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Abstract. We study the following (q − 1)th convex ordering relation for
qth convolution power of the difference of probability distributions μ and
ν

(ν − μ)∗q ≥(q−1)cx 0, q ≥ 2,

and we obtain the theorem providing a useful sufficient condition for its
verification. We apply this theorem for various families of probability
distributions and we obtain several inequalities related to the classical
interpolation operators. In particular, taking binomial distributions, we
obtain a new, very short proof of the inequality given recently by Abel
and Leviatan (2020).
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1. Introduction

Let I ⊂ R be an interval (finite or infinite). Recall that a function ϕ : I → R

is convex, if the inequality

ϕ
(
tx + (1 − t)y

) ≤ tϕ(x) + (1 − t)ϕ(y)

holds for all x, y ∈ I and for all t ∈ [0, 1].
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The Bernstein operator Bn associated with a continuous function ϕ :
[0, 1] → R (see [10]) is defined by

Bn(ϕ)(x) =
n∑

i=0

pn,i(x)ϕ
(

i

n

)
, x ∈ [0, 1],

where

pn,i(x) =
(

n

i

)
xi(1 − x)n−i, 0 ≤ j ≤ n.

Mrowiec et al. [11] proved the following theorem on inequality for Bern-
stein operators.

Theorem 1. Let n ∈ N and x, y ∈ [0, 1]. Then
n∑

i=0

n∑

j=0

(pn,i(x)pn,j(x) + pn,i(y)pn,j(y) − 2pn,i(x)pn,j(y)) ϕ

(
i + j

2n

)
≥ 0 (1)

for all convex functions ϕ ∈ C([0, 1]).

This inequality was stated by Ioan Raşa as an open problem about thirty
years ago. During the Conference on Ulam’s Type Stability (Rytro, Poland,
2014), Raşa [14] recalled his problem. Theorem 1 affirms the conjecture (see
also [1–4,7,8,15] for further results on the I. Raşa problem).

The proof given by Mrowiec et al. [11] makes use of probability theory.
Let μ and ν be two finite Borel measures on R such that

∫

R

ϕ(x)μ(dx) ≤
∫

R

ϕ(x)ν(dx) for all convex functions ϕ : R → R

provided the integrals exist. Then μ is said to be smaller then ν in the convex
order (denoted as μ ≤cx ν ). In [11], the authors proved the following stochastic
convex ordering relation for convolutions of binomial distributions B(n, x) and
B(n, y) (n ∈ N, x, y ∈ [0, 1]):

B(n, x) ∗ B(n, y) ≤cx
1
2 (B(n, x) ∗ B(n, x) + B(n, y) ∗ B(n, y)), (2)

which is a probabilistic version of inequality (1).
In [6], we gave a generalization of inequality (2). We introduced and

studied the following convex ordering relation

μ ∗ ν ≤cx
1
2 (μ ∗ μ + ν ∗ ν), (3)

where μ and ν are two probability distributions on R. We note, that inequality
(3) can be regarded as the Raşa type inequality. In [6], we proved Theorem 2.3
providing a very useful sufficient condition for verification that μ and ν satisfy
(3). We applied Theorem 2.3 for μ and ν from various families of probability
distributions. In particular, we obtained a new proof for binomial distributions,
which is significantly simpler and shorter than that given in [11]. By (3), we
can also obtain inequalities related to some approximation operators associated
with μ and ν (such as Bernstein-Schnabl operators, Mirakyan-Szász operators,
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Baskakov operators and others, cf. [6]). Note, that in [8], we gave also necessary
and sufficient condition for verification that μ and ν satisfy (3).

Recently, Abel and Leviatan [2] gave a generalization of the Raşa inequal-
ity (1) to q-monotone functions. Given a function f : I → R, denote

Δ1
h f(x) = Δh f(x) = f(x + h) − f(x),

Δn+1
h f(x) = Δn

h(Δh f(x)),

Δh1... hnhn+1 f(x) = Δh1 . . . Δhn
Δhn+1 f(x) = Δh1... hn

(
Δhn+1 f(x)

)
,

for n ∈ N, x ∈ I and h, h1, . . . , hn, hn+1 ≥ 0 with all needed arguments
belonging to I. Let q ≥ 1. A function f : I → R is q-monotone if Δq

h f(x) ≥ 0
for all h ≥ 0 and x ∈ R such that x, x + qh ∈ I.

Theorem 2. [2] Let q, n ∈ N. If f ∈ C([0, 1]) is a q-monotone function, then

sgn(x − y)q
n∑

ν1,...,νq=0

q∑

j=0

(−1)q−j

(
q

j

)(
j∏

i=1

pn,νi
(x)

)⎛

⎝
q∏

i=j+1

pn,νi
(y)

⎞

⎠

×f

(
ν1 + . . . + νq

qn

)
≥ 0 (4)

In this paper, we give a generalization of inequality (3) to higher order
convex order. Let us review some notations. In the classical theory of convex
functions their natural generalization are convex functions of higher-order.

Let n ∈ N and x0, . . . , xn be distinct points in I. Denote by [x0, . . . , xn; f ]
the divided difference of f at x0, . . . , xn defined by the recurrence

[x0; f ] = f(x0),

[x0, . . . , xn; f ] =
[x1, . . . , xn; f ] − [x0, . . . , xn−1; f ]

xn − x0
for n ≥ 1.

Following Hopf [5] and Popoviciu [12,13], a function f : I → R is called convex
of order n (or n-convex ) if

[x0, . . . , xn+1; f ] ≥ 0

for all x0 < . . . < xn+1 in I.
We list some properties of n-th order convexity (see [9]).

Proposition 1. If the function f : I → R is n-convex on I (n ≥ 1), then

Δh1 . . . Δhn
Δhn+1 f(x) ≥ 0

for all x ∈ I, h1, . . . , hn, hn+1 ≥ 0 such that x + h1 + · · · + hn+1 ∈ I.

Proposition 2. If I ⊂ R is an open interval, then a function f : I → R is n-
convex on I (n ≥ 1) if, and only if, its derivative f (n−1) exists and is convex
on I (with the convention f (0)(x) = f(x)).

Proposition 3. Let f ∈ C(I) and n ≥ 1. Then the following statements are
equivalent.
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(a) f is n-convex on I.
(b) f is (n + 1)-monotone on I.
(c) Δn+1

h f(x) ≥ 0 for all x ∈ I and h ≥ 0 with x + (n + 1)h ∈ I.
(d) Δh1 . . . Δhn

Δhn+1 f(x) ≥ 0 for all x ∈ I and h1, . . . , hn, hn+1 ≥ 0 with
x + h1 + · · · + hn+1 ∈ I.

Recall the definition of n-convex orders.

Definition 1. Let n ≥ 1. Let μ and ν be two finite signed Borel measures on I
such that

∫

I

ϕ(x)μ(dx) ≤
∫

I

ϕ(x)ν(dx) for all n-convex functions ϕ : I → R (5)

provided the integrals exist. Then μ is said to be smaller then ν in the n-convex
order (denoted as μ ≤n−cx ν ).

In particular, μ ≤1−cx ν coincides with μ ≤cx ν. Observe, that this
definition does not depend on the choice of the interval I. Indeed, let I1, I2 ⊂
R be two intervals and let μ, ν be two finite signed Borel measures on I1 ∩
I2. Assume that (5) is satisfied for the interval I1. Then for every n-convex
function ϕ : I2 → R there exist n-convex functions ψk : R → R such that∫

I1
ψk(x)μ(dx) =

∫
I2

ψk(x)μ(dx) −→
k→∞

∫
I2

ϕ(x)μ(dx) and
∫

I1
ψk(x)ν(dx) =

∫
I2

ψk(x)ν(dx) −→
k→∞

∫
I2

ϕ(x)ν(dx) (if
∫

I2
ϕ(x)μ(dx) and

∫
I2

ϕ(x)ν(dx) exist).

Clearly, ψk|I1 are n-convex on I1. It follows that (5) is satisfied for I2. Similarly,
if (5) is satisfied for I2 then it is also satisfied for I1. We do not give a precise
proof, because we will not use this observation any further.

We study the following generalization of (3)

(ν − μ)∗q ≥(q−1)cx 0, q ≥ 2, (6)

where μ, ν are probability measures and (ν − μ)∗q is the convolution (ν − μ) ∗
(ν−μ)∗· · ·∗(ν−μ) with q terms (ν−μ). Note, that (ν−μ)∗2 = ν∗ν−2ν∗μ+μ∗μ,
thus (6) for q = 2 is equivalent to (3). Inequality (6) can be regarded as the
Raşa type inequality.

In Theorem 4, we give a very useful sufficient condition for verification
that μ and ν satisfy (6). In particular, by Theorem 4, taking binomial distri-
butions (Theorem 10 (a)), we obtain

[sgn(x − y)]q (B(n, x) − B(n, y))∗q ≥(q−1)cx 0, q ≥ 2,

which is equivalent to inequality (4). Consequently, we obtain a new proof of
inequality (4) given by Abel and Leviatan [2], which is significantly simpler
and shorter than that given in [2].

We apply Theorem 4 for μ and ν from various families of probability
distributions. Using inequality (6), we can also obtain inequalities related to
some approximation operators associated with μ and ν (such as Bernstein-
Schnabl operators, Mirakyan-Szász operators, Baskakov operators and others).
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2. The Raşa Type Inequality for (q − 1)-Convex Orders

In the sequel, we make use of the theory of stochastic orders. Let us recall
some basic notations and results (see [16]). Let μ be a probability distribution
on R. For x ∈ R the delta symbol δx denotes one-point probability distribution
satisfying δx({x}) = 1. As usual, Fμ(x) = μ((−∞, x]) (x ∈ R) stands for the
cumulative distribution function of μ. If μ and ν are two probability distri-
butions such that Fμ(x) ≥ Fν(x) for all x ∈ R, then μ is said to be smaller
than ν in the usual stochastic order (denoted by μ ≤st ν). An important char-
acterization of the usual stochastic order is given by the following theorem.

Theorem 3. [16, p. 5] Two probability distributions μ and ν satisfy μ ≤st ν
if, and only if there exist two random variables X and Y defined on the same
probability space, such that μ is the distribution of X, ν is the distribution of
Y (X ∼ μ and Y ∼ ν for short) and P (X ≤ Y ) = 1.

In the following theorem, we give a very useful sufficient condition that
will be used for verification of some convex orders.

Theorem 4. Let q ≥ 2. Let μ and ν be two probability distributions on I, such
that μ ≤st ν. Then

(ν − μ)∗q ≥(q−1)cx 0.

Proof. Note that (ν − μ)∗q is a signed measure on qI = {qx : x ∈ I}. Let
f : qI → R be a (q − 1)-convex function on qI. Then, by Proposition 1,

Δhq
Δhq−1 . . . Δh2Δh1 f(x) ≥ 0 (7)

for all x ∈ qI, h1, . . . , hq−1, hq ≥ 0 such that x + h1 + · · · + hq ∈ qI.
Let x1, . . . , xq, y1, . . . , yq ∈ I be such that x1 ≤ y1, . . . , xq ≤ yq. Then

taking hi = yi − xi for i = 1, . . . , q and x = x1 + . . . + xq, by (7), we obtain

0 ≤ Δyq−xq
Δyq−1−xq−1 . . . Δy2−x2Δy1−x1 f(x1 + . . . + xq)

=
∑

A⊂{1,...,q}
(−1)|A|f(z1 + . . . + zq), (8)

where zi = xi if i ∈ A and zi = yi if i /∈ A, i = 1, . . . , q.
Since μ ≤st ν, by Theorem 3, there exist independent random vectors

(X1, Y1), (X2, Y2), . . . , (Xq, Yq), such that

Xi ∼ μ, Yi ∼ ν and P (Xi ≤ Yi) = 1, i = 1, . . . , q. (9)

Let Hi = Yi − Xi, i = 1, . . . , q. Since the measures μ and ν are concentrated
on I, from (9) it follows that

P (Xi ∈ I) = P (Yi ∈ I) = 1 and P (Hi ≥ 0) = 1, i = 1, . . . , q.

Let X = X1+. . .+Xq. Taking into account that Y1+. . .+Yq = X+H1+. . .+Hq,
by (9), we obtain

P (X ∈ qI) = P (X + H1 + . . . + Hq ∈ qI) = 1.
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By inequality (8), with xi = Xi and yi = Yi, we obtain

P

⎛

⎝
∑

A⊂{1,...,q}
(−1)|A|f(Z1 + . . . + Zq) ≥ 0

⎞

⎠ = 1,

where Zi = Xi if i ∈ A and Zi = Yi if i /∈ A, i = 1, . . . , q, consequently, we
have

E

⎛

⎝
∑

A⊂{1,...,q}
(−1)|A| f(Z1 + . . . + Zq)

⎞

⎠ ≥ 0. (10)

We have

(ν − μ)∗q =
q∑

k=0

(
q
k

)
(−1)kμ∗k ∗ ν∗(q−k)

=
∑

A⊂{1,...,q}
(−1)|A| π1 ∗ π2 ∗ . . . ∗ πq, (11)

where πi = μ if i ∈ A and πi = ν if i /∈ A, i = 1, . . . , q.
Then, by (10) and (11), we obtain

∫

qI

f(x)(ν − μ)∗q(dx) =
∫

qI

f(x)

⎛

⎝
∑

A⊂{1,...,q}
(−1)|A| π1 ∗ π2 ∗ . . . ∗ πq

⎞

⎠ (dx)

= E

⎛

⎝
∑

A⊂{1,...,q}
(−1)|A| f(Z1 + . . . + Zq)

⎞

⎠ ≥ 0.

The theorem is proved. �

Theorem 5. Let q ≥ 2.Let μ and ν be two probability distributions on I, such
that μ ≥st ν. Then

(−1)q(ν − μ)∗q ≥(q−1)cx 0.

Proof. If μ ≥st ν, then ν ≤st μ. Then, applying Theorem 4, we obtain

(μ − ν)∗q ≥(q−1)cx 0.

Since (μ − ν)∗q = (−1)q(ν − μ)∗q, the theorem is proved. �

We consider also some generalization of Theorem 4 to signed measures.
If μ and ν are two finite signed Borel measures on R such that μ(R) =

ν(R) and μ((−∞, x]) ≥ ν((−∞, x]) (x ∈ R), then μ is said to be smaller than
ν in the usual stochastic order (denoted by μ ≤st ν).

Theorem 6. Let q ≥ 2. Let μ and ν be two finite signed Borel measures on I
such that μ(I) = ν(I) and μ ≤st ν. Then

(ν − μ)∗q ≥(q−1)cx 0.
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Proof. Let μ and ν be two finite signed Borel measures on I such that μ(I) =
ν(I) and μ ≤st ν. By the Hahn decomposition theorem, there exist two non-
negative finite measures (ν −μ)+ and (ν −μ)− (the positive part and negative
part of ν − μ), such that ν − μ = (ν − μ)+ − (ν − μ)−. Since μ(I) = ν(I), it
follows that (ν−μ)+(I) = (ν−μ)−(I), consequently, without loss of generality
we may assume, that both (ν − μ)+ and (ν − μ)− are probability measures.
Moreover, the condition μ ≤st ν is equivalent to (ν −μ)((−∞, x]) ≤ 0 (x ∈ R),
consequently, we have (ν −μ)+ ≥st (ν −μ)−. Then, by Theorem 4, we obtain

((ν − μ)+ − (ν − μ)−)∗q ≥(q−1)cx 0. (12)

Since (ν − μ)+ − (ν − μ)− = ν − μ, this completes the proof. �

As an immediate consequence of Theorem 6, we obtain the following
theorem.

Theorem 7. Let q ≥ 2. Let τ be a finite signed Borel measure on I such that
τ(I) = 0 and τ ≥st 0. Then

τ∗q ≥(q−1)cx 0.

Similarly to Theorem 4, the following theorems can be proved.

Theorem 8. Let q ≥ 2. Let μ1, . . . , μq and ν1, . . . , νq be probability distributions
on I, such that μi ≤st νi for i = 1, . . . , q. Then

(ν1 − μ1) ∗ . . . ∗ (νq − μq) ≥(q−1)cx 0.

Theorem 9. Let q ≥ 2. Let τ1, . . . , τq be finite signed Borel measures on I, such
that τi(I) = 0 and τi ≥st 0 for i = 1, . . . , q. Then

τ1 ∗ . . . ∗ τq ≥(q−1)cx 0.

We will apply Theorems 4 and 5 for μ and ν from various families of
probability distributions. As a result, we obtain new proofs of the results of
Abel and Leviatan [2] and several new inequalities, which are analogues of (1).

The binomial distribution B(n, x) (n ∈ N, x ∈ [0, 1]) is the proba-
bility distribution given by B(n, x)({i}) = pn,i(x) =

(
n
i

)
xi(1 − x)n−i for

i = 0, 1, . . . , n.
The Poisson distribution Poiss(λ) (λ > 0) is the probability distribution

given by Poiss(λ)({i}) = si(λ) = e−λ · λi

i! for i = 0, 1, . . . (Poiss(0) = δ0 i.e.
s0(0) = 1, si(0) = 0 for i = 1, 2, . . . ).

The negative binomial distribution NB(r, p) (r > 0, 0 ≤ p < 1) is the
probability distribution given by

NB(r, p)({i}) = nbi(r, p) =
(

i + r − 1
i

)
pi(1 − p)r =

Γ(i + r)
Γ(r) · i!

pi(1 − p)r

for i = 0, 1, . . .

(if r = 0, then NB(0, p) = δ0 i.e., nb0(0, p) = 1 and nbi(0, p) = 0 for i > 0).
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The gamma distribution Γ(α, β) (α, β > 0) is the distribution given by
the density function γα,β(x) = βαxα−1e−xβ

Γ(α) for x > 0 and γα,β(x) = 0 for x ≤ 0.
By convention, we define Γ(0, β) = δ0 for every β > 0.

The beta distribution Beta(α, β) (α, β > 0) is the distribution given by
the density function

bα,β(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1 for x ∈ (0, 1),

and bα,β(x) = 0 for x /∈ (0, 1). By convention, we define Beta(0, β) = δ0 and
Beta(α, 0) = δ1 for every α, β > 0.

By N(m,σ2), we denote the normal (Gaussian) distribution with ex-
pected value m and variance σ2.

Proposition 4. [6]
(a) Let n ∈ N and x1, x2 ∈ [0, 1]. Then B(n, x1) ≤st B(n, x2) ⇔ x1 ≤ x2.
(b) Let λ1, λ2 ≥ 0. Then Poiss(λ1) ≤st Poiss(λ2) ⇔ λ1 ≤ λ2.
(c) Let r1, r2 ≥ 0 and p1, p2 ∈ [0, 1). If r1 ≤ r2 and p1 ≤ p2, then NB(r1, p1) ≤st

NB(r2, p2).
(d) Let α1, α2 ≥ 0 and β1, β2 > 0. If α1 ≤ α2 and β1 ≥ β2, then Γ(α1, β1) ≤st

Γ(α2, β2).
(e) Let α1, β1, α2, β2 ≥ 0 be such that α1+β1 > 0 and α2+β2 > 0. If α1 ≤ α2

and β1 ≥ β2, then Beta(α1, β1) ≤st Beta(α2, β2).
(f) Let m1,m2 ∈ R and σ2

1 , σ2
2 > 0. Then N(m1, σ

2
1) ≤st N(m2, σ

2
2) ⇔

(m1 ≤ m2 and σ2
1 = σ2

2).

From Theorems 4, 5 and Proposition 4, we obtain immediately the fol-
lowing theorem.

Theorem 10. (a) Let n ∈ N and x, y ∈ [0, 1]. Then

[sgn(x − y)]q (B(n, x) − B(n, y))∗q ≥(q−1)cx 0.

(b) Let x, y ≥ 0. Then

[sgn(x − y)]q (Poiss(x) − Poiss(y))∗q ≥(q−1)cx 0.

(c) Let r1, r2 ≥ 0 and p1, p2 ∈ [0, 1). If (r1 − r2)(p1 − p2) ≥ 0, then
[
1
2

(sgn(r1 − r2) + sgn(p1 − p2))
]q

(NB(r1, p1) − NB(r2, p2))
∗q ≥(q−1)cx 0.

(d) Let α1, α2 ≥ 0 and β1, β2 > 0 satisfy (α1 − α2)(β1 − β2) ≤ 0. Then
[
1
2

(sgn(α1 − α2) + sgn(β2 − β1))
]q

(Γ(α1, β1) − Γ(α2, β2))
∗q ≥(q−1)cx 0.

(e) Let α1, β1, α2, β2 > 0 satisfy (α1 − α2)(β1 − β2) ≤ 0. Then
[
1
2

(sgn(α1 − α2) + sgn(β2 − β1))
]q

(Beta(α1, β1) − Beta(α2, β2))
∗q

≥(q−1)cx 0.
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(f) Let x, y ∈ R and σ2 > 0. Then

sgn(x − y)q(N(x, σ2) − N(y, σ2))∗q ≥(q−1)cx 0.

Note that Theorem 2 is an immediate consequence of Theorem 10 (a) and
Definition 1. If n ∈ N and x, y ∈ [0, 1], then B(n, x) and B(n, y) are probability
distributions on [0, n]. Let q = 2, 3, . . . and f : [0, 1] → R be a (q − 1)-convex
function. Then the function ϕ : [0, qn] → R given by ϕ(t) = f

(
t

qn

)
is a (q−1)-

convex (q-monotone) function. By Theorem 10 (a) and Definition 1, we obtain
(4). Since B(n, x) ∗ B(m,x) = B(n + m,x), (4) can be also written as

sgn(x − y)q
q∑

k=0

kn∑

i=0

(q−k)n∑

j=0

(−1)q−k

(
q

k

)
pkn,i(x)p(q−k)n,j(y)f

(
i + j

qn

)
≥ 0.

Theorem 2 is closely related to Bernstein operator (or Bernstein-Schnabl
operator) and the binomial probability distribution. Theorem 10 allows to ob-
tain similar results related to other distributions and other interpolation oper-
ators, such as Mirakyan-Szász operators St, Baskakov operators Vt, Bleimann-
Butzer-Hahn operators Ln, gamma operators Gt, Müller gamma operators
G∗

t , Lupaş beta operators B∗
t , inverse beta operators Tt, Meyer–König–Zeller

operators Mt and others.
Mirakyan-Szász operator St : DS → C([0,∞)) (where t > 0 and DS ⊂

C([0,∞)) consists of functions of at most exponential growth) is related to the
Poisson distribution and is given by

St(f)(x) =
∞∑

i=0

si(tx)f
(

i
t

)
for x ∈ [0,∞),

where si(x) = e−x xi

i! . By Theorem 10 (b), we obtain immediately:

sgn(x − y)q
∞∑

ν1,...,νq=0

q∑

j=0

(−1)q−j

(
q

j

) (
j∏

i=1

sνi
(tx)

)⎛

⎝
q∏

i=j+1

sνi
(ty)

⎞

⎠

×f

(
ν1 + . . . + νq

qt

)
≥ 0

or sgn(x − y)q
q∑

k=0

∞∑

i=0

(−1)q−k

(
q

k

)
si(ktx + (q − k)ty)f

(
i

qt

)
≥ 0

for every t > 0 and (q − 1)-convex (q-monotone) function f ∈ DS (cf. [2,
Theorem 3.1]).

Baskakov operator Vt : DV → C([0,∞)) (where t > 0 and DV ⊂ C([0,∞))
consists of functions of at most polynomial growth) is related to the negative
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binomial distribution and is given by

Vt(f)(x) =
∞∑

i=0

vt,i(x)f
(

i
t

)
for x ∈ [0,∞),

where vt,i(x) =
(
t+i−1

i

)
xi

(1+x)t+i = nbi

(
t, x

x+1

)
. Theorem 10 (c) yields the

inequality

sgn(x − y)q
∞∑

ν1,...,νq=0

q∑

j=0

(−1)q−j

(
q

j

)(
j∏

i=1

vt,νi
(x)

) ⎛

⎝
q∏

i=j+1

vt,νi
(y)

⎞

⎠

×f

(
ν1 + . . . + νq

qt

)
≥ 0

or sgn(x − y)q
q∑

k=0

∞∑

i,j=0

(−1)q−k

(
q

k

)
vkt,i(x)v(q−k)t,j(y)f

(
i + j

qt

)
≥ 0

for every q = 2, 3, . . . , t > 0 and (q −1)-convex (q-monotone) function f ∈ DV

(cf. [2, Theorem 3.2]).
Theorem 10(d)–(f) leads in the obvious way to other inequalities related

to integral interpolation operators. These inequalities are integral counterparts
of the above inequalities. E.g. Theorem 10(d) leads to

sgn(x − y)q
q∑

k=0

∫ ∞

0

(−1)q−k

(
q

k

)
γktx+(q−k)ty,t(u)f(u)du ≥ 0,

which is related to the gamma distribution and the operator

Gt(f) :=

∫ ∞

0

γtx,t(u)f(u)du =

∫ ∞

0

γtx,1(u)f
(u

t

)
du =

∫ ∞

0

utx−1e−u

Γ(tx)
f

(u

t

)
du.
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of I. Raşa on Bernstein polynomials. J. Math. Anal. Appl. 458, 821–830 (2018)

[7] Komisarski, A., Rajba, T.: A sharpening of a problem on Bernstein polynomials
and convex functions and related results. Math. Inequal. Appl. 21(4), 1125–1133
(2018)

[8] Komisarski, A., Rajba, T.: Convex order for convolution polynomials of Borel
measures. J. Math. Anal. Appl. 478, 182–194 (2019)

[9] Kuczma, M.: An Introduction to the Theory of Functional Equations and

Inequalities. Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach, vol. 489.
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