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Abstract1

The paper presents a new method for solving fully fuzzy linear programming problems with2

inequality constraints and parameterized fuzzy numbers, by means of solving multiobjective 13

linear programming problems. The equivalence is proven between the set of nondominated 24

solutions of the fully fuzzy linear programming problem and the set of weakly efficient5

solutions of the considered and related multiobjective linear problem. The whole set of 36

nondominated solutions for a fully fuzzy linear programming problem is explicitly obtained7

by means of a finite generator set.8

Keywords Fully fuzzy linear programming problem · Parameterized fuzzy numbers ·9

Multiobjective optimization10

1 Introduction11

Decision making in a fuzzy environment introduced by Bellman and Zadeh [7] is well-known12

nowadays, and it has been adopted by researchers in fields close to fuzzy linear programming13

[10,15,18,21,34,35,45]. Following the previous referred works, we can see that it was usual14

that not all parts of the fuzzy linear problem were assumed to be fuzzy. In the study of15

solutions for fuzzy linear programming problems where all the parameters and variables are16

fuzzy numbers, let us recall that recently Lofti et al. [33] pointed out that there was no method17

in the literature. These authors study fully fuzzy linear programming (FFLP) problems and18

propose a new method to find the fuzzy optimal solution of (FFLP) problems with equality19

constraints with symmetric fuzzy numbers. In a similar manner, and extending the previous20

work, Kumar et al. [30] claim that there was no method in the literature to obtain an exact21

solution of (FFLP) problems with equality constraints, and that in [33] the solutions are22

approximate, not exact and also it is tough to apply the existing method for finding them.23

In this regard, they propose a new method for finding the fuzzy optimal solution of (FFLP)24
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problems with equality constraints, with triangular fuzzy numbers involved, although they25

use ranking function (see [3] and the bibliography therein) to compare the objective function26

values. Najafi and Edalatpanah [39] corrected this method. Khan et al. [27] deal with (FFLP)27

with inequalities, and they also compare the objective function values via ranking functions28

(see also [9,28,40]). Ezzati et al. [19] recovered the methods provided by Lofti et al. [33] and29

Kumar et al. [30] in (FFLP) to propose a new method based on a multiobjective programming30

problem with equality constraints. To this purpose, they present a new relationship between31

two triangular fuzzy numbers in order to define an exact optimal solution of (FFLP). This32

relationship is introduced in terms of the global optimal solution of (FFLP) more than in33

terms of nondominated solution, and it is not equivalent to that given in [30]. To get an exact34

optimal solution of (FFLP), the authors propose a lexicographic method. Das et al. [14] apply35

a lexicographic method with trapezoidal fuzzy numbers.36

Taking into account the previous background, Liu and Gao [32] remarked some limitations37

of the existing methods. As an application to fuzzy transportation problems, we refer to38

Chakraborty et al. [11], who have updated and applied methods for finding a fuzzy optimal39

solution.40

Recently, Arana-Jiménez [5] has proposed a new method to find the fuzzy optimal (non-41

dominated) solutions of (FFLP) problems with inequality constraints, with triangular fuzzy42

numbers and not necessarily symmetric, via solving a multiobjective linear problem with43

crips numbers. To this matter, he proposes an algorithm that does not use ranking functions.44

On the other hand, Stafanini et al. [43] (see bibliography therein) have discussed the45

interest in maintaining the simplicity of computations by the use of simple local monotonic46

approximations of the lower and upper branches of fuzzy numbers. In this regard, they use47

approximations to fuzzy numbers through parameterization, using a uniform subdivision of48

the interval [0, 1] to get a finite number of α-cuts. Following the idea of approximation49

and simplicity, Hanss [25] deal with the notion of discretized fuzzy numbers, as well as50

the decomposed fuzzy numbers, which reduces elementary fuzzy arithmetic to the well-51

established discipline of interval arithmetic, as introduced by Moore [37]. Coroianu et al.52

[13] illustrate the potential of the piece-wise linear approximation of fuzzy numbers. Recently,53

Stefanini and Bede [44] propose the LU-parametric representation of a fuzzy number, based54

on the use of piece-wise differentiable functions, such that few parameters be sufficient55

to represent or to approximate a fuzzy number. Báez et al. [6], study the polygonal fuzzy56

numbers, which they consider as a particular case of the parametric representation of fuzzy57

numbers with linear interpolation. Although there is not a general method for fuzzyfication,58

which is a subjective assessment and depends on the available information, polygonal fuzzy59

numbers fit with many types of information or can become a suitable approximation. To this60

regard, Kávařová and Viertl [29] and Möller et al. [36] provide some methods and examples.61

As an application of polygonal fuzzy numbers, recently, Shyi et al. [12] propose a new62

transformation-based weighted fuzzy interpolative reasoning method.4 63

As an extension of the work by Arana-Jiménez [5], and considering polygonal fuzzy64

numbers as a parameterization of fuzzy numbers, we study a fully fuzzy linear program-65

ming (FFLP) problems. To this aim, it is presented a new method to find the fuzzy optimal66

(nondominated) solutions of (FFLP) problems with inequality constraints, where no ranking67

functions are needed. We prove an equivalence between the set of the considered fully fuzzy68

optimal (nondominated) solutions of (FFLP) and the set of weakly efficient solutions of its69

related multiobjective linear problem. We establish an algorithm to determine the whole set70

of the nondominated solutions for (FFLP) problem through a finite generator set, based on71

[20,46]. In this manner, a decision-maker gets a set of fuzzy optimal solutions. Since the72

decision-maker may need a precise quantity for each variable in these fuzzy solutions, there73
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are some existing methods to convert fuzzy numbers into crip numbers (see Ross [41], for74

instance). Although it is not the aim of the present work, we have included some of these75

methods in the examples to illustrate our results.76

2 Notation and arithmetic on fuzzy numbers77

We denote by KC the family of all bounded closed intervals in R, i.e.,78

KC =
{[

a, a
]

| a, a ∈ R and a ≤ a
}

.79

A fuzzy set on Rn is a mapping u : Rn → [0, 1]. For each fuzzy set u, we denote its80

α-level set as [u]α = {x ∈ Rn | u(x) ≥ α} for any α ∈ (0, 1]. The support of u we denote by81

supp(u) where supp(u) = {x ∈ Rn | u(x) > 0}. The closure of supp(u) defines the 0-level82

of u, .i.e., [u]0 = cl(supp(u)) where cl(M) means the closure of the subset M ⊂ Rn . A83

fuzzy number is a type of fuzzy set (see Dubois an Prade [16,17]), as follows.84

Definition 1 A fuzzy set u on R is said to be a fuzzy number if:85

1. u is normal, i.e., there exists x0 ∈ R such that u(x0) = 1;86

2. u is an upper semi-continuous function;87

3. u(λx + (1 − λ)y) ≥ min{u(x), u(y)}, x, y ∈ R, λ ∈ [0, 1];88

4. [u]0 is compact.89

Let FC denote the family of all fuzzy numbers. So, for any u ∈ FC we have that [u]α ∈ KC90

for all α ∈ [0, 1] and thus the α-levels of a fuzzy interval are given by [u]α =
[

u α, u α

]

,91

u α, u α ∈ R for all α ∈ [0, 1]. A fuzzy number u is said to be a non negative fuzzy number92

if u α ≥ 0, for all α ∈ [0, 1]. In [25], we can find the main sets of fuzzy numbers, such as93

L-R fuzzy numbers, trapezoidal fuzzy numbers, triangular fuzzy numbers, gaussian fuzzy94

numbers, quasi-gaussian fuzzy numbers, quasi-quadric fuzzy numbers, exponential fuzzy95

numbers, quasi-exponential fuzzy numbers, and singleton fuzzy numbers. The representation96

of fuzzy numbers has been deeply discussed by Stefanini et al. [43]. Triangular fuzzy numbers97

are a particular type of singleton fuzzy numbers, well-known in the literature (see, for instance,98

[16,17,26,27,33,43]) which are well determined and parameterized by three real numbers.99

So, given a− ≤ a ≤ a+, then a fuzzy number ã = (a−, a, a+) is said to be a triangular100

fuzzy number if its membership function is given by101

ã(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−a−

a−a− , if a− ≤ x ≤ a,

a+−x
a+−a

, if a < x ≤ a+,

0, otherwise.

102

At the same time, given a triangular fuzzy number ã = (a−, a, a+), its α-levels are103

formulated as104

[ã]α = [a− + (a − a−)α, a+ − (a+ − a)α],105

for all α ∈ [0, 1]. The previous formulation of α-levels characterizes a unique triangular106

fuzzy number, what can be established by the connection between a fuzzy number and their107

endpoint functions (Goestschel and Voxman [23]).108
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A fuzzy number ã = (a−
0 , a−

1 , a+
1 , a+

0 ) is said to be a trapezoidal fuzzy number if its109

membership function is given by110

ã(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x−a−
0

a−
1 −a−

0

, if a−
0 ≤ x < a−

1 ,

1, if a−
1 ≤ x ≤ a+

1 ,

a+
0 −x

a+
0 −a+

1

, if a+
1 < x ≤ a+

0 ,

0, otherwise.

111

Its α-levels are formulated as112

[ã]α = [a−
0 + (a−

1 − a−
0 )α, a+

0 − (a+
0 − a+

1 )α],113

for all α ∈ [0, 1]. Note that a trapezoidal fuzzy number ã is triangular if and only if a−
1 =114

a+
1 . As an extension of a triangular and trapezoidal fuzzy number, and inspired in other115

definitions on parametric fuzzy numbers (see, for instance, [6,25,43,44]), following we review116

the concept of polygonal fuzzy numbers. Based on the idea that intermediate level sets may117

be obtained by piecewise linear interpolation of some fixed levels, Báez et al. [6] define the118

polygonal fuzzy set. This definition, applied to the particular case of fuzzy number, can be119

formulated as follows. Given {αi : i = 0, 1 . . . , k} a partition of the interval [0, 1], with120

0 = α0 < α1 <, . . . , < αk = 1, a fuzzy number ã is said to be a polygonal fuzzy number121

if its α-levels [ã]α satisfies [ã]α = (1 − λ)[ã]αi + λ[ã]αi+1 , where 0 ≤ αi < α ≤ αi+1 ≤ 1122

for some i = 0, . . . , k − 1 and λ = λ(α) = (α − αi )/(αi+1 − αi ). The latest means that ã123

has a membership function with polygonal shape (see [6]). Define [ã]αi = [a−
i , a+

i ], for all124

i = 0, 1, . . . , k, therefore its membership function is given by125

ã(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x−a−
i−1

a−
i −a−

i−1

(αi − αi−1) + αi−1, if i ∈ {1, . . . , k} and a−
i−1 ≤ x < a−

i ,

1, if a−
k ≤ x ≤ a+

k ,
a+

i−1−x

a+
i−1−a+

i

(αi − αi−1) + αi−1, if i ∈ {1, . . . , k} and a+
i < x ≤ a+

i−1,

0, otherwise.

(1)126

From now on, we refer such fuzzy numbers as k−polygonal fuzzy numbers, and denoted127

as ã = (a−
0 , a−

1 , . . . , a−
k , a+

k , . . . , a+
1 , a+

0 ). In the particular case when αi = i
k , then ã is just128

said to be a regular k−polygonal fuzzy numbers. And a k-polygonal fuzzy number ã, with129

respect to {αi : i = 0, 1 . . . , k}, is said to be non negative when a−
0 ≥ 0 (Fig. 1).5 130

Remark 1 Note that given two partitions of [0, 1], P1 and P2, with P1 ⊂ P2, then a polygonal131

fuzzy number with respect to P1 is also a polygonal fuzzy number with respect to P2.132

Therefore, if ã is a k-polygonal fuzzy number with respect to Pa = {αi : i = 0, 1 . . . , k},133

and b̃ is a q-polygonal fuzzy number with respect to Pb = {βi : i = 0, 1 . . . , q}, then ã and134

b̃ are r -polygonal fuzzy numbers with respect to Pa ∪ Pb, with r = card(Pa ∪ Pb), i.e., r135

is the cardinality of the set Pa ∪ Pb. This fact is useful in the sequel when operations are136

defined between two polygonal fuzzy numbers where, for convenience, the partition will be137

assumed to be the same for both of them.138

In [ [6], Proposition 7], we find a characterization of polygonal fuzzy number respect to139

a partition {αi } via the family of α-levels corresponding to that partition. This result will be140

useful for the multiplication operation, which we define later (Fig. 2).6 141
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Fig. 1 Example of different Fuzzy numbers: In black and blue two triangular Fuzzy numbers ã = (−2, 0, 1)
and (0.5, 1.5, 2). With green and magenta colors two trapezoidal Fuzzy numbers b̃ = (−1.5, 0.25, 0.75, 3)
and (1.1, 2.1, 3, 4). ã and b̃ have different x range partitions, with the same [0, 1] partition. In cyan, a polygonal
fuzzy number c̃ = (1, 1.3, 1.8, 2, 2.4, 3.1, 3.5, 4). The α = 0, 0.1, 0.2, . . . , 0.9, 1 levels are represented with
dashed lines

Fig. 2 Fuzzy numbers arithmetics: example of the sum and product of different k−polygonal fuzzy numbers,
defined in 2

Following, we consider some classical arithmetic operations on interval and fuzzy num-142

bers. Given A = [a, a], B = [b, b] ∈ KC and τ ∈ R:143

A + B = [a + b, a + b], τ A = {τa : a ∈ A} =

{

[τa, τa], if τ ≥ 0,

[τa, τa], if τ ≤ 0
,144

A × B = [min {ab, ab, ab, ab}, max {ab, ab, ab, ab}].145
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We refer to Moore [37,38] and Alefeld and Herzberger [1] for further details on the topic146

of interval analysis. As an extension of interval arithmetic to fuzzy numbers, and referring147

to [8,22,31], the membership function of the operation u ∗ v, with ∗ ∈ {+, ·}, is defined by148

(u ∗ v)(z) = sup
z=x∗y

min{u(x), v(y)}. (2)149

If we consider the fuzzy numbers u, v represented by
[

uα, uα

]

and
[

vα, vα

]

, respectively,150

and a real numberλ, then the addition u+v, the scalar multiplication λu, and the multiplication151

uv produce fuzzy numbers and can be defined by means of their α-levels as follows (see, for152

instance, [Theorem 2.6, [22]). For any α ∈ [0, 1]:153

[u + v]α =
[

uα + vα , uα + vα

]

, (3)154

[λu]α =
[

min{λu α, λuα}, max{λu α, λuα}
]

, (4)155

[uv]α=[u]α × [v]α=[min {u αv α, u αv, u αv α, u αv α}, max {u αv α, u αv, u αv α, u αv α}].156

(5)157

Báez et al. [6] proved that for a fixed partition, the set of polygonal fuzzy numbers with158

respect to this partition is closed under addition and multiplication by a scalar. However, it is159

not closed under the multiplication operation. As an example, it is sufficient to consider the160

well-known case of triangular fuzzy numbers (see, for instance, the examples in [47]). So, to161

avoid this situation, it is usual to apply a different multiplication operation between triangular162

fuzzy numbers referenced in [5,26,27,30], among others. The result of this multiplication163

is a new triangular fuzzy number, which can be considered as an approximation to the164

multiplication given in (2). Taking into account the previous comments, we propose the165

following arithmetic operations on the set of polygonal fuzzy numbers.166

Definition 2 Given two k-polygonal fuzzy numbers ã = (a−
0 , a−

1 , . . . , a−
k , a+

k , . . . , a+
1 , a+

0 )167

and b̃ = (b−
0 , b−

1 , . . . , b−
k , b+

k , . . . , b+
1 , b+

0 ), it is defined the basic arithmetical operations168

as follows:169

(i) The addition ã + b̃ = c̃ where c−
i = a−

i + b−
i , and c+

i = a+
i + b+

i for i = 0, 1 . . . , k.170

This is,171

ã + b̃ = (a−
0 + b−

0 , a−
1 + b−

1 , . . . , a−
k + b−

k , a+
k + b+

k , . . . , a+
1 + b+

1 , a+
0 + b+

0 ) (6)172

(ii) The multiplication by a scalar λ ∈ R,173

λã =

{

(λa−
0 , λa−

1 , . . . , λa−
k , λa+

k , . . . , λa+
1 , λa+

0 ) if λ ≥ 0;

(λa+
0 , λa+

1 , . . . , λa+
k , λa−

k , . . . , λa−
1 , λa−

0 ) if λ < 0.
(7)174

(iii) The multiplication of two k-fuzzy polygonal numbers, ãb̃ = c̃ = (c−
0 , c−

1 , . . . , c−
k , c+

k ,175

. . . , c+
1 , c+

0 ), where176

{

c−
i = min{a−

i b−
i , a−

i b+
i , a+

i b−
i , a+

i b+
i }

c+
i = max{a−

i b−
i , a−

i b+
i , a+

i b−
i , a+

i b+
i }

i = 0, 1, . . . , k. (8)177

Proposition 1 For a fixed partition {αi : i = 0, 1 . . . , k} of [0, 1], the set of k-polygonal fuzzy178

numbers with respect to this partition is closed under addition, multiplication by scalar, and179

multiplication.180

Proof The proof is immediate from Definition 2. ⊓+181
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Remark 2 In Definition 2, operation (i) and (ii) are equivalent to those given in (3) and182

(4), although this equivalence does not occur between (iii) and (5), even in the particu-183

lar case that the k-polygonal fuzzy numbers reduce to triangular fuzzy numbers, such as184

we have commented before. However, in the cases that α = αi , i ∈ {0, 1, . . . , k}, it185

follows that [ã]αi × [b̃]αi = [c−
i , c+

i ], with c−
i = min{a−

i b−
i , a−

i b+
i , a+

i b−
i , a+

i b+
i } and186

c−
i = min{a−

i b−
i , a−

i b+
i , a+

i b−
i , a+

i b+
i }. Therefore, the α-levels of the multiplication in (iii)187

and in (5) between two k-polygonal fuzzy numbers respect to the same partition, for α = αi ,188

i ∈ {0, 1, . . . , k}, are equal.189

In order to compare two fuzzy numbers, there exist some definitions as generalization190

of relationship on intervals (see [24]), in the recent literature. In such manner, and recently,191

Stefanini and Arana-Jiménez [42] have discussed this topic, and proposed a definition on192

partial order for fuzzy numbers. Based on their definition, we introduce the following. To193

this regard, given u, v ∈ FC , we write their α-levels as u α = [u α, u α] ∈ KC and vα =194

[v α, v α] ∈ KC , respectively, for all α ∈ [0, 1].195

Definition 3 Given u, v ∈ FC , we say that196

(i) u ≺ v if and only if u α < v α and u α < v α , for all α ∈ [0, 1].197

(ii) u ! v if and only if u α ≤ v α and u α ≤ v α , for all α ∈ [0, 1].198

In a similar way, the relations ≻ and " are considered. These relationships provide partial199

orders in FC . Note that to say u ! v and v ! u is equivalent to say u = v. For convenience,200

we denote 0̃ the fuzzy number whose membership function is valued as 0 at every point.201

Observe that a polygonal fuzzy number ã is nonnegative if and only if ã " 0̃, that is, a−
0 ≥ 0.202

Theorem 1 Given two k-polygonal fuzzy numbers ã = (a−
0 , a−

1 , . . . , a−
k , a+

k , . . . , a+
1 , a+

0 )203

and b̃ = (b−
0 , b−

1 , . . . , b−
k , b+

k , . . . , b+
1 , b+

0 ) with respect to {αi : i = 0, 1 . . . , k}, it follows204

that205

(i) ã ≺ b̃ if and only if a−
i < b−

i , and a+
i < b+

i , for all i = 0, 1, . . . , k.206

(ii) ã ! b̃ if and only if a−
i ≤ b−

i , and a+
i ≤ b+

i , for all i = 0, 1, . . . , k.207

Proof To prove the result, firstly let us consider (i), and suppose that ã ≺ b̃. For the particular208

case that αi ∈ {α0,α1, . . . , αk}, it follows that209

[ã]αi = [ãαi
, ãαi ] = [a−

i , a+
i ], [b̃]αi = [b̃αi

, b̃αi ] = [b−
i , b+

i ], i = 0, 1 . . . , k. (9)210

Since ã ≺ b̃, and by Definition 3, it follows that ũ α < ṽ α and ũ α < ṽ α , for all α ∈ [0, 1];211

in particular for αi ∈ {α0,α1, . . . , αk}. In consequence, from (9), a−
i < b−

i , and a+
i < b+

i ,212

for all i = 0, 1, . . . , k.213

Conversely, now let us suppose that a−
i < b−

i , and a+
i < b+

i , for all i = 0, 1, . . . , k. To214

prove that ã ≺ b̃, by Definition 3, let us consider i ∈ {0, 1, . . . , k} and prove that ã α < b̃ α215

and ã α < b̃ α , for all α ∈ [αi−1,αi ]. By hypothesis, it follows that a−
i−1 < b−

i−1 and a−
i < b−

i .216

Operating on the previous inequalities, it is derived that217

α − αi−1

αi − αi−1
a−

i <
α − αi−1

αi − αi−1
b−

i , (10)218

αi − α

αi − αi−1
a−

i−1 <
αi − α

αi − αi−1
b−

i−1, (11)219

for all α ∈ [αi−1,αi ]. Combining (10) and (11), we get220

α − αi−1

αi − αi−1
a−

i +
αi − α

αi − αi−1
a−

i−1 <
α − αi−1

αi − αi−1
b−

i +
αi − α

αi − αi−1
b−

i−1, (12)221
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which is equivalent to the inequality222

α − αi−1

αi − αi−1
(a−

i − a−
i−1) + a−

i−1 <
α − αi−1

αi − αi−1
(b−

i − b−
i−1) + b−

i−1, (13)223

for all α ∈ [αi−1,αi ]. Following, consider the hypothesis a+
i−1 < b+

i−1 and a+
i < b+

i , and224

proceed as before. Therefore, we get the inequality225

a+
i−1 −

α − αi−1

αi − αi−1
(a+

i−1 − a+
i ) < b+

i−1 −
α − αi−1

αi − αi−1
(b+

i−1 − b+
i ), (14)226

for all α ∈ [αi−1,αi ]. Taking into account the expression given by (13) and (14), it is derived227

that228

[ã]α =

[

α − αi−1

αi − αi−1
(a−

i − a−
i−1) + a−

i−1, a+
i−1 −

α − αi−1

αi − αi−1
(a+

i−1 − a+
i )

]

229

≺

[

α − αi−1

αi − αi−1
(b−

i − b−
i−1) + b−

i−1, b+
i−1 −

α − αi−1

αi − αi−1
(b+

i−1 − b+
i )

]

= [b̃]α,230

for all α ∈ [αi−1,αi ]. If we extend the previous reasoning for all i=1,…, k, then we231

conclude that ã ≺ b̃. In a similar manner, (ii) is proved, so the proof is complete. ⊓+232

From the previous theorem, it is easy to derive a similar characterization result for the233

relationships ũ ≻ ṽ and ũ " ṽ. To illustrate the applicability of the previous result, consider234

the 2-polygonal fuzzy numbers ã = (1, 3, 5, 7, 9, 12) and b̃ = (2, 3, 5, 8, 9, 14). It follows235

that ã ! b̃, but ã ≺ b̃ is not verified.236

3 Fully fuzzy linear programming problem237

We consider the following formulation of a Fully Fuzzy Linear Programming Problem:238

(FFLP) Min/Max z̃ =

N
∑

n=1

c̃n x̃n (15)239

subject to

N
∑

n=1

ãmn x̃n ! b̃m, m = 1, . . . , M (16)240

x̃n " 0, n = 1, . . . , N , (17)241

where z̃ is the fuzzy objective function, c̃ = (c̃1, . . . , ˜cN ) is the fuzzy vector with the fuzzy242

objective function coefficients, x̃ = (x̃1, . . . , x̃N ) is the vector with the N fuzzy decision243

variables, and ãmn and b̃m are the technical coefficients for the corresponding M constraints244

of the problem. They are all k-polygonal fuzzy numbers with respect to {0 = α0 < α1 <245

· · · < αk = 1}, a partition of the [0, 1] interval. Following the established formulation, we246

have that247

z̃ = (z−
0 , z−

1 , . . . , z−
k , z+

k , . . . , z+
1 , z+

0 ),248

x̃n = (xn
−
0 , xn

−
1 , . . . , xn

−
k , xn

+
k , . . . , xn

+
1 , xn

+
0 ), n = 1, . . . , N ,249

c̃n = (cn
−
0 , cn

−
1 , . . . , cn

−
k , cn

+
k , . . . , cn

+
1 , cn

+
0 ), n = 1, . . . , N ,250

ãmn = (a−
mn0

, a−
mn1

, . . . , a−
mnk

, a+
mnk

, . . . , a+
mn1

, a+
mn0

), m = 1, . . . , M, n = 1, . . . , N ,251

b̃m = (b−
m0

, b−
m1

, . . . , b−
mk

, b+
mk

, . . . , b+
m1

, b+
m0

), m = 1, . . . , M .252
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This is, a 2 and 3−index formulation of the problem. Following the multiplication role given253

in (8), we have for n = 1, . . . , N ,254

c̃n x̃n =
(

(c̃n x̃n)−0 , (c̃n x̃n)−1 , . . . , (c̃n x̃n)−k , (c̃n x̃n)+k , . . . , (c̃n x̃n)+1 , (c̃n x̃n)+0
)

,255

with256
⎧

⎨

⎩

(c̃n x̃n)−i = min{c−
ni

x−
ni

, c−
ni

x+
ni

, c+
ni

x−
ni

, c+
ni

x+
ni

}

(c̃n x̃n)+i = max{c−
ni

x−
ni

, c−
ni

x+
ni

, c+
ni

x−
ni

, c+
ni

x+
ni

}
i = 0, 1, . . . , k, (18)257

and for n = 1, . . . , N , m = 1, . . . , M,258

ãmn x̃n =
(

(ãmn x̃n)−0 , . . . , (ãmn x̃n)−k , (ãmn x̃n)+k , . . . , (ãmn x̃n)+0
)

,259

with260
⎧

⎨

⎩

(ãmn x̃n)−i = min{a−
mni

x−
ni

, a−
mni

x+
ni

, a+
mni

x−
ni

, a+
mni

x+
ni

}

(ãmn x̃n)+i = max{a−
mni

x−
ni

, a−
mni

x+
ni

, a+
mni

x−
ni

, a+
mni

x+
ni

}
i = 0, 1, . . . , k.261

(19)262

Remark 3 Since every x̃n is a nonnegative k-polygonal fuzzy number, we have that all expres-263

sions for the multiplications above in (FFLP), given in (18) and (19), only depend on the264

objective coefficients c̃n and technical coefficients ãmn respectively. Therefore, (18) and (19)265

can be simplified as:266

(c̃n x̃n)−i =

{

c−
ni

x−
ni

if c−
ni

≥ 0

c−
ni

x+
ni

other case,
(ãmn x̃n)−i =

{

a−
mni

x−
ni

if a−
mni

≥ 0

a−
mni

x+
ni

other case,
267

(c̃n x̃n)+i =

{

c+
ni

x−
ni

if c+
ni

≤ 0

c+
ni

x+
ni

other case,
(ãmn x̃n)+i =

{

a+
mni

x−
ni

if a+
mni

≤ 0

a+
mni

x+
ni

other case.
268

269

We deal with (FFLP) without any kind of ranking function. And, in this regard, we define270

the following nondominated solution for (FFLP).271

Definition 4 Let ˜̄x be a feasible solution for (FFLP). In case of minimization, ˜̄x is said272

to be a nondominated solution of (FFLP) if there does not exist a feasible solution x̃ for273

(FFLP) such that
∑N

n=1c̃n x̃n ≺
∑N

n=1c̃n ˜̄xn . And in case of maximization, ˜̄x is said to be a274

nondominated solution of (FFLP) if there does not exist a feasible solution x̃ for (FFLP) such275

that
∑N

n=1c̃n x̃n ≻
∑N

n=1c̃n ˜̄xn276

Taking into account the previous arithmetic operations, Definition 2, and order relations,277

Theorem 1, the Fully Fuzzy Linear Programming Problem (FFLP) can be reformulated as a278

Multiobjective Programming Linear Problem (MOLP). Just developing the previous (FFLP)279

formulation with the notation described above, we have that280
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(MOLP) Min/Max f (x) = (z−
0 , z−

1 , . . . , z−
k , z+

k , . . . , z+
1 , z+

0 ) (20)281

subject to

N
∑

n=1

(ãmn x̃n)−i ≤ bm
−
i , m = 1, . . . , M, i = 0, 1, . . . , k, (21)282

N
∑

n=1

(ãmn x̃n)+i ≤ bm
+
i , m = 1, . . . , M, i = 0, 1, . . . , k, (22)283

xn
−
i − xn

−
j ≤ 0, 0 ≤ i < j ≤ k, n = 1, . . . , N , (23)284

xn
+
j − xn

+
i ≤ 0, 0 ≤ i < j ≤ k, n = 1, . . . , N , (24)285

xn
−
k − xn

+
k ≤ 0, n = 1, . . . , N , (25)286

xn
−
i ≥ 0, xn

+
i ≥ 0, i = 0, 1, . . . , k, n = 1, . . . , N . (26)287

Regarding z̃ ∈ FC , the objective of the (FFLP), as a multi-objective function f :288

R2(k+1)×N → R2(k+1), which argument x is defined by the parameters of the N k−polygonal289

fuzzy variables x = (x1, . . . , xN ) ∈ R2(k+1)×N , with xn = (x−
n0

, x−
n1

, . . . , x−
nk

, x+
nk

, . . . ,290

x+
n1

, x+
n0

), for n = 1, . . . , N .291

The linear functions of its image f (x) = ( f −
0 (x), f −

1 (x), . . . , f −
k (x), f +

k (x), . . . , f +
1 (x),292

f +
0 (x)) are defined as the sum of the N coefficients (18),293

f −
i (x) =

N
∑

n=1

(c̃n x̃n)−i , f +
i (x) =

N
∑

n=1

(c̃n x̃n)+i ,294

for each i = 0, . . . , k. All the constraints, 2(k + 1) × M + (2k + 1) × N , are represented as295

linear inequalities on the variable x . Constraints (21) and (22) are the corresponding terms296

to (16), whereas constraints (23) to (25) correspond with the ordering of the fuzzy variables297

x̃n .298

Then, (MOLP) is a multiobjective linear programming problem. In this point, let us recall299

that a feasible point x∗ ∈ R2(k+1)×N of (MOLP) is said to be a weakly efficient solution for300

the Minimization problem (MOLP) if there does not exist another feasible point x such that301

f (x∗) < f (x), that is, f −
i (x∗) < f −

i (x) and f +
i (x∗) < f +

i (x) for i = 0, 1, . . . , k. The302

same for the Maximization problem, but replacing > by < in the previous expression.303

The relationship between the (FFLP) and (MOLP) solutions is demonstrated in the fol-304

lowing theorem.305

Theorem 2 x̃ = (x̃1, . . . , x̃N ), with x̃n = (xn
−
0 , xn

−
1 , . . . , xn

−
k , xn

+
k , . . . , xn

+
1 , xn

+
0 ) ∈ FC ,306

n = 1, . . . , N, is a nondominated solution of (FFLP) if and only if x = (x1
−
0 , x1

−
1 , . . . ,307

x1
−
k , x1

+
k , . . . , x1

+
1 , x1

+
0 , . . . , xN

−
0 , xN

−
1 , . . . , xN

−
k , xN

+
k , . . . , xN

+
1 , xN

+
0 ) ∈ R2(k+1)×N is308

a weakly efficient solution of (MOLP).309

Proof Let us consider a minimization process for (FFLP) and for (MOLP), and recall that310

all variables and coefficients in (FFLP) are k-polygonal fuzzy numbers with respect to311

{0 = α0 < α0 < · · · < αk = 1}, a partition of the [0, 1] interval. Let us prove that312

x = (x1
−
0 , x1

−
1 , . . . , x1

−
k , x1

+
k , . . . , x1

+
1 , x1

+
0 , . . . , xN

−
0 , xN

−
1 , . . . , xN

−
k , xN

+
k , . . . , xN

+
1 ,313

xN
+
0 ) ∈ R2(k+1)×N is a feasible solution for (MOLP) if and only if x̃ = (x̃1, . . . , x̃N ), with314

x̃n = (xn
−
0 , xn

−
1 , . . . , xn

−
k , xn

+
k , . . . , xn

+
1 , xn

+
0 ) ∈ FC , n = 1, . . . , N is a feasible solution315

for (FFLP). To this purpose, if x = (x1
−
0 , x1

−
1 , . . . , x1

−
k , x1

+
k , . . . , x1

+
1 , x1

+
0 , . . . , xN

−
0 ,316

xN
−
1 , . . . , xN

−
k , xN

+
k , . . . , xN

+
1 , xN

+
0 ) ∈ R2(k+1)×N is a feasible solution for (MOLP), then317

the conditions318
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xn
−
i − xn

−
j ≤ 0, xn

+
j − xn

+
i ≤ 0, xn

−
k − xn

+
k ≤ 0, xn

−
i ≥ 0,319

are held for all 0 ≤ i < j ≤ k, n = 1, . . . , N . These previous conditions are equivalent to320

state that x̃n is a nonnegative k-polygonal fuzzy number, for all n = 1, . . . , N . Furthermore,321

by the direct application of the definition of !, it follows that the remaining feasibility322

conditions on x in (MOLP), given by (21) and (22) are equivalent to the feasibility conditions323

(16) and (17) on x̃ = (x̃1, . . . , x̃n) in (FFLP). Therefore, it is derived that x is a feasible324

solution for (MOLP) if and only if x̃ is a feasible solution for (FFLP).325

Now, let us suppose that x is a weakly efficient solution of (MOLP), and, following,326

we prove that the feasible solution x̃ is a nondominated solution of (FFLP). To this aim,327

suppose the contrary, that is, there exists a feasible solution ỹ = (ỹ1, . . . , ỹN ) for (FFLP),328

with ỹn = (yn
−
0 , yn

−
1 , . . . , yn

−
k , yn

+
k , . . . , yn

+
1 , yn

+
0 ) ∈ FC , n = 1, . . . , N , such that329

N
∑

n=1

c̃n ỹn ≺

N
∑

n=1

c̃n x̃n . (27)330

Condition (27) is equivalent to331

N
∑

n=1

(c̃n ỹn)−i <

N
∑

n=1

(c̃n x̃n)−i ,

N
∑

n=1

(c̃n ỹn)+i <

N
∑

n=1

(c̃n x̃n)+i , (28)332

for each i = 0, . . . , k. Since ỹ is feasible for (FFLP), it follows that y = (y1
−
0 , y1

−
1 , . . . ,333

y1
−
k , y1

+
k , . . . , y1

+
1 , y1

+
0 , . . . , yN

−
0 , yN

−
1 , . . . , yN

−
k , yN

+
k , . . . , yN

+
1 , yN

+
0 ) ∈ R2(k+1)×N is334

a feasible solution for (MOLP). By (28), we have that x is not a weakly efficient solution of335

(MOLP), what is a contradiction. Therefore, it follows that if x is a weakly efficient solution336

of (MOLP), then x̃ is a nondominated solution of (FFLP). Conversely, in a similar manner337

as before, let us suppose that x̃ is a nondominated solution of (FFLP), and let us prove that338

x is a weakly efficient solution of (MOLP). Since x̃ is feasible for (FFLP), it follows that x339

is feasible for (MOLP). Let us suppose that x is not a weakly efficient solution of (MOLP).340

This means that there exists a feasible solution y = (y1
−
0 , y1

−
1 , . . . , y1

−
k , y1

+
k , . . . , y1

+
1 ,341

y1
+
0 , . . . , yN

−
0 , yN

−
1 , . . . , yN

−
k , yN

+
k , . . . , yN

+
1 , yN

+
0 ) ∈ R2(k+1)×N for (MOLP)342

such that f −
i (y) < f −

i (x) and f +
i (y) < f +

i (x) for i = 0, 1, . . . , k, what implies (28),343

with ỹ = (ỹ1, . . . , ỹN ) for (FFLP). And (28) is equivalent to (27), which means that x̃ is344

a nondominated solution of (FFLP), what is a contradiction with our initial assumptions.345

Therefore, it is proved that if x̃ is a nondominated solution of (FFLP), then x is a weakly346

efficient solution of (MOLP). The proof of the result under maximization process for (FFLP)347

and for (MOLP) is similar to the previous one. In consequence, the proof is complete. ⊓+348

4 Algorithm to generate the nondominated solutions set for (FFLP)349

4.1 Amethod to generate a subset of nondominated solutions of (FFLP)350

There exist several methods to generate weakly efficient solutions of (MOLP). One of them351

is by means of related weighted sum problems (see [2,4]). A formulation of this type of352

optimization problem can be as follows. Given (MOLP) and w = (w1, . . . , w2(k+1)) ∈353

R2(k+1), wi ≥ 0,
∑2(k+1)

i=1 wi = 1, we define the related weighted sum problem as354
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(MOLP)w Min/Max

2(k+1)
∑

i=1

wi fi (x) = w1

N
∑

n=1

(c̃n x̃n)−0 + . . . + w2(k+1)

N
∑

n=1

(c̃n x̃n)+0355

subject to (21) − −(26) (29)356

Theorem 3 Given w = (w1, . . . , w2(k+1)) ∈ R2(k+1), wi ≥ 0,
∑2(k+1)

i=1 wi = 1, if x ∈357

R2(k+1)×N is an optimal solution of the weighted optimization problem (MOLP)w , then x is358

a weakly efficient solution of (MOLP).359

As a consequence of the previous result, we have the following one to determine non360

dominated solutions of the (FFLP).361

Theorem 4 Given w = (w1, . . . , w2(k+1)) ∈ R2(k+1), wi ≥ 0,
∑2(k+1)

i=1 wi = 1, if x = (x1
−
0 ,362

x1
−
1 , . . . , x1

−
k , x1

+
k , . . . , x1

+
1 , x1

+
0 , . . . , xN

−
0 , xN

−
1 , . . . , xN

−
k , xN

+
k , . . . , xN

+
1 ,363

xN
+
0 ) ∈ R2(k+1)×N is an optimal solution of the weighted optimization problem (MOLP)w,364

then x̃ = (x̃1, . . . , x̃N ), with x̂n = (xn
−
0 , xn

−
1 , . . . , xn

−
k , xn

+
k , . . . , xn

+
1 , xn

+
0 ) ∈ FC , n =365

1, . . . , N, is a non dominated solution of (FFLP).366

Proof If x = (x1
−
0 , x1

−
1 , . . . , x1

−
k , x1

+
k , . . . , x1

+
1 , x1

+
0 , . . . , xN

−
0 , xN

−
1 , . . . , xN

−
k , xN

+
k ,367

. . . , xN
+
1 , xN

+
0 ) ∈ R2(k+1)×N is an optimal solution of the weighting optimization problem368

(MOLP)w , then, by Theorem 3, it follows that x is a weakly efficient solution of (MOLP).369

Then, by Theorem 2, we have that x̃ = (x̃1, . . . , x̃N ), with x̃n = (x−
n0

, x−
n1

, . . . , x−
nk

, x+
nk

,370

. . . , x+
n1

, x+
n0

) for n = 1, . . . , N , is a nondominated solution of (FFLP). ⊓+371

Theorem 4 provides a simple way to get non dominated solutions for (FFLP). So a first372

approach for generating non dominated solutions can be made via the search of such weights,373

which leads to an optimal solution of the associated weighted sum problem of the (MOLP).374

The outline of the method is shown in the Algorithm 1, which generates a single non domi-375

nated solution of the (FFLP) at each run.376

Theorem 5 If we run Algorithm 1 and get S(F F L P) ̸= ∅, then any x̃ ∈ S(F F L P) is a non-377

dominated solution of (FFLP).378

Proof The proof is inmediate from Theorem 4. ⊓+379

4.2 Amethod to construct and generate the whole set of nondominated solutions380

of (FFLP)381

The previous algorithm determines each weight w randomly, at each run. Despite the possi-382

bility of an empty subset of non dominated solutions output from the Algorithm 1, this can383

be negligible for a total number of iterations big enough. The next natural step is determining384

the whole set of non dominated solutions of the (FFLP) problem, or its generating set, besides385

refining the weights selection for the associated weighted sum problem (MOLP)w .386

The new approach presented at the current work of the (FFLP) problems is not only387

the generalization from triangular fuzzy numbers type to more general k−polygonal fuzzy388

numbers, defined in (1). Besides, the development of an algorithm for getting the weakly389

efficient solutions set of the associated (MOLP), and therefore for (FFLP) problem itself.390

Moreover, it characterizes the structure of the weakly efficient solutions set by means of a391

generating set.392
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Algorithm 1: Generate non dominated solutions for the (FFLP) problem

Data: The associated weighted sum problem (M O L P)w (29)
Result: A finite sample S(F F L P) of non dominated solutions of the (FFLP), which cardinality

|S(F F L P)| ≤ niter number of the algorithm’s runs

initialization;
S(F F L P) ← ∅ ◃ Set of nondominated solutions of (FFLP)
niter ◃ maximum number of iterations (Stop criteria)
for s = 1, . . . , niter do

Draw a sample {u1, u2, . . . , u2(k+1)} from the uniform U(0, 1)

Set w = (w1, . . . , w2(k+1)) ∈ R2(k+1), with wi =
ui

∑2(k+1)
i=1 ui

Solve the (MOLP)w
if (MOLP)w has an optimal solution then

x ∈ R2(k+1)×N be the optimal solution,

x = (x1
−
0 , x1

−
1 , . . . , x1

−
k , x1

+
k , . . . , x1

+
1 , x1

+
0 , . . . , xN

−
0 , xN

−
1 , . . . , xN

−
k , xN

+
k , . . . , xN

+
1 , xN

+
0 )

Let x̃s = (x̃s1 , x̃s2 , . . . , x̃sN ), with x̃sn = (xn
−
0 , xn

−
1 , . . . , xn

−
k , xn

+
k , . . . , xn

+
1 , xn

+
0 ) ∈ FC ,

for n = 1, . . . , N
S(F F L P) ← S(F F L P) ∪ {x̃s }

end

end

As it was described in the previous section, Theorem 2 establishes the relation between393

(FFLP) and (MOLP) non dominated solutions. This is, we can determine the weakly efficient394

solutions set of (FFLP) problem, (15)−−(17), by solving the corresponding multi-objective395

linear programming (MOLP) problem, (20)−−(26). A general and well-known method for396

generating weakly efficient solutions is to solve its associated weighted sum problem, for a397

given weight of w, as the Algorithm 1 outlines.398

Our method is based on the algorithm proposed by [20], for obtaining all weak efficient399

solutions in a multi-objective linear programming (MOLP) problem. Yan et al. [46] originally400

developed it, but based on the assumption of a finite optimal solution for all the weighted401

sum problems to be solved throughout the algorithm development. Foroughi and Jafari [20]402

improved this methodology, including the unbounded cases as well.403

Its main potential is to generate the solution set, if it exists, just solving some weighted404

sum problems. It calculates the corresponding weights wi for i = 1, . . . , r during the process405

and provides a clear and easy solution structure of the solution set as well.406

A combination of Theorems 4 and 5 from [46], which demonstrate the above assertions,407

adapted to the current notation in a matrix way is the following.408

Theorem 6 Given a multi objective linear programming,409

(M O L P) min / max F(x) = Cx

s.t . Ax = b

x ≥ 0
410

The weakly efficient solutions set, Rwp, of the (MOLP) problem is obtained from a finite411

number of weighted sum problems,412

(M O L P)w j min / max wT
j Cx

s.t . Ax = b

x ≥ 0

413
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given w j ≥ 0, for j = 1, . . . , J . So it can be represented as Rwp =
⋃J

j=1 R
j
wp, where414

R
j
wp =

{

x : Ax = b, wT
j Cx = α j , x ≥ 0

}

, and the pairs (w j ,α j )
T are computed at415

each iteration of the Algorithm 2 as the extreme rays of the polyhedral cone416

S =

⎧

⎨

⎩

(

F

α

)

∣

∣

∣

∣

∣

∣

(Cxi )T F ≥ α, xi ∈ R

(Cdi )T F ≥ 0, di ∈ D

F ≥ 0, F ̸= 0

⎫

⎬

⎭

,417

defined by the set of extreme optimal solutions of the (M O L P)w j problems gathered up to418

that iteration, denoted by R = {x1, x2, . . .}, and the extreme directions for unbounded cases,419

D = {d1, d2, . . .}.420

Proof After writing the above problems (20)–(26) in their standard format, the result is421

immediate applying the corresponding theorems from [46] and [20]. As well as the calculation422

of the weights (wk,αk)
T , for k = 1, . . . , K . ⊓+423

5 Numerical examples424

In this section, we show the application of the proposed new method to find the fuzzy425

optimal (non dominated) solutions of FFLP problems with inequality constraints, through426

two illustrative but straightforward problems.427

Algorithms 1 and 2, which determine the whole set of the non dominated solutions for428

(FFLP) problem through a finite generator set, have been implemented in R1 (version 3.3.2),429

and making use of the lpSolve package for solving Linear Programs. The codes are run430

on an Intel Core i7 macOS 10.14.3, 2.2 GHz, 8 GB RAM, 1600 MHz DDR3.431

5.1 Example 1432

Let consider the following small example of a fully fuzzy linear programming (FFLP) prob-433

lem, very similar to one proposed in [3]. To show not only the proposed FFLP modelization434

but also how both Algorithms 1 and 2 run.435

Due to the small number of variables, not only the Algorithm 2 is pretty fast, but it436

also makes possible the computation of all the extreme points of each subset R
j
wp within a437

reasonable computational consumption. Therefore, both the whole structure of the weakly438

efficient solutions set, Rwp (30), as well as its sum-form expression (31) are obtained without439

a high computational time consumption (2.1257 min in total).440

(FFLP1) Min z̃ = (−1, 0, 2)x̃1 + (1, 2, 3)x̃2 ∈ FC

s.t. (2, 5, 8)x̃1 + (3, 4, 10)x̃2 ! (1, 3, 6)

(4, 5, 7)x̃1 + (0, 5, 15)x̃2 ! (2, 3, 6)

x̃1, x̃2 " 0

441

There are two fuzzy variables, and two constraints with triangular fuzzy numbers, this is442

a 1−polygonal case. Following the multiobjective linear problem (MOLP) associated is443

1 https://www.r-project.org. R is a language and environment for statistical computing and graphics. It is a
GNU project which is similar to the S language and environment which was developed at Bell Laboratories
(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues.
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Algorithm 2: Weakly efficient Solutions Set for the (FFLP) problem

Data: (FFLP) problem (15)–(17). Formulate associated (MOLP), (20)−(26):
x ∈ RN2 , with N2 = 2(k + 1)N + M2 (+slack vars.) ◃ standard format
AM2×N2

matrix of coeff., M2 = (2(k + 1)M + (2k + 1)N ) constraints

bM2
vector of coeff. , C2(k+1)×2(k+1)N = (C1, . . . , C2(k+1))

T obj. function matrix

Result: {w1, . . . wj} associated with the (M O L P)w j , generators of the Rwp

R ← ∅; D ← ∅ ◃ initialization
for i = 1, . . . , 2(k + 1)N do

Solve the (M O L P)ei : min / max Ci x s.t . Ax = b, x ≥ 0

if (M O L P)ei has finite optimal sol x̄ i then

R ← R ∪ {x̄ i } ◃ (extreme optimal sol.)
else if (M O L P)ei unbounded opt. sol. di , and Ci di < 0 then

D ← D ∪ {di } ◃ (extreme directions)

end
repeat

I1 ← ∅; I2 ← ∅

Let S =

⎧

⎨

⎩

(

F

α

)

∣

∣

∣

∣

∣

∣

(Cxi )T F ≥ α, xi ∈ R

(Cdi )T F ≥ 0, di ∈ D
F ≥ 0, F ̸= 0

⎫

⎬

⎭

if S = ∅ then
Stop: The problem does not have any weak efficient solution

else

Calculate the extreme rays of S: ES =

{

(

w j

α j

)

, j = 1, . . . , J

}

Let P =
{

F | (w j )
T F ≥ α j , j = 1, . . . , J

}

for j = 1, . . . , r do

Solve (M O L P)w j : min / max (w j )
T Cx s.t . Ax = b, x ≥ 0

if (M O L P)w j has finite optimal sol x̄ j , and Cx̄ j /∈ P then

R ← R ∪ {x̄ j }
I1 = I1 ∪ { j}

else if (M O L P)w j unbounded opt. sol. dk , and (w j )
T Cd j < 0 then

D ← D ∪ {dk }
I2 = I2 ∪ { j}

end

end

until I1 = ∅ and I2 = ∅;
return(ES );

formulated, where the multiobjective function f = ( f1, f2, f3) : R6 → R3 is a vector-444

valued function, evaluated on x = (x−
1 , x̂1, x+

1 , x−
2 , x̂2, x+

2 ) ∈ R6, with445

f1(x) = −x+
1 + x−

2 , f2(x) = 2x̂2 and f3(x) = 2x+
1 + 3x+

2 .446

Note c1
−
0 = −1 ≤ 0, then z−

1 = (c̃1 x̃1)
− = min{c−

1 x−
1 , c−

1 x+
1 , c+

1 x−
1 , c+

1 x+
1 } = c−

1 x+
1447

= −x+
1 , and f1(x) = −x+

1 + x−
2 (see (18) and Remark 3).448

Regarding the simplicity in notation, for the particular triangular fuzzy numbers case, it is449

applied the equivalent notation x̃n = (x−
n0

, x−
n1

, x+
n1

, x+
n0

) ≡ (x−
n , x̂n, x+

n ), since x−
n1

= x+
n1

450

for n = 1, 2.451

123

Journal: 10898 Article No.: 0841 TYPESET DISK LE CP Disp.:2019/10/20 Pages: 26 Layout: Small

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

Journal of Global Optimization

(MOLP1) Min f (x) = (−x+
1 + x−

2 , 2x̂2, 2x+
1 + 3x+

2 ) ∈ R
3

452

s.t .453

2x−
1 + 3x−

2 ≤ 1,

5x̂1 + 4x̂2 ≤ 3,

8x+
1 + 10x+

2 ≤ 6,

4x−
1 ≤ 2,

5x̂1 + 5x̂2 ≤ 3,

7x+
1 + 15x+

2 ≤ 6,

x−
n − x̂n ≤ 0, n = 1, 2

x̂n − x+
n ≤ 0, n = 1, 2

x−
n , x̂n, x+

n ≥ 0, n = 1, 2

454

There are M2 = 3M + 3N = 10 constraints, and 3N = 6 variables. Equivalently, the above455

problem in matrix notation results as456

(MOLP1) Min Cx ∈ R
3

457

s.t . Ax ≤ b, x ≥ 0458

where,459

C =

⎛

⎝

0 0 −1 1 0 0

0 0 0 0 2 0

0 0 2 0 0 3

⎞

⎠ , A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 3 0 0

0 5 0 0 4 0

0 0 8 0 0 10

4 0 0 0 0 0

0 5 0 0 5 0

0 0 7 0 0 15

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,460

b = (1, 3, 6, 2, 3, 6, 0, 0, 0, 0)T , and x =
(

x−
1 , x̂1, x+

1 , x−
2 , x̂2, x+

2

)T
∈ R6. For Algorithm461

2 application, (MOLP1) problem is rewritten in standard form, adding the slacks variables462

si for i = 1, . . . , M2. This is,463

(MOLP1) Min C ′x ′ ∈ R
3

464

s.t . A′x ′ = b, x ′ ≥ 0465

C ′ = [C 03×10], A′ = [A I10×10], and x ′ =
(

x−
1 , x̂1, x+

1 , x−
2 , x̂2, x+

2 , s1, . . . , s10

)T
∈ R16.466

Step 1 (Initialization) For i = 1, 2, 3, we solve the weighted linear programs467

(M O L P1)1 : Min f1(x ′) = −x+
1 + x−

2
s.t . A′x ′ = b, x ′ ≥ 0

(M O L P1)2 : Min f2(x ′) = 2x̂2
s.t . A′x ′ = b, x ′ ≥ 0

(M O L P1)3 : Min f3(x ′) = 2x+
1 + 3x+

2
s.t . A′x ′ = b, x ′ ≥ 0

468

(M O L P1)i have bounded optimal solutions: x ′1 = (1/2, 3/5, 3/4, 0, 0, 0, 0, 0,469

0, 0, 0, 3/4, 1/10, 3/20, 0, 0)T , with objective value C ′x ′1 = (−3/4, 0, 3/2)T ;470

x ′2 = (1/2, 3/5, 3/5, 0, 0, 3/25, 0, 0, 0, 0, 0, 0, 1/10, 0, 0, 3/25)T , with471
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C ′x ′2 = (−3/5, 0, 39/25)T ; and x ′3 = (0, 0, 0, 0, 0, 0, 1, 3, 6, 2, 3, 6, 0,472

0, 0, 0)T , with C ′x ′3 = (0, 0, 0)T , respectively. Let denote R = {x ′1, x ′2, x ′3} and473

D = ∅, the initial sets of optimal solutions and extreme directions (if unbounded474

feasible region, which is not the case).475

Step 2 (First iteration of the algorithm). Calculate the first weights wj associated with the476

weighted sum problems (M O L P)w j , generators of the weakly efficient solutions477

set of (MOLP1). Let I1 = ∅, and I2 = ∅. And denote,478

S1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

f1

f2

f3

α

⎞

⎟

⎟

⎠

:

⎛

⎝

−3/4 0 3/2

−3/5 0 39/25

0 0 0

⎞

⎠

⎛

⎝

f1

f2

f3

⎞

⎠ ≥

⎛

⎝

α

α

α

⎞

⎠ ,

⎛

⎝

f1

f2

f3

⎞

⎠ > 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

479

All extreme rays of the polyhedral cone S1 are ES = {(0, 1, 0, 0)T , (2/3, 0, 1/3,480

0)T , (4/7, 0, 0,−3/7)T , (0, 0, 1, 0)T }, so481

P1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎝

f1

f2

f3

⎞

⎠ :

⎛

⎜

⎜

⎝

0 1 0
2/3 0 1/3

4/7 0 0

0 0 1

⎞

⎟

⎟

⎠

⎛

⎝

f1

f2

f3

⎞

⎠ ≥

⎛

⎝

0

0

−3/7

⎞

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

482

Step 3 We get four new weights, w1 = (0, 1, 0)T , w2 = (2/3, 0, 1/3)T , w3 = (4/7, 0, 0)T ,483

and w4 = (0, 0, 1)T . We use them to get new weak efficient solutions, for484

j = 1, 2, 3, 4:485

(M O L P1) j : Min (w j )
T C ′x ′

486

s.t . A′x ′ = b, x ′ ≥ 0487

but the image in the objective space of their optimal solutions are all in P1, i.e.,488

C ′x ′ j ∈ P1. Therefore, R1 remains the same, as well as the index sets I1 and I2.489

Step 4 Note that, if both I1 = ∅ and I2 = ∅, the algorithm stops. Otherwise, repeat from490

Step 2.491

The weakly efficient solutions set of the problem is defined as492

Rwp =

4
⋃

j=1

R
j
wp =

4
⋃

j=1

{

x : Ax ≤ b, (w j )
T Cx = α j , x ≥ 0

}

(30)493

where the pairs of
(w j
α j

)

have been computed by the Algorithm 2, based on Theorem 6.494

ES =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

w1

α1

)

=

⎛

⎜

⎜

⎝

⎛

⎝

0

1

0

⎞

⎠

0

⎞

⎟

⎟

⎠

,

(

w2

α2

)

=

⎛

⎜

⎜

⎝

⎛

⎝

2/3

0
1/3

⎞

⎠

0

⎞

⎟

⎟

⎠

,

(

w3

α3

)

=

⎛

⎜

⎜

⎝

⎛

⎝

4/7

0

0

⎞

⎠

−3/7

⎞

⎟

⎟

⎠

,

(

w4

α4

)

=

⎛

⎜

⎜

⎝

⎛

⎝

0

0

1

⎞

⎠

0

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

495

These weights (not normalized) are shown in Table 1, along with the extreme points of the496

R
j
wp polyhedrons, which computation has been possible due to the small size of the problem.497

And allows us to represent the above polyhedral subsets R
j
wp in their sum-form, given by the498

convex combination of their extreme points. Moreover, it is clear to see that R2
wp ⊆ R1

wp ,499

R3
wp ⊆ R1

wp , and R4
wp ⊆ R1

wp . Hence, the weakly efficient solutions set of (MOLP1), and500

therefore the nondominated solutions set of (FFLP1) problem, can be simply expressed as501
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Table 1 Output of the Algorithm 2, this is the set of weights (not normalized) and α which determine the set

of all weak efficient solutions of the (MOLP1) problem, by means of the subsets R
j
wp

j w j ∈ R3 α j Extreme points of R
j
wp = {x : Ax ≤ b, (w j )

T Cx

= α j , x ≥ 0} x = (x−
1 , x̂1, x+

1 , x−
2 , x̂2, x+

2 )

1 (0, 1, 0) 0 u1 = ( 1
2 , 1

2 , 1
2 , 0, 0, 0), u2 = ( 1

2 , 1
2 , 1

2 , 0, 0, 1
6 ), u3 = ( 1

2 , 3
5 , 3

5 , 0, 0, 0),

u4 = ( 1
2 , 3

5 , 3
5 , 0, 0, 3

25 ), u5 = ( 1
2 , 1

2 , 3
4 , 0, 0, 0), u6 = ( 1

2 , 1
2 , 3

5 , 0, 0, 3
25 ),

u7 = ( 1
2 , 3

5 , 3
4 , 0, 0, 0), u8 = (0, 0, 0, 0, 0, 0), u9 = (0, 0, 0, 0, 0, 2

5 ),

u10 = (0, 0, 3
4 , 0, 0, 0), u11 = (0, 0, 3

5 , 0, 0, 3
25 ), u12 = (0, 3

5 , 3
5 , 0, 0, 0),

u13 = (0, 3
5 , 3

5 , 0, 0, 3
25 ), u14 = (0, 3

5 , 3
4 , 0, 0, 0)

2 (2, 0, 1) 0 u1, u3, u5, u7, u8, u10, u12, u13

3 (4, 0, 0) −3 u5, u7, u10, u14

4 (0, 0, 1) 0 u8

Last column shows the extreme points of these subsets R
j
wp , for its sum-form representation

Rwp = R1
wp =

{ 14
∑

i=1

λi u
i : eT λ = 1, λ ≥ 0, λ ∈ R

14

}

(31)502

In this way, we can generate any weak efficient solution of the (FFLP) problem. For503

example, for λ = (1, 0, . . . , 0) ∈ R14 we have the weakly efficient solution x = (x−
1 ,504

x̂1, x+
1 , x−

2 , x̂2, x+
2 ) = u1 = (1/2, 1/2, 1/2, 0, 0, 0) of the (MOLP1). The corresponding non-505

dominated solution of the (FFLP1) problem is x̃1 = (x−
1 , x̂1, x+

1 ) = (1/2, 1/2, 1/2), and506

x̃2 = (x−
2 , x̂2, x+

2 ) = (0, 0, 0), with z̃ = (0, 0, 0).507

This is a great step forward in comparison with Algorithm 1, since we can determine all508

the weak efficient solutions. In fact, after 1000 runs of Algorithm 1 (using random weights509

at each iteration) we only get two different solutions, x = (0, 0, 0, 0, 0, 0) = u8, and510

x = (0, 0, 3/4, 0, 0, 0) = u10. The results, for comparison purposes, are shown in Table 2.511

As commented in Sect. 1, in this manner, a decision-maker gets the whole set of fuzzy512

optimal solutions, to manage them at their convenience or suitability. Although it is beyond513

the scope of this paper, we give some options to give a precise quantity for each fuzzy variable514

or solution, through the defuzzification to scalars (see Ross [41]).515

The simplest method is the Max membership principle or height method, this is just taking516

as defuzzified value (ã)M = x∗ the corresponding to the α = 1 level. I.e., ã(x∗) ≥ ã(x),517

for all x ∈ [a−
0 , a+

0 ]. In the particular case of triangular fuzzy numbers, it corresponds to the518

central value â .519

Another procedure is to compute the center of area or center of gravity, (ã)C
520

=
∫

xã(x)dx/
∫

ã(x)dx, known as the Centroid method. Both methods have been computed521

for the weak efficient solutions for the (FFLP1) problem given at the last columns of Table 2.522

Finally, although one can consider that all triangular fuzzy numbers have the same shape,523

one can find a variety of the graphs of their membership functions, as shown in Fig. 3.524
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Fig. 3 Some weak efficient solutions for the (FFLP1) problem, from Example 1, computed through its corre-
sponding (MOLP1) and the Algorithms 1 and 2. See Table 2

5.2 Example 2525

Consider now the next example, for 2−polygonal fuzzy numbers.526

(FFLP2) Min z̃ = (−1,− 1
2 , 0, 1

2 , 1)x̃1 + (1, 3, 5, 7, 9)x̃2 ∈ FC

s.t. (2, 3, 5, 6, 8)x̃1 + (3, 7
2 , 4, 6, 10)x̃2 ! (1, 2, 3, 5, 6)

(3, 4, 5, 6, 7)x̃1 + (0, 3, 5, 9, 15)x̃2 ! (1, 2, 3, 4, 6)

x̃1, x̃2 " 0

527

The particular case of pentagonal fuzzy numbers as a 2−polygonal fuzzy number, x̃n528

= (x−
n0

, x−
n1

, x−
n2

, x+
n2

, x+
n1

, x+
n0

), where x−
n2

= x+
n2

= x̂n for n = 1, 2. The corresponding529

multi objective programming problem (MOLP), with x = (x1
−
0 , x1

−
1 , x12, x1

+
1 , x1

+
0 , x2

−
0 ,530

x2
−
1 , x22, x2

+
1 , x2

+
0 ) ∈ R10, is531
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(MOLP2) Min f (x) = (−x1
−
0 + x2

−
0 , −

1

2
x1

−
1 + 3x2

−
1 , 5x22,

1

2
x1

+
1 + 7x2

+
1 , x1

+
0 + 9x2

+
0 ) ∈ R

5
532

s.t .533

2x1
−
0 + 3x2

−
0 ≤ 1,

3x1
−
1 + 7

2 x2
−
1 ≤ 2,

5x12 + 4x22 ≤ 3,

6x1
+
1 + 6x2

+
1 ≤ 5,

8x1
+
0 + 10x2

+
0 ≤ 6,

3x1
−
0 ≤ 1,

4x1
−
1 + 3x2

−
1 ≤ 2,

5x12 + 5x22 ≤ 3,

6x1
+
1 + 9x2

+
1 ≤ 4,

7x1
+
0 + 15x2

+
0 ≤ 6,

x−
n0

− x−
n1

≤ 0, n = 1, 2

x−
n1

− xn2 ≤ 0, n = 1, 2

xn2 − x+
n1

≤ 0, n = 1, 2

x+
n1

− x+
n0

≤ 0, n = 1, 2

x−
n0

, x−
n1

, xn2 , x+
n1

, x+
n0

≥ 0, n = 1, 2

534

Or equivalently, in matrix notation,535

(MOLP2) Min Cx ∈ R
5

536

s.t . Ax ≤ b, x ≥ 0537

where,538

C =

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 0 0 0 1 0 0 0 0

0 − 1
2 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 5 0 0

0 0 0 1
2 0 0 0 0 7 0

0 0 0 0 1 0 0 0 0 9

⎞

⎟

⎟

⎟

⎟

⎠

,539
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A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 0 0 3 0 0 0 0

0 3 0 0 0 0 7
2 0 0 0

0 0 5 0 0 0 0 4 0 0

0 0 0 6 0 0 0 0 6 0

0 0 0 0 8 0 0 0 0 10

3 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 3 0 0 0

0 0 5 0 0 0 0 5 0 0

0 0 0 6 0 0 0 0 9 0

0 0 0 0 7 0 0 0 0 15

1 −1 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, and b =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

2

3

5

6

1

2

3

4

6

0

0

0

0

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

540

A simple problem of N = 2 fully fuzzy variables, parametrized as k = 2−polygonal541

fuzzy numbers (pentagonal, 2(k + 1) − 1 = 2k + 1 = 5, since x j
−
2 = x j

+
2 = x j 2), and542

M = 2 constraints becomes a multi objective problem with 2k + 1 = 5 objective functions,543

(2k + 1)N = 10 variables, and (2k + 1)M + (2k)N = 18 constraints. The Algorithm 2 is544

still pretty fast for such size, and easy to implement. It only took 20.95899′′ to compute the545

set of weights (w j ,α j ), see Table 3.546

The set of all weakly efficient solutions of the (MOLP2) problem is defined as,547

Rwp =

9
⋃

j=1

{

x : Ax ≤ b, (w j )
T Cx = α j , x ≥ 0

}

548

Just the increase in the parametrization applied to the previous example, from triangular549

to pentagonal fuzzy numbers, makes the calculation of all the extreme points of the corre-550

sponding polyhedral subsets R
j
wp a harsh computational problem, which is not the aim of the551

present work. There are no extreme directions, since the feasible region is bounded. So, we552

only apply the Algorithm 1 to get the set of finite weights w j , which define the R
j
wp subsets,553

and the whole structure of all the weakly efficient solutions of the (MOLP).554

As it is shown in Table 3, this first algorithm based on the solutions given by the sum-555

weighted (MOLP) problems is limited to find only a few different weak efficient solutions.556

Whereas the Algorithm 2 is able to establish the whole set of all weak efficient solutions, it557

is computationally constrained by the size of the final (MOLP) problem. As in the previous558

Example, Sect. 5.1, the last columns of Table 3 are the defuzzification to scalars of the559

optimal fuzzy solutions, computed with the Centroid method. The Max membership principle560

procedure has not been included since, for all the solutions shown in the table, they are just561

the central value (x̃)M = x−
2 = x+

2 = 0.562

Once more, one can find a variety in the 2-polygonal fuzzy numbers shape, as shown in563

Fig. 4.564
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Fig. 4 Some weak efficient solutions for the (FFLP2) problem, from Example 2, computed through its corre-
sponding (MOLP2) and the Algorithms 1 and 2. See Table 3

6 Conclusions565

This work addresses how to solve fully fuzzy linear programming problems (FFLP), with566

fuzzy numbers parameterized as k−polygonal ones, through its counterpart multiobjective567

linear programming problem (MOLP). In this regard, a fully fuzzy problem (FFLP) links to a568

multiobjective crisp linear problem without any information loss, usually not avoided when569

this transformation is made via ranking functions.570

Furthermore, the whole set of nondominated solutions of the (FFLP) is obtained by solving571

a finite number of linear, crisp programming problems.572
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