of the detection and extraction 

efficiency of the methodology can be found in Pintado-Herrera et al. (2016) and (2014). The concentrations 

of HHCB measured in the exposure water ranged from 54% to 80% of the nominal concentration on day 0 

and from 21% to 23% on day 3 just before renewal in the semi-static experiment. Regarding AHTN, 

concentrations on day 0 ranged between 73% to 97% of the nominal concentrations and from 23% to 29% on 

day 3, just before renewal. The differential between nominal and measured concentrations is consistent with 

other reported studies due to instability of HHCB and AHTN.  

 

2.5. Biological samples preparation 

Three individuals (n=6 per treatment) were sampled from each replicate after 3, 7, 14 and 21 days of exposure. 

Organisms were dissected on ice and digestive gland tissues were extracted. Homogenization buffer was 

prepared with 100 mM NaCl, 25 mM HEPES salt, 0.1 mM EDTA and 0.1 mM DTT. Digestive gland tissue 

(n=6) was homogenized following the procedure described by Lafontaine et al. (2000) and centrifuged at 

15.000 g for 20 min at 4 ºC to obtain the supernatant fraction S15 and at 3000 g for 20 min at 4 ºC to obtain the 

supernatant fraction S3. Supernatant fractions were carefully extracted and stored at −80 ºC. The total protein 

concentration (TP) (expressed as mg TP) was determined in the homogenized fraction and in S15 and S3 

fractions following an adaptation of the methodology by Bradford (1976). All biomarkers were measured 

using a kinetic microplate reader, Infinite® M200. 

 

2.6. Biomarker Analyses 

2.6.1 Ethoxyresorufin O-deethylase (EROD) Activity 

EROD activity was measured using the method adapted from rainbow trout fingerling (Gagné and Blaise 

1993). 50 μl of S15 samples (25 μl sample + 25 µl of MilliQ) were added in 96-well flat bottom dark 

microplates. 160 μl of 7-ethoxyresorufin and 10 µl of reduced NADPH were added with 100 mM K2HPO4 

buffer at pH 7.4. The reaction was activated using NADPH and allowed to proceed for 60 min at 30 ºC. 7- 

hydroxyresorufin was determined fluorometrically using 516 nm excitation and 600 nm emission filters and 
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readings were taken at 15 min intervals. The calibration curve was developed using concentrations of resorufin 

and results were normalized to their corresponding total protein expressed as pmol/min/mgTP. 

 

2.6.2 Glutathione-S-Transferase Activity 

Determination of GST activity was adopted from Boryslawskyj et al. (1998). In a transparent 96-well flat 

bottom microplate, 15 μl S15 samples were added to 200 μl reaction buffer of 10 mM HEPES salt, 125 mM 

NaCl and 1 mM glutathione reduce (GSH) normalized at pH 6.5. Subsequently, 15 μl of homogenization 

buffer was added to 2 wells and marked up with 200 μl reaction buffer to check the background reaction rate. 

Absorbance was measured at 340 nm, every 5 min for 30 min based on the appearance of the glutathione 

conjugate at 22 oC. Results were expressed as microgram per minute per milligram total protein 

(μg/min/mgTP). 

 

2.6.3 Glutathione peroxidase activity 

Glutathione peroxidase activity was measured using the procedure adapted from Mcfarland et al. (1999). 20 

μl S15 samples (10 μl + 10 μl homogenization buffer) were added to a transparent 96-well flat bottom 

microplate. 200 μl daily assay mixture prepared with GPx assay buffer (50 mM potassium phosphate, 0.1 mM 

EDTA and 0.15 mM sodium azide) and substrates (1 mM cumene hydrogen peroxide in 50 ml GPx assay 

buffer incubated at 30 oC) was added to the microplate and incubated for 2 min at 30 ºC. A volume of 50 μl of 

substrate was then added to each well. The oxidation of NADPH to NADP was observed. Readings were taken 

at 340 nm for 3 min, at 10 sec intervals. 20 μl of homogenization buffer were added in 2 wells as a background 

corrected value. Results were expressed as nmol/min/mgTP.    

 

2.6.4 Glutathione reductase (GR) activity 

The method adapted by Martin-Diaz et al. (2007) was used to measure the activity of GR. In a transparent 96-

well flat bottom microplate, 20 μl S15 sample (10 μl sample + 10 μl MilliQ) and 200 μl of incubated daily 

assay mixture (200 mM NaH2PO4 and Na2HPO4 at pH 7.6, 10 mM oxidized glutathione, 1 mM NADPH) were 

added. A volume of 20 μl homogenization buffer was added to 2 wells as blank to check the background 

reaction rate. The reaction was measured spectrophotometrically using 340 nm emission at 30 ºC. The loss of 

NADPH was recorded at 2 min interval for 10 min. Results were expressed as pmol/min/mgTP.  
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2.6.5 Lipid peroxidation (LPO) 

The thiobarbituric acid reactive substance (TBARS) procedure was used for LPO measurement (Wills 1987). 

150 μl of diluted homogenate samples (90 μl samples + 60 μl MilliQ) were injected in 1.5 ml tubes. A standard 

solution of tetramethoxypropane (TMP) was prepared with 0.001% TMP and diluted serially with distilled 

water (0 – 15 μM TMP). 300 μl of 10% trichloroacetic acid (TCA), 1 mM FeSO4 and 150 μl of 0.67% 

thiobarbithuric acid (TBA) were added to the sample and standard solution separately. They were then mixed 

and incubated for 10 min at 70 oC in a J.P. Selecta® incubator. 200 μl of the precipitates (standard solution for 

the TMP standard curve and homogenate samples) were pipetted into a dark 96-well flat bottom microplate. 

Production of malondialdehyde (MDA), which is indicative of oxidative stress from the degradation of initial 

products of free radical attack on fatty acid (Janero, 1990), was measured spectrophotometrically at 516 nm 

(excitation) and 600 nm (emission) filter. Optical density values were converted to μgTBARS/mgTP. 

 

2.6.6 DNA damage 

The DNA precipitation assay methodology is based on 2% SDS-KCl precipitation of DNA-protein crosslink, 

which uses fluorescence to quantify the DNA strands (Olive, 1988; Gagne et al., 1995). When DNA breaks 

because of exposure to toxic chemicals, the strands are released from cellular protein into the supernatant when 

centrifuged at low speed (Olive, 1988). It becomes possible to quantify the amount of double and single 

stranded DNA at the end of the assay (Gagné et al., 1995). A volume of 25 µl of homogenate was mixed by 

inversion with 200 µl of SDS 2% prepared with 10 mM EDTA, Tris-Base and 40 mM NaCl. 200 µl of 0.12 

mM KCl was added and mixed by inversion. The mixture was incubated for 10 min at 60 ºC, cooled at 4 ºC 

for 30 min and centrifuged 8000 x g at 4 ºC for 5 min. For DNA calibration, Salmon Sperm genomic DNA 

was dissolved in 1 ml TEIX (Tris-HCl and EDTA at pH 8.0) as a standard. In a dark 96-well flat bottom 

microplate, 50 µl of the supernatant was added to 150 µl of Hoescht dye 0.1 µg/mL diluted with sodium 

cholate containing 0.4 M NaCl, 4 mM sodium cholate and 0.1 M Tris-Acetate (pH 8.5). Fluorescence was 

measured at 360 nm (excitation) and 450 nm (emission) filters against blanks containing similar constituents 

without homogenate. Optical density values were converted to µg DNA/mgTP.   

 

2.7. Statistical Analysis 

Data for biomarker responses were analyzed using the SPSS®/PC + statistical package. Prior to parametric 

tests, the normality and homogeneity of the data were analyzed. Significant differences between controls and 

organisms exposed to polycyclic musk compound treatments were determined using one-way ANOVAs 

followed by Dunnett’s comparison tests and significance levels were set at p < 0.05. In order to evaluate the 
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relationship between biomarker responses and musk concentrations over time, Spearman’s rank order of 

correlation tests was run. Significance levels were set at p < 0.05 and p < 0.01 to obtain pairwise correlations. 

 

3. RESULTS 

3.1. Biomarker responses 

During the 21 day exposure, there was no significant mortality (3%) and no significant difference in biomarker 

responses (p < 0.05) analysed in digestive gland tissues of clams exposed to the seawater control group and 

DMSO. The results of the biochemical biomarkers from digestive gland extracts are presented in Figures 1 

and 2 and correlations between concentrations and biological responses can be found in Table 2. 

 

3.1.1 Biomarkers of Exposure 

The biotransformation enzymes, which involve EROD enzymatic activity, showed significant induction 

compared with control in organisms exposed to AHTN and HHCB. Significantly higher values compared with 

control (p < 0.05) were observed on days 3 and 7 (0.05, 0.5, 5 and 50 μg/L) and day 14 (0.05 and 0.5 µg/L) 

for AHTN (Figure 1). Regarding HHCB, significantly higher values (p < 0.05) were found on day 7 (0.05, 0.5, 

5 and 50 μg/L), day 14 (0.005 µg/L) and day 21 (0.005, 0.5, 5 and 50 µg/L) (Figure 2).  

 

3.1.2 Biomarkers of Effect 

Induction of GST (p < 0.05) was observed in clams exposed to HHCB and AHTN. This induction was 

significant (p < 0.05) on days 7, 14 (0.005, 0.05, 0.5, 5 and 50 μg/L) and 21 (0.005, 0.05, 5 and 50 µg/L) in 

organisms exposed to AHTN (Figure 1) and from day 3 to 21 when clams were exposed to HHCB (Figure 2). 

When describing GPx activities, it was observed that significant induction (p < 0.05) was found on day 3 for 

HHCB (0.05, 0.5 and 5 μg/L) (Figure 2) and AHTN (0.05 and 0.5 µg/L) (Figure 1). This induction was not 

concentration dependent. Significant antioxidant induction was also observed on the last day of exposure to 

HHCB compared with control (p < 0.05) and was positively correlated with the concentrations 0.05, 0.5, 5 and 

50 μg/L (Figure 2). Surprisingly, GR enzymatic activity decreased significantly compared with control (p < 

0.05) in all treatments for both substances (Figures 1 and 2). These responses of the antioxidant enzymes 

showing oxidative stress corresponded with significant (p < 0.05) increasing lipid peroxidation in the digestive 

gland tissues of clams exposed to these polycyclic musk compounds after 21 days of exposure. Moreover, the 

increased LPO level was positively correlated on day 21 with concentration for HHCB. Significant increase 

in DNA strand break (p < 0.05) was observed on days 7, 14 and 21 (0.005, 0.05, 0.5 5 and 50 µg/L) compared 
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with control (p < 0.05) for HHCB (Figure 2) and only on day 21 (0.05, 0.5, 5 and 50 µg/L) for AHTN (Figure 

1). This induction was positively correlated with the concentration on day 21 (p < 0.05). 
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Figure 1: Biochemical biomarkers including ethoxyresorufin O-deethylase (EROD), glutathione-S-

transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR) activities, lipid peroxidation 

(LPO) level and DNA damage (strand breaks) measured in the digestive gland tissues of R. philippinarum 

exposed to tonalide (ATHN) for 21 days. Asterisks (*) shows significant difference with control treatment 

(p<0.05). 
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Figure 2: Biochemical biomarkers including ethoxyresorufin O-deethylase (EROD), glutathione-S-

transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR) activities, lipid peroxidation 

(LPO) level and DNA damage (strand breaks) measured in the digestive gland tissues of R. philippinarum 

exposed to galaxoide (HHCB) for 21 days. Asterisks (*) shows significant difference with control treatment 

(p<0.05). 
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3.2 Correlations 

Taking all biomarker responses into consideration, organisms showed positive and significant (p < 0.01) 

concentration-dependent response correlation regarding detoxification (GST), oxidative stress (GPx) and 

genotoxicity (DNA damage), and significant (p < 0.05) and negative correlation with GR (Table 2) in clams 

exposed to HHCB. For AHTN, concentration correlated significantly (p < 0.01) with induction of EROD, 

GST, GPx, DNA damage and significant (p < 0.01) inhibition of GR (Table 2) in clams exposed to AHTN. 

Positive correlation between biomarkers of exposure, GST with EROD, GPx (p < 0.05), and biomarkers of 

effects, DNA damage (p < 0.01), LPO (p < 0.05) in clams exposed to HHCB was determined (Table 2). 

Induction of GST significantly (p < 0.01) correlated with GPx and GR and negatively correlated with LPO, 

and EROD activation was significantly (p < 0.01) correlated with inhibition of GR corresponding to significant 

(p < 0.01) increased DNA damage (Table 2) in clams exposed to AHTN.  

 

4. Discussion 

Environmental risk assessments of PMCs have been mainly focused on toxicity for freshwater environments, 

and information about chronic toxicity in marine environments remains limited. In the present study, a battery 

of biomarkers related with xenobiotic detoxification (EROD and GST), oxidative stress (LPO, GPx and GR) 

and genotoxicity (DNA damage) have been tested to provide information regarding the potential toxicity of 

the fragrances tonalide and galaxolide for the marine clam R. philippinarum. 

We observed dose-dependent significant induction of EROD activity (p < 0.05) in R. philippinarum exposed 

to AHTN and HHCB (Figures 1 and 2). The cytochrome P450 system has been described to be involved in 

the metabolism of detoxification of lipophilic compounds, while EROD enzymes catalyze the reactions of 

degradation of lipophilic compounds (van der Oost et al., 2003). EROD activity, measured in bioindicator 

species, has been established as a biomarker of exposure to lipophilic chemicals. The activity of P450 enzymes 

are key in phase I biotransformation of xenobiotics, specifically lipophilic compounds with aromatic 

backbone. EROD activity studied in aquatic organisms has shown high values after exposure to polycyclic 

aromatic hydrocarbons, polychlorinated biphenyls and some contaminants of emerging concern (Aguirre-

Martínez et al., 2016; Luna-Acosta et al., 2015; Maranho et al., 2015; Park et al., 2009; Siebert et al., 2017; 

Tao et al., 2013). Consequently, HHCB and AHTN may have the capacity to bind to the aryl hydrocarbon 

(Ah) receptor in CYP450 1A1, because xenobiotics that fail to bind with the Ah receptor showed no induction 

of EROD activity (Petrulis et al., 2000). The induction of EROD activity recorded in this study is a 

confirmation of the bioavailability of HHCB and AHTN to marine organisms and thus requires urgent attention 

to address the potential toxicity in marine ecosystems.   
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Table 2: Spearman’s rank order of correlation (rs) test between biomarkers measured in R. philippinarum digestive gland tissues after exposure to Galaxolide® (first value 

in bold) and Tonalide® (second value) concentrations (CON). 

Biomarkers CON EROD GST GPx GR LPO 
DNA 

Damage 

EROD 0.111/0.333** 1      

GST 0.378**/0.272** 0.207*/0.083 1     

GPx 0.484**/0.273** 0.012/-0.013 0.196*/0.273** 1    

GR -0.196*/-0.335** -0.102/-0.362** 0.134/0.268** -0.255**/-0.022 1   

LPO -0.018/-0.393** -0.049/-0.059 0.021/-0.252** -0.080/-0.250* 0.177*/0.154 1  

DNA Damage 0.352**/0.310**  0.015/0.233** 0.243**/0.136 0.019/-0.088 0.193*/-0.054 0.407**/0.096 1 

 

Asterisks indicate the p values: * p < 0.05 and ** p < 0.01. Ethoxyresorufin O-deethylase (EROD), gluthathione-S-transferase (GST), gluthathione peroxidase (GPX), 

gluthathione reductase (GR), lipid peroxidation (LPO).  
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Aromatic xenobiotics are prooxidant chemicals, which increase intracellular generation of reactive oxygen 

species through the induction of cytochrome P450 pathway (Regoli and Giuliana, 2014) and antioxidant 

species, such as GST, GPx and GR; furthermore, they are bioindicators of contaminant-mediated oxidative 

stress that play significant roles in breaking down oxyradicals to less harmful products, consequently 

preventing oxidative damage (Wu et al., 2011). The significant increase in GST activity in the digestive 

gland of clams exposed to HHCB and AHTN suggests their capacity for inducing oxidative stress. GST is 

a phase II metabolic isoenzyme involved in the catalytic conjugation of reduced glutathione to xenobiotic 

substrates thus encouraging detoxification and preventing interactions with crucial cellular proteins and 

nucleic acids (Birben et al., 2012; Josephy, 2010). This detoxification process triggers GST induction and 

the increased GST activity observed in this study suggests that HHCB and AHTN possess electrophilic 

cores, with which glutathione conjugated (Hampel et al., 2016). The activation of GPx activity in a 

concentration-dependent pattern as observed in clams exposed to HHCB and AHTN on day 21 indicated 

an effort to ameliorate oxidative stress, thus protecting the organism from cell damage. GPx activity is an 

important antioxidant biomarker with involvement in antioxidant metabolism because, in conjunction with 

GST, it reduces lipid hydroperoxides to alcohol, with some concomitant oxidation of reduced glutathione 

to oxidized glutathione (Regoli and Giuliana, 2014). GR activity in the present study was significantly 

inhibited by both HHCB and AHTN (Figures 1, 2) and cells need to maintain high levels of GR to function 

together with other enzymes in defending cells against degenerative attacks (Srikanth et al., 2013). GR acts 

as a substrate to other glutathione enzyme species to prevent oxidative stress and a balance in the amount 

of each glutathione enzymes is precursor for optimal cell defence. Therefore, GR inhibition may alter 

detoxification and antioxidant capacity of GST and GPx (McCay et al., 1976; Oxford Biomedical Research, 

2001; Stojiljković et al., 2007). However, glutathione metabolism enzymes’ pattern of responses is not 

always straightforward and depends on a series of factors, including the species (Antunes et al., 2013). 

Antioxidant defences can be overwhelmed by some chemical compounds which can depress the antioxidant 

capacity to remove oxyradicals and prevent cell damage (Regoli and Giuliani, 2014). Recent studies have 

shown alterations in antioxidant enzymes in aquatic and terrestrial organisms exposed to HHCB and AHTN, 

indicating the potential for oxidative stress. The goldfish Carassius auratus exposed to simulated urban 

runoff containing HHCB alone and HHCB mixed with cadmium showed a significantly increased 

antioxidant enzyme activity after 14 days and decreased significantly after 21 days of exposure (Chen et 

al., 2012). Eisenia fetida exposed to HHCB and AHTN upregulated antioxidant defence at a low dose of 

0.6 µg cm-2 and significantly decreased at a concentration of 6.0 µg cm-2 after 48 h of exposure (Chen et 

al., 2011). 
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The alterations in the antioxidant enzymes activities could be linked to the significant increase in LPO 

recorded in this study after 21 days for clams exposed to AHTN and HHCB (Figures 1 and 2). Similarly, 

the zebra mussel, D. polymorpha exposed to 100 and 500 ng/L of HHCB and 20 and 80 ng/L of AHTN 

showed significant time-dependent lipid peroxidation after 21 days (Parolini et al., 2015). E. fetida exposure 

to HHCB and AHTN also induced a time-dependent significant increase in LPO due to oxidative stress 

(Chen et al., 2011; Liu et al., 2011). LPO is a self-propagating chain reaction, and thus, it is believed that 

the foremost oxidation of only a few lipid molecules can cause serious tissue damage (Mylonas and 

Kouretas, 1999). 

Concentration-dependent significant DNA strand breaks in clams exposed to environmental concentrations 

of AHTN and HHCB were observed at the end of the exposure (Figures 1, 2 and Table 2). This is expected 

to occur as a result of significant oxidative stress, because direct reaction between DNA and free radical 

species can result in DNA damage including damaged bases, structural breaks and/or inter and intra strand 

crosslinks. It is possible that genetic damage was also as a result of the metabolites of the parent compounds, 

which in some cases could be more toxic to organisms than the parent compounds tested. Significant 

correlations between pollutant induced reactive oxygen species and DNA damage in marine invertebrates 

have been reported (Mamaca et al., 2005). Our result is supported by previous research, which documented 

significant time-dependent DNA fragmentation in the zebra mussel D. polymorpha after exposure to 

environmentally relevant concentrations (100 and 500 ng/L for HHCB) even after four days. The authors 

also demonstrated that 80 ng/L of AHTN induced significant time-dependent DNA damage with a value 

3.6-fold higher than the control on day 21 (Parolini et al. 2015). These results are indicative of chronic 

effects of HHCB and AHTN in freshwater and marine ecosystems.  

In addition, EROD correlated with GST (p < 0.05) and GST positively correlated with GPx (p < 0.05) and 

DNA damage (p < 0.01) in clams exposed to HHCB (Table 2). GST positively correlated with GPx and GR 

(p < 0.01) (Table 2). Taking these relationships into account, it is clear that the exposure of clams to these 

substances exerted significant activation of biomarkers of exposure and effect as observed in the significant 

correlation of HHCB and AHTN concentrations with DNA damage (p < 0.01) assessed in the digestive 

gland of clams (Table 2) which could be consequential to unsuccessful detoxification of contaminant-

generated oxyradicals.  

The biomarkers evaluated in R. philippinarum to understand the environmental risk of HHCB and AHTN 

have been found useful and sensitive to the exposure to both substances in the marine environment. 

Although the studies with HHCB and AHTN are incipient, our findings indicating a potential chronic risk 

of both compounds are corroborated by previous studies that examined oxidative damage by quantifying 
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the malondialdehyde level for LPO as a biomarker in the earthworm E. fetida (Chen et al., 2011) and 

Dreissena polymorpha (Parolini et al., 2015) for terrestrial and aquatic environments, respectively. 

Additionally, it has also been shown under laboratory conditions that environmental concentrations of 

HHCB and AHTN might elicit avoidance behaviour in the estuarine shrimps P. varians, probably due to 

their organoleptic characteristics (Ehiguese et al., 2019). Because of the volatile nature of these 

contaminants under laboratory exposure, the reported biological effects may be underestimated (Tumová 

et al., 2019). Taking into account the different types of chronic effect that HHCB and AHTN can potentially 

produce, either in terrestrial (Liu et al., 2011), freshwater (Parolini et al., 2015) or marine [Ehiguese et al., 

(2019) and the current study] organisms, it is crucial to review the regulatory status, when the environmental 

concentrations just indicate a slight risk before irreversible environmental effects are exerted.  

 

5. Conclusions  

The current research revealed that environmental concentrations of HHCB and AHTN might have adverse 

effects (oxidative stress and genotoxicity) on the marine clam R. philippinarum. Results from this study 

showed that, in particular, the activities of EROD, GST, GPX, GR, LPO levels and DNA damage were 

useful essential biomarkers to evaluate effects of PMCs at environmental concentrations in the marine 

environment because changes related with the concentrations of AHTN and HHCB were detected.  
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3.4. Use of molecular biomarkers to assess the endocrine disrupting 

potential of galaxolide and tonalide in marine organisms 
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Summary 

Overt contaminant driven ecological stress is initiated at a lower level of biological organization, because 

bioavailable environmental chemicals can interact with macromolecules to alter biomolecular structures 

that play an important role in regulating the physiology of living organisms. Ribonucleic acids (RNA), 

which are produced by cellular process of transcription, and messenger RNA (mRNA), which translates 

genetic messages from deoxyribonucleic acids (DNA) to protein, can be isolated in exposed organisms 

using tissues, organs, or whole organisms, and quantified to evaluate pollution driven molecular effects. 

This section addressed the effects of HHCB and AHTN at molecular level, using biomarkers related with 

endocrine disruptions. The screening for the potential of both substances to disrupt endocrine functions in 

fish is particularly important for the marine environment because the intrinsic properties of HHCB and 

AHTN suggest that they might mimic natural hormones and alter steroidogenesis in teleost fish. 

Consequently, yolk sac larvae of sheepshead minnow Cyprinodon variegatus were exposed for 3 days to 

0.5, 5 and 50 µg/L of each compound, and the expression levels of vtg1 and cyp19 were determined using 

qPCR. 

The results obtained from this study showed that HHCB and AHTN can modulate steroidogenesis in fish. 

It was observed that HHCB upregulated cyp19 and vtg1, while AHTN significantly downregulated both 

genes expression levels when compared with the control. These results represent the first evidence of the 

potential steroidogenic effects of HHCB and AHTN in the marine environments. 

The results together with the neuroendocrine biomarkers assessed in clams have been published as a peer-

reviewed article entitled “Galaxolide and tonalide modulate neuroendocrine activity in marine species from 

two taxonomic groups” (Ehiguese et al., 2021. Environmental Research 169, 

https://doi.org/10.1016/j.envres.2021.110960. The accepted manuscript formated to the journal 

recommended reference style is presented below. 

The author’s personal contribution included conceptualization, methodology, samples analyses, data 

curation, project management, original draft preparation, writing and editing of manuscript as well as first 

and corresponding authorship of the article. 

This study was entirely performed at the Division of Coastal Sciences, School of Ocean Science and 

Technology, University of Southern Mississippi, Ocean Springs MS, USA. 
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1. Introduction 

Galaxolide (HHCB) and tonalide (AHTN) are polycyclic musk compounds (PMCs) used in household and 

personal care products and are included on the list of emerging contaminants of environmental concern due 

to their ubiquity in aquatic and terrestrial environments (Schreurs et al., 2004; Zhang et al., 2013). HHCB 

and AHTN consist of aromatic structures consisting of acetylated and extremely methylated pyran and 

tetralin bases (Sumner et al., 2010). They possess high n-octanol – water partition coefficients (Kow) akin 

to most persistent organic pollutants and may persist in the marine environment. The presence and toxicity 

of PMCs in transitional and coastal ecosystems is yet to be fully understood. Most research regarding these 

compounds has been focused on freshwater ecosystems (Balk and Ford, 1999a, 1999b; Parolini et al., 2015; 

Yamauchi et al., 2008) with only a few reports available on the toxicity of PMCs in the marine environment 

(Breitholtz et al., 2003; Luckenbach et al., 2004; Wollenberger et al., 2003). Recently, Ehiguese et al. 

(2019) studied the avoidance behavior of the shrimp Palaemon varians and found that HHCB and AHTN 

potentially elicited avoidance behavior in this shrimp. Chronic exposure to environmentally relevant 

concentrations of these substances suggests that they may alter antioxidant enzyme activity and potentially 

trigger oxidative stress in Manila clams (Ehiguese et al., 2020). To the best of our knowledge, the 

neurotoxicity and endocrine disrupting effects of these contaminants in the marine environment are yet to 

be addressed. 

About 30% of commercially available chemicals are estimated to possess neurotoxic and endocrine 

disrupting properties (Tilson et al., 1995). These chemicals can target neurotransmitter pathways and their 

components such as neurotransmitters, receptors, biosynthetic enzymes, catabolic enzymes, and 

transporters (Basu, 2015). Neuroendocrine compounds promote diverse physiological and behavioral 

effects that alter the capacity of organisms to reach their biotic potential, cope with stress and other 

environmental challenges, and survive (Waye and Trudeau, 2011). Signals from environmental 

contaminants can interfere with neurotransmission and disrupt endocrine functions in marine organisms 

because of their potential to mimic the natural hormone estrogen, and can bind to estrogen receptors and 

influence estrogen biosynthesis (Waye and Trudeau, 2011). Many persistent organic pollutants have been 

implicated as neuroendocrine disruptors in the marine environment causing adverse effects related to 

changes in thyroid morphometry and functions, suppression of ovarian follicle development, altered sex 

differentiation, and mortality (Berg et al., 2016; Porte et al., 2006; Schnitzler et al., 2008). Furthermore, 

environmental concentrations of some pharmaceutical products have been shown to inhibit monoamine 

oxidase activity, increase plasma cortisol levels, and reduce feeding in aquatic organisms (Maranho et al., 

2015; Melnyk-Lamont et al., 2014). Importantly, HHCB and AHTN have been demonstrated to disrupt 
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neuroendocrine activity in several in vitro studies(Li et al., 2013; Mori et al., 2007; Schreurs et al., 2005, 

2004, 2002) and significantly alter gene expression levels in male medaka fish (Yamauchi et al., 2008). 

The aim of this study was to investigate the neurotoxic and endocrine disrupting effects of HHCB and 

AHTN in the marine environment. We assessed biochemical activities in Manila clams (Ruditapes 

philippinarum) using biomarkers of neuroendocrine toxicity (AChE, COX) and energy reserves (total 

lipids; TL) in a 21 day exposure. We also assessed and gene expression levels of cyp19 and vtg1 in yolk-

sac larvae of sheepshead minnow (Cyprinodon variegatus) after 3 days of exposure to HHCB or AHTN. 

The suitability of R. philippinarum for ecotoxicological studies has been previously stated by Ehiguese et 

al. (2020). Sheepshead minnow are a suitable marine model used in ecotoxicological studies because they 

are easy to breed under laboratory conditions and spawn continuously with relatively large demersal eggs 

(Cripe et al., 2009). They have been used in the assessment of endocrine disrupting chemicals in transitional 

and coastal waters (Bowman et al., 2000; Folmar et al., 2000; Hemmer et al., 2001) as well as to 

characterize alteration of immune pathways (Jones et al., 2017; Rodgers et al., 2020) and oxidative stress 

(Rodgers et al., 2018) after chemical exposures. 

 

2. Materials and methods 

2.1. Test chemicals 

For the clam experiments, analytical grades of HHCB (85.0%) and AHTN (97.0%) were obtained from 

Sigma Aldrich Spain. The details of dissolution and preparations can be found in Ehiguese et al. (2020). In 

brief, stock solutions were prepared using DMSO (0.001%v/v) as the organic solvent to dissolve the test 

chemicals which were further diluted with distilled water to reach the concentrations needed (0.005, 0.05, 

0.5, 5 and 50 µg/L). These concentrations were selected based on reported environmental concentrations 

measured in marine environments (Díaz-Garduño et al., 2017; Pintado-Herrera et al., 2013). For the fish 

experiments, 100 g of analytical grade AHTN (97%) was purchased from Sigma Aldrich, USA. 10 g of the 

product was dissolved in 0.001%v/v DMSO to form the stock solution. 25 g of HHCB dissolved in 50% 

diethyl phthalate containing 49% pure HHCB was purchased from TCI America, USA and the 

concentrations required were calculated based on the percentage of the active ingredient of HHCB in the 

solution. The stock solution was diluted using distilled water to create 0.5, 5.0 and 50.0 µg/L solutions for 

each compound. 
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2.2. Test organisms 

The clams, R. philippinarum (550 specimens), were obtained from an aquaculture farm in the south-west 

of Spain and were transported to the laboratory of Marine Culture, Faculty of Marine and Environmental 

Science (University of Cadiz, Spain). The adult clams (average size of 43.2±1.6 mm) were acclimated in a 

250 L aquarium and were fed with Isochrysis galbana once per day. During acclimation, aeration was 

provided to improve the oxygen content (dissolved oxygen >5 mg/L) of the medium and other 

physiochemical parameters in the aquarium were monitored and controlled. The temperature, salinity, pH 

and photoperiod during the acclimation were 15±1 0C, 34.7±0.4‰, 7.8 – 8.2 and 12 h light/12 h dark, 

respectively. 

Adult sheepshead minnows (C. variegatus) previously purchased and kept in artificial seawater (15‰), 

between the temperature range of 25-27 oC and photoperiod (12:12 light/dark) in 300 L static recirculating 

raceways at the Toxicology Building, Gulf Coast Research Laboratory, University of Southern Mississippi 

(Ocean Springs MS, USA) were used as brood stocks. Before breeding, the brood stocks were fed daily 

with Artemia nauplii and commercial flake food. Four Spawntex® Mats (15-20 cm; Pentair Aquatic Eco-

Systems) were placed in the two holding raceways overnight for spawning, two per raceway, containing 

gravid females with a female:male at a ratio of 2:1. The fertilized eggs were collected by gently tapping the 

Spawntex® Mats into a clean laboratory dish. The embryos were gently rinsed and transferred into a 

hatching jar supplied with aeration to aid suspension of the fertilized eggs in the water column and they 

were incubated in an ISOTEMP 115 (Fisher Scientific) at 30 oC until hatching (Dangre et al., 2010; Griffitt 

et al., 2012). These yolk-sac larvae were then carefully collected in 100 ml beakers filled with artificial 

seawater (15‰) prior to exposure. 

 

2.3. Biochemical effects: Experimental approach 

R. philippinarum were exposed aqueously to either HHCB or AHTN in 10 L rectangular glass aquariums. 

The bioassay experiment was carried out in duplicate for all treatments including the controls (seawater and 

DMSO). Natural, filtered seawater was obtained from the Marine Culture laboratory of the University of 

Cadiz, and 8 L of the seawater was mixed with each test chemical. 16 clams were added to each aquarium, 

totaling 32 per treatment except for the seawater and solvent controls with 14 specimens each. The 

treatments were renewed every three days, during which the water was siphoned out of the holding tanks 

and carefully cleaned and refilled with seawater spiked with freshly prepared contaminant. Any dead clams 

were immediately removed and recorded. The physical and chemical properties were adjusted to the same 
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conditions as reported above during the acclimation period. Three clams were randomly collected from 

each replicate on day 3, 7, 14 and 21, and tissues (digestive gland and gonads) were immediately harvested 

on ice and stored at -80 oC in the laboratory prior to homogenization. 

Buffer was prepared for sample homogenization using 0.1 mM EDTA, 100 mM NaCl, 25 mM HEPES salt, 

and 0.1 mM DTT. The samples stored in the freezer were thawed on ice and the digestive glands and gonads 

of three clams from each aquarium were pooled together for homogenization. The pooled samples were 

homogenized, and a fraction of each homogenate (HF) was centrifuged to obtain supernatant portions at a 

speed of 15.000 x g for 20 min at 4 oC (S15) and 3.000 x g for 20 min at 4 oC (S3). The Bradford (1976) 

methodology was adapted to determine the corresponding total protein (TP) concentration with values 

expressed as mg/mL for different extracts (HF, S3 and S15). The biochemical analyses of the biomarkers 

were quantified using a kinetic microplate reader, Infinite® M200. 

 

2.4 Collection and analysis of exposure water 

Exposure water for each concentration was sampled using clean amber bottles on day 0 and 3 for analysis 

of initial and final concentrations and the samples were kept in -20 oC prior to the chemical analysis. Details 

of the methodology for the chemical analysis and the results of the detection and quantification can be 

found in Ehiguese et al. (2020). 

 

2.5. Biochemical analyses 

2.5.1. Acetyl Cholinesterase (AChE) Activity  

AChE activity was measured in the post-mitochondria fraction of the digestive glands according to the 

methodology described in Guilhermino et al. (1996). 20 µL of the centrifuged S15 fraction was added to 20 

µl of 50 mM potassium phosphate buffer at a pH of 7.5 in 96 transparent, flat bottom wells. 130 μL of 5,5-

Dithiobis (2-nitrobenzoic acid) (DTNB) solution was further added with 50 µL of acetylthiocholine iodide 

solution. The activity of AChE was determined by absorbance measured at 405 nm at every 40 – 52 sec for 

5 – 7 min. The data were expressed as the formation of thiols in pmol DTNB/min/mg TP. 
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2.5.2. Cyclooxygenase (COX) Activity 

COX activity was measured according to Gagné et al. (2015), following the oxidation of 2,7-

dichlorofluoresceine in the presence of arachidonate (Fujimoto et al., 2002). Briefly, 96 dark, flat bottom 

well microplates were coated with 50 μL of the S15 sample. 200 μL of the assay buffer containing 50 μM 

arachidonic acid and 2 μM dichlorofluoresceine was added with 0.1 μg/mL horseradish peroxidase 

containing 50 mM Tris-HCl, pH 8.0 and 0.05% Tween 20. The reaction was incubated at 30 oC for 0, 5, 10, 

15, 20, 25 and 30 min and the fluorescence were measured at 485 nm (excitation) and 520 nm (emission). 

The data were expressed as μmol fluorescein/min/mg TP.  

 

2.5.3. Total lipids (TL) 

TL were measured in gonad and digestive gland tissues following the phosphovanilin method by Frings et 

al., (1972). Dark microplates with 96 flat-bottom wells were coated with 10 µL of samples diluted with 10 

µL of MilliQ. 30 µL of concentrated sulphuric acid and 150 µL of phosphovanilin prepared with vanillin 

and phosphoric acid in water were added and incubated for 10 min at 80 oC and cooled at 4 oC for 2 min. 

The absorbance was determined at 540 nm. A standard solution of Triton X-100 was used for calibration 

and the results were expressed as µg TL/mg TP. 

 

2.6. Molecular effects: Experimental approach 

All tests were performed in static renewal bioassays in triplicate; 200 mL of seawater spiked with each 

treatment (0.5, 5.0 and 50 µg/L) was transferred into laboratory dishes. Then, 10 yolk-sac larvae of C. 

variegatus were randomly selected and transferred into each dish including the controls (seawater and 

DMSO). They were incubated in a Precision Scientific Incubator (Thermo, MA, USA) at 30 oC and the 

exposure water in each dish was renewed every 24 h during the 3 days exposure. Upon termination of the 

experiment, the larvae were inserted into 1.5 mL tubes containing 500 µL RNALater® solution and stored 

at -80 oC prior to RNA extraction. 

 

2.7. Molecular analysis: Quantitative PCR (qPCR) 

For RNA extraction, six larvae per replicate were pooled from each treatment and both controls (seawater 

and DMSO) for homogenization. Total RNA was extracted using RNeasy kits (Qiagen, Hilden, Germany) 
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as described in the manufacturer’s protocol, and the total RNA quantity and quality was assessed 

spectrophotometrically using a NanoDropTM 2000 (Thermo Scientific, Wilmington, DE, USA). Reverse 

transcription of total RNA to single stranded cDNA was performed using RevertAid First Strand cDNA 

Synthesis Kit following the manufacturer’s instructions (Thermo Scientific, Wilmington, DE, USA).  

Real-time qPCR was performed using the primers listed in Table 1. 18s was used as an endogenous control, 

while cyp19 and vtg1 were used as biomarkers of endocrine disruption. All qPCR reactions were performed 

in triplicates using an Applied Biosystems 7500 Fast Cycler with Fast SYBR Green Master Mix (Life 

Technologies, Carlsbad, CA). Relative quantification values compared to the control samples were 

determined by applying the ΔΔCT method. Fold changes in cyp19 and vtg1 genes were log transformed to 

normalize the data. 

 

Table 1. Details of forward and reverse primers 

Gene Primers Amp. Length Ref 

18s 
F: GCTGAACGCCACTTGTCC 

100 

Simning et al., 

2019 R: ATTCCGATAACGAACGAGACTC 

cyp19 
F: CTGTCCCCTGCAATCCCAAT 

72 
This study 

R: AAAGGGGACCCAAACCCAAG 

vtg1 
F: ATGTCACTGTGAAGGTCAACGAA 

68 

Knoebl et al., 

2004 R: ACCTGTTGGGTGGCGGTAA 
 

 

2.8. Statistical Analysis 

All data were analyzed using SPSS (16.0) statistical package. Data normality and homogeneity were 

assessed before statistical tests were performed. One-way analysis of variance (ANOVA) coupled with 

Dunnett’s multiple comparison tests were performed and significant differences between controls and clams 

treated with HHCB and AHTN were determined at p < 0.05. The relationships between effects and 

concentrations were checked using Spearman’s rank order of correlation, and significant points were set at 

p < 0.05 and p < 0.01. For gene expression levels, significant differences were determined using a least-

square difference test and significant difference was set at p < 0.05.  
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3. Results  

3.1. Biochemical effects 

No mortality was recorded in control clams, meanwhile 3% mortality was recorded in clams treated with 

HHCB and ~ 4% mortality in the clams treated with AHTN during the experiment.  
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Figure 1: Acetyl Cholinesterase (AChE) activity measured in the digestive gland tissues of R. 

philippinarum exposed for 21 days to (a) galaxolide (HHCB) and (b) tonalide (AHTN). Asterisks (*) show 

significant differences from control (p<0.05) 
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Figure 2: Cyclooxygenase (COX) activity measured in the digestive gland tissues of R. philippinarum 

exposed for 21 days to (a) galaxolide (HHCB) and (b) tonalide (AHTN). Asterisks (*) show significant 

differences from control (p<0.05). 
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The effects of HHCB and AHTN on AChE activity are presented in Figure 1. There was significant 

inhibition (p < 0.05) of AChE activity in the clams treated with HHCB at 5.0 µg/L and 50 µg/L after 3 days 

(Figure 1a). As the exposure continued, significant differences in AChE activity were further seen in the 

clams treated with 0.005 and 5 µg/L HHCB on days 14 and 21, respectively (Figure 1a). Prolonged 

significant inhibition of AChE (p < 0.05) was triggered by all concentrations of AHTN tested until day 7, 

but only 0.005, 0.05 and 5.0 µg/L concentrations produced significant AChE inhibition by day 14 (Figure 

1b). Interestingly, at the end of the experiment (day 21), the 50 µg/L AHTN exposure showed a significant 

increase in AChE activity. (Figure 1b). 
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Figure 3: Energy reserves measured as total lipids in digestive gland (a & b - DTL) and gonad (c & d - 

GTL) tissues of R. philippinarum exposed for 21 days to galaxolide (HHCB) and tonalide (AHTN). 

Asterisks (*) show significant differences from control (p<0.05). 
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The impact of HHCB and AHTN on COX activity measured in R. philippinarum after 21 days exposure in 

a semi-static bioassay is presented in Figure 2. COX activity was induced in the clams treated with HHCB 

and this induction was significant in the 0.005 and 50 µg/L exposures on day 3. Continuous exposure to 

HHCB up to day 14 produced significant effects on COX activity at the highest concentration (50 µg/L) 

tested, but at day 21 only the 0.05 µg/L concentration significantly increased (p < 0.05) COX activity 

(Figure 2a). On the other hand, AHTN inhibited COX activity in R. philippinarum, and the inhibition was 

significantly different from the control group (p < 0.05) on days 7 and 14 in all the concentrations tested 

except for 0.005 µg/L on day 7(Figure 2b).  

The energy reserves, measured as total lipids, were determined in the digestive gland (DTL) and gonad 

(GTL) tissues of clams exposed to HHCB and AHTN. There was no significant difference in DTL in the 

clams exposed to HHCB (Figure 3a). For the clams exposed to AHTN, DTL increased significantly (p < 

0.05) throughout the exposure period with the exception of the 0.05 µg/L treatment group on days 3, 7, and 

14, and the 0.5 µg/L treatment on days 14 and 21 (Figure 3b). There was no clear pattern in GTL of the 

clams exposed to HHCB, as we observed both significant increases and decreases in GTL depending on 

the treatment and time point (Figure 3c). However, GTL decreased significantly (p < 0.05) after exposure 

to AHTN in all treatment groups except at the lowest concentration (0.005 ug/L) measured on day 7 (Figure 

3d). 

The activities of neuroendocrine biomarkers (AChE and COX) measured in the clams correlated 

significantly with the concentrations of HHCB (p < 0.01) over time (Table S1 – Supplementary Materials). 

For AHTN, a significant time and concentration-dependent correlation of AChE and COX was observed. 

In addition, the inhibition of AChE and COX activities correlated significantly (p < 0.01) (Table S2 – 

Supplementary Materials). Finally, gonad energy reserves (GTL) were significantly depleted over time 

(Table S2 – Supplementary Materials).  

 

3.2. Molecular effects 

There was no mortality in the yolk sac larvae of C. variegatus exposed to HHCB; for AHTN exposures, 

3% mortality was recorded in the fish exposed to the 50 µg/L treatment.  

The expression of cyp19 in yolk sac larvae of C. variegatus exposed to HHCB was slightly upregulated, 

though not significantly in any of the treatments (Figure 4a). However, concentration-dependent 

downregulation of cyp19 was observed in the larvae exposed to AHTN and was significantly different (p < 
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0.05) at the highest concentration (50 µg/L) with more than a 3-fold change in expression compared to the 

controls (Figure 4b).  

Expression of vtg1 measured in the yolk-sac larvae of C. variegatus exposed to both substances had a 

similar pattern to cyp19 expression (Figure 5). HHCB slightly induced the expression of vtg1 and the 

induction was highest at 5.0 µg/L, though not significant (Figure 5a). For AHTN, a concentration-dependent 

downregulation of vtg1 was observed and decreased significantly (p < 0.05) by 3.40-fold versus the controls 

at the 50 µg/L exposure concentration (Figure 5b). 
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Figure 4: Relative gene expression s for cyp19 in C. variegatus yolk sac larvae exposed to (a) galaxolide 

(HHCB) and (b) tonalide (AHTN) for 96 h. Asterisks (*) show significant differences from control 

(p<0.05). 
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Figure 5: Relative gene expression for vtg1 in C. variegatus yolk sac larvae exposed to (a) galaxolide 

(HHCB) and (b) tonalide (AHTN) for 96 h. Asterisks (*) show significant differences from control (p<0.05) 

 

4. Discussion 

The current study assessed the neuroendocrine effects of environmental concentrations of HHCB and 

AHTN in the marine environment by assessing enzyme activities and gene expression levels in marine 

organisms from two taxonomic groups. Biomarkers of endocrine disruption (cyp19 and vtg1) were 

measured in C. variegatus and neurotoxicity (AChE) was measured in R. philippinarum together with 

assessments of neuroendocrine and inflammation responses (COX) and energy reserves (TL). 

 

4.1. Biochemical effects 

Significant concentration-dependent AChE inhibition was observed in the clams treated with 

environmentally comparable concentrations of HHCB and AHTN, at the first time point (3 days of exposure 

- Figure 1). AChE is a well-established biomarker in toxicological studies of neurotoxicity and is the 

enzyme responsible for the deactivation of acetylcholine at the cholinergic synapses, preventing a build-up 

of acetylcholine, which is necessary for the normal functioning of sensory and neuromuscular systems (van 

der Oost et al., 2003; Sturm et al., 2000). AChE is also a target of many organic pollutants, toxic metals, 

human pharmaceuticals and personal care products, which have all been reported to inhibit AChE activity 

(Aguirre-Martínez et al., 2016; Maranho et al., 2015; Matozzo et al., 2005; Stefano et al., 2008). Our 

observations showed that these substances might possess the ability to bind with cholinesterase, preventing 

the breakdown of acetylcholine. It appears that HHCB and AHTN can inhibit AChE after a short exposure 
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to environmental concentrations, but this does vary with the concentration and duration of the exposure 

(Figure 1). For HHCB, limited AChE inhibition was observed at days 14 to day 21 with no significant 

inhibition on day 7 (Figure 1a). This may be because the clams were able to metabolize HHCB to less toxic 

metabolites during the exposure (Balk and Ford, 1999a). On the other hand, all the AHTN exposure 

concentrations inhibited AChE activity until day 14 when all but the highest concentration of AHTN 

significantly (p < 0.05) inhibited AChE activity (Figure 1b). Consequently, chronic inhibition of AChE in 

clams could lead to high levels of acetylcholine, over-stimulation of cholinergic receptors, alteration of 

postsynaptic cell function, and signs of cholinergic toxicity such as morphological and behavioral changes 

may start to manifest (Nallapaneni et al., 2008; Pope et al., 2005; Song et al., 2004; Waseem et al., 2010). 

Furthermore, fatality may occur if AChE activity is depressed during exposure to cholinesterase-inhibiting 

chemicals due to the overstimulation of the target cells (Sancho et al., 2000). The nitro musk compound 

ambrette was previously reported to possess neurotoxic potential as well as elicit carcinogenesis in 

organisms, leading to its prohibition (Nair et al., 1986; Spencer et al., 1984). Our results are comparable 

with other studies reporting inhibition of AChE in bivalves after chronic exposure. Shan et al. (2020) 

reported significant inhibition of AChE in the digestive gland of Asian clams (Corbicula fluminea) exposed 

to 20 - 2000 µg/L imidacloprid for 30 days. Similarly, 0.1 – 1 µg/L carbamazepine, 5 and 50 µg/L caffeine, 

and 50 µg/L ibuprofen significantly decreased AChE activity assessed in the digestive gland of C. fluminea 

after 21 days exposure (Aguirre-Martínez et al., 2018). In contrast, environmental concentrations (15 µg/L) 

of ibuprofen and carbamazepine reportedly increased AChE activity assessed in the gills of R. 

philippinarum after 7 days exposure (Trombini et al., 2019).  Although both HHCB and AHTN inhibited 

AChE activity at various points, AHTN appears to be more robust at inhibiting AChE because it exerted 

prolonged inhibition of AChE activity until day 14, although the clams seem to have recovered by day 21 

(Figure 1b). These results demonstrate the potential of polycyclic musk compounds as neuroinhibitors and 

provide a baseline upon which neurotoxicity of HHCB and AHTN could be further investigated.  

HHCB increased COX activity in clams, though this inhibition was also concentration and time-dependent 

(Figure 2a). COX catalyzes arachidonic acid to form prostaglandins which are responsible for several 

physiological and reproductive functions in aquatic organisms (Di Costanzo et al., 2019). It is an important 

indicator of inflammation in aquatic organisms exposed to environmental stressors (Gagné et al., 2015). 

Clams exposed to wastewater effluents in the Bay of Cadiz (Spain) exhibited significantly inhibited COX 

activity and triggered inflammatory responses in the gonad tissues, which correlated significantly with 

general stress, measured as lysosomal membrane stability (Díaz-Garduño et al., 2018). Recent studies have 

demonstrated that both HHCB and AHTN induce oxidative stress in clams (Ehiguese et al., 2020). In 

addition, COX synthesis of prostaglandins is involved in the control of oogenesis and spermatogenesis in 
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aquatic invertebrates (Di Costanzo et al., 2019) and controls the effect of serotonin in the spawning process 

of bivalves (Matsutani and Nomura, 1987). Prameswari et al. (2017) demonstrated that arachidonic acid 

induced a significantly (p < 0.001) increased ovarian index, oocyte diameter and ovarian vitellogenin in the 

freshwater crab (Oziothelphusa senex senex). The authors reported that COX inhibitors, including 

indomethacin and aspirin, significantly (p < 0.001) reduced ovarian index, oocyte diameter and ovarian 

vitellogenin levels, corroborating the involvement of COX in the regulation of female reproduction in crabs. 

Given the concentration-dependent alteration of COX activity in clams exposed to HHCB and AHTN, 

reproductive success could be at risk, but additional research is needed to validate this hypothesis.  

Furthermore, the functions of COX activity in marine bivalves are not fully understood but the significant 

correlation of COX and AChE activities in clams exposed to AHTN (Table S2 – Supplementary Materials) 

suggests that COX activity may be involved in neuroendocrine functions in marine bivalves. Consequently, 

AHTN might be a neuroendocrine disruptor in the marine environment.  

To understand toxicity-driven energy deficit in clams, TL in the digestive gland and gonadal tissues were 

measured. It was hypothesized that chemical stress may trigger significant energy demand due to relatively 

high enzyme activities. For R. philippinarum exposed to HHCB, total lipids measured in DTL were 

unaffected and we did not observe any clear tendency in energy level measured in the gonads (Figure 3 a, 

b). The DTL measured in the clams exposed to AHTN was significantly (p < 0.05) higher than the control 

for most treatments and time points (Figure 3b), but GTL was significantly reduced in most treatments and 

time points (Figure 3d). Total lipids assessed in the gonad of R. philippinarum exposed to wastewater 

effluents was significantly reduced in other studies (Díaz-Garduño et al., 2018; Maranho et al., 2016). The 

variation in total lipids assessed in this study, especially for HHCB, did not reveal any clear trend.   

 

4.2. Molecular effects 

Exposure of fish to endocrine disrupting chemicals in the marine environment has serious consequences 

concerning survival and reproduction. In yolk-sac C. variegatus larvae exposed to HHCB, the expression 

of cyp19 showed no concentration-dependent transcriptional effect (Figure 4a). Meanwhile, we observed 

concentration-dependent downregulation of cyp19 expression levels after 3 days of exposure to AHTN 

(Figure 4b). Similarly, significant downregulation of cyp19b expression levels were measured in juvenile 

salmon exposed to 0.04 – 1 mg/L of the organophosphate flame retardant, tris(2-cloroethyl) phosphate for 

7 days (Arukwe et al., 2016), and significant dose-dependent downregulation of cyp19a and cyp19b were 

recorded in the ovaries of adult marine medaka exposed to 2 – 5 ng/L 17β-trenbolone for 21 days (Zhang 

et al., 2020). In contrast, cyp19a and cyp19b expression levels were upregulated in adult male and female 
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Danio rerio  exposed to 1 mg/L perfluorodecanoic acid (Jo et al., 2014) and perfluorononanoate (Zhang et 

al., 2016). cyp19 is an important biomarker of endocrine disruption in teleosts because aromatase,  the 

enzyme involved in the conversion of androgen to estrogen, plays an essential role in sexual differentiation, 

maturation, and reproduction (Cheshenko et al., 2008). cyp19 is regarded as a major target for endocrine 

disrupting chemicals because modulation of its expression and function may potentially disrupt estrogen 

production (Cheshenko et al., 2008; Kazeto et al., 2004). Our results suggest that AHTN may be a more 

potent modulator of cyp19 expression than HHCB (Figure 4). Previous reports in an in vitro study using 

the H295R cell line exposed to 25 µM HHCB demonstrated upregulation of cyp19, while AHTN 

downregulated cyp19 by 43% of the basal control (Li et al., 2013). The modulation of cyp19 by HHCB and 

AHTN in C. variegatus larvae may affect estrogen biosynthesis and, as a result, alter the survival, sexual 

behavior, and sex differentiation in fish. Although most studies of estrogen as an endocrine disruption 

biomarker in fish are related to reproductive functions or tissues, estrogen alteration may also affect tissue 

mineralization and mineral homeostasis (Suzuki et al., 2009; Yoshikubo et al., 2005), as well as delay 

development in early life stage fish (Rawson et al., 2006).  

The induction and inhibition of vtg1 in R. philippinarum exposed to HHCB and AHTN, respectively, was 

similar to cyp19 (Figure 5). The basis for this similarity is not well understood but it appears that because 

vitellogenin is induced by estrogen (which is biosynthesized by the enzyme complex aromatase that 

converts androgen into estrogen), effects on cyp19 may trickle down to have an impact on vitellogenin 

(Andersen et al., 2003). Previous studies have demonstrated correlations between aromatase and 

vitellogenin in fish exposed to endocrine disrupting chemicals (Andersen et al., 2003; Bizarro et al., 2014). 

However, further investigation is needed to help understand the relationships between the effects of 

contaminants on both biomarkers. Similar to our observation for vtg1 measured in C. variegatus yolk-sac 

larvae exposed to HHCB, there was no statistically different increase in plasma vitellogenin levels in 

rainbow trout intraperitoneally injected with 1.41 X 10-5 mol/Kg of HHCB for 5 days (Simmons et al., 

2010). Previous research on the effects of both contaminants have showed that a three day exposure of male 

medaka to 5, 50 and 500  µg/L of HHCB and AHTN led to a significant induction in the expression of vtg1 

at 500 µg/L (Yamauchi et al., 2008). Meanwhile, the concentration of AHTN that elicited significant 

inhibition of vtg1 in our study was much lower (50 µg/L), which may be attributed to age differences as 

fish larvae tend to be more sensitive to environmental contaminants than adults (Hutchinson et al., 1998). 

Reports of other chemicals inducing differential vtg1 expression levels in fish abound. For example, three 

generations of Oryzias melastigma exposed to 20 and 200 µg/L benzo[a]pyrene demonstrated significant 

downregulation of vtg1 expression (Sun et al., 2020).  In addition, female Oryzias melastigma exposed to 

lower concentrations (2 and 10 ng/L) of 17β-trenbolone (Zhang et al., 2020) and F1 generation male 
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Oryzias latipes exposed to metformin (Lee et al., 2019) all significantly downregulated vtg1 expression 

levels. Contrarily, exposure of male Oryzias melastigma to 10 and 50 ng/L of 17α-ethynylestradiol 

significantly upregulated vtg1 expression level (Zhang et al., 2020).   

Generally, the concentrations of PMCs causing effects should be interpreted with caution due to their high 

volatility and potential to adsorb to aquaria walls. From our studies, the concentrations of HHCB and AHTN 

measured on day 0 were 74.26±18.38% and 88.50±19.09%, respectively and degraded to 22.00±1.41% and 

26.37±4.24%, respectively on day 3 (Ehiguese et al., 2020). Tumová et al. (2019) suggested that the toxicity 

of PMCs for aquatic organisms under semi-static conditions could be underestimated due to the potential 

volatility in the aquarium, significantly lowering the concentration over time. 

 

5. Conclusion 

This study assessed the neuroendocrine effects of HHCB and AHTN using the marine bivalve R. 

philippinarum and yolk-sac larvae of an estuarine species, the sheepshead minnow, C. variegatus. Changes 

in AChE and COX activities as biomarkers of neuroendocrine effects were observed in the clams, though 

the exact effects varied with concentration and duration of exposure.  cyp19 and vtg1 gene expression in 

yolk-sac C. variegatus larvae after 3 days of exposure to HHCB revealed no effect for the expression of 

either gene, but AHTN significantly downregulated the expression of both genes at 50 µg/L. The 

biomarkers studied provided useful insights to understand the potential neuroendocrine toxicity of both 

substances in the marine environment. Although significant changes were detected in some of the 

biomarkers after exposure to each contaminant, AHTN seems to be a more potent inhibitor of 

neuroendocrine functions in marine organisms than HHCB. 
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4.1 General discussion 

The main objective of this thesis was to assess the environmental risk of the PMCs (HHCB and AHTN) in 

marine environments because evidence have shown that these substances are present in different 

compartments of the ecosystems. Moreover, as enumerated in chapter 1, they have been found to 

bioaccumulate in marine organisms of different trophic levels (Moon et al., 2012a, 2012b; Nakata, 2005; 

Nakata et al., 2007). Therefore, hypotheses were developed to address the risks of those musks to marine 

organisms at molecular, biochemical, and individual levels. Research experiments were designed to test 

different hypotheses. Environmental risk assessments of these substances were performed determining 

dose-response relationships where acute and chronic effects were studied after exposure to different 

concentrations of HHCB and AHTN. Different species, representing different trophic levels and levels of 

biological organization as well as different endpoints were examined. Experimental design involved short-

term impacts of HHCB and AHTN on the growth of the microalgae Phaeodactylum tricornutum, 

Tetraselmis chuii, Isochrysis galbana and Raphidocelis subcapitata, the fertilization success, larval 

development of sea urchin (Paracentrotus lividus) and mussels (Mytilus galloprovincialis), motility and 

survival of artemia (Artemia franciscana), and survival of fish yolk sac larval (Sparus aurata). Other 

hypotheses tested were related to the loss of biodiversity due to the effects on the spatial displacement of 

organisms and the possible immediate population decline of marine organisms (namely the shrimp 

Palaemon varians) under a heterogeneous chemically exposure scenario, biochemical changes in the clams 

Ruditapes philippinarum after chronic exposure and modulation of gene expression of endocrine 

biomarkers in yolk sac larval of the fish Cyprinodon variegatus. 

HHCB and AHTN have low molecular weight (<300 g/mol) and high octanol-water partition coefficient of 

5.9 and 5.7, respectively (Balk and Ford, 1999). These substances are lipophilic, and they are frequently 

detected emerging contaminants in aquatic ecosystems because they are incorporated in household and 

personal care products, which are used only for external purposes (Sumner et al., 2010). Therefore, this 

PhD thesis investigated the effects of HHCB and AHTN by exposing different organisms under laboratory 

conditions to environmental relevant concentrations of these substances. Because of the inherent 

lipophilicity of HHCB and AHTN, it is suspected that under laboratory condition they may adsorb to 

aquaria walls and bioaccumulate in the exposed organisms but, due to practical limitations, the 

bioaccumulation of both compounds was not assessed. Except for the acute toxicity study reported in 

chapter 3, the exposure water for the chronic toxicity and the spatial avoidance assays were measured and 

the results showed that HHCB and AHTN degrade in the laboratory a few hours after exposure to as low 

as 23% after 3 day. Therefore, the effects recorded were cautiously interpreted because the concentration 

causing the effects may be much lower than the nominal concentrations. 
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The current chapter focuses on the general discussion of the results found in this PhD research. Different 

assay methodologies were used including forced exposures in a static and semi-static bioassay, and non-

forced exposure systems to understand the range of effects these compounds might exert on marine 

ecosystems. Furthermore, a range of effects were detected in the various studies that were conducted at 

different levels of biological organization, from molecular levels to effects related to spatial distribution at 

the landscape level (e.g., avoidance studied in a non-forced exposure system). The general discussion in 

this chapter is therefore attempted to elucidate the stress and damage that HHCB and AHTN could provoke 

after exposure to marine organisms, from different levels of biological organization. The analysis of dose 

response might help in the prediction of adverse effects that these substances may cause at higher levels of 

the biological organization. 

 

4.2 Marine environmental risk of HHCB and AHTN measured at the molecular level. 

Overt contaminant driven ecological stress is initiated at a lower level of biological organization because 

bioavailable environmental chemicals can interact with macromolecules to alter biomolecular structures 

that play an important role in regulating the physiology of living organisms. Ribonucleic acids (RNA), 

which are produced by cellular process of transcription, and messenger RNA (mRNA), which translates 

genetic messages from deoxyribonucleic acids (DNA) to protein, can be isolated in exposed organisms 

using tissues, organs, or whole organisms, and quantified to evaluate pollution driven molecular effects 

(Lowe et al., 2017). In addition, significant improvement in bio-analytical technology has made it possible 

to assess and quantify these alterations and provide understanding of the mode of action of contaminants in 

biological systems, because molecular mechanism of toxic effects is fundamental to understanding the 

detrimental biochemical and physiological effects contaminants can exert on organisms. 

Molecular effects of HHCB and AHTN in post hatched larval C. variegatus using biomarkers related to 

endocrine disruptions were measured. Relative expression of cyp19 and vtg1 in the fish were quantified 

after 3 days exposure to environmental concentrations of the test chemicals because these genes are 

regarded as important biomarkers of aromatase inhibition (Muth-Köhne et al., 2016). Cyp19 gene codes for 

the cytochrome P450 enzyme aromatase, an important biomarker of endocrine disruption in teleost 

(Cheshenko et al., 2008). Aromatase is the enzyme involved in the conversion of androgen to estrogen, 

which play a key role in the control of sexual differentiation, maturation and reproduction (Cheshenko et 

al., 2008). Cyp19 is regarded as a major target for endocrine disrupting chemicals because modulation of 

its expression and function may potentially disrupt the level of estrogen production (Cheshenko et al., 2008; 

Kazeto et al., 2004) and it is frequently assessed in fish because its susceptibility to endocrine disruptors is 
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conserved throughout life (Le Page et al., 2011). On the other hand, vtg1 is an estrogen receptor element 

gene that regulates vitellogenin synthesis in its promoter region and it is largely expressed in the liver of 

adult fish (Tingaud-Sequeira et al., 2012; Tran et al., 2019); although, studies have shown that this gene is 

active in 24 h post fertilized embryos (Hao et al., 2013; Muth-Köhne et al., 2016). Therefore, alteration in 

vtg1 expression will reduce vitellogenin production, which could lead to significant reduction in oocyte 

quality and maturation in female teleost (Muth-Köhne et al., 2016). Also, expression of both genes provides 

understanding of mechanism of action and represent molecular initiating events in the adverse outcome 

pathways of endocrine disrupting chemicals. 

The expression of cyp19 and vtg1 in the yolk sac larvae of the sheepshead minnow exposed to AHTN and 

HHCB was similar. Both cyp19 and vtg1 genes were weakly upregulated after exposure to HHCB except 

for larvae exposed to 5 µg/L HHCB that were moderately upregulated by approximately 1.8-fold change in 

both genes. Contrarily, AHTN downregulated the expression of both gene in a concentration dependent 

pattern, being significantly different from the control by more than 3-folds at 50 µg/L. The expression of 

both genes in the early life stage of C. variegatus is indicative of the potential endocrine disrupting effects 

of these polycyclic musk compounds. Although the expression of these genes in yolk sac larvae of C. 

variegatus have not been previously reported, the current study attested that these genes are active in 

sheepshead minnow from post-hatch stage, and it is conserved in its entire life. Similarly, vtg1 expression 

has been reported in zebrafish and found to be active around 24 h post fertilization (hpf) (Jarque et al., 

2019; Muth-Köhne et al., 2016). 

The expression of cyp19 in teleost by environmental chemicals is well reported and such alteration leads to 

skewed sex ratio because inhibition of estrogen favors over production of androgen, which leads to 

masculinity (Muth-Köhne et al., 2016). For example, Cyprinus carpio and Oreochromis niloticus treated 

with the cyp19 inhibitor letrozole resulted in 79.39±1.09% and 87.91±1.39% masculinization, respectively, 

when compared to negative control with sex ratio of 48.28% male to 50.78% female C. carpio and 46.38% 

male to 53.62% female O. niloticus (Singh and Srivastava, 2015). Similarly, Afonso et al. (2001) reported 

that the nonsteroidal aromatase inhibitor fadrozole favored increased masculinization in O. niloticus after 

treatment for 30 days in dose dependent manner. These results combined with significant down regulation 

of vtg1 and cyp19 in different life stages of zebrafish exposed to fadrozole (Muth-Köhne et al., 2016), a 

pattern comparable to this study, confirms the endocrine disrupting potential of HHCB and AHTN. 
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4.3 Marine environmental risk of HHCB and AHTN measured at cellular level. 

Sublethal effects of HHCB and AHTN were measured after chronic exposure using as bioindicator species 

the clam R. philippinarum. Organisms were exposed to environmental concentrations of HHCB and AHTN 

during 21 days in a semi-static renovation bioassay. In that study, it was intended to understand the 

mechanism of defense by exploring a suite of biomarkers related with biotransformation of contaminants 

(ethoxyresurofin-O-deethylase – EROD and glutathione-S-transferase – GST), oxidative stress (glutathione 

peroxidase – GPx, glutathione reductase – GR and lipid peroxidation - LPO), genotoxicity (DNA damage), 

neuroendocrine toxicity (acetylcholinesterase – AChE and cyclooxygenase -COX) and energy reserve 

disruption measured as total lipids content (TL). The use of R. philippinarum as a model organism for 

biomarker-based assessment of marine contamination gained attraction in the last decades and has widely 

been used to investigate the potential toxicity of pesticides (Tao et al., 2013), metals (Aouini et al., 2018; 

Ji et al., 2019; Santana et al., 2017; Wang et al., 2011), wastewater effluent (Díaz-Garduño et al., 2018, 

2016; Maranho et al., 2015a; Maranho et al., 2015b), and pharmaceutical products (Aguirre-Martínez et 

al., 2013; Aguirre-martínez et al., 2016; Almeida et al., 2015; Matozzo et al., 2012; Milan et al., 2013; 

Trombini et al., 2019; Volland et al., 2015) and nanoparticles (De Marchi et al., 2017; Marisa et al., 2018). 

Therefore, this research explored the possibility of the clams to provide useful information for the ERA 

(Environmental Risk Assessment) of HHCB and AHTN in marine environments after chronic exposure by 

evaluating biochemical alterations in digestive gland and gonad tissues. 

The impacts of HHCB and AHTN in digestive gland and gonad tissues of R. philippinarum using 

biotransformation enzymes revealed toxic influence of the tested compounds as both EROD and GST 

activities were significantly induced. Biotransformation process involves conversion of hydrophobic 

substances capable of depolarizing the permeability of cell membrane to excretable hydrophilic substances. 

The two phases of the biotransformation process initiated by oxidation in phase 1 to conjugation of phase I 

metabolite in phase II were activated in the clams, thus defending the organism from toxic effects of 

contaminants. However, the capacity to metabolize xenobiotics to non-toxic products could be 

overwhelmed and in that case the species involved may undergo oxidative stress. Secondly, the metabolites 

of the transformed substances may be more toxic than the parent compounds, consequently leading to 

severe damage in the cellular components of the organism. Significant changes in EROD and GST activities 

at each sample time-point is indicative of prolonged detoxification activities in the clams and correlated 

with antioxidants enzyme activities because clams exposed to HHCB and AHTN significantly induced GPx 

activities. Contrarily, GR enzyme activity was significantly decreased in clams exposed to HHCB and 

AHTN measured in each time-point and this is very important because deactivation of GR activity 

proportionally affects the capacity of other antioxidants enzymes to prevent the cell from oxidative attack 
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caused by ROS (Regoli and Giuliani, 2014). HHCB and AHTN are known to modulate antioxidants 

activities in both aquatic and terrestrial ecosystems. Reports showed that these compounds significantly 

affect antioxidants enzymes in Danio rerio after chronic exposure to concentration range of 50 – 50000 

ng/L (Blahova et al., 2018), Carassius auratus after chronic exposure to concentration range of 15 – 150 

µg/L (Chen et al., 2012) and earthworms after 48-h exposure to concentration range of 11.87 – 20.76 µg/cm2 

(Chen et al., 2011). 

In clams exposed to HHCB and AHTN, positive correlations were detected in detoxification, oxidative 

stress, and DNA damage biomarkers, linking the impacts of both substances on the antioxidant enzymes to 

cellular damage. Similarly, the degradation of the phospholipid bilayer of the cell membrane due to lipid 

peroxidation in clams exposed to both compounds showed to exerted direct DNA damage. However, it is 

not clear if lipid peroxidation in the clams directly led to DNA damage found in the exposed organisms. 

Although that is a possible hypothesis, it was not tested in this research. Also, DNA damage in clams 

exposed to both substances for 21 days could be caused by the formed metabolites because the metabolites 

of these chemicals may be more toxic than the parent compounds (Gao et al., 2016). Other research on the 

peroxidation and cellular damage caused by HHCB and AHTN have shown that both substances 

significantly increased lipid peroxidation and DNA damage in zebra mussel Dreissena polymorpha at 

environmental concentration (Parolini et al., 2015), rainbow trout (Hodkovicova et al., 2020) and higher 

concentrations significantly increased lipid peroxidation in earthworm (Chen et al., 2011; Liu et al., 2011). 

Other biochemical indicators of ecotoxicity of HHCB and AHTN were measured using neuroendocrine 

parameters such as AChE and COX activities. Both substances significantly inhibited AChE activity in 

clams after 3 days of exposure and this impact was observed throughout the exposure period for HHCB, 

whereas AHTN showed recovery after day 21. Contrarily, COX activity was significantly induced in clams 

exposed to HHCB and significantly inhibited in clams exposed to AHTN. Similar behavior of AChE and 

COX activities were observed in clams exposed to AHTN as the inhibition of both enzymes lasted till day 

14 and reversed on day 21, indicating recovery from the suppression imposed by AHTN. This is the first 

time these parameters have been reported in marine environments and serve as baseline information for 

future investigation regarding the neuroendocrine effects of HHCB and AHTN. The effects detected in 

clams are similar to those of pharmaceutical products previously reported. For example, ibuprofen, 

carbamazepine, and propranolol decreased COX activity in the marine polychaetes Hediste diversicolor 

after 14 days exposure (Maranho et al., 2015) and environmental concentration of caffeine significantly 

induced AChE and COX activities in Corbicula fluminea (Aguirre-Martínez et al., 2018).  
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Chronic inhibition of AChE in clams could lead to high levels of acetylcholine, over-stimulation of 

cholinergic receptors, alteration of postsynaptic cell function and signs of cholinergic toxicity such as 

morphological and behavioral changes may start to manifest (Nallapaneni et al., 2008; Pope et al., 2005; 

Song et al., 2004; Waseem et al., 2010). Furthermore, fatality may occur if AChE activity is depressed on 

exposure to cholinesterase inhibiting chemicals due to overstimulation of the target cells (Sancho et al., 

2000). In addition, COX synthesis of prostaglandins is involved in the control of oogenesis and 

spermatogenesis in aquatic invertebrates (Di Costanzo et al., 2019) and controls the effect of serotonin in 

the spawning process in bivalves (Matsutani and Nomura, 1987). Prameswari et al. (2017) demonstrated 

that the freshwater crabs (Oziothelphusa senex senex), induced with arachidonic acid, significantly (p < 

0.001) increased the ovarian index, oocyte diameter and ovarian vitellogenin. The authors reported that 

those induced with COX inhibitors, including indomethacin and aspirin, significantly (p < 0.001) reduced 

ovarian index, oocyte diameter and ovarian vitellogenin levels in crabs, corroborating the involvement of 

COX in regulation of female reproduction in crabs. Given the significant concentration-dependent alteration 

of COX activity in clams exposed to HHCB and AHTN, reproduction and survival of this organism might 

be at risk, posing potential threat to marine biodiversity.   

 

4.4 Spatial avoidance as a complementary tool for environmental risk assessment of HHCB and 

AHTN in marine environment 

The study of avoidance behavior was used as an additional line of evidence to determine the potential risk 

of HHCB and AHTN for the spatial distribution of populations in marine environments. The shrimps P. 

varians exposed to a contaminant gradient of each substance (0.0 – 50 µg/L) in a non-forced multi-

compartmented exposure system significantly avoided toxic areas to less toxic compartments. It was 

possible to see that when shrimps were exposed in a forced system, even for a longer time than the 

avoidance, lethality was minimal. Furthermore, both avoidance responses under a non-forced system and 

lethality under a forced system were integrated to estimate the population immediate decline and overt 

population immediate decline driven largely by avoidance behavior was detected. This line of evidence 

demonstrates the potential repellent of HHCB and AHTN for the marine environments. Thus, it would be 

expected that in a scenario of heterogeneous contaminant dispersion motile organisms will evade 

contaminated areas towards safer conditions (Araújo and Blasco, 2018). In addition, contaminated areas 

may lose some part of its population due to escape from noxious substances with possible long-term impacts 

on structure and functioning of ecosystems at the local level. However, under higher concentration where 
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the organisms are stupefied before they could emigrate from the contaminated area, the lethality in a short 

term might contribute more to population immediate decline at local scale (Araújo et al., 2014a, 2014b). 

In particular, the shrimps were not lethally sensitive to HHCB and AHTN after a 24-h exposure in a forced 

exposure condition, but they were highly sensitive and able to avoid concentrations of those compounds in 

the non-forced tests. Therefore, avoidance helps to prevent sub-lethal effects that organisms could suffer 

after continuous exposure. Also, because the median avoidance behavior estimated for shrimps exposed to 

HHCB was 28 times lower than median lethal concentration after 24-h exposure in a forced system, the 

prediction of the ecological risk of HHCB and AHTN based only on data from forced exposure tests might 

give an insight to the potential toxicity of these substances, but it fails to examine the total impacts at the 

community level. The escape of the population due to the repellence of a contaminant might bring serious 

consequences for the ecosystems, even similar to the death of the populations, because part of or the entire 

population emigrated (Lopes et al., 2004; Moreira-Santos et al., 2008). When organisms are propelled to 

move towards other areas, even if no toxic consequences could be observed, the ecosystem is suffering with 

an imbalance in the ecological interactions due to the loss of biodiversity. Therefore, avoidance response is 

a response that might prevent organisms of suffering, but not the ecosystem. Under real conditions, great 

part of the reduction in the biodiversity that could not be explained by toxic effects, as the concentrations 

are not very high, might be a consequence of this escape behavior. The repellence of both musks might 

influence the spatial distribution of organisms, affect the quality of ecosystems to be considered habitable 

and restrict the number of potentially colonized areas (Araújo et al., 2020). Consequently, spatial avoidance 

as presented in this thesis should be regarded as a complementary line of evidence in estimating the 

environmental risk of HHCB and AHTN. 

 

4.5 Acute toxicity and overview of the potential risks of HHCB and AHTN on structure and 

functioning of marine ecosystems 

The acute toxicity of environmental concentrations of HHCB and AHTN were performed in a static 

bioassay using as test organisms the microalgae P. tricornutum, T. chuii, I. galbana and R. subcapitata for 

72 h and early life stage of A. franciscana, P. lividus, M. galloprovincialis and S. aurata to determine the 

impacts of PMCs on their growth performance, development, and survival. The use of microalgae in 

ecotoxicology to predict the impacts of contaminants in marine ecosystems is highly significant because 

they are primary producers, occupying the base of the food pyramid and providing stability for the entire 

ecosystem. Contaminants impact on microalgae can exert direct effects on the marine ecosystems by 
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reducing microalgae biomass and increasing competition for scarce food resources in dependent trophic 

levels or indirectly at population or community levels (Fleeger et al., 2003). Because of the low impact of 

both substances on microalgae growth it was only possible to calculate the IC10 for P. tricornutum with a 

value of 0.127 and 0.002 µg/L for HHCB and AHTN, respectively, and I. galbana, 5.22 and 0.328 µg/L for 

HHCB and AHTN, respectively. For the other species, the IC10 values were out of the range of 

concentrations that were used in this study and as such were not recorded, although they were useful to 

understand the species-specific sensitivity to PMCs. Furthermore, a recent study of the impact of HHCB to 

the microalgae Navicula sp. and Scenedesmus quadricauda recorded EC50 values of 0.050 and 0.336 mg/L 

after 3 days exposure (Ding et al., 2020). This together with this study corroborated the differential 

sensitivity of HHCB and AHTN toxic impacts to microalgae growth. Again, comparing the degree of 

toxicity of HHCB and AHTN to microalgae, it becomes apparent that AHTN inhibited the growth of I. 

galbana 15 times more than HHCB. I. galbana seems to be very sensitive to emerging contaminants 

because previous studies have reported IC10 value of 3.69 µg/L of the UV-filter, benzophenone-3 (Paredes 

et al., 2014). From the data obtained in this study, the impacts of HHCB and AHTN to microalgae growth 

could be regarded as low. However, this should be carefully examined because the nominal concentrations 

of HHCB and AHTN may not be available to the microalgae as the inherent lipophilicity of these substances 

favor adsorption to the aquaria walls and possible bioaccumulation in the microalgae. Although in this 

thesis the exposure water and bioaccumulation could not be measured due to practical limitations, previous 

study has shown that HHCB bioaccumulated in microalgae (Ding et al., 2020). 

The impacts of the tested PMCs on early life development of marine organisms as presented in chapter 3 

revealed significant concentration dependent toxicity in early life stages of sea urchin, mussels, and fish. 

However, the effects were more pronounced in sea urchin and mussel larval development than in Artemia 

and fish survival tests. Significant concentration dependent effects were observed in sea urchin fertilization, 

mussel larvae development and fish yolk sac larvae survival tests. Sea urchin fertilization success was 

significantly reduced by 0.05, 0.5 and 5 µg/L of HHCB, whereas only 0.05 µg/L AHTN affected sea urchin 

fertilization success. It appears that the sperm may have been incapacitated by HHCB and AHTN since the 

spermatozoa were first exposed for about 10 min before the eggs were added; thus, reducing fertilization 

success in sea urchin. Compared to other substances, the effects of HHCB and AHTN on sea urchin 

fertilization was lower. For example, same concentration of propanol and 17 α-ethinylestradiol reduced sea 

urchin fertilization success by 24.1% and 36.9%, respectively, (Capolupo et al., 2018) as against 19% and 

16.67% for HHCB and AHTN, respectively. 

Early life stages of aquatic organisms are useful tools for toxicity testing and have been approved as a faster 

and more cost-effective means of screening chemicals and environmental samples, because newly hatched 
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larvae are sensitive to exogenous substances as the embryos lose their protective membranes and are fully 

exposed to potential toxicants (Beiras et al., 2003). P. lividus and M. galloprovincialis are well recognized 

in toxicity bioassays and are applied globally for the evaluation of toxicity of marine contaminants by the 

exposure of gametes to aqueous phases, such as surface waters, pore waters (Aguirre-Martìnez et al., 2015; 

Bellas et al., 2005) and elutriates (Losso et al., 2007). Significant effects were observed in P. lividus and 

M. galloprovincialis larvae exposed to HHCB and AHTN compared to the control. The effects of HHCB 

on sea urchin larvae development was significantly different (p < 0.05) compared to the control, and only 

44.33% of larvae were able to develop to the pluteus stage after 48 h exposure to 5 µg/L HHCB. However, 

the sensitivity of sea urchins to AHTN was observed at 0.5 µg/L, reducing larval development by 

approximately 45%. The impact of contaminants on sea urchin larval development is well documented and 

significant reports have proven that they represent an important biomonitoring tool for ecosystem health. 

Similarly, HHCB and AHTN significantly (p < 0.05) affected the development of M. galloprovincialis 

larvae when compared to the control. However, when considered in relation to the number of embryos 

exposed to each contaminant, the effects were incipient with the highest percentage of deformed and 

undeveloped embryos being 19.88% and 17.60% for HHCB and AHTN, respectively. Although P. lividus 

and M. galloprovincialis larvae development tests were similar, the effects recorded were more pronounced 

in sea urchin larvae than mussels. 

Fish early life stage is well recommended for chemical screening and is popularly used for regulatory 

purposes because the test is quick, affordable and provides reliable information on the environmental 

impacts of contaminants. The post hatched larvae of S. aurata exposed to environmental concentrations of 

HHCB and AHTN was moderately affected. Although significant differences were observed, it was 

primarily due to the high survival rate recorded in the control group. The highest mortality was recorded at 

5 µg/L for each contaminant and the percentage mortality was 14%. Compared to early life stages of the 

invertebrates tested, fish survival test was among the least sensitive species and this has been confirmed by 

recent investigations, which support high sensitivity of invertebrates’ early life development to 

contaminants of emerging concern as against fish early life development (Aguirre-Martínez et al., 2015; 

Capolupo et al., 2018; Paredes et al., 2014). 

Generally, the bioaccumulation and toxicity of PMCs in microalgae, invertebrates and fish may pose a 

threat to the stability of ecosystem structure and functioning; firstly, because trophic transfer of 

contaminants may have higher risk to organisms at successive trophic level due to biomagnification (Figure 

7.1). For example, HHCB was bioaccumulated in S. quadricauda at intracellular content of 86±1.8 mg/L 

after 3 days exposure to 2 mg/L HHCB (Ding et al., 2020), which could be ingested by organisms depending 

on it as food source following the trophic transfer pathway presented in Figure 7.1. However, this is only 
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conjectural consequent to paucity of research to validate the biomagnification of synthetic musks in aquatic 

organisms. Field investigation of bioaccumulation of PMCs and to elucidate possible trophic transfer was 

conducted by Nakata et al. (2007) and found that the concentrations of HHCB and AHTN in different 

marine organisms were negatively correlated. Again, it is important to state that the organisms assessed by 

the authors were both pelagic and benthic which means that, though some of the organisms belong to lower 

trophic levels, they may be exposed to higher concentrations due to interaction with sediments, if they are 

benthos. Notwithstanding, more investigation at the community level is still needed to understand the 

trophic transfer of these substances.  

 

 

 

Figure 7.1: Description of how HHCB and AHTN might bioaccumulate and biomagnify through trophic 

transfer. Adapted from Popek (2018). 

 

Secondly, population and natural communities may be affected directly or indirectly by contaminants 

because sensitive species may be destroyed by lethality or impaired by sub-lethal effects, which could lead 

to changes in the ecology of that system. Contaminant-induced changes may also initiate trophic cascade 

or a release from competition that alternatively results to responses in tolerance species. Also, contaminant 

driven alteration in nutrient and oxygen fluxes may alter ecosystem function (Fleeger et al., 2003). The 

direct effects of HHCB and AHTN presented in this study may reduce abundance by mortality or reduced 

recruitment at population level. For example, the significant abnormal larval development influenced by 
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HHCB on P. lividus (predator/grazer) might impact the population dynamics of sea urchin in the marine 

environment that could lead to cascading indirect effects on resistant species in other trophic levels. 

Furthermore, HHCB and AHTN may influence those organisms that positively affect the fitness of other 

species as a result of changes in their environment, and consequently result in alteration in abundance of 

related species. Lastly, the indirect effects of these contaminants, may increase or decrease abundance at 

the community level due to increase competition for nutrients and/or food resources.  
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4.6 Future perspectives 

Generally, this thesis evaluated the environmental risk of HHCB and AHTN in marine environments by 

providing relevant information to bridge important ecotoxicity data gap needed. For that propose, laboratory 

bioassays under forced and non-forced exposure systems were conducted using both invertebrates and fish 

as test organisms. The results obtained in this research provide baseline information for future investigations 

of the impacts of these substances and to design environmental management programmes regarding HHCB 

and AHTN contamination of marine environments. The high differences in the sensitivity of the endpoints 

of the different species tested allow to choose suitable species for environmental monitoring of these 

compounds in marine ecosystems. 

Future research on the impacts of HHCB and AHTN in the marine environments should take into 

consideration the following aspects: 

▪ To the best of our knowledge, most research on the impacts of HHCB and AHTN are tested as single 

contaminant exposure even though they are often detected as a mixture of contaminants in 

environmental matrices. Therefore, both HHCB and AHTN should be tested as a contaminant mixture 

to understand the possible synergistic effects they might impose on marine organisms. 

 

▪ Assessment of the toxicity of HHCB and AHTN should measure the metabolites of these compounds 

in test media and accumulated in the test organisms and investigate the potential toxicity arising from 

the metabolites. 

 

▪ HHCB and AHTN are lipophilic and adsorb to aquaria wall and it does mean that they may adsorb to 

other marine contaminants like nanoparticles and microplastics, which could serve as vehicles, 

transporting these substances at higher concentrations than measured environmental concentrations. 

Therefore, research should be designed to test the impacts of these vehicular transport, together with 

the inherent toxicity of the vehicles. 

 

▪ Future research on the effects of HHCB and AHTN should consider a full life cycle assessment and 

intergenerational effects to understand the life stage that is most sensitive and possible susceptibility 

at subsequent generations. 

 

▪ The use of combined ‘omic’ tools such as transcriptomic and proteomic should be explored to 

understand if effects at the transcription level leads to alterations at the translational level after 

exposure to HHCB and AHTN. 
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▪ For more ecological relevant research, HHCB and AHTN impacts on the ecosystem should be tested 

by exposing multispecies at the same time to understand if impacts on a trophic level results in cascade 

effects at successive trophic levels. 

 

▪ For management plans and policy making regarding the environmental management of HHCB and 

AHTN, the data presented in this thesis and other available data involving different species and 

endpoints should be integrated for overall understanding of exposure and effects of HHCB and AHTN. 
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5.1 Conclusions 

This PhD thesis assessed the environmental risk of galaxolide (HHCB) and tonalide (AHTN) as 

contaminants of emerging concern in marine ecosystems by measuring biological effects at various 

biological levels and endpoints with different ecological relevance. The conclusions derived from the 

various laboratory experiments are summarized below: 

i. The results presented in this memory showed the sensitivity and dose response relationship of 

different acute endpoints measured in microalgae, crustaceans, bivalves, echinoderms, and fish 

early life stages to environmental concentrations of HHCB and AHTN. The microalgae tested were 

moderately sensitive to HHCB and AHTN, and the estimated risk quotient showed that both 

polycyclic musk compounds (PMCs) pose risk to P. tricornutum and I. galbana growth. Artemia 

motility and survival were the least sensitive endpoints while P. lividus larval development 

represented the most sensitive endpoints detected. HHCB and AHTN were characterized to pose 

high risk to P. lividus and M. galloprovincialis larval development. Even though fish survival test 

is a regulatory tool for chemical screening and prioritization, it was found to be less sensitive to 

environmental concentrations of HHCB and AHTN. Since ecological integrity is achieved by 

protecting the most sensitive species in the community, P. lividus and M. galloprovincialis larval 

development tests should be included in chemical screening and prioritization of contaminants of 

emerging concern.    

 

ii. The results of this study highlighted the aversiveness and potential of HHCB and AHTN to elicit 

avoidance response and lethality in the estuarine shrimps P. varians after exposure in a non-forced 

and forced exposure systems, respectively. HHCB and AHTN lethality to shrimps were minimal 

after a 24-h exposure in a forced system. However, shrimps exposed to contaminant gradients of 

HHCB and AHTN under a multi-compartmented, non-forced system were able to detect the 

different concentrations and emigrated from those that were potentially toxic. The AC50 obtained 

for both substances were about 28 times higher than the LC50. Population immediate decline (PID), 

calculated by integrating both avoidance and lethality responses, was driven primarily by the 

avoidance response rather than mortality. Therefore, ecological risk assessment of contaminants 

should integrate data from spatial avoidance study in a non-forced system and lethality in a forced 

system to avoid overestimation or underestimation of their full potential risks. 

 

iii. The determination of a battery of biomarkers in the clams R. philippinarum after chronic exposure 

to environmental concentrations of HHCB and AHTN revealed alterations in enzymes activities, 
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indicating that both substances are bioavailable to marine organisms and might have the potential 

to elicit oxidative stress and genetic damage in the marine environment. Also, the biomarkers 

(EROD, GST, GPx, GR, LPO and DNA damage) assessed in this study are useful tools for the 

environmental monitoring of PMCs. 

 

iv. Determination of the potential of HHCB and AHTN to disrupt neuroendocrine activities in marine 

environment were assessed using as bioindicator species the adult clam R. philippinarum. HHCB 

and AHTN significantly altered AChE and COX activities biochemically measured in clams after 

chronic exposure which indicate that both substances are disruptors of neuroendocrine activities in 

clams. The substance AHTN was observed to elicit higher neuroendocrine disruption than HHCB. 

 

v. Disruption at the transcription level of neuroendocrine activity was studied in yolk sac larvae of 

sheepshead minnow C. variegatus after exposure to HHCB and AHTN, which indicates disruption 

of genes encoding for sex-hormone involved in steroidogenesis. Despite the significant alterations 

in neuroendocrine biomarkers in clams and fish exposed to both substances, AHTN appeared to be 

a more potent disruptor of neuroendocrine activity. 

 

vi. Since the presence of HHCB and AHTN in marine environments have been demonstrated by 

different research works to cause adverse effects to marine organisms, the ecotoxicological 

information presented in this research work should be incorporated into policy decision for 

the conservation and management of marine environment. 
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5.2 Conclusiones 

En la presente Tesis Doctoral se evaluó el riesgo ambiental del HHCB y el AHTN como contaminantes de 

interés emergente en ecosistemas marinos mediante la determinación  de los efectos en diferentes especies 

que representaban diferentes niveles de la cadena trófica y en diferentes estadios de desarrollo. Además, se 

tuvieron en cuenta diferentes respuestas a tiempo final. Las conclusiones derivadas de los resultados 

obtenidos se resumen a continuación: 

i. Los resultados presentados en esta memoria mostraron sensibilidad y relación dosis-respuesta 

en microalgas, bivalvos, equinodermos, crustáceos y peces en sus primeras etapas de vida a las 

concentraciones ambientales de HHCB y AHTN. Las respuestas a tiempo final medidas en  

microalgas fueron moderadamente sensibles al HHCB y al AHTN, y el cociente de riesgo 

estimado mostró que ambos almizcles policíclicos PMCs suponen un riesgo para el crecimiento 

de P. tricornutum e I. galbana. La movilidad y la supervivencia de Artemia salina fueron las 

respuestas a tiempo final menos sensibles, mientras que el desarrollo larvario de P. lividus 

representó las respuestas a tiempo final más sensibles detectadas. Las sustancias HHCB y  

AHTN se caracterizaron por constituirr un alto riesgo para el desarrollo larvario de P. lividus 

y M. galloprovincialis. A pesar de que la prueba de supervivencia de larvas de peces es una 

herramienta reguladora para el cribado y la priorización de sustancias químicas, se comprobó 

que era menos sensible a las concentraciones ambientales de HHCB y AHTN. Dado que la 

integridad ecológica se consigue protegiendo a las especies más sensibles de la comunidad, las 

pruebas de desarrollo larvario de P. lividus y M. galloprovincialis deberían incluirse en el 

cribado químico y la priorización de contaminantes de interés emergente.    

 

ii. Los resultados de este estudio pusieron de manifiesto el potencial del HHCB y el AHTN para 

provocar una respuesta de evitación y letalidad en el camarón de estuario P. varians tras la 

exposición en un sistema de exposición no forzada y forzada, respectivamente. La letalidad del 

HHCB y el AHTN para los camarones fue mínima tras una exposición de 24 horas en un 

sistema forzado. Sin embargo, los camarones expuestos a gradientes de contaminantes de 

HHCB y AHTN en un sistema multicompartimental no forzado fueron capaces de detectar las 

diferentes concentraciones y emigraron de las que eran potencialmente tóxicas. Los AC50 

obtenidos para ambas sustancias fueron aproximadamente 28 veces superiores a los LC50. La 

disminución inmediata de la población (PID), calculada integrando las respuestas de evitación 

y de letalidad, fue impulsada principalmente por la respuesta de evitación más que por la de 

mortalidad. Por lo tanto, la evaluación del riesgo ecológico de los contaminantes debería 
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integrar los datos del estudio de evitación espacial en un sistema no forzado y de letalidad en 

un sistema forzado para evitar la sobreestimación o subestimación de todos sus riesgos 

potenciales.  

 

iii. La determinación de una batería de biomarcadores en la almeja R. philippinarum tras la 

exposición crónica a concentraciones ambientales de HHCB y AHTN reveló inducción en las 

actividades enzimáticas, lo que indica que ambas sustancias son biodisponibles para los 

organismos marinos y podrían tener el potencial de provocar estrés oxidativo y daños genéticos 

en el medio marino. Además, los biomarcadores (EROD, GST, GPx, GR, LPO y daño en el 

ADN) evaluados en este estudio mostraron ser herramientas útiles para la monitorización 

ambiental de los azmilcles policiclícos (PMCs).  

 

iv. La determinación del potencial del HHCB y el AHTN para perturbar las actividades 

neuroendocrinas en el medio ambiente marino se evaluó utilizando como especie bioindicadora 

la almeja adulta R. philippinarum. El HHCB y el AHTN alteraron significativamente las 

actividades AChE y COX medidas bioquímicamente en las almejas tras una exposición 

crónica, lo que indica que ambas sustancias son perturbadoras de las actividades 

neuroendocrinas en las almejas. Se observó que la sustancia AHTN provocaba una mayor 

alteración neuroendocrina que la sustancia HHCB.  

 

v. Se observó la alteración a nivel de transcripción de la actividad neuroendocrina en las larvas 

del saco vitelino C. variegatus tras la exposición a HHCB y a AHTN, lo que indica la alteración 

de los genes que codifican las hormonas sexuales que intervienen en la esteroidogénesis. A 

pesar de las alteraciones significativas en los biomarcadores neuroendocrinos en almejas y 

peces expuestos a ambas sustancias, la sustancia AHTN pareció ser un disruptor más potente 

de la actividad neuroendocrina.  

 

vi. Dado que la presencia de HHCB y AHTN en el medio marino ha sido demostrada por diferentes 

trabajos de investigación como causante de efectos adversos para los organismos marinos, la 

información ecotoxicológica presentada en este trabajo de investigación debería incorporarse 

a la toma de decisiones políticas para la conservación y gestión del medio marino.
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Abstract: The current research investigated the potential environmental risk of the polycyclic musk
compounds, Galaxolide® (HHCB) and Tonalide® (AHTN), in the marine environments. These
substances are lipophilic, bioaccumulated, and potentially biomagnified in aquatic organisms. To
understand the toxicity of HHCB and AHTN, acute toxicity tests were performed by exposing marine
microalgae (Phaeodactylum tricornutum, Tretraselmis chuii, and Isochrysis galbana), crustaceans (Artemia
franciscana), echinoderms (Paracentrotus lividus), bivalves (Mytilus galloprovincialis), fish (Sparus aurata),
and a candidate freshwater microalga (Raphidocelis subcapitata) to environmentally relevant concen-
trations (0.005–5 µg/L) following standardized protocols (US EPA, Environment Canada and OECD).
P. tricornutum and I. galbana were sensitive to both substances and for P. tricornutum exposed to HHCB
and AHTN, the IC10 values (the inhibition concentration at which 10% microalgae growth inhibition
was observed) were 0.127 and 0.002 µg/L, respectively, while IC10 values calculated for I. galbana
were 5.22 µg/L (a little higher than the highest concentration) and 0.328 µg/L, for HHCB and AHTN,
respectively. Significant (p < 0.01) concentration dependent responses were measured in P. lividus and
M. galloprovincialis larvae developments, as well as S. aurata mortality tested with HHCB. The effect
of HHCB on P. lividus larvae development was the most sensitive endpoint recorded, producing an
EC50 value (the effect concentration at which 50% effect was observed) of 4.063 µg/L. Considering
the risk quotients both substances seem to represent high environmental risk to P. tricornutum and
M. galloprovincialis in marine environments.

Keywords: environmental risk assessment; polycyclic musk compounds; acute toxicity; growth
inhibition; larvae development

1. Introduction

Polycyclic musk compounds (PMCs) have been included in the priority lists of the
European Commission existing substances regulation [1]. PMCs are synthetic chemicals,
produced in large quantities as a replacement for nitro musks, which have been banned
because of their environmental persistence and adverse effects on humans and the en-
vironment [2]. They have wide applicability in household and personal care products
such as detergents, shampoos, lotions, perfumes, as well as additives in cigarettes and fish
baits [2,3]. Due to their high water solubility, inherent lipophilicity, and biological stability,
coupled with external application and the fact that they do not undergo biotransformation,
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it is not surprising to find them as contaminants in aquatic ecosystems at concentrations
ranging from ng/L to µg/L [4].

In particular, the PMCs marketed as Galaxolide® (HHCB) and Tonalide® (AHTN) rep-
resent about 95% of total fragrance materials in the perfume industry [5] and are the most
commonly detected PMCs in environmental compartments and biological tissues [6–12].
Fromme et al. [8] detected HHCB and AHTN in surface water in Berlin (Germany) at
concentration values ranging from 70 to 1590 ng/L and 20 to 530 ng/L, respectively.
Similarly, Heberer [3] also reported high levels of HHCB and AHTN in surface water
in Berlin at concentrations ranging from 20 to 12,500 ng/L and 30 to 1100 ng/L, respec-
tively. Moreover, these substances have been detected in surface waters in almost every
country in Europe [8,12,13]. Although most studies were for the freshwater environment,
there are data confirming their presence in the marine environment [6,7,11,14], and re-
ported values over 5 µg/L depending on the proximity to a sewage treatment plants (STP).
Sumner et al. [11] studied the transport of PMCs from an STP effluent into coastal waters
and reported that the concentrations of HHCB and AHTN in the open sea depends on
the distance from STP and the dilution power towards the open sea [11]. For instance,
the authors measured the concentration of HHCB in STP effluent ranging from 987 to
2098 ng/L, being diluted towards the sea over 2 km, to 6 to 28 ng/L. However, this level
could be higher near urban coasts where STP effluents are directly discharged into coastal
waters, which could represent a potential threat to the survival of nearshore organisms, an
important part of the marine ecosystems.

Bioaccumulation of PMCs, particularly HHCB and AHTN, have also been reported in
marine organisms including crustaceans, bivalves, fish, marine birds, and mammals [9,15–17]
at levels of environmental concern. The concern over the potential effects is not only re-
lated to the environment, but also the impacts on food safety and, consequently, public
health. Therefore, Vandermeersch et al. [18] reviewed emerging contaminants in seafood,
acknowledging that HHCB and AHTN were the most commonly detected PMCs, with con-
centrations reaching 160 and 45 µg/g lipid weight in mollusks and fish, respectively [19].
Similarly, in the framework of the FP7 ECsafefood project, where 62 commercial seafood
samples (mackerel, tuna, salmon, seabream, cod, monkfish, crab, shrimp, octopus, perch,
and plaice) in the European Union were analyzed for residues from personal care prod-
ucts, HHCB was detected at concentrations ranging from 2.5 to 414.4 µg/kg dry weight,
with the highest concentration measured in fish (sole) and AHTN found at concentrations
ranging from 2.5 to 12.2 µg/kg dry weight [20]. Furthermore, HHCB and AHTN have the
potential to elicit adverse effects in marine organisms due to the bio-concentration factors
(based on lipid content) of 3504 and 5017 [8] as consequence of high octanol water partition
coefficients (LogKow) of 5.9 and 5.7 [21], respectively.

Data on the acute, sub-chronic, and chronic aquatic toxicity of HHCB and AHTN are
available for algae, crustaceans, mollusks, bivalves, and various fish [22–31]. Although
the majority of the studies were focused on freshwater ecosystems, Breitholtz et al. [22]
and Wollenberger et al. [30] investigated the acute, sub-lethal and lethal effects of these
substances on the marine copepods, Nitocra spinipes and Acartia tonsa, respectively. While
Wollenberger et al. [30] concluded that HHCB and AHTN inhibited larval development
in A. tonsa at low concentration and should be considered very toxic, Breitholtz et al. [22]
reported low adverse effects in N. spinipes.

Several attempts have been made to assess the environmental risk of HHCB and
AHTN in the aquatic environment. Balk and Ford [5] provided an insight by using
acute and chronic toxicity data from freshwater and terrestrial organisms to estimate the
environmental risk, but with no reference to the marine environment. Other environmental
risk assessments (ERA) performed so far [1,32–34] revealed a paucity of ecotoxicity data
for the marine environment needed to effectively assess the risk of these substances.

The aim of this research was to assess the potential environmental risk of HHCB and
AHTN in the marine environment by exposing organisms from different trophic levels at
early life stages to environmental concentrations of HHCB and AHTN. Therefore, acute
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toxicity tests were performed using marine organisms such as microalgae (Phaeodactylum
tricornutum, Tretraselmis chuii and Isochrysis galbana), crustaceans (Artemia franciscana),
echinoderms (Paracentrotus lividus), bivalves (Mytilus galloprovincialis) and fish (Sparus
aurata), and a candidate freshwater alga—Raphidocelis subcapitata. Secondly, the potential
risks these substances might exert on the marine ecosystems were estimated following
European Chemical Agency (ECHA) guidelines [35]. Furthermore, understanding the
toxicity of HHCB and AHTN in lower trophic organisms will help to predict possible
bottom-up and top-down effects, which could lead to a functional and structural disruption
of the ecosystems [36–39]. The species used in the current study have been used to
examine the effects of effluents from sewage treatment plants [40,41], metals [42,43], organic
solvents [44], and inorganic chemicals [45,46] in marine environments. Additionally, these
species have been endorsed by international organizations for ERA of contaminants due to
their sensitivity [35,47–50].

2. Materials and Methods
2.1. Chemical Selections

Analytical grade HHCB and AHTN were purchased from Sigma–Aldrich, Spain. The
physiochemical properties, preparations in organic solvent and determination of exposure
concentrations followed details found in Ehiguese et al. [51]. In brief, HHCB and AHTN
were dissolved in dimethyl sulfoxide (DMSO) (0.001% v/v) in glass vials to form a stock
solution. Concentrations (0.005, 0.05, 0.5, and 5.0 µg/L) of each substance were prepared
by diluting the stock solutions in 18.2 MΩ-cm Nanopure water.

2.2. Acute Toxicity Test
2.2.1. Microalgae Growth Inhibition Test

Microalgae growth inhibition tests were performed using three marine and one fresh-
water species, following the procedure reported by Garrido-Perez et al., [52]. Inocula of
P. tricornutum, T. chuii and I. galbana (marine species) were provided by the Laboratory
of Marine Culture of the University of Cádiz, Spain, and R. subcapitata (strain 61.81) was
provided by the Culture Collection of Algae at Goettingen University, Germany. Seawater
microalgae culture media was prepared by adding nutrients (macro- and micronutrients
and vitamins) according to f/2 medium [53] to synthetic seawater according to the formula
from USEPA [50]. For the freshwater species, the culture media were prepared according
to the concentrations of COMBO Media [54] in Nanopure water. Before exposure to HHCB
and AHTN, an inoculum from each species of microalgae was cultured in fresh media and
in the same chamber of assay (19 ± 1 ◦C; 11,000 lux; photoperiod 14/10 light/day). Inocula
were maintained for three days to reach the exponential growth phase, in order to provide
acclimatized and healthy cells for the tests.

An aliquot of 0.25 mL of each inoculum was added to 3.75 mL of the culture media
spiked with different concentrations of contaminants. The exposure was performed in
triplicates including two controls: (1) culture media without contaminants (normal growing
of the microalga in a fresh medium), and (2) culture media without contaminants but
including DMSO (to test the toxic effects of the organic solvent). The addition time of the
microalgae was as short as possible, to ensure that they had similar biomass at the initial
time. After 30 min inoculation, the initial biomass (B0) was measured, representing time
zero (T0). The biomass was measured indirectly through absorbance at 680 nm (maximum
chlorophyll peak in a fresh culture of microalga), with a TECAN 2000 micro-well plate
reader. This measurement was repeated at 24, 48, and 72 h. The endpoint observed in this
test was the inhibition of biomass growth at 72 h compared to the control. The minimal
growth acceptable for the control was 16 times higher than the initial density.

2.2.2. Artemia Toxicity Test

The cysts of A. franciscana are certified biological material (AF450, INVE) and were
acquired from Acuazul, S.C. (Spain). Before starting the trial, dehydrated artemia cysts
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were induced to hatch. In a one-liter Erlenmeyer flask containing 300 mL of natural
seawater (35 g/L salinity), approximately 100 mg of cysts were resuspended and left with
aeration and continuous illumination throughout the hatching time, which occurs within
24 to 36 h. Once the artemia hatched, the aeration was removed. The hatched nauplii were
placed in clean seawater to avoid moving empty or unhatched cysts. Therefore, all nauplii
used in the test belong to the same cohort. The test was carried out in triplicates using
Petri dishes made of glass, and 60 mm diameter. On each plate 10 nauplii were placed
using a glass Pasteur pipette to avoid stress to the nauplii. Subsequently, seawater spiked
with each contaminant was added to a total volume of 10 mL. The test was conducted at
20 ± 0.4 ◦C and in the dark to minimize the swimming of the nauplii and the consumption
of energy. The test lasted for 72 h and records were taken at 24, 48, and 72 h. The Artemia
were counted using a stereomicroscope at a magnification of 2× and 4×, identifying dead
specimens (mortality was recorded when they showed no sign of any movement of their
limbs for 30 s) and those that presented motility problems such as movements in circles,
asynchronous, among others. The test was considered acceptable when survival of over
80% was recorded in the control group after 72 h.

2.2.3. Sea Urchin Toxicity Test

The sea urchin P. lividus fertilization and larval development tests were performed fol-
lowing procedures described by Fernandez and Beiras [55], and Environment Canada [48].
Individuals were collected from the uncontaminated rocky subtidal environment off the
Bay of Cádiz (Spain) at 1.5–2 m depth. They were immediately transported to the labo-
ratory in a cooler box. Matured individuals were dissected, and eggs and sperm were
collected using a micropipette. For the fertilization test, 10 µL of sperm were added to
the aliquots containing 10 mL of the test concentrations arranged in sequence for 10 min;
then, 1 mL of eggs was added to each test tube, swirled gently, and allowed to proceed for
10 min. The endpoint for fertilization success was the presence of a fertilization membrane.
A larval development test was performed by adding 1 mL of fertilized eggs to beakers
containing test solutions in triplicate, including the controls (seawater and DMSO), in
dark conditions for 48 h. The test was considered valid when development in the control
was ≥80% and the result expressed as percentage of normal pluteus stage, normalized to
the corresponding seawater control. Both fertilization and larval development tests were
conducted in a controlled chamber at a temperature of 20 ◦C.

2.2.4. Mussels Larvae Development Test

The mussels M. galloprovincialis were purchased from an aquaculture farm in north-
western Spain. The depurated mussels were transported to the laboratory at 8 ◦C. Animals
with matured gonads were held at 9 ◦C for two weeks to acclimate to the laboratory
condition. The toxicity test was performed following the ASTM protocol for acute toxicity
of saltwater bivalves [56]. Mussels were placed each in a beaker containing filtered seawater
and induced to spawn by thermal stimulation at 19 ◦C. Eggs and sperm were filtered to
remove debris using 75 and 37 µm screens, respectively. Before fertilization, the egg and
sperm quality and density were evaluated under a microscope. Aliquots of 10 µL of sperm
were added to the eggs for fertilization (106/egg) and fertilization success was assessed
under the microscope. The fertilized eggs were added to test solutions at 50 eggs/mL and
incubated for 48 h at 16 ± 0.2 ◦C. The test was performed in triplicate including seawater
and solvent controls (DMSO). Samples were fixed with 40% formalin at the end of the
test and 100 larvae were counted under the microscope (×40 magnification) per replicate
distinguishing between normal developed larvae (D-shaped) and malformed larvae. Test
results were accepted when normal developed larvae in control was ≥ 80%.

2.2.5. Fish Larva Mortality Test

The effects of environmental concentrations of HHCB and AHTN on the survival of
seabream (S. aurata) larvae was tested following OECD guidelines for fish early-life stage
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toxicity test [47]. Yolk-sac larvae (3–5 h post hatch) of S. aurata were obtained from the
laboratory of Marine Culture, Faculty of Marine and Environmental Sciences, University
of Cádiz, Spain. Individuals (n = 70) of the yolk-sac larvae were added to each beaker
(Pyrex©) containing 600 mL of seawater spiked with the concentrations of contaminants,
and each treatment was run in triplicate. Seawater and solvent (DMSO) controls were
also tested. The exposure proceeded for 96 h, physiochemical parameters were monitored
using the CRISON CM35+ and 40MM+ multiparameter probes (Crison–Hachs Lange
S.L.U., Spain) and values recorded during the exposure were: Temperature (16.01 ± 0.2 ◦C),
salinity (34.2 ± 0.3h), pH (7.7 ± 0.2), and oxygen (>5 mg/L). The test was considered
valid if mortality did not exceed 10% in the control group. Mortality in each treatment
group was recorded and data were expressed as the percentage of survived larvae at each
experimental condition.

2.3. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics, version 24.0. Significant
differences between organisms exposed to the different concentrations of PMCs, or to the
organisms from control, were checked using a one-way ANOVA followed by multiple
comparisons of Turkey’s or Dunnett’s test. Statistically significant differences were set
at p < 0.05. Spearman’s rank order of correlation was calculated between the measured
effects and the exposure concentrations for pairwise comparison, setting significance
levels at p < 0.05 and p < 0.01. In addition, the SPSS Probit response model and PriProbit
1.63 software [57] were used to calculate the ICx/ECx (concentrations that cause growth
inhibition or any effect, respectively, to x% of the population).

The Risk Quotient (RQ) was derived from the ratio of the measured environmental
concentrations (MEC) listed in Table 1 to the predicted no effect concentration (PNEC).
PNEC is the effect concentrations (EC) or inhibition concentration (IC) obtained from the
tests divided by an assessment factor (European Comission Joint Research Centre, 2003).

RQ =
MEC
PNEC

=
MEC

EC
1000

or
MEC
IC/10

(1)

where:
If RQ < 1 = no risk expected, and no further evaluation required
If RQ > 1 = potential risk and further evaluation is required

3. Results
3.1. Microalgae Growth Inhibition Tests

Data of growth inhibition for microalgae are presented in Figure 1. There was no
critical difference between microalgae exposed to seawater control and solvent control,
although microalgal growth response was observed in the group treated with DMSO. In
brief, it is possible to observe that toxicity of both compounds was minimal for the four mi-
croalgae, although AHTN seemed to be slightly more toxic. For P. tricornutum, growth
inhibition for both compounds were observed in some concentrations. However, significant
differences (p < 0.05) in growth in relation to the control only occurred with exposure to
AHTN at 0.005 µg/L by 16.2% (Figure 1A). On the one hand, T. chuii growth was inhibited
by AHTN and the decrease in biomass was significantly (p < 0.01) concentration dependent
(Table S1 in Supplementary Materials). On the other hand, the exposure to HHCB produced
a stimulation (hormesis) in the growth (Figure 1B) and similar biphasic responses was seen
in I. galbana biomass after exposure to both musk compounds (Figure 1C). The freshwater
microalgae, R. subcapitata growth decreased after exposure to HHCB and AHTN. In the case
of AHTN, significant (p < 0.05) concentration dependent growth inhibition of R. subcapitata
was observed (Table S1 in Supplementary Materials), and the highest inhibition occurred
at 5 µg/L by 23.5%. In contrast, R. subcapitata growth inhibition by HHCB was more severe
at 0.05 µg/L by 14.5% in relation to the control (Figure 1D).
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3.2. Artemia, Sea Urch, Mussels, and Fish Early Life Stage Toxicity Tests

For the organisms tested for fertilization, larvae development, motility, and mortality,
the validity criteria for the control experiments (seawater control and solvent control—
DMSO) were not exceeded.

Table 1. Measured Environmental Concentrations (MEC) of Galaxolide (HHCB) and Tonalide
(AHTN) in seawater from different locations. Measured values are in ng/L. Maximum values (bold)
were used in calculating risk quotient (RQ).

Country/Location HHCB AHTN Reference

Germany (North Sea) 0.09–4.8 0.08–2.6 [6]

Germany (Elbe Estuary) 95–136 65–200 [6]

United Kingdom (Tamar Estuarine—Plym Sound) 6.00–30 3.00–15 [11]

Spain (Bay of Cadiz) 230 ± 0.1 NA [14]

Singapore (Coastal water) 1.66–21.8 0.244–1.85 [58]
NA = Data not available.
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Figure 1. A-1D: Microalgae exposed to galaxolide and tonalide for growth inhibition tests after 72 h. Biomass (%) compared
to the control of (A) P. tricornotum, (B) T. chuii, (C) I. galbana, and (D) R. subcapitata (negative values corresponding to
% growth inhibition). Asterisks (*) indicate significant differences (p < 0.05) in relation to control.

Moreover, there was no significant difference (p < 0.05) in responses detected in
organisms exposed to seawater control and DMSO.

The effects of HHCB and AHTN on survival and motility of A. franciscana are shown
in Figure 2A and 2B, respectively. Both responses showed no significant difference (p < 0.05)
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compared to the control. For the A. franscana mortality test, percentage mortalities in the
controls were 3.33 and 6.67% for seawater and DMSO, respectively. The effect of HHCB on
the survival of A. franciscana was very minimal with the highest mortality of 10% recorded
at a 0.5 µg/L HHCB. The effect of AHTN on A. franciscana mortality was also very low,
with only 3.33% mortality at 0.05 and 0.5 µg/L. Other concentrations of AHTN tested
had no effect on A. franciscana survival. Artemia motility test was not sensitive to either
compound (Figure 2B).

The effects of HHCB and AHTN on P. lividus fertilization and larval development
tests are presented in Figure 2C and 2D, respectively. The percentage of sea urchin that
were able to fertilize in the controls were 89.50 and 90.00% for seawater and DMSO,
respectively. Percentage fertilization of sea urchin tested with 0.005, 0.05, 0.5, and 5 µg/L
HHCB were 86.33, 82.33, 81.00, and 82.33%, respectively. Under exposure to AHTN, sea
urchin fertilization success recorded at 0.005, 0.05, 0.5, and 5 µg/L were 89.00, 83.33, 86.33,
and 86.33%, respectively. Although the effect is minimal, P. lividus fertilization failure
induced by both substances was more pronounced for HHCB with significant effects at
0.05–5 µg/L, while a significant difference (p < 0.05) was only observed at 0.05 µg/L
AHTN compared to control (Figure 2C). The results for the sea urchin larval development
tested with HHCB and AHTN are presented in Figure 2D. The percentages of larval
development in the seawater and solvent controls were 83.50 and 81.50%, respectively. The
number of oocytes that were able to develop to pluteus stage was significantly (p < 0.01)
concentration dependent (Table S2 in Supplementary Materials) and a significant (p < 0.05)
decrease in larvae development was recorded at 5 µg/L HHCB compared to the control
(Figure 2D). The percentage of larval that were able to develop from morula stage to normal
pluteus stage for 0.005, 0.05, 0.5, and 5 µg/L HHCB were 85.00, 85.00, 68.00, and 44.33%,
respectively, while similar concentrations of AHTN reduced larvae development by 63.00,
75.33, 54.67, and 62.33%, respectively.

The results for the larval development toxicity test for M. galloprovincialis exposed to
HHCB and AHTN are presented in Figure 2E. The number of fertilized eggs that developed
after 48 h to D-veliger stage in the control was 98%. However, the embryotoxicity of HHCB
to mussels was significantly (p < 0.01) concentration dependent (Table S2 in Supplementary
Materials). From 0.05 to 5 µg/L HHCB, the percentage of abnormal larvae development
was significantly (p < 0.05) different from the control (Figure 2E) and the percentage effect
increased to 19.88% in the highest concentration tested (5 µg/L). Similarly, significant
toxicity of AHTN to embryos of M. galloprovincialis was observed in 0.5 and 5.0 µg/L with
percentages of abnormal larvae of 8.36 and 11.63%, respectively (Figure 2E).

The results of the effect of HHCB and AHTN on the survival of yolk-sac larvae of S.
aurata larval after 96 h exposure was significantly (p < 0.01) concentration dependent (Table
S2 in Supplementary Materials) and the measured effect is presented in Figure 2F. After 96
h, the percentage mortality of yolk-sac larvae of S. aurata in seawater and DMSO controls
was 5.33% each. Percentages of mortality in fish exposed to 0.005, 0.05, 0.5, and 5 µg/L of
HHCB were 8.67, 12.00, 10.67, and 13.33%, respectively. On the other hand, the percentage
mortality of fish tested with the same range of concentrations of AHTN were 10.00, 7.33,
12.67, and 13.33%, respectively.
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significant differences (p < 0.05) in relation to control.

3.3. Risk Quotient (RQ)

Quantitative risk estimation of chemicals in the environment is achieved using moni-
toring data of MEC and PNEC, giving a risk quotient necessary for risk characterization. A
literature survey of MEC for both polycyclic musk compounds were undertaken, and the
values are presented in Table 1. Due to minimal effects detected in this study for all the
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species of microalgae, Artemia, sea urchin, mussels, and fish, it was not possible to calculate
the EC50 values and their, respective, confidence intervals, except for P. lividus larvae devel-
opment tested with HHCB, producing an EC50 value and 95% confidence interval of 4.063
(0.963–120.731) µg/L. The IC10/EC10 calculated for P. tricornutum, I. galbana, P. lividus, and
M. galloprovincialis, including the risk quotients using the MEC–PNEC ratio are presented
in Table 2. The results of the microalgae growth inhibition and larval development tests
showed that HHCB and AHTN posed high risk to the growth of P. tricornutum and M.
galloprovincialis larval development at environmental relevant concentrations. Additionally,
environmental concentrations of HHCB and AHTN pose ecological risk to P. lividus larval
development and I. galbana growth, respectively (Table 2).

Table 2. Median lethal concentration (EC50) and EC10 (µg/L) and their respective confidence interval (CI), and estimated
risk quotients of Galaxolide (HHCB) and Tonalide (AHTN) as the MEC (maximum value per location)—PNEC ratio.

Microalgae Growth Embryo-Larval Development

P. tricornutum I. galbana P. lividus M. galloprovincialis

HHCB EC50 NC NC 4.063 (0.963–120.731) NC
EC10 0.127(NC) 5.22(NC) 0.004 (0.000–0.025) 0.188(0.074–0.390)

MEC/PNEC 0.378–18.110 0.009–0.440 1200–57500 25.532–1223.404
Risk Yes No Yes Yes

ANTH EC50 NC NC NC NC
EC10 0.002(0.000 – 0.014) 0.328(NC) 0.006 (NC)

MEC/PNEC 24–1150 0.146–7.0122 NC 800–38333.330
Risk Yes Yes NC Yes

NC = Not calculated.

4. Discussion

The aim of this study was to evaluate the impacts of environmentally relevant con-
centrations of HHCB and AHTN on marine microalgae, Artemia, sea urchin, and mussels
after short-term exposure and, where possible, characterize the risk following the ECHA
guideline for ERA [35] Several in vitro and in vivo toxicity tests have been performed with
these compounds using freshwater species [5,24,25,28,59,60] and the only tests with marine
species used high concentrations [22,30], making it difficult to compare such results with
actual environmental impacts. Furthermore, for evaluation of toxicity of substances, it is
imperative to use a varied battery of tests because organisms are not equally susceptible to
the same toxic substance.

Due to the instability of these substances under laboratory exposure, it is difficult to
estimate the exact concentration causing toxic effects. Although we could not measure the
concentrations of the exposure water and bioaccumulation because of practical constraints,
studies have shown that after 3 h of exposure, over 30% was lost and this reduced to
ca. 80% after 96 h [22,30,51,61]. Again, there are currently no techniques to measure the
concentrations of these substances in-situ; therefore, there is a probability that reported
environmental concentrations are a fraction of the actual concentration in the marine
environments eliciting biological effects, given that some amount could be lost before or
during sample analysis in the laboratory. Consequently, risk estimation was based on
maximum concentration reported.

The effects of HHCB and AHTN on P. tricornutum, T. chuii, I. galbana, and R. subcapitata
showed that both compounds have limited effects (significantly similar to the control
treatment) on microalgae growth (Figure 1). Although the statistical analysis indicated no
differences between control with and without DMSO, the results for microalgae should
be considered with caution, because in some situations inhibition or enrichment due to
DMSO was observed. Therefore, we cannot reject the possibility that the effects observed
in the presence of HHCB or AHTN was partially caused by DMSO.
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Microalgae have been used in water quality assessments as in-situ bio-monitors
because they are primary producers at the base of the ecological trophic arrangement and
the basic supplier of oxygen in aquatic ecosystems [62]. Microalgae toxicity tests are useful
in ERA and have gained international recognition leading to development of test guidelines
for reliable and relevant toxicity data [63]. The potential of HHCB and AHTN to inhibit
the growth of microalgae in the aquatic ecosystem have been scarcely reported. Previous
studies revealed that significant acute toxicity of microalgae occurred at concentration
greater than 100 or 500 µg/L depending on the species [5,64] but our data suggest that
even at low concentrations microalgae growth might be inhibited.

The microalgae growth inhibition tests were mildly sensitive to HHCB and AHTN;
IC10 values for most of the microalgae could not be calculated, except for P. tricornutum and
I. galbana exposed to HHCB with IC10 values of 0.127 and 5.220 µg/L, respectively (Table 2).
In contrast, previous studies have reported higher EC50 values of 0.050 mg/L for Navicula
spp. and 0.336 mg/L for Scendesmus quadricauda exposed to HHCB [64]. This is because
microalgae are not equally sensitive to contaminants. For example, in all the microalgae
tested, we found that differential sensitivity was exhibited, the order of sensitivity to
HHCB was P. tricornutum > I. galbana, and to AHTN was T. chuii > P. tricornutum > I. galbana.
Similarly, differential sensitivity of two microalgae to HHCB was recently reported, whilst
the microalgae, Navicula spp. are more sensitive to HHCB than S. quadricauda [64]. The
basis for the differential sensitivity of microalgae to these contaminants is beyond the scope
of the current investigation. Furthermore, HHCB and AHTN are lipophilic and known to
bioaccumulate in marine organisms [5,15,64]. Remarkably, the effects of these compounds
on microalgae growth has been adduced to bioaccumulation, altering antioxidant enzymes
and biochemical processes, resulting to decrease microalgae growth [64].

Artemia was not sensitive to either substance since the endpoints measured were not
critically different from the control (Figure 2A,B). This is because Artemia is known to be
fairly resistant to toxic substances in comparison to other invertebrates and they respond
differently to different environmental contaminants [65,66].

HHCB significantly reduced the fertilization success of P. lividus as the concentrations
increased. Meanwhile, AHTN had no significant effects on sea urchin fertilization success
(Figure 2C). Sea urchin fertilization success depends on sperm fitness, motility potentiated
by the axonemal engine in the flagellum, morphology and chemotaxic navigation [67]. For
organoleptic substances, such as HHCB and AHTN, the latter might be the most compelling
factor inducing reduction in sea urchin fertilization success since the exposure procedure
involved prior treatment of sperm with the contaminants before the introduction of eggs.
Between the two contaminants tested, HHCB had more significant effects on P. lividus
fertilization, causing a 19% reduction at 0.5 µg/L, and we observed that only 0.05 µg/L
AHTN significantly reduced sea urchin fertilization by 16.67% (Figure 2C). Importantly,
the effect exerted by both contaminants on sea urchin fertilization success was below 20%,
presenting less toxic effects compared to other contaminants of emerging concern. For
example, 500 ng/L propanol, 500 ng/L 17α-ethinylestradiol and 5000 ng/L gemfibrozil
reduced sea urchin fertilization success by 24.1, 36.9, and 26.9%, respectively [68]. Simi-
larly, other contaminants of emerging concern belonging to pharmaceutical and personal
care products have been reported to significantly affect sea urchin fertilization success at
concentrations detected in the environment [69,70].

Ecotoxicity studies with early life stages of aquatic organisms have been recommended
as a faster and more cost-effective means of examining chemicals and environmental sam-
ples, because newly hatched larvae are sensitive to exogenous substances as the embryos
lose their protective membranes and are fully exposed to potential xenobiotics [71]. P. lividus
and M. galloprovincialis are well recognized in toxicity bioassays and are applied globally
for the evaluation of toxicity of marine contaminants by the exposure of gametes to aque-
ous phases, such as surface waters and pore waters [69, 72] and elutriates [73]. Critical
effects were detected in P. lividus and M. galloprovincialis larvae exposed to HHCB and
AHTN compared to the control (Figure 2D and E). The effects of HHCB on sea urchin
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larvae development was significantly (p < 0.01) concentration dependent (Table S2 in
Supplementary Materials) and significantly different (p < 0.05) compared to the control,
with only 44.33% of larvae able to develop to pluteus stage after 48 h exposure to 5 µg/L
HHCB. The sensitivity of sea urchins to environmental chemicals is widely reported and
significant evidence showed that they represent an important biomonitoring tool for ecosys-
tems health. Similarly, HHCB and AHTN significantly (p < 0.05) affected the development
of M. galloprovincialis larvae when compared to the control (Figure 2E). However, when con-
sidered in relation to the number of oocytes exposed to each contaminant, the effects were
minimal with the highest percentage of deformed and undeveloped oocytes being 19.88
and 17.60% for HHCB and AHTN, respectively. Although P. lividus and M. galloprovincialis
larvae development tests were similar, the effects recorded were more pronounced in sea
urchin larvae than mussels.

Significant (p < 0.01) concentration dependent responses (Table S2 in Supplementary
Materials) were observed in S. aurata mortality tests with HHCB and AHTN (Table S2 in
Supplementary Materials). Notwithstanding, the percentage mortality of S. aurata exposed
to both fragrances not up to 20%, the highest effect being 13% for HHCB and AHTN at
the highest concentration of 5 µg/L. Although this species and endpoints proved to be
sensitive to other contaminants at low concentrations [40,68], the impacts of environmental
concentrations of the tested fragrances in this study were low. For chemical prioritization,
fish early-life stage toxicity test is endorsed [47] because it is a reliable and reproducible risk
assessment tool that requires shorter exposure time and lower cost to perform. However,
the sensitivity of fish embryotoxicity to some emerging contaminants remain doubtful as
previous studies reported low sensitivity [68,74].

Risk characterization of contaminants is quantified using MEC–PNEC ratio and for
aquatic environments (freshwater and marine), PNEC is estimated by dividing the ECx
value by an assessment factor of 1.000 for acute toxicity test and 10 for chronic toxicity
test [35]. Although short term toxicity tests were performed in this study, an assessment
factor of 1000 was used only for larval development test while an assessment factor of
10 was used for the microalgae because the exponential phase of microalgae growth was
regarded as a full life stage and therefore considered as a chronic test. Analyzing the
RQs, HHCB represented potential high risk for the marine environment based on the
EC50 estimated for P. lividus larvae development. In addition, HHCB and AHTN posed
high ecological risk to M. galloprovincialis larval development at environmental relevant
concentrations. The larval development of P. lividus and M. galloprovincialis seem to be very
sensitive to chemical exposure because previous studies of environmental contaminants in
coastal waters have reported significant toxicity of industrial and domestic effluent [40],
pharmaceutically active products [68,74], UV-filters [70] and organic pollutants [46,72]
to sea urchin and mussels larvae development. The quantitative risk estimate of HHCB
obtained in this study for P. lividus using EC10 value (1200–57,500) was higher than that of
propanol (0.02–17.29), previously reported by Capolupo et al. [68]. We also found that both
compounds posed high risk to P. tricornutum and I. galbana based on IC10 values recorded
(Table 2). Microalgae have broadly been used in evaluation of ERA for other emerging
contaminants. For example, I. galbana have been reported to be significantly affected by UV
filters and pharmaceutical active ingredients [70,74]. Fragrances have been demonstrated
to pose high risk to microalgae in the marine environment, of which HHCB and AHTN
were more toxic than musk xylene and musk ketone [7]. The adversity of measured
environmental concentrations of HHCB and AHTN to P. tricornutum and I. galbana deserve
attention because microalgae occupy the lowest trophic level of the marine food chain and,
therefore, serve as food for higher trophic organisms. Again, HHCB and AHTN impacts on
microalgae growth represent a potential bottom-up effect that might result in structural and
functional disruption of the ecosystems [37]. Therefore, more studies are required to fully
understand the environmental effects of these contaminants in the marine environments.
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5. Conclusions

This study evaluated the potential risk of comparable measured environmental con-
centrations of HHCB and AHTN to microalgae and early life stages of marine organisms,
including A. franciscana, P. lividus, M. galloprovincialis, and S. aurata, adding to the dearth of
information regarding the adverse effects of HHCB and AHTN in the marine environment.
For all the species of microalgae, Artemia, sea urchin, mussels, and fish tested, differential
sensitivity was observed. Artemia motility and survival were the least sensitive endpoints
affected by both substances and P. lividus larvae development was the most sensitive
species/endpoint. From our data, the environmental risk of HHCB and AHTN was charac-
terized as high for P. tricornutum, I. galbana growth, P. lividus and M. galloprovincialis larvae
development. Therefore, more studies are required to understand the sub-lethal effects of
these compounds in the marine environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-9
717/9/2/371/s1, Table S1: Spearman rank order of correlation (r) values recorded for the effect of
galaxolide (HHCB) and tonalide (AHTN) on microalagae exposed for 72 h (n = 3). Asterisk(s) * &
** represent significant levels at p < 0.05 and 0.01, respectively, Table S2: Spearman rank order of
correlation (r) values recorded for the effect of galaxolide (HHCB) and tonalide (AHTN) on marine
organisms exposed for 72 h (n = 3). Asterisk(s) * & ** represent significant levels at p < 0.05 and 0.01,
respectively; (-) represent values not determined.
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Avoidance behaviour of the shrimp Palaemon varians regarding a
contaminant gradient of galaxolide and tonalide in seawater
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� Shrimps were tested for mortality
upon acute exposure to galaxolide
and tonalide.

� Shrimps were tested for avoidance in
a multi-compartmented, non-forced
system.

� Avoidance response to a contaminant
gradient was concentration-
dependent.

� Population immediate decline is ex-
pected to be driven by avoidance
behaviour.

� We recommend integration of both
approaches in environmental risk
assessments.
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a b s t r a c t

The musk fragrances galaxolide (HHCB) and tonalide (AHTN) are compounds of emerging concern that
have been found in various environmental compartments. The present study addressed the ability of
HHCB and AHTN to elicit the avoidance response in the estuarine shrimp Palaemon varians and to predict
the population immediate decline (PID) of P. varians when exposed to HHCB and AHTN by integrating
both avoidance (non-forced exposure) and lethality (forced exposure) responses. The avoidance response
was tested in a non-forced multi-compartmented static system, in which the shrimps could move freely
among the compartments with different concentrations. The shrimps (n¼ 3 shrimps per compartment/
concentration; 18 shrimps per system) were exposed to a gradient (0, 0.005, 0.05, 0.5, 5 and 50 mg/L) of
both substances and their positions were checked at every 20min for a 3 h period. The results from 24-h
forced exposure showed no dose-response relationship and the highest percentage mortality was 17% for
HHCB at 0.005 and 0.5 mg/L. In the 3-h non-forced exposure to a gradient of HHCB and AHTN, significant
concentration-dependent spatial avoidance was observed for both substances. The shrimps avoided the
lowest concentration of HHCB and AHTN (0.005 mg/L) by 15% and 16%. The avoidance increased signif-
icantly (p < 0.005) to a 61% and 57%, respectively, for the highest concentration (50 mg/L). The population
immediate decline was driven by the avoidance behaviour of the shrimps rather than mortality. These
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results indicated that the aversiveness of HHCB and AHTN might have serious consequences for habitat
selection processes by organisms.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Maintenance and restoration of ecological integrity is the pri-
mary objective of environmental risk assessment (Ramesh and
Kaplana, 2015). Consequently, various regulatory agencies have
established guidelines to protect water bodies within their juris-
diction for the sustainable use of aquatic resources (EC, 2000; EPA,
2002) and, as a result, levels of individual contaminants, water
quality parameters, or description of changes in the water bodies'
conditions have been established in order to protect them. The
United States Environmental Protection Agency's (USEEPA) aquatic
life criteria is derived from the criterion maximum concentration,
with the aim of protecting aquatic ecosystems from severe acute
effects, and from the criterion continuous concentration, that has
been set to protect against long term effects on survival, growth,
reproduction etc. (Beaman et al., 2008). Data from ecotoxicity
studies, through which the toxic effects of substances are assessed,
are extrapolated from laboratory toxicity tests involving forced
exposures, which implies a continuous exposure of the organisms
to a specific concentration of chemicals or environmental samples
(e.g. water, sediment, soil). The forced exposure approach makes it
possible to identify the potential toxicity of contaminants, deter-
mine the concentration-response relationship and provide infor-
mation about their mechanisms of action (Newman, M.C., Unger,
M.A., 2001; Martinez-Haro et al., 2015). However, applying the
forced exposure approach makes it difficult to check how con-
taminants affect the spatial distribution of organisms and their
habitat selection processes for the cases in which they are able to
flee from the contaminated areas, as it may occur (for mobile or-
ganisms and heterogeneous contamination scenarios) in natural
environments (Ǻtland and Barlaup, 1995; Hansen et al., 1999;
Moreira-Santos et al., 2008).

Spatial avoidance involves the emigration of organisms from a
noxious environmental condition to a safer area, thus indicating the
aversive character of the area (Jutfelt et al., 2017; Tierney, 2016).
Experimentation concerning active avoidance was first performed
by Shelford and Allee (1913), but spatial avoidance to assess or-
ganisms’ behavioural response to contaminants was later per-
formed with fish in tubes containing contaminants at one end and
cleanwater at the other, thus allowing the fish to detect differences
in contamination levels and to move to a less contaminated envi-
ronment (Jones, 1947). Different exposure systems including two
compartments, steep gradients, laminar flow chambers, avoidance/
preference chambers, fluvarium systems and dilution gradients
involving several compartments have been developed and
employed to assess contamination-driven avoidance (Folmar, 1976;
Gunn and Noakes, 1986; Hartwell et al., 1989; Moreira-Santos et al.,
2008; Richardson et al., 2001; Smith and Bailey, 1990; see also re-
view by Jutfelt et al., 2017). The use of the free-choice, non-forced,
multi-compartmented exposure system developed by Lopes et al.
(2004), in which contamination gradients or patches are simu-
lated, have also proven to be a suitable approach to assess how
contaminants can interfere in the spatial distribution of organisms
(see review by Araújo et al., 2016b; Araújo and Blasco, 2019). Lab-
oratory exposure of fish, amphibians, decapods, molluscs, dip-
terans, copepods and annelids to fungicides, contaminated
effluents, metals and organic compounds to determine avoidance

responses at sublethal concentrations in a free-choice multi-com-
partmented exposure system have been reported, and have indi-
cated that contaminants potentially can, to some extent, drive the
spatial distribution and habitat selection processes by organisms
(Araújo et al., 2016a, 2014b; 2014c, 2014a; Dornfeld et al., 2009;
Moreira-Santos et al., 2008; Rosa et al., 2012; Silva et al., 2017). This
non-forced, multi-compartmented approach simulates a realistic
heterogeneous contamination scenario where organisms are not
restricted to continuous exposure as they are in forced exposure,
thus providing a complementary approach to environmental risk
assessment based not exclusively on toxicity, but also on the
displacement patterns of organisms.

The polycyclic musk compounds (PMCs) e galaxolide (HHCB)
and tonalide (AHTN) e are contaminants of emerging concern
(CEC). They are applied in many personal care products including
detergents, lotions, deodorants and shampoos, to mention just a
few (Reiner and Kannan, 2011). In Europe, they constitute about
95% of the total fragrance materials in the perfumery industry
(OSPAR, 2004). The use of these substances has reportedly
increased in recent years and Southern European countries are the
highest consumers (Cunha et al., 2018; European Commission,
2008a, 2008b). PMCs are lipophilic and possess high octanol/wa-
ter partition coefficient (KOW) values ranging from 5.4 to 6.3 (Cunha
et al., 2018), so they are not readily soluble inwater. The presence of
these substances in environmental samples has been reported and
effluents of wastewater treatment plants have been identified as
the primary route of entrance into aquatic ecosystems (Petrie et al.,
2014). The concentrations recorded are highest at wastewater
treatment effluent pools (Chase et al., 2012; Díaz-Gardu~no et al.,
2017) and decrease along the water course (Sumner et al., 2010).
Although most environmental measurements with high concen-
trations (6e13330 ng/l) were from effluents and rivers (Chase et al.,
2012; Dsikowitzky et al., 2002; Fromme et al., 2001; Lee et al., 2010;
Reiner and Kannan, 2011; Zhang et al., 2008), up to 2098 ng/l of
HHCB and 159 ng/l of AHTN have been measured, respectively, in
coastal waters (Sumner et al., 2010).

Contamination by PMCs can be considered ubiquitous as they
have been detected in many environments such as: air (Peck and
Hornbuckle, 2006), sediments (Fromme et al., 2001; Heberer,
2002; Zhang et al., 2008), particulate suspended matters
(Gatermann et al., 2002) and human adipose tissue (Kannan et al.,
2005; Moon et al., 2012b). Hence, bioaccumulation of PMCs in a
wide diversity of freshwater and marine organisms including ce-
taceans, sharks, fish and shellfish in Europe, Japan, Korea, China and
the USA has been extensively studied (Gatermann et al., 2002; Lee
et al., 2014; Moon et al., 2012a; Nakata, 2005; Nakata et al., 2007;
Picot Groz et al., 2014; Rüdel et al., 2006; Zhang et al., 2013).
Assessment of the potential toxicity of HHCB and AHTN based on
lethality from forced exposures, their chemical properties and
ability to affect the human pheromone-endocrine system suggest
they may alter the structure of a community and impoverish
certain ecosystems (Breitholtz et al., 2003; Kallenborn et al., 1991;
Rimkus et al., 1997; Wollenberger et al., 2003). However, despite
the risks of contamination that PMCs might pose to organisms,
ecotoxicological assessments of PMCs in freshwater (Balk and Ford,
1999) and marine environments (Ehiguese et al., unpublished) are
still only incipient. Efforts to evaluate the potential of HHCB and
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AHTN to trigger avoidance in aquatic organisms has been even less
explored. Therefore, the present study first addressed the potential
of HHCB and AHTN to elicit avoidance response in the estuarine
shrimp Palaemon varians causing emigration to areas that are less
contaminated. P varians is a euryhaline estuarine shrimp found
mainly in shallow saltmarsh pools fromwest Baltic and British Isles
southwards to the west Mediterranean. It is ecotoxicologically
important for the trophic web as it can accumulate contaminants
and acts as vector for the upper trophic levels (Raimbow et al.,
2006). Previous studies in our laboratory have indicated that the
presence of chemical contaminants may trigger their evasion to
favourable areas. To this end, a free-choice, non-forced, multi-
compartmented exposure system was used (Araújo et al., 2014c)
because it allows a contamination gradient of compounds to be
simulated. The second aim was to predict the population immedi-
ate decline (PID) (Rosa et al., 2012) of P. varians when exposed to
HHCB and AHTN by integrating avoidance and lethality in short-
term experiments to evaluate whether the shrimps were able to
detect toxicity and avoid potentially toxic concentrations before
suffering acute effects.

2. Materials and methods

2.1. Test organisms

Shrimps (1.0e1.5 cm length) were obtained from the Salina El
P�opulo aquaculture farm in San Fernando (Southwest Spain) and
immediately transported to the ecotoxicology laboratory of the
Institute of Marine Sciences of Andalusia (ICMAN-CSIC), in Puerto
Real (Spain). They were acclimated for 2 weeks in two 250 L aquaria
supplied with filtered (0.5 mm) seawater (deep-well seawater: pH
of 7.5 and salinity of 35) in a flow-through systemwith continuous
aeration. The organisms were monitored regularly and dead
shrimps were removed immediately. No food was provided during
laboratory acclimation. Laboratory conditions were: 20± 0.5 �C
temperature and a 12:12 h light/dark photoperiod.

2.2. Chemicals

Analytical grade HHCB and AHTN (85.0% and 97.0% GC, respec-
tively) were purchased from Sigma Aldrich Spain. Due to their low
solubility in water, stock solutions were prepared using dimethyl
sulfoxide (DMSO 0.001%v/v). The stock solutions were diluted using
nanopure water to reach the desired concentrations (0.005, 0.05,
0.5, 5 and 50 mg/L). The filtered seawater used in the culture was
spiked with each concentration for the tests.

2.3. Multi-compartmented exposure system

A non-forced, multi-compartmented static assay system (Fig. 1)
was used in the avoidance experiments following the design used

by Araújo et al. (2014c). In brief, six compartments made of plastic
bottles were constructed (the dimensions are stated below), which
were connected at the cut-out bases and mouths of the containers
using glue (Sikaflex® construction sealant, Switzerland) to obtain a
six-compartmented system. An opening was carefully cut out at the
top of each compartment to facilitate the introduction of organisms
and contaminant.

2.4. Avoidance tests

To ascertain the non-interference of external factors in the
avoidance tests and to verify random distribution of shrimps (no
preference for any compartment), validation (control) tests with no
contaminant were performed using seawater and seawater spiked
with DMSO (0.001% v/v). The compartments were each filled with
1 L of seawater and then the shrimps (n¼ 3) were added to each
compartment (18 shrimps in total per system) and the distributions
of the organisms were recorded at each 20min for 3 h. The tests
were performed in quadruplicate.

For each avoidance test with HHCB and AHTN, plasticine plugs
were positioned at the junction of each compartment before filling
themwith seawater spiked with HHCB and AHTN. The gradients of
contaminants were in the order of 0 (seawater), 0.005, 0.05, 0.5, 5
and 50 mg/L. Three shrimps were added to each compartment and
then the plasticine plugs were removed. The tests were conducted
in quadruplicate for each substance with 18 organisms per system
(three organisms� six concentrations). The distribution of the or-
ganisms in each compartment was recorded at each 20min for 3 h.
The tests were conducted in the dark at 20 �C. At the end of each
test, samples of the HHCB and AHTN in each compartment were
collected using clean dark amber bottles and stored at �20 �C for
analyses.

2.5. Acute toxicity tests using forced exposure

Acute toxicity tests (24 h exposure) were performed with HHCB
and AHTN. The concentrations used for each contaminant were
0.005, 0.05, 0.5, 5 and 50 mg/L including seawater and solvent
(DMSO) controls. The tests were carried out in quadruplicate. Each
aquarium used in the tests was filled with 1 L of seawater spiked
with the contaminants. Three shrimps were added per aquarium
totalling 12 shrimps per treatment. Mortality was recorded at 1, 3, 7
and 24 h. No aeration was provided. The temperature was
20± 0.1 �C. Initial and final dissolved oxygen levels were 5.9± 0.1
and 5.2± 0.2mg/L, respectively.

2.6. Sample collection and analyses

Samples taken at the beginning and end of all the tests were
analysed for HHCB and AHTN concentrations using stir bar sorptive
extraction (SBSE) following a modification of the methodology
described by Pintado-Herrera et al. (2014). Prior to use, all poly-
dimethylsiloxane bars (PDMS, 10mm� 0.5mm) were precondi-
tioned by soaking them in a mixture of acetonitrile/methanol
(80:20, v/v). Subsequently, these bars were placed in amber glass
flasks containing the aqueous samples (350ml). Internal standard
(triphenylphosphate d15) was added to determine possible fluc-
tuations during the extraction and analysis procedures and stirred
at 900 rpm during 4 h at room temperature. After extraction, the
bars were desorbed by liquid desorption (LD); the bars were son-
icated for 30min in vials containing 100 mL of ethyl acetate. Then,
gas chromatography (SCION 456-GC, Bruker) and mass spectrom-
etry (SCION TQ from Bruker with CP 8400 Autosampler) were used
to identify and quantify the compounds. Capillary gas chromatog-
raphy analysis was carried out on a HP-5MS column

Fig. 1. Non-forced multi-compartmented static exposure system used in the avoidance
tests (Islam et al., 2019).
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(30m� 0.25mm i.d.� 0.25 mm film thickness of 5% phenyl, 95%
polydimethylsiloxane), keeping the helium carrier gas flow at 1mL/
min. The mass detector acquired in multiple-reaction monitoring
(MRM)mode. Details of the detection methodology can be found in
Pintado-Herrera et al. (2016). Calibration curves were constructed
for each compound in the range of 0.005e50 mg/L. Method limits of
quantification were calculated using a signal-to-noise ratio 10 to 1,
respectively, for water samples that was lower than 0.04 ng/L. The
recovery rate of the method was higher than 85% for both analytes.
The mean concentration and standard deviation of the internal
standard (triphenylphosphate d15) was 46.7± 10.6 mg/L. Concen-
trations of the contaminants measured in all the tests are presented
in Table S1 e Supplementary Material.

2.7. Statistical analysis

The percentage of organisms recorded in each compartment at
different observation times were arcsine transformed. The random
distribution of organisms in the seawater and solvent controls, and
avoidance tests with the contaminants were evaluated using
mixed-designed (time as a repeated measure, within factor, and
compartment as between factor) analysis of variance (ANOVA).
Mauchly's test was used to check the sphericity. Where sphericity
was violated (the variances of the differences are not equal:
p< 0.05), Greenhouse-Geisser correction was applied (see
Tables S2a, S3a, S4a and S5a e Supplementary Material). Statistical
(p< 0.05) differences between factors were checked using the
Bonferronni test. The avoidance to HHCB and AHTN was deter-
mined by calculating the difference between the number of or-
ganisms expected (NE) and observed (NO) as described in Moreira-
Santos et al. (2008). NE represents the number of organisms initially
introduced into each compartment. As three shrimps were inserted
into each compartment at the beginning of the test, for the
compartment with the highest concentration NE was 3. As the next
compartment had initially 3 organisms plus 3 organisms intro-
duced in the adjacent compartment with the highest concentra-
tion, NE was 6. For the sixth compartment, which contained only
control seawater with no contaminant, NE was 18. NO was calcu-
lated considering the number of organisms recorded per time per
compartment including the organisms observed in the compart-
ments with higher concentrations. The avoidance percentage for
each compartment was computed as (Avoiders/NE) *100.

Median lethal concentrations (LC50) and their respective confi-
dence intervals (CI) from the forced exposure experiments and
median avoidance concentrations (AC50) from the non-forced
exposure ones were calculated using PriProbit 1.63 software
(Sakuma, 1998). The population immediate decline (PID) was
computed following themethod described by Rosa et al. (2012). The
avoidance and mortality percentages were integrated to calculate
the PID (x in percent) induced by each HHCB and AHTN concen-
tration that simultaneously caused a ymortality percentage (i.e. the
24 h LCy) and a w avoidance percentage (i.e. the 3 h ACw) as thus:

X ¼ ½1�ð1� y=100 * ð1�w=100Þ��100
The PIDwas calculated on the premise that some organisms first

emigrate (avoidance %) and that mortality is then calculated based
on the remaining organisms that did not emigrate. PID50 was
calculated following the above procedure for AC50 and LC50.

3. Results

3.1. Acute toxicity test

The shrimp mortality recorded during the 24 h acute test with

HHCB was not concentration-dependent and was highest (17%) for
0.005 and 0.5 mg/L. For AHTN, no mortality was observed at 0 and
0.5 mg/L, and it was around 8% at 0.005, 5 and 50 mg/L (Table S2 e

Supplementary Material).

3.2. Avoidance test

No mortality was recorded in the non-forced experiments. The
distribution of shrimps between the compartments over time was
not significantly different (p< 0.005) for both seawater (p¼ 0.64,
F(5,18)¼ 0.693) and DMSO (p¼ 0.99, F(5,18)¼ 0.085) controls
(Tables S3b and S4b e Supplementary Material) and the distribu-
tion of shrimps between the compartments was not significantly
different (p< 0.005) for the seawater control and the DMSO control
(Tables S3c and S4c e Supplementary Material). In the absence of
contaminants, the distribution of shrimps in both seawater and
DMSO controls (Fig. 2) was random (showing no preference for any
compartment) during the 3 h exposure.

In the tests with each contaminant, the shrimps' distribution did
not vary over time (Tables S5b and S6b e Supplementary Material).
The statistical analysis of the shrimps’ distribution in the contam-
inant gradients of HHCB (F(5,18)¼ 7.388, p< 0.001) and AHTN
(F(5,18)¼ 6.127, p< 0.002) revealed that the organisms significantly
(p< 0.05) preferred the uncontaminated compartments (Tables S5c
and S6c e Supplementary Material). Significant differences in the
distribution of shrimps exposed to each substance are shown in
Fig. 3. The mean percentage distribution of P. varians exposed to
gradient of HHCB and AHTN after 3 h was 28.9% and 30.2%,
respectively, in uncontaminated compartments and it was over 4
times higher than themean percentage distribution of organisms in
compartment with the highest concentration (50 mg/L: 6.5% and
7.1% for HHCB and AHTN, respectively).

The avoidance behaviour, mortality and PID data of the shrimps
exposed to the contaminant gradients of HHCB and AHTN for 3 h
are shown in Fig. 4. For both contaminants, a concentration-
dependent avoidance response was observed. For HHCB, the
mean percentage avoidance for the lowest concentration (0.005 mg/
L) was 14.6% and increased significantly to 60.5% (p< 0.05) for the
highest concentration (50 mg/L). The same trend was observed for
AHTN from 16.2% (at 0.005 mg/L) to 57.1% (at 50 mg/L). The PID curve

Fig. 2. Mean percentage and standard deviation (n¼ 9 observation periods) of the
number of shrimps Palaemon varians in the seawater and solvent (DMSO) control tests
recorded in each compartment for 3 h. Different letters (upper case for seawater
control and lower case for DMSO control) represent statistically significant difference.
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(Fig. 4) from the non-forced exposure data followed the same trend
with the avoidance behaviour for both substances, as no mortality
was recorded in the non-forced tests (Fig. 4).

3.3. AC50, LC50, and PID50

The values of AC50, LC50 and PID50 for HHCB and AHTN, based on
mortality in the forced system and avoidance in non-forced expo-
sure system, are shown in Table 1. The AC50 values (fromnon-forced
exposure tests) obtained for HHCB and AHTN were 14.1 mg/L and
30.8 mg/L, respectively, and their corresponding LC50 values (from
forced exposure tests) were >50 mg/L (no mortality was recorded).
Since there was no mortality in the non-forced tests, the AC50 was
equal to PID50. However, the AC50 values recorded for the non-
forced exposures were about twice as high as the PID50 values for
both substances.

4. Discussion

The present study assessed the potential of the musk fragrances,

galaxolide and tonalide, to trigger avoidance response in the estu-
arine shrimp P. varians. The results of the control tests showed that
the displacement of the shrimps inside the system in the absence of
contaminants was non-preferential. This indicates that the shrimps
did not present aggregation behaviour that could condition, to
some extent, their movement pattern (Araújo et al., 2016a). Previ-
ous studies with shrimp have also shown that the freshwater
shrimp Atyaephyra desmarestii (Araújo et al., 2018a) and the marine
shrimps Litopenaeus vanamei (Araújo et al., 2016a) did not aggre-
gate when exposed to uncontaminated water using a similar non-
forced, multi-compartmented system. Studies with other organ-
isms such as the crustacean Daphnia magna (Rosa; et al., 2008; Rosa
et al., 2012), the freshwater fish Danio rerio (Araújo et al., 2016b,
2014b) and Poecilia reticulata (Silva et al., 2017), exposed to un-
contaminated water in non-forced, multi-compartmented systems,
also did not display significant differences in the distribution of
organisms throughout the different compartments. This random
distribution in the absence of contaminants validates the suitability
of the experimental system to study the spatial avoidance behav-
iour of organisms exposed to contaminant gradients.

Regarding the avoidance response, both compounds were
detected by the shrimps and the potentially toxic concentrations
were avoided. Palaemonidae are anatomically and physiologically
adapted to detect the presence of chemicals in their environment
using both antennule and antennae (Machon et al., 2018), and as
such, can select suitable habitats in the instance of chemical
perturbation by avoiding contaminated area. Avoidance of both
fragrances occurred at concentrations as low as 0.005 mg/L, indi-
cating the high sensitivity of this response to reveal the risk of
HHCB and AHTN. The mean avoidance percentages recorded for the
lowest concentration (0.005 mg/L) of HHCB and AHTN were about
14 and 16%, respectively, and increased significantly in a
concentration-dependent pattern to 60 and 57% at the concentra-
tion of 50 mg/L. Assessing the magnitude of this response, regarding
how other marine species will react, is difficult due to the lack of
studies on the avoidance responses of estuarine/marine organisms
elicited by these compounds. The avoidance behaviour of marine
shrimp and fish exposed in non-forced, multi-compartmented
systems has been described for other compounds and it has
revealed how suitable this system is for studying contamination-
driven avoidance responses: around 80% of the estuarine shrimp
Litopenaeus vannamei (whiteleg shrimp) and 60% of the marine fish
Rachycentron canadum avoided contaminant gradients of copper

Fig. 3. Mean percentage (n¼ 9 observation periods) of shrimps Palaemon varians
exposed to gradient concentrations of galaxolide and tonalide recorded in each
compartment for 3 h. Different letters (upper case for galoxide and lower case for
tonalide) represent significant difference.

Fig. 4. Concentration-response curves for the avoidance (non-forced exposure) and mortality (forced exposure) responses, and the estimated PID (Population Immediate Decline)
for Palaemon varians exposed to galaxolide (HHCB) and tonalide (AHTN). Standard deviations were not presented for forced tests, because the mortality was calculated based on the
total number of exposed organisms.
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assayed for 3 h (Araújo et al., 2016a). Regarding contaminants of
emerging concern, studies of avoidance using non-forced, multi-
compartmented exposure systems have been mainly performed
with fish. For instance, around 50% of a population of zebrafish
(Danio rerio) avoided 1.4mg/L of the fungicide (pyrimethanil)
(Araújo et al., 2014d, 2014b); 22% of the fish P. reticulata exposed
under the same system for 4 h avoided triclosan concentrations as
low as 0.2 mg/L (Silva et al., 2017); the AC50 for P. reticulata exposed
to a bisphenol gradient was 0.15 mg/L, below the values considered
safe for aquatic biota (Silva et al., 2018); P. reticulata also avoided
environmentally relevant atrazine concentrations (0.02 mg/L;
Araújo et al., 2018b). Organisms’ behavioural response to the
presence of a contaminant by avoiding contaminated sites is a
protective strategy to prevent toxic impact and lethality (Gunn and
Noakes, 1986; Lopes et al., 2004; Oliveira et al., 2013; Silva et al.,
2017). The use of a non-forced exposure approach provides an
idea of the immediate response that organisms can present due to
the aversive characteristic of contaminants and of the possible loss
of organisms due to the massive emigration towards less aversive
habitats (De Lange et al., 2006; Rosa et al., 2012; Araújo et al.,
2016b). Although no effect at the individual level is expected to
occur, the influence of a contaminant in the spatial distribution of
organisms should be assessed carefully, as the consequences of the
spatial avoidance are not restricted to the avoided ecosystem
(Moreira-Santos et al., 2019). Whilst emigration from contaminated
area is a solution for the avoiders (Moe et al., 2013), the conse-
quences to ecosystem could lead to the loss of abundance and
biodiversity (Lopes et al., 2004). The avoidance by the shrimps, that
occupy an intermediate trophic level (Walker and Ferreira, 1985),
might limit the amount of food available to organisms in the upper
trophic strata and reduce the predation pressure on lower trophic
levels.

Data ofmortality recorded after forced exposure for 24 h suggest
that the concentrations used were not acutely toxic, which is in
accordancewith the argument about the lowacute toxicity of HHCB
and AHTN (Breitholtz et al., 2003; Wollenberger et al., 2003). The
24 h-LC50 value recorded for HHCB (401.7 mg/L) was similar to the
48 h-LC50 (470 mg/L) for the marine copepod Acartia tonsa
(Wollenberger et al., 2003), and to the 96 h-LC50 (288 mg/L) for
Chironomus riparus (Artola-Garicano et al., 2003). However, a
higher value (96 h-LC50: >1000 mg/L) for the adult harpaticoid
copepod Nitocra spinipes has been reported (Breitholtz et al., 2003).
The shrimp P. varians proved to be more sensitive to AHTN (24 h-
LC50 value of 88.11 mg/L) compared to N. spinipes (96 h-LC50: 610 mg/
L; Breitholtz et al., 2003), C. riparus (96 h-LC50: >460 mg/L; Artola-
Garicano et al., 2003) and A. tonsa (48 h-LC50: 2500 mg/L;
Wollenberger et al., 2003). Although mortality was the only
endpoint considered in the forced exposure systems, symptoms of
stupefaction were also observed, which could impair the ability to
avoid toxic environments. Subsequently, this and other potential
sub-lethal effects under a forced exposure scenario should not be
neglected.

To elucidate the immediate impact of contaminant dispersion
on aquatic environments at the local level, the PID was estimated
by integrating mortality and avoidance responses. Clearly, avoid-
ance played a greater role in the PID than mortality. Although these

substances are classified as low risk in terms of lethality and,
therefore, are believed not to pose a significant threat at the present
environmental concentration levels (European Commission, 2008a,
2008b), it is evident that they may contribute to a significant
population decline at a local scale and for a short exposure period
by triggering avoidance. For instance, at the lowest concentration
(0.005 mg/L) the population of shrimps declined by 28 and 30% for
HHCB and AHTN, respectively, as against 16% from mortality data
from forced exposures. Several authors have recommended the
inclusion of spatial avoidance data measured in non-forced, multi-
compartmented exposure systems as a complementary tool for
ecological risk assessment. This might help to predict the ecological
risk of contaminants more accurately; thus avoiding over-
estimation or underestimation of risk prediction by either the
forced or non-forced approaches (Araújo et al., 2016b; Moreira-
Santos et al., 2008; Rosa et al., 2012; Silva et al., 2017). In other
studies where PID was estimated, avoidance also tended to occur at
concentrations lower than mortality (Araújo et al., 2014a; Rosa
et al., 2012; Silva et al., 2017), indicating that under conditions of
gradual and heterogeneous contamination, the contaminated area
might lose part of the organism population due to its fleeing from
contamination with possible longer-term consequences on local
ecosystem structure and functioning. In cases where the contami-
nant (either due to its mode of action or to the concentrations) was
observed to cause stupefaction in the organisms (Gutierrez et al.,
2012) and avoidance is prevented, the mortality in the short term
might play a more important role for the PID (Araújo et al., 2014a,
2014c).

Particularly in the cases of HHCB and AHTN, the shrimps were
not sensitive in the forced exposure tests, but they were able to
detect and avoid concentrations of those compounds in the non-
forced exposure tests. This might indicate that avoidance helps to
prevent even sub-lethal effects that organisms could suffer after a
continuous exposure. Under conditions in which an HHCB or AHTN
gradient exists, it would be expected that the distribution of the
shrimps was, at least to some extent, conditioned by the presence
of those contaminants. Since the AC50 obtained for HHCB is 28
times lower than the 24 h-LC50 for forced exposure, the prediction
of the ecological risks of HHCB and AHTN based exclusively on data
from forced exposure assays might provide a relevant vision of the
potential toxicity of both compounds but fails to assess the com-
plete effects at the community structure level (spatial distribution
of the shrimps). Therefore, for contaminants of emerging concern,
spatial avoidance using the non-forced, multi-compartmented
approach should be considered as an additional line of evidence in
environmental risk assessments.

5. Conclusion

Shrimps were not acutely (mortality response) sensitive to the
concentrations of both compounds tested. However, under non-
forced exposure to HHCB and AHTN contaminant gradients, the
shrimps detected different concentrations and avoided those
potentially harmful. The population decline for short exposure to
environmentally relevant concentrations of HHCB and AHTN was
proven to be driven by the avoidance behaviour. It is recommended

Table 1
Values (in mg/L) and their respective confidence intervals of AC50, LC50, and PID50 (concentrations that cause 50% of avoidance, mortality and population immediate decline of
exposed organisms) for the shrimp Palaemon varians exposed to galaxolide (HHCB) and tonalide (AHTN) in non-forced (NFS) and forced (FS) exposure systems.

Substances AC50 (NFS) LC50 (NFS) PID50 (NFS) LC50 (FS) PID50 (FS)

HHCB 14.1 (5.2e61.2) >50 14.1 (5.2e61.2) >50 6.3 (1.7e48.7)
AHTN 30.8 (7.7e345.6) >50 30.8 (7.7e345.6) >50 18.8 (3.9e381.4)
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that ecological risk assessments of compounds of emerging
concern, as well as non-emerging and legacy contaminants, inte-
grate data from both forced and non-forced exposure approaches to
avoid underestimation of their full potential risks.
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A B S T R A C T   

Polycyclic musk compounds have been identified in environmental matrices (water, sediment and air) and in 
biological tissues in the last decade, yet only minimal attention has been paid to their chronic toxicity in the 
marine environment. In the present research, the clams Ruditapes philippinarum were exposed to 0.005, 0.05, 0.5, 
5 and 50 μg/L of the fragrances Galaxolide® (HHCB) and Tonalide® (AHTN) for 21 days. A battery of biomarkers 
related with xenobiotics biotransformation (EROD and GST), oxidative stress (GPx, GR and LPO) and genotox
icity (DNA damage) were measured in digestive gland tissues. HHCB and AHTN significantly (p < 0.05) induced 
EROD and GST enzymatic activities at environmental concentrations. Both fragrances also induced GPx activity. 
All concentrations of both compounds induced an increase of LPO and DNA damage on day 21. Although these 
substances have been reported as not acutely toxic, this study shows that they might induce oxidative stress and 
genotoxicity in marine organisms.   

1. Introduction 

The polycyclic musk compounds (PMCs) 1,3,4,6,7,8-hexahydro- 
4,6,6,7,8,8-hexamethyl-cyclopenta-(g)-2-benzopyran (HHCB) branded 
Galaxolide® and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN) 
branded Tonalide® are bi-cyclic aromatic compounds. They are 
comprised of acetylated and highly methylated tetralin or indane skel
etons (Sumner et al., 2010; Ricking et al., 2003) and are lipophilic with 
high octanol-water partition coefficients (Kow) of 5.9 and 5.7 for HHCB 
and AHTN, respectively (Chen et al., 2012; Reiner and Kannan, 2011; 
Sumner et al., 2010). These substances are applied in a wide range of 
personal care products such as cosmetics, lotions, deodorants, de
tergents and more (Reiner and Kannan, 2011) because of their musky 
scent and fixative properties that enable them to bind to fabrics (Ram
skov et al., 2009; Reiner and Kannan, 2011). According to a European 
Commission risk assessment report, the production of HHCB and AHTN 
in Europe in the year 2000 was between 1000 and 5000 ton/year 
(Eschke, 2004; 2008b) and accounted for approximately 95% of 

fragrance material in the perfumery industry (Balk and Ford, 1999; 
Pedersen et al., 2009). Reports have shown that, since 1990, all fra
grances consumed in the United States have doubled (Roosens et al., 
2007) and increased by 25% between 1996 and 2000 (Peck et al., 2006). 
Because of their high production they have been placed on the “High 
Production Volume List” by the United States Environmental Protection 
Agency (US EPA) (Peck et al., 2006). 

Although HHCB and AHTN were first detected in aquatic environ
ments (Eschke, 2004), recent studies have reported their presence in 
sediment and air (Fromme et al., 2001; Peck et al., 2006; Peck and 
Hornbuckle, 2006). In effluents from sewage treatment plants (STPs), 
concentrations of HHCB and AHTN have reached levels ranging from 
1800 to 9000 ng L� 1 (Bueno et al., 2012; Díaz-Gardu~no et al., 2017). 
Those concentrations were similar to previous studies that reported 
environmental concentrations between 509 and 2337 ng L� 1 for AHTN 
and between 4750 and 13399 ng L� 1 for HHCB (Chen et al., 2012; Lee 
et al., 2010; Pintado-Herrera et al., 2014). Research has shown that 
approximately 50%–90% of the total synthetic musks are eliminated, 
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especially if tertiary treatments are employed, while the rest enters the 
receiving rivers and coastal waters (Heberer, 2002; Ricking et al., 2003; 
Lee et al., 2010). Since legislation requirements for effluents from 
Wastewater Treatment Plants (WWTPs) do not include tertiary depu
ration treatments [such as the multi-barrier treatment that can remove 
chemicals at 97%, and completely eliminate fragrances from wastewa
ters (Díaz-Gardu~no et al., 2017)] as mandatory, concentrations that 
could have been trapped during tertiary depuration escape into aquatic 
ecosystems. 

To the best of our knowledge, only few studies have assessed PMCs’ 
presence in the marine environment (Balk and Ford, 1999; Sumner et al., 
2010). However, reports have demonstrated that they are found to 
bioaccumulate in marine organisms (Kannan et al., 2005; Moon et al., 
2011, 2012). HHCB and AHTN have been measured in the tissues of 
mussels, crustaceans, fish, marine birds and mammals (Kannan et al., 
2005; Moon et al., 2011, 2012; Nakata, 2005) coupled with bio
accumulation factors of toxic concern (Ricking et al., 2003). The bio
accumulation factor values based on lipid weight calculated for HHCB in 
zebra mussels at the Upper Hudson River (USA) was between 2610 and 
4890 (Reiner and Kannan, 2011), and in Germany, bioaccumulation 
factor based on lipid weight calculated for AHTN was between 5100 and 
40100 (Gooding et al., 2006). Additionally, bioconcentration factor 
measured in Lepomis machrochirus for HHCB and AHTN in a laboratory 
study were 1584 and 597, respectively (Balk and Ford, 1999)Yet little is 
known about PMCs’ toxicity in aquatic ecosystems and some of the 
studies have focused on freshwater ecosystems, while others used con
centrations higher than those considered environmentally relevant 
(Wollenberger et al., 2003; Breitholtz et al., 2003; Chen et al., 2012; 
Chen et al., 2011; Gooding et al., 2006; Parolini et al., 2015; Pedersen 
et al., 2009). Environmental concentrations of HHCB and AHTN have 
been shown to experimentally elicit avoidance behaviour in the estua
rine shrimps Palaemon varians when exposed to a gradient of both 
compounds in a free-choice multi-compartmented non-forced exposure 
system (Ehiguese et al., 2019). However, information about sub-lethal 
effects to marine organisms resulting from chronic exposure is incipient. 

The aim of this study was to determine the potential risk of HHCB 
and AHTN to the clam Ruditapes philippinarum after chronic exposure to 
environmentally relevant concentrations. The risk to this species was 
based on a battery of biomarkers of exposure and effect (oxidative stress 
and genotoxicity), such as ethoxyresorufin-O-deethylase (EROD), 
glutathione-S-transferase (GST), glutathione peroxidase (GPx), gluta
thione reductase (GR), lipid peroxidation (LPO) and DNA damage. 
R. philippanarum is an important test organism in ecotoxicology because 
it is readily available, inexpensive and its biology is well understood. 
These euryhaline infauna suspension feeders have been used in studies 
related to bioaccumulation of contaminants (Moschino et al., 2012; 
Santana et al., 2017), metal toxicity (Aouini et al., 2018; Ji et al., 2019; 
Liu et al., 2011b), Ocean acidification (De Marchi et al., 2017; Velez 
et al., 2016; Xu et al., 2016), wastewater effluents as contaminants 
mixture (Díaz-Gardu~no et al., 2017; Maranho et al., 2015) and phar
maceutical and personal care products (Aguirre-martin et al., 2013; 
Aguirre-martínez et al., 2016, 2015; Almeida et al., 2015; Trombini 
et al., 2019). 

2. Materials and methods 

2.1. Selection and concentrations of the polycyclic musks 

HHCB and AHTN were purchased from Sigma Aldrich, Spain. The 
characteristics of these substances are presented in Table 1. The con
centrations (0.005, 0.05, 0.5, 5.0 and 50.0 μg/L) of HHCB and AHTN 
used in the experiments were carefully selected based on concentrations 
measured (maximum of 9 μg/L) in different environmental matrices 
(Bueno et al., 2012; Díaz-Gardu~no et al., 2017; Sumner et al., 2010). 
Initially, stock solutions were prepared and stored in dark bottles at 4 �C. 
Each substance was dissolved in dimethyl sulfoxide (DMSO) in glass 

vial. 

2.2. Organisms: acclimation and maintenance conditions 

A total of 360 specimens of R. philippinarum (average size: 42 � 0.9 
mm; n ¼ 120) were purchased from an aquaculture farm in the Bay of 
C�adiz, (Ctaqua, Cadiz, Spain). Organisms were immediately transported 
to the laboratory for acclimation and kept in a 300 L aquarium for seven 
days. The aquarium was supplied with constant aeration and the spec
imens were fed ad libitum once every day with the microalgae Isochrysis 
galbana. The physical and chemical parameters (photoperiod of 12 h 
light/12 h dark; temperature: 15 � 1 �C; salinity: 34.6 � 0.3; pH: 
7.8–8.2; dissolved oxygen: >5 mg/L) in the aquarium were monitored 
daily. 

2.3. Experimental approach 

The bioassay was conducted in duplicates using a 10 L rectangular 
glass aquarium including sea water control and solvent control (DMSO, 
v/v 0.001%) to prevent any effect from the solvent (Aguirre-martínez 
et al., 2016). Sixteen individuals were exposed in each replicate (32 
individuals per treatment). Exposure to compounds lasted 21 days and 
was performed in a semi-static regimen with total renewal of each test 
substance every 3 days (days 3, 6, 9, 12, 15 and 18). The glass aquariums 
were filled with 8 L of sea water spiked with the stock solution. Physi
ochemical parameters were similar to the acclimation conditions re
ported above. The specimens were sampled on days 3, 7, 14 and 21 (n ¼
6). 

2.4. Water samples collection and analyses 

Water samples for each treatment were collected on days 0 and 3 
using amber bottles and immediately stored at � 20 �C before determi
nation of the concentrations of HHCB and AHTN. The methodology 
described by Pintado-Herrera et al. (2014) based on the SBSE-LD (stir 
bar sorptive extraction coupled to liquid desorption) by using poly
dimethylsiloxane bars (PDMS, 10 mm � 0.5 mm) was employed. The 
compounds were separated, identified and quantified using gas chro
matography (SCION 456-GC, Bruker) coupled to a tandem mass spec
trometry (SCION TQ from Bruker with CP 8400 Autosampler). Details of 
the detection and extraction efficiency of the methodology can be found 
in Pintado-Herrera et al. (2016) and (2014). The concentrations of 
HHCB measured in the exposure water ranged from 54% to 80% of the 
nominal concentration on day 0 and from 21% to 23% on day 3 just 
before renewal in the semi-static experiment. Regarding AHTN, con
centrations on day 0 ranged between 73% and 97% of the nominal 
concentrations and from 23% to 29% on day 3, just before renewal. The 
differential between nominal and measured concentrations is consistent 
with other reported studies due to instability of HHCB and AHTN. 

Table 1 
Characteristics of HHCB and AHTN.  

Characteristics Galaxolide® (HHCB) Tonalide® (AHTN) 

Structural 
Formula 

Chemical Name 

1,3,4,6,7,8-hexahydro-4,6,6,8,8- 
hexamethylcyclopenta-ƴ-2- 
benzopyran 

6-Acetyl-1,1,2,4,4,7- 
hexamethyltetralin 

CAS No 1222-05-5 21145-77-7 
Log Kow 5.9a 5.7a 

Water 
Solubility 

1.75 mg/l 1.25 mg/l  

a Balk and Ford (1999). 
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2.5. Biological samples preparation 

Three individuals (n ¼ 6 per treatment) were sampled from each 
replicate after 3, 7, 14 and 21 days of exposure. Organisms were 
dissected on ice and digestive gland tissues were extracted. Homogeni
zation buffer was prepared with 100 mM NaCl, 25 mM HEPES salt, 0.1 
mM EDTA and 0.1 mM DTT. Digestive gland tissue (n ¼ 6) was ho
mogenized following the procedure described by Lafontaine et al. 
(2000) and centrifuged at 15.000 g for 20 min at 4 �C to obtain the 
supernatant fraction S15 and at 3000 g for 20 min at 4 �C to obtain the 
supernatant fraction S3. Supernatant fractions were carefully extracted 
and stored at � 80 �C. The total protein concentration (TP) (expressed as 
mg TP) was determined in the homogenized fraction and in S15 and S3 
fractions following an adaptation of the methodology by Bradford 
(1976). All biomarkers were measured using a kinetic microplate reader, 
Infinite® M200. 

2.6. Biomarker analyses 

2.6.1. Ethoxyresorufin O-deethylase (EROD) activity 
EROD activity was measured using the method adapted from 

rainbow trout fingerling (Gagn�e and Blaise, 1993). 50 μl of S15 samples 
(25 μl sample þ 25 μl of MilliQ) were added in 96-well flat bottom dark 
microplates. 160 μl of 7-ethoxyresorufin and 10 μl of reduced NADPH 
were added with 100 mM K2HPO4 buffer at pH 7.4. The reaction was 
activated using NADPH and allowed to proceed for 60 min at 30 �C. 7- 
hydroxyresorufin was determined fluorometrically using 516 nm exci
tation and 600 nm emission filters and readings were taken at 15 min 
intervals. The calibration curve was developed using concentrations of 
resorufin and results were normalized to their corresponding total pro
tein expressed as pmol/min/mgTP. 

2.6.2. Glutathione-S-transferase activity 
Determination of GST activity was adopted from Balk and Ford 

(1999). In a transparent 96-well flat bottom microplate, 15 μl S15 sam
ples were added to 200 μl reaction buffer of 10 mM HEPES salt, 125 mM 
NaCl and 1 mM glutathione reduce (GSH) normalized at pH 6.5. Sub
sequently, 15 μl of homogenization buffer was added to 2 wells and 
marked up with 200 μl reaction buffer to check the background reaction 
rate. Absorbance was measured at 340 nm, every 5 min for 30 min based 
on the appearance of the glutathione conjugate at 22 �C. Results were 
expressed as microgram per minute per milligram total protein 
(μg/min/mgTP). 

2.6.3. Glutathione peroxidase activity 
Glutathione peroxidase activity was measured using the procedure 

adapted from Mcfarland et al. (1999). 20 μl S15 samples (10 μl þ 10 μl 
homogenization buffer) were added to a transparent 96-well flat bottom 
microplate. 200 μl daily assay mixture prepared with GPx assay buffer 
(50 mM potassium phosphate, 0.1 mM EDTA and 0.15 mM sodium 
azide) and substrates (1 mM cumene hydrogen peroxide in 50 ml GPx 
assay buffer incubated at 30 �C) was added to the microplate and 
incubated for 2 min at 30 �C. A volume of 50 μl of substrate was then 
added to each well. The oxidation of NADPH to NADP was observed. 
Readings were taken at 340 nm for 3 min, at 10 s intervals. 20 μl of 
homogenization buffer were added in 2 wells as a background corrected 
value. Results were expressed as nmol/min/mgTP. 

2.6.4. Glutathione reductase (GR) activity 
The method adapted by Martín-Díaz et al. (2007) was used to mea

sure the activity of GR. In a transparent 96-well flat bottom microplate, 
20 μl S15 sample (10 μl sample þ 10 μl MilliQ) and 200 μl of incubated 
daily assay mixture (200 mM NaH2PO4 and Na2HPO4 at pH 7.6, 10 mM 
oxidized glutathione, 1 mM NADPH) were added. A volume of 20 μl 
homogenization buffer was added to 2 wells as blank to check the 
background reaction rate. The reaction was measured 

spectrophotometrically using 340 nm emission at 30 �C. The loss of 
NADPH was recorded at 2 min interval for 10 min. Results were 
expressed as pmol/min/mgTP. 

2.6.5. Lipid peroxidation (LPO) 
The thiobarbituric acid reactive substance (TBARS) procedure was 

used for LPO measurement (Wollenberger et al., 2003). 150 μl of diluted 
homogenate samples (90 μl samples þ 60 μl MilliQ) were injected in 1.5 
ml tubes. A standard solution of tetramethoxypropane (TMP) was pre
pared with 0.001% TMP and diluted serially with distilled water (0–15 
μM TMP). 300 μl of 10% trichloroacetic acid (TCA), 1 mM FeSO4 and 
150 μl of 0.67% thiobarbithuric acid (TBA) were added to the sample 
and standard solution separately. They were then mixed and incubated 
for 10 min at 70 �C in a J.P. Selecta® incubator. 200 μl of the precipitates 
(standard solution for the TMP standard curve and homogenate sam
ples) were pipetted into a dark 96-well flat bottom microplate. Pro
duction of malondialdehyde (MDA), which is indicative of oxidative 
stress from the degradation of initial products of free radical attack on 
fatty acid (Josephy, 2010), was measured spectrophotometrically at 
516 nm (excitation) and 600 nm (emission) filter. Optical density values 
were converted to μgTBARS/mgTP. 

2.6.6. DNA damage 
The DNA precipitation assay methodology is based on 2% SDS-KCl 

precipitation of DNA-protein crosslink, which uses fluorescence to 
quantify the DNA strands (Oxford, 2001; Gagn�e et al., 1995). When DNA 
breaks because of exposure to toxic chemicals, the strands are released 
from cellular protein into the supernatant when centrifuged at low speed 
(Oxford, 2001). It becomes possible to quantify the amount of double 
and single stranded DNA at the end of the assay (Gagn�e et al., 1995). A 
volume of 25 μl of homogenate was mixed by inversion with 200 μl of 
SDS 2% prepared with 10 mM EDTA, Tris-Base and 40 mM NaCl. 200 μl 
of 0.12 mM KCl was added and mixed by inversion. The mixture was 
incubated for 10 min at 60 �C, cooled at 4 �C for 30 min and centrifuged 
8000�g at 4 �C for 5 min. For DNA calibration, Salmon Sperm genomic 
DNA was dissolved in 1 ml TEIX (Tris-HCl and EDTA at pH 8.0) as a 
standard. In a dark 96-well flat bottom microplate, 50 μl of the super
natant was added to 150 μl of Hoescht dye 0.1 μg/mL diluted with so
dium cholate containing 0.4 M NaCl, 4 mM sodium cholate and 0.1 M 
Tris-Acetate (pH 8.5). Fluorescence was measured at 360 nm (excita
tion) and 450 nm (emission) filters against blanks containing similar 
constituents without homogenate. Optical density values were con
verted to μg DNA/mgTP. 

2.7. Statistical analysis 

Data for biomarker responses were analyzed using the SPSS®/PC þ
statistical package. Prior to parametric tests, the normality and homo
geneity of the data were analyzed. Significant differences between 
controls and organisms exposed to polycyclic musk compound treat
ments were determined using one-way ANOVAs followed by Dunnett’s 
comparison tests and significance levels were set at p < 0.05. In order to 
evaluate the relationship between biomarker responses and musk con
centrations over time, Spearman’s rank order of correlation tests were 
run. Significance levels were set at p < 0.05 and p < 0.01 to obtain 
pairwise correlations. 

3. Results 

3.1. Biomarker responses 

During the 21 day exposure, there was no significant mortality (3%) 
and no significant difference in biomarker responses (p < 0.05) analyzed 
in digestive gland tissues of clams exposed to the seawater control group 
and DMSO. The results of the biochemical biomarkers from digestive 
gland extracts are presented in Figs. 1 and 2 and correlations between 
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Fig. 1. Biochemical biomarkers including ethoxyresorufin O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPX), glutathione 
reductase (GR) activities, lipid peroxidation (LPO) level and DNA damage (strand breaks) measured in the digestive gland tissues of R. philippinarum exposed to 
tonalide (AHTN) for 21 days. Asterisks (*) shows significant differences with control treatment (p < 0.05). 
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Fig. 2. Biochemical biomarkers including ethoxyresorufin O-deethylase (EROD), glutathione-S-transferase (GST), glutathione peroxidase (GPX), glutathione 
reductase (GR) activities, lipid peroxidation (LPO) level and DNA damage (strand breaks) measured in the digestive gland tissues of R. philippinarum exposed to 
galaxolide (HHCB) for 21 days. Asterisks (*) shows significant differences with control treatment (p < 0.05). 

Table 2 
Spearman’s rank order of correlation (rs) test between biomarkers measured in R. philippinarum digestive gland tissues after exposure to Galaxolide® (first value in 
bold) and Tonalide® (second value) concentrations (CON) (n ¼ 3).  

Biomarkers CON EROD GST GPx GR LPO DNA Damage 

EROD 0.111/0.333** 1      
GST 0.378**/0.272** 0.207*/0.083 1     
GPx 0.484**/0.273** 0.012/-0.013 0.196*/0.273** 1    
GR � 0.196*/-0.335** � 0.102/-0.362** 0.134/0.268** � 0.255**/-0.022 1   
LPO � 0.018/-0.393** � 0.049/-0.059 0.021/-0.252** � 0.080/-0.250* 0.177*/0.154 1  
DNA Damage 0.352**/0.310** 0.015/0.233** 0.243**/0.136 0.019/-0.088 0.193*/-0.054 0.407**/0.096 1 

Asterisks indicate the p values: *p < 0.05 and **p < 0.01. Ethoxyresorufin O-deethylase (EROD), gluthathione-S-transferase (GST), gluthathione peroxidase (GPX), 
gluthathione reductase (GR), lipid peroxidation (LPO). 
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concentrations and biological responses can be found in Table 2. 

3.1.1. Biomarkers of exposure 
The biotransformation enzymes, which involve EROD enzymatic 

activity, showed significant induction compared with control in organ
isms exposed to AHTN and HHCB. Significantly higher values compared 
with control (p < 0.05) were observed on days 3 and 7 (0.05, 0.5, 5 and 
50 μg/L) and day 14 (0.05 and 0.5 μg/L) for AHTN (Fig. 1). Regarding 
HHCB, significantly higher values (p < 0.05) were found on day 7 (0.05, 
0.5, 5 and 50 μg/L), day 14 (0.005 μg/L) and day 21 (0.005, 0.5, 5 and 
50 μg/L) (Fig. 2). 

3.1.2. Biomarkers of effect 
Induction of GST (p < 0.05) was observed in clams exposed to HHCB 

and AHTN. This induction was significant (p < 0.05) on days 7, 14 
(0.005, 0.05, 0.5, 5 and 50 μg/L) and 21 (0.005, 0.05, 5 and 50 μg/L) in 
organisms exposed to AHTN (Fig. 1) and from day 3–21 when clams 
were exposed to HHCB (Fig. 2). When describing GPx activities, it was 
observed that significant induction (p < 0.05) was found on day 3 for 
HHCB (0.05, 0.5 and 5 μg/L) (Fig. 2) and AHTN (0.05 and 0.5 μg/L) 
(Fig. 1). This induction was not concentration-dependent. Significant 
antioxidant induction was also observed on the last day of exposure to 
HHCB compared with control (p < 0.05) and was positively correlated 
with the concentrations 0.05, 0.5, 5 and 50 μg/L (Fig. 2). Surprisingly, 
GR enzymatic activity decreased significantly compared with control (p 
< 0.05) in all treatments for both substances (Figs. 1 and 2). These re
sponses of the antioxidant enzymes showing oxidative stress corre
sponded with significant (p < 0.05) increasing lipid peroxidation in the 
digestive gland tissues of clams exposed to these polycyclic musk com
pounds after 21 days of exposure. Moreover, the increased LPO level was 
positively correlated on day 21 with concentration for HHCB. Significant 
increase in DNA strand break (p < 0.05) was observed on days 7, 14 and 
21 (0.005, 0.05, 0.5 5 and 50 μg/L) compared with control (p < 0.05) for 
HHCB (Fig. 2) and only on day 21 (0.05, 0.5, 5 and 50 μg/L) for AHTN 
(Fig. 1). This induction was positively correlated with the concentration 
on day 21 (p < 0.05). 

3.2. Correlations 

Taking all biomarker responses into consideration, organisms 
showed positive and significant (p < 0.01) concentration-dependent 
response correlation regarding detoxification (GST), oxidative stress 
(GPx) and genotoxicity (DNA damage), and significant (p < 0.05) and 
negative correlation with GR (Table 2) in clams exposed to HHCB. For 
AHTN, concentration correlated significantly (p < 0.01) with induction 
of EROD, GST, GPx, DNA damage and significant (p < 0.01) inhibition of 
GR (Table 2) in clams exposed to AHTN. Positive correlation between 
biomarkers of exposure, GST with EROD, GPx (p < 0.05), and bio
markers of effects, DNA damage (p < 0.01), LPO (p < 0.05) in clams 
exposed to HHCB was determined (Table 2). Induction of GST signifi
cantly (p < 0.01) correlated with GPx and GR and negatively correlated 
with LPO, and EROD activation was significantly (p < 0.01) correlated 
with inhibition of GR corresponding to significant (p < 0.01) increased 
DNA damage (Table 2) in clams exposed to AHTN. 

4. Discussion 

Environmental risk assessments of PMCs have been mainly focused 
on toxicity for freshwater environments, and information about chronic 
toxicity in marine environments remains limited. In the present study, a 
battery of biomarkers related with xenobiotic detoxification (EROD and 
GST), oxidative stress (LPO, GPx and GR) and genotoxicity (DNA dam
age) have been tested to provide information regarding the potential 
toxicity of the fragrances tonalide and galaxolide for the marine clam R. 
philippinarum. 

We observed dose-dependent significant induction of EROD activity 

(p < 0.05) in R. philippinarum exposed to AHTN and HHCB (Figs. 1 and 
2). The cytochrome P450 system has been described to be involved in 
the metabolism of detoxification of lipophilic compounds, while EROD 
enzymes catalyze the reactions of degradation of lipophilic compounds 
(van der Oost et al., 2003). EROD activity, measured in bioindicator 
species, has been established as a biomarker of exposure to lipophilic 
chemicals. The activity of P450 enzymes are key in phase I biotrans
formation of xenobiotics, specifically lipophilic compounds with aro
matic backbone. EROD activity studied in aquatic organisms has shown 
high values after exposure to polycyclic aromatic hydrocarbons, poly
chlorinated biphenyls and some contaminants of emerging concern 
(Aguirre-martínez et al., 2016; Luna-Acosta et al., 2015; Maranho et al., 
2015; Park et al., 2009; Siebert et al., 2017; Tao et al., 2013). Conse
quently, HHCB and AHTN may have the capacity to bind to the aryl 
hydrocarbon (Ah) receptor in CYP450 1A1, because xenobiotics that fail 
to bind with the Ah receptor showed no induction of EROD activity 
(Petrulis et al., 2000). The induction of EROD activity recorded in this 
study is a confirmation of the bioavailability of HHCB and AHTN to 
marine organisms and thus requires urgent attention to address the 
potential toxicity in marine ecosystems. 

Aromatic xenobiotics are prooxidant chemicals, which increase 
intracellular generation of reactive oxygen species through the induc
tion of cytochrome P450 pathway (Regoli and Giuliani, 2014) and 
antioxidant species, such as GST, GPx and GR; furthermore, they are 
bioindicators of contaminant-mediated oxidative stress that play sig
nificant roles in breaking down oxyradicals to less harmful products, 
consequently preventing oxidative damage (Wu et al., 2011). The sig
nificant increase in GST activity in the digestive gland of clams exposed 
to HHCB and AHTN suggests their capacity for inducing oxidative stress. 
GST is a phase II metabolic isoenzyme involved in the catalytic conju
gation of reduced glutathione to xenobiotic substrates thus encouraging 
detoxification and preventing interactions with crucial cellular proteins 
and nucleic acids (Birben et al., 2012; Josephy, 2010). This detoxifica
tion process triggers GST induction and the increased GST activity 
observed in this study suggests that HHCB and AHTN possess electro
philic cores, with which glutathione conjugated (Hampel et al., 2016). 
The activation of GPx activity in a concentration-dependent pattern as 
observed in clams exposed to HHCB and AHTN on day 21 indicated an 
effort to ameliorate oxidative stress, thus protecting the organism from 
cell damage. GPx activity is an important antioxidant biomarker with 
involvement in antioxidant metabolism because, in conjunction with 
GST, it reduces lipid hydroperoxides to alcohol, with some concomitant 
oxidation of reduced glutathione to oxidized glutathione (Regoli and 
Giuliani, 2014). GR activity in the present study was significantly 
inhibited by both HHCB and AHTN (Figs. 1 and 2) and cells need to 
maintain high levels of GR to function together with other enzymes in 
defending cells against degenerative attacks (Srikanth et al., 2013). GR 
acts as a substrate to other glutathione enzyme species to prevent 
oxidative stress and a balance in the amount of each glutathione en
zymes is precursor for optimal cell defence. Therefore, GR inhibition 
may alter detoxification and antioxidant capacity of GST and GPx 
(McCay et al., 1976; Oxford Biomedical Roosens et al., 2007; Stojiljkovi�c 
et al., 2007). However, glutathione metabolism enzymes’ pattern of 
responses is not always straightforward and depends on a series of fac
tors, including the species (Antunes et al., 2013). Antioxidant defences 
can be overwhelmed by some chemical compounds which can depress 
the antioxidant capacity to remove oxyradicals and prevent cell damage 
(Regoli and Giuliani, 2014). Recent studies have shown alterations in 
antioxidant enzymes in aquatic and terrestrial organisms exposed to 
HHCB and AHTN, indicating the potential for oxidative stress. The 
goldfish Carassius auratus exposed to simulated urban runoff containing 
HHCB alone and HHCB mixed with cadmium showed a significantly 
increased antioxidant enzyme activity after 14 days and decreased 
significantly after 21 days of exposure (Chen et al., 2012). Eisenia fetida 
exposed to HHCB and AHTN upregulated antioxidant defence at a low 
dose of 0.6 μg cm� 2 and significantly decreased at a concentration of 6.0 
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μg cm� 2 after 48 h of exposure (Chen et al., 2011). 
The alterations in the antioxidant enzymes activities could be linked 

to the significant increase in LPO recorded in this study after 21 days for 
clams exposed to AHTN and HHCB (Figs. 1 and 2). Similarly, the zebra 
mussel, D. polymorpha exposed to 100 and 500 ng/L of HHCB and 20 and 
80 ng/L of AHTN showed significant time-dependent lipid peroxidation 
after 21 days (Parolini et al., 2015). E. fetida exposure to HHCB and 
AHTN also induced a time-dependent significant increase in LPO due to 
oxidative stress (Chen et al., 2011; Liu et al., 2011a). LPO is a 
self-propagating chain reaction, and thus, it is believed that the foremost 
oxidation of only a few lipid molecules can cause serious tissue damage 
(Mcfarland et al., 1999). 

Concentration-dependent significant DNA strand breaks in clams 
exposed to environmental concentrations of AHTN and HHCB were 
observed at the end of the exposure (Figs. 1 and 2 and Table 2). This is 
expected to occur as a result of significant oxidative stress, because 
direct reaction between DNA and free radical species can result in DNA 
damage including damaged bases, structural breaks and/or inter and 
intra strand crosslinks. It is possible that genetic damage was also as a 
result of the metabolites of the parent compounds, which in some cases 
could be more toxic to organisms than the parent compounds tested. 
Significant correlations between pollutant induced reactive oxygen 
species and DNA damage in marine invertebrates have been reported 
(Mamaca et al., 2005). Our result is supported by previous research, 
which documented significant time-dependent DNA fragmentation in 
the zebra mussel D. polymorpha after exposure to environmentally 
relevant concentrations (100 and 500 ng/L for HHCB) even after four 
days. The authors also demonstrated that 80 ng/L of AHTN induced 
significant time-dependent DNA damage with a value 3.6-fold higher 
than the control on day 21 (Parolini et al., 2015). These results are 
indicative of chronic effects of HHCB and AHTN in freshwater and 
marine ecosystems. 

In addition, EROD correlated with GST (p < 0.05) and GST positively 
correlated with GPx (p < 0.05) and DNA damage (p < 0.01) in clams 
exposed to HHCB (Table 2). GST positively correlated with GPx and GR 
(p < 0.01) (Table 2). Taking these relationships into account, it is clear 
that the exposure of clams to these substances exerted significant acti
vation of biomarkers of exposure and effect as observed in the significant 
correlation of HHCB and AHTN concentrations with DNA damage (p <
0.01) assessed in the digestive gland of clams (Table 2) which could be 
consequential to unsuccessful detoxification of contaminant-generated 
oxyradicals. 

The biomarkers evaluated in R. philippinarum to understand the 
environmental risk of HHCB and AHTN have been found useful and 
sensitive to the exposure to both substances in the marine environment. 
Although the studies with HHCB and AHTN are incipient, our findings 
indicating a potential chronic risk of both compounds are corroborated 
by previous studies that examined oxidative damage by quantifying the 
malondialdehyde level for LPO as a biomarker in the earthworm E. fetida 
(Chen et al., 2011) and Dreissena polymorpha (Parolini et al., 2015) for 
terrestrial and aquatic environments, respectively. Additionally, it has 
also been shown under laboratory conditions that environmental con
centrations of HHCB and AHTN might elicit avoidance behaviour in the 
estuarine shrimps P. varians, probably due to their organoleptic char
acteristics (Ehiguese et al., 2019). Because of the volatile nature of these 
contaminants under laboratory exposure, the reported biological effects 
may be underestimated (Tumov�a et al., 2019). Taking into account the 
different types of chronic effect that HHCB and AHTN can potentially 
produce, either in terrestrial (Liu et al., 2011a), freshwater (Parolini 
et al., 2015) or marine [Ehiguese et al. (2019) and the current study] 
organisms, it is crucial to review the regulatory status, when the envi
ronmental concentrations just indicate a slight risk before irreversible 
environmental effects are exerted. 

5. Conclusions 

The current research revealed that environmental concentrations of 
HHCB and AHTN might have adverse effects (oxidative stress and gen
otoxicity) on the marine clam R. philippinarum. Results from this study 
showed that, in particular, the activities of EROD, GST, GPX, GR, LPO 
levels and DNA damage were useful essential biomarkers to evaluate 
effects of PMCs at environmental concentrations in the marine envi
ronment because changes related with the concentrations of AHTN and 
HHCB were detected. 
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A B S T R A C T   

Galaxolide (HHCB) and tonalide (AHTN) are polycyclic musk compounds (PMCs) used in household and personal 
care products that have been included on the list as emerging contaminants of environmental concern due to 
their ubiquity in aquatic and terrestrial environments. There still exists a dearth of information on the neuro
toxicity and endocrine disrupting effects of these contaminants, especially for marine and estuarine species. Here, 
we assessed the neuroendocrine effects of HHCB and AHTN using adult clams, Ruditapes philippinarum, and yolk- 
sac larvae of sheepshead minnow, Cyprinodon variegatus. The clams were treated with concentrations (0.005–50 
μg/L) of each compound for 21 days. Meanwhile, sheepshead minnow larvae were exposed to 0.5, 5 and 50 μg/L 
of HHCB and AHTN for 3 days. Enzyme activities related to neurotoxicity (acetylcholinesterase - AChE), 
neuroendocrine function (cyclooxygenase - COX), and energy reserves (total lipids - TL) were assessed in 
R. philippinarum. Gene expression levels of cyp19 and vtg1 were measured in C. variegatus using qPCR. Our results 
indicated induction of AChE and COX in the clams exposed to HHCB while AHTN exposure significantly inhibited 
AChE and COX. Gene expression of cyp19 and vtg1 in yolk-sac C. variegatus larvae exposed to 50 μg/L AHTN was 
significantly downregulated versus the control. The results of this study demonstrate that HHCB and AHTN might 
pose neurotoxic and endocrine disrupting effects in coastal ecosystems.   

1. Introduction 

Galaxolide (HHCB) and tonalide (AHTN) are polycyclic musk com
pounds (PMCs) used in household and personal care products and are 
included on the list of emerging contaminants of environmental concern 
due to their ubiquity in aquatic and terrestrial environments (Schreurs 
et al., 2004; Zhang et al., 2013). HHCB and AHTN consist of aromatic 
structures consisting of acetylated and extremely methylated pyran and 
tetralin bases (Sumner et al., 2010). They possess high n-octanol – water 
partition coefficients (Kow) akin to most persistent organic pollutants 
and may persist in the marine environment. The presence and toxicity of 
PMCs in transitional and coastal ecosystems is yet to be fully understood. 
Most research regarding these compounds has been focused on fresh
water ecosystems (Balk and Ford, 1999a, 1999b; Parolini et al., 2015; 
Yamauchi et al., 2008) with only a few reports available on the toxicity 

of PMCs in the marine environment (Breitholtz et al., 2003; Luckenbach 
et al., 2004; Wollenberger et al., 2003). Recently, Ehiguese et al. (2019) 
studied the avoidance behavior of the shrimp Palaemon varians and 
found that HHCB and AHTN potentially elicited avoidance behavior in 
this shrimp. Chronic exposure to environmentally relevant concentra
tions of these substances suggests that they may alter antioxidant 
enzyme activity and potentially trigger oxidative stress in Manila clams 
(Ehiguese et al., 2020). To the best of our knowledge, the neurotoxicity 
and endocrine disrupting effects of these contaminants in the marine 
environment are yet to be addressed. 

About 30% of commercially available chemicals are estimated to 
possess neurotoxic and endocrine disrupting properties (Tilson et al., 
1995). These chemicals can target neurotransmitter pathways and their 
components such as neurotransmitters, receptors, biosynthetic enzymes, 
catabolic enzymes, and transporters (Basu, 2015). Neuroendocrine 
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compounds promote diverse physiological and behavioral effects that 
alter the capacity of organisms to reach their biotic potential, cope with 
stress and other environmental challenges, and survive (Waye and 
Trudeau, 2011). Signals from environmental contaminants can interfere 
with neurotransmission and disrupt endocrine functions in marine or
ganisms because of their potential to mimic the natural hormone es
trogen, and can bind to estrogen receptors and influence estrogen 
biosynthesis (Waye and Trudeau, 2011). Many persistent organic pol
lutants have been implicated as neuroendocrine disruptors in the marine 
environment causing adverse effects related to changes in thyroid 
morphometry and functions, suppression of ovarian follicle develop
ment, altered sex differentiation, and mortality (Berg et al., 2016; Porte 
et al., 2006; Schnitzler et al., 2008). Furthermore, environmental con
centrations of some pharmaceutical products have been shown to inhibit 
monoamine oxidase activity, increase plasma cortisol levels, and reduce 
feeding in aquatic organisms (L. A. Maranho et al., 2015; Melnyk-Lamont 
et al., 2014). Importantly, HHCB and AHTN have been demonstrated to 
disrupt neuroendocrine activity in several in vitro studies(Li et al., 2013; 
Mori et al., 2007; Schreurs et al, 2002, 2004, 2005) and significantly 
alter gene expression levels in male medaka fish (Yamauchi et al., 2008). 

The aim of this study was to investigate the neurotoxic and endocrine 
disrupting effects of HHCB and AHTN in the marine environment. We 
assessed biochemical activities in Manila clams (Ruditapes philippinarum) 
using biomarkers of neuroendocrine toxicity (AChE, COX) and energy 
reserves (total lipids; TL) in a 21 day exposure. We also assessed and 
gene expression levels of cyp19 and vtg1 in yolk-sac larvae of sheepshead 
minnow (Cyprinodon variegatus) after 3 days of exposure to HHCB or 
AHTN. The suitability of R. philippinarum for ecotoxicological studies has 
been previously stated by Ehiguese et al. (2020). Sheepshead minnow 
are a suitable marine model used in ecotoxicological studies because 
they are easy to breed under laboratory conditions and spawn contin
uously with relatively large demersal eggs (Cripe et al., 2009). They 
have been used in the assessment of endocrine disrupting chemicals in 
transitional and coastal waters (Bowman et al., 2000; Folmar et al., 
2000; Hemmer et al., 2001) as well as to characterize alteration of im
mune pathways (Jones et al., 2017; Rodgers et al., 2020) and oxidative 
stress (Rodgers et al., 2018) after chemical exposures. 

2. Materials and methods 

2.1. Test chemicals 

For the clam experiments, analytical grades of HHCB (85.0%) and 
AHTN (97.0%) were obtained from Sigma Aldrich Spain. The details of 
dissolution and preparations can be found in Ehiguese et al. (2020). In 
brief, stock solutions were prepared using DMSO (0.001%v/v) as the 
organic solvent to dissolve the test chemicals which were further diluted 
with distilled water to reach the concentrations needed (0.005, 0.05, 
0.5, 5 and 50 μg/L). These concentrations were selected based on re
ported environmental concentrations measured in marine environments 
(Díaz-Garduño et al., 2017; Pintado-Herrera et al., 2013). For the fish 
experiments, 100 g of analytical grade AHTN (97%) was purchased from 
Sigma Aldrich, USA. 10 g of the product was dissolved in 0.001%v/v 
DMSO to form the stock solution. 25 g of HHCB dissolved in 50% diethyl 
phthalate containing 49% pure HHCB was purchased from TCI America, 
USA and the concentrations required were calculated based on the 
percentage of the active ingredient of HHCB in the solution. The stock 
solution was diluted using distilled water to create 0.5, 5.0 and 50.0 
μg/L solutions for each compound. 

2.2. Test organisms 

The clams, R. philippinarum (550 specimens), were obtained from an 
aquaculture farm in the south-west of Spain and were transported to the 
laboratory of Marine Culture, Faculty of Marine and Environmental 
Science (University of Cadiz, Spain). The adult clams (average size of 

43.2 ± 1.6 mm) were acclimated in a 250 L aquarium and were fed with 
Isochrysis galbana once per day. During acclimation, aeration was pro
vided to improve the oxygen content (dissolved oxygen >5 mg/L) of the 
medium and other physiochemical parameters in the aquarium were 
monitored and controlled. The temperature, salinity, pH and photope
riod during the acclimation were 15 ± 1 ◦C, 34.7 ± 0.4‰, 7.8–8.2 and 
12 h light/12 h dark, respectively. 

Adult sheepshead minnows (C. variegatus) previously purchased and 
kept in artificial seawater (15‰), between the temperature range of 
25–27 ◦C and photoperiod (12:12 light/dark) in 300 L static recircu
lating raceways at the Toxicology Building, Gulf Coast Research Labo
ratory, University of Southern Mississippi (Ocean Springs MS, USA) 
were used as brood stocks. Before breeding, the brood stocks were fed 
daily with Artemia nauplii and commercial flake food. Four Spawntex® 
Mats (15–20 cm; Pentair Aquatic Eco-Systems) were placed in the two 
holding raceways overnight for spawning, two per raceway, containing 
gravid females with a female:male at a ratio of 2:1. The fertilized eggs 
were collected by gently tapping the Spawntex® Mats into a clean lab
oratory dish. The embryos were gently rinsed and transferred into a 
hatching jar supplied with aeration to aid suspension of the fertilized 
eggs in the water column and they were incubated in an ISOTEMP 115 
(Fisher Scientific) at 30 ◦C until hatching (Dangre et al., 2010; Griffitt 
et al., 2012). These yolk-sac larvae were then carefully collected in 100 
ml beakers filled with artificial seawater (15‰) prior to exposure. 

2.3. Biochemical effects: Experimental approach 

R. philippinarum were exposed aqueously to either HHCB or AHTN in 
10 L rectangular glass aquariums. The bioassay experiment was carried 
out in duplicate for all treatments including the controls (seawater and 
DMSO). Natural, filtered seawater was obtained from the Marine Cul
ture laboratory of the University of Cadiz, and 8 L of the seawater was 
mixed with each test chemical. 16 clams were added to each aquarium, 
totaling 32 per treatment except for the seawater and solvent controls 
with 14 specimens each. The treatments were renewed every three days, 
during which the water was siphoned out of the holding tanks and 
carefully cleaned and refilled with seawater spiked with freshly pre
pared contaminant. Any dead clams were immediately removed and 
recorded. The physical and chemical properties were adjusted to the 
same conditions as reported above during the acclimation period. Three 
clams were randomly collected from each replicate on day 3, 7, 14 and 
21, and tissues (digestive gland and gonads) were immediately har
vested on ice and stored at − 80 ◦C in the laboratory prior to 
homogenization. 

Buffer was prepared for sample homogenization using 0.1 mM EDTA, 
100 mM NaCl, 25 mM HEPES salt, and 0.1 mM DTT. The samples stored 
in the freezer were thawed on ice and the digestive glands and gonads of 
three clams from each aquarium were pooled together for homogeni
zation. The pooled samples were homogenized, and a fraction of each 
homogenate (HF) was centrifuged to obtain supernatant portions at a 
speed of 15.000×g for 20 min at 4 ◦C (S15) and 3.000×g for 20 min at 
4 ◦C (S3). The Bradford (1976) methodology was adapted to determine 
the corresponding total protein (TP) concentration with values 
expressed as mg/mL for different extracts (HF, S3 and S15). The 
biochemical analyses of the biomarkers were quantified using a kinetic 
microplate reader, Infinite® M200. 

2.4. Collection and analysis of exposure water 

Exposure water for each concentration was sampled using clean 
amber bottles on day 0 and 3 for analysis of initial and final concen
trations and the samples were kept in − 20 ◦C prior to the chemical 
analysis. Details of the methodology for the chemical analysis and the 
results of the detection and quantification can be found in Ehiguese et al. 
(2020). 
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2.5. Biochemical analyses 

2.5.1. Acetyl Cholinesterase (AChE) activity 
AChE activity was measured in the post-mitochondria fraction of the 

digestive glands according to the methodology described in Guilher
mino et al. (1996). 20 μL of the centrifuged S15 fraction was added to 20 
μl of 50 mM potassium phosphate buffer at a pH of 7.5 in 96 transparent, 
flat bottom wells. 130 μL of 5,5-Dithiobis (2-nitrobenzoic acid) (DTNB) 
solution was further added with 50 μL of acetylthiocholine iodide so
lution. The activity of AChE was determined by absorbance measured at 
405 nm at every 40–52 s for 5–7 min. The data were expressed as the 
formation of thiols in pmol DTNB/min/mg TP. 

2.5.2. Cyclooxygenase (COX) activity 
COX activity was measured according to Gagné et al. (2015), 

following the oxidation of 2,7-dichlorofluoresceine in the presence of 
arachidonate (Fujimoto et al., 2002). Briefly, 96 dark, flat bottom well 
microplates were coated with 50 μL of the S15 sample. 200 μL of the 
assay buffer containing 50 μM arachidonic acid and 2 μM dichloro
fluoresceine was added with 0.1 μg/mL horseradish peroxidase con
taining 50 mM Tris-HCl, pH 8.0 and 0.05% Tween 20. The reaction was 
incubated at 30 ◦C for 0, 5, 10, 15, 20, 25 and 30 min and the fluores
cence was measured at 485 nm (excitation) and 520 nm (emission). The 
data were expressed as μmol fluorescein/min/mg TP. 

2.5.3. Total lipids (TL) 
TL were measured in gonad and digestive gland tissues following the 

phosphovanilin method by Frings et al. (1972). Dark microplates with 
96 flat-bottom wells were coated with 10 μL of samples diluted with 10 
μL of MilliQ. 30 μL of concentrated sulphuric acid and 150 μL of phos
phovanilin prepared with vanillin and phosphoric acid in water were 
added and incubated for 10 min at 80 ◦C and cooled at 4 ◦C for 2 min. 
The absorbance was determined at 540 nm. A standard solution of 
Triton X-100 was used for calibration and the results were expressed as 
μg TL/mg TP. 

2.6. Molecular effects: Experimental approach 

All tests were performed in static renewal bioassays in triplicate; 200 
mL of seawater spiked with each treatment (0.5, 5.0 and 50 μg/L) was 
transferred into laboratory dishes. Then, 10 yolk-sac larvae of C. varie
gatus were randomly selected and transferred into each dish including 
the controls (seawater and DMSO). They were incubated in a Precision 
Scientific Incubator (Thermo, MA, USA) at 30 ◦C and the exposure water 
in each dish was renewed every 24 h during the 3 days exposure. Upon 
termination of the experiment, the larvae were inserted into 1.5 mL 
tubes containing 500 μL RNALater® solution and stored at − 80 ◦C prior 
to RNA extraction. 

2.7. Molecular analysis: Quantitative PCR (qPCR) 

For RNA extraction, six larvae per replicate were pooled from each 
treatment and both controls (seawater and DMSO) for homogenization. 
Total RNA was extracted using RNeasy kits (Qiagen, Hilden, Germany) 
as described in the manufacturer’s protocol, and the total RNA quantity 
and quality was assessed spectrophotometrically using a NanoDropTM 

2000 (Thermo Scientific, Wilmington, DE, USA). Reverse transcription 
of total RNA to single stranded cDNA was performed using RevertAid 
First Strand cDNA Synthesis Kit following the manufacturer’s in
structions (Thermo Scientific, Wilmington, DE, USA). 

Real-time qPCR was performed using the primers listed in Table 1. 
18s was used as an endogenous control, while cyp19 and vtg1 were used 
as biomarkers of endocrine disruption. All qPCR reactions were per
formed in triplicates using an Applied Biosystems 7500 Fast Cycler with 
Fast SYBR Green Master Mix (Life Technologies, Carlsbad, CA). Relative 
quantification values compared to the control samples were determined 

by applying the ΔΔCT method. Fold changes in cyp19 and vtg1 genes 
were log transformed to normalize the data. 

2.8. Statistical analysis 

All data were analyzed using SPSS (16.0) statistical package. Data 
normality and homogeneity were assessed before statistical tests were 
performed. One-way analysis of variance (ANOVA) coupled with Dun
nett’s multiple comparison tests were performed and significant differ
ences between controls and clams treated with HHCB and AHTN were 
determined at p < 0.05. The relationships between effects and concen
trations were checked using Spearman’s rank order of correlation, and 
significant points were set at p < 0.05 and p < 0.01. For gene expression 
levels, significant differences were determined using a least-square dif
ference test and significant difference was set at p < 0.05. 

3. Results 

3.1. Biochemical effects 

No mortality was recorded in control clams, meanwhile 3% mortality 
was recorded in clams treated with HHCB and ~4% mortality in the 
clams treated with AHTN during the experiment. 

The effects of HHCB and AHTN on AChE activity are presented in 
Fig. 1. There was significant inhibition (p < 0.05) of AChE activity in the 
clams treated with HHCB at 5.0 μg/L and 50 μg/L after 3 days (Fig. 1a). 
As the exposure continued, significant differences in AChE activity were 
further seen in the clams treated with 0.005 and 5 μg/L HHCB on days 
14 and 21, respectively (Fig. 1a). Prolonged significant inhibition of 
AChE (p < 0.05) was triggered by all concentrations of AHTN tested 
until day 7, but only 0.005, 0.05 and 5.0 μg/L concentrations produced 
significant AChE inhibition by day 14 (Fig. 1b). Interestingly, at the end 
of the experiment (day 21), the 50 μg/L AHTN exposure showed a sig
nificant increase in AChE activity. (Fig. 1b). 

The impact of HHCB and AHTN on COX activity measured in 
R. philippinarum after 21 days exposure in a semi-static bioassay is pre
sented in Fig. 2. COX activity was induced in the clams treated with 
HHCB and this induction was significant in the 0.005 and 50 μg/L ex
posures on day 3. Continuous exposure to HHCB up to day 14 produced 
significant effects on COX activity at the highest concentration (50 μg/L) 
tested, but at day 21 only the 0.05 μg/L concentration significantly 
increased (p < 0.05) COX activity (Fig. 2a). On the other hand, AHTN 
inhibited COX activity in R. philippinarum and the inhibition was 
significantly different from the control group (p < 0.05) on days 7 and 
14 in all the concentrations tested except for 0.005 μg/L on day 7 
(Fig. 2b). 

The energy reserves, measured as total lipids, were determined in the 
digestive gland (DTL) and gonad (GTL) tissues of clams exposed to 
HHCB and AHTN. There was no significant difference in DTL in the 
clams exposed to HHCB (Fig. 3a). For the clams exposed to AHTN, DTL 
increased significantly (p < 0.05) throughout the exposure period with 
the exception of the 0.05 μg/L treatment group on days 3, 7, and 14, and 
the 0.5 μg/L treatment on days 14 and 21 (Fig. 3b). There was no clear 
pattern in GTL of the clams exposed to HHCB, as we observed both 

Table 1 
Details of forward and reverse primers.  

Gene Primers Amp. 
Length 

Ref 

18s F: GCTGAACGCCACTTGTCC 100 Simning et al. 
(2019) R: ATTCCGATAACGAACGAGACTC 

cyp19 F: CTGTCCCCTGCAATCCCAAT 72 This study 
R: AAAGGGGACCCAAACCCAAG 

vtg1 F: 
ATGTCACTGTGAAGGTCAACGAA 

68 Knoebl et al., 2004 

R: ACCTGTTGGGTGGCGGTAA  
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significant increases and decreases in GTL depending on the treatment 
and time point (Fig. 3c). However, GTL decreased significantly (p <
0.05) after exposure to AHTN in all treatment groups except at the 
lowest concentration (0.005 μg/L) measured on day 7 (Fig. 3d). 

The activities of neuroendocrine biomarkers (AChE and COX) 
measured in the clams correlated significantly with the concentrations 
of HHCB (p < 0.01) over time (Table S1 – Supplementary Materials). For 
AHTN, a significant time and concentration-dependent correlation of 
AChE and COX was observed. In addition, the inhibition of AChE and 
COX activities correlated significantly (p < 0.01) (Table S2 – Supple
mentary Materials). Finally, gonad energy reserves (GTL) were signifi
cantly depleted over time (Table S2 – Supplementary Materials). 

3.2. Molecular effects 

There was no mortality in the yolk sac larvae of C. variegatus exposed 
to HHCB; for AHTN exposures, 3% mortality was recorded in the fish 
exposed to the 50 μg/L treatment. 

The expression of cyp19 in yolk sac larvae of C. variegatus exposed to 
HHCB was slightly upregulated, though not significantly in any of the 
treatments (Fig. 4a). However, concentration-dependent down
regulation of cyp19 was observed in the larvae exposed to AHTN and 
was significantly different (p < 0.05) at the highest concentration (50 
μg/L) with more than a 3-fold change in expression compared to the 
controls (Fig. 4b). 

Expression of vtg1 measured in the yolk-sac larvae of C. variegatus 
exposed to both substances had a similar pattern to cyp19 expression 

(Fig. 5). HHCB slightly induced the expression of vtg1 and the induction 
was highest at 5.0 μg/L, though not significant (Fig. 5a). For AHTN, a 
concentration-dependent downregulation of vtg1 was observed and 
decreased significantly (p < 0.05) by 3.40-fold versus the controls at the 
50 μg/L exposure concentration (Fig. 5b). 

4. Discussion 

The current study assessed the neuroendocrine effects of environ
mental concentrations of HHCB and AHTN in the marine environment 
by assessing enzyme activities and gene expression levels in marine 
organisms from two taxonomic groups. Biomarkers of endocrine 
disruption (cyp19 and vtg1) were measured in C. variegatus and neuro
toxicity (AChE) was measured in R. philippinarum together with assess
ments of neuroendocrine and inflammation responses (COX) and energy 
reserves (TL). 

4.1. Biochemical effects 

Significant concentration-dependent AChE inhibition was observed 
in the clams treated with environmentally comparable concentrations of 
HHCB and AHTN, at the first time point (3 days of exposure - Fig. 1). 
AChE is a well-established biomarker in toxicological studies of neuro
toxicity and is the enzyme responsible for the deactivation of acetyl
choline at the cholinergic synapses, preventing a build-up of 
acetylcholine, which is necessary for the normal functioning of sensory 
and neuromuscular systems (van der Oost et al., 2003; Sturm et al., 

Fig. 1. Acetyl Cholinesterase (AChE) activity measured in the digestive gland tissues of R. philippinarum exposed for 21 days to (a) galaxolide (HHCB) and (b) 
tonalide (AHTN). Asterisks (*) show significant differences from control (p<0.05). 

Fig. 2. Cyclooxygenase (COX) activity measured in the digestive gland tissues of R. philippinarum exposed for 21 days to (a) galaxolide (HHCB) and (b) tonalide 
(AHTN). Asterisks (*) show significant differences from control (p<0.05). 
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2000). AChE is also a target of many organic pollutants, toxic metals, 
human pharmaceuticals and personal care products, which have all been 
reported to inhibit AChE activity (Aguirre-Martínez et al., 2016; L A 
Maranho et al., 2015; Matozzo et al., 2005; Stefano et al., 2008). Our 
observations showed that these substances might possess the ability to 
bind with cholinesterase, preventing the breakdown of acetylcholine. It 
appears that HHCB and AHTN can inhibit AChE after a short exposure to 
environmental concentrations, but this does vary with the concentration 
and duration of the exposure (Fig. 1). For HHCB, limited AChE 

inhibition was observed at days 14 to day 21 with no significant inhi
bition on day 7 (Fig. 1a). This may be because the clams were able to 
metabolize HHCB to less toxic metabolites during the exposure (Balk 
and Ford, 1999a). On the other hand, all the AHTN exposure concen
trations inhibited AChE activity until day 14 when all but the highest 
concentration of AHTN significantly (p < 0.05) inhibited AChE activity 
(Fig. 1b). Consequently, chronic inhibition of AChE in clams could lead 
to high levels of acetylcholine, over-stimulation of cholinergic receptors, 
alteration of postsynaptic cell function, and signs of cholinergic toxicity 

Fig. 3. Energy reserves measured as total lipids in digestive gland (a & b - DTL) and gonad (c & d - GTL) tissues of R. philippinarum exposed for 21 days to galaxolide 
(HHCB) and tonalide (AHTN). Asterisks (*) show significant differences from control (p<0.05). 

Fig. 4. Relative gene expression s for cyp19 in C. variegatus yolk sac larvae exposed to (a) galaxolide (HHCB) and (b) tonalide (AHTN) for 96 h. Asterisks (*) show 
significant differences from control (p<0.05). 
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such as morphological and behavioral changes may start to manifest 
(Nallapaneni et al., 2008; Pope et al., 2005; Song et al., 2004; Waseem 
et al., 2010). Furthermore, fatality may occur if AChE activity is 
depressed during exposure to cholinesterase-inhibiting chemicals due to 
the overstimulation of the target cells (Sancho et al., 2000). The nitro 
musk compound ambrette was previously reported to possess neurotoxic 
potential as well as elicit carcinogenesis in organisms, leading to its 
prohibition (Nair et al., 1986; Spencer et al., 1984). Our results are 
comparable with other studies reporting inhibition of AChE in bivalves 
after chronic exposure. Shan et al. (2020) reported significant inhibition 
of AChE in the digestive gland of Asian clams (Corbicula fluminea) 
exposed to 20–2000 μg/L imidacloprid for 30 days. Similarly, 0.1–1 
μg/L carbamazepine, 5 and 50 μg/L caffeine, and 50 μg/L ibuprofen 
significantly decreased AChE activity assessed in the digestive gland of 
C. fluminea after 21 days exposure (Aguirre-Martínez et al., 2018). In 
contrast, environmental concentrations (15 μg/L) of ibuprofen and 
carbamazepine reportedly increased AChE activity assessed in the gills 
of R. philippinarum after 7 days exposure (Trombini et al., 2019). 
Although both HHCB and AHTN inhibited AChE activity at various 
points, AHTN appears to be more robust at inhibiting AChE because it 
exerted prolonged inhibition of AChE activity until day 14, although the 
clams seem to have recovered by day 21 (Fig. 1b). These results 
demonstrate the potential of polycyclic musk compounds as neuro
inhibitors and provide a baseline upon which neurotoxicity of HHCB and 
AHTN could be further investigated. 

HHCB increased COX activity in clams, though this inhibition was 
also concentration and time-dependent (Fig. 2a). COX catalyzes arach
idonic acid to form prostaglandins which are responsible for several 
physiological and reproductive functions in aquatic organisms (Di Cos
tanzo et al., 2019). It is an important indicator of inflammation in 
aquatic organisms exposed to environmental stressors (Gagné et al., 
2015). Clams exposed to wastewater effluents in the Bay of Cadiz 
(Spain) exhibited significantly inhibited COX activity and triggered in
flammatory responses in the gonad tissues, which correlated signifi
cantly with general stress, measured as lysosomal membrane stability 
(Díaz-Garduño et al., 2018). Recent studies have demonstrated that both 
HHCB and AHTN induce oxidative stress in clams (Ehiguese et al., 
2020). In addition, COX synthesis of prostaglandins is involved in the 
control of oogenesis and spermatogenesis in aquatic invertebrates (Di 
Costanzo et al., 2019) and controls the effect of serotonin in the 
spawning process of bivalves (Matsutani and Nomura, 1987). Pra
meswari et al. (2017) demonstrated that arachidonic acid induced a 
significantly (p < 0.001) increased ovarian index, oocyte diameter and 
ovarian vitellogenin in the freshwater crab (Oziothelphusa senex senex). 
The authors reported that COX inhibitors, including indomethacin and 

aspirin, significantly (p < 0.001) reduced ovarian index, oocyte diam
eter and ovarian vitellogenin levels, corroborating the involvement of 
COX in the regulation of female reproduction in crabs. Given the 
concentration-dependent alteration of COX activity in clams exposed to 
HHCB and AHTN, reproductive success could be at risk, but additional 
research is needed to validate this hypothesis. Furthermore, the func
tions of COX activity in marine bivalves is not fully understood but the 
significant correlation of COX and AChE activities in clams exposed to 
AHTN (Table S2 – Supplementary Materials) suggests that COX activity 
may be involved in neuroendocrine functions in marine bivalves. 
Consequently, AHTN might be a neuroendocrine disruptor in the marine 
environment. 

To understand toxicity-driven energy deficit in clams, TL in the 
digestive gland and gonadal tissues were measured. It was hypothesized 
that chemical stress may trigger significant energy demand due to 
relatively high enzyme activities. For R. philippinarum exposed to HHCB, 
total lipids measured in DTL were unaffected and we did not observe any 
clear tendency in energy level measured in the gonads (Fig. 3 a, b). The 
DTL measured in the clams exposed to AHTN was significantly (p <
0.05) higher than the control for most treatments and time points 
(Fig. 3b), but GTL was significantly reduced in most treatments and time 
points (Fig. 3d). Total lipids assessed in the gonad of R. philippinarum 
exposed to wastewater effluents was significantly reduced in other 
studies (Díaz-Garduño et al., 2018; Maranho et al., 2016). The variation 
in total lipids assessed in this study, especially for HHCB, did not reveal 
any clear trend. 

4.2. Molecular effects 

Exposure of fish to endocrine disrupting chemicals in the marine 
environment has serious consequences concerning survival and repro
duction. In yolk-sac C. variegatus larvae exposed to HHCB, the expression 
of cyp19 showed no concentration-dependent transcriptional effect 
(Fig. 4a). Meanwhile, we observed concentration-dependent down
regulation of cyp19 expression levels after 3 days of exposure to AHTN 
(Fig. 4b). Similarly, significant downregulation of cyp19b expression 
levels were measured in juvenile salmon exposed to 0.04–1 mg/L of the 
organophosphate flame retardant, tris(2-cloroethyl) phosphate for 7 
days (Arukwe et al., 2016), and significant dose-dependent down
regulation of cyp19a and cyp19b were recorded in the ovaries of adult 
marine medaka exposed to 2–5 ng/L 17β-trenbolone for 21 days (Zhang 
et al., 2020). In contrast, cyp19a and cyp19b expression levels were 
upregulated in adult male and female Danio rerio exposed to 1 mg/L 
perfluorodecanoic acid (Jo et al., 2014) and perfluorononanoate (Zhang 
et al., 2016). cyp19 is an important biomarker of endocrine disruption in 

Fig. 5. Relative gene expression for vtg1 in C. variegatus yolk sac larvae exposed to (a) galaxolide (HHCB) and (b) tonalide (AHTN) for 96 h. Asterisks (*) show 
significant differences from control (p<0.05). 
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teleosts because aromatase, the enzyme involved in the conversion of 
androgen to estrogen, plays an essential role in sexual differentiation, 
maturation, and reproduction (Cheshenko et al., 2008). cyp19 is regar
ded as a major target for endocrine disrupting chemicals because mod
ulation of its expression and function may potentially disrupt estrogen 
production (Cheshenko et al., 2008; Kazeto et al., 2004). Our results 
suggest that AHTN may be a more potent modulator of cyp19 expression 
than HHCB (Fig. 4). Previous reports in an in vitro study using the H295R 
cell line exposed to 25 μM HHCB demonstrated upregulation of cyp19, 
while AHTN downregulated cyp19 by 43% of the basal control (Li et al., 
2013). The modulation of cyp19 by HHCB and AHTN in C. variegatus 
larvae may affect estrogen biosynthesis and, as a result, alter the sur
vival, sexual behavior, and sex differentiation in fish. Although most 
studies of estrogen as an endocrine disruption biomarker in fish are 
related to reproductive functions or tissues, estrogen alteration may also 
affect tissue mineralization and mineral homeostasis (Suzuki et al., 
2009; Yoshikubo et al., 2005), as well as delay development in early life 
stage fish (Rawson et al., 2006). 

The induction and inhibition of vtg1 in R. philippinarum exposed to 
HHCB and AHTN, respectively, was similar to cyp19 (Fig. 5). The basis 
for this similarity is not well understood but it appears that because 
vitellogenin is induced by estrogen (which is biosynthesized by the 
enzyme complex aromatase that converts androgen into estrogen), ef
fects on cyp19 may trickle down to have an impact on vitellogenin 
(Andersen et al., 2003). Previous studies have demonstrated correlations 
between aromatase and vitellogenin in fish exposed to endocrine dis
rupting chemicals (Andersen et al., 2003; Bizarro et al., 2014). However, 
further investigation is needed to help understand the relationships 
between the effects of contaminants on both biomarkers. Similar to our 
observation for vtg1 measured in C. variegatus yolk-sac larvae exposed to 
HHCB, there was no statistically different increase in plasma vitelloge
nin levels in rainbow trout intraperitoneally injected with 1.41 × 10− 5 

mol/kg of HHCB for 5 days (Simmons et al., 2010). Previous research on 
the effects of both contaminants have showed that a three day exposure 
of male medaka to 5, 50 and 500 μg/L of HHCB and AHTN led to a 
significant induction in the expression of vtg1 at 500 μg/L (Yamauchi 
et al., 2008). Meanwhile, the concentration of AHTN that elicited sig
nificant inhibition of vtg1 in our study was much lower (50 μg/L), which 
may be attributed to age differences as fish larvae tend to be more 
sensitive to environmental contaminants than adults (Hutchinson et al., 
1998). Reports of other chemicals inducing differential vtg1 expression 
levels in fish abound. For example, three generations of Oryzias mela
stigma exposed to 20 and 200 μg/L benzo[a]pyrene demonstrated sig
nificant downregulation of vtg1 expression (Sun et al., 2020). In 
addition, female Oryzias melastigma exposed to lower concentrations (2 
and 10 ng/L) of 17β-trenbolone (Zhang et al., 2020) and F1 generation 
male Oryzias latipes exposed to metformin (Lee et al., 2019) all signifi
cantly downregulated vtg1 expression levels. Contrarily, exposure of 
male Oryzias melastigma to 10 and 50 ng/L of 17α-ethynylestradiol 
significantly upregulated vtg1 expression level (Zhang et al., 2020). 

Generally, the concentrations of PMCs causing effects should be 
interpreted with caution due to their high volatility and potential to 
adsorb to aquaria walls. From our studies, the concentrations of HHCB 
and AHTN measured on day 0 were 74.26 ± 18.38% and 88.50 ±
19.09%, respectively and degraded to 22.00 ± 1.41% and 26.37 ±
4.24%, respectively on day 3 (Ehiguese et al., 2020). Tumová et al. 
(2019) suggested that the toxicity of PMCs for aquatic organisms under 
semi-static conditions could be underestimated due to the potential 
volatility in the aquarium, significantly lowering the concentration over 
time. 

5. Conclusion 

This study assessed the neuroendocrine effects of HHCB and AHTN 
using the marine bivalve R. philippinarum and yolk-sac larvae of an 
estuarine species, the sheepshead minnow, C. variegatus. Changes in 

AChE and COX activities as biomarkers of neuroendocrine effects were 
observed in the clams, though the exact effects varied with concentra
tion and duration of exposure. cyp19 and vtg1 gene expression in yolk- 
sac C. variegatus larvae after 3 days of exposure to HHCB revealed no 
effect for the expression of either gene, but AHTN significantly down
regulated the expression of both genes at 50 μg/L. The biomarkers 
studied provided useful insights to understand the potential neuroen
docrine toxicity of both substances in the marine environment. Although 
significant changes were detected in some of the biomarkers after 
exposure to each contaminant, AHTN seems to be a more potent in
hibitor of neuroendocrine functions in marine organisms than HHCB. 
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Maranho, L., André, C., Delvalls, A., Gagné, F., Martín-Díaz, M.L.L., 2016. In situ 
evaluation of wastewater discharges and the bioavailability of contaminants to 
marine biota. Sci. Total Environ. 538, 876–887. https://doi.org/10.1016/j. 
scitotenv.2015.08.135. 
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Section 3.1 

Table S1: Spearman rank order of correlation (r) values recorded for the effect of galaxolide (HHCB) and 

tonalide (AHTN) on microalagae exposed for 72 h (n = 3). Asterisk(s) * & ** represent significant levels 

at p < 0.05 and 0.01, respectively. 

 HHCB AHTN 

Phaeodactylum tricornotum -0.131 -0.360 

Tretraselmis chuii 0.284 -0.667** 

Isochrysis galbana 0.120 0.098 

Raphidocelis subcapitata -0.349 -0.589* 

 

 

 

Table S2: Spearman rank order of correlation (r) values recorded for the effect of galaxolide (HHCB) and 

tonalide (AHTN) on marine organisms exposed for 72 h (n = 3). Asterisk(s) * & ** represent significant 

levels at p < 0.05 and 0.01, respectively; (-) represent values not determined. 

 HHCB AHTN 

Artemia franciscana mortality  0.305 -0.118 

Artemia franciscana mobility -0.020 0.300 

Paracentrotus lividus fertilization      -0.747** -0.450 

Paracentrotus lividus larvae development    0.787** 0.415 

Mytilus galloprovincialis larvae development     0.820** 0.371 

Sparus aurata mortality test   0.659**    0.708** 
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Section 3.2 

 

Table S1: Concentrations of galaxolide (HHCB) and tonalide (AHTN) measured in each compartment at the beginning and end of the test   

Compartments 
Nominal Concentration 

Measured concentration 

(at the beginning) 
Percentage (%) 

Measured concentration 

(at the end) 
Percentage (%) 

HHCB AHTN HHCB AHTN HHCB AHTN HHCB AHTN HHCB AHTN 

1 0.00 0.00 0.00 0.00 100 100 0.002 0.001 0.2 0.1 

2 0.005 0.005 0.006 0.007 120 140 0.005 0.004 100  80 

3 0.05 0.05 0.08 0.051 140 102 0.04 0.063 80  126 

4 0.5 0.5 0.452 0.418 95.2 83.6 0.699 1.284 139.8 156.8 

5 5 5 3.01 4.004 60.2 80.08 2.418 8.765 48.36 175.3 

6 50 50 31.311 55.563 62.62 110.01 21.732 25.258 43.46 50.52 
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Table S2. Shrimp mortality (in %) recorded during 24 h acute toxicity test with galaxolide (HHCB) and 

tonalide (AHTN) in a forced exposure system. 

Fragrances 
Concentrations (µg/L) 

Control DMSO 0.005 0.05 0.5 5 50 

HHCB 8.33 0.00 16.67 8.33 16.67 0.00 8.33 
AHTN 0.00 0.00 16.67 8.33 0.00 8.33 8.33 

 

 

 

Table S3a. Mauchly’s Test of sphericity for the distribution (%) of the shrimps in seawater control test 

using the non-forced multi-compartmented system. The nine observation times were treated as a 

within-subjects factor (repeated measures) and compartments (n = 6) were considered a between-

subjects factor.  

Within subjects 

effect 

Mauchly W Approx. chi-square Degrees of 

freedom 

Significance (p) 

Time 0.024 56.131 35 0.017 

 

 

Table S3b: Tests of within-subjects effects with Greenhouse-Geisser correction (sphericity was violated as 

the p value in Mauchly’s test was lower than 0.05). 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Time 38.800 4.732 8.200 0.116 0.986 

Time * 

Compartment 

1728.614 23.658 73.066 1.030 0.439 

Error (Time) 6038.940 85.170 70.905 - - 

 

 

Table S3c: Tests of between-subjects effects. 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Compartment 3956.305 5 791.261 0.693 0.636 

Error 20564.702 18 1142.482 - - 
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Table S4a. Mauchly’s Test of sphericity for the distribution (%) of the shrimps in the DMSO control 

test using the non-forced multi-compartmented system. The nine observation times were treated as 

a within-subjects factor (repeated measures) and compartments (n = 6) were considered a between-

subjects factor. 

Within subjects 

effect 

Mauchly W Approx. chi-square Degrees of 

freedom 

Significance (p) 

Time 0.013 65.88 35 0.002 

 

 

Table S4b: Tests of within-subjects effects with Greenhouse-Geisser correction (sphericity was violated as 

the p value in Mauchly’s test was lower than 0.05). 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Time 19.585 4.423 4.429 0.104 0.986 

Time * 

Compartment 

719.235 22.113 32.526 0.762 0.761 

Error (Time) 3396.882 79.606 42.671 - - 

 

 

Table S4c: Tests of between-subjects effects. 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Compartment 199.128 5 39.826 0.085 0.994 

Error 8483.467 18 471.304 - - 
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Table S5a. Mauchly’s Test of sphericity for the distribution (%) of the shrimps exposed to a galaxolide 

(HHCB) gradient in the non-forced multi-compartmented system. The nine observation times were 

treated as a within-subjects factor (repeated measures) and compartments (n = 6) were considered 

a between-subjects factor. 

Within subjects 

effect 

Mauchly W Approx. chi-square Degrees of 

freedom 

Significance (p) 

Time 0.009 70.800 35 < 0.0001 

 

Table S5b: Tests of within-subjects effects with Greenhouse-Geisser correction (sphericity was violated as 

the p value in Mauchly’s test was lower than 0.05). 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Time 49.606 3.274 15.149 0.128 0.953 

Time * 

Compartment 

3120.075 16.372 190.569 1.616 0.091 

Error (Time) 6951.370 58.941 117.938 - - 

 

 

Table S5c: Tests of between-subjects effects. 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Compartment 8383.203 5 1676.641 7.388 < 0.001 

Error 4084.682 18 226.927 - - 

 

Table S6a. Mauchly’s Test of sphericity for the distribution (%) of the shrimps exposed to a tonalide 

(AHTN) gradient in the non-forced multi-compartmented system. The nine observation times were 

treated as a within-subjects factor (repeated measures) and compartments (n = 6) were considered 

a between-subjects factor. 

Within subjects 

effect 

Mauchly W Approx. chi-square Degrees of 

freedom 

Significance (p) 

Time 0.009 71.512 35 < 0.0001 
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Table S6b: Tests of within-subjects effects with Greenhouse-Geisser correction (sphericity was violated as 

the p value in Mauchly’s test was lower than 0.05). 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Time 13.040 3.721 3.504 0.0.043 0.995 

Time * 

Compartment 

2465.772 18.606 132.528 1.641 0.073 

Error (Time) 5407.876 66.981 80.738 - - 

 

 

Table S6c: Tests of between-subjects effects. 

Source Sum of squares Degrees of 

freedom 

Mean square F Significance (p) 

Compartment 8027.938 5 1605.588 6.127 < 0.002 

Error 4717.219 18 262.068 - - 
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Section 3.4 

Table S1: Spearman’s rank order of correlation (rs) of time, concentration and biomarkers measured in R. 

philippanarum exposed to environmental concentrations of HHCB for 21 days. 

HHCB AChE COX DTL GTL 

Day 0.345** 0.025 -0.411** -0.143 

Concentration -0.168* 0.416** 0.028 0.006 

AChE 1    

Cox -0.025 1   

DTL -0.246** 0.085 1  

GTL -0.095 -0.008 0.280** 1 

Asterisks (*) and (**) represent significant difference at p<0.05 and p<0.01, respectively. 

 

Table S2: Spearman’s rank order of correlation (rs) of time, concentration and biomarkers measured in R. 

philippanarum exposed to environmental concentrations of AHTN for 21 days. 

AHTN AChE COX DTL GTL 

Day 0.645** 0.264** 0.270** -0.191* 

Concentration -0.222* -0.354** 0.455** -0.476** 

AChE 1    

Cox 0.578** 1   

DTL -0.093 0.129 1  

GTL 0.083 0.382** -0.081 1 

Asterisks (*) and (**) represent significant difference at p<0.05 and p<0.01, respectively. 
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