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Abstract

The falling shadow theory is applied to subhoops and filters in hoops. The notions

of falling fuzzy subhoops and falling fuzzy filters in hoops are introduced, and

several properties are investigated. Relationship between falling fuzzy subhoops

and falling fuzzy filters are discussed, and conditions for a falling fuzzy subhoop

to be a falling fuzzy filter are provided. Also conditions for a falling shadow of a

random set to be a falling fuzzy filter are displayed.
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1. Introduction

In the study of a unified treatment of uncertainty modelled by meaning
of combining probability and fuzzy set theory, Wang and Sanchez [17] in-
troduced the theory of falling shadows which directly relates probability
concepts with the membership function of fuzzy sets. Falling shadow rep-
resentation theory shows us the way of selection relaid on the joint degrees
distributions. It is reasonable and convenient approach for the theoretical
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development and the practical applications of fuzzy sets and fuzzy logics.
Falling shadow representation theory shows us the way of selection relaid on
the joint degrees distributions. It is reasonable and convenient approach for
the theoretical development and the practical applications of fuzzy sets and
fuzzy logics. The mathematical structure of the theory of falling shadows is
formulated in [15]. After that many scholars applied it to (fuzzy) algebraic
structures (see [13, 11, 10, 12, 19, 20, 21]). Hoops which are introduced by
B. Bosbach in [6, 7] are naturally ordered commutative residuated integral
monoids. In [1], Agliáno introduced a continuous t-norm which is a contin-
uous map ∗ from [0, 1]2 into [0, 1] such that 〈[0, 1], ∗, 1〉 is a commutative
totally ordered monoid. Since the natural ordering on [0, 1] is a complete
lattice ordering, each continuous t-norm induces naturally a residuation→
and 〈[0, 1], ∗,→, 1〉 becomes a commutative naturally ordered residuated
monoid, also called a hoop. The variety of basic hoops is precisely the
variety generated by all algebras 〈[0, 1], ∗,→, 1〉, where ∗ is a continuous
t-norm. In [1], they investigated the structure of the variety of basic hoops
and some of its subvarieties. In particular, they provided a complete de-
scription of the finite subdirectly irreducible basic hoops, and they showed
that the variety of basic hoops is generated as a quasivariety by its finite
algebras. They extended these results to Hájeks BL-algebras, and gived an
alternative proof of the fact that the variety of BL-algebras is generated
by all algebras arising from continuous t-norms on [0, 1] and their residua.
Also, they in [2], overviewed recent results about the lattice of subvarieties
of the variety BL of BL-algebras and the equational definition of some
families of them. Kondo [14] considered fundamental properties of some
types of (implicative, positive implicative and fantastic) filters of hoops,
and R. A. Borzooei and M. Aaly Kologani [4] investigated some properties
and equivalent definitions of these filters on hoops. Also, they studied the
relation between these filters and found that under which conditions they
are equivalent. Borzooei et al. studied fuzzy set theory of subhoops and
filters in hoops (see [3, 5]).

In this paper, we apply the falling shadow theory to subhoops and
filters in hoops. We introduce the notions of falling fuzzy subhoops and
falling fuzzy filters in hoops, and investigate several properties. We consider
relationship between falling fuzzy subhoops and falling fuzzy filters. We
provide conditions for a falling fuzzy subhoop to be a falling fuzzy filter.
We also provide conditions for a falling shadow of a random set to be
a falling fuzzy filter. Also, we show that every fuzzy filter of a hoop is a
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falling fuzzy filter and falling fuzzy subhoop and we prove that under which
conditions a falling shadow can be a falling fuzzy filter of a hoop.

2. Preliminaries

By a hoop we mean an algebra (H,�,→, 1) in which (H,�, 1) is a commu-
tative monoid and, for any x, y, z ∈ H, the following assertions are valid.

(H1) x→ x = 1,

(H2) x� (x→ y) = y � (y → x),

(H3) x→ (y → z) = (x� y)→ z.

We define a relation “≤” on a hoop H by

(∀x, y ∈ H)(x ≤ y ⇔ x→ y = 1). (2.1)

It is easy to see that (H,≤) is a poset. A nonempty subset S of H is called
a subhoop of H if it satisfies:

(∀x, y ∈ S)(x� y ∈ S, x→ y ∈ S). (2.2)

Note that every subhoop contains the element 1.

Proposition 2.1 ([8]). Let (H,�,→, 1) be a hoop. For any x, y, z ∈ H,
the following conditions hold:

(a1) (H,≤) is a meet-semilattice with x ∧ y = x� (x→ y).

(a2) x� y ≤ z if and anly if x ≤ y → z.

(a3) x� y ≤ x, y and xn ≤ x, for any n ∈ N.

(a4) x ≤ y → x.

(a5) 1→ x = x and x→ 1 = 1.

(a6) x� (x→ y) ≤ y, x� y ≤ x ∧ y ≤ x→ y.

(a7) x→ y ≤ (y → z)→ (x→ z).

(a8) x ≤ y implies x� z ≤ y � z, z → x ≤ z → y and y → z ≤ x→ z.

(a9) x→ (y → z) = (x� y)→ z = y → (x→ z).
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A nonempty subset F of a hoop H is called a filter of H (see [8]) if the
following assertions are valid.

(∀x, y ∈ H)(x, y ∈ F ⇒ x� y ∈ F ), (2.3)

(∀x, y ∈ H)(x ∈ F, x ≤ y ⇒ y ∈ F ). (2.4)

Note that the conditions (2.3) and (2.4) means that F is closed under
the operation � and F is upward closed, respectively.

Note that a subset F of a hoop H is a filter of H if and only if the
following assertions are valid (see [8]):

1 ∈ F, (2.5)

(∀x, y ∈ H) (x→ y ∈ F, x ∈ F ⇒ y ∈ F ) . (2.6)

A fuzzy set µ in a hoop H is called a fuzzy subhoop of H if it satisfies:

(∀x, y ∈ H)(µ(x� y) ≥ min{µ(x), µ(y)},
µ(x→ y) ≥ min{µ(x), µ(y)}).

(2.7)

A fuzzy set µ in a hoop H is called a fuzzy filter of H (see [3]) if the following
assertions are valid.

(∀x ∈ H) (µ(x) ≤ µ(1)) , (2.8)

(∀x, y ∈ H) (µ(y) ≥ min{µ(x), µ(x→ y)) . (2.9)

Given a fuzzy set µ in H and t ∈ [0, 1], the set

µt := {x ∈ H | µ(x) ≥ t} (2.10)

is called the t-level set of µ in H.
We now display the basic theory on falling shadows. We refer the reader

to the papers [9, 15, 16, 18, 17] for further information regarding the theory
of falling shadows.

Given a universe of discourse U, let P(U) denote the power set of U.
For each u ∈ U, let

ü := {E | u ∈ E and E ⊆ U}, (2.11)

and for each E ∈ P(U), let

Ë := {ü | u ∈ E}. (2.12)
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An ordered pair (P(U),B) is said to be a hyper-measurable structure on
U if B is a σ-field in P(U) and Ü ⊆ B. Given a probability space (f,A, P )
and a hyper-measurable structure (P(U),B) on U, a random set on U is
defined to be a mapping η : f→ P(U) which is A-B measurable, that is,

(∀C ∈ B) (η−1(C) = {ε | ε ∈ f and η(ε) ∈ C} ∈ A). (2.13)

Suppose that η is a random set on U. Let

f̃(u) := P (ε | u ∈ η(ε)) for each u ∈ U.

Then f̃ is a kind of fuzzy set in U. We call f̃ a falling shadow of the random
set η, and η is called a cloud of f̃ .

For example, (f,A, P ) = ([0, 1],A,m), where A is a Borel field on [0, 1]
and m is the usual Lebesgue measure. Let f̃ be a fuzzy set in U and
f̃t := {u ∈ U | f̃(u) ≥ t} be a t-cut of f̃ . Then

η : [0, 1]→ P(U), t 7→ f̃t

is a random set and η is a cloud of f̃ . We shall call η defined above as the
cut-cloud of f̃ (see [9]).

3. Falling fuzzy subhoops and filters

In what follows, let H denote a hoop unless otherwise specified.

Definition 3.1. Let (f,A, P ) be a probability space, and let

η : f→ P(H)

be a random set. If η(ε) is a filter (resp. a subhoop) of H for any ε ∈ f
with η(ε) 6= ∅, then the falling shadow f̃ of the random set η, i.e.,

f̃(x) = P (ε | x ∈ η(ε)) (3.1)

is called a falling fuzzy filter (resp. falling fuzzy subhoop) of H.

Example 3.2. Consider a hoop (H, �, →, 1) in which H = {0, a, b, 1} is a
set with Cayley tables (Tables 1 and 2). Let (f,A, P ) = ([0, 1],A,m) and
consider a mapping
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Table 1. Cayley table for the binary operation “�”

� 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Table 2. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

η : [0, 1]→ P(H), t 7→

 {1} if t ∈ [0, 0.3),
{1, a} if t ∈ [0.3, 0.7],
{1, b} if t ∈ (0.7, 1]

(3.2)

Then η(t) is both a subhoop and a filter of H for all t ∈ [0, 1]. Thus the
falling shadow f̃ of η is both a falling fuzzy subhoop and a falling fuzzy
filter of H, and it is given as follows:

f̃(x) =


0 if x = 0,
1 if x = 1,
0.4 if x = a,
0.3 if x = b.

(3.3)

Example 3.3. Consider a hoop (H, �, →, 1) in which H = [0, 1] is the unit
interval in R and � and → are given by a� b = min{a, b} and

a→ b =

{
1 if a ≤ b,
b if a > b

(3.4)

for all a, b ∈ H. Let (f,A, P ) = ([0, 1],A,m) and let η : [0, 1]→ P(H) be
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defined by

η(t) =

{
[ 23 , 1] if t ∈ [0.6, 1],
[ 12 , 1] if t ∈ [0, 0.6]

(3.5)

Then η(t) is a filter of H for all t ∈ [0, 1]. Thus the falling shadow f̃ of η
is a falling fuzzy filter of H, and it is given as follows:

f̃(x) =

 0.4 if x ∈ [ 23 , 1],
1 if x ∈ [ 12 , 1],
0 if x ∈ [0, 12 ).

(3.6)

Example 3.4. Given a probability space (f,A, P ), let H denote the set of
all mappings from f to a hoop H, that is,

H := {h | h : f→ H is a mapping}. (3.7)

Let � and � be binary operations on H defined by

(∀ε ∈ f)

(
(f � g)(ε) = f(ε)� g(ε)

(f � g)(ε) = f(ε)→ g(ε)

)
(3.8)

for all f, g ∈ H. Also, we define a mapping

1 : f→ H, ε 7→ 1. (3.9)

It is routine to verify that (H,�,�,1) is a hoop. For any subhoop and/or
filter F of H and h ∈ H, let

Fh := {ε ∈ f | h(ε) ∈ F} (3.10)

and

η : f→ P(H), ε 7→ {h ∈ H | h(ε) ∈ F}. (3.11)

Then Fh ∈ A and η(ε) = {h ∈ H | h(ε) ∈ F} is a subhoop and/or filter of
H. Since

η−1(ḧ) = {ε ∈ f | h ∈ η(ε)} = {ε ∈ f | h(ε) ∈ F} = Fh ∈ A, (3.12)

we know that η is a random set of H. Let

G̃(h) = P (ε | h(ε) ∈ F ).



344 R. A. Borzooei, G. R. Rezaei, M. Aaly Kologhani, Y. B. Jun

Then G̃ is a falling fuzzy subhoop and/or filter of H.

A BE-algebra is an algebra(A, , 1) of the type (2, 0) such that for all
x, y, z ∈ A the following axioms are fulfilled:

(BE1) x x = 1,

(BE2) x 1 = 1,

(BE3) 1 x = x,

(BE4) x (y  z) = y  (x z).

Corollary 3.5. (i) The algebraic structure (H,�,�,1) is a BCK-algebra.
(ii) The algebraic structure (H,�,1) is a BE-algebra.

Proof: The proof is straightforward.

Theorem 3.6. Every fuzzy filter (resp. fuzzy subhoop) of H is a falling
fuzzy filter (resp. falling fuzzy subhoop) of H.

Proof: Let f̃ be a fuzzy filter (resp. fuzzy subhoop) of H. Then f̃t is a
filter (resp. subhoop) of H for all t ∈ [0, 1]. Define a random set as follows:

η : [0, 1]→ P(H), t 7→ f̃t.

Then f̃ is a falling fuzzy filter (resp. falling fuzzy subhoop) of H.

The converse of Theorem 3.6 is not true, in general. In fact, the falling
fuzzy filter f̃ in Example 3.2 is not a fuzzy filter of H since f̃(0) = 0 <
0.3 = min{f̃(a), f̃(a→ 0)}.

Theorem 3.7. Every falling fuzzy filter is a falling fuzzy subhoop.

Proof: Straightforward.

Corollary 3.8. Every fuzzy filter is a falling fuzzy subhoop.

The following example shows that the converse of Theorem 3.7 and
Corollary 3.8 are not true in general.

Example 3.9. Consider a hoop (H, �, →, 1) in which H = {0, a, b, 1} is a
set with Cayley tables (Tables 3 and 4).
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Table 3. Cayley table for the binary operation “�”

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Table 4. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Let (f,A, P ) = ([0, 1],A,m) and consider a mapping

η : [0, 1]→ P(H), t 7→

 {1, a, 0} if t ∈ [0, 0.4),
{1, a} if t ∈ [0.4, 0.75],
{1, b, 0} if t ∈ (0.75, 1]

(3.13)

Then η(t) is a subhoop H for all t ∈ [0, 1]. Thus the falling shadow f̃ of η
is a falling fuzzy subhoop of H which is given as follows.

f̃(x) =


0.65 if x = 0,
1 if x = 1,
0.75 if x = a,
0.25 if x = b.

(3.14)

But η(t) = {1, a, 0} is not a filter of H for t ∈ [0, 0.4) since a ∈ η(t) and
a → b = 1 ∈ η(t), but b /∈ η(t). Hence f̃ is not a falling fuzzy filter of H.
Since

f̃(b) = 0.25 < 0.75 = min{f̃(a→ b), f̃(a)},

we know that f̃ is not a fuzzy filter of H.
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We provide a condition for a falling fuzzy subhoop to be a falling fuzzy
filter.

Theorem 3.10. Given a falling fuzzy subhoop f̃ of H, the following are
equivalent.

(1) f̃ is a falling fuzzy filter of H.

(2) For each ε ∈ f, the following is valid.

(∀x, y ∈ H) (x ∈ η(ε), y ∈ H \ η(ε) ⇒ x→ y ∈ H \ η(ε)) . (3.15)

Proof: Assume that f̃ is a falling fuzzy filter of H. Then η(ε) is a filter
of H for all ε ∈ f. Let x, y ∈ H be such that x ∈ η(ε) and y ∈ H \ η(ε).
If x → y ∈ η(ε), then y ∈ η(ε) which is a contradiction. Hence x → y ∈
H \ η(ε). Let f̃ be a falling fuzzy subhoop of H in which (2) is true. Then
η(ε) is a subhoop of H for all ε ∈ f. Thus 1 ∈ η(ε). Let x, y ∈ H be such
that x ∈ η(ε) and x→ y ∈ η(ε). If y ∈ H \ η(ε), then x→ y ∈ H \ η(ε) by
(3.15). This is a contradiction, and so y ∈ η(ε). Therefore η(ε) is a filter
of H for all ε ∈ f, and thus f̃ is a falling fuzzy filter of H.

Given a probability space (f,A, P ) and a falling shadow f̃ of a random
set η on H, consider the set

f(x; η) := {ε ∈ f | x ∈ η(ε)} (3.16)

for x ∈ H. Then f(x; η) ∈ A.

Proposition 3.11. If f̃ is a falling fuzzy filter of H, then

(∀x, y ∈ H) (x ≤ y ⇒ f(x; η) ⊆ f(y; η)) , (3.17)

(∀x, y ∈ H) (f(x→ y; η) ∩ f(x; η) ⊆ f(y; η)) , (3.18)

(∀x ∈ H) (f(x; η) ⊆ f(1; η)) , (3.19)

(∀x, y ∈ H) (f(y; η) ⊆ f(x→ y; η)) . (3.20)

(∀x, y, z ∈ H) (x� y ≤ z ⇒ f(x; η) ∩ f(y; η) ⊆ f(z; η)) . (3.21)

Proof: Let f̃ be a falling fuzzy filter of H. Then η(ε) is a filter of H for
all ε ∈ f. Let x, y ∈ H be such that x ≤ y and let ε ∈ f(x; η). Then
x→ y = 1 ∈ η(ε) and x ∈ η(ε). Thus y ∈ η(ε), that is, ε ∈ f(y; η). Hence
f(x; η) ⊆ f(y; η). Let ε ∈ f(x → y; η) ∩ f(x; η) for all x, y ∈ H. Then
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x → y ∈ η(ε) and x ∈ η(ε). Since η(ε) is a filter of H, we have y ∈ η(ε),
and so ε ∈ f(y; η). This shows that (3.18) is valid. Since x ≤ 1 for all
x ∈ H, it follows from (3.17) that (3.19) holds. Since y ≤ x → y for all
x, y ∈ H, it follows from (3.17) that (3.20) holds. Let x, y, z ∈ H be such
that x � y ≤ z. Then x ≤ y → z, i.e., x → (y → z) = 1. It follows from
(3.18) and (3.19) that

f(z; η) ⊇ f(y → z; η) ∩ f(y; η)

⊇ f(x; η) ∩ f(x→ (y → z); η) ∩ f(y; η)

= f(x; η) ∩ f(1; η) ∩ f(y; η)

= f(x; η) ∩ f(y; η).

Hence (3.21) is valid.

Proposition 3.12. If f̃ is a falling fuzzy subhoop of H, then

(∀x, y ∈ H)

(
f(x; η) ∩ f(y; η) ⊆ f(x� y; η)

f(x; η) ∩ f(y; η) ⊆ f(x→ y; η)

)
. (3.22)

Proof: If f̃ is a falling fuzzy subhoop of H, then η(ε) is a subhoop of H
for all ε ∈ f. Let ε ∈ f(x; η) ∩ f(y; η). Then x ∈ η(ε) and y ∈ η(ε). It
follows that x�y ∈ η(ε), that is, ε ∈ f(x�y; η). Hence f(x; η)∩f(y; η) ⊆
f(x� y; η). Similarly, we get f(x; η) ∩ f(y; η) ⊆ f(x→ y; η).

Corollary 3.13. Every falling fuzzy filter f̃ of H satisfies the condition
(3.22).

Proposition 3.14. If f̃ is a falling fuzzy filter of H, then

(∀x, y ∈ H) (f(x� y; η) = f(x; η) ∩ f(y; η)) , (3.23)

(∀x, y, z ∈ H) (f((x→ y)→ z; η) ∩ f(y; η) ⊆ f(x→ z; η)) . (3.24)

Proof: Since x�y ≤ x and x�y ≤ y for all x, y ∈ H, it follows from (3.17)
that f(x�y; η) ⊆ f(x; η) and f(x�y; η) ⊆ f(y; η) Hence f(x; η)∩f(y; η) ⊇
f(x� y; η) for all x, y ∈ H. Combining this and Proposition 3.12 induces
(3.23). Since

y � ((x→ y)→ z) ≤ y � (y → z) ≤ z ≤ x→ z

for all x, y, z ∈ H, we have
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f(x→ z; η) ⊇ f(y � ((x→ y)→ z); η) = f(y; η) ∩ f((x→ y)→ z; η)

by (3.17) and (3.23).

Proposition 3.15. If f̃ is a falling fuzzy subhoop of H, then

(∀x, y ∈ H)
(
f̃(x� y) ≥ f̃(x) + f̃(y)− 1, f̃(x→ y) ≥ f̃(x) + f̃(y)− 1

)
.

(3.25)

Proof: Assume that f̃ is a falling fuzzy subhoop of H. Then η(ε) is a
subhoop of H for all ε ∈ f. Hence

{ε ∈ f | x ∈ η(ε)} ∩ {ε ∈ f | y ∈ η(ε)} ⊆ {ε ∈ f | x� y ∈ η(ε)}

and

{ε ∈ f | x ∈ η(ε)} ∩ {ε ∈ f | y ∈ η(ε)} ⊆ {ε ∈ f | x→ y ∈ η(ε)}.

for any x, y ∈ H, and so

f̃(x� y) = P (ε | x� y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) ∩ P (ε | y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) + P (ε | y ∈ η(ε))− P (ε | x ∈ η(ε) or y ∈ η(ε))

= f̃(x) + f̃(y)− 1

and

f̃(x→ y) = P (ε | x→ y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) ∩ P (ε | y ∈ η(ε))

≥ P (ε | x ∈ η(ε)) + P (ε | y ∈ η(ε))− P (ε | x ∈ η(ε) or y ∈ η(ε))

= f̃(x) + f̃(y)− 1.

This completes the proof.

Proposition 3.16. If f̃ is a falling fuzzy filter of H, then

f̃(y) ≥ f̃(x→ y) + f̃(x)− 1 (3.26)

for all x, y ∈ H with f̃(x→ y) + f̃(x) ≥ 1.
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Proof: If f̃ is a falling fuzzy filter of H, then η(ε) is a filter of H for all
ε ∈ f. For any x, y ∈ H, if f̃(x→ y) + f̃(x) ≥ 1, then

{ε ∈ f | x→ y ∈ η(ε)} ∩ {ε ∈ f | x ∈ η(ε)} ⊆ {ε ∈ f | y ∈ η(ε)},

and so

f̃(y) = P (ε | y ∈ η(ε))

≥ P (ε | x→ y ∈ η(ε)) ∩ P (ε | x ∈ η(ε))

≥ P (ε | x→y∈ η(ε))+P (ε | x∈η(ε))−P (ε | x→y∈η(ε) or x∈η(ε))

= f̃(x→ y) + f̃(x)− 1.

This completes the proof.

Theorem 3.17. For any falling shadow f̃ of the random set η, if two con-
ditions (3.18) and (3.19) are valid, then f̃ is a falling fuzzy filter of H.

Proof: Assume that η(ε) is nonempty for all ε ∈ f. Then there exists
x ∈ η(ε) and so ε ∈ f(x; η) ⊆ f(1; η). Thus 1 ∈ η(ε). Let x, y ∈ H be such
that x→ y ∈ η(ε) and x ∈ η(ε). Then ε ∈ f(x→ y; η) and ε ∈ f(x; η). It
follows from (3.18) that

ε ∈ f(x→ y; η) ∩ f(x; η) ⊆ f(y; η).

Thus y ∈ η(ε), and hence η(ε) is a filter of H. Therefore the falling shadow
f̃ of the random set η is a falling fuzzy filter of H.

Theorem 3.18. If a falling shadow f̃ of the random set η satisfies (3.17),
(3.19) and (3.23), then f̃ is a falling fuzzy filter of H.

Proof: Let x, y ∈ H. Since x � (x → y) ≤ y, it follows from (3.17) and
(3.23) that

f(y; η) ⊇ f(x� (x→ y); η) = f(x; η) ∩ f(x→ y; η).

Therefore f̃ is a falling fuzzy filter of H by Theorem 3.17.

Proposition 3.19. If a falling shadow f̃ of the random set η satisfies (3.17)
and (3.23), then

(∀x, y, z ∈ H) (f(x→ y; η) ∩ f(y → z; η) ⊆ f(x→ z; η)) , (3.27)

(∀x, y, z ∈ H) (f(x� z; η) ∩ f(x→ y; η) ⊆ f(y � z; η)) . (3.28)
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Proof: Since (x→ y)� (y → z) ≤ x→ z for all x, y, z ∈ H, the condition
(3.27) is induced by (3.17) and (3.23). Since (z � x)� (x→ y) ≤ z � y for
all x, y, z ∈ H, the condition (3.28) is induced by (3.17) and (3.23).

Since every falling fuzzy filter f̃ of H satisfies two conditions (3.17) and
(3.23), we have the following corollary.

Corollary 3.20. Every falling fuzzy filter f̃ of H satisfies the conditions
(3.27) and (3.28).

Theorem 3.21. If a falling shadow f̃ of the random set η satisfies (3.19)
and (3.21), then f̃ is a falling fuzzy filter of H.

Proof: Let f̃ be a falling shadow of the random set η satisfying (3.19)
and (3.21). Since x�(x→ y) ≤ y for all x, y ∈ H, we have f(x; η)∩f(x→
y; η) ⊆ f(y; η). Using Theorem 3.17, we know that f̃ is a falling fuzzy filter
of H.

Theorem 3.22. If a falling shadow f̃ of the random set η satisfies (3.19)
and (3.24), then f̃ is a falling fuzzy filter of H.

Proof: Let f̃ be a falling shadow of the random set η satisfying (3.19)
and (3.24). Taking x = 1, y = x and z = y in (3.24) induces the condition
(3.18). Therefore f̃ is a falling fuzzy filter of H by Theorem 3.17.

Theorem 3.23. If a falling shadow f̃ of the random set η satisfies (3.19)
and (3.28), then f̃ is a falling fuzzy filter of H.

Proof: Let f̃ be a falling shadow of the random set η satisfying (3.19)
and (3.28). Taking z = 1 in (3.28) induces the condition (3.18). Therefore
f̃ is a falling fuzzy filter of H by Theorem 3.17.

4. Conclusions and future work

The falling shadow theory is applied to subhoops and filters in hoops.
The notions of falling fuzzy subhoops and falling fuzzy filters in hoops are
introduced, and several properties are investigated. Relationship between
falling fuzzy subhoops and falling fuzzy filters are discussed, and conditions
for a falling fuzzy subhoop to be a falling fuzzy filter are provided. Also
conditions for a falling shadow of a random set to be a falling fuzzy filter
are displayed. On the basis of these results, we will apply the theory
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of falling shadows to the another type of ideals and filters in hoops and
investigate some properties and equali definition of them and study the
relation between them in future study.
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