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Abstract: Halophiles, the salt-loving organisms, have been investigated for at least a hundred years.
They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in
saline and hypersaline environments worldwide. They are already a valuable source of various
biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the
present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution,
the demand for new, effective compounds is higher and more urgent than ever before. Thus, the
unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability
to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration,
hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make
them promising candidates as a fruitful source of bioactive compounds. The main aim of this review
is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert
with the presentation of recent examples of bioproducts and functions discovered in silico in the
halophile’s genomes. We point out methodological gaps and solutions based on in silico methods
that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also
show the potential of an increasing number of publicly available genomic and metagenomic data for
halophilic organisms that can be analysed to identify such new bioproducts and their producers.

Keywords: halophiles; biomolecules; metagenomics; bioinformatics; genome mining; biodiversity;
hypersaline environments

1. Introduction

Halophiles are a highly miscellaneous class of extremophilic organisms characterised
by their requirements for high salinity and comprise entities from all three domains of life,
namely Bacteria, Archaea, and Eukarya [1,2]. Owing to their phylogenetic origin and the
nourishment acquisition manner, halophilic microorganisms can be grouped as follows:
(1) heterotrophic, phototrophic or methanogenic archaea; (2) heterotrophic, lithotrophic or
photosynthetic bacteria, and (3) heterotrophic or photosynthetic eukaryotes [2–4]. In the
following parts of this article, we will focus only on the halophiles representing the first
two mentioned groups.

Due to the salt concentration requirements (specifically and commonly, sodium
cations and chloride anions), halophiles can be classified as slight, with optimal growth
at 0.2–0.85M (1–5%) NaCl, moderate thriving in 0.85–3.4M (5–20%) NaCl, and extreme
growing optimally at 3.4–5.1M (20–30%) [5]. On the contrary, non-halophiles do not grow
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in the environment containing above 0.2M (1%) NaCl, and halotolerant organisms are
viable in the presence or absence of highly saline conditions, but it is not necessary for their
optimal growth [5]. Moreover, halophilic and halotolerant organisms are able to adapt to a
broad range of salt concentrations, occurring seasonally, annually, or irregularly in their
natural environments [4,6].

Halophilic microorganisms are forced to efficiently prevent osmosis due to the high
external salinity, and thus they have evolved two types of strategies to struggle with
cellular water loss—“salt-out” (“low-salt-in”) and “salt-in” [4,7]. The first strategy is
based on biosynthesis (de novo or from the storage substances) or absorption from the
environment compatible solutes (osmolytes or osmoprotectants) and is utilized mainly
by moderate halophiles, halotolerant bacteria, and eukaryotes. Polyols, sugars, amino
acids, betaines, ectoines, N-acetylated diamino acids, and N-derivatized carboxamides
of glutamine are commonly used. The second strategy relies on the accumulation of salt,
predominantly potassium chloride, to provide intracellular osmotic pressure comparable to
the external one and is typical for extremely halophilic Archaea and a few representatives of
Bacteria (genus Salinibacter and members of the order Halanaerobiales) [2]. This mechanism
requires specific adaptation of enzymes and other proteins, e.g., by elevating a level of
negatively charged amino acids, leading to the formation of an acidic proteome as observed
in Halobacterium sp. NRC-1 [7–9]. However, the evidence provided by Elevi Bardavid
and Oren (2012) suggests that this may not be a strict rule, and other mechanisms must
be involved in osmoregulation in halophiles [10]. Some halophiles (especially from the
archaeal class of Halobacteria) have applied a mix of these strategies to cope mainly with
periodic fluctuation of salinity [11,12].

2. Global Distribution of Hypersaline Environments

Although the oceans and seas (average salinity–0.6 M, 3.5% or 35 parts per thousand)
come to mind first, the term “hypersaline environments” refers to conditions where the
salt concentration exceeds that present in marine basins (even ten times up to or above
salt saturation) [13,14]. Hypersaline environments are generally classified as thalassic
(thalassohaline) when originating from seawater with its characteristic ionic composition
(dominated by Cl−—49% and Na+—42% of the total molarity) and as athalassic (atha-
lassohaline, also inland or epicontinental) not directly associated with a marine source
and dominated by divalent ions mainly Mg2+ and Ca2+ [5]. Some authors also distin-
guish the third type—artificial reservoirs employed for salt production (saltern crystalliser
ponds) [15].

Nevertheless, hypersaline ecosystems and their habitats are widely explored mainly
due to their utilisation in mineral processing—salt mines, solar salterns and salt flat [16–18],
aquaculture (e.g., brine-shrimps predominantly in the Great Salt Lake, commercial lakes
in China, Russia, and Kazakhstan) [19,20], biotechnical applications (biomolecules like
enzymes, pigments, antimicrobial agents, nanoparticles) [21–24]; in the role of microbial
cell factors [25]; environmental and protection studies as niches for eukaryotes, prokary-
otes, and archaea [15,17,26,27], biodegradation of contaminants [28–31]; astrobiological
signification and early Earth connotations [32,33]. On the other hand, issues related to
the anthropogenic impact on hypersaline environments have become more and more
significant in recent years. To name only some: climate alteration, overexploitation of
mining and mineral extraction, overflow of agriculture, water diversion and salinity en-
largement, urban overdevelopment, industrial sewage and contamination with ultimate
examples of the Dead Sea, the Caspian Sea, the Aral Sea, and the Great Salt Lake [15]. And
as it turns out, these activities have a tremendous influence on the (bio)diversity of the
hypersaline ecosystems.

3. Biodiversity of Hypersaline Environments

The Dutch microbiologist and botanist investigating various saline and hypersaline
lakes worldwide Lourens G. M. Baas Becking (1895-1963) claimed that “everything is ev-
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erywhere: but, the environment selects” [34]. This statement is highly relevant to the hy-
persaline ecosystems broadly distributed around the world, from the Antarctic to the
Himalayas, from Australia to the USA, from Africa to South America, and thus are much
dissimilar in terms of salt concentration, chemical composition, and presence of additional
stress conditions designated by geological attributes [5,35–37]. Therefore, they are not
only characterised by high-salt content but other environmental physicochemical extrema
like high pressure and UV radiation, low oxygen concentration, hydrophobic conditions,
extreme temperatures and pH, high concentrations of toxic compounds and heavy met-
als [27,36,38–42].

The most frequently identified bacterial phyla in saline and hypersaline environments
are Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria (Alpha, Beta, Gamma,
and Delta), and Firmicutes [36,41,43–48]. Halophilic Archaea are typically represented
by Halobacteria and methylotrophic methanogens class members, both belonging to the
phylum Euryarchaeota. The former includes about 70 genera and 260 species, classified in
three orders and six families: the Halobacteriales (families Halobacteriaceae, Haloarculaceae,
Halococcaceae), the Haloferacales (families Haloferacaceae, Halorubraceae), and the Natrialbales
(family Natrialbaceae), and the latter comprises of 4 classes: Methanomicrobia, Methanobacteria,
Methanopyri and Methanococci [49,50]. Furthermore, it was demonstrated that Archaea tend
to dominate Bacteria as salinity increases, which is illustrated by an excellent example of
the two arms of the Great Salt Lake, significantly different in the salt content, and thus in a
taxonomy of their inhabitants [36,37,51,52]. Moreover, the composition and structure of
halophilic communities in saline and hypersaline ecosystems are considerably influenced
by the salinity fluctuation in time or geographical location and may differ between the
places of sampling within the same setting [53–57].

Saline soils are other fascinating and valuable from the ecological, economical, and
biotechnological points of view examined environments with abundance and high diversity
of their inhabitants, taxonomically comparable to aqueous ones (phylum level) [58,59]. In
addition, it has been established that salinity, along with pH and electrical conductivity
(EC), are the pivotal factors determining the variety and arrangement of halophiles and
haloalkaliphiles in saline soils [60–62]. Intriguingly, these microorganisms are gaining
special attention due to progressing global soil salinisation, and thus their potential appli-
cability as plant symbionts enabling and increasing crop productivity in saline soils [63,64].
It is noteworthy that a successful attempt was currently done to employ halophilic microor-
ganisms as bioindicators of the soil salt contamination caused by extensive de-icing of roads
during harsh winters in Baltimore, Maryland, USA. It became possible since halophiles
become persistent members of microbial communities as a result of salting roads for their
de-icing during winter months [65].

In addition to these environmental species, there is a constantly extending group of
human or human-related halophiles, both bacterial and archaeal [66–69]. Brining, i.e., treat-
ing, food with dry salt or a salt solution, is one of the oldest methods to preserve and season
the eatables in food processing. There are numerous and continual scientific reports on
isolating new halophilic microorganisms, the diversity and properties of halophilic Bacteria
and Archaea, as well as genomic analyses from commercial salt [70–73], cheeses [74–77],
table olives [78], kimchi (Asian fermented vegetables) [79–81], and shrimp paste [82,83].
Recent years have also brought interest in the halophilic and halotolerant prokaryotes
contributing to the human gut microbiota [73,84–86]. This attention results in part from
observing a hazardous tendency to consume increasing amounts of salt delivered with
food and its tremendous consequences on human health, including obesity, hypertension,
cardiovascular disorders, and stomach cancers [69].

Finally, halophilic prokaryotes are the established producers of multiple biomolecules
and chemical substances, predominantly osmolytes, hydrolytic enzymes, and pigments
(e.g., carotenoids) [22,87–90]. The increasing interest in compounds and proteins of
halophilic origin results mainly from the fact that they remain active under harsh condi-
tions like high salinity, extreme temperatures, and ultimate pH [91]. Moreover, halophilic
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enzymes retain solubility and solvation in low water activity [11], and as has been shown
recently, they demonstrate anti-desiccation and antifreeze properties, so desirable in food
processing and preservation [88]. Halophiles also produce biodegradable polysaccharides
and polymers, potentially replacing environmentally hazardous plastics; glycoproteins are
considered promising candidates in nanoparticles synthesis, and gas vesicles are examined
in terms of an effective drug delivery system as described thoroughly in a review released
by Singh and Singh, 2017 [90]. Despite that, bacterial and particularly archaeal halophiles
for decades have been underestimated and unexplored in terms of the ability to produce
various bioactive compounds, especially of antimicrobial and anticancer potential. How-
ever, due to the rapid development of molecular techniques described in the following part
of this review, they turned out to be a promising and rich source of diverse biomolecules
of great importance in the ongoing post-antibiotic era that is additionally characterised
by the galloping increase of cancer cases [22,91–95]. Due to methodological difficulties,
time-consuming and expensive procedures that require frequent optimization and the
increasing availability of sequencing, research on halophilic biomolecules are moving more
and more towards genomic and metagenomic-based bioinformatics analyses [96–101].

4. Experiment Strategies Used in Halophiles Research

As pointed out, microorganisms living in saline environments are characterized by
high diversity, like other extremophiles. A wide range of methods is used to better under-
stand this diversity, including culture-based experiment strategies and culture-independent
approaches for direct testing of environmental samples. Studies involving cultivation under
laboratory conditions have identified and tested most of the currently known halophiles
to obtain their exact characteristics [16,80,102,103]. Through the use of laboratory cul-
tivation of pure bacterial cultures, new bioagents produced by halophiles can also be
discovered [95,104,105]. However, these traditional cultivation-based methods do not
always work well for halophiles. In the saline ecological niches, numerous species of
microorganisms are encountered that cannot be easily cultivated in laboratory conditions.
Often, only less than 1% of microorganisms from a given site can be successfully grown
in the laboratory [106]. Thus, new methods of optimal and high-throughput culturing of
microorganisms, based on the use of modern approaches such as culturomics [107,108] or
optimal culture enrichment [109], are developed. However, there are still many microor-
ganisms that cannot be tested through common-based laboratory analysis. It is also worth
noting that the methods based on the culturing of environmental microorganisms usually
provide not only complete information about the taxonomic composition of a specific
microbiome but also about the proportions in an abundance of individual microorganisms.
For precise inquiry regarding the biodiversity of microbiomes inhabiting specific ecological
niches, it is necessary to use methods that provide insight into the studied environment
without culturing the organisms living in it [110,111].

Culture-independent methods are the primary investigation tools for looking into the
microbial “dark matter” based on the sequencing of nucleic acids for both entire micro-
bial communities (metagenomics and metatranscriptomics) and single cells (single-cell
sequencing) [110,112]. Furthermore, functional metagenomics can be used, where it is
possible to screen environmental samples for the production of substances of interest with
potential industrial applications [113,114]. Finally, metatranscriptomic analyses enable the
assessment of the gene expression in the studied environment. Thanks to their use, it is
possible to identify active metabolic pathways in the environmental niche, which gives a
unique insight into its characteristics. The best results are achieved by combining metage-
nomics with metatranscriptomics analysis, where the former one identifies genes in the
studied microbiome and allows the creation of MAGs (metagenome-assembled genomes),
while the latter one allows assessing the expression level of the detected genes [115,116].
Despite the great potential of obtaining significantly valuable data in this way, still rel-
atively unpopular experiments due to the great difficulties in receiving the appropriate
quality material for research from saline environments due to the low available biomass
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and a high diversity of the samples are observed [117]. Proteomics also is used in the
study of halophilic microorganisms, where gene ontology analysis of some up-regulated
proteins determining molecular functions, cellular components or a biological process are
identified, but it is usually applied when individual strains are grown under laboratory
conditions [118–120]. Recently, there have been attempts to use proteomics to directly
analyse environmental samples, but this is difficult and still rarely applied. The main
reason for the difficulties in using proteomics is the low biomass of proteins in the analyzed
samples [115]. In the following part of this article, we will focus on characterising the
methods based on nucleic acid sequencing and their role in understanding the biodiversity
and biotechnological potential of microorganisms living in saline environments.

5. In Silico Methods for Identification of Novel Halophiles Bioproducts

For many years, the availability of methods based on NGS (Next Generation Sequenc-
ing) has increased. New sequencing methods such as SMRT (Single Molecule Real-Time)
from PacBio or nanopore sequencing from Oxford Nanopore Technologies (ONT) have
been also invented and developed. All of them have changed the research insight con-
cerning microbiomes of saline environments as well as the analysis of individual strains
thanks to the quality of genomic and transcriptomic data improvement [121,122]. Due to
the development of the new and improvement of the already existing sequencing methods
that prove obtaining much longer reads is possible, where the maximum length of 300 bp
(base pairs) for Illumina, 400 bp for MGI and Ion Torrent, 1200 bp for Roche, and in the
case of ONT and PacBio, the length of a single read can reach several hundred thousand bp
with a median length up to 100 kbp [71,123–126]. However, with the ONT technology, the
obstacles regarding a relatively low accuracy of reads compared to the second-generation
sequencing platforms and even SMRT is observed. In the case of ONT and SMRT, very
high requirements are defined in terms of the quantity and quality of the DNA used to
prepare the libraries. To avoid the problem of low accuracy, manufacturers are constantly
perfecting their technologies both in terms of equipment, reagents and algorithms used in
the base-calling process. These actions lead also to a decrease in the cost of ONT sequencing
and help to improve the quality of raw data [127–129]. Data obtained from sequencing
are often used for in silico analyses, where the identification of interesting bioproducts in
the form of secondary metabolites, AMP, or enzymes can be performed. For this intended
purpose, some bioinformatics methods are used, which are characterised in the following
part of this section.

One of the most explored areas in the field of bioproducts prediction from sequencing
data is the identification of biosynthetic genes clusters (BGCs). This approach permits the
identification of the pathways responsible for the production of secondary metabolites.
BGC identification methods are continuously improved. One of the most intensively
developed tools in this area is the antiSMASH. The currently released version 6.0 helps
to identify 71 types of BGCs including non-ribosomal peptide synthetases (NRPSs), type
I and type II polyketide synthases (PKSs), lanthipeptides, lasso peptides, sactipeptides,
thiopeptides, bacteriocins, terpenes and much more [130]. For identification of BGCs, the
antiSMASH uses the set of “rules” which define the core biosynthetic functions that need
to exist in a genomic region to constitute a BGC. Additionally, a rule-independent method
based on the ClusterFinder prediction algorithm was implemented to this platform [130].
The antiSMASH is widely used in halophiles research for the identification of BGCs in
genomic and metagenomic data with satisfying results. The combination of rule-based
and rule-independent methods in a single platform is one of the biggest advantages of
antiSMASH in halophiles research. Many BGCs responsible for the synthesis of valuable
halophilic bioagents already have been described, which allows the identification of their
variants using the rule-based approach with high specificity. However, halophile genomes
most likely also contain a large number of unknown BGCs, in the identification of which a
rule-independent approach can be very helpful.
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As an example of BGCs identification, Planococcus maritimus SAMP MCC 3013 may be
mentioned, where a BGC for biosurfactant synthesis was identified [131]. In this genome,
researchers discovered a complete gene cluster comprising genes dxs, ispC, ispD, ispE,
ispF, ispG, ispH, responsible for the biosynthesis of terpenes. Based on genomic and func-
tional analysis, the authors coined the term "terpene containing biosurfactant" for the
surfactant produced by Planococcus maritimus [131]. Analysis of Planococcus maritimus
SAMP MCC 3013 biosurfactant shows that the compound is active against Mycobacterium
tuberculosis (IC50 64.11 ± 1.64 µg/mL and MIC 160.8 ± 1.64 µg/mL), Plasmodium falci-
parum (EC50 34 ± 0.26 µM), and cancer cell lines HeLa (IC50 41.41 ± 4.21 µg/mL), MCF-7
(IC50 42.79 ± 6.07 µg/mL) and HCT (IC50 31.233 ± 5.08 µg/mL). This activity suggests
its potential as a lead candidate for drug development investigations [132]. Also, other
halophilic microorganisms were analyzed similarly and were identified as potential new
producers of highly valuable biosurfactants. Bacillus amyloliquefaciens was identified as a
producer of surfactin and fengycin. Approximately 37.7 kb fengycin biosynthetic gene
cluster with 90% similarity to fengycin cluster of DSM 23117 containing FenA, FenB, FenC,
FenD, and FenE genes was identified in the genome of Bacillus amyloliquefaciens [133]. Inter-
esting BGCs were also identified in metagenomes such as the Shark Bay Microbial Mats
metagenome where BGC responsible for syringomycin production was identified. In this
study, 17 of 28 condensation domains from MAGs belonging to Chloroflexi phylum, aligned
closely with syringomycin [134]. Searching for novel halophilic biosurfactants is a promis-
ing field of research due to their potential as antimicrobial agents, bio-detoxifiers, and
emulsifiers [105,135–138]. Halophiles producing biosurfactants can also find application
in bioremediation, especially in high-salinity conditions [138,139]. Therefore, the identi-
fication and in-depth characterisation of halophiles capable of producing biosurfactants
are crucial.

Other important compounds produced by halophiles are ectoine and hydroxyec-
toine. Compatible solutes such as ectoine and hydroxyectoine are used as protective
factors for cells, DNA, and proteins, which makes them highly valuable for cosmetics
and medicine sectors [140,141]. Ectoine is commonly used in the cosmetics industry, but
clinical trials are also conducted to indicate its importance in the treatment of eye and
respiratory diseases [142–145]. In silico studies for new microorganisms producing ec-
toine and hydroxyectoine can be improved by using BGC identification methods like
antiSMASH [146–148]. Microorganisms identified in this way can be an alternative to those
currently used. They can also combine the production of ectoine with other bioproducts,
such as polyhydroxyalkanoates (PHAs) [147]. As an example of this type of co-production
Salinivibrio proteolyticus M318 isolated from fermented shrimp paste can be mentioned [147].
The authors identified the first strain of Salinivibrio proteolyticus, where the complete pha-
CAB and teaABCD operons were present in the genome. The phaCAB operon is associated
with the production of PHAs. It consists of three genes: polyhydroxyalkanoate synthase
(phaC-orf00667), acetyl-CoA C-acyltransferases (phaA-orf00669), and acetoacetyl-CoA re-
ductase (phaB-orf00670), while teaABCD operon is associated with the synthesis of ectoine.
It includes the ectA, ectB, ectC, and lysC genes responsible for synthesising ectoine and
ectoine hydroxylase gene (ectD-orf00133) accountable for producing hydroxyectoine from
ectoine [147]. Thanks to the combined production of PHAs with ectoine and hydroxyec-
toine, Salinivibrio proteolyticus M318 is a very valuable strain that can be used broadly in
the industrial production of these substances.

BGCs identification can be useful also in the prediction of non-ribosomal produced an-
timicrobial peptides. The case with streptomonomicin (STM) produced by Streptomonospora
alba can be proposed. STM is a lasso peptide with antimicrobial properties. It belongs to the
class of ribosomally synthesized and post-translationally modified peptides (RiPPs) [149].
STM inhibits the growth of Bacillus anthracis, the causative agent of anthrax, and its MIC
was in the range of 4-8 µg/mL. Genomes analysis of bacteria isolated from salt-pans with
Plant Growth Promoting Features (microorganisms naturally capable of enhancing plant
growth and protecting crops from pests) also determine antimicrobial agent encoding
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BGCs. Here, identified BGCs were similar to bacteriocin encoding BGCs [150] AntiSMASH
was also utilized in the search for other BGCs, such as those responsible for the production
of exopolysaccharide and pigment source [151], Persiamycin A [152], or carotenoids [153].
Due to its versatility, antiSMASH performs well in halophilic analysis, but it is usually
combined with other rule-based or rule-independent tools for better predictions.

The use of in silico methods for BGCs identification helps in more effective quest of
valuable compounds new producers. It is particularly important given the rapid increase in
the number of publicly available halophilic genomes and metagenomes. Such data can be
screened for the presence of BGCs and then analysed more thoroughly if show significant
biotechnological or pharmaceutical potential [154]. It is worth to point out that rule-based
methods for identifying BGCs require high-quality input assemblies [155]. When low-
quality assemblies or metagenomic data, characterized by low continuity and significant
fragmentation, are obtained, tools based on the identification of individual core domains,
such as NaPDos or eSNaPD [156,157], are preferable. Also, biosyntheticSPAdes to generate
better quality input data for BGCs analysis based on de novo assembly graph analysis can
be an alternative solution [158]. The growing number and quality of databases containing
information on BGCs also have a positive effect on the prospects for the development of
BGC identification methods [159–161].

Identification of novel valuable enzymes can be also achieved using simple homology-
based approaches. In this case, query protein sequences are aligned to enzyme reference
databases such as Expasy ENZYME [162], BRENDA [163], KEGG [164] or protein domains
and motifs databases like Pfam [165], TIGRFAM [166] or SMART [167]. These approaches
can be used for in silico screening and enzymes sequence characterisation identified in
laboratory conditions. Many halophilic microorganisms produce hydrolytic enzymes
highly tolerant to salinity, thermostable and stable in a broad pH spectrum [168]. Moreover,
halophilic enzymes have not only a significant economic value but are also utilized in eco-
friendly industrial processes, enhancing their role in sustainable development [24,169,170].
Using simple homology-based comparison can help understand enzymes structure, prop-
erties and similarity to enzymes from other taxon’s. As an example, Hypersaline lake
“Acıgöl” esterase (hAGEst) and GH11 xylanase Xyn22 can be mentioned [113,114]. Both
them were identified and purified based on functional metagenomics methods. Newly
discovered hAGEst esterase is similar to the alpha/beta hydrolase from Halomonas gudao-
nensis (WP_089686035.1) with a 91% amino acids sequence identity. It is characterised by
high activity at low temperatures, high tolerance to DMSO, and metal ions (majority of
analysed metal ions in a concentration of 1 mM improve the activity of the esterase where
in the case of other esterases, the presence of these ions cause a reduction in the activity
of an enzyme). These features can be important in various industrial applications such as
detergent formulations, pharmaceutical production and other fine chemicals [113]. On the
other hand, GH11 xylanase Xyn22 has very high halotolerance and thermal stability. GH11
xylanase coding sequence was identified in the metagenomic DNA of a saline-alkaline soil.
Based on the amino acid sequence analysis and site-directed mutagenesis, it was shown
that acidic amino acid residues E137 and E139 are responsible for halotolerance, while the
aromatic interaction between Y48 and F53 is responsible for thermostability. Thanks to their
properties, specific enzyme can be used in various fields, like seafood processing, paper
industry, or biofuel production, and is a good foundation for further work on modified
enzymes of this type [114]. Another example is a novel metagenome-derived halotolerant
cellulase PersiCel3 obtained from rumen microbiota can be mentioned [171]. In this case,
for new enzyme identification, a multi-stage in silico screening pipeline was employed.
Analyses were based on NCBI BLAST alignment of predicted ORFs to sequences from the
custom database containing experimentally validated thermostable and/or halotolerant
cellulase sequences selected by literature mining. The existence of cellulase domain in
predicted genes was confirmed by alignment to sequences from NCBI Conserved Domains
Database (CDD) [172]. Maximum activity of the PersiCel3 could be seen in the concentra-
tion of 3 M NaCl for both free (132.46%) and immobilized (197.47%) enzymes. Applying
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both the free and immobilized enzyme during the degradation of the rice straw in saline
conditions leads to an increase in the production of reducing sugars [171]. In the field
of microbial enzymes identification, more sophisticated, machine-learning-based tools
were also developed, but they have not gained much popularity in halophilic research
yet [173–175]. Most likely, it is related to the simplicity and clarity of the standard analytical
pipelines. Another group of in silico methods is associated with ribosomally synthesised
antimicrobial peptides’ (AMPs) identification. Few databases and tools dedicated to AMPs
identification and prediction can be found. Some general antimicrobial peptides databases
like DRAMP [176], CRAMPR [177], APD [178], LAMP [179], and numerous specific for
different types of AMPs databases [180] are publicly available for researchers. AMPs
identification can usually be performed as a simple sequence alignment process [181], but
also more sophisticated methods based on machine learning can be used [182–185]. The
direct identification of AMPs is used rather rarely in halophile genomic and metagenomic
sequences. Only a few examples of identification of genes coding AMPs after their wet
lab detection have been described [181,186]. Unfortunately, screening of genomic and
metagenomic data for AMPs genes identification is rarely performed in the analysis of
halophiles. It is a significant gap, especially because the halophiles are well-known produc-
ers of AMPs [186–190], and learning more of their products through in silico analysis could
lead to the discovery of new effective antibiotics. Performing an extensive screening of
AMPs may allow the identification of new valuable bioproducts and halophilic strains that
may be their producers, as is the case with other groups of microorganisms [191]. In the
context of the rising problem with antibiotic resistance, the identification of novel AMPs to
which bacteria do not easily develop resistance may be the last hope [192].

The summary of information about selected bioinformatics tools used to identify new
bioproducts in genomes of halophilic microorganisms and saline environment metagenomes
has been presented in Table 1.

Table 1. Strengths and weaknesses of methods used in the in silico identification of bioproducts.

Target Class of Methods Bioinformatic Tool
Examples Advantages Disadvantages

Biosynthetic
Gene Clusters

Rule-based BGCs
identification

antiSMASH [130] High number of identified BGC
classes (71 in

antiSMASH 6.0 version)
Manually curated rules

User-friendly pipelines (e.g., web
interface of antiSMASH)

Requires high-quality
assemblies

Limited to BGCs for
which rules have been

implemented

PRISM [193]

SMURF [194]

BAGEL [195]

Rule-independent
BGCs identification

eSNaPD [157]
Can be used for highly fragmented

data (e.g., metagenomes)
A potential to identify novel BGCs

(e.g., EvoMining)

Less specific for known
BGCs then rule-based

methods

NaPDos [156]

EvoMining [196]

ClusterFinder [197]

Halophilic
enzymes

Classic alignment
based approach

Expasy Enzyme [162] The user is not limited by a
predefined set of databases and

comparison parameters
User-friendly web interface and

stand-alone versions
Very flexible

Requires a combination
of tools for the

best effect
In some cases, a choice
of optimal pipeline can

be challenging

Pfam [165]

BRENDA [163]

KEGG [164]

BLAST [198]
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Table 1. Cont.

Target Class of Methods Bioinformatic Tool
Examples Advantages Disadvantages

Automated pipelines

Anastasia [173] Provides high reproducibility
Usually better optimized than
classical analytical pipelines

Does not require detailed
knowledge of all analysis
parameters (the default

parameters should be appropriate
for most common cases)

Limited customization
options

MCIC [174]

FINDER [175]

Ribosomally
produced AMP

Classic
alignment-based

approach

DRAMP [176]

The user is not limited by a
predefined set of databases and

comparison parameters
Very flexible

Any combination of databases for
analysis can be selected

Requires a combination
of tools for the

best effect
In some cases a choice
of optimal pipeline can

be challenging
Cannot identify the

AMP types that are not
included in the

database

CAMPR [177]

LAMP [179]

APD [178]

Automated pipelines

Macrel [182] Provides high reproducibility
Usually better optimized than
classical analytical pipelines

Does not require detailed
knowledge of all analysis
parameters (the default

parameters should be appropriate
for most common cases)

Limited databases for
individual tools

Cannot identify the
AMP types that are not

included in the
database

AMAP [184]

AmPEP [185]

6. Conclusions

In recent years, there has been an intensive development of research methods that al-
low for better insight into the biodiversity of extreme environments, including high salinity
environments. New niches such as brine graduation towers or food products have started
to be investigated as profoundly as, so far the most analysed, salt environments, such as
salt lakes, brines, or the Dead Sea. The use of modern research techniques based both on
the culture-dependent and culture-independent methods enables a better understanding
of the potential of halophiles and setting new directions for their applications. The research
on halophiles is also important since these microorganisms are often polyextremophiles
simultaneously, which is associated with their unique properties and may be significant in
the context of astrobiological research, where halophiles are often considered organisms
that could be detected on distant planets or moons [199].

The intensive development of sequencing methods and related bioinformatics tools
opens new doors for identifying compounds of great importance for biotechnology and
pharmacy. The falling costs of NGS and the development of third-generation sequencing
methods allow us to look at saline environments’ previously inaccessible microbial dark
matter. However, much remains to be done in the area of developing new analytical tools.
It is necessary to conduct further research on the methods of identifying new compounds
that may be of significant importance for biotechnology and pharmacy. An important
niche is also the identification of absolutely new enzymes, BGCs, or AMPs that do not
show substantial similarity to those that have already been known. It is also worth noting
that halophilic prokaryotes are rarely analyzed for the presence of ribosomal AMPs in
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their genomes. The main focus of genome mining activities is on the identification of BGC.
On the other hand, the identification of ribosomal AMPs may be an interesting niche for
research due to the fact that there are several examples of AMPs produced by halophiles,
and it is quite probable that other compounds of this type will be found in other strains.

It should be noted, however, that despite the need for further development of genome
mining methods, so far, thanks to their use, it has been possible to identify many com-
pounds important for humanity, and one can hope that further research will allow for
identification of even more of them, which will significantly support green economy and
pharmacy. Saline environments and halophiles, thanks to their characteristics, are an impor-
tant source of new biomolecules identified through the use of the aforementioned methods.
Halophiles are known as biotechnologically preferable microorganisms capable of pro-
ducing heterogenous bioproducts [200]. They have been identified as a relevant source of
stable enzymatic proteins, antioxidants, stabilising agents, or antimicrobial compounds
such as halocins with additional myocardial protection activity [24]. Research is also being
carried out to improve biotechnological applications by utilising genetic manipulations
and modifications based on mutagenesis, the introduction of recombinant plasmids, and
heterologous gene expression.

In summary, in silico identification of halophile bioproducts is crucial for optimal
characterisation of this group of microorganism and their use in the industry. Growing
databases containing the genome sequences of the halophilic organisms and metagenomes
from saline environments offer the opportunity to perform extensive in silico analyses
to identify their so far hidden potential. More efforts should be made to identify new
AMPs and their producers among halophiles. This area has been greatly neglected and
should be considered more frequently for in silico characterization of the biotechnological
potential of halophiles. A positive boost is given by the further development of sequencing
technology, leading to improved sequencing data quality. This is particularly important for
metagenomic studies, which are a key component in halophile research and facilitate the
characterization of the biotechnological potential of uncultivated halophiles.
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