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aleksandra.buchcic.ul@gmail.com (A.B.); anna.zawisza@chemia.uni.lodz.pl (A.Z.);
stanislaw.lesniak@chemia.uni.lodz.pl (S.L.)
* Correspondence: michal.rachwalski@chemia.uni.lodz.pl; Tel.: +48-42-635-5767

Received: 5 August 2020; Accepted: 24 August 2020; Published: 26 August 2020
����������
�������

Abstract: Over the course of the present studies, a series of optically pure phosphines functionalized
by chiral aziridines was synthesized in reasonable/good chemical yields. Their catalytic activity was
checked in the enantioselective Friedel–Crafts alkylation of indoles by β-nitrostyrene in the presence of
a copper(I) trifluoromethanesulfonate benzene complex. The corresponding Friedel–Crafts products
were achieved efficiently in terms of chemical yield and enantioselectivity (up to 85% in some cases).

Keywords: asymmetric transformations; chiral aziridinyl-phosphines; enantioselective Friedel–Crafts
alkylation; stereoselectivity

1. Introduction

The synthesis of various organic molecules in an asymmetric manner remains one of the most
important trends in modern synthetic organic chemistry. The desired chiral products of asymmetric
transformations may be obtained using such approaches as organocatalysis [1,2], the use of chiral
ligands or chiral auxiliary [3]. Additionally, more sophisticated methods like stereodivergent [4–6] or
stereoconvergent synthesis [7–9] have been applied successfully in order to obtain various chiral systems.

The catalytic asymmetric Friedel–Crafts alkylation reaction [10] constitutes one of the most
important methods of the enantioselective formation of carbon–carbon bonds. Many examples
of catalysts for this transformation have been described in the chemical literature. These include
bis(oxazoline)-Cu(II) [11] and bis(oxazoline)thiophenes-Cu(II) complexes [12], bifunctional thiourea-tertiary
amine organocatalysts [13], cinchona alkaloids [14], a bisphenol A-derived Schiff base-Cu(II)
complex [15], brucine-derived ligands [16] and metal-templated hydrogen bonding catalysts [17].

The enantioselective Friedel–Crafts reaction enables access to many valuable indole derivatives
showing biological activity [18], like 2- and 3-substituted indoles [19], indoloquinolines [20] and
spirooxindoles [21], and to the broad spectrum of other relevant molecules like dihydroisoquinolin-
3-ones [22], (+)-aflatoxin B2 [23], Dalesconol A and B [24], steroids [25], dihydrocoumarins [26] and
trinuclear ferrocenes [27].

Chiral phosphoroorganic compounds containing a three-membered ring of aziridine that act as
ligands/organocatalysts in asymmetric synthesis are only rarely mentioned in the literature [28–32].
It should be pointed out that the successful application of phosphinoyl-aziridines as organocatalysts
in the asymmetric Michael [33] and Mannich reaction [34] was reported in our department.
Based on our experience in the field of asymmetric catalysis [35–37] and continuing our studies
on phosphorus-containing chiral aziridines [33,34], we have attempted the synthesis of chiral
aziridine–phosphines. Their catalytic ability was then checked in the asymmetric Friedel–Crafts
alkylation of indoles using β-nitrostyrene in the presence of a copper(I) triflate benzene complex.
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2. Results and Discussion

2.1. Synthesis of the Aziridine-Phosphines 1–8

The chiral optically pure aziridine-phosphines 1–8 (Figure 1) were synthesized from the
corresponding phosphine oxides.

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 10 

 

Their catalytic ability was then checked in the asymmetric Friedel–Crafts alkylation of indoles using 
β-nitrostyrene in the presence of a copper(I) triflate benzene complex. 

2. Results and Discussion 

2.1. Synthesis of the Aziridine-Phosphines 1–8 

The chiral optically pure aziridine-phosphines 1–8 (Figure 1) were synthesized from the 
corresponding phosphine oxides. 

 
Figure 1. Chiral aziridine-phosphines 1–8. 

Systems 1–8 were obtained from the corresponding phosphine oxides using triethoxysilane and 
titanium(IV) isopropoxide in boiling tetrahydrofurane (Scheme 1) [38]. 

N

PPh2

N

PPh2

R

R

(EtO)3SiH
Ti(OiPr)4

THF, ref lux

N

PPh2

N

PPh2

R

R
O

O

R = (R)-CH(CH3)2, (1), 63%
R = (S)-CH(CH3)2, (2), 70%
R = (S)-CH2CH(CH3)2, (3), 60%
R = (S)-C6H5, (4), 65%

R = (R)-CH(CH3)2, (5), 60%
R = (S)-CH(CH3)2, (6), 65%
R = (S)-CH2CH(CH3)2, (7), 58%
R = (S)-C6H5, (8), 56%

 
Scheme 1. Reduction of phosphine oxides to aziridine-phosphines 1–8. 

The corresponding phosphine oxides were synthesized according to protocols reported by us 
previously [33,34]. It should be also mentioned that attempts at reduction of phosphine oxides using 
other reducing agents, e.g., Hantzsch ester [39], DIBAL-H [40], pinacol borane (HBpin) [41] or BH3 
[42], turned out to be ineffective in our hands. 

2.2. Asymmetric Friedel–Crafts Alkylation of Indole Catalyzed by Aziridine Phosphines 1–8 

Having enantiomerically pure aziridine-phosphines 1–8, we decided to test their catalytic ability 
in the asymmetric Friedel–Crafts alkylation of indole with β-nitrostyrene in the presence of a 
(CuOTf)2∙C6H6 complex and triethylamine in chloroform at −15 °C (Scheme 2) [16]. 

N

PPh2

N

PPh2

N

PPh2

(R)-1 (S)-2 (S)-3

N

PPh2

(S)-4

N

PPh2

N

PPh2

N

PPh2

N

PPh2

(R)-5 (S)-6 (S)-7 (S)-8

Figure 1. Chiral aziridine-phosphines 1–8.

Systems 1–8 were obtained from the corresponding phosphine oxides using triethoxysilane and
titanium(IV) isopropoxide in boiling tetrahydrofurane (Scheme 1) [38].
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Scheme 1. Reduction of phosphine oxides to aziridine-phosphines 1–8.

The corresponding phosphine oxides were synthesized according to protocols reported by us
previously [33,34]. It should be also mentioned that attempts at reduction of phosphine oxides using
other reducing agents, e.g., Hantzsch ester [39], DIBAL-H [40], pinacol borane (HBpin) [41] or BH3 [42],
turned out to be ineffective in our hands.

2.2. Asymmetric Friedel–Crafts Alkylation of Indole Catalyzed by Aziridine Phosphines 1–8

Having enantiomerically pure aziridine-phosphines 1–8, we decided to test their catalytic
ability in the asymmetric Friedel–Crafts alkylation of indole with β-nitrostyrene in the presence
of a (CuOTf)2·C6H6 complex and triethylamine in chloroform at −15 ◦C (Scheme 2) [16].
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Chemical yields, enantiomeric excess (ee) values and absolute configurations of product 9 from
the model asymmetric Friedel–Crafts alkylation reactions are summarized in Table 1.

Table 1. Asymmetric Friedel–Crafts alkylation of indole catalyzed by aziridine-phosphines 1–8.

Entry Catalyst Yield [%] ee [%] a Abs. Conf. b

1 1 40 30 (R)
2 2 39 30 (S)
3 3 36 27 (S)
4 4 33 24 (S)
5 5 69 84 (R)
6 6 75 80 (S)
7 7 68 68 (S)
8 8 65 68 (S)

a Determined by chiral HPLC using a Chiralcel OD-H column (for the major product). b According to literature
data [16]. Conditions: 10 mol% of the catalyst, indole (0.5 mmol), β-nitrostyrene (0.5 mmol), (CuOTf)2·C6H6
(8 mol%), CHCl3 (3 mL), −15 ◦C, 48 h.

Inspection of Table 1 reveals that aziridine-phosphines 1–4 bearing a methylene subunit between
the aromatic ring and a nitrogen atom of aziridine exhibited relatively low catalytic activity leading
to the Friedel–Crafts product 9 in yields from 33 to 40% and with enantioselectivity ranging from 26
to 30% of ee (Table 1, entries 1–4). Moreover, as previously observed in the case of the asymmetric
Michael addition [33] and the enantioselective Mannich reaction [34], the application of enantiomeric
forms of the catalyst allowed for product 9 to be obtained in both enantiomeric forms (Table 1, entries
1 and 2). In turn, aziridine-phosphines 5–8 catalyzed the title reaction more effectively (Table 1,
entries 5–8), leading to 3-substituted indole 9 in 65–75% yields and with 68–84% ee’s. As previously,
both enantiomeric products 9 can be achieved by the use of opposite enantiomers of the catalyst
(Table 1, entries 5 and 6).

2.3. Asymmetric Friedel–Crafts Reaction Catalyzed by Aziridine-Phosphine 6

After screening the catalysts, we decided to check the influence of various additives on the course
of the title asymmetric reaction (Scheme 3).
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Thus, zinc trifluoromethanesulfonate (instead of (CuOTf)2·C6H6 complex), triflimide 10 [43] and
(S)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate 11 [44] were used in the asymmetric Friedel–Crafts
alkylation of indole. The results are summarized in Table 2.

Table 2. Asymmetric Friedel–Crafts reaction catalyzed by aziridine-phosphine 6.

Entry Additive Yield [%] ee [%] a Abs. Conf. b

1 Zn(OTf)2
c 60 56 (S)

2 10 62 84 (S)
3 11 63 84 (S)

a Determined by chiral HPLC using a Chiralcel OD-H column (for the major product). b According to literature
data [16]. Conditions: 10 mol% of the catalyst 6, indole (0.5 mmol), β-nitrostyrene (0.5 mmol), additive (8 mol%),
(CuOTf)2·C6H6 (8 mol%), CHCl3 (3 mL), −15 ◦C, 48 h. c Instead of copper salt.

As can be seen in Table 2, the use of zinc triflate resulted in a lowering of both the yield and
enantiomeric excess of product 9 (Table 2, entry 1). The Friedel–Crafts alkylations performed in
the presence of triflimide 10 and chiral acid 11 ran with slightly higher enantioselectivity; however,
their chemical yields were lower in comparison with the process promoted by the (CuOTf)2·C6H6

complex (Table 2, entries 2 and 3).
Finally, we decided to expand the range of substrates. For this purpose, the asymmetric

Friedel–Crafts alkylations were carried out using variously substituted indoles and β-nitrostyrenes in
the presence of aziridine-phosphine 6 and the (CuOTf)2·C6H6 complex (Scheme 4). The results are
collected in Table 3.
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Table 3. Asymmetric Friedel–Crafts alkylation catalyzed by aziridine-phosphines 6.

Entry R1 R2 Product Yield [%] ee [%] a Abs. Conf. b

1 H 4-MeC6H4 12 77 80 (S)
2 H 4-ClC6H4 13 75 80 (S)
3 H 4-OMeC6H4 14 80 84 (S)
4 H 3-ClC6H4 15 72 80 (S)
5 OMe Ph 16 85 88 (S)
6 Br Ph 17 88 92 (S)

a Determined by chiral HPLC using a Chiralcel OD-H column. b According to literature data [16]. Conditions:
10 mol% of the catalyst, indole (0.5 mmol), β-nitrostyrene (0.5 mmol), (CuOTf)2·C6H6 (8 mol%), CHCl3 (3 mL),
−15 ◦C, 48 h.

The results in Table 3 clearly indicate that chiral aziridine-phosphine 6 worked well as a catalyst
in the asymmetric Friedel–Crafts alkylation of indoles with β-nitrostyrenes in the presence of the
(CuOTf)2·C6H6 complex and triethylamine, affording the corresponding chiral products 12–17 in
yields and with enantioselectivity around 80%. The best results were obtained in the reaction of
5-bromoindole with β-nitrostyrene (88% yield and 92% of ee, respectively).

In our opinion, the possible transition state comprises the formation of an orthogonal system of
catalyst–substrates analogous to the model proposed previously [16]. In this proposed mechanistic
model, a minimalization of steric interactions takes place: the steric effect between the methylene CH2
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group (C-2) of the aziridine ring and the phenyl ring of indole is almost insignificant in comparison
with the steric hindrance induced in this place by the presence of a fragment of the ring containing an
isopropyl group in the favorable trans-configuration relative to the substituent on the nitrogen atom
(R-enantiomer) (Figure 2). Moreover, the Si-attack of indole on the double bond of styrene is more
favorable, which is due to the quasi-trans orientation of the phenyl substituent of styrene to indole with
respect to the bond being formed (Figure 2).
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3. Materials and Methods

3.1. Materials

The drying of tetrahydrofurane was accomplished using the sodium benzophenone ketyl radical.
Chloroform was distilled over phosphorus pentoxide. 1H, 13C and 31P NMR spectra were recorded
on a Bruker instrument at 600, 150 and 243 MHz, respectively, with CDCl3 as solvent and TMS
as the internal standard. Data are reported as s = singlet, d = doublet, t = triplet, q = quartet,
m = multiplet, br. s = broad singlet. Column chromatography was conducted using Merck 60 silica
gel. TLC was performed on Merck 60 F254 silica gel plates. The plates were visualized using UV light
(254 nm) or iodine vapors. The enantiomeric excess (ee) values were determined by HPLC with chiral
support (Chiralcel OD-H column). The corresponding chiral phosphinoyl-aziridines were synthesized
according to general protocols reported by our group [33,34].

3.2. Methods

3.2.1. Reduction of Phosphinoyl-Aziridines to Aziridine-Phosphines 1–8—General Procedure
(Coumbe, et al., 1994)

To a stirred mixture of phosphine oxide (1 mmol) and triethoxysilane (3 mmol) in dry THF (5 mL),
titanium isopropoxide (0.1 mmol) was added. The reaction mixture was refluxed until the completion
of the reaction (TLC monitored) and cooled to room temperature. A solution of NaOH (1 M, 10 mL)
was added. The resulting mixture was stirred for 2 h at room temperature and then extracted with
ethyl acetate (4 × 15 mL). The organic layer was dried with MgSO4 and evaporated in vacuo. The crude
product was purified via column chromatography on silica gel (hexane:ethyl acetate 7:1).

(2R)-1-[2-(Diphenylphosphino)benzyl]-2-isopropylaziridine 1
Colorless oil, 63% yield; [α]D

20 = −4.2 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 0.83 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H), 1.18–1.30 (m, 3H),

1.59 (d, J = 3.4 Hz, 1H), 3.54 (d, J = 14.5 Hz, 1H), 3.71 (d, J = 14.5 Hz, 1H), 6.83 (dd, J = 7.5, 4.6 Hz, 1H),
7.14 (t, J = 7.5 Hz, 1H), 7.20–7.27 (m, 4H), 7.27–7.34 (m, 6H), 7.37 (t, J = 7.6 Hz, 1H), 7.77 (dd, J = 7.5,
4.3 Hz, 1H);

13C NMR (150 MHz, CDCl3): δ = 19.6 (CH3), 20.7 (CH3), 31.5 (CHN), 32.2 (CHN), 46.7 (CH(CH3)2,
62.6 (d, J = 22.9 Hz, CH2C6H4), 127.1 (CAr), 128.5 (d, J = 5.5 Hz, CAr), 128.5 (d, J = 6.8 Hz, CAr), 128.8
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(d, J = 4.4 Hz, CAr), 129.0, 133.2 (CAr), 134.0 (d, J = 13.6 Hz, CAr), 134.1 (d, J = 13.6 Hz, CAr), 134.9 (d,
J = 13.1 Hz, CAr), 136.8 (d, J = 9.9 Hz, CAr), 144.3 (d, J = 23.1 Hz, CAr);

31P NMR (243 MHz, CDCl3): δ = −15.63;
Anal. Calcd. for C24H26NP C, 80.20; H, 7.29; N, 3.90; Found: C, 80.13; H, 7.33; N, 3.75.
(2S)-1-[2-(Diphenylphosphino)benzyl]-2-isopropylaziridine 2
Colorless oil, 70% yield; [α]D

20 = +5.2 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 0.83 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H), 1.18-1.30 (m, 3H),

1.59 (d, J = 3.3 Hz, 1H), 3.56 (d, J = 14.5 Hz, 1H), 3.72 (d, J = 14.5 Hz, 1H), 6.83 (dd, J = 7.0, 4.7 Hz, 1H),
7.14 (t, J = 7.6 Hz, 1H), 7.19–7.27 (m, 4H), 7.27–7.34 (m, 6H), 7.36 (t, J = 7.4 Hz, 1H), 7.77 (dd, J = 7.4,
4.4 Hz, 1H);

13C NMR (150 MHz, CDCl3): δ = 19.6 (CH3), 20.7 (CH3), 31.4 (CHN), 33.2 (CHN), 46.7 (CH(CH3)2,
62.6 (d, J = 22.9 Hz, CH2C6H4), 127.1 (CAr), 128.5 (d, J = 5.4 Hz, CAr), 128.6 (d, J = 6.8 Hz, CAr), 128.8
(d, J = 4.4 Hz, CAr), 129.0, 132.2 (CAr), 134.0 (d, J = 13.7 Hz, CAr), 134.1 (d, J = 13.6 Hz, CAr), 134.9 (d,
J = 13.2 Hz, CAr), 136.8 (d, J = 9.9 Hz, CAr), 144.3 (d, J = 23.2 Hz, CAr);

31P NMR (243 MHz, CDCl3): δ = −15.65;
Anal. Calcd. for C24H26NP C, 80.20; H, 7.29; N, 3.90; Found: C, 80.27; H, 7.28; N, 3.90.
(2S)-1-[2-(Diphenylphosphino)benzyl]-2-isobutylaziridine 3
Colorless oil, 60% yield; [α]D

20 = +13.4 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 0.85 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H), 1.05–1.15 (m, 1H),

1.32 (d, J = 6.3 Hz, 1H), 1.40–1.48 (m, 2H), 1.54 (d, J = 3.1 Hz, 1H), 1.60–1.68 (m, 1H), 3.57 (d, J = 14.7 Hz,
1H), 3.69 (d, J = 14.7 Hz, 1H), 6.82 (dd, J = 7.4, 4.7 Hz, 1H), 7.14 (t, J = 7.3 Hz, 1H), 7.20–7.26 (m, 4H),
7.28–7.35 (m, 6H), 7.37 (t, J = 7.6 Hz, 1H), 7.76 (dd, J = 7.6, 4.4 Hz, 1H);

13C NMR (150 MHz, CDCl3): δ = 22.5 (CH3), 23.1 (CH3), 27.3 (CH(CH3)2, 34.7 (CHN), 38.7 (CHN),
42.3 (CH2CH(CH3)2, 62.3 (d, J = 23.1 Hz, CH2C6H4), 127.0 (CAr), 128.1 (d, J = 5.4 Hz, CAr), 128.5, 128.6,
128.8, 129.1, 133.1 (CAr), 134.0 (d, J = 7.6 Hz, CAr), 134.1 (d, J = 7.6 Hz, CAr), 134.7 (d, J = 13.4 Hz, CAr),
136.6 (d, J = 9.9 Hz, CAr), 144.2 (d, J = 23.0 Hz, CAr);

31P NMR (243 MHz, CDCl3): δ = −15.60;
Anal. Calcd. for C25H28NP C, 80.40; H, 7.56; N, 3.75; Found: C, 80.26; H, 7.49; N, 3.81.
(S)-1-{2-(Diphenylphosphino)benzyl}-2-phenylaziridine 4
Colorless oil, 65% yield; [α]D

20 = +100.1 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 1.77 (d, J = 6.5 Hz, 1H), 1.87 (d, J = 3.3 Hz, 1H), 2.40–2.43 (m, 1H),

3.80 (d, J = 14.8 Hz, 1H), 3.85 (d, J = 14.8 Hz, 1H), 6.83 (dd, J = 7.4, 4.6 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H),
7.15–7.21 (m, 2H), 7.21–7.27 (m, 6H), 7.28–7.35 (m, 8H), 7.55 (dd, J = 7.5, 4.4 Hz, 1H);

13C NMR (150 MHz, CDCl3): δ = 38.5 (CHN), 41.8 (CHN), 62.7 (d, J = 23.7 Hz, CH2C6H4), 126.3,
126.9, 127.1 (CAr), 128.0 (d, J = 5.4 Hz, CAr), 128.4 (CAr), 128.6 (d, J = 6.3 Hz, CAr), 128.7 (d, J = 6.2 Hz,
CAr), 128. 6 (d, J = 3.3 Hz, CAr), 129.2, 133.3 (CAr), 134.0 (d, J = 2.0 Hz, CAr), 134.1 (d, J = 2.0 Hz, CAr),
134.8 (d, J = 14.1 Hz, CAr), 136.6 (d, J = 9.6 Hz, CAr), 140.5 (CAr), 143.8 (d, J = 22.9 Hz, CAr);

31P NMR (CDCl3, 243 MHz): δ = −15.78;
Anal. Calcd. for C27H24NP C, 82.42; H, 6.15; N, 3.56; Found: C, 82.53; H, 6.26; N, 3.52.
(2R)-1-[2-(Diphenylphosphinophenyl]-2-isopropylaziridine 5
Colorless oil, 60% yield; [α]D

20 = −60.2 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 0.87 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H), 1.72–1.77 (m, 1H),

1.77–1.80 (m, 1H), 2.08–2.11 (m, 2H), 6.76–6.80 (m, 1H), 6.88–6.91 (m, 1H), 6.93–6.97 (m, 1H), 7.24–7.27
(m, 1H), 7.27–7.31 (m, 2H), 7.31–7.34 (m, 3H), 7.35–7.40 (m, 5H);

13C NMR (CDCl3, 150 MHz): δ = 18.5 (CH3), 20.7 (CH3), 30.1 (d, J = 1.8 Hz, CH), 34.6 (d, J = 6.8 Hz,
CH2N), 46.3 (d, J = 5.5 Hz, CHN), 119.4 (d, J = 3.4 Hz, Car), 122.3 (Car), 128.2, (Car), 128.4 (Car), 128.5
(Car), 128.7 (Car), 129.6 (Car), 133.8 (Car), 133.9 (Car), 134.2 (Car), 134.3 (Car), 134.4 (Car), 137.0 (Car),
137.1 (Car), 137.2 (Car), 137.3 (Car), 157.7 (Cq ar), 157.8 (Cq ar);

31P NMR (243 MHz, CDCl3): δ = −17.3;
Anal. Calcd. for C23H24NP C, 80.00; H, 7.00; N, 4.10; Found: C, 80.05; H, 7.21; N, 4.11.
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(2S)-1-[2-(Diphenylphosphinophenyl]-2-isopropylaziridine 6
Colorless oil, 65% yield; [α]D

20 = +21.3 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 0.87 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.7 Hz, 3H), 1.71–1.75 (m, 1H),

1.77–1.80 (m, 1H), 2.07–2.11 (m, 2H), 6.76–6.80 (m, 1H), 6.88–6.91 (m, 1H), 6.93–6.97 (m, 1H), 7.23–7.27
(m, 1H), 7.28–7.31 (m, 2H), 7.31–7.34 (m, 3H), 7.36–7.41 (m, 5H);

13C NMR (CDCl3, 150 MHz): δ = 18.5 (CH3), 20.8 (CH3), 30.1 (CH), 34.8 (d, J = 6.8 Hz, CH2N),
46.3 (d, J = 5.5 Hz, CHN), 119.4 (d, J = 3.2 Hz, Car), 122.3 (Car), 128.3 (2 Car), 128.4 (Car), 128.7 (Car),
129.6 (Car), 133.8 (Car), 133.9 (Car), 134.2 (Car), 134.4 (Car), 137.0 (Car), 137.1 (Car), 137.2 (Car), 137.3
(Car), 157.7 (Cq ar), 157.8 (Cq ar);

31P NMR (CDCl3, 243 MHz): δ = −17.3;
Anal. Calcd. for C23H24NP C, 80.00; H, 7.00; N, 4.10; Found: C, 79.95; H, 6.98; N, 4.12.
(2S)-1-[2-(Diphenylphosphinophenyl]-2-isobutylaziridine 7
Colorless oil, 58% yield; [α]D

20 = +32.6 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 0.88 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6,7 Hz, 3H), 1.07–1.12 (m, 1H),

1.62–1.7 (m, 1H), 1.88–1.94 (m, 1H), 2.04 (m, 2H), 2.09–2.14 (m, 1H), 6.78–6.81 (m, 1H), 6.89–6.95 (m,
2H), 7.25–7.28 (m, 1H), 7.29–7.32 (m, 2H), 7.32–7.38 (m, 8H);

13C NMR (CDCl3, 150 MHz): δ = 22.6 (CH3), 22.7 (CH3), 26.9 (CH), 35.7 (d, J = 5.5 Hz, CH2), 39.7
(d, J = 4.7 Hz, CH2N), 41.4 (d, J = 3.3 Hz, CHN), 119.6 (Car), 122.4 (Car), 128.3, (Car), 128.4 (2 Car), 128.5
(Car), 128.6 (Car), 129.7 (Car), 129.8 (Car), 133.8 (Car), 134.0 (Car), 134.1 (Car), 134.4 (Car), 137.1 (Car),
137.3 (Car), 157.4 (Cq ar), 157.6 (Cq ar);

31P NMR (CDCl3, 243 MHz): δ = −17.3;
Anal. Calcd. for C24H26NP C, 80.20; H, 7.30; N, 3.90; Found: C, 80.37; H, 7.14; N, 3.74.
(2S)-1-[2-(Diphenylphosphinophenyl]-2-phenylaziridine 8
Colorless oil, 56% yield; [α]D

20 = +25.8 (c 0.5, CHCl3);
1H NMR (CDCl3, 600 MHz): δ = 2.32 (d, J = 3.2 Hz, 1H), 2.54 (d, J = 6.4 Hz, 1H), 3.19 (dd, J = 3.2,

6.3 Hz, 1H), 6.75–6.79 (m, 1H), 6.93–6.97 (m, 1H), 7.00–7.04 (m, 1H), 7.08–7.12 (m, 2H), 7.16–7.20 (m,
2H), 7.21–7.25 (m, 5H), 7.28–7.37 (m, 6H), 7.39 (s, 1H);

13C NMR (CDCl3, 150 MHz): δ = 39.3 (d, J = 5.6 Hz, CH2N), 42.5 (d, J = 6.6 Hz, CHN), 119.2
(Car), 119.3 (Car), 122.7 (Car), 126.1 (Car), 126.9 (Car), 128.0 (Car), 128.2 (Car), 128.3 (Car), 128.4 (Car),
128.5 (Car), 129.5 (Car), 133.8 (Car), 134.0 (Car), 134.2 (Car), 134.3 (Car), 136.3 (Car), 136.4 (Car), 136.6(Car),
139.1 (Car), 156.0 (Cq ar), 156.1 (Cq ar);

31P NMR (CDCl3, 243 MHz): δ = −15.9;
Anal. Calcd. for C26H22NP C, 82.30; H, 5.80; N, 3.70; Found: C, 82.26; H, 5.83; N, 3.67.

3.2.2. Asymmetric Friedel–Crafts Alkylation of Indoles—General Procedure (Kim, et al., 2010)

A solution of (CuOTf)2·C6H6 (8 mol%, 0.04 mmol), chiral ligand (10 mol%, 0.05 mmol) and
triethylamine (0.1 mmol) in chloroform (3 mL) was stirred at 0 ◦C for 4 h. After the generation of
the catalyst, trans-β-nitrostyrene (0.5 mmol) and indole (0.5 mmol) were added and stirred at −15 ◦C
for 48 h. The reaction mixture was directly loaded on the column and chromatographed on silica gel
(hexane:ethyl acetate 95:5→ 80:20) to afford the corresponding Friedel–Crafts products. Their NMR
spectra are consistent with literature data [16]. HPLC chromatograms of the Friedel–Crafts products
are included in the Supplementary Materials.

4. Conclusions

The chiral aziridine-phosphines proved to be an effective catalyst for the asymmetric Friedel–Crafts
alkylation of indoles with β-nitrostyrenes in the presence of the copper(I) complex and triethylamine.
The appropriate Friedel–Crafts products were formed in satisfactory chemical yields and with high
enantiomeric excess values. The absolute configuration of the carbon atom of aziridine has a decisive
influence on the stereochemical course of the title reaction.
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