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Modeling spatial patterns in the visual cortex
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We propose a model for the formation of patterns in the visual cortex. The dynamical units of the model are
Kuramoto phase oscillators that interact through a complex network structure embedded in two dimensions. In
this way the strength of the interactions takes into account the geographical distance between units. We show that
for different parameters, clustered or striped patterns emerge. Using the structure factor as an order parameter
we are able to quantitatively characterize these patterns and present a phase diagram. Finally, we show that the
model is able to reproduce patterns with cardinal preference, as observed in ferrets.
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I. INTRODUCTION

There are many examples of systems, both natural and
artificial, which present complex global behaviors even though
they are composed by relatively simple units [1-4]. In many
cases the origin of such a global complexity resides on the
intricate interaction network between the units [5]. Nowadays
we know that many of these networks have particular, but at
the same time universal, topological properties: on the one
hand the connectivity per unit histogram is very broad, and
can be approximated by a power-law (scale free networks)
[6]; on the other hand, although the mean-free path between
units is relatively short, the clustering is unusually large (small
world networks) [7]. That is why during the last decade the
statistical mechanics community has put particular attention
on describing the topological properties of these networks
in order to find out universal qualities, generating more
realistic models that take into account their development and
evolution, and even studying the behavior of a variety of
models whose interactions are ruled by these kind of networks
[5,8-11].

One distinctive feature of most real systems is that they
are embedded in a Euclidean space, where it is possible
to spatially localize their constituents, and where the usual
notion of distance between units is valid. In topographic
terms, these systems are embedded in a low-dimensional
Euclidean space. However, most of the scale free and small
world models do not take into account the physical distance
between units. In many cases this simplification is not realistic,
and there are a lot of examples of natural and artificial
systems in which the Euclidean distance play a fundamental
role in both the development and the performance of the
network.

In this work, we will focus in the neocortex of mammalian
brains, that is a complex system and also is embedded in a
low dimensional Euclidean space [12-15]. Furthermore, it is
a thin layer of cells covering most of the brain surface. The
visual cortex or primary visual cortex (or area 17, area V1

“ycdazac @famaf.unc.edu.ar; Also at Statistical and Interdisci-
plinary Physics Group, Centro Atémico Bariloche, Argentina.

1539-3755/2014/90(4)/042818(6)

042818-1

PACS number(s): 89.75.Fb, 87.18.Hf, 89.75.Hc

or striate cortex [16]) is the region that captures elements of
the natural scene, such as contours, textures, colors, shadows,
movements, and disparities. Also, it is organized in functional
modules, in such a way that neurons with similar receptive
fields form vertically oriented structures called columns. At
the same time, different columns are connected horizontally
between them. One of these are the so-called orientation
preference columns, composed by neurons which are activated
by stimulus of the same orientation. When certain stimulus
is presented, such as a bar with a specific orientation, it is
possible to observe in vivo the orientational pattern formed by
active and non-active neurons [17]. Even though the cortex
can be divided histologically into six cell layers, we will
consider only a single layer, and consider only inter-layer
interactions in a bi-dimensional structure. As we will show,
even with this simplification we obtain patterns as observed in
experiments in ferrets [ 18], macaques [19], and monkeys [20].
In this article we present a model inspired by the mammalian
visual cortex, that is formed by a set of Kuramoto phase
oscillators [3,21,22] which interact in a complex network. By
embedding this network in two-dimensional Euclidean space
we are able to define distance dependent interactions. Using
numerical simulations we study the different synchronization
patterns that emerge as a function of the parameters of the
model. We find that the model allows for the emergence of
clustered and striped phases. We show that for certain pa-
rameters, these patterns resemble the orientational preference
columns patterns observed experimentally in the striate cortex
[18-20].

II. THE MODEL

The patterns observed in visual cortex maps clearly emerge
from the dynamics of a great number of elements that have
non-linear interactions. These elements are a heterogeneous
neuronal population whose interactions consists generally in
the excitation of others neurons or the inhibition of their
activity. Also, through their interactions the neurons are able
to synchronize their activity. The interactions between the
neurons takes place in a complex network, that is embedded
in a low-dimensional Euclidean space. In this section we
present a model in order to understand which are the main
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mechanisms and properties of the cortex that allow for the
emergence of self-organized maps. The model accounts for
the following elements: a specific dynamic for the neural
units, linked by a complex network of connections, interacting
in a non-linearly way and able to synchronize their activity.
We follow with a brief description of each ingredient of the
model.

First, we consider the dynamics of the neural units. It is
known that several activities of the neuron can be modeled
by periodical processes and that the neurons are capable
to influence one another by electrical or chemical signals.
Through this mechanisms the neurons adjust their activity to
the activity of others neurons in the medium. This mutual
activity adjustment is the cause of the synchronization that
emerges when a population of neurons, for example, are
exposed to some stimulus, like oriented bars in their receptive
field. The neurons increase their activity for a specific stimuli
such as line or an edge with a given orientation and then,
depending on their interactions, can reach some synchronized
states with the other neurons in which neurons in the same clus-
ter respond to the orientation of the line. This orientation can be
represented by a phase angle. This periodical variable together
with the coupling between elements leads us to consider the
formalism of coupled phase oscillators [3,9,21,22]. In this
way the units are represented by a phase value in the interval
[0,7).

After choosing the units we focus on the network of
interactions. The neurons in the fourth layer of the cortex, that
are responsible for the orientation processing [23], send mainly
horizontal afferents to other neurons in a way that depends
of the neuron (or its localization) and its neighbors. There
is growing evidence that the structure of connections in the
cortex follows a broad distribution where most units have few
connections while a small number have many. We approximate
this by using a power-law degree distribution (or scale-free
network). An additional fact is that the neuron real afferents
have a length and also a limited number of connections
that depends on physical constraints of the neuron tissue in
which it is located. These assumptions allows us to establish
a realistic lattice of connections in which the neurons have
connections with a given length, a broad degree distribution
and the possibility to reach a saturation value [12]. A method
of network construction that best suit these characteristics was
presented by Rozenfeld er al. [24,25], in which a network
with a power-law degree distribution can be embedded in an
Euclidean space and the maximum distance of connections
can be minimized by the variation of a parameter. In Fig. 1 we
show a lattice with N = 60 x 60 units. We show explicitly the
connections of nine units, and also in the background present
a typical pattern representing the phase value of the units.
In this way we can compare the scale of the connections
with the emerging patterns as in the work of Stettler et al.
[26]. Also, by incorporating both a scale-free network and
an embedding in the complex network structure the neurons
which are close have many connections, and the connections
become sparse with distance [12]. This effect can be tuned
with the parameters of the model to obtain extreme cases,
such as a regular lattice, or a mean field interaction [27]. In
this way we can compare the results of the model with known
systems.
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FIG. 1. (Color online) A lattice with N = 60 x 60 sites, showing
explicitly the connections of nine units. The background presents a
typical pattern representing the phase value of the units.

Now, we have the appropriate units and the lattice in
which they are located, the missing ingredient is the form
of the interaction function. It is expected that this will play
a fundamental role in the configuration of the order-disorder
states. In the visual cortex each neuron receives excitatory
synaptic potentials from many afferent fibers and integrate in
order to produce an action potential. Each neuron also receives
inhibitory synaptic potentials that prevents the membrane
potential to reaching a threshold and spike [16]. Additionally,
the distribution of this synaptic potentials exhibits a particular
structure: to short range (50-100 ) are excitatory and outside
of this area (until 200-500 ) are inhibitory [28]. This
particular field of interaction resumes in the typical form
of a Mexican hat, widely used to represent the synaptic
interaction strength of a single neuron [29]. The Mexican
hat function has two fundamental parameters: one allows for
the tuning of the balance between excitatory and inhibitory
interactions, while the other modulates the distance at which
there is an effective interaction (Fig. 2). As we will show, the
modulation of these parameters leads to different patterns of
synchronization.

The dynamics of the model is summarized in the following
equations [30]. The phases ¢; evolve according to
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FIG. 2. (Color online) Mexican hat interaction function. Param-
eter C modulates the balance between excitatory and inhibitory
interactions, while o regulates the distance at which there is an
effective interaction.
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where i,j = 1... N and € is the change rate of the stimuli
coming from lateral cells. The interactions are given by the
Mexican hat function 7:

. (F —7j)? |7 — 712
I(r,-,rﬂ:(l—CT exp T .

We use the method proposed by Rozenfeld et al. [24,25] to
embed a power-law degree distribution of connections in a
Euclidean lattice.

III. RESULTS

The numerical simulations of the time evolution of the
phases are made by means of the Euler numerical integration
method. The initial states are phases uniformly spread in the
[0,7) interval. The network parameters are: the exponent «
of the power-law degree distribution, and the minimum ()
and maximum (M) connectivities. Parameter A regulates the
maximum geographical distance at which a site can connect,
thus acting as a saturation control parameter. We use periodic
boundary conditions and present a graphical representation of
the phases consisting in colors which encode their preferred
stimulus orientation.

Tauro et al. [27] recently analyzed the effects of embedding
a scale-free network in the synchronization of phase oscilla-
tors. They observed that this network structure allows for the
emergence of multiple clusters synchronized at different fre-
quencies. In our model the presence of competing interactions
through the Mexican hat function allows for the emergence of
new patterns with a striped structure. Note that now qualitative
changes in the different patterns can be tuned both through
the network structure or the interaction function. For example
increasing parameter o, that regulates the distance at which
there is an effective interactions, leads to qualitative changes
in the striped structure, as can be seen by comparing Figs. 3(a)
and 3(b). On the other hand, shifting the embedding parameters
towards smaller values or increasing the scale-free exponent
o limits the number of connections available to hubs, and
clustered structures emerge [27].

In Fig. 3 we show the time evolution of a system with N =
60 x 60 oscillators, for four different sets of parameters. In all
cases the system evolves from initial aleatory conditions until
it reaches a stationary state. A number of different emerging
patterns can be observed, such as striped phases as in Fig. 3(a)
and (b), or clustered phases as in Fig. 3(c) and (d).

In order to obtain a quantitative characterization of the
patterns we measure the correlations from a fixed site i to
any site j as

R(i,j) = cos(¢i — &) (D
and calculate the structure factor given by
S(ky.ky) =D R, j)cosky.i + ky.j),
iJj

2w
where N <ky, ky<2m, i,j:[1:N] )
In this way we can define the structure factor as an order
parameter, in a form that is similar to the tensor order parameter

in nematic liquid crystals [31].
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FIG. 3. (Color online) Temporal evolution of the phases for four
different sets of parameters. The snapshots correspond to times t =
0,25,50, and 100 s. The parameters for (a) and (b) are A = 10, @ =
2.1, m = 100, M = 500, C = 1; additionally in (a) 0% =6 and in
(b) 62 =14. For (¢) A=10, a =2.5, m =4, M =400, C =1,
0?2=6,andin (d) A =10, o =5, m = 100, M = 500, C = 2 and

o2 is variable.

In Fig. 4 we show four stationary states of the system and
their corresponding structure factors (the parameters are the
same as in Fig. 3). For the striped phases in Figs. 4(a) and (b)
the structure factor appears as a ring, whose radius and width
is related to the width and spacing of the stripes. When there
is no particular orientation preference of the stripes the ring is
uniformly distributed. Later we will focus on the case when
there is a clear orientation preference. For the clustered phases
in Figs. 4(c) and (d) the structure factor presents a qualitatively
different behavior, with a peak value at the origin surrounded
by a fuzzy cloud. These different phases can be characterized
quantitatively measuring and averaging the amplitudes of the
wave vector in all directions. When a ring-like structure, that
reveals the presence of stripes is present, a peak showing the
width and radius of the ring can be clearly observed as in
Fig. 5(a). On the other hand, for clustered phases, a single
peak close to the origin followed by a fast decaying curve
appears, as in Fig. 5(b).

This qualitative behavior strongly resembles the experimen-
tal results of Obermayer et al. [19]. They observed orientation
preference in spatial patterns of infant macaques and made a
Fourier analysis, which shows a clear ring link structure factor
characterized by a single peak when plotted as a function of
radial spatial frequency [19].

The presence of patterns with orientational preference can
also be quantitatively characterized using the structure factor.
In Fig. 6 we plot the values of the structure factor as a function
of k, and k,. Note the presence of two peaks, that reveal the
orientational preference.
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FIG. 4. (Color online) Snapshots of four stationary states of the
system (left column) and their corresponding structure factors (right
column). System size is N = 140 x 140 and parameters are the same
as in Fig. 3.

In fact, if we measure the variation of the structure factor
following k, the two peaks can be clearly observed, while an
almost flat curve is present following &, Fig. 7.

Using this quantitative information from the structure factor
we are able to construct a phase diagram varying the Mexican
hat parameters C and o. The line shows the position of the
maximum of the mean value of the structure factor averaged
over all directions as shown in Fig. 5. The phase diagram
in Fig. 8 is divided then in two different phases, one with
clustered and another with striped structures. For small values
of C and o clustered phases are present. As o is increased the
system tends to a state with all phases synchronized, and the
system seems to be dominated by the short range attractive
interaction that tends to synchronize the phase oscillators. For
a fixed value of o, when C is increased, a transition between
clustered and striped phases takes place. In fact, increasing the
value of C allows for the competition between attractive and
repulsive forces, a mechanism necessary for the formation of
striped structures [32].
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FIG. 5. (Color online) Mean value of the structure factor as a
function of k vector, averaged over all directions. Different qualitative
behaviors corresponding to the striped phase (top curve) and clustered
phase (bottom curve) can be clearly distinguished. System size is
N = 140 x 140 and parameters are the same as in Fig. 3(a) and 3(c).

We have presented a model which has a strong biological
inspiration, and in fact, as we will show, we are able to
reproduce specific patterns that are observed in some species of
mammals, referred as cardinal preference. In 1998, Coppola
et al. [18] exposed a ferret to the usual moving bar stimuli
and recorded the response of the cortex. Later, the image
obtained was digitally processed in order to quantify the pixels
corresponding to each preferred orientation and plotted in
a histogram. The histogram obtained in this way revealed
a major quantity of pixels in the horizontal and the vertical
directions, reflecting a preference of the ferret cortex for these
orientations.

We built histograms of the phases for parameters in the
different regions of the phase diagram, and observed that
it is possible to obtain patterns with cardinal preference. In
Fig. 9 we present four different snapshots of the phases and
their corresponding histograms. The figure clearly shows that
increasing C for a fixed value of o causes the systems to
evolve from an almost uniform phase distribution to a bi-modal

FIG. 6. (Color online) Structure factor as a function of k, and
k, for parameters that presents a clear orientational preference
characterized by the presence of two peaks that can be clearly
distinguished.
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FIG. 7. (Color online) Mean value of the structure factor as a
function of k for two directions (k,.,ky). The curves reflect the
difference between the strength of the structure factor in some
directions for the case presented in Fig. 6.

distribution with a clear cardinal preference, that strongly
resembles the experimental results of [18].

IV. DISCUSSION

In this work we presented a model for pattern formation
inspired in the behavior of the neurons in the visual cortex. It
has been speculated that the functionality of these patterns is
shaped by an economic trade-off between minimizing costs,
such as connection lengths or processing time, while allowing
for the emergence of topological patterns of anatomical or
functional connectivity between multiple neuronal populations
[33,34]. Along this line, in this work we presented a model
which allows us to study the basic network and interaction
mechanisms that allow for the emergence of patterns. In
particular we considered phase oscillators coupled in an
embedded complex network. Through the embedding we were
able to take into account the geographical distance between the
units in the interaction function. In contrast to other models of

tripe
C Striped
1 Phases
Clustered
0.25] Phases

14
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FIG. 8. (Color online) Phase diagram varying the Mexican hat
parameters C and o. The transition between striped and clustered
phases was determined quantitatively using the structure factor.
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FIG. 9. (Color online) Histograms of the phases for > = 6 con-
stant and varying C (from top to bottom C = 0.5, 1.0, 2.0, and 3.0).
The parameters used are A = 10, ¢ = 2.1, m = 100, and M = 500.
System size is N = 140 x 140.

map formation where the connectivity between neurons and
their synapses is distributed in layers [35,36], we considered
a single layer, assuming that the response capacity varies
laterally only and is approximately the same in all the layers
[16]. Our results show that even with this approximation the
model is still able to capture the main ingredients of the cortical
organization. In fact, with only a few parameters, the model
allows for the emergence of clustered or striped patterns.

We used the structure factor to quantitatively characterize
the different patterns. This characterization allowed us to
compare the numerical results with experimental data from
infant macaques [19] and monkeys [20]. Also, using the
structure factor we are able to construct a phase diagram in the
variables that modulate the Mexican hat interaction function.
We found two regions, one characterized by the presence
of clustered phases, while the other presents striped phases.
Finally, by tuning the parameter that modules the balance
between inhibitory and excitatory interactions in the Mexican
hat function, we were able to find striped structures with
cardinal preference, resembling qualitatively experimental
results observed by Coppola et al. [18] in ferrets.
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