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Abstract

Three important results about the expressivity of a modal logic L are the Char-
acterization Theorem (that identifies a modal logic L as a fragment of a better
known logic), the Definability theorem (that provides conditions under which a
class of L-models can be defined by a formula or a set of formulas of L), and the
Separation Theorem (that provides conditions under which two disjoint classes
of L-models can be separated by a class definable in L).

We provide general conditions under which these results can be established
for a given choice of model class and modal language whose expressivity is be-
low first order logic. Besides some basic constraints that most modal logics
easily satisfy, the fundamental condition that we require is that the class of
ω-saturated models in question has the Hennessy-Milner property with respect
to the notion of observational equivalence under consideration. Given that the
Characterization, Definability and Separation theorems are among the corner-
stones in the model theory of L, this property can be seen as a test that identifies
the adequate notion of observational equivalence for a particular modal logic.

Keywords: modal logics, model theory, simulation, characterization,
definability, separation, saturation

1. Introduction

Syntactically, modal languages [7] are propositional languages extended with
modal operators. Indeed, the basic modal language is defined as the extension
of the propositional language with the unary operator 3. Although these lan-
guages have a very simple syntax, they are extremely useful to describe and
reason about relational structures. A relational structure is a nonempty set to-
gether with a family of n-ary relations. Given the generality of this definition
it is not surprising that modal logics are used in a wide range of disciplines:
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mathematics, philosophy, computer science, computational linguistics, etc. For
example, in theoretical computer science, labeled transition systems (which are
nothing but relational structures) are used to model the execution of a program.

An important observation that might have gone unnoticed in the above para-
graphs is that we talk about modal logics, in plural. There is, nowadays, a wide
variety of modal languages and an extensive menu of modal operators to choose
from: Since and Until [19], universal modality [15], difference modality [11],
fix-point operators [21], are some of the possibilities to name only a few. This
multiplicity is both a boon and a bane. On the one hand, the variety comes in
handy when we need to choose the proper logic to model a particular problem.
But it also means that many results have to be established time and again for
each new logic that arrives in town. It is here when a solid model theory is
useful. With the proper theoretical tools, some results might be established
just by verifying certain properties of the class of models defining the logic. In
particular, many model theoretical results for a logic L rely on the availability
of an adequate notion of “indiscernibility” or observational equivalence, i.e., a
notion that specifies when two models are indistinguishable by formulas of L.

We investigate Characterization, Definability, and Separation theorems for
modal logics: three model-theoretical results intimately related with the notion
of observational equivalence. We pursue a general study of these properties
without referring to a particular modal logic. In general, the validity of these
theorems is a good indicator that the underlying notion of observational equiv-
alence for a given logic is indeed the correct one.

First-order logic, modal logics and similarity. These three notions will play a
mayor role and it will be useful to discuss them and their interaction right
away. First-order logic (FO) will delineate our framework and we will assume
its syntax, semantics and basic properties well known.1 All the modal logics
covered by our results are fragments of FO, and we will make use of some of
FO’s main model theoretic properties to prove our results. We will introduce the
basic (uni)modal logic BML in detail but, in the rest of this paper we will work
with an arbitrary modal logic. We will only require it to be adequately below
first-order logic as per Definition 1. Finally, we will discuss different notions
of observational equivalence. They will depend on the particular logic under
consideration but, once more, we will abstract away their common aspects in
the notion of an adequate similarity as per Definition 3.

Let us start by introducing syntax and semantics of BML. Let prop be a
countable, infinite set of propositional symbols. Formulas in BML are generated
by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 3ϕ,

where p is a propositional symbol in prop. BML is interpreted over relational

1We will use standard notation for first-order models and formulas and, in particular, we
will use |= for the satisfiability relation between a first-order model M, an assignment g and
a first-order formula ϕ.
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modelsM = (M,R, V ), where M is a nonempty domain, R is a binary relation
on M , and V is a valuation mapping propositional symbols to subsets over M .
The pair 〈M, w〉 for w an element in M is called a pointed model. We usually
drop brackets and writeM, w instead of 〈M, w〉. Given a pointed modelM, w
we define when a BML-formula ϕ is true in M at w (notation M, w 
 ϕ) as
follows:

M, w 
 p iff w ∈ V (p)
M, w 
 ¬ϕ iff M, w 6
 ϕ

M, w 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ
M, w 
 3ϕ iff M, v 
 ϕ for some v ∈M such that wRv.

The right notion of observational equivalence for BML is that of a bisimulation.
A bisimulation between two models M = (M,R, V ) and M′ = (M ′, R′, V ′) is
a nonempty relation Z ⊆M ×M ′ satisfying the following conditions:

(i) Atomic harmony: if wZw′ then w and w′ satisfy the same propositional
symbols, i.e., w ∈ V (p) iff w′ ∈ V ′(p) for all propositional symbols p;

(ii) Forth condition: if wZw′ and wRv then there is v′ s.t. vZv′ and w′R′v′;

(iii) Back condition: if wZw′ and w′R′v′ then there is v s.t. vZv′ and wRv.

Two pointed modelsM, w andM′, w′ are called bisimilar if there is a bisim-
ulation Z between M and M ′ such that wZw′. A well known result in basic
modal logic states that if M, w and M′, w′ are bisimilar then they are modally
equivalent, i.e., for any BML-formula ϕ we have M, w 
 ϕ iff M′, w′ 
 ϕ.
The reverse implication is not true in general. A model M is called modally-
saturated if for every state w ∈ M and every set Σ of formulas, if every finite
subset of Σ is satisfiable in some successor of w, then Σ itself is satisfiable in
some successors of w. An important result states that if two modally saturated
models are modally equivalent then they are bisimilar [7].

We now switch to first-order logic. Notice, first, that a relational model
M = (M,R, V ) is essentially a first-order model over the language with a binary
relation symbol and unary predicate symbols for the propositional symbols.
Second, bisimulations are the modal analogue of the first-order notion of partial
isomorphism. That is, partial isomorphisms are the right notion of observational
equivalence for FO. Given a model M and w1, . . . , wn elements in M , we
write (M, w1, . . . , wn) for the extension of M with w1, . . . , wn as new constant
symbols (interpreted in the obvious way). A partial isomorphism between two
first-order modelsM andM′ is a binary relation Z on pairs of finite sequences
〈w1, . . . , wn〉, 〈w′1, . . . , w′n〉 of elements of M and M ′ of the same length such
that ∅Z∅ and

(i) Atomic harmony: if 〈w1, . . . , wn〉Z〈w′1, . . . , w′n〉 then (M, w1, . . . , wn) and
(M′, w′1, . . . , w′n) satisfy the same atomic sentences;

(ii) Forth condition: if 〈w1, . . . , wn〉Z〈w′1, . . . , w′n〉 then for all v ∈ M there is
v′ ∈M′ such that 〈w1, . . . , wn, v〉Z〈w′1, . . . , w′n, v′〉;

3



(iii) Back condition: if 〈w1, . . . , wn〉Z〈w′1, . . . , w′n〉 then for all v′ ∈M′ there is
v ∈M such that 〈w1, . . . , wn, v〉Z〈w′1, . . . , w′n, v′〉.

The coincidences between the definitions of bisimulation and partial isomor-
phism are clear. They also play a similar role: any two partially isomorphic
first-order models are elementarily equivalent (i.e., they satisfy the same first-
order formulas). The reverse implication is not true in general but it holds for
ω-saturated models [9]. In other words, partial isomorphisms and bisimulations
are both carefully tuned to their respective logics.

Characterization, definability and separation for the basic modal logic. A well
known result shows that BML is at most as expressive as FO: there is a truth
preserving translation STx mapping formulas of BML to formulas of FO (with
at most one free variable x). That is, for every BML-formula ϕ, M, w 
 ϕ iff
M |= STx(ϕ)(w).2 In fact, BML is strictly less expressive than FO: it coincides
with the formulas of FO that are preserved under bisimulations. This is known
as the van Benthem characterization theorem [38]:

Theorem 1 (Characterization). A first-order formula ϕ is equivalent to the
translation of a BML formula iff ϕ is invariant under bisimulations.

This theorem can be used, for instance, to prove undefinability results for the
basic modal logic. A property that can be expressed with a first-order formula
with one free variable but is not invariant under bisimulation (e.g., irreflexivity
of a binary relation) cannot be expressed by a formula of BML.

The first-order Definability theorem states that a class of models K is definable
by means of a set of formulas if and only if K is closed under ultraproducts and
partial isomorphisms, and the complement of K is closed under ultrapowers. K
is definable by a single formula if and only if both K and its complement are
closed under ultraproducts and partial isomorphisms. It follows, for example,
that the class of finite models is not definable in FO because it is not closed under
ultraproducts. The Definability theorem for BML was proved by de Rijke [12]:

Theorem 2 (Definability). A class of relational pointed models K is definable
by means of a set of BML-formulas (respectively, a single BML-formula) iff K is
closed under bisimulations and ultraproducts and its complement is closed under
ultrapowers (respectively, bisimulations and ultraproducts).

By Theorem 2 the class of reflexive pointed models, for example, is not
definable by a single formula or by a set of formulas in BML as it is not closed
under bisimulations.

First-order Separation is closely related to Definability: it provides conditions
to separate two disjoint classes of models M and N by means of an elementary

2M |= ψ(w) is the standard notation for M, v |= ψ(x) for any valuation v such that
v(x) = w. See for instance [26].
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class (i.e., a class defined by a first-order formula). That is, it is possible to
find an elementary class M′ such that M ⊆ M′ and N ∩M′ = ∅. The Separation
theorem for FO states that M′ always exists if M is closed under isomorphisms
and ultraproducts, and N is closed under isomorphisms and ultrapowers. The
Separation theorem for BML was also proved by de Rijke in [12].

Theorem 3 (Separation). Let M and N be classes of relational pointed models
with M ∩ N = ∅. If M is closed under bisimulations and ultraproducts, and N
is closed under bisimulations and ultrapowers (respectively, ultraproducts), then
there exists a class M′ of pointed models definable by means of a set of BML-
formulas (respectively a single BML-formula) such that M ⊆ M′ and N∩M′ = ∅.

Characterization, Definability and Separation have been investigated for many
different modal logics (indeed the literature on these topic is extremely wide,
see [7, 18, 22, 25, 29, 37, 13] among others). In each particular case, a different
notion of observational equivalence is involved, and an ad-hoc proof is provided.
Still, the spirit of the proofs is similar and they rely on first-order model theoretic
tools. This is explicitly mentioned by Blackburn, de Rijke and Venema when
discussing Separation and Definability [7, p. 109]:

This close connection to first-order logic may explain why the results
of this section seem to generalize to any modal logic that has a stan-
dard translation into first-order logic. For example, all the results
of this section can also be obtained for basic temporal logic.

Our main goal is to sum up the key ingredients used in these proofs and iden-
tify sufficient model theoretical conditions that an arbitrary (even sub-boolean)
modal logic has to fulfill for these results to hold. These conditions are captured
by the notion of adequate similarity that we introduce in Definition 3.

This article is an extended version of [8]. We have refined the definition of
the general framework, included full proofs of all results, and added two new
sections: one concerning Separation results and one with applications of this
framework to several concrete logics. The rest of the article is organized as
follows. In Section 2 we introduce basic definitions. In Sections 3, 4 and 5
we prove generalizations of the Characterization, Definability and Separation
theorems. In Section 6 we show how to use the previous theorems in particular
logics providing both new results and alternative proofs to well established ones.
In Section 7 we compare our results to related work in the area. Finally in
Section 8 we draw our conclusions and propose further lines of research.

2. The general framework

We will introduce basic definitions about syntax, semantics, expressive power
and simulation. Together, they will define our general framework.
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Syntax. We say that a modal logic L has an adequate syntax if it extends the
language defined by the following grammar:

ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | > | ⊥,

where p is one of countably many propositional symbols. form(L) denotes the
set of all formulas of L. Note that negation might not be present in the language.

For first-order we assume a signature σ and denote the set of all first-
order σ-formulas as form(FO). Given first-order variables x1, . . . , xn we write
ϕ(x1, . . . , xn) to say that the free variables of ϕ are among x1, . . . , xn (but not
necessarily all of them). This notation extends to sets Γ(x1, . . . , xn) of first-order
formulas.

Semantics. We say that L has adequate semantics if the meaning or extension
of each formula in L is specified in model theoretic ways. More precisely, we
assume that formulas are evaluated over structures we will call L-models, that
each L-model M has as domain a non empty set of elements (denoted |M|),
and that the extension of each formula is specified over |M|. A pointed L-model
is a pair 〈M, w̄〉 where M is an L-model and w̄ ∈ |M|n for some fixed n that
we will call the dimension of the pointed model.3 Given an L-formula ϕ, we use
the notation M, w̄ 
 ϕ for “ϕ is true at w̄ in M” and M, w̄ 1 ϕ for “ϕ is false
at w̄ in M”. The definition of 
 depends on L. We only impose that ∧, ∨, >
and ⊥ have the usual interpretations:

M, w̄ 
 ϕ ∧ ψ iff M, w̄ 
 ϕ and M, w̄ 
 ψ
M, w̄ 
 ϕ ∨ ψ iff M, w̄ 
 ϕ or M, w̄ 
 ψ
M, w̄ 
 > always
M, w̄ 
 ⊥ never.

We assume that all pointed models of a given logic L have the same dimension.
Given L we use pmods(L) to denote the class of pointed L-models. Given M a
class of (modal or first-order) models, we will denote by M the complement of
M with respect to a universe class C that will always be clear from context.

Expressive power. We define formally what it means for a logic L to be at most
as expressive as first-order logic. Intuitively, this will be the case if there is
a truth-preserving translation of L-formulas into FO-formulas. Since we have
fixed no specific semantics for L, this translation should be understood modulo
a suitable translation of pointed models of L to pointed models of FO.

A pointed FO-model is a pair 〈M, w̄〉 where M is an FO-model for the
signature σ and w̄ ∈ |M|n for some fixed n that we call the dimension of the
pointed model. pmodsn(FO) denotes the class of all pointed FO-models of
dimension n. We will assume a fixed dimension and drop the subscript. Given
a pointed FO-model 〈M, w̄〉 for w̄ = w1, . . . , wn of dimension n, we will also

3For BML, n = 1 and formulas are evaluated at a single point; other modal logics, e.g.,
multidimensional modal logics like arrow and interval logics [27], are evaluated over tuples.
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consider w̄ as a finite valuation g : {x1, . . . , xn} → |M| interpreting variables
x1, . . . , xn as w1, . . . , wn, respectively.

Given an ultrafilter D over an index I, the ultraproduct of pointed FO-
models {Gi, gi}i∈I (notation:

∏
D Gi, gi) is a pointed FO-model 〈G, g〉 where

G =
∏
D Gi is the ultraproduct of {Gi}i∈I modulo D and g is the ultralimit of

{gi}i∈I modulo D. Equivalently one may interpret any σ-pointed model 〈G, g〉
as a σ′-model G′ where σ′ = σ∪{c1, . . . , cn} for new constant symbols ci /∈ σ and
where the interpretation of ci in G′ is g(xi). Then the ultraproduct

∏
D Gi, gi is

a pointed model 〈G, g〉 where G is the reduct of G′ =
∏
D G′i to σ, and ḡ(xi) is

the interpretation of ci in G′.
Let 〈M, w̄〉, 〈N , v̄〉 ∈ pmods(L). We write M, w̄ VL N , v̄ if for every L-

formula ϕ, M, w̄ 
 ϕ implies N , v̄ 
 ϕ. We write M, w̄ ≡L N , v̄ when
M, w̄ VL N , v̄ and N , v̄ VLM, w̄. We will use a similar notation for pointed
FO-models and we drop subscripts when the logic involved is clear from context.

Definition 1 (Adequately below first-order). We say that a logic L with
adequate syntax and semantics is below first-order if models in pmods(L) have
dimension n and there is a class of models K ⊆ pmodsn(FO) for a fixed first-
order signature σ, a bijective map Tm : pmods(L) → K (called a model trans-
lation of L into K) and a map Tf : form(L)→ form(FO) (called a formula
translation of L) satisfying the following conditions:

(i) If ϕ ∈ form(L) and 〈M, w̄〉 ∈ pmods(L) then

M, w̄ 
 ϕ iff Tm(M, w̄) |= Tf(ϕ);

(ii) The range Ran(Tf) of Tf is closed under conjunction and disjunction, up to
semantic equivalence: if α, β ∈ Ran(Tf) then there exists ϕα∧β ∈ Ran(Tf)
(resp. ϕα∨β ∈ Ran(Tf)) such that ϕα∧β ≡FO α∧β (resp. ϕα∨β ≡FO α∨β).

L is adequately below first-order if, additionally, K is closed under isomorphisms
and ultraproducts.

For notational simplicity, and without loss of generality, we will read (ii) as
saying that Tf(ϕ ∧ ψ) = Tf(ϕ) ∧ Tf(ψ) and Tf(ϕ ∨ ψ) = Tf(ϕ) ∨ Tf(ψ).

Observe that a number of useful properties obtain when a given logic L is
adequately below first order. For example, as K is closed under ultraproducts
it can be shown that L is compact.

Similarity. As we have seen, the notions of observational equivalence for differ-
ent logics can greatly vary in shape and form. For instance, a bisimulation (the
right notion for BML) is a relation between the domains of two fixed pointed
models. On the other hand, a partial isomorphism (the right notion for FO) is
a relation between sequences of elements of two fixed models. Still, they both
imply that the two models are indistinguishable by the formulas of the logic.

As we want to consider arbitrary modal logics, we cannot possibly know the
particular shape of the notion of observational equivalence involved. Therefore,
we will abstract their main property in the more general notion of similarity.
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Definition 2 (L-similarity). A relation →L ⊆ pmods(L) × pmods(L) is an
L-similarity if M, w̄ →L N , v̄ implies M, w̄ VL N , v̄. We drop the subscript
when the logic is clear from context.

Observe that the relation→L is not necessarily symmetric, since we contem-
plate in our framework logics without negation. In these cases, an asymmetric
relation is the right notion of similarity (see, e.g. [24]).

It is important to understand the difference between the notion of L-
similarity and the notion of observational equivalence. Observe that an L-
similarity is a relation linking pointed models (i.e., it is defined over a class of
pointed models), while an observational equivalence relation is a relation defined
between two given models linking observationally equivalent states.

Consider, for example, two fixed BML models M, N . A bisimulation is
a relation Z ⊆ |M| × |N | satisfying the harmony, back and forth constraints
(cf. p. 3). The associated notion of BML-similarity is induced by this notion
of bisimulation. Namely, define M, w →BML N , v if and only if there exists a
bisimulation Z ⊆ |M| × |N | such that wZv. In the case of FO, the same idea
can be used to induce a notion of FO-similarity by requiring the existence of a
partial isomorphism.

Given a signature σ, recall that a first-order σ-structureM realizes a set of σ-
formulas Γ(x̄) if there exists w̄ ∈ |M|n such thatM |= ϕ(w̄) for every ϕ ∈ Γ(x̄).
Given a subset A ⊆ |M|, the expanded model (M, A) where each element in
A is considered a new constant symbols with the obvious interpretation will be
denoted by MA and its signature by σA. The theory of M is the set of all σ-
sentences that hold inM. A modelM is said to be ω-saturated if the following
property holds: Let A be a finite subset of |M|, then every set of formulas Γ(x̄)
over σA consistent with the theory of MA is realized in MA.

Definition 3 (Adequate L-similarity). Let L be adequately below first-
order over a class of models K. We say that an L-similarity →L is adequate
for L if the class of ω-saturated models in K has the Hennessy-Milner property
with respect to→L. That is, if Tm(M, w) and Tm(N , v) are ω-saturated then
M, w VL N , v implies M, w→L N , v.

Many modal logics fit withing the proposed framework and we will discuss
examples in detail in Section 6. In particular, we will show that the Character-
ization, Definability and Separation theorems hold for the basic temporal logic,
the hybrid logics HL and HL(@) and different memory logics.

The above definitions outline our general framework: we will show in the
next sections that any logic L adequately below first-order, with an adequate
L-similarity will satisfy the theorems of Definability, Characterization and Sep-
aration. In the next sections we will assume fixed a modal logic L which is
adequately below first-order and has an adequate notion of L-similarity→L for
its class pmods(L) of pointed models. We also assume an arbitrary but fixed
dimension n for the models and therefore, unless otherwise stated, vectors such
as x̄ and w̄ will be of size n.
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3. Characterization

One of the central notions of the Characterization theorem stated in Section 1
was that of bisimulation invariance. In the following definition we cast this
notion in the context of our framework.

Definition 4 (Invariance for L-similarity). A formula α(x̄) ∈ form(FO)
is invariant for L-similarity if for all 〈M, w̄〉, 〈N , v̄〉 ∈ pmods(L) such that
M, w̄→L N , v̄, we have that Tm(M, w̄) |= α(x̄) implies Tm(N , v̄) |= α(x̄).

Notice that the property is defined for first-order formulas, but the
L-similarity relation is defined between pointed L-models. By our definition,
a first-order formula α(x̄) is ‘invariant for L-similarity’ if, for every two pointed
L-models M, w̄ and N , v̄ such that M, w̄ →L N , v̄ whenever α(x̄) is true in
Tm(M, w̄) then it is also true in Tm(N , v̄). That is, we check simulation in L
and satisfaction in FO.4

We are almost ready to prove the Characterization theorem. In the proof we
will need the following results. The first is a fairly straightforward generalization
of first-order compactness to a class of pointed FO-models and we provide only
a brief proof. The second result, instead, is the core of the Characterization
theorem and shows that if the L-theory ofM, w̄ is included in that of N , v̄ then
all L-simulation K-invariant first-order formulas satisfied by Tm(M, w̄) are also
satisfied by Tm(N , v̄).

Proposition 1 (Relativized first-order compactness). Let C be a class of
pointed FO-models which is closed under ultraproducts and let Σ(x̄) be a set of
first-order formulas. If every finite set ∆(x̄) ⊆ Σ(x̄) has a model in C, then
Σ(x̄) has a model in C.

Proof. Let 〈Gi, w̄i〉 ∈ C be a model for each finite subset ∆i(x̄) ⊆ Σ(x̄).
Algebraic proofs of the compactness theorem (cf. [20, Theorem 4.3]) show that
the ultraproduct of the models M, w̄ :=

∏
D Gi, w̄i (for a suitable ultrafilter

D) satisfies M, w̄ |= Σ(x̄). As C is closed under ultraproducts we conclude
that M, w̄ ∈ C. Although [20, Theorem 4.3] is proved for sets of first-order
sentences, our result for pointed models can be obtained by extending the first-
order language with new constants and working with sentences for the extended
language. 2

Proposition 2. Let M1,M2 ⊆ pmods(L) be such that Tm(M1) and Tm(M2)
are closed under ultrapowers. Let 〈M, w̄〉 ∈ M1 and 〈N , v̄〉 ∈ M2 be such that
N , v̄ VL M, w̄. Then there exist models 〈M∗, w̄∗〉 ∈ M1 and 〈N ∗, v̄∗〉 ∈ M2

that satisfy the following:

4An alternative, as done in [16], would be to define similarity for FO-models. We could
then say that a first-order formula α(x̄) is invariant for L-similarity if, for every two FO-models
M, w̄ and N , v̄ such that M, w̄→FO N , v̄, α(x̄) true in M, w̄, implies it is also true in N , v̄.
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(i) Their translations are pairwise elementarily equivalent: Tm(M, w̄) ≡FO

Tm(M∗, w̄∗) and Tm(N , v̄) ≡FO Tm(N ∗, v̄∗).

(ii) They are pairwise L-equivalent: M, w̄ ≡LM∗, w̄∗ and N , v̄ ≡L N ∗, v̄∗.

(iii) N ∗, v̄∗→LM∗, w̄∗.

Proof. LetMFO, gw̄ = Tm(M, w̄) and NFO, gv = Tm(N , v̄). TakeM+
FO,N

+
FO

to be ω-saturated ultrapowers ofMFO and NFO. As the classes are closed under
ultrapowers, the saturated models lay in the same class as the original models.

By [9, Corollary 4.1.13] we have an elementary embedding d : |MFO| →
|M+

FO|. Let g+
w̄ be an assignment for M+

FO with g+
w̄ (x) = d(gw̄(x)). Take the

modal preimage of M+
FO, g

+
w̄ and call it M∗, w̄∗ = Tm-1(M+

FO, g
+
w̄ ). We repeat

the same process and assign similar names to models derived from N .

(i) As a consequence of [9, Corollary 4.1.13], since there is an elementary
embedding, we have that MFO, gw̄ ≡FO M+

FO, g
+
w̄ . The same argument

works with NFO and N+
FO.

(ii) Thanks to the truth-preserving translations, M, w̄ ≡L M∗, w̄∗ and simi-
larly for N , v̄ and N ∗, v̄∗. Hence, N ∗, v̄∗ VLM∗, w̄∗.

(iii) As both M+
FO, g

+
w̄ and N+

FO, g
+
v̄ are ω-saturated, and N ∗, v̄∗ VL M∗, w̄∗,

by adequacy of L-similarity we conclude that N ∗, v̄∗→LM∗, w̄∗. 2

Corollary 1 (Detour). Let α(x̄) ∈ form(FO) be invariant for L-similarity.
If N , v̄ VLM, w̄ and Tm(N , v̄) |= α(x̄) then Tm(M, w̄) |= α(x̄).

Proof. Let the models and notation be as in Proposition 2 (with M1 = M2 =
pmods(L)). Figure 1 helps illustrate the situation along with the relationship
among the various models. Think of it as a cube, the front face represents the
L-models and the back face has the FO-models.

We have to prove thatN , v̄ VLM, w̄ andNFO, gv̄ |= α(x̄) implyMFO, gw̄ |=
α(x̄). As NFO, gv̄ |= α(x̄) and N+

FO, g
+
v̄ is elementarily equivalent to NFO, gv̄,

then N+
FO, g

+
v̄ |= α(x̄). Because α(x̄) is invariant under L-similarity and

N ∗, v̄∗ →L M∗, w̄∗ we know that M+
FO, g

+
w̄ |= α(x̄). Again by elementary

equivalence we conclude that MFO, gw̄ |= α(x̄). 2

We are ready to state the characterization theorem. Given a set Γ(x̄)∪{ϕ(x̄)}
of FO-formulas we use Γ(x̄) |=K ϕ(x̄) to mean that the entailment holds if we
only consider models of K. That is, for all 〈G, g〉 ∈ K, if G, g |= Γ(x̄) then
G, g |= ϕ(x̄). We say that ϕ(x̄), ψ(x̄) are K-equivalent if |=K ϕ(x̄)↔ ψ(x̄).

Theorem 4 (Characterization). A formula α(x̄) ∈ form(FO) is K-equiva-
lent to the translation of an L-formula iff α(x̄) is invariant for L-similarity.

10



NFO, gv̄ N+
FO, g

+
v̄

N , v̄ N ∗, v̄∗

MFO, gw̄ M+
FO, g

+
w̄

M, w̄ M∗, w̄∗

≡L

VL

≡L

→L

Tm Tm

Tm Tm

≡FO

≡FO

Figure 1: Directions for the detour

Proof. The left to right implication is a consequence of invariance of L-
formulas for L-similarity. For the other implication, suppose that α(x̄) is invari-
ant for L-similarity. We need to prove that it is K-equivalent to the translation
of an L-formula. Consider the set of local L-consequences of α:

SLC(α) = {Tf(ϕ) : ϕ is an L-formula and α(x̄) |=K Tf(ϕ)}.

The following claim shows that it suffices to prove that SLC(α) |=K α(x̄).

Claim 1. If SLC(α) |=K α(x̄) then α(x̄) is K-equivalent to the translation of an
L-formula.

Proof of Claim. Suppose SLC(α) |=K α(x̄). By compactness (Proposition 1)
there is a finite set ∆(x̄) ⊆ SLC(α) such that ∆(x̄) |=K α(x̄), therefore we
have |=K

∧
∆(x̄) → α(x̄). By definition |=K α(x̄) →

∧
∆(x̄), so we conclude

|=K α(x̄) ↔
∧

∆(x̄). As every β(x̄) ∈ ∆(x̄) is the translation of an L-formula
and the formula translation preserves conjunctions (cf. Definition 1) then

∧
∆(x̄)

is also the translation of some modal formula. a

To prove SLC(α) |=K α(x̄), assume Tm(M, w̄) |= SLC(α). We show that
Tm(M, w̄) |= α(x̄). Define the negative theory of w̄ as

NThw̄(x̄) = {¬Tf(ϕ) : ϕ is an L-formula and M, w̄ 1 ϕ}.

Observe that if L has negation then NThw̄(x̄) will be the translation of the
modal theory of w̄, and every model of NThw̄(x̄) will be modally equivalent to
M, w̄. If L does not have negation we will only preserve formulas that are false
in M, w̄. The above definition works in both cases.

Let Σ(x̄) = {α(x̄)} ∪ NThw̄(x̄). We will show that

Claim 2. Σ(x̄) has a model in K.

11



Proof of Claim. Suppose there is no model in K for Σ(x̄) and use the con-
trapositive of Proposition 1. Then there is a finite set ∆(x̄) ⊆ Σ(x̄) with no
model in K. Notice that ∆(x̄) should be of the form {α(x̄),¬δ1(x̄), . . . ,¬δn(x̄)}
with ¬δi ∈ NThw̄(x̄), otherwise it would have a model, namely Tm(M, w̄).

This means that for every model 〈AFO, g〉 ∈ K we have 〈AFO, g〉 6|= ∆(x̄)
and therefore 〈AFO, g〉 |= α(x̄)→ ¬

∧
i ¬δi. We can conclude that α(x̄)→

∨
i δi

is valid in K, therefore α(x̄) |=K

∨
i δi. If

∨
i δi is a K-consequence of α(x̄)

then, as the formula translation preserves disjunction (cf. Definition 1) we have∨
i δi ∈ SLC(α). But, as Tm(M, w̄) |= SLC(α) then Tm(M, w̄) |=

∨
i δi. This

is a contradiction, since Tm(M, w̄) 6|= δi(x̄) for every i. a

As Σ(x̄) is satisfiable in K we have a model 〈N , v̄〉 ∈ pmods(L) such that
Tm(N , v̄) |= Σ(x̄). We make the following claim.

Claim 3. N , v̄ VLM, w̄.

Proof of Claim. Take the contrapositive. Suppose that M, w̄ 1 ϕ then
¬Tf(ϕ) ∈ NThw̄(x̄) and because NThw̄(x̄) ⊆ Σ(x̄) we have Tm(N , v̄) |= ¬Tf(ϕ)
which implies that Tm(N , v̄) 6|= Tf(ϕ). By truth-preservation of the translations
we get N , v̄ 1 ϕ. a

Now we link Tm(N , v̄) and Tm(M, w̄) using the Detour (Corollary 1) which
lets us transfer validity of α(x̄) from the first model to the second. Because
α(x̄) ∈ Σ(x̄) and Tm(N , v̄) |= Σ(x̄), applying Corollary 1 to M, w̄ and N , v̄
yields Tm(M, w̄) |= α(x̄). 2

We have proved that an FO-formula α(x̄) is K-equivalent to the transla-
tion of an L-formula if and only if α(x̄) is invariant for L-similarity. In the
proof we show that α(x̄) was equivalent to the translation of the modal conse-
quences of α(x̄). This was accomplished by taking a detour through the class of
ω-saturated first-order models (Corollary 1). The use of ω-saturated models has
been isolated in Proposition 2. The requirements imposed by our framework (the
different adequacy conditions) were used in the following steps: closure under
ultraproducts was used for compactness in Proposition 1 and the Hennessy-
Milner property of ω-saturated models was critically used in Proposition 2. In
the proof of Theorem 4 we also used that L has conjunctions and disjunctions
which are preserved during their translation to first-order logic. Notice, though,
that L does not need to have negation.

4. Definability

Definability theorems address the question of which properties of models are
definable by means of formulas of a given logic. We begin with definability by
a set of L-formulas.

Theorem 5 (Definability by a set). A class M of pointed L-models is defin-
able by a set of L-formulas iff M is closed under L-similarity, Tm(M) is closed
under ultraproducts and Tm(M) is closed under ultrapowers.
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Proof. From left to right, suppose that M is defined by the set Γ of L-formulas
and there is a model 〈M, w̄〉 ∈ M such thatM, w̄→N , v̄ for some pointed model
N , v̄. Since 〈M, w̄〉 ∈ M, we have M, w̄ |= Γ. By definition of L-similarity we
have N , v̄ |= Γ and therefore 〈N , v̄〉 ∈ M. Hence M is closed under L-similarity.

It is easy to verify that for every pointed FO-model 〈G, g〉 ∈ K,

〈G, g〉 ∈ Tm(M) iff G, g |= Tf(Γ). (1)

To verify that Tm(M) is closed under ultraproducts, take models 〈Gi, gi〉 ∈
Tm(M). Given that for all i, Gi, gi |= Tf(Γ), by the fundamental theorem of
ultraproducts [9, Theorem 4.1.9],

∏
D Gi, gi |= Tf(Γ). Since K is closed under

ultraproducts,
∏
D Gi, gi ∈ K and from (1) we conclude that

∏
D Gi, gi ∈ Tm(M).

We now verify that Tm(M) is closed under ultrapowers. Take 〈G, g〉 ∈
Tm(M). By (1), G, g 6|= Tf(Γ). Let

∏
D G, g be an ultrapower of 〈G, g〉 where D is

an ultrafilter. Again by the fundamental theorem of ultrapowers (cf. [9, Corol-
lary 4.1.10]),

∏
D G, g is elementarily equivalent to 〈G, g〉. Hence

∏
D G, g 6|=

Tf(Γ). Since
∏
D G, g ∈ K, we conclude by (1) that

∏
D G, g ∈ Tm(M).

For the right to left direction proceed as follows. Let Γ = Th(M), the set of
all L-formulas which are valid in M. It remains to show that if M, w̄ 
 Γ then
〈M, w̄〉 ∈ M. Let M, w̄ be a pointed L-model such that M, w̄ 
 Γ. Define

NThw̄(x̄) = {¬Tf(ϕ) : ϕ is an L-formula and M, w̄ 1 ϕ}.

We show that NThw̄(x̄) is satisfiable in Tm(M). For contradiction, suppose this
is not the case. By Proposition 1, there is a finite ∆(x̄) ⊆ NThw(x̄) not satisfiable
in Tm(M). Let ∆(x̄) = {¬Tf(ϕ1), . . . ,¬Tf(ϕn)} for L-formulas ϕi such that
M, w̄ 1 ϕi for i = 1, . . . , n. Then

∧
i ¬Tf(ϕi) is unsatisfiable in Tm(M) and

so
∨
i Tf(ϕi) is valid in Tm(M). By the properties of our formula translation,∨

i Tf(ϕi) = Tf(
∨
i ϕi), and then Tf(

∨
i ϕi) is valid in Tm(M). Therefore

∨
i ϕi

is valid in M and hence
∨
i ϕi ∈ Γ. This is a contradiction, because M, w̄ 
 Γ,

and so M, w̄ 

∨
i ϕi, but M, w̄ 1 ϕi for i = 1, . . . , n.

We conclude that there is a model 〈N , v̄〉 ∈ M with Tm(N , v̄) |= NThw̄(x).
Observe that N , v̄ V M, w̄. By Proposition 2 (with M1 = M,M2 = M) there
exist ω-saturated extensions 〈N ∗, v̄∗〉 ∈ M and 〈M∗, w̄∗〉 ∈ M such thatN ∗, v̄∗→
M∗, w̄∗. As M is closed under L-similarity, 〈M, w̄〉 ∈ M. 2

The above result gives necessary and sufficient conditions for a class of L-
models to be definable by a set of L-formulas. Most of the work is done on
the first-order side and is therefore detached from L. In the last part of the
theorem we use Proposition 2 which connects both logics through the class of
ω-saturated models. This gives us another hint that this property isolates the
very core of characterization, definability and separation results.

Our second result considers classes of models definable by a single formula.
To prove the result we first need the following lemmas and definitions.

Definition 5 (C-closure, C-elementary class). Let 〈M, w̄〉 and 〈N , v̄〉 ∈
pmods(FO) we write M, w̄ ∼=p N , v̄ to mean that there exists a partial iso-
morphism Z between M and N such that w̄Zv̄. Let L ⊆ C ⊆ pmods(FO),
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(i) L is C-closed under partial isomorphisms if for all 〈M, w̄〉 ∈ L and
〈N , v̄〉 ∈ C such that M, w̄ ∼=p N , v̄ we have that 〈N , w̄〉 ∈ L.

(ii) L is C-elementary if there exists a set of first-order formulas Γ(x̄) such that
for all 〈G, g〉 ∈ C we have that G, g |= Γ(x̄) iff 〈G, g〉 ∈ L.

(iii) L is basic C-elementary if there exists a first-order formula ϕ(x̄) such that
for all 〈G, g〉 ∈ C we have that G, g |= ϕ(x̄) iff 〈G, g〉 ∈ L.

Lemma 1. Let M ⊆ pmods(L). If M is closed under L-similarity and both
Tm(M) and Tm(M) are closed under ultrapowers then Tm(M) and Tm(M) are
K-closed under partial isomorphisms.

Proof. Suppose that Tm(M) is not K-closed under partial isomorphisms. This
means that there exist first-order models 〈G, g〉 ∈ Tm(M) and 〈H, h̄〉 ∈ Tm(M)
such that G, g ∼=p H, h̄. Let M, w̄ and N , v̄ in pmods(L) be such that
Tm(M, w̄) = 〈G, g〉 and Tm(N , v̄) = 〈H, h̄〉. We have 〈M, w̄〉 ∈ M and
〈N , v̄〉 /∈ M.

As G, g ∼=p H, h̄ we know (cf. [9, Proposition 2.4.4]) that G, g |= ϕ(x̄) if and
only if H, h̄ |= ϕ(x̄). In particular they have the same L-theory, i.e., M, w̄ ≡
N , v̄. As this implies that M, w̄ V N , v̄ we can use Proposition 2 and find
models 〈M∗, w̄∗〉 ∈ M and 〈N ∗, v̄∗〉 ∈ M such thatM∗, w̄∗→N ∗, v̄∗. But as M
is closed under similarity we conclude that 〈N ∗, v̄∗〉 ∈ M, a contradiction.

We prove now that Tm(M) is K-closed under partial isomorphisms. Assume,
for contradiction, that there exist 〈G, g〉 ∈ Tm(M) and 〈H, h̄〉 ∈ K \ Tm(M) such
that G, g ∼=p H, h̄. As 〈H, h̄〉 ∈ K \ Tm(M) this means that 〈H, h̄〉 ∈ Tm(M).
We have just proved that Tm(M) is K-closed under partial isomorphism then, as
G, g ∼=p H, h̄ (and because of the symmetry of the partial isomorphism relation),
we conclude that 〈G, g〉 ∈ Tm(M). 2

Lemma 2 (First-order relativized definability). Let C be a class of
pointed FO-models which is closed under ultraproducts and let L ⊆ C.

(i) L is a C-elementary class iff L is closed under ultraproducts, L is C-closed
under partial isomorphisms and L ∩ C is closed under ultrapowers.

(ii) L is a basic C-elementary class iff both L and L∩C are closed under ultra-
products and C-closed under partial isomorphisms.

Proof. Left to right directions are simple. For the right-to-left directions pro-
ceed as follows.

(i). Let Γ(x̄) = {ϕ(x̄) : |=L ϕ(x̄)}. We show that Γ(x̄) defines L. Obviously, for
〈G, g〉 ∈ L, G, g |= Γ(x̄). Now let 〈G, g〉 ∈ C be such that G, g |= Γ(x̄). Define

Σ(x̄) = {ϕ(x̄) : G, g |= ϕ(x̄)}.

We prove that Σ(x̄) is satisfiable in L. Suppose not, by Proposition 1 there is
a finite subset ∆0(x̄) = {ϕ1(x̄), . . . , ϕn(x̄)} of Σ(x̄) which is unsatisfiable in L.
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Hence, |=L ¬
∧
i ϕi(x̄) which means that ¬

∧
i ϕi(x̄) ∈ Γ(x̄). As G, g |= Γ(x̄) we

arrive to a contradiction.
By [9, Theorem 6.1.15], G, g ≡FO H, h if and only if there exist ultrapowers

G∗, g∗ and H∗, h∗ such that G∗, g∗ ∼=p H∗, h∗. Because L is closed under ultra-
products, in particular it is closed under ultrapowers, therefore, 〈H∗, h∗〉 ∈ L.
As L and C are closed under ultrapowers, G, g and G∗, g∗ belong to the same
class. As L is C-closed under partial isomorphisms and G∗, g∗ ∼=p H∗, h∗ then
〈G∗, g∗〉 ∈ L. Hence 〈G, g〉 ∈ L.

(ii). By (i) we know there are sets Γ(x̄),Γc(x̄) defining L and L∩C respectively.
Observe that the union Γ(x̄) ∪ Γc(x̄) is not satisfiable in C. By Proposition 1
there exists a finite subset Σ0(x̄) ⊆ Γ(x̄)∪Γc(x̄) which is unsatisfiable in C. Call
Σ0(x̄) = {α1(x̄), . . . , αn(x̄), β1(x̄), . . . , βm(x̄)} with αi(x̄) ∈ Γ(x̄) and βj(x̄) ∈
Γc(x̄). As Σ0(x̄) is unsatisfiable in C we have |=C

∧
i αi(x̄) → ¬

∧
i βi(x̄). Let

us see that ϕ(x̄) =
∧
i αi(x̄) defines L.

Let 〈G, g〉 ∈ C. If 〈G, g〉 ∈ L then G, g |= ϕ(x̄). Suppose G, g |= ϕ(x̄) then
G, g 6|=

∧
i βi(x̄) therefore G, g 6|= Γc(x̄) and 〈G, g〉 /∈ L ∩ C. Hence 〈G, g〉 ∈ L. 2

Lemma 3. Let M ⊆ pmods(L). If M is closed under L-similarity and both
Tm(M) and Tm(M) are closed under ultraproducts then there exists a first-order
formula α(x̄) such that for all 〈G, g〉 ∈ K we have G, g |= α(x̄) iff 〈G, g〉 ∈ Tm(M).

Proof. The proof is a corollary of Lemmas 1 and 2. 2

Theorem 6 (Definability by a formula). A class M of pointed L-models is
definable by a single L-formula iff M is closed under L-similarity and both
Tm(M) and Tm(M) are closed under ultraproducts.

Proof. From left to right, suppose M is definable by a single L-formula ϕ.
Using Theorem 5 we conclude that M is closed under L-similarity and Tm(M)
is closed under ultraproducts.

We prove that Tm(M) is closed under ultraproducts. Observe that Tm(M) =
{〈G, ḡ〉 : G, g |= ¬Tf(ϕ)} ∩ K. Now, both intersecting classes are closed under
ultraproducts (the former because is definable by a single first-order formula,
the latter by hypothesis). Hence Tm(M) is closed under ultraproducts.

For the right to left direction, given that M is closed under L-similarity and
both Tm(M) and Tm(M) are closed under ultraproducts, by Lemma 3, there is a
first-order formula α(x̄) such that for every 〈G, g〉 ∈ K we have that G, g |= α(x̄)
iff 〈G, g〉 ∈ Tm(M). As M is closed under L-similarity, α(x̄) is invariant for L-
similarity. By Theorem 4 α(x) is K-equivalent to the translation of an L-formula
ϕ, which defines M. 2

We give necessary and sufficient conditions for a class of L-models to be
definable by a single L-formula. The right to left direction is the most interesting
where we use Lemma 3. For this step, standard proofs such as those found in [7,
24, 22] use structural properties of the notion of L-simulation, e.g., symmetry
in the case of BML-bisimulation, and that ↔ ⊆ → when L is the negation
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free basic modal logic and↔ is the BML-bisimulation relation. As a corollary of
Lemma 1, in our setting ∼=p ⊆→L for any L-similarity regardless of its structural
definition. Using this fact, the proof goes smoothly.

5. Separation

We will now prove two separation results. As we discussed before, this kind
of theorems provides conditions under which two disjoint classes of pointed
models can be separated by a class definable in L. In what follows, remember
that we have required K = Tm(pmods(L)) to be closed under ultraproducts.

Theorem 7 (Separation by a set of formulas). Let M,N ⊆ pmods(L) be
such that:

1. M ∩ N = ∅, M is closed under L-similarity,

2. Tm(M) is closed under ultraproducts, and

3. Tm(N) is closed under ultrapowers,

then there is a class M′ ⊆ pmods(L) definable by a set of L-formulas such that
M ⊆ M′ and M′ ∩ N = ∅.

Proof. Let M′ be the V-closure of M, i.e.,

M′ = {〈M′, w̄′〉 : There is 〈M, w̄〉 ∈ M such that M, w̄ VM′, w̄′}.

It is clear that M ⊆ M′. We show M′ ∩ N = ∅. Suppose 〈N , v̄〉 ∈ M′ ∩ N, then
there is 〈M, w̄〉 ∈ M such that M, w̄ V N , v̄. By Proposition 2 there exist
N ∗, v̄∗ ∈ M and M∗, w̄∗ ∈ N such that M∗, w̄∗→N ∗, v̄∗. As M is closed under
L-similarity 〈N ∗, v̄∗〉 ∈ M ∩ N = ∅, a contradiction.

It remains to prove that M′ is definable by a set of L-formulas. By Theorem 5
it suffices to show the following:

i. M′ is closed under L-similarity

ii. Tm(M′) is closed under ultraproducts

iii. Tm(M′) is closed under ultrapowers

For (i), M′ is closed under L-similarity because L-similarity→ implies V.
For (ii), let {M′i, w̄′i}i∈I be a family of pointed models in M′, and D an ultra-

filter over I. Define 〈G′∗, g′∗〉 as the ultraproduct of the translation of eachM′i, w̄′i;
i.e., G′∗, g′∗ =

∏
D Tm(M′i, w̄′i). By definition of M′, for eachM′i, w̄′i there exists

〈Mi, w̄i〉 ∈ M such that Mi, w̄i V M′i, w̄′i. Now let G∗, g∗ =
∏
D Tm(Mi, w̄i).

As Tm(M) is closed under ultraproducts then 〈G∗, g∗〉 ∈ Tm(M). Since M′

is closed under V, to show that 〈G′∗, g′∗〉 ∈ Tm(M′) it suffices to show that
G∗, g∗ VL G′∗, g′∗. Let ϕ ∈ L, if G′∗, g′∗ 6|= Tf(ϕ) then by the fundamental
theorem of ultraproducts, {j ∈ I : Tm(M′j , w̄′j) 6|= Tf(ϕ)} ∈ D, and therefore
{j ∈ I : Tm(Mj , w̄j) 6|= Tf(ϕ)} ∈ D. Again by the fundamental theorem of
ultraproducts G∗, g∗ 6|= Tf(ϕ).
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For (iii), let G′∗, g′∗ be an ultrapower of Tm(M′, w̄′), for 〈M′, w̄′〉 ∈ M′.
Notice that 〈G′∗, g′∗〉 ∈ K as K is closed under ultraproducts. Hence either (i)
〈G′∗, g′∗〉 ∈ K ∩ Tm(M′) or (ii) 〈G′∗, g′∗〉 ∈ K ∩ Tm(M′) = Tm(M′). We prove
that (i) leads to contradiction, finishing the proof: G′∗, g′∗ is elementarily equiva-
lent to Tm(M′, w̄′). Since Tm(M′) is closed under elementary equivalence then
Tm(M′, w̄′) ∈ Tm(M′). By bijectivity of Tm, this implies 〈M′, w̄′〉 ∈ M′. 2

Theorem 8 (Separation by a formula). Let M,N ⊆ pmods(L) such that
M ∩ N = ∅. If M and N are closed under L-similarity and both Tm(M) and
Tm(N) are closed under ultraproducts, then there exists M′ ⊆ pmods(L) that is
definable by means of a single L-formula and such that M ⊆ M′ and M′∩N = ∅.

Proof. Using Theorem 7 first on M and then on N we get a class M′′ ⊇ M
definable by a set Γ1 of L-formulas such that M′′ ∩ N = ∅ and a class N′′ ⊇ N
definable by a set Γ2 of L-formulas such that N′′ ∩M = ∅.

First observe that N′′ ∩ M′′ = ∅. Indeed, if that is not the case, using
V-closure of M′′ and N′′, we would have that N ∩ M 6= ∅. Hence, Γ1 ∪ Γ2 is
unsatisfiable and by compactness, there are α1, . . . , αn ∈ Γ1 and β1, . . . , βm ∈ Γ2

such that γ = (
∧
i αi) ∧ (

∧
j βj) is unsatisfiable. Let M′ be the class defined by

α =
∧
i αi. Clearly, M ⊆ M′′ ⊆ M′ and M′ ∩N = ∅ because γ is unsatisfiable. 2

6. Concrete Results

The general framework we presented can be used to give new and unifying
proofs of Characterization, Definability and Separation for logics where these
theorems have already been proved, e.g., hybrid logics or temporal logics. It is
worth noting that it can even be used to prove results for non-classical modal
logics such as monotonic neighbourhood logics [16] where models are not Kripke
models. [16, Section 5.2] explains how to encode monotone neighbourhood
structures as first-order structures (in an extended language). This process
would of course fail in the case of non-monotonic structures.

The framework can also be used for logics whose model theory has not been
fully developed so far (e.g., Memory Logics [2, 3]). In all cases, we only need to
check that the requirements of the framework are met.

6.1. Basic Tense Logic

The Basic Tense Logic (BTL) [32, 33] is a modal logic whose syntax is given
by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Fϕ | Pϕ.

Semantics is defined in terms of Kripke models 〈W,R, V 〉 (together with partic-
ular conditions over the accessibility conditions intended to capture time prop-
erties like linearity, irreflexivity, etc.). Boolean operators are defined as in BML,
the modalities F and P are interpreted as follows:

M, w 
 Fϕ iff there is a v ∈W such that wRv and M, v 
 ϕ
M, w 
 Pϕ iff there is a v ∈W such that vRw and M, v 
 ϕ.
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In other words, the F modality is a standard 3-modality, while P is defined
as a 3 over the inverse of the accessibility relation. Indeed, the P operator is
called the inverse operator in description logics [6].

An alternative, but equivalent, formulation interprets BTL over models
with two relations R1, R2 where the class of relational models is restricted to
those satisfying R2 = R−1

1 . In this case, both modalities are interpreted as 3-
modalities over R1 and R2 respectively. Hence, we can use the standard formula
translation and the usual model translation to see these models as the class of
first-order models K where R2 = R−1

1 . As K is definable by the first-order for-
mula ϕ = ∀x.∀y.R1(x, y)↔ R2(y, x), K is closed under ultraproducts. Hence
BTL has adequate syntax and semantics, and it is adequately below first-order.
The last thing to check is the existence of an adequate notion of similarity. But
the usual notion of bisimulation for the basic multi-modal logic will do. We can
conclude Characterization, Definability and Separation theorems for BTL.

To add ‘temporal’ constraints to the class of models, such as linearity and
transitivity notice that there is a bijection from such models to the class K of
first order models with the same properties. If this class is FO-definable it will
be closed under ultraproducts. Arguing as above we obtain the desired results.

6.2. Hybrid Logics

Hybrid logics augment modal logics with machinery for reasoning about
constants and identity. The basic hybrid logic introduces ‘nominals’ which are
propositional variables with the particularity of being true at a unique point
in the model (and, hence, work as ‘names’ for certain elements in the domain).
Special operators are then added allowing, for example, to indicate that two
nominals name the same element.

We show how our framework can be used to show Characterization, Defin-
ability and Separation theorems for some hybrid logics. We will consider the
basic hybrid logic HL which extends BML with nominals, and the logic HL(@)
which also adds the @-operator.5

To define formulas ofHL andHL(@), the signature of BML is extended with
a set nom = {i1, i2, . . . } of nominals, disjoint from the set prop of propositional
symbols. Formulas of HL(@) are then defined by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 3ϕ | i | @iϕ,

where p is a propositional symbol and i ∈ nom. HL is the fragment of HL(@)
without occurrences of @.

A hybrid model is a tuple M = 〈W,R, V,G〉 where 〈W,R, V 〉 is a BML-
model, and G : nom → W is an assignment for the nominals. Given a hybrid
modelM = 〈W,R, V,G〉 and w ∈W , we extend the semantics clauses for BML

5Characterization, Definability and Separation theorems for these and other hybrid logics
(e.g., including the ↓ binder) are investigated in [5].
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with the following rules:

M, w 
 i iff w = G(i), for i ∈ nom
M, w 
 @iϕ iff M, G(i) 
 ϕ.

The first-order correspondence language σ for HL(@) has countably many
unary predicate symbols Pi, a binary relation symbol R, equality, and countably
many constant symbols ci. A formula translation Tf of HL(@) into FO that
meets our requirements is given in [7]. In particular, formulas in the image
of Tf have at most one free variable x1. To translate hybrid models to first-
order models do as follows. Let K be the class of all first-order σ-structures. Let
M = 〈W,R, V,G〉 be a hybrid model. Define the model translation Tm(M, w) =
〈W,R, (Pi)i∈N, (ci)i∈N, w〉 where Pi = V (pi) for pi a propositional symbol and
ci = G(i) for i a nominal.

For M1 = 〈M1, R1, V1, G1〉 and M2 = 〈M2, R2, V2, G2〉 two hybrid models,
the notion of HL(@)-bisimulation extends the conditions of BML-bisimulation
with the following constraints:

(i) Nominal Harmony: If mZn, then G1(i) = m iff G2(i) = n for all i ∈ nom.

(ii) @: If G1(i) = m and G2(i) = n for some i ∈ nom then mZn.

HL-bisimulation is defined without the @-constraint. It is easily proved (see [5])
that for L ∈ {HL,HL(@)}, if M, w ↔L N , v then M, w ≡L N , v. It only
remains to prove that the induced notion of L-bisimilarity is adequate.

Theorem 9. For L ∈ {HL,HL(@)}, L-bisimilarity is adequate.

Proof. LetM,m andN , n be two pointed hybrid models such that Tm(M,m)
and Tm(N , n) are ω-saturated and M,m ≡L N , n. It suffices to give an L-
bisimulation between them. Consider ∼ on |M| × |N | defined as

w ∼ v iff M, w ≡L N , v.

Proving that ∼ is a BML-bisimulation is easy (see [7]). We prove the re-
strictions for nominals and the @ operator.

Restrictions for nominals: The proof is straightforward when w ∼ v. GM(i) =
w if and only if M, w 
 i. Hence N , v 
 i and GN (i) = v.

Restrictions for @: Let G1(i) = w and G2(i) = v. As ∼ is non-empty there is
(a, b) ∈ |M|×|N | such that a ∼ b. Then,M, a 
 ϕ iff N , b 
 ϕ for all ϕ. Given
an arbitrary formula ψ we can instantiate ϕ = @iψ thus obtaining M, a 

@iψ iff N , b 
 @iψ which by definition means thatM, G1(i) 
 ψ iff N , G2(i) 

ψ. By hypothesis we can replace G1(i) and G2(i) and getM, w 
 ψ iff N , v 
 ψ
therefore M, w ≡L N , v and by definition M, w ∼ N , v. 2

Hence, the Characterization, Definability and Separation theorems hold for
both HL and HL(@).
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6.3. Memory Logics

Memory logics, introduced in [1] and further investigated in, e.g., [2, 4, 3], al-
low modeling dynamic behavior through explicit memory operators that change
the structure where evaluation takes place. Memory logics extends the syntax
and semantics of BML with operators that store and retrieve elements of the
domain into a memory – a subset of the domains of the model. Different oper-
ators have been investigated: ‘known’ ©k , ‘remember’ ©rϕ, ‘erase’ ©eϕ, ‘forget’
©fϕ and ‘double diamond’ 〈〈 〉〉ϕ. Each memory logic extends BML with at least
©r and ©k and may have any combination of the other operators.

A memory model is a tuple M = 〈W,R, V, S〉 where 〈W,R, V 〉 is a BML-
model and S ⊆ W is the memory of the model. Given a memory model M =
〈W,R, V, S〉 and w ∈ W , the satisfaction conditions for the different memory
operators are:

M, w 
©rϕ iff 〈W,R, V, S ∪ {w}〉, w 
 ϕ
M, w 
©k iff w ∈ S
M, w 
©fϕ iff 〈W,R, V, S \ {w}〉, w 
 ϕ
M, w 
©eϕ iff 〈W,R, V, ∅〉, w 
 ϕ
M, w 
 〈〈 〉〉ϕ iff ∃w′ ∈W,wRw′ and 〈W,R, V, S ∪ {w}〉, w′ 
 ϕ.

As we can see, ©r stores the current point of evaluation into memory, while ©k
verifies whether the current point of evaluation has been previously memorized.
©f removes the evaluation point from the memory while©e completely wipes out
the memory. 〈〈 〉〉 is a controlled version of ©r , which stores the current point of
evaluation but forces a move to an accessible point.

The first-order correspondence language σ for memory logics has countably
many unary predicate symbols Pi, a unary predicate symbol S, a binary rela-
tion symbol R and equality. An adequate translation from any memory logic
obtained by combination of the operators described above can be defined by
composition of the translation from memory logics to HL(↓) found in [2] with
the translation from HL(↓) to FO given in [5]. Model translation is also fairly
straightforward. Let K be the class of all first-order models for the signature
σ. Let M = 〈W,R, V, S〉 and w ∈ W , then Tm(M, w) = 〈W,R, (Pi)i∈N, S, w〉
where Pi = V (pi).

Defining bisimulations for memory logics is more involved. Because memory
operators can modify the memory, it is not sufficient for a bisimulation to link
evaluation points, we also need to keep track of the current memory state. Let
M and N be memory models, and Z ⊆ P (|M|)×|M|×P (|N |)×|N |. That is,
bisimulations do not link pairs of states in the related models, but a set of states
(which describes the current memory) and a state in one model, with a similar
pair in the other model. A memory bisimulation for a memory logic L can be
defined imposing restrictions on Z depending on the operators that L has. We
summarize the restrictions associated with each operator in the next table. We
write R1 to denote a relation in M and R2 is used to denote a relation in N .
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always (nontriv) Z is not empty.

always (agree) If (A,m)Z(B,n), then m ∈ V (p) iff n ∈ V (p) for all
p ∈ prop.

©k (kagree) If (A,m)Z(B,n), then m ∈ A if and only if n ∈ B.

©r (remember) If (A,m)Z(B,n), then (A ∪ {m},m)Z(B ∪ {n}, n).

©f (forget) If (A,m)Z(B,n), then (A \ {m},m)Z(B \ {n}, n).

©e (erase) If (A,m)Z(B,n), then (∅,m)Z(∅, n).

3 (forth) If (A,m)Z(B,n) and R1(m,m′), then ∃n′ ∈ |N | such
that R2(n, n′) and (A,m′)Z(B,n′).

(back) If (A,m)Z(B,n) and R2(n, n′), then ∃m′ ∈ |M| such
that R1(m,m′) and (A,m′)Z(B,n′).

〈〈 〉〉 (mforth) If (A,m)Z(B,n) and R1(m,m′), then ∃n′ ∈ |N | such
that R2(n, n′) and (A ∪ {m},m′)Z(B ∪ {n}, n′).

(mback) If (A,m)Z(B,n) and R2(n, n′), then ∃m′ ∈ |M| such
that R1(m,m′) and (A ∪ {m},m′)Z(B ∪ {n}, n′).

Given a memory logic L we will refer to the bisimulation defined by the
corresponding conditions from the table above for each of the operators present
in L as ‘the bisimulation for L’. It is shown in [3] that if L is any of these
memory logics, then L-bisimulation implies L-equivalence. That is, if 〈M, w〉
and 〈N , v〉 are two memory models, thenM, w↔L N , v impliesM, w ≡L N , v.

Theorem 10. For any a memory logic L, L-bisimilarity is adequate.

Proof. Remember that an L-similarity →L is adequate for L if the class of
ω-saturated models in K has the Hennessy-Milner property with respect to→L.

Let M = 〈W,R, V, S〉 and N = 〈W ′, R′, V ′, S′〉 be two arbitrary L-
models. Consider the pointed models M,m and N , n such that Tm(M,m)
and Tm(N , n) are ω-saturated andM,m ≡L N , n. Again, it suffices to give an
L-bisimulation between them. We propose the binary relation ∼ defined as

(A,w) ∼ (B, v) iff M′, w ≡L N ′, v

as a candidate for a bisimulation whereM′ = 〈W,R, V,A〉, N ′ = 〈W ′, R′, V ′, B〉
and A ∪ {w} ⊆ W , B ∪ {v} ⊆ W ′. Suppose that (A,w) ∼ (B, v). ∼ satisfies
(nontriv) and (agree) by definition. We now prove that the other restrictions
also holds if the language contains the corresponding operator. In what follows,
for M = 〈W,R, V, S〉 let M[w] = 〈W,R, V, S ∪ {w}〉.

Restrictions for ©k . w ∈ A iff M′, w |=©k iff N ′, v |=©k iff v ∈ B.

Restrictions for ©r . (A,w) ∼ (B, v) implies that for every ϕ, M′, w |= ϕ iff
N ′, v |= ϕ. In particular, M′, w |=©rψ iff N ′, v |=©rψ, which by the definition
of satisfaction, holds precisely when M′[w], w |= ψ iff N ′[v], v |= ψ and hence
(A ∪ {w}, w) ∼ (B ∪ {v}, v).

The restrictions for©f and©e are established similarly, while the restrictions for
3 is proved as for BML (see [7, Proposition 2.54]).
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Restrictions for 〈〈 〉〉. Since (A,w) ∼ (B, v), we have already seen in the©r case
that M′[w], w |= ψ iff N ′[v], v |= ψ.6 This implies that M′[w], w ≡L N ′[v], v.

We claim without proof (see [28]) that memorization preserves ω-saturation,
i.e., ifM is ω-saturated, then this also holds forM[w]. Suppose now that w′ is
a successor of w. Let Σ be the set of all formulas true at M′[w], w′. For every
finite subset ∆ ⊆ Σ we have M′[w], w′ |=

∧
∆, hence M′[w], w |= 〈〈 〉〉

∧
∆. By

L-equivalence we haveN ′[v], v |= 〈〈 〉〉
∧

∆ which means that for every ∆ we have
a v-successor satisfying it. By preservation of ω-saturation under memorization,
we can conclude that there exists v′, a successor of v, so that N ′[v], v′ |= Σ. As
M′[w], w′ and N ′[v], v′ make the same formulas true, they are L-equivalent and
by definition they will be related by the bisimulation. This establishes (mforth)
as (A ∪ {w}, w′) ∼ (B ∪ {v}, v′). The proof for (mback) is similar.

We have shown that in all cases L-simulation satisfy the required constraints.
This proves that given two ω-saturated L-equivalent models we are able to
construct an L-simulation between them. This suffices to show that the class
of ω-saturated models has the Hennessy-Milner property with respect to the
induced notion of L-bisimilarity. 2

As a result of the above theorem, our framework guarantees the Character-
ization, Definability and Separation theorems for memory logics. Notice that
Separation had not been previously investigated for this family of logics.

7. Related work

Other generalizations. Generalizations such as the ones we investigated here
have been pursued in the work of Hollenberg. In [17] he shows a relativized
and extended version of van Benthem’s characterization theorem for so-called
normal first-order definable modalities. These modalities are defined by Σ0

1-
formulas and, therefore, they cannot define the Since and Until operators of
temporal logics or the operators of graded modal logic. Also, these results do not
apply to sub-boolean logics and only discuss characterization, not considering
definability and separation. Our proofs work for any modality with a first order
translation and both boolean and sub-boolean logics.

Finite models. Although our framework cover many logics, it cannot be used to
prove results for the class of finite models. This is an important class which lies
beyond our reach since it is not closed under ultraproducts. Many characteri-
zation and definability theorems are known to hold in the class of finite models.
For example, Rosen [34] shows that van Benthem’s characterization theorem
holds for the class of finite models for the basic modal logic. Otto [30] gives an
elementary proof which works in both the finite and infinite cases.

6We can use ©r here because it is in the language of any memory logic.
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Game-based techniques. Our framework is not applicable to finite models mainly
because it is based on a compactness argument. An alternative technique in-
volves a game-based analysis (see [14] for a comprehensive introduction). This
technique is closer to the methods used in finite model theory and applies in a
very uniform way to both classes of finite and infinite models. Following these
approach, Dawar and Otto [10] give several characterization theorems which
cover a broad range of classes of frames and models (such as transitive, finite
and rooted frames). Their results, however, are mostly geared towards BML
(with bisimulation as observational equivalence) and a few extensions like BML
with the global modality. Our framework is constrained to ultraproduct-closed
classes of models and applies to a fairly wide class of modal logics and their
corresponding notions of observational equivalence.

Coalgebraic correspondence theory. Coalgebraic modal logic [31] seeks to uni-
formly study modal logic over different types of structures. For that purpose, the
models are taken to be coalgebras for an endofunctor in the category of sets.
Various kinds of structures can be seen as coalgebras, for instance: streams,
Kripke models, Markov chains and neighborhood frames, among many others.
Also, several kinds of modalities over these structures can be captured as appro-
priate predicate liftings. In [35] the authors prove a van Benthem-Rosen result
(i.e., a characterization result for both the class of finite and infinite models)
for different kinds of coalgebras. The result is very general but it only applies
to rank-1 axiomatizable logics [36]. Moreover, the modalities definable in this
framework are limited by the naturality constraint of predicate liftings. The
generalization obtained using a coalgebraic framework is orthogonal to our ap-
proach: while their results apply to many widely different types of structures,
our results apply to many different logics and similarity notions.

8. Conclusions and further work

When doing first-order model theory, partial isomorphisms and many other
well-known tools are at hand. But sometimes one is satisfied with languages
which are less expressive than first-order but have a better computational be-
havior. This is where modal logics enter the scene. If one aims to develop a
model theory for some given modal logic L, one probably needs to devise a
reasonable notion of simulation. What does reasonable mean here? How do we
calibrate such a notion? It is clear that at least the following should hold:

If M, w→L N , v then M, w VL N , v (2)

but this is not enough. In the process of finding the right simulation notion,
candidates are often checked against finite models, or against image finite mod-
els. In those cases, one expects to be able to prove the converse of (2). The
results of this article indicate that guaranteeing the converse of (2) for the class
of ω-saturated models is enough to develop a basic model theory for L. This
key condition together with some other reasonable restrictions related to syntax,
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semantics and expressive power of L are presented in Section 2 and define our
general framework. Our main results, which are in Sections 3, 4 and 5, state
that any modal logic that fits our framework has a form of Characterization,
Definability and Separation. In all of them, the notion of similarity plays a
central role.

One point to be observed is that our framework requires K, the image of
the model translation, to be closed under ultraproducts and isomorphism. In
particular, classes of models which are definable by a set of first-order formulas
(i.e., elementary classes) satisfy this condition. However, that is not the only
case. The framework can also be used with classes defined by a set of Σ1

1-
formulas [9, Corollary 4.1.14] (i.e., existential second-order logic) and, more
generally, with pseudo-elementary classes [9, Exercise 4.1.17].

Notice also, that the general framework we introduced does not stipulate
anything particularly modal in the logic under investigation (it is actually diffi-
cult to provide a good definition of what a modal logic is). As such, it would be
interesting to investigate whether the approach applies to logics which are not
usually considered modal such as, for example, linear logic.

Another natural extension of our framework is to include logics without
disjunction in their language. Several description logics that do not include
the disjunction operator in their language, for example, are known to satisfy
preservation theorems [23]. A third possible line of work is to extend our results
to model classes which are not closed under ultraproducts, such as the class of
finite models. One last interesting question is to investigate the relation between
Separation and Interpolation. It is well know that in some logics, separation
implies a strong form of Craig Interpolation [9, 22], but interpolation fails for
many logics covered by our framework (e.g., memory logics). A careful study
of which additional conditions are required to obtain interpolation would surely
be interesting.
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