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L. J. Fernández-Alcázar and H. M. Pastawski

Instituto de F́ısica Enrique Gaviola, CONICET-UNC - Córdoba, Argentina and
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Abstract – We describe the spin-dependent quantum conductance in a wire where a magnetic
field is spatially modulated. The change in direction and intensity of the magnetic field acts as a
perturbation that mixes spin projections. This is exemplified by a ferromagnetic nanowire. There
the local field varies smoothly its direction generating a domain wall (DW) as described by the
well-known Cabrera-Falicov model. Here, we generalize this model to include also a strength mod-
ulation. We identify two striking diabatic regimes that appear when such magnetic inhogeneity
occurs. 1) If the field strength at the DW is weak enough, the local Zeeman energies result in an
avoided crossing. Thus, the spin-flip probability follows the Landau-Zener formula. 2) For strong
fields, the spin-dependent conductance shows oscillations as a function of the DW width. We
interpret them in terms of Rabi oscillations. Time and length scales obtained from this simplified
view show an excellent agreement with the exact dynamical solution of the spin-dependent trans-
port. These results remain valid for other situations involving modulated magnetic structures and
thus they open new prospects for the use of quantum interferences in spin-based devices.

This paper is dedicated to the memory of the lifelong collaborator Patricia Rebeca Levstein.

Copyright c© EPLA, 2014

Introduction. – The control and design of spin-
dependent electronic transport in magnetically modulated
devices represents a promising technological challenge [1].
Spintronic devices switch the spin state or filter electrons
by spin. The most direct way to tune the transport, apart
from spin-orbit effects [2,3], is to use designed magnetic
inhomogeneities which couple directly to the spin. The
most prominent devices are those based on the giant mag-
netoresistance [4]. Other recent developments involve spin
valves based on organic molecules [5,6], and quasi–one-
dimensional spin transistors [7,8]. Since quantum effects
become relevant, transport is based on Landauer’s motto:
“conductance is transmittance” [9].

Previous studies of spin-dependent quantum transport
suggest the presence of interesting physical phenom-
ena. For example, conductance through ferromagnetic
nanowires with a domain wall (DW) shows some Fabry-
Pérot like interferences, which were not fully under-
stood [10,11]. Also, transport on magnetically modulated

semiconducting spin valves [8] showed magnetic com-
mensurabilities as well as regimes compatible with a
Landau-Zener problem. Thus, quantum transport through
magnetic inhomogeneities becomes a promising tool in
spintronics, where the different characteristic times and
lengths should be identified. These scales should be com-
pared with the electron’s Fermi wavelength. The tunnel-
ing adiabaticity is given by the electron’s speed. In this
context, a dynamical description of the transport process
would improve the comprehension of these phenomena.

In this letter we consider a variant of the Cabrera and
Falicov [12] model for spin-dependent electronic transport
through a soft magnetic DW. It is representative of a
wide class of magnetic inhomogeneities. In the original
model the field just rotates along the DW. We extend it
allowing a modulation in the field strength. This simple
variation will have nontrivial consequences on transport.
We show that in a weak perturbation regime, the spin-
dependent conductance through the DW can be described
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by the Landau-Zener (LZ) formula. In contrast, for a
strong perturbation regime, we find well-defined interfer-
ences as a function of the DW width, which are interpreted
as Rabi oscillations. This interpretation is confirmed by
an analysis of the wave packet dynamics. The physics and
computational strategies described here could help in the
design of better spintronic devices.

Hamiltonian of the conduction electrons. – We
consider a single-spin channel [10]:

Ĥ = −
�
2

2m

d2

dx2
− �μ · �B(x). (1)

The first term is the kinetic energy along x of electrons
with effective mass m. The second term is the Zeeman in-
teraction between the spin magnetic moment �μ and �B(x),
the effective magnetic field at x. Here, �μ = −μB�σ , where
μB is the Bohr magneton and �σ = (σx, σy, σz) is the vec-
tor of the Pauli matrices. In particular, the dependence on
x of the magnitude and direction of �B(x) may cause the
spin-dependent scattering. These inhomogeneities may be
natural, as in ferromagnetic DWs [13], or artificially gen-
erated, as in magnetic semiconducting waveguides [7]. We
will express our results in the concrete language of ferro-
magnetic nanowires.

Electronic structure in modulated magnetic

fields. – The Cabrera and Falicov soft-DW model [12]
considers a quantum spin channel laid along x, and a
magnetic field whose orientation rotates as it progress
along the DW. We generalize this description by in-
cluding a modulation in the field intensity. The vector
�f(x) = (fx(x), fy(x), fz(x)) = − �B(x)/B∞, describes the

DW shape, and satisfies |�f(x)| → 1 as x −→ ±∞. The
asymmetry in the modulation strength is described by the
parameter α = B(0)/B∞. Using the axis z as quantiza-
tion direction for the spin,

�f(x) =
(

α/ cosh
( x

W

)

, 0, tanh
( x

W

))

. (2)

Here, W is the half-width of the DW. Obviously, α = 1
corresponds to a field of constant strength that rotates
across the DW. The Zeeman term is �μ · �B(x) = Δ0�σ · �f(x).
Here, Δ0 = μBB∞. The wave function for a conduction
electron has components along both spin directions, |↑〉
and |↓〉, referred to the quantization axis parallel to the
field at the left domain (laboratory frame), as

|ψ(x)〉 = ϕ↑(x) |x, ↑〉+ ϕ↓(x) |x, ↓〉 . (3)

Therefore, the equations governing the electron tunneling
and the spin flip are
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
�
2

2m

d2

dx2
ϕ↑(x) + E↑(x)ϕ↑(x) + V↑↓(x)ϕ↓(x) = εϕ↑(x),

−
�
2

2m

d2

dx2
ϕ↓(x)− E↓(x)ϕ↓(x) + V↑↓(x)ϕ↑(x) = εϕ↓(x),

(4)

where ε is the energy associated with the dynamics along
x, identifying,

μBBz(x) = E↓(x) = Δ0 tanh
( x

W

)

, (5)

and

μBBx(x) = V↑↓(x) = αΔ0/ cosh
( x

W

)

, (6)

where E↓(x) = −E↑(x). The local states become mixed
by V↑↓(x) while the electron moves through the DW.

Evaluation of the conductance. – To evaluate the
quantum conductance we will use the Landauer-Büttiker
equation [14]. There, different conductances are given by
the transmittances between states of definite momentum
and spin projection at the contacts [9].

In a tight-binding representation [15], the spatial coordi-
nate takes discrete values xn in a grid of unit a, xn → na.
Every site in the grid has an associated normalized local
wave function |n〉 , which will be called n-th orbital as in
a LCAO scheme. Each orbital has an energy given by the
local potential Es(xn) = En,s, where s is either ↑ or ↓, and
the transverse field yields V↑↓(xn) = Vn,↑↓. Any electronic
wave function with well-defined spin s is now written in
terms of a discrete sum:

|ϕs〉 →
∑

n

un,s |n, s〉 , (7)

where, according to eq. (4), the spin-orbital amplitudes
un,s must satisfy

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−V [un+1,↑ − 2un,↑ + un−1,↑] + En,↑un,↑

+ Vn,↑↓un+1,↓ = εun,↑,

−V [un+1,↓ − 2un,↓ + un−1,↓] + En,↓un,↓

+ Vn,↑↓un+1,↑ = εun,↓.

(8)

The unit of energy is given by the hopping strength
V = �

2/(2ma2). We consider energies at the band cen-
ter (ε ≃ 2V ). Each spin orientation is represented by
a chain with N ≫ 1 orbitals that comprises the whole
DW. L and R are sites indices symmetrically arranged
at the left and right sides of the DW and satisfying
(R − L)a = Na ≫ W . Then En,s ≡ EL,s = ±Δ0 for
n ≤ L and En,s ≡ ER,s = ∓Δ0 for n ≥ R. Since far
away from the DW, V↑↓ ≡ 0, the asymptotic eigenvalues,
with wave vector k, are εk,s = ±Δ0 + 2V − 2V cos (ka).
In the region of the DW both spin orientations become
coupled by the perpendicular component of the magnetic
field, represented by the hopping element Vn,↑↓.

The magnetic domains, which play the role of contacts,
are described through a renormalization procedure [16].
In an open system it leads to a non-Hermitian effective
Hamiltonian [17]:

ĤT = Ĥ + Σ̂, (9)

17005-p2
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Fig. 1: (Color online) Solid black lines are the local eigenenergies for electrons with ↑ and ↓ spin in the presence of a locally
rotated field which is schematized on top. (a) Weak (α < 1) or (b) strong (α > 1) field strength at the DW center. Dashed
lines are the unperturbed Zeeman energies.

where

Σ̂(ε) = ΣL↑(ε) |L ↑〉 〈L ↑|+ΣL↓(ε) |L ↓〉 〈L ↓|

+ ΣR↑(ε) |R ↑〉 〈R ↑|+ΣR↓(ε) |R ↓〉 〈R ↓| . (10)

Σj are the self-energies that satisfy the Dyson equation in
the magnetic domains:

Σj(ε) =
V 2

ε− Ej − Σj(ε)
= ReΣj(ε)− iΓj (ε) (11)

≃ −iΓj, at the band center. (12)

The double spin-orbital subscript j = L ↑, L ↓, R ↑ or R ↓
indicates the left (L) or right (R) channels inside the mag-
netic domains with the corresponding spin orientation.
2aΓj/� is the group velocity at the spin channels j con-
nected to each spin orbital at the sides, i.e. L ↑, L ↓, R ↑
and R ↓ in a four-terminal circuit.
We obtain the retarded and advanced Green functions

from ĤT as ĜR(ε) = limη→0+(ε + iη − ĤT )
−1 and ĜA =

ĜR†. The transmittance is [15]

Tij(ε) = 2Γi(ε)
∣

∣GR
ij(ε)

∣

∣

2
2Γj(ε). (13)

Here, Γj = Im(Σj) and i, j = L ↑, L ↓, R ↑, R ↓, be-
ing j and i the electronic input and output spin-orbital
channels, respectively. When the evaluated channels cor-
respond to opposite spin projections in opposite sides of
the DW we call them spin-flip transmittances, e.g., T↓↑.

Transport in the regime of α < 1 as a Landau-

Zener problem. – In eq. (4) V↑↓ is responsible for the
mixture of the spin orientations. While V↑↓(x) vanishes
within the domains, it is roughly constant at the DW cen-
ter. Besides, E↑ and E↓ account for the Zeeman energy in
the laboratory frame and they have the meaning of effec-
tive potentials for those electrons oriented along the field.
While, inside the domains, E↑ − E↓ = 2Δ0 quantifies the
Zeeman splitting, at the DW center both energies intersect
E↑ = E↓ = 0.
Consider an electron wave packet with a given spin pro-

jection that moves with definite momentum towards the
DW. Its mean position results proportional to the elapsed

Fig. 2: (Color online) Scheme of the eigenenergies of a two-level
system, |↑〉 and |↓〉, as functions of the dynamical parameter,
x = vt, that controls the Landau-Zener transition. The en-
ergy levels show an avoided crossing due to the presence of a
perturbation that couples the states. The unperturbed ener-
gies are shown with dashed lines. Energy and coordinate have
arbitrary dimensions.

time 〈x(t)〉 ≡ x ≃ vF t. The spin-dependent mean poten-
tial energy will change as the wave packet moves through
the DW and starts to be mixed with that of the oppo-
site spin by the V↑↓ term. These potential energies are
assimilable to the time-dependent local energies of a two
level system in a LZ problem [18]. This last describes
the transition between two states when their unperturbed
energies are swept across a degeneracy point while a con-
stant perturbation produces an avoided crossing. In fig. 1
we show the local Zeeman levels for the DW region. The
comparison between the levels of fig. 1(a) and the energy
diagram of the two-level system, shown in fig. 2, evidences
the analogy between the α < 1 regime and the LZ prob-
lem. Thus, the LZ equation predicts that the probability
to exit in the state |↓〉 to the right, provided that it entered
from the left in the state |↑〉, is

P↓↑ = 1− exp

(

−
2π

�

|V↑↓|
2

(dE(0)/dt)

)

. (14)

17005-p3
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Fig. 3: (Color online) The transmittance T↓↑ vs. the DW half-
width W for different α. The energy is measured in units of
V . The Zeeman splitting is 2Δ0 = 0.2V and V↑↓ = αΔ0. The
transition probabilities predicted by the Landau-Zener formula
PLZ are shown with dashed lines.

Here, we can use E(x) = E↑(x) − E↓(x) and x ≃ vF t
to evaluate the derivative. The adiabaticity parameter
2π |V↑↓|

2
/(�dE/dt) describes a fully adiabatic transition

if it is much greater than 1 resulting in P↓↑ � 1, while the
opposite limit is a diabatic process where P↓↑ � 0.
We will consider a wave packet with εF ≫ Δ0 and

vF (x) ≃ 2aV/�. Hence, the time of transit through the
DW is τW = 2W/vF . We can relate the DW crossing with
the LZ problem identifying

dE

dt
=

dE

dx

dx

dt

≃
2Δ0

W
vF , (15)

where E(x) is calculated as in the LZ formula, being
E↑ and E↓ obtained from eq. (5). Thus, the adiabatic-

ity parameter results as π (a/W ) |V↑↓|
2 / (Δ0V ), where

V↑↓ = αΔ0. We will choose to control the adiabaticity
of the crossing by changing W .

Numerical results. – We will use eq. (13) to evaluate
the spin-dependent transmittance, T↓↑, that describes the
spin-flip process. In fig. 3 we compare T↓↑ with the spin-
flip probability of the LZ problem. Both are shown as
a function of the parameter W . We show four different
DW characterized by α = 0.5, 1, 3 and 5. In all cases we
consider Δ0 = 0.1 and V = 1.
The two upper panels of fig. 3 may be associated to the

α ≤ 1 regime. At the center of the DW, V↑↓(x)|x=0
=

V max
↑↓ = 0.5Δ0 and V max

↑↓ = 1Δ0. If the DW is abrupt,
i.e. W ≃ 0, the electrons keep their initial spin orienta-
tion, thus T↓↑ ≃ 0. This coincides with the regime where

the giant magnetoresistance arises from the scattering at
the DW [4]. On the other hand, if the DW width is broad
enough, the electrons tend to change their spin orientation
T↓↑ ≃ 1, preventing the magnetoresistance. Considering
the overall dependence on W for α ≤ 1, we appreciate
that there is a fair correspondence between the transmit-
tance and the LZ probability that improves as α becomes
smaller. Even when there are small discrepancies, these
can be attributed to the complexity inherent in our prob-
lem, where the “perturbation” V↑↓ gradually turns on
while the levels become degenerate at the DW center. This
exceeds the simplicity of the LZ model.
The two lower panels of fig. 3 correspond to a α > 1

regime, with V max
↑↓ = 3Δ0 and V max

↑↓ = 5Δ0. In both
cases the transmittances oscillate as a function of W . This
might suggest an analogy to the Fabry-Pérot interferences
in tunneling problems. In the case of ref. [10] this phe-
nomenon is justified because their potentials have slopes
with discontinuities at the DW. However, here we con-
sider a high-energy problem with smooth potential barri-
ers. Therefore, it always results that T↓↑+T↑↑ � 1 and the
reflectances are nearly zero. Hence, the Fabry-Pérot inter-
ferences are discarded as possible origin of the observed
oscillations. Instead, while the electron moves across the
DW its spin oscillates between the states |↑〉 and |↓〉 driven
by the “perturbation” V↑↓. This is consistent with the fact
that the spin precesses around the local field. This is called
Larmor precession for a semiclassical spin and Rabi oscilla-
tion for a spin-(1/2) [19]. This π (a/W ) |V↑↓|

2 / (Δ0V ) � 1
regime, contrasts with the adiabatic transition where the
electron’s spin simply remain aligned with the local mag-
netic field while it crosses the DW. However, since both
DWs are smooth, the oscillation frequency varies contin-
uously and thus it is not obvious that well-defined Rabi
oscillations would show up.

Transport in the regime of α > 1: interferences

as Rabi oscillations. – In the DW, the Zeeman energies
in the laboratory frame are degenerate while the coupling
V↑↓(x) is maximum V↑↓ = V↑↓(x)|x=0

= αΔ0. Locally,
this can be seen as a two-level system undergoing a Rabi
oscillation with period

τR =
π�

V↑↓

. (16)

Therefore, the length traveled by the electron during that
Rabi cycle is

LR = τRvF = 2
πaV

αΔ0

, (17)

where vF ≃ 2aV/�. We adopt the term “Rabi oscilla-
tion” to emphasize that the spin-(1/2) is in an oscillating
superposition of its two possible projections.
We analyze the spin-flip transmittances in terms of the

length scales estimated above. In the case of the two up-
per panels of fig. 3, α = 0.5 and α = 1, the Rabi os-
cillation might have, according to eq. (17), characteristic
lengths LR ≃ 125.6a and LR ≃ 62.8a, respectively. These

17005-p4
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Fig. 4: (Color online) Probability (color scale) for a ↓ spin
orientation (upper panel) or ↑ spin orientation (lower panel) as
a function of time and position, given that the initial electron
state on the left has ↑ spin and moves with the Fermi velocity
vF = 2aV/�. Here, Δ0 = 0.1V , W = 8a and α = 5. The
midpoint of the DW is located at x = 0a. The probability
oscillations confirm that Rabi oscillations are present. The
vertical and horizontal short-dashed lines come into contact at
the maxima and minima of the oscillations. From these, the
magnitudes of the period and oscillation characteristic length
can be inferred. These coincide with those predicted by the
eqs. (16) and (17), τR = 6.3�/V and LR = 12.6a as shown by
the white arrows.

are much longer than the DW width needed for an adi-
abatic spin-flip. This explains the absence of oscillations
and the applicability of the LZ formula. In contrast, the
α = 3 and α = 5 cases, shown in the two lower panels,
the spin-flip transmittances present oscillations with char-
acteristic lengths LN ≃ 8a and LN ≃ 4a, respectively.
According to our hypothesis of transmittances modulated
by Rabi oscillations, the spacing between two consecutive
local minima must be L ≃ 10.5a and L ≃ 6.3a, respec-
tively. The discrepancy between our näıve prediction and
the numerical results is justified by the fact that the Rabi
length is not a perfectly defined magnitude in our smooth
DW model. This is because V↑↓, and hence the involved
periods, change as the electron moves through the DW.

In order to confirm the Rabi oscillation hypothesis, we
analyze the dynamical evolution of the electron’s spin im-
plementing a unitary algorithm based on the Trotter ap-
proximation [20]. We consider an initial Gaussian wave
packet with spin |↑〉 and a well-defined momentum at the
band center. This last condition avoids undesired effects
of dispersion. During the electron’s transit through the
DW, the spin projection tries to follow the magnetic field
and thus the final spin projection depends on W .

In fig. 4 we show the probability densities P↓↑(x, t) and
P↑↑(x, t) for α = 5. Here, the second subscript is the initial
spin, while the first one indicates the corresponding spin
projection at time t. The upper panel shows the proba-
bility for the |↑〉 spin projection, while the lower panels
show the |↓〉 spin projection. The Zeeman splitting inside

Fig. 5: (Color online) Probability (color scale) for a ↓ spin
orientation (upper panel) and ↑ spin orientation (lower panel)
as a function of time and position, for Δ0 = 0.1V , W = 8a and
α = 0.5. The dashed lines indicate the effective width of the
DW, 2W . The Rabi oscillations are not developed.

the domains is 2Δ0, with Δ0 = 0.1V . The DW center is
placed at x = 0a and its width is 2W = 16a, which implies
an adiabaticity parameter of about 1. According to fig. 3,
thisW ensures some oscillations in the transmittance. The
intensity plot is consistent with the fact that as the elec-
tron moves through the DW, the probability of finding
the electron with the spin-up projection decreases while
the complementary spin-down density increases. Subse-
quently, an increase in the spin-up probability is produced
while a decrease occurs for the opposite spin projection.
This cycle is repeated until the electron reaches the end of
the DW. This oscillation between the two spin projections
is identified with a Rabi oscillation. The observed period
and characteristic length are in full agreement with those
given by eqs. (16) and (17), τR = 6.3�/V and LR = 12.6a,
respectively. These magnitudes are drawn in fig. 4.

The same analysis is performed for a α = 0.5 DW and
shown in fig. 5. This α, together with 2W = 16a, implies a
low adiabaticity parameter of about 0.01. Again, the final
electronic state |ϕR〉 in the right domain, after traversing
the DW, is a superposition of the two spin projections.
The probability of finding the state |↓〉, is consistent with
the transmittance shown in fig. 3 and the LZ prediction:
T↓↑ ≡ |〈↓ |ϕR〉|

2
= P↓↑ and T↑↑ = |〈↑ |φR〉|

2
= P↑↑ ≃

1 − T↓↑. As consequence of the DW smoothness there
are no significative reflections. In contrast to the previous
case, we see that the time oscillations are not developed.

While in the present work we just analyzed a single
incoming wave vector, considering a metallic wire would
involve integrating, up to the Fermi energy, over transver-
sal channels equivalent to those as described here. This
could smear out the Rabi oscillations reported here and
one would need a proper design to overcome this diffi-
culty. However, in magnetic semiconducting waveguides,
the relevant role of lateral quantization leaves the consid-
ered model as a realistic description [8].
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Conclusion. – In this letter we explored the quan-
tum phenomena associated to spin-dependent transport in
the presence of a smooth magnetic inhomogeneity, much
as a DW in a magnetic nanowire. For this purpose, we
extended the Cabrera-Falicov model to account for mod-
ulations on the magnetic-field intensity at the DW. The
physics we described is not restricted to this case. In-
deed, our results and strategies remain valid for other sit-
uations, such as magnetically modulated semiconducting
structures [7]. There, spectral modulations are described
by variants of eq. (4). In ref. [8] a situation assimilable
to our α < 1 is presented for a spin transistor based on
helical magnetic fields.

We showed that, for α ≤ 1, the spin-dependent trans-
port across the magnetically modulated region is fairly
described by the LZ formula. LZ applies to the whole dy-
namical range, from diabatic to fully adiabatic crossing.
We showed that, by performing the appropriate mapping
of the relevant variables, LZ yields a quite fair descrip-
tion under well-defined conditions for the perturbation.
For α > 1, we found that conductance has quantum in-
terferences which manifest as oscillations as a function of
the DW width. These cannot be assigned to Fabry-Pérot
interferences. By performing a dynamical study of the
tunneling process, we showed that a spin-polarized wave
packet propagating across the DW, can be seen as a two-
level system undergoing Rabi oscillations.

A possible experimental set up to test the discussed
effects in all regimes could be a linear semiconducting
waveguide in the presence of a locally modulated field.
In such a case, few conducting channels are enabled by
a gate voltage that also controls the carrier’s wavelength.
Finally, the dynamical description of the transport prob-
lem as presented here, may prove useful for the converse
problem: i.e. evaluating the dynamics of a DW under
pulsed electrical currents. This may extend the interest
of our strategy to study a problem of growing interest:
electrically driven domain-wall–based memories in quasi–
one-dimensional (1D) magnetic wires [21].

In summary, for the perturbative regime (α < 1), we
probed a definite connection between steady-state spin-
dependent transport across a magnetically modulated re-
gion and the time-dependent Landau-Zener problem. In
the strong perturbation regime (α > 1), we showed that
the steady-state conductance presents interferences. We
probed that they arise from Rabi oscillations, by perform-
ing a time-dependent calculation.
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