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Abstract Let f be areal polynomial, non-negative at infinity with non-compact zero-
set. Suppose that f is non-degenerate in the Kushnirenko sense at infinity. In this paper
we give a formula for the Lojasiewicz exponent at infinity of f and a formula for the
exponent of growth of f in terms of its Newton polyhedron.
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1 Introduction

Let f : R* — R be areal polynomial, f(0) = 0 and K C R" be a compact set. The
well known classical inequality (see Lojasiewicz 1959) say that there exist positive
constants C, « such that

|f(x)] = C-dist(x, £~1(0)%, (1)
forall x € K.

If the set K is non-compact, it may happen that such C, o do not exist. One may
check that it is impossible for polynomials
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ey =227+ and [y =x( =D+ 0y =D @
For this reason, some authors modify inequality (1) or its domain.

Hormander (1958) considered a global version of inequality (1). Precisely, he
proved the following

|F 1= (14 x> € - dist(x, £71(0))°,
for all x € R" and some positive constants C, «, .
In some additional assumptions another global version of inequality (1) was given
in Dinh (2014) i.e.
|F I+ | f @I = € -dist(x, f7'(0)), x € R,
for some positive constants C, o, S.

In turn, Ha and Duc (2010) Ha and Nguyen modified the zero set of polynomial
f:R? — R in inequality (1):

Fl = C-dist(x, 17 @)

in some neighborhood at infinity, where f~! (O)R denotes real approximation at infinity
of {x € C%: f(x) =0}.

Another modification concerned both a zero set and a domain. Indeed, in Dinh
(2013) Kurdyka and Le Gal established

|f ()l = € -dist(x, 2)%, x € f71(=8,8)
for some positive constants 8, C, o, where Z = {x € R": f(x) - %(x) =0}, and f
is a monic polynomial with respect to x1. In this case constants C, o can be computed
explicitly (see Ha et al. 2015).
If the set f~1(0) is compact, then

dist(x, £710)) ~ |x|.

In this case for real polynomial f: R" — R, Gwozdziewicz (1998) proved the fol-
lowing

|f )] = € [x =@ x| > R,
whered =deg f >2and C, R > 0.
Kollar (1988) gave similar result for complex polynomial mappings F: C" — C”,

#F~10) < oo ie.

|F(x)| > C-|x9"", |x| > R,
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where d = deg F and C, R > 0.
In the paper we assume that f~!'(0) is a non-compact set. We keep the form of
inequality (1) , but we restrict the domain. Namely, we examine behavior of f:

(1) in the neighborhood of the level set f ~1(0) at infinity i.e. in the set
{x e R": dist(x, f~1(0)) <&, |x| > R},
(ii) or in the set
{x e R": dist(x, f~'(0)) > R}.

The lack of the distinction of these cases could lead to a situation that an exponent « in
inequality (1) does not exist in neighborhood at infinity. See for example polynomials
(2). In the case (i) and (ii) we give the following definitions.

Let f : R” — R be a polynomial such that £ ~!(0) is a non-compact set. We define
the Lojasiewicz exponent of f at infinity as the infimum of the exponents / € R such
that

|£(x)] > C - dist(x, £~'(0))" forall x such that dist(x, £~'(0)) <&, (3)

in some neighborhood of infinity for some ¢ > 0 and C > 0. We denote it by Lo (f).
In cases where such / does not exist, we put

Loo(f) = +o0.

In Dinh (2012) authors proved that there are no sequences of the first type if and
only if there exist C, §, « > 0 such that

| f ()% > C -dist(x, £71(0)) forallx € f~1([—8,8)).

The sequence (x;);2, C R"is of the first typeif f(x;) — 0anddist(x, £=10)) = 0.

It is easy to observe that if the last inequality is true for some positive C, §, «, then
there exist C, ¢,/ > 0 such that inequality (3) is true. Hence if there are no sequences
of the first type, then L (f) exists. However, in some cases Lo (f) exists but there
is a sequence of the first type. For example f(x, y) = x(y — DIy? + (xy — D?].

In the paper we give an effective formula for the Lojasiewicz exponent at infinity
in the class of non-negative and non-degenerate polynomials in terms of the Newton
polyhedron (see Sect. 2). This result is a counterpart at infinity of the local result of
the paper Bui and Pham (2014).

2 Preliminaries
Wedenoteby Ry ={x e R:x >0}and Z; =ZNR;.Forx = (x1,...,x,) € R”

and o = (ai,...,a,) € Z, we denote by x® the monomial x{" ... x," and put
lo| = a1 + - -+ ap, and x| = max}_, |x;].
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746 G. Oleksik, A. Rézycki

Let f(x) = Zan’}r cqx®. Let us define the set supp(f) = {o € Z'} : ¢4 # 0} and
call it the support of f. Define the set I'( f) = conv{supp(f)} C R’ and call it the

Newton polyhedron at infinity of f.
Let ¢ € R"\{0}. Define

d(q,T'(f)) = min{(g, a) : « € T(f)},
Alg.T(f) =la e (f): (g, a) =d(q. T(f)},

where (-, -) denotes the standard inner product in R” x R”. We say that A C I'(f) is
aface of T'(f), if there exists ¢ € R"\{0} such that A = A(q, I'(f)). By a dimension
of a face A we mean the minimum of the dimensions of the affine subspace containing
A. By avertice of I'(f) we mean the O-dimensional faces of I"( /). We define Newton
boundary at infinity of f as the set of faces A C I'(f) such that: if g is defining
a vector for A then g; < 0O for some i € {1,...,n} and we denote it by I'so(f).
Denote by Ff;o(f) the set of k-dimensional faces of I'oo(f), k = 0,...,n — 1. For
A € T'wo(f) we define the polynomial

fa = Z cax?.

aeA

and call it the principal part of f at infinity with respect to face A.
We say that f is Kushnirenko non-degenerate at infinity on the face A € T'o(f) if
the system of equations

ofa, v _dfa, .
S == 2w =0

has no solution in (R\{0})*\ K, where K C R" is a compact set. We say that f is
Kushnirenko non-degenerate at infinity (shortly non-degenerate) if f is Kushnirenko
non-degenerate at infinity on each face A € I'o(f).

We say that f is non-negative at infinity (shortly non-negative) if there exists a
compact set K C R” such that f(x) > 0 for x € R*\K.

One of the main tool which we use in the paper is the following

Lemma 1 (Curve Selection Lemma at infinity, Dinh (2014), Lemma 1) Let A C R”
be a semi-algebraic set, and let F := (fi, ..., fp): R" — RP be a semi-algebraic
map. Assume that there exists a sequence x* € A such that limy_, o |x*| = oo and
lim_s 00 F(x¥) = y € (R)?, where R := R U {#00}. Then there exists an analytic
curve ¢ : (0, €) — A of the form

o) =a’t? +a'rit

such that a® € R"\{0}, g < 0, ¢ € Z, and lim;_.¢ F(¢(t)) = y.

Let A C N”" be a finite set. Put

N4(x) = max |x%].
acA
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The Lojasiewicz Exponent at Infinity... 747

Let V be the set of vertices of I'(f). Denote
Nr = Ny.

We recall two simple lemmas which will be used in the rest of the paper.

Lemma 2 (Dinh (2014), Lemma 11) There exist some subset J1, ..., Jsof {1, ..., n},
with J; € Jj fori # j, such that

S
N O) = Z,
k=1

where Zy :={x e R" : x; =0, j € Ji}.
For a given subset J C {1, ..., n} we define
R’ ={ae=(a1,...,0n) eR":¢j =0 for j¢J}
Lemma 3 (Dinh (2014), Lemma 12) Let Jy, ..., Js; be as in Lemma 2. For every
Gty -oes js) € J1 X === x Jg, we have V N RY # @, where J = {ji, ..., js}.

3 The Main Theorem
Let Ji, ..., Js be as in Lemma 2 and let
P={Uc{l,...,n}: I #0AINJy=0 forsome ke{l,...,s}}.

Observe that P # @ ie. Jy, # {1,...,n} for some ko € {1, ..., s}. Indeed, suppose
to the contrary that J; = {1, ...,n} forany k € {1, ...,s}. If s > 1, then by Lemma
2 it is not possible. Therefore s = 1. Hence J; = {1, ..., n} and Nr_l(O) = {0}. By
Lemma 10

F7H0) N (R™\K) = N5 '(0) N (RN\K) =9,

for some compact set K. This gives a contradiction to the assumption that the set
£710) is not compact.
Let us fix I € P. We define ¢! (x) = (¢f (x), ..., ¢l (x)), where

1 foriel
I _ )
wi(x)_{xi fori ¢ I,

fori = 1,...,nanddeﬁneN1£ = Nr ogol.
Observe that

s(I) s(I)
N Oy =zl =JxeR ix;=0jel}, J ¢ 1#m,
k=1 k=1
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748 G. Oleksik, A. Rézycki

where I’ = {1, ..., n}\I. Put

ocrlnax = max {arjmn :J € Jll X -0 X JSI(I)},

where
a?i“ := min [|a| caev! HRJ} ,
and V!’ denotes the projection of the set V onto R’". Observe that N/ = N,/
Now, we give the main result of the paper.

Theorem 4 Let f : R" — R, f(0) = 0, be a non-negative and non-degenerate
polynomial. Then

Loo(f) = max {aélax:l GP}. 4)

Remark 5 One can check that the assertions of the above theorems are also true if we
assume Mikhailov—Gindikin non-degeneracy (see Dinh (2014), Section 5).

To illustrate the above theorems we give the following

Example 6 Let f(x,y,z) = x3(y* + z%). It is easy to see that f is non-degenerate
and non-negative. We have V = {(8, 4, 0), (8,0, 6)} and

Nr(x,y,z) = max{x®y* 2828, (Wp) 'O = (x =0} Uy =z =0}
Hence J; = {1}, J» = {2, 3}.
We calculate Lo (f). We have P = {{1}, {2}, {3}, {2, 3}}. For I = {1} we obtain
I’ ={2,3} and
Ni(y,2) = max{y*, 2%, (V)70 = {(0.0)}. J{ ={2.3).
Hence J = {2} or J = {3} and
ag‘i” =min{|a|: a € {4,0}} = 4, agnin = min{|a|: « € {0, 6}} = 6.
Therefore
ofll = max{4, 6} = 6.

Similarly we calculate

2 3
ar{ngx = ar{ngx

23 3.

= Opax

Finally we have

Loo(f) = max {aéax 1 e P} = max{6, 8} = 8.
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4 Auxiliary Results
The following lemmas will be used in the proof of Lemma 10. The proof of Lemma
7 is a simple transfer of its local counterpart [see Bui and Pham (2014), Lemma 3.1].

We give it for a convenience of the reader.

Lemma 7 Suppose that f is non-negative polynomial. Then for any face A € T' o (f)
we have fa(x) > 0 for x € (R\{0})"\K, where K is a compact set.

Proof Since f is non-negative there exists a compact set K such that f(x) > 0 for
x € R"\K. Suppose to the contrary that there exists a face A € I'so(f) and there
exists a point x0 € (R\{0})"\K such that fa(x?) < 0. Let J be the smallest subset

of {1,...,n}suchthat A C R”. Hence, there exists a non-zero vector a € R”, with
aj < 0forsome j € Janda; = 0 for j ¢ J such that

A= el (/H)NR’ :(a,v)=d@a ().
Define monomial curve ¢: (0, 1) = R", ¢t — (p1(t), ..., 9, (1)), by

x?t“f for j € J,

(pj(t):{ 0 forjé¢lJ.

Putd :=d(a,T'(f)). Now, we may write f in the form:
fo@®) = fax®? + higher order terms in 7.
Since fa(x") < 0, we have
f(e()) <0 for all sufficiently small ¢.

This gives a contradiction.

However counterpart of equivalence Bui and Pham (2014, Lemma 3.2) is not true
at infinity. The simple implication is the only one that holds.

Lemma 8 If f is non-negative and non-degenerate, then for any face A € U'so(f)
we have fa > 0on (R\{0})"\K.

Proof Using Lemma 7 we obtain fa(x) > O for all x € (R\{0})"\K, where K
is a suitably chosen compact set. Suppose to the contrary that there exists a point
x0 € (R\{0})"\K such that fa(x?) = 0. Therefore the function fA attains a local
minimum at the point x°. Hence grad fa(x?) = 0. This gives a contradiction to
non-degeneracy of f.
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750 G. Oleksik, A. Rézycki

The following lemma will be also applied in the proof of the Lemma 10.

Lemma 9 Gindikin (1974, Lemma 1) Let v € R", v € conv{v!, ..., v}. Then

k
BRI
j=1

The next lemma plays a crucial role in the proof of the main theorem. Its proof is a
substantially analogous to the proof of Lemma 3.3 of the paper Bui and Pham (2014).
However we prove the second inequality in (5) without assumption of non-degeneracy
and non-negativity, using Lemma 9.

Lemma 10 If f is non-negative and non-degenerate then there exist some positive
constants C and Cy such that

CiNr(x) < f(x) < CaNr(x), forall x € R"\K, ®)

for some compact set K C R".

Proof We will prove the first inequality. Suppose to the contrary that there exists a
sequence {x¥} ¢ R" with |x¥| > k and such that

1
feh < er(x%

for all k. By Lemma 1, there exist an analytic curves ¢: (0,€) — R", t —
(p1(2), ..., u(®)) and ¥ : (0, €) — R4 such that

lp(@)] = oo, |Y ()] —0 as t— 0%, (6)
and
Fo@) < ¢y ()Nr(e()). (7
Let J ={j:¢9; #0} C {l,...,n}. For j € J we can expand coordinate function
®j,say

@) = x?t”f + higher order terms in ¢,
where x? # 0and a; € N. From Condition (6), there exists j € J such thata; < 0.
If [(f) NR’ = @, then for any vertex o« € V, there exists j ¢ J such that aj >0
(V. C T'(f)) and hence (¢;(t))* = 0. Then (¢(¢))* = 0. Hence
Nr(p(t)) = max |p()*| = 0.
acV

This gives a contradiction to (7).
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Therefore, I'(f) "R’ # . Put
d = min Zajozj Ta € F(f)ﬂ]RJ ,
jeJ
A=Jael(HNR' ) ajo;=d
jeJ
We can write
flp@®) = fa (xO)td + higher order terms in ¢,

where x* = (x7, ..., x)) and x) = 1 for j ¢ J. We will show that f5(x?) > 0.
Indeed, since f is non-negative and non-degenerate, it follows from Lemma 8 we

have that fa(x) > 0 for x € (R\{0})"\ K, where K is a suitably chosen compact set.
Therefore by quasi-homogeneity of fo we have

aj x0y
fax®) = fA((s—;CJ)jej) >0,
N

where s is a positive number such that s/ - x? is large enough for some j € J. Hence

f(p()) and 1 ®)

are of the same order if t — 0.
On the other hand, we have

Nr(p(t)) = max |p(t)*]| = max |(x")*|#Y + higher order terms in 7.
aecV aeA

Hence and by (8) we have a contradiction to (7).
Now we prove the second inequality in (b). Let |[x| > R > 1, where R is sufficiently
large. By Lemma 9 we have

x) = cpyx” < max ey - x'| <
vesupp f
vesupp f PP vesupp f

< Cy-max [x"| = C2 - Nr(x),
veV

where C» is a some positive constant. O

Let A ¢ N” be a finite set. Put
L(Ny) =inf{l € Ry: Ic-0|Na(x)| > C - dist(x, N;l(O))’, dist(x, Ny '(0)) < 1}.

Now we give an effective formula to compute L(N4).
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Proposition 11 We have
L(Ny) =maxioc§lm JeJpx-x JS},
where
arjnin := min {|oc| a €A HRJ} .

Proof We first show that L(N) < max{a}“i“ :J € Jp x--- x Jg}. Let us fix an
arbitrary x € R" such that

dist(x, Ny '(0) =68 < 1.

It is easy to check that

s
dist(x, N7 (0)) = min max |x;]|.
(x, N3 (0) = min max |x;|

Hence
max |x;| > 6 forany k=1,...,s.
JeJk
This means that for each k = 1, ..., s there exists ji € Jr such that
x| > 8.

Put J = {ji,..., js}. By Lemma 3 we have that A N R’ # ¢. Let us choose o =
(a1, ...,a5) € ANRY such that

la| = a?in.
Hence

Na(x) = max{|xj‘lf Il IO S LA L

Js
— (Szx;"i" > Smax{a?i“:fellxmxjs}

max{aTi“:Jell XX Jg}

= dist(x, Ny ' (0)) .

This means that L(N4) < max{a?i“ JelJp x - x Jgh

Now, we show that L(N,) > max{a‘}‘i“ JeJy x - x Jgh

Let (j1,..., js) € J1 X --- x Jg be such that realized the above maximum and
let J C {l,...,n} be the minimal set such that jy € J,k = 1,...,s. Put A; =
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R’/ N A. By Lemma 3 we have that A; # ¢. Take the following parametrization
@(1) = (@1(2), ..., ¢u (1)), |t] < 1, where

t for ielJ
i(F) = 9
¢i(0) {0 for i ¢ J, ©)

fori =1,...,n. We have

Nalp()) = max [p(0)"] = ™A = 15" = distcp (), N 0"
J

Hence L(N4) > a?‘i". This ends the proof.

One can observe that the above proof in comparison with the proof of (Bui and
Pham 2014, Proposition 3.1) is more elementary.

5 Proof of the Main Theorem

Now, we are ready to give the proof of the main result.

Proof of Theorem 4. Since f is non-negative and non-degenerate polynomial, then by
Lemma 10 there exist some positive constants C; and C; such that

CiNr(x) = f(x) = CoNr(x), (10)
for all x € R"\K and some compact set K C R". Hence
MO N ®RNK) = NH(0) N (RNK). (1n
We will show that there exist some positive constants D and D, such that
Dy dist(x, Ny ' (0)) < dist(x, f~1(0)) < Dy dist(x, Ny (0)),
for all x € R"\ K and some compact set K; C R", K C K. First, observe that
dist(x, K) < |x| < 2dist(x, K), x € R"\K], (12)

for some compact set K; C R", K C K. By (11), (12) and since 0 € Nr_l(O) we
have

dist(x, £71(0)) = min{dist(x, f~'(0)\K), dist(x, £~ (0) N K)}
> min{dist(x, Ny ' (0)\K), dist(x, K)}

1
> min{dist(x, Ny (0)), ol
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> min{dist(x, N ' (0)), % dist(x, Ny (0)))
- %dist(x, N 0)),
for x € R"\ K. Analogously, by (11), (12) and since 0 € f~!(0) we get
dist(x, NF_I(O)) > %dist(x, Loy,
for x € R"\ K. Summing up we obtain
%dist(x, N1 (0)) < dist(x, £71(0)) < 2dist(x, N5 ' (0)), (13)
for x € R*\ K. By (10) and (13) it follows that
Loo(Nr) = Loo(f). (14)
By (14), it is enough to prove formula (4) for Nt. We first show that
Loo(Nr) < max {L(N{) Ie P} . (15)

Let x € R"\K, where K is the same as in Lemma 10 and dist(x, NFl 0) <e< 1.
It can be assumed that

{xeR": |x| <1} C K.
Let I # ¢ be such that
|xi| >1,i el and |x;| <1,i ¢ 1.
It is easy to check that I € P. Since
(NHTLO) = N'O) N {x eR": x; =1 for i el}C N (0),

we have
dist(xz, (NL)™1(0)) > dist(x7, Ny ' (0)). (16)

It is easy to check that
dist(x7, Np ' (0)) = dist(x, Ny (0)). (17)
By (16), (17) we obtain

INF(x)| > [NEGep)| = € dist(ry, (N2~ (0) £V
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> ¢y dist(x;, N7 ' (0)END = ¢ dist(x, N (0)) VD
> min{C;: I € P}dist(x, N;I(O))max{ﬁ(lvbr IeP)

This gives (15).
Now we show that

Loo(Nr) = max [,C(Ng) Ie 73} . (18)

First we choose I € P such that realizes the above maximum. Take the parametrization
¢: R\{0} — R\ defined by formula (9) such that it realizes E(le). Lete > 0.
Let (¢:); : R\{0} — R" be defined in the following way

@i(t) fori ¢ I,
t7¢ fori el,

(@) = {
Observe that

dist(e: (1), Np ' (0) = 1.

Indeed, let K = {k € {l,...,s}: NI =0} ={ky,...,k}. We have
. 1 S,
dist(pe (1), N *(0)) = fin max |@e, j ()]

s
= min{max{ max ()|, max (1
(max{ max ge,; (O], max, ge,; (1)

S
= min{max{|t ¢|, max (1 = min{max |¢; (¢)|}.
min{max{|(~|, max ge,; (O]} = min{max g, (1)

Now, it is enough to show that
min{max |¢;(¢)|} = t. 19
min(mas ¢, ()] (19)
Observe that

NHTHO) = N O) N {x e R x; =1, 0 € 1)

N
=UZkﬂ{xeR":x,~:l,ieI}
k=1

N
=U{xeR":xi=Of0rieJk,xizlforieI}
k=1
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756 G. Oleksik, A. Rézycki

= U{xeR":xizOforieJk,xizlforie[}
kekK

P
=U{xeR":xi=0f0rieJk,,xi=1f0riel}.
=1

Let Gk, - - Jk,) € Jiy X o+ X Jkos J = {Jky» - - - » Jk, } be the same as in definition
of ¢. Itis obvious that Jy, N J #@,l =1, ..., r. Therefore

max p;i(®)| =¢t, [=1,...,r
J€J /

This gives (19).
Let v; be the system of these coordinates of v which are in I and vy - system of
the remaining ones. We have

|(NF 0 @) (1)| = max | (1)"| = max{|t~|"" - |o; ()|}
veV veV

< [ mavey Ml max | (1)1 | = |6 E eV VL NR (1))
veV
= |¢7E|maxvey il |t|ﬁ(N§) — |t|L(N1£)73maXveV [yl

= dist(pe (1), Ny (0)) SN~ maxey v,
It can be assumed that ¢ is such that L',(N{) — emax,cy |v7| > 0. Hence
Loo(Nr) > L(NL) — & max |vy].
veV
By arbitrary choice of ¢ and I we obtain (18). Summing up we obtain
Loo(Nr) = max {L(le) B S 77} .

By Proposition 11 we have E(le) = ozrlnax and hence we get the formula (4) for Nr.

This ends the proof. O

6 Formula of Exponent of Growth

We also define the exponent of growth of f atinfinity as the supremum of the exponents
I € Ry such that

1£(x)] = C - dist(x, £~'(0)) forall x such that dist(x, f~'(0)) > R,

in some neighborhood of infinity for some R > 0 and C > 0. We denote it by Exo (f).
In the case that such / does not exist, we put

Eoo(f) = —o0.
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The second result is a formula of exponent of growth of polynomial f at infinity.

Theorem 12 Let f : R" — R be a non-negative and non-degenerate polynomial.
Then

Eso(f) :min{oz?laX JedJpx--- X% Js},
where
o[ = max{|a| T € VHRJ}.

Proof By Lemma 10 we have £ (f) = Ex0 (NT). Therefore it is enough to prove this
formula for Nr. We first show that Exo(Nr) > min {7 : J € J; x -+ x J;}. Let
us fix arbitrary x € R"\ K such that

dist(x, Np ' (0) = 8 > 1.
Since
. 1 S,
dist(x, N (0)) = min r]réajf lx 1,

hence we get

max |x;| > 6 forany k=1,...,s.
J€Jk
This means that for each k = 1, ..., s there exists ji € Jr such that
|)Cjk| > S.

Put J = {ji,..., js}. By Lemma 3 we have V N R/ # {. Let us choose o =
(o1, ...,a5) € VR’ such that

lor| = o™,
Hence
— o) o a; o
Nr(x) = max{|x(il X [,...}=6%...6

— 60{?“" > amin{ajm“":]ejpo»-xjx}

min{a 7™ :JeJy x--x Jg}

= dist(x, N5 1 (0)) )

This means that o (NT) > min {a?ax JeJpx---x Js}.
Now, we show that E5,(Nr) < min{a?‘ax JeJix--- X Js}.
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Let (ji,...,Js) € J1 x--- x Jyandlet J C {l,...,n} be the minimal set such
that jy € J,k = 1,...,s. Put V; = R/ N V. By Lemma 3 we have that V; # @.
Take the following parametrization ¢(t) = (@1 (), ..., @,(t)), |f| > 1, where

t for ielJ
@i (1) = .
0 for i¢J,
fori =1,...,n. We have

Nr(p(0) = max [p(n)"] = o) = 1199 = dist(p(1), Np ' (0)%7™.
vevy

Hence £ (Nr) < of** and by arbitrary choice of (ji, ..., js) € Ji x --- x J; we
have

Eoo(Nr) < min {af™ : J € Jy x -+ x Ji}.

This ends the proof. O
Example 13 Let again f(x,y,z) = x¥(* +z% and V = {(8,4,0), (8,0, 6)} and
J1 ={1}, J, ={2,3}.

We calculate Eoo(f). Take J € J; x Jo. Then J = {1,2} or J = {1,3}. We
calculate

oft’y) = max{la|: & € VN R} = max{la|: a € {(8,4)}} = 12
and

oty = max{le|: @ € VN R = max{la|: a € {(8,6)}} = 14.
Finally

Eoo(f) = min {a?;f*;}, a?;?g‘}} — min{12, 14} = 12.
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