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ABSTRACT 

The advent of the new political dispensation in South Africa has seen an exponential growth 

in the rate of land transformation and encroachment by other land uses into agricultural land in 

the uMngeni Local Municipality. Accurate evaluation of the rate of transformation is 

necessary for effective monitoring and management of the natural agricultural resources. In 

this regard, the use of multi-temporal remote sensing data provides efficient and cost-effective 

method. The current research assesses the extent to which the development footprint in 

uMngeni Local Municipality has affected agricultural land categories or zones, using multi-

temporal remote sensing data. The study endeavoured to map and quantify the magnitude of 

change in built-up land cover and other infrastructure by focusing on two time intervals: the 

periods from 1993 – 2003 and 2003 – 2013. Medium spatial resolution Landsat image data 

acquired for these periods were analysed to classify and extract the built-up features to 

appraise the level of change. Results revealed positive change in built-up infrastructure: ~13% 

increase between 1993 and 2003, ~38% increase from 2003 – 2013, with overall ~32% for the 

20 years (1993 – 2013) period under consideration. Next, factors possibly contributing to the 

encroachment of other land uses into the agricultural landscape and the potential threats to the 

sustainability of the agricultural system are highlighted. 
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 INTRODUCTION CHAPTER 1:

1.1 Background  

The expansion of urban development or urbanisation is a global phenomenon transforming 

the agro-ecological landscapes (Emili and Greene 2014, Konagaya, Morita and Otsubo 2001). 

Transformation can be a result of increasing demand placed on agricultural land resources for 

urban settlements and other infrastructure development (Long et al. 2007, Gersh 1996 , 

Shalaby and Tateishi 2007). Gersh (1996) noted that residential settlements consumes 

productive farmland and has detrimental impacts on the agro-ecological functions of an area. 

Shalaby and Tateishi (2007) described the process of urbanization as inevitable due to the 

demand for economic development and rapid population growth. Urbanisation does not only 

cause profound changes in the cultural, sociological, and economical landscape but also leads 

to significant changes in the ecological and environmental condition in an area. 

 

It is important to monitor changes in agricultural land cover in order to maintain a healthy 

balance between man-induced land uses and ecosystem services and to help establish rational 

land use policy in favour of sustainable agricultural development (Shalaby and Tateishi 

2007). In this regard, effective decision-making hinges on availability of the past and present 

land cover information.  Melendez-Pastor et al (2014) note that understanding of land cover 

change is important to ensuring sustainable development, especially with the likelihood that 

land cover change can potentially lead to land use conflicts.  

 

Agricultural land provides for both productive (market) and non-productive (non-market) 

value (Johnson and Maxwell 2001, Melendez-Pastor et al. 2014). The scenic character 

espoused by the rural assets has often attracted interest of alternative uses of agricultural land. 
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Johnson and Maxwell (2001) contend that rural residential developments are a consequence 

of buyers who are attracted by a mix of amenities acting as pull factors. These include scenic 

beauty, recreation, opportunity for small business investment, the local small town 

environment, and personal safety.  

 

Population growth and household formation, combined with growth in income and wealth 

fuels new housing developments and consumption of land for residential development in 

formally non-settlement areas. Rail-roads and automobiles allow resources to be transported 

from points of production, hence, settlements focused on transportation corridors. Moreover, 

advancement in information technology has enabled goods and services to be shipped at very 

low costs, thus many people are choosing to live in rural locations with high natural 

amenities, distant from markets (Gude et al. 2006). 

 

A number of factors influence landowners to take a decision not to remain in agriculture. 

Such factors may include the reluctance or inability of children to continue the family 

farming legacy and declining agricultural prices.  Johnson and Maxwell (2001) argues that 

many of the new buyers of rural agricultural land will not continue the agrarian tradition or 

will shift from intensive agricultural production to less intensive utilisation form of land 

management such as hobby farming or owning land for its recreational potential. 

 

Prime agricultural land is a scarce, finite, and exhaustible natural resource (Tanrivermis 

2003). In the context of South Africa with millions of people vulnerable to food insecurity, 

impacts of agricultural land transformation cannot be over accentuated. The relationship 

between land and people is profound; with people’s standard of living, wealth, social status 

and aspirations all closely linked to land (Niroula and Thapa 2005).  
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In full appreciation that land use is not static but rather a dynamic interacting system, there is 

increasing recognition that the decisions with potential impacts on agro-ecological system 

require comprehensive and careful consideration to ensure sustainable development (Fazal 

2001). Uncoordinated development can lead to inefficient and undesirable environmental, 

social, and economic conditions; hence a number of countries have legal requirements for 

local jurisdictions to prepare comprehensive plans outlining the kinds of land use to be 

encouraged or discouraged in specific areas (Andersson and Gabrielsson 2012). Against this 

background, it is highly desirable to implement long-term monitoring and assessment of the 

trends in human settlement and other infrastructural development within the agricultural 

system. Remotely sensed data and tools have proved to be the appropriate and cost effective 

means to map changes in agricultural systems (Shalaby, Ali and Gad 2011).   

1.2 Change detection from remote sensing observations 

Environmental geographers have historically described changes in land cover features based 

on temporal alteration of the land-surface components. Change detection process involves 

identifying differences in the state of an object or phenomenon by observing it at different 

time intervals (Singh 1989). The conventional methods of mapping changes in land cover of 

agro-ecological landscapes mostly rely on collection of field data that can be labour intensive, 

time consuming and lack temporal consistency for very large areas. Moreover in a rapidly 

changing environment, it is important to generate change maps that are consistent and up to 

date.  

 

In remote sensing, changes within the natural and man-made land cover are considered as 

surface component alterations with varying rates. Change detection analysis from remotely 

sensed data provides useful tool for monitoring changing patterns occurring in for example 
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agricultural, forested, and urban landscapes (Lu et al. 2004). Change detection methodologies 

and techniques utilizing remotely sensed data have been developed, and newer techniques are 

still emerging (Hussain et al. 2013). Remote sensing change detection broadly comprises 

feature extraction techniques to compare differences or ratios, and decision function 

operation to create change vs. no-change maps.  

1.3 Research objectives 

The overall aim of the study was to assess extent to which the infrastructure development has 

impacted on agricultural land categories/zones in uMngeni Local Municipality. The 

following specific objectives were set:  

 to evaluate the utility of a machine learning algorithm for feature classification and  

extraction using multispectral remote sensing data  

 to conduct change detection for built-up infrastructure using  post-feature extraction 

comparison of multi-temporal Landsat images covering the periods 1993–2003, and 

2003–2013. 

 to relate the change analysis results to factors possibly contributing to the 

encroachment of other landuse and/or land cover into the agricultural land categories 

and highlight potential threats to the sustainability of agricultural resources in the 

uMngeni Local Municipality. 

1.4 Research questions 

 What was the extent of human settlement and other built-up areas 20 years ago and 

the degree of change that has characterised the agro-ecological zone of uMngeni 

Local Municipality? 
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 Based on literature, what /which factors contribute to development of agricultural land 

(directly or indirectly) and the potential threats to the agricultural system? 

1.5 Study Area 

The study area (uMngeni Local Municipality) is located within the Province of KwaZulu-

Natal in South Africa under the jurisdiction of uMgungundlovu District. The landscape 

topography (altitude) ranges between 600 m and 1400 m above mean sea level. UMngeni 

local Municipality (Figure 1.1) is located approximately 90 Kilometres inland away from the 

coastline, north-west of Pietermaritzburg. The Local Municipality is predominantly rural in 

character with a variety of agricultural and tourism related activities. Predominant 

agricultural enterprises include but not limited to: Horticultural cash crops; Agronomic crops 

(potatoes, soya beans, maize, etc); Timber plantations; livestock (poultry, and dairy & beef to 

a limited extent).  

 

Figure 1.1 summarises the demarcation of agricultural land categories for uMngeni Local 

Municipality. The KwaZulu-Natal Department of Agriculture and Environmental Affairs uses  

principles of zoning to classify KwaZulu-Natal province into Agro Ecological Zones 

(AEZ’s), a principle developed by the Food and Agriculture Organization of the United 

Nations (FAO). These zones consist of areas that have similar characteristics in relation to 

land suitability, production potential as well as environmental impact. Such an AEZ can form 

the basis for agricultural land use planning. The development of the KwaZulu-Natal 

Agricultural Land Potential Categories (Collett and Mitchell 2012) is seen against the 

background of attempting to protect areas called Agricultural Protected Area across varying 

and diverse natural resources rather than for individual land parcels in isolation. The current 
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research sought to assess development of the built-up land cover within the uMngeni 

municipality over time. 

 

Figure 1.1: Location of uMngeni Local Municipality study area and a summary of 

agricultural land categorization within the municipality. 

1.6 Organisation of the dissertation 

The overall organisation of this work is in two major steps. Step one is divided into two parts. 

Part one involved acquisition and pre-processing of remote sensing images and the appraisal 

of land cover types from existing land cover base map. The second part was to implement 

supervised classification using support vector machine (SVM) learning algorithm for each of 

the multi-temporal Landsat image data. 

 

The second step is modelling change detection using image comparison technique in ENVI 

framework post-classification analysis to estimate changes in built-up cover in the study area. 
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Analysis in this section is three fold: the first involves comparison of 1993–2003 Landsat 5 

and Landsat 7 ETM images. The second is comparison of 2003–2013 Landsat 7 ETM+ and 

Landsat 8 images. The final step relates the change analysis results to factors possibly 

contributed to the encroachment of built-up land cover into the agricultural land categories in 

the uMngeni Local Municipality. Figure 1.2 illustrates the flow chart for the conceptual 

framework of the research. 
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Figure 1.2: The processing scheme for the implementation of the methodology adopted in the 

current research study 

Literature review 

Problem statement & Key research questions 

Research objectives defined 

Data acquisition: multi-temporal Landsat 

images 

Ancillary data collection: high spatial 

resolution SPOT imagery, aerial 

photos, 2008 land cover, field visits  

Radiometric, atmospheric and geometric pre-

processing of Landsat and high spatial 

resolution SPOT images 

Study area editing and layer stacking 

Definition of classification scheme, 

training/validation points selection 

Apply Support Vector Machine (SVM) classification  

Editing output class map and extraction of built-up 

and other man-made features 

Final production of built-up cover layer 

Objective 1 

Post-feature extraction change analysis of binary pair 

of the input class image: 1993–2003, 2003–2013, and 

1993–2013.  Objective 2 

Built-up features maps overlaid on agricultural land 

categories in uMngeni Local Municipality. 

 

ASSESSING THE DEVELOPMENTAL 

FOOTPRINT WITHIN AN AGRICULTURAL 

SYSTEM 

Accuracy assessment of 

individual classified image 
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 LITIRATURE REVIEW CHAPTER 2:

2.1 Factors contributing to land development 

Knowledge of land cover dynamics and driving forces is a fundamental tool for landscape 

planning and management (Johnson and Maxwell 2001). Land transformation is influenced 

by a varied number of drivers which could inter-alia be categorised to include economic, 

policy and institutional, social and cultural, environmental and biophysical considerations 

(Shrestha et al. 2012). Shrestha et al. postulated that land fragmentation is the result of a 

combination of biophysical and social processes, particularly urban population dynamics, 

water provisioning, transportation, institutional factors, and topography. Irrespective of the 

sector’s contribution to the country’s economy, there are externalities such as environmental 

aspects related to the rural landscape, maintenance of drainage systems, prevention of soil 

erosion and refilling of aquifers which should be taken to account in balancing the total value 

of the agricultural system (Gal and Hadas 2013). 

2.1.1 Urbanization, Industrialization and population growth 

Urbanization driven by globalisation is the prime factor producing land use change 

(Konagaya et al. 2001).  Urban sprawl accompanied by the urbanisation degrades natural 

environments and consumes formerly productive agricultural land and open spaces to provide 

land for increasing population (Heimlich and Anderson 2001, Wu et al. 2013). Wu et al. 

concluded that in China economic growth stimulated the demand for more land development, 

resulting in rapid expansion of built-up land of the city through encroachment of surrounding 

rural areas.  

 

The majority of land use change (LUC) is a consequent of increasing demand for non-

agricultural land from urban and manufacturing development (Long et al. 2007). 
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Notwithstanding its rural orientation, India is changing and the impact of urbanization is felt 

even at great distance from the cities (Singh and Mohan 2001). The direct result of 

urbanisation is the reduction of agricultural land by increasing urban settlements. In China 

two forms of urbanization have occurred: the growth of the cities following urban economic 

development and population concentration, and rural urbanization based on the growth of 

smaller towns in rural areas (Long et al. 2007).  

 

Population growth and household formation combined with growth in income and wealth 

fuels new housing developments. Invariably, the rate of population growth, coupled with 

rapid economic development and limited space and natural resources, has generated great 

pressure on already scarce land and water resources (Gal and Hadas 2013). Population 

growth and subsequent residential developments in the agricultural areas brings with it a host 

of detrimental impacts to ecological functions including serving as a pull factor for additional 

amenities (Johnson and Maxwell 2001). Consequently, with new housing developments new 

residents realize they need additional services, which then attracts further encroachment in to 

the agricultural system (Heimlich and Anderson 2001).  

2.1.2 Infrastructure and Technology development 

Singh and Mahan (2001) states that road infrastructure has greatly enhanced the accessibility 

of remote rural villages. Investments in infrastructure, such as roads, sewers, and water 

supplies, can be one of the most important drivers of urbanization, since infrastructure 

provides the essential framework for development.  

 

The innovation in information and communication technology has the potential to modify the 

nature of the workplace as far as face to face contacts are concerned.  Rail-roads and 

automobiles allowed resources to be transported from points of production, hence, 
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settlements focused on transportation corridors. However, information technology has 

enabled goods and services to be shipped at very low costs and many people are choosing to 

live in rural locations distant from markets, but with high natural amenities (Gude et al. 

2006). Johnson and Maxwell (2001), contends that many of the buyers of the rural housing 

sites are retired or semi-retired or are able to make a living aided by a modern 

telecommunications network. As a result, they are not fixed to the traditional urban 

infrastructure for employment.  

2.1.3 Land Prices and Profits 

The evolving pattern (in India) of urban growth and development is driven by large profits to 

be made from converting agricultural land to no-farm uses in rural/urban fringe areas (Singh 

and Mohan 2001). Residential developments on agricultural land have a direct and indirect 

effect on agricultural land values. When demands for developable land are sufficiently high, 

the price of land in developed state or use will inevitably exceed the value with which is 

associated as an agricultural entity.  

 

The pressure posed by developers can lead to high rates of growth in land values, which in 

turn influences the conversion of farmland to developed uses. Invariably the farmers when 

faced with the option to either pursue farming or exit farming as a result of increased property 

prices, may comfortably welcome the increase in farmland values and opt to exit (Heimlich 

and Anderson 2001). 

 

Plantinga et al (2001) contends that land prices reflect not only the current uses of land, but 

the potential uses. In a competitive market, the price of land will equal the discounted sum of 

expected net returns obtained by allocating the land to its most profitable use. Without public 

intervention the market will allocate land to the use that optimizes economic returns, thus, in 
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the process of urban growth the owners are expected to convert agricultural land to non-

agricultural use, since land suitable for development is more valuable (Plantinga, Alig and 

Cheng 2001, Singh and Mohan 2001, Phuc, Westen and Zoomers 2014). Phuc et al (2014) 

unpacking the process of land conversion in Central Vietnam, concluded that land conversion 

from agricultural to urban uses results from profit-seeking by multiple stakeholders. 

2.1.4 Legislation/ policy  

The absence in clarity of policy from a government perspective could promote the 

unsustainable transformation of agricultural land to other land uses. Land use policies are 

known to play a critical role in driving land cover changes, as well as in mitigating land 

degradation and promoting sustainable development (Zhang et al. 2014). The potential for 

conflict between different land uses has given rise to ‘right-to-farm’ policies and the 

regulation of buffer zones. Financial incentives such as income tax credits and reduced 

property taxes are provided in order to support continued farming.  

 

In Korea, government imposed various types of land use control policies in both urban and 

rural areas to provide adequate land resources for economic development, to conserve 

environments or to stabilize skyrocketing land prices (Hwang 2001). In 2006, the central 

Chinese government initiated the “red line of 120 million hectares cultivated land” policy, to 

prohibit further agricultural land transformation beyond this threshold and ultimately ensured 

the integrity of food security for the growing population (Chen et al. 2014). In Sweden, 

political and economic pressures have encouraged or enforced changes to more intensive 

agriculture practices or to other types of land use designed to conserve biodiversity, and 

preserve ecosystem services, including carbon storage (van Vliet et al. 2012). 
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2.2 Threats to natural agricultural resources 

The transformation of agricultural landscape has a potential to threaten the sustainability of 

the agricultural system and food security if not monitored. Conversion of cultivated land to 

non-farm uses such as housing, factories, and infrastructure in combination with growing 

population poses a serious threat to future food sufficiency (Britz, Verburg and Leip 2011, 

Gibreel et al. 2014). As more land is converted to urban uses, the question arises as to 

whether this trend represents a systematic reduction in our ability to produce food by placing 

infrastructure on the most productive soil resources (Zhang et al. 2007). 

 

Food security is a central issue for agricultural policy in relation to sustainable development. 

Sustainable development principles establish the foundation for development that “meets the 

needs of the present without compromising the ability of the future generations to meet their 

own needs” (Mirkin and Khaziakhmeton 2000). South Africa’s recently approved policy 

framework on Food and Nutrition Security commits us to conserving scarce agricultural land 

resources in order to secure the nation’s food supply at both a household and national level.  

 

Johnson et al. (2001) identified negative impacts on the agricultural system as a consequence 

of land transformation to inter-alia include the following: 

 Residents’ complaints about farm odours and chemical spraying may force farmers to 

turn enterprises that produce fewer negative side effects. 

 Conflicts can arise between farmers and new residents over early morning noise, and 

increased traffic can hinder farmers’ ability to move their equipment along overcrowded 

rural roads being used as commuter routes. 

 Real estate taxes may rise as land prices rise to reflect the potential for non-agricultural 

development. 
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 Farmers may face increased pressure from water and land use restrictions. 

 Farms may face deteriorating crop yields from urban pollution, theft, and vandalism.  

 

Singh and Mahan, (2001) in a case study of Delhi, India, concluded that transformation of 

agricultural land from a food grain producer to a totally non-productive permanent land use, 

in a way deprives the land from being productive and increases the pressure on the remaining 

agricultural land.  

 

Conversion of agricultural land could potentially undermine rural livelihoods especially rural 

employment, as most farm labourers are illiterate and unskilled. In Colombo a major 

consequence of land use changes has been the loss of prime agricultural land and a reduction 

in agricultural production as well as farming sector employment (Chandrasena 2001). 

2.3 Key considerations for Remote Sensing change detection 

In general change detection in remote sensing comprises feature extraction and decision 

function operation to create change vs. no-change image layers. Moreover, the change 

detection process can broadly be classified into: (a) pre-processing of input image data (b) 

selection of change detection technique, and (c) accuracy assessment (Hussain et al. 2013). 

The pre-processing phase deals with image correction step related to radiometric, 

atmospheric, and random geometric distortions resulting from relief displacement,  variations 

in the satellite altitude and attitude, satellite instrument anomalies, geometrical distortions 

caused by Earth’s eastward spinning motion and curvature and digital image registration. It is 

important to consider these pre-processing steps to eliminate the effects of sun angle, 

atmospheric, and topographical effects (Conghe and Woodcock 2003, Fang and Yang 2014, 

Song et al. 2001). Song et al. (2001) remarked that atmospheric corrections may not be 
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required when single-date image is analysed for classification, but is mandatory when multi-

temporal or multisensory data are considered. Post-classification and\or post-feature 

extraction comparison for change detection approaches are reported not requiring some of 

these strict pre-processing requirements (Chen et al. 2012). 

2.4 Radiometric corrections and image registration 

Radiometric corrections of multi-temporal image data and image registration are the key 

important steps in change detection methods. Accurate geometric registration between multi-

temporal images is essential to avoid spurious change results. This is because image 

displacement causes false change areas in the scene (Gorte and van der Sande 2014). Mean 

standard error of half a pixel or better level of image registration accuracy is generally 

required to produce reliable change detection results (Du et al. 2013, Kennedy et al. 2009). 

Moreover some studies report that very high image registration accuracy requirement is not 

critical in object-based change detection methods whereby object buffer detection algorithms 

are applied to compare the extracted features (Deren, Haigang and Ping 2003). Radiometric 

correction normalizes atmospheric and variation in the optical characteristics of the remote 

sensing instrument by adjusting the radiometric properties of target images to match a base 

image (Vicente-Serrano, Pérez-Cabello and Lasanta 2008). Methods such as “empirical 

estimation approach” for dark object subtraction uses only the image data to remove 

atmospheric effects, by correcting for atmospheric path radiance which is at-sensor radiance 

contributed by atmospheric scattering (Mustard, Staid and Fripp 2001).  
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2.5 Change detection algorithms 

The selection of appropriate change technique is dependent on the objective of a study. 

Change detection techniques such as image differencing provide binary information of 

change vs no-change maps. Moreover if the objective of a study is to provide detailed time 

series change matrix, techniques such as post-classification or feature extraction comparison 

is desirable. It is common practice that the acquisition date of input multi-date images should 

closely coincide to capture reflectance properties of the land cover feature space under 

similar measurement conditions.  Several change detection algorithms have been developed 

based on both the pixel-base and object-based approaches (Zhou, Troy and Grove 2008). In 

some instances the spatial resolution of input image pixel can significantly impact the 

selection of change detection algorithm. In general, coarser spatial resolution image data (e.g. 

Advanced Very High Resolution Radiometer–AVHRR, Moderate Resolution Imaging 

Spectroradiometer–MODIS) are used to analyse changes over very large areas (national and 

global change mapping). At the local scale studies, medium to high spatial resolution image 

such as Landsat, worldview or QuickBird data are used. Hussain et al. (2013) summarize 

different change detection methods that were found to be documented in the literature by 

2013. Some of these change detection techniques applied to remotely sensed image are 

presented in Table 2.1. 
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Table 2.1: Summary of image classification methods for change detection analysis 

Method Advantages Limitations Reference 

Image ratioing Accounts for calibration 

errors related to  

sun angle, shadow 

and topography impacts. 

Provides incomplete matrices of 

change information.  
(Rignot and van Zyl 1993) 

Image differencing Simple and easy to 

interpret outputs 

Provides limited matrices of change 

information. 

The difference value is absolute. 

Therefore same value may have 

different meaning 

depending on the initial  binary class  

(change vs. no change) 

(Coppin and Bauer 1996) 

Artificial Neural 

Network (ANN) 

A non-parametric 

supervised learning 

algorithm 

 

Estimate image data 

properties based on input 

training dataset 

The hidden layer in the ANN is not 

known properly; 

 

the amount of training data is important 

in establishing  the ANN network;  

 

ANN functionalities are not common in 

image processing software 

(Woodcock et al. 2001) 
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Vegetation index 

differencing 
  Reduces impacts of 

topographic effects and 

illumination conditions 

Constrained by random or coherence 

noise 

 

Binary (change vs. no change) 

(Ria et al. 2003) 

Regression analysis accounts for differences 

in the mean and variance 

between pixel values for 

different dates, therefore 

reduces the confounding 

effects by atmospheric 

conditions and sun angles  

Regression functions for the selected 

bands more accurate. 

(Coppin et al. 2004) 

Support Vector 

Machine 

A non-parametric method 

that makes no 

assumption on the  

distribution of  input data 

 

Appropriate  to handle 

small training datasets 

and often produces higher 

classification accuracy 

than traditional methods 

 

Theoretically can handle 

larger datasets with higher 

dimensionality. 

Difficulty in optimizing for the best 

kernel function 

 

The computational time for 

classification and achieving 

optimization during the

learning  phase often higher compared 

to traditional classification methods. 

(Melgani and Bruzzone 2004) 
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Decision Trees 

(including random 

forests) 

Non-Parametric and 

makes no assumption on  

distribution of input data 

 

Can provide rule set for                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

change and no-change 

classes. 

Generally sensitive to training data 

quality and imbalance number of 

training samples per class, 

(Im and Jensen 2005) 

Multi-date direct 

comparison change 

detection 

One classification for 

stacked data 
Less accurate in labeling the change 

classes  

 

Can yield incomplete 

change matrix. 

(Im and Jensen 2005) 

Object-based direct 

comparison 

based/ Object-

based post 

classification  

comparison. 

Straightforward 

comparison of objects 

 

Image objects have same 

geometric properties at 

two times 

 

Change by spectral or 

extracted features(texture) 

 

Easy integration into GIS  

 

All the available objects 

could be used for object-

based change detection 

Dependent on the accuracy of the  

segmentation 

 

Difficulty in searching spatially 

corresponding objects in multi-temporal 

images 

 

Appropriate threshold selection when 

comparing objects based on both the 

geometry and spectral or extracted 

features   

 

Difference in sizes and correspondence 

of image objects from multi-temporal 

images because of segmentation 

(Miller, Pikaz and Averbuch 
2005) 
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Principal 

component 

analysis (PCA) 

Data redundancy 

reduction 

 

Emphasizes formation in 

the derived components 

Scene dependent making it difficult to 

interpret and label for different dates  

 

Does not differentiate between 

change types; rather, it reports 

on areas that have changed 

(binary change) 

(Deng et al. 2008) 

Texture analysis 

based 

Statistical manipulation  

to the spatial distribution 

of the 

image pixels 

 

Settlements have higher 

texture value compared to 

the non-settlement areas 

   

Measures the relative 

frequency of the spatial 

adjacency 

Dependent on moving window size (Erener and Düzgün 2009) 

Post-classification 

comparison 

Complete matrices of 

change analysis 

 

Minimizes the impact of 

using  images from multi-

sensors  

Require accurate and pure pixels for 

complete training dataset 

 

Final change detection accuracy is 

dependent on classification accuracy of 

input images 

(Ghosh, Mishra and Ghosh 
2011) 
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2.6 Accuracy assessment in change detection 

The accuracy of change detection relates to several factors, such as the geometric registration 

of input images, the complexity of the landscape, methods or algorithms used, and image 

resolution. Accuracy assessment techniques in remote sensing change detection stem from 

those of images classification. It is possible to extend the accuracy assessment techniques for 

processing single time image to that of bi-temporal or multi-temporal images. The error 

matrix for analyzing and evaluating land cover classification is the most efficient and widely-

used (Abiden and Abidin 2009).  

 

There are three general approaches to obtain the ground references for bi-temporal change 

detection, namely, field survey with the assistance of historical GIS data, simultaneous, or 

within the time proximity, high-resolution images, and visual interpretation. Each of these 

methods have advantages and disadvantages, depending upon the application. The major 

challenge is that accuracy assessment of change detection is mainly based on pixel. There is 

little research done to assess accuracy for feature-level or object-level change detection. 
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 MATERIALS AND METHODS CHAPTER 3:

3.1 Introduction 

Materials and methods consisted acquisition of image data, pre-processing (i.e. radiometric, 

atmospheric and geometric correction of input Landsat images for further analysis), feature 

classification and extraction, and post-classification comparison for change analysis. The next 

step in the methods was to classify individual image data using the corrected spectral 

reflectance image. As part of the classification process, training and validation spectra were 

collected using the high spatial resolution, pansharpened SPOT images. An accuracy 

assessment of the classification was done to validate the final results. 

3.2 Software and other Materials 

The image processing and analysis operations were performed using RSI ENVI (RSI 2010) 

software version 5.1 and ArcGIS 10.1. Additional data analyses such as calculation of error 

matrixes were done using Microsoft spreadsheet. Auxiliary data used for this research 

included KwaZulu-Natal land cover and agricultural land categories maps covering the 

uMgeni Local Municipality. 

3.3 The Landsat program and characterization of Landsat data 

The National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey 

(USGS) in the Department of the Interior manage the Landsat program in a joint agency 

partnership. The Landsat program has provided over 40 years of Earth observation image 

data (Figure 3.1). The Landsat payload instruments collect image data for multiple spectral 

bands (Vis/NIR/SWIR/TIR) across ±185 km swath along each path and data are archived for 

non-discriminatory access to global public, at generate Level 1 data products, and data 
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products are distributed at no cost upon request. The Landsat program provides for 

acquisition, archiving, and distribution of moderate-resolution multispectral imagery to afford 

global, synoptic, and repetitive coverage of the earth's land surface. This is at a scale where 

natural and human-induced changes can be detected, differentiated, characterized, and 

monitored over time. Figure 3.2 displays the multispectral spectral properties of Landsat 7 

ETM+ (analogous with Landsat 5) and the new Landsat 8 (Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS) instruments). For all instruments, every Pixel (ground 

sampling area of 30 m) is a scientific measurement. 

 

   Figure 3.1: Heritage Landsat Earth observing program (source: NASA/USGS, 2013). 

 

 
Figure 3.2: Spectral band characteristics of the Landsat Earth observing instruments (source: 

NASA/USGS, 2013) 
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3.4 Data acquisition and pre-processing 

For the purpose of the current study three dates of Landsat 5, 7 and 8 image data (1993, 2003, 

and 2013, respectively) for Worldwide Reference System path 80, row 81 were acquired. 

These multi-sensor Landsat scenes cover the uMgeni local municipality (Figure 3). To reduce 

scene-to-scene variation due to differences of instrument calibration, geometric and 

atmospheric conditions, and natural vegetation phenology differences, all data were collected 

in April. The images had been radiometrically corrected and orthorectified as supplied, by the 

Earth Observation Directorate of the South African National Space Agency (SANSA). The 

registration mean error of the images was 0.19 of the input Landsat pixel of 30 m ground 

sampling distance. 

3.5 Correction for the atmospheric effect using FLAASH 

The nature of optical remote sensing requires that radiation from the sun pass through the 

atmosphere before it is incepted by the remote sensing instrument. In that regard, remotely 

sensed images include information about both the atmosphere and the earth’s surface. For 

application focusing on quantitative analysis of surface radiance or reflectance, removing the 

influence of the atmosphere is a critical pre-processing step (Yuan et al. 2009). In order to 

compensate for atmospheric effects, properties such as the amount of water vapour, 

distribution of aerosols, and scene visibility (including surface topography) must be known or 

inferred. The atmospheric correction method implemented for the current study is “Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH).  This atmospheric 

correction approach provides accurate compensation for atmospheric effects. The FLAASH 

method is developed by Spectral Sciences, Inc., U.S.A. The FLAASH atmospheric model is 

based on MODTRAN 5 code developed for the three Landsat sensors. The model was 

applied to each georeferenced and rectified Landsat image data, using ENVI 5.1 software. 
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The digital numbers were converted to surface radiance data, using the absolute radiometric 

calibration factors and effective bandwidths for specific Landsat bands using the ENVI 5.1 

routine. The resultant radiance images were then atmospherically corrected to reduce haze, 

water vapour and other atmospheric influences. 

3.6 Collecting training data 

Higher spatial resolution (2.5m) land cover map (developed from 2008 SPOT5 imagery) was 

used as a reference dataset. Ground truth pixels were collected representing six land cover 

types in the study area. The resultant data were used to derive a point distribution map of the 

six land cover types considered in this investigation.  

3.7 Separability analysis of ground truth pixels for the target land cover classes 

Separability measurement relates to the extent to which patterns can be correctly associated 

with their target land cover classes using statistical methods. For this research six classes 

were determined in the study area including the built-up land cover (buildings and other man-

made infrastructures such as road), grassland, crop land, plantation forest, water body and, 

bare-land and other undefined features. Separability of the training data for all class pairs was 

assessed using the Jeffries Matusita (J–M) distance index (Sousa, Pereira and Silva 2003). 

The J–M measures the average distance between two class density functions (Schmidt and 

Skidmore 2003). These values range from 0 to 2.0 and indicate how well the selected pairs 

can be statistically separated. For this research, a J–M distance greater than 1.90 (≥ 95% of 2) 

was used as a threshold of spectral separability between group pairs.  
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3.8 The classification procedure  

For the classification of targeted land cover types (i.e. built-up, grassland, crop-land, 

plantation forest, water body and, bare-land), it was necessary to develop and validate the 

classification algorithm, and to calculate a change map of the distribution of built-up 

infrastructure in the area. A supervised learning algorithm, the Support Vector Machines 

(SVM), was implemented in the ENVI 5.1. The SVM (Vapnik 1998) is non-parametric 

method which makes no assumption about the underlying data distribution in classifying the 

multi-date Landsat images. The SVM identifies the class associated with each pixel and 

employs optimization algorithms to locate the optimal boundaries between classes (Zhang 

and Ma 2008). The algorithm can be applied to stacked multi-temporal images, to detect 

change and no-change in a binary classification problem. In this regard the algorithm learns 

from training data and automatically finds threshold values from the spectral features for 

classifying change from no-change (Vural et al. 2008). The SVM is known to provide good 

classification results compared to traditional techniques such as maximum likelihood 

classifier. For the current research, SVM was used to perform classification analysis 

independently on each of the multi-date Landsat images acquired for the study area.  

3.9 Accuracy assessment 

About 30% of the ground truth pixel data was reserved for validation of the accuracy or 

performance of the support vector machine classification algorithm. A simple random 

sampling method was used to subset the ground truth pixels across each of the input Landsat 

images with the aid of ancillary data such as higher spatial resolution SPOT images and aerial 

photographs covering the study area. A confusion matrix for SVM classifications was 

computed using the validation ground truth samples. Overall classification accuracy, 

producers and the user’s accuracies were calculated for each classification. Ancillary data 
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including date of aerial photos acquired were closely to input image dates, and ground truth 

data collected in the field were used to generate training and validation datasets. In addition, 

the Cohen's Kappa statistic was calculated for each matrix (Formula 1). The Kappa (KHAT) 

measures the agreement between the classified map and mutually exclusive categories of the 

ground truth values (Yang and Chinchilli 2009).  

 

Κ̂ =
N∑ xiir

i=1 −∑ (xi+∗x+i)r
i=1

N2−∑ (xi+∗x+i)r
i=1

        [1] 

 

Where: Κ̂= is the KHAT statistic 

xii  is the number of diagonal entries in row i and column i 

xi+  is the sum of row i 

x+i is the sum of column i 

N is the total number of observations 

r is the size of the matrix  

3.10 Post-classification feature extraction and comparison 

This stage of the methods involves two major steps – (1) independently extracting built-up 

features from the multi-date images, and (2) comparing the extracted built-up land class 

pixels for binary pairs of input classification images. The total number of extracted 

pixels/area from the pairs is calculated to quantify changes in built-up land class, between 

different time intervals. In this study, only the built-up classes are specified in order to 

achieve the set objective of estimating the impact of the developmental footprint within the 

agricultural land categories in uMngeni, using each of the multi-date image analysis.  
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 RESULTS CHAPTER 4:

4.1 Classification of multi-date Landsat imagery 

The confusion matrices based on the validation data sets for each classification analysis 

performed on the  multi-temporal Landsat 8, 7, and 5 data are shown in Table 4.1, 4.2, and 

4.3, respectively. High overall classification accuracies were achieved for the multi-date 

images classified individually. All producer’s and user’s accuracies are high, especially the 

user’s accuracies of the built-up land class of the uMngeni Local Municipality. Figure 4.1, 

panel b, c, and d summarize the SVM classification results of Landsat 8 (April 2013), 7(April 

2003), and 5(April 1993) images respectively. The overall percentage of classification 

accuracy (OA) and the respective Cohen’s Kappa statistic (kappa) obtained for the Landsat 8, 

April 2013 is OA=83.67% with a kappa=0.82; for Landsat 7, April 2003, the OA=84.18% 

with a kappa =0.81; and for Landsat 5, April 1993, the OA = 83.33% with a kappa= 0.81.  

 

Table 4.1: Error matrix for SVM classification results of Landsat 8, April 2013 input image. 

Overall accuracy = 83.67; Kappa = 0.82 

 Predicted class Built-up Grassland Cropland Bare-land Plantation Water 

body 

reference 

pixels 

Built-up 116 5 0 13 0 0 134 

Grassland 12 112 4 2 5 0 135 

Cropland 6 8 96 7 6 0 123 

Bare-land 3 2 9 77 7 0 98 

Plantation 7 0 0 0 65 0 72 

Water body 0 0 2 0 0 36 38 

Sum of estimation 144 127 111 99 83 36 600 

Producer accuracy (%) 80.56 88.19 86.49 77.78 78.31 100  

User accuracy (%) 86.57 82.96 78.05 78.57 90.28 94.74  
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Table 4.1: Error matrix for SVM classification results of Landsat 7, April 2003 input image. 

Overall accuracy = 84.18; Kappa = 0.81 

 Predicted class Built-up Grassland Cropland Bare-land Plantation Water 

body 

reference 

pixels 

Built-up 66 5 2 7 0 0 80 

Grassland 8 54 8 6 3 0 79 

Cropland 5 11 111 11 9 0 147 

Bare-land 5 6 6 124 0 0 141 

Plantation 3 0 0 0 119 0 122 

Water body 0 2 0 0 0 42 44 

Sum of estimation 87 78 127 148 131 42 613 

Producer accuracy 

(%) 

75.86 69.23 87.40 83.78 90.84 100  

User accuracy (%) 82.50 68.35 75.51 87.94 97.54 95.45  

 

 

Table 4.2: Error matrix for SVM classification results of Landsat 5, April 1993 input image. 

Overall accuracy = 83.33; Kappa = 0.81 

 Predicted class Built-up Grassland Cropland Bare-land Plantation Water 

body 

reference 

pixels 

Built-up 64 9 2 9 0 0 84 

Grassland 9 61 6 6 3 6 91 

Cropland 2 3 102 4 9 0 120 

Bare-land 4 7 12 94 0 0 117 

Plantation 0 2 4 0 110 0 116 

Water body 0 0 0 4 0 74 78 

Sum of estimation 79 82 126 117 122 80 606 

Producer accuracy (%) 81.01 74.39 80.95 80.34 90.16 92.50  

User accuracy (%) 76.19 67.03 85.00 80.34 94.83 94.87  
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Figure 4.1: SVM classification results of input Landsat image data: panel (b) output classes 

from analysis of Landsat 8 mage (panel (a) is true colour of the input Landsat 8 

image; panels (c) and (d) are  respective output class images from analyses of Landsat 

7 and Landsat 5. 

4.2 Mapping built-up land cover overtime within the agricultural categories 

Final products of the research are spatial distribution maps of built-up land cover pixel 

classified at 30-meter resolution for three multi-date Landsat scenes, and estimates of 

percentage change at two time periods. Figure 4.2 shows a comparison between classification 

built-up land cover estimates derived from the multi-date Landsat using SVM algorithm. 

Overall, the average change of the 1993–2013 land cover prediction by comparing SVM 

model output images was 38.92%.  For Built-up class only, the percentage change detection 

ranged from 13.07%, 38.37 %, and 32.03% for the period 1993–2003, 2003–2013, and 

1993–2013, respectively (Table 4.4). 

(b) 

(c) 

(d) 

(a) 
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Figure 4.2: Built-up land cover class within agricultural land categories in uMngeni: panel (a) 

built-up (white  pixels) features extracted from high resolution (2.5 m) SPOT5 image; 

panel (b) shows built-up (red  pixels) layer extracted from Landsat 8 mage overlay on 

the agricultural land categories; panels (c) and (d) are  respective output images from 

analyses of Landsat 7 and Landsat 5. 

 

 

Table 4.3: Percentage change in land cover classes for different time periods under 

investigation 

Class changes 1993–2003 (%) 2003–2013 (%) 1993–2013 (%) 

Unclassified 0 0 0 

Built-up 13.07 38.37 32.03 

Grassland 19.06 15.18 9.98 

Crop Land 2.18 2.83 1.76 

Bare-land/spares veg. 42.70 35.96 49.85 

Plantation 18.87 4.51 3.47 

Water body 4.52 3.15 2.87 

Class Total 100 100 100 

Class Changes 25.34 47.63 38.92 

(b) 

(c) 

(d) 

(a) 
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 DISCUSSION CHAPTER 5:

Local municipality-wide land-cover change detection analysis provides a useful tool for the 

long-term monitoring of agro-ecological systems and for the protection of high value 

agricultural land. Moreover, monitoring changes in specific land-cover type from a multi-

temporal analysis offers historical and recent perspective on landscape dynamics. The 

increasing availability and accessibility of remote sensing technologies has provided 

immense opportunities for a wide range of applications such as mapping urban-agricultural 

landscape. Mapping and monitoring of change occurring in agricultural environments include 

shifts in land cover/landuse, landscape morphology, urban built-up developments, and 

analysis of regional impacts – (developmental impacts in agricultural systems). The specific 

objective of the current research was to appraise issues of loss of agricultural land resource to 

other landuse options in the study area using multi-temporal remote sensing techniques for 

change detection in built-up land cover.  

 

Integration of the support vector machine learning algorithm and multi-date Landsat data in 

this study yielded important information for the time periods investigated. Results obtained 

from the study helped to identify changes in built-up land-cover that occurred from 1993–

2003, 2003–2013, and 1993–2013 in the uMngeni Local Municipality. In general, areas with 

increased built-up surfaces can be related to known land-use changes or conversion of 

agricultural land to other uses in this area (Collett and Mitchell 2012). The accuracy of the 

initial land cover classification analyses and the mapping procedure was repeatable. In the 

course of this study, great effort was made to the development of good ground truth data for 

model training and validation from the ancillary sources including high spatial resolution 

SPOT image, aerial photographs and field survey data. Results of separability analysis for all 

class pairs showed high Jeffries Matusita distance of 1.65 or greater.  However, 
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misclassifications can be explained from the Jeffiries-Matusita separability analysis showed 

some degree of confusion among class pairs as manifested by the errors of omission and 

commission between class pairs.  

5.1 Monitoring trends in built-up land cover within the uMngeni Local Muicipality  

South Africa has a limited amount of high potential agricultural land available for long-term 

sustainable food production. It is estimated that less than 4% of the national land surface can 

be regarded as high potential land (Collett and Mitchell 2012).  Much of this land, however, 

has already been lost to non-agricultural land uses such as residential and industrial 

developments and mining or is currently under severe pressure for non-agricultural 

development. The use of land for development in both urban as well as rural areas must be 

viewed against the need to utilize the same land for agricultural production purposes so as to 

achieve and meet food security requirements for the nation. The scenario of prohibiting 

development on the one hand, versus allowing development anywhere on the other, is not a 

feasible option and therefore careful consideration is required to determine the most suitable 

and sustainable land use option on a given area of land. This poses a serious challenge to land 

use planners as to the most suitable land use option, as well as ensuring the selected land use 

matches the natural resource base so as to be both sustainable and viable into the future. 

Additionally, land use planners and natural agricultural resource managers require critical 

information regarding patterns in landuse over time and for resource monitoring objectives. 

Results of SVM classification of multi-date Landsat data revealed significant increases in 

built-up land cover between the periods 1993 – 2003, and 2003 – 2013. As an example, 

Figure 5.1, panel a shows high value agricultural land categories in the South-East area in the 

uMngeni Local Municipality. Using the approach in this study it can be seen from panel b, c, 
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and d the increasing trend in the built-up land cover 20 year period.  The results demonstrate 

impact of development on the Agro Ecological Zones in the area. 

 

 

Figure 5.1: An illustration of increases in built-up land cover with high value agricultural 

land. Panels: (a) agricultural land categories in uMngeni Local Municipality, (b) built-

up extracted from 2013 Landsat 8 image, (c) (built-up extracted from 2003 Landsat 7 

image, and (d) built-up extracted from 1993 Landsat 5 image. 

  

(b) 

(c) (d) 

(a) 
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5.2 Factors contributing to the encroachment of other landuse and/or land cover into 

the agricultural land  

Transformation of agricultural land to other land uses including built-up infrastructure is 

influenced by a spectrum of factors. Amongst these include economic, policy and 

institutional, social and cultural, environmental and biophysical considerations. 

Notwithstanding the circumscription of the study to independently evaluate the these factors 

to assess the extent to which they contribute to transformation of agricultural land to other 

land uses, economic drivers inclusive of growth in the economy driven by industrialisation, 

urbanisation and the gains in Information Technology are generally considered to have 

immensely contributed to inordinate transformation of rural land.  

 

In some instances lack of policy clarity serves as an unintended impetus to rural land 

transformation. Within the context of South Africa in 1995 government promulgated into law 

the Development Facilitation Act No.67 pursuant to the advancement of the Reconstruction 

and Development Programme (RDP) imperative following decades of the segregated spatial 

land development patterns. The significant change of approximately 38% as discovered in 

this study in built-up area during the period 2003-2013 could be attributed to the inordinate 

use of this legislation to promote development in uMngeni Municipality.  

 

Globally population is expected to continue to rise, further contributing to an increased 

demand for the utilisation of already constrained land resources to sustain future human 

requirements. Population growth remains both an opportunity to increase agricultural food 

production and a threat to agricultural land in favour of development for human settlement. 

Agricultural land transformation should be considered within the context of sustainable 
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development without oblivion to other development imperatives. This study advocates for a 

holistic approach to land development without comparison of land uses against the other. 

5.3 Conclusions 

The percent temporal changes in built-up surface (30-meter resolution) were mapped for two 

time periods over uMngeni Local Municipality based on SVM classification. The method 

was found to be satisfactory based on assessment of the classification error matrices using 

independent reference data. The change-detection procedure implemented in this study is 

repeatable and efficient, provided that good training data cover the whole range of spectral 

variability of all target land cover features. 

 

Change in percent cover over time indicated that some agricultural land resources have been 

converted into development infrastructure specifically urban land-cover. The rate of increases 

in built-up land cover often relates to a number of factors including subdivision of 

agricultural land for alternative use, socio-economic development and legislation.  It should 

be noted that the land cover change product generated using the approach in this study has 

some limitations. Due to some degree of pixel confusion from the initial SVM classification, 

a significant percent of built-up land cover may or may not reflect actual changes within the 

study area. In addition, all accuracy information reported was based on evaluation of SVM 

classification estimates for each individual time period and therefore there is a degree of 

compounding error on the final change map. Moreover no direct assessment was made to 

evaluate the quality of the change product and this should be noted. Consequently, the quality 

of the change results relates indirectly from the accuracy estimates of each individual time 

period. It is worthy to note that within-class changes, for example changes due to vegetation 

growth, soil variation, etc., would potentially impact on the change detection process. 
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