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Abstract

We introduce a class of neighbourhood frames for graded modal logic embedding

Kripke frames into neighbourhood frames. This class of neighbourhood frames

is shown to be first-order definable but not modally definable. We also obtain a

new definition of graded bisimulation with respect to Kripke frames by modifying

the definition of monotonic bisimulation.
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1. Introduction

Graded modal logic GrK is an extension of propositional logic with graded
modalities ♦n(n ∈ N) that count the number of successors of a given state.
The interpretation of formula ♦nϕ in a Kripke model is that the number of
successors that satisfy ϕ is at least n. Originally introduced in Goble [9],
the notion of a graded modality is developed so that ‘propositions can be
distinguished by degrees or grades of necessity or possibility’ [9, p. 1]. This
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language was studied in Kaplan [11] as an extension of S5. Fine [8], De
Caro [6] and Cerrato [2] investigated the completeness of GrK and its ex-
tensions. Van der Hoek [15] investigated the expressibility, decidability and
definability of graded modal logic and also correspondence theory. Cerrato
[3] proved the decidability by filtration for graded modal logic.

De Rijke [7] introduced graded tuple bisimulation for graded modal
logic. Using this he proved the finite model property (which was first proved
in Cerrato [3] via filtration) and that a first-order formula is invariant under
graded bisimulation iff it is equivalent to a graded modal formula. Aceto,
Ingolfsdottir and Sack [1] showed that resource bisimulation and graded
bisimulation coincide over image-finite Kripke frames. Van der Hoek and
Meyer [16] proposed a graded modal logic GrS5, which is seen as a graded
epistemic logic and is able to express ‘accepting ϕ if there are at most n
exceptions to ϕ’. Ma and van Ditmarsch [13] developed dynamic extensions
of graded epistemic logics.

Monotonic modal logics are weakenings of normal modal logics in which
the additivity (♦⊥ ↔ ⊥ and ♦p∨♦q ↔ ♦(p∨ q)) of the diamond modality
has been weakened to monotonicity (♦p ∨ ♦q ↔ ♦(p ∨ q)), which can also
be formulated as a derivation rule: from ` ϕ→ ψ infer ` ♦ϕ→ ♦ψ. Mono-
tonic modal logics are interpreted over monotonic neighbourhood frames,
that is neighbourhood frames where the collection of neighbourhoods of
a point is closed under supersets. There have been many results about
monotonic modal logics and monotonic neighbourhood frames [4, 10, 14],
including model constructions, definability, correspondence theory, canon-
ical model constructions, algebraic duality, coalgebraic semantics, interpo-
lation, simulations of monotonic modal logics by bimodal normal logics,
etc.

In this paper, we propose a neighbourhood semantics for graded modal
logic. We define an operation (.)• (Def. 4.2) to obtain a class of monotonic
neighbourhood frames on which graded modal logic is interpreted. This
class of neighbourhood frames is shown to be first-order definable in Sec-
tion 5 and modally undefinable in Section 6. In Section 7 we obtain a new
definition of graded bisimulation with respect to Kripke frames by modify-
ing the definition of monotonic bisimulation and show that it is equivalent
to the one proposed in [7]. Our results show that techniques for monotonic
modal logics can be successfully applied to graded modal logic.



Neighbourhood Semantics for Graded Modal Logic 375

2. Preliminaries

2.1. Graded modal logic

Language. Let Prop be a set of proposition letters. Language Lg is
defined by induction as follows:

Lg 3 ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | ♦nϕ

where p ∈ Prop and n ∈ N. We recall that N is the set of natural numbers.
The complexity of a formula ϕ ∈ Lg is the number of connectives occurring
in ϕ. Other propositional connectives ⊥, >, ∧, →, ↔ are defined as usual.
The dual of ♦nϕ is defined as �nϕ := ¬♦n¬ϕ. Further, define ♦ϕ := ♦1ϕ
and ♦!nϕ := ♦nϕ ∧ ¬♦n+1ϕ. The interpretation of a formula ♦nϕ in a
Kripke model is that the number of successors that satisfy ϕ is at least n.
The interpretation of formula ♦!nϕ is that the number of successors that
satisfy ϕ is exactly n.

Kripke semantics. A Kripke frame is a pair (W,R), denoted F , where
W is a set of states and R is a binary relation on W . Denote by FK the
class of all Kripke frames. A Kripke model is a pair M = (F , V ) where
F is a Kripke frame and V : Prop → P(W ) is a valuation. For model
M = (W,R, V ) and w ∈W , we call M, w a pointed model.

Given a set X, denote by |X| the cardinality of X. Suppose that w is
a state in a Kripke model M = (W,R, V ). The truth of a Lg-formula ϕ at
w in M, notation M, w  ϕ, is defined inductively as follows:

M, w  p iff p ∈ V (p)
M, w  ¬ψ iff M, w 6 ψ
M, w  ψ1 ∨ ψ2 iff M, w  ψ1 or M, w  ψ2

M, w  ♦nψ iff
∣∣R[w] ∩ JψKM

∣∣ ≥ n
where R[w] = {v ∈ W : Rwv} is the set of w-successors and JψKM = {v ∈
W : M, v  ψ} is the truth set of ϕ in M. For a set Γ of Lg-formulas,
we write M, w  Γ if M, w  ϕ for all ϕ ∈ Γ. Pointed models M, w and
M′, w′ are said to be modally equivalent (notation: M, w ≡kM′, w′) if for
all Lg-formulas ϕ, we have M, w  ϕ iff M′, w′  ϕ.

A formula ϕ is valid at a state w in a frame F , notation F , w  ϕ, if
ϕ is true at w in every model (F , V ) based on F ; ϕ is valid in a frame F ,
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notation F  ϕ, if it is valid at every state in F ; ϕ is valid in a class of
frames SK , notation SK

ϕ, if F  ϕ for all F ∈ SK .
Let SK be a class of Kripke frames and Γ ∪ {ϕ} a set of Lg-formulas.

We say that ϕ is a (local) semantic consequence of Γ over SK , notation
Γ SK

ϕ, if for all models M based on frames in SK , and all states in M,
if M, w  Γ then M, w  ϕ.

Graded semantics. In this subsection, we recall the graded semantics
from Ma and van Ditmarsch [13]. The sum operation and the ‘greater than
or equal to’ relation (≥) are defined over natural numbers N plus ω, the
least ordinal number greater than any natural number, i.e., ∀n ∈ N, n < ω.
Variables n,m, i, j range over the natural numbers N, not over N ∪ {ω}.

A graded frame is a pair f = (W,σ), where W is a set of states and
σ : W ×W → N ∪ {ω} is a function assigning a natural number or ω to
each pair of states. Denote by FG the class of all graded frames. A graded
model is a pair M = (f, V ) where f is a graded frame and V : Prop→ P(W )
is a valuation.

For X ⊆ W and w ∈ W , define σ(w,X) as Σu∈Xσ(w, u), the sum of
σ(w, u) for all u ∈ X. In particular, we define σ(w, ∅) = 0. The notation
X ⊆<ω W represents that X is a finite subset of W and P<ω(W ) is the set
of finite subsets of W .

Suppose that w is a state in a graded model M = (W,σ, V ). The truth
of a Lg-formula ϕ at w in M, notation M, w  ϕ, is defined inductively as
follows:

M, w  p iff w ∈ V (p)
M, w  ¬ψ iff M, w 6 ψ
M, w  ψ1 ∨ ψ2 iff M, w  ψ1 or M, w  ψ2

M, w  ♦nψ iff ∃X ⊆<ω W (σ(w,X) ≥ n & X ⊆ JψKM)

To our knowledge, graded frames first appeared in [6] as an intermediate
structure to prove completeness of GrK with respect to Kripke frames.
They are called multiframes in [1]. Graded frames are alternative semantics
for graded modal logic, indeed each graded frame can be associated with
a Kripke frame validating the same formulas, and vice versa as follows (cf.
[13, Proposition 2.12 ]): Given a Kripke frame F = (W,R), the associated
graded frame F◦ = (W,σ) is defined by setting σ(w, u) = 1 if wRu, and
σ(w, u) = 0 otherwise; given a graded frame F = (W,σ), the associated
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Kripke frame F◦ = (W◦, R) is defined by setting W◦ = {(w, i) | w ∈
W & i ∈ N ∪ {ω}} and (w, i)R(u, j) iff σ(w, u) ≥ j > 0.

Axiomatization. The minimal graded modal logic GrK consists of the
following axiom schemas and inference rules:

(Ax1) all instances of propositional tautologies

(Ax2) ♦0ϕ↔ >
(Ax3) ♦n⊥ ↔ ⊥ (n > 0)

(Ax4) ♦n+1ϕ→ ♦nϕ

(Ax5) �(ϕ→ ψ)→ (♦nϕ→ ♦nψ)

(Ax6) ¬♦(ϕ ∧ ψ) ∧ ♦!mϕ ∧ ♦!nψ → ♦!(m+n)(ϕ ∨ ψ)

(MP ) from ϕ and ϕ→ ψ infer ψ

(Gen) from ϕ infer �ϕ

The set of theorems derivable in the system GrK is also called GrK.
A graded modal logic is a set Λ of Lg-formulas with Grk ⊆ Λ. If ϕ ∈ Λ,
we write `Λ ϕ.

Theorem 2.1 ([6]). GrK is sound and complete with respect to the class
of all Kripke frames.

Theorem 2.2 (Theorem 3.2 of [13]). GrK is sound and complete with
respect to the class of all graded frames.

2.2. Monotonic modal logic

We consider monotonic modal logic with modalities parametrized by natu-
ral numbers, i.e. ♦n and �n with n ∈ N instead of the usual single modality.
As there is no interaction between different ♦n and ♦m, the logic for such
modalities is not essentially different from the logic for a single modality ♦
that was originally proposed.

First, a word on notation. In graded modal logic ♦n denotes the ex-
istence of at least n worlds. So in particular ♦ denotes the existence of
at least one world. Whereas in monotonic logic the existence of a neigh-
bourhood is denoted by � [4] or ∇ [10]. We prefer to stick to the notation
matching usage in graded modal logic. Therefore also in monotonic modal
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logic write ♦ (or ♦n) to denote the existence of a neighbourhood instead
of � or ∇ (�n or ∇n). Consequently, the duals of modalities are also
swapped.

Neighbourhood Semantics. A neighbourhood frame is a tuple F =
(W, {νn}n∈N) where W is a set of states and each νn : W → PP(W ),
called neighbourhood function. Denote by FN the class of all neighbour-
hood frames. A neighbourhood model is a pair M = (F, V ), where F is a
neighbourhood frame and V : Prop→ P(W ) is a valuation.

The truth of a Lg-formula ϕ at a state w of a neighbourhood model
M = (F, V ), notation, M, w  ϕ, is defined inductively as follows, where
n ∈ N:

M, w  p iff p ∈ V (p)
M, w  ¬ψ iff M, w 6 ψ
M, w  ψ1 ∨ ψ2 iff M, w  ψ1 or M, w  ψ2

M, w  ♦nψ iff JψKM ∈ νn(w)

As an example, Figure 1 depicts a Kripke model, graded model and a
neighbourhood model which all make ♦3p true.

A neighbourhood function ν : W → PP(W ) is supplemented or closed
under supersets if for all w ∈W and X ⊆W , X ∈ ν(w) and X ⊆ Y imply
Y ∈ ν(w). A neighbourhood frame F = (W, {νn}n∈N) is monotonic if each
νn is supplemented. A neighbourhood model M = (F, V ) is monotonic if
F is monotonic. Denote by FM the class of all monotonic neighbourhood
frames. Monotonic pointed models M, w and M′, w′ are said to be modally
equivalent if for all Lg-formulas ϕ, we have M, w  ϕ iff M′, w′  ϕ. For
monotonic model M, we have

M, w  ♦nϕ iff ∃X(X ∈ νn(w) & X ⊆ JϕKM).

Axiomatization. The minimal monotonic modal logic MN consists of
the following axioms and inference rules, where n ∈ N:

(Ax1) all instances of propositional tautologies

(MP ) from ϕ and ϕ→ ψ infer ψ

(RMn) from ϕ→ ψ infer ♦nϕ→ ♦nψ
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Figure 1. Three different ways to make ♦3p true

The set of theorems derivable in the system MN is also called MN. A
monotonic modal logic is a set Λ of LN-formulas with MN ⊆ Λ. If ϕ ∈ Λ,
we write `Λ ϕ.

Theorem 2.3 ([14, Thm. 2.41]). MN is sound and strongly complete with
respect to FM .

3. Graded modal logics are monotonic modal logics

In this section we show that graded modal logics are monotonic modal
logics. Let G be a graded modal logic.

Proposition 3.1. Graded modal logics are monotonic modal logics.

Proof: Let G be a graded modal logic. To show that G is a monotonic
modal logic, it suffices to show that (i) G is closed under (MP ) and (ii)
for all n ∈ N, G is closed under (RMn). Item (i) is immediate. We now
show item (ii). We distinguish the case n = 0 from the case n > 0.

Let n = 0. Assume that G ` ϕ→ ψ. By (Ax2), we have ♦0ϕ↔ > and
♦0ψ ↔ > and hence ♦0ϕ→ > and > → ♦0ψ. It follows that G ` ♦0ϕ→
♦0ψ.
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Let now n > 0. Assume that G ` ϕ → ψ. By (Gen), G ` �(ϕ → ψ).
Then by (Ax5), G ` �(ϕ → ψ) → (♦nϕ → ♦nψ). Finally, by (MP ) we
get G ` ♦nϕ→ ♦nψ.

Corollary 3.2. GrK is a monotonic modal logic.

We now define axiomatization GrKMon as the extension of MN with
(Ax2)− (Ax6) of GrK and the novel axiom (Ax7) ♦(ϕ ∨ ψ) ↔ ♦ϕ ∨ ♦ψ.
We show that GrK and GrKMon derive the same theorems.

Proposition 3.3. For any formula ϕ, GrK ` ϕ iff GrKMon ` ϕ.

Proof: (⇐) (Gen) is derivable in GrKMon as follows:

1 ϕ assumption

2 ϕ→ (¬ϕ→ ⊥) Duns Scotus law

3 ¬ϕ→ ⊥ 1,2 (MP )

4 ♦¬ϕ→ ♦⊥ 3 by (RM1)

5 ♦¬ϕ→ ⊥ 4 by (Ax3)

6 > → ¬♦¬ϕ 5 by contraposition

7 �ϕ 6 by def. of � and (Ax1)

(⇒) It suffices to show that (Ax7) is derivable and (RMn) is admissible
rule in GrK. The latter follows from Proposition 3.1. (Ax7) is equivalent
to (i) ♦ϕ ∨ ♦ψ → ♦(ϕ ∨ ψ) and (ii) ♦(ϕ ∨ ψ) → ♦ϕ ∨ ♦ψ. (i) and (ii) are
derivable as follows:

1 �(ϕ→ ϕ ∨ ψ) by (Ax1) and (Gen)

2 ♦ϕ→ ♦(ϕ ∨ ψ) 1 and (Ax5) by (MP)

3 �(ψ → ϕ ∨ ψ) by (Ax1) and (Gen)

4 ♦ψ → ♦(ϕ ∨ ψ) 3 and (Ax5) by (MP)

5 ♦ϕ ∨ ♦ψ → ♦(ϕ ∨ ψ) 2 and 4 by (Ax1)
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1 ¬♦(ϕ ∧ ψ) ∧ ♦0ϕ ∧ ¬♦ϕ ∧ ♦0ψ ∧ ¬♦ψ
→ ♦0(ϕ ∨ ψ) ∧ ¬♦(ϕ ∨ ψ) (Ax6) with m = n = 0

2 ¬♦(ϕ ∧ ψ) ∧ ¬♦ϕ ∧ ¬♦ψ → ¬♦(ϕ ∨ ψ) 1 by (Ax2) and > ∧ ϕ↔ ϕ

3 ♦(ϕ ∨ ψ)→ ♦(ϕ ∧ ψ) ∨ ♦ϕ ∨ ♦ψ 2 by contraposition, De
Morgan and double nega-
tion

4 ϕ ∧ ψ → ϕ classical tautology

5 ♦(ϕ ∧ ψ)→ ♦ϕ 4, RM1

6 ♦(ϕ ∧ ψ)→ ♦ϕ ∨ ♦ψ 5, property of ∨
7 ♦ϕ→ ♦ϕ ∨ ♦ψ classical tautology

8 ♦ψ → ♦ϕ ∨ ♦ψ
9 ♦(ϕ ∧ ψ) ∨ ♦ϕ ∨ ♦ψ → ♦ϕ ∨ ♦ψ

classical tautology

6, 7, 8, property of ∨
10 ♦(ϕ ∨ ψ)→ ♦ϕ ∨ ♦ψ 3, 9, hypothetical syllogism

Another interesting question is whether there exists a class of neigh-
bourhood frames with respect to which GrK is sound and complete. In
monotonic neighbourhood frames the class of so-called KW-formulas ([10,
Def. 5.13]) is elementary ([10, Thm. 5.14] and canonical ([10, Thm. 10.34]).
Therefore, a presentation where each axiom is a KW-formula would make
it straightforward to prove soundness and strong completeness. Unfortu-
nately, (Ax5) and (Ax6) are not KW-formulas, since they have ¬ inside
the scope of ♦, which is forbidden in KW-formulas. Therefore we can not
prove completeness of GrK indirectly via a reference to KW-formulas.

If we adopt a more direct method to prove the completeness, we need
to show that the properties defined by (Ax2)–(Ax7) holds in the canonical
frame of monotonic modal logic containing them. Axioms (Ax5) and (Ax6)
resp. correspond to the properties:

∀w∀X∀Y
(
X ∩ (W \Y ) 6∈ ν1(w) & X ∈ νn(w)⇒ Y ∈ νn(w)

)
∀w∀X∀Y

(
X∩Y 6∈ ν1(w) & X ∈ νm(w) & X 6∈ νm+1(w)

& Y ∈ νn(w) & Y 6∈ νn+1(w)

⇒ X∪Y ∈ νm+n(w) & X ∪ Y 6∈ ν(m+n+1)(w)

)
The difficulty lies at showing that (Ax5) and (Ax6) are valid in the canon-
ical frame of monotonic modal logic containing (Ax5) and (Ax6). For
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canonical frames of monotonic modal logics, we refer to [4, Def. 9.3],
[10, Def. 6.2] and [14, Def. 2.37].

In the next section, we identify a class of complete neighbourhood
frames via an operation (.)•, which is shown to be first-order definable
in Section 5 and modally undefinable in Section 6.

4. Graded neighbourhood frames

Given a set X, denote by P≥n(X) the set of subsets of X such that the
cardinality of each subset is at least n, in other words, P≥n(X) = {X ′ ⊆
X |

∣∣X ′∣∣ ≥ n}. For Γ ⊆ P(W ), define ↑Γ to be the up-set generated by Γ,
that is, ↑Γ := {Y ∈ P(W ) | ∃X(X ∈ Γ & X ⊆ Y )}.

Definition 4.1. A neighbourhood frame F = (W, {νn}n∈N) is a graded
neighbourhood frame if for all w ∈W , there exists an A ⊆W such that for
all n ∈ N, νn(w) = ↑P≥n(A).

Definition 4.2. For a Kripke frame F = (W,R), the associated graded
neighbourhood frame of F is F• = (W, {νn}n∈N), where for w ∈ W and
n ∈ N, νn(w) = ↑P≥n(R[w]).

That each νn in F• = (W, {νn}n∈N) is monotonic follows directly from
the definition. Then we have the following result:

Proposition 4.3. Let F = (W,R) be a Kripke frame and V a valuation
on F . Then for all w ∈W and all formulas ϕ

(F , V ), w  ϕ iff (F•, V ), w  ϕ.

Proof: The proof is by induction on ϕ. The propositional cases follows
from the definition and induction hypothesis.

As for the modal case, let ϕ be ♦nψ, n ∈ N, we have

(F , V ), w  ♦nψ iff
∣∣∣R[w] ∩ JψK(F,V )

∣∣∣ ≥ n
iff

∣∣∣R[w] ∩ JψK(F•,V )

∣∣∣ ≥ n (IH)

iff ∃X ⊆W (X ∈ νn(w) & X ⊆ JψK(F•,V )) (∗)
iff (F•, V ), w  ♦nψ

Here is the proof for the equivalence marked by (∗). First assume that∣∣∣R[w] ∩ JψK(F•,V )

∣∣∣ ≥ n. Then R[w]∩JψK(F•,V ) ∈ P≥n(R[w]). By definition,
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νn(w) =↑P≥n(R[w]). Hence, R[w]∩JψK(F•,V ) ∈ νn(w). We also haveR[w]∩
JψK(F•,V ) ⊆ JψK(F•,V ), which completes the proof of this direction. Now
assume that X ∈ νn(w) and X ⊆ JψK(F•,V ). Since νn(w) =↑P≥n(R[w]),
X ∈↑P≥n(R[w]). Then there exists Y ∈ P≥n(R[w]) and Y ⊆ X. It follows
that Y ⊆ R[w] and |Y | ≥ n. Since X ⊆ JψK(F•,V ), Y ⊆ JψK(F•,V ). Hence,

Y = Y ∩ JψK(F•,V ) ⊆ R[w] ∩ JψK(F•,V ) and therefore
∣∣∣R[w] ∩ JψK(F•,V )

∣∣∣ ≥
|Y | ≥ n.

Given a graded neighbourhood frame F = (W, {νn}n∈N) with νn(w) =↑
P≥n(Aw), we can associate it with a Kripke frame F• = (W,R) with R[w] =
Aw. It follows from definitions that (F•)• = F and (F•)• = F .

For a class of Kripke frames SK , let S•K = {F• | F ∈ SK}. Recall
that FK is the class of all Kripke frames. Since (F•)• = F for any graded
neighbourhood frame F, F•K is equivalent to the class of all graded neigh-
bourhood frames.

Theorem 4.4. GrK is sound and strongly complete with respect to the
class of graded neighbourhood frames.

Proof: By Theorem 2.1, GrK is sound and strongly complete with re-
spect to FK . By Proposition 4.3, GrK is sound and strongly complete with
respect to F•K . Then the claim follows from the fact that F•K is equivalent
to the class of all graded neighbourhood frames.

5. Graded neighbourhood frames are first-order
definable

A class SN of neighbourhood frames is first-order definable if there exists a
set of first-order formulas Γ such that F |= Γ iff F ∈ SN . In this section, we
show that the class of graded neighbourhood frames is(two-sorted) first-
order definable in the (two-sorted) first-order language L1

g of Lg defined
below.

Each monotonic neighbourhood frame F = (W, {νn}n∈N) can be seen as
a two-sorted relational structure (W,P(W ), {Rνn}n∈N, R3) where Rνn ⊆
W × P(W ) and R3 ⊆ P(W ) ×W such that wRνnX iff X ∈ νn(w) and
XR3w iff w ∈ X. Accordingly, the (two-sorted) first-order language L1

g

of Lg has equality =, first-order variables w, u, v, . . . over W , first-order
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variables X,Y, Z, . . . over P(W ), binary symbols Rνn for n ∈ N and R3,
and unary relation symbols P,Q, . . . corresponding to p, q, . . . ∈ Prop.

In other words, given sets of variables Ψ and Φ, formulas in L1
g are

defined inductively as follows:

L1
g 3 χ ::= w = u | X = Y | Pw | RνnwX | R3Xw | ¬χ | χ∨χ | ∀xχ | ∀Xχ

where w, u ∈ Ψ, X,Y ∈ Φ, P corresponds to p ∈ Prop and n ∈ N.
A set A is called atomic in ν1(w) if for all a ∈ A, {a} ∈ ν1(w). Denote

by (?) the following conditions: for all w ∈W

(?1) ν0(w) = P(W ).

(?2) νn(w) is closed under supersets for n ∈ N.

(?3) ∅ 6∈ νn(w) for n ∈ N.

(?4) If X ∈ νn(w), then there exists a minimal Y ∈ νn(w) such that
Y ⊆ X.

(?5) If Y is a minimal element in νn(w), then |Y | = n and Y is atomic in
ν1(w).

(?6) If {y1}, . . . , {yn} ∈ ν1(w) and y1, . . . , yn are pairwise distinct, then⋃
1≤i≤n{yi} is a minimal element in νn(w).

Note that conditions (?) can be expressed in language L1
g. For example,

|Y | ≥ n iff y1 ∈ Y ∧ . . . ∧ yn ∈ Y ∧
∧
i6=j yi 6= yj , and Y is atomic in ν1(w)

iff ∀Z(∀Z ′(Z ′⊆Z ⇒ Z ′=∅ or Z ′=Z) & Z⊆Y ⇒ Z ∈ ν1(w)).

Proposition 5.1. Let F = (W, {νn}n∈N) be a neighbourhood frame. Then
F is graded iff F satisfies (?).

Proof: For the left-to-right direction, assume that F = (W, {νn}n∈N) is
a graded neighbourhood frame, that is, for all w ∈ W , there exists some
A ⊆ W such that for all n ∈ N, νn(w) =↑P≥n(A). Since ↑P≥0(A) =↑
P(A) = P(W ), item (?1) holds. Item (?2) and (?3) also follow directly.

Now assume that X ∈ νn(w). Since νn(w) =↑P≥n(A), there exists
Y ∈ P≥n(A) with Y ⊆ X. It follows that |Y | ≥ n. Let Y ′ be a subset of
Y containing exactly n-elements. Then Y ′ is a minimal element in νn(w)
and Y ′ ⊆ X. Hence, item (?4) follows.
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Now assume that Y is a minimal element in νn(w) =↑P≥n(A). Then
Y ⊆ A and |Y | = n. Since ν1(w) =↑P≥1(A), for all a ∈ A, {a} ∈ ν1(w). It
follows that Y is atomic in ν1(w). Hence, item (?5) holds. For item (?6),
assume that {y1} 6= . . . 6= {yn} ∈ ν1(w) =↑P≥1(A). Then {y1, . . . , yn} ∈↑
P≥n(A). It follows that {y1, . . . , yn} is a minimal element in νn(w). Hence,
item (?6) holds.

The right-to-left direction follows from Lemma 5.4 and 5.5 below.

Lemma 5.2. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). If X ∈ ν1(w), there exists x ∈ X such that {x} ∈ ν1(w).

Proof: Assume that X ∈ ν1(w). By (?4), there exists a minimal Y ∈
ν1(w) such that Y ⊆ X. By (?3), X 6= ∅ and Y 6= ∅. By (?5), Y is atomic
in ν1(w), i.e., for all y ∈ Y , {y} ∈ ν1(w). It follows that there exists x ∈ X
such that {x} ∈ ν1(w).

Lemma 5.3. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). If ν1(w) 6= ∅, there exists a set A ⊆ W such that A is the maximum
atomic set in ν1(w).

Proof: Since ν1(w) 6= ∅, we assume X ∈ ν1(w). By (?3), X 6= ∅. By (?4),
there exists a minimal X ′ ∈ ν1(w) such that X ′ ⊆ A. By (?5),

∣∣X ′∣∣ = 1
and X ′ is atomic in ν1(w). Hence, we can assume X ′ = {a}. Let A be the
union of all singletons in ν1(w). Since {a} ∈ ν1(w), A 6= ∅. Now we show
that A is the maximum atomic set in ν1(w). Since A is the union of all
singletons in ν1(w), A is atomic. Let B be an atomic set in ν1(w). For any
b ∈ B, by atomicity, {b} ∈ ν1(w). It follows that b ∈ A. Therefore, B ⊆ A.
Hence, A is the maximum atomic set in ν1(w).

Lemma 5.4. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). If ν1(w) 6= ∅, then ν1(w) =↑P≥1(A), where A is the maximum atomic
set in ν1(w).

Proof: If ν1(w) = ∅, then A = ∅. Then ν1(w) =↑P≥1(A). If ν1(w) 6= ∅,
assume that X ∈ ν1(w). By Lemma 5.2, there exists an x ∈ X such that
{x} ∈ ν1(w). Since A is the maximum atomic set in A, we have x ∈ A. It
follows that {x} ∈ P≥1(A). Since x ∈ X, X ∈ ↑P≥1(A).

Assume that X ∈ ↑P≥1(A). Then there exists Y ∈ P1(A) such that
Y ⊆ X. Since A is atomic in ν1(w), for all y ∈ Y , {y} ∈ ν1(w). By (?2),
ν1(w) is monotonic. Therefore, Y ∈ ν1(w). Since Y ⊆ X, X ∈ ν1(w).



386 J. Chen, H. van Ditmarsch, G. Greco, A. Tzimoulis

Lemma 5.5. Let F = (W, {νn}n∈N) be a neighbourhood frame satisfying
(?). Then for w ∈W ,

1. If ν1(w) = ∅, then νn(w) = ∅ for n > 1.

2. If ν1(w) 6= ∅, then νn(w) =↑ P≥n(A) for n > 1, where A is the
maximum atomic set in ν1(w).

Proof: For item 1, we prove by contradiction. Assume that ν1(w) = ∅
and for some n > 1, X ∈ νn(w). By (?3), X 6= ∅. By (?4) and (?5), there
exists X ′ ⊆ X such that X ′ is atomic in ν1(w). By (?3), X ′ 6= ∅. By
atomicity of X ′, ν1(w) 6= ∅, contradiction .

Now we prove item 2 and assume that X ∈ νn(w). By (?4), there exists
a minimal element of νn(w) such that Y ⊆ X. By (?5), |Y | ≥ n and Y
is atomic in ν1(w). Since A is the maximum atomic set of ν1(w), Y ⊆ A.
Since |Y | ≥ n, Y ∈ P≥n(A). Since Y ⊆ X, X ∈↑P≥n(A).

Assume that X ∈↑P≥n(A). Then there exists Y ∈ P≥n(A) such that
Y ⊆ X. It follows that |Y | ≥ n. Since A is the maximum atomic set of
ν1(w), Y is atomic in ν1(w). Hence, there exist distinct y1, . . . , yn ∈ Y
such that {y1}, . . . , {yn} ∈ ν1(w) and y1 6= . . . 6= yn. By (?6),

⋃
1≤i≤n{yi}

is a minimal element in νn(w). Since
⋃

1≤i≤n{yi} ⊆ Y ⊆ X and νn(w) is
monotonic by (?2), X ∈ ν(w).

6. Graded neighbourhood frames are not modally
definable

A class SN of neighbourhood frames is modally definable if there exists a
set of modal formulas ∆ such that F  ∆ iff F ∈ SN . In this section,
we show that the class of graded neighbourhood frames is not modally
definable. It is well known that if the class of neighbourhood frames is
modally definable, then it is closed under bounded morphic images. Below
we show that the class of graded neighbourhood frames is not closed under
bounded morphic images (by exhibiting a counterexample), so we conclude
that it is not modally definable.

Given a function f : W → W ′ and X ⊆ W , define f [X] := {f(x) : x ∈
X}.
Definition 6.1. Let F = (W, {νn}n∈N) and F′ = (W, {ν′n}n∈N) be neigh-
bourhood frames. A bounded morphism from F to F′ is a function f : W →
W ′ satisfying for n ∈ N
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(BM1n) If X ∈ νn(w), then f [X] ∈ ν′n(f(w)).
(BM2n) If X ′ ∈ ν′n(f(w)), then there exists X ⊆ W such that f [X] ⊆

X ′ and X ∈ ν(w).
If there is a surjective bounded morphism from F to F′, we say that F′

is a bounded morphic image of F.

Proposition 6.2 (Prop. 5.3 of [10]). Let F and F′ be neighbourhood
frames. If F′ is a bounded morphic image of F, then F  ϕ implies F′  ϕ.

Proposition 6.3. If a class of neighbourhood frames is modally definable,
then it is closed under bounded morphic images.

Proof: Let SN be a class of neighbourhood frames defined by a set of
formulas ∆, F ∈ SN and F′ a bounded morphic image of F. Since F ∈ SN ,
F  ∆. By Proposition 6.2, F′  ∆ and therefore F′ ∈ SN .

Example 6.4. Consider neighbourhood frames F = ({a, b}, {νn}n∈N) such
that for n ∈ N, νn(a) = νn(b) = ↑P≥n({a, b}) and F′ = ({c}, {ν′n}n∈N)
such that ν′0(c) = {∅, {c}}, ν′1(c) = ν′2(c) = {{c}} and ν′k(c) = ∅ for k > 2.
By Definition 4.1, F is a graded neighbourhood frame. As for F′, we have
ν1(c) = ↑P≥1({c}) while ν2(c) 6= ↑P≥2({c}). Therefore, F′ is not a graded
neighbourhood frame. It can be verified that function f : {a, b} → {c},
with f(a) = f(b) = c, is a subjective bounded morphism from F to F′.
Therefore, the class of graded neighbourhood frames is not closed under
bounded morphic images.

Proposition 6.5. The class of graded neighbourhood frames is not mo-
dally definable.

Proof: It follows from Example 6.4 and the contraposition of Proposition
6.3.

7. Bisimulation

The notion of graded tuple bisimulation was first proposed in de Rijke
[7]. In this section, we obtain a new definition of graded bisimulation
by substituting νn(w) with ↑ P≥n(R[w]) in the definition of monotonic
bisimulation. And we prove that the new definition is equivalent to the old
one (cf. Proposition 7.6 and 7.9).
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7.1. From monotonic bisimulation to graded bisimulation

Definition 7.1 (Monotonic bisimulation, Def. 4.10 of [10]). Suppose that
M = (W, {νn}n∈N, V ) and M′ = (W ′, {ν′n}n∈N, V ′) are monotonic neigh-
bourhood models. A non-empty relation Z ⊆ W × W ′ is a monotonic
bisimulation (notation: Z : M -m M′) provided that

• (Prop) If wZw′, then w and w′ satisfy the same proposition letters.

• (Forth) If wZw′ and X ∈ νn(w), then there is X ′ ⊆ W ′ such that
X ′ ∈ ν′n(w′) and ∀x′ ∈ X ′∃x ∈ X : xZx′.

• (Back) If wZw′ and X ′ ∈ ν′n(w′), then there is X ⊆ W such that
X ∈ νn(w) and ∀x ∈ X∃x′ ∈ X ′ : xZx′.

If w ∈ M and w′ ∈ M′, then w and w′ are monotonic bisimilar states
(notation: M, w -m M′, w′) if there is a bisimulation Z : M -m M′ with
wZw′.

Proposition 7.2 (Prop. 4.11 of [10]). Let M = (W, {νn}n∈N, V ) and
M′ = (W ′, {ν′n}n∈N, V ′) be monotonic neighbourhood models. If M, w -m

M′, w′, then for Lg-formula ϕ, M, w  ϕ iff M′, w′  ϕ.

Substituting νn(w) in Definition 7.1 with ↑P≥n(R[w]), we have:

Definition 7.3 (Graded bisimulation). Suppose that F = (W,R, V ) and
M′ = (W ′, R′, V ) are Kripke models. A non-empty relation Z ⊆ W ×W ′
is a graded bisimulation (notation: Z :M -gM′) provided that

• (Prop) If wZw′, then w and w′ satisfy the same proposition letters.

• (Forth) If wZw′ and X ∈↑P≥n(R[w]), then there is an X ′ ⊆ W ′

such that X ′ ∈↑P≥n(R′[w′]) and ∀x′ ∈ X ′∃x ∈ X : xZx′.

• (Back) If wZw′ and X ′ ∈↑P≥n(R′[w′]), then there is an X ⊆ W
such that X ∈↑P≥n(R[w]) and ∀x ∈ X∃x′ ∈ X ′ : xZx′.

If w ∈M and w′ ∈M′, then w and w′ are graded bisimilar states (notation:
M, w -gM′, w′) if there is a bisimulation Z :M -gM′ with wZw′.

Proposition 7.4. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke
models. If M, u -gM′, u′, then M, u ≡kM′, u′.

Proof: Since M, u -g M′, u′, there exists a non-empty relation Z ⊆
W ×W ′ such that Z : M -g M′ and uZu′. For neighbourhood frames
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M• = (W, {νn}n∈N, V ) and M′• = (W, {ν′n}n∈N, V ′), by definition, for
w ∈ W and w′ ∈ W ′, νn(w) =↑P≥n(R[w]) and ν′n(w′) = ↑P≥n(R′[w′]).
Substituting ↑P≥n(R[w]) with νn(w) and ↑P≥n(R′[w′]) with ν′n(w′) in the
definition of Z :M -g M′, we have Z :M•, u -mM′•, u′ and uZu′. For
all formulas ϕ, that M, u  ϕ iff M′, u′  ϕ can be proved as follows:

M, u  ϕ iff M•, u  ϕ Proposition 4.3
iff M′•, u′  ϕ Proposition 7.2
iff M′, u′  ϕ Proposition 4.3

7.2. Graded bisimulation is equivalent to graded tuple
bisimulation

In the rest of this section, we recall the definition of graded tuple bisimula-
tion in de Rijke [7] and show that it is equivalent to Definition 7.3. Given
a set X, denote by P<ω(X) the set of finite subsets of X. We now get:

Definition 7.5 (Graded tuple bisimulation). Let M = (W,R, V ) and
M = (W ′, R′, V ′) be two Kripke models. A tuple Z = (Z1,Z2, . . .) of
relations is called graded tuple bisimulation betweenM andM′ (notation:
Z :M -gtM′) iff:

(1) Z1 is non-empty;

(2) for all i, Zi ⊆ P<ω(W1)× P<ω(W2);

(3) if XZiX ′, then |X| =
∣∣X ′∣∣ = i;

(4) if {w}Z1{w′}, then w and w′ satisfy the same proposition letters;

(5) if {w}Z1{w′}, X ⊆ R[w] and |X| = i ≥ 1, then there exists X ′ ∈
P<ω(W ′) with X ′ ⊆ R′[w′] and XZiX ′;

(6) if {w}Z1{w′}, X ′ ⊆ R[w′] and
∣∣X ′∣∣ = i ≥ 1, then there exists X ∈

P<ω(W ) with X ⊆ R[w] and XZiX ′;

(7) if XZiX ′, then (a) ∀x ∈ X∃x′ ∈ X ′ : {x}Z1{x′}, and (b) ∀x′ ∈
X ′∃x ∈ X : {x}Z1{x′}.

Proposition 7.6. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke
models and Z = (Z1,Z2, . . .) a tuple of relations such that Z :M -gtM′.
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Define Z ⊆W ×W ′ to be a relation such that wZw′ iff {w}Z1{w′}. Then
Z :M -gM′.

Proof: (Prop) follows from item (4) of Definition 7.5. As for (Forth),
assume that wZw′ and X ∈↑P≥n(R[w]). Then there exists Y ⊆ R[w] such
that Y ⊆ X and |Y | = n. Since |Y | = n and {w}Z1{w′}, by items (5)
and (3) there exists Y ′ ⊆ R′[w′],

∣∣Y ′∣∣ = n and Y ZnY ′. It follows that
Y ′ ∈↑P≥n(R′[w′]). By item (7)(b), ∀y′ ∈ Y ′∃y ∈ Y : {y}Z1{y′}. Since
Y ⊆ X and xZy iff {x}Z1{y}, we have ∀y′ ∈ Y ′∃x ∈ X : xZy′, which
completes the proof of that Z satisfies (Forth). That Z satisfies (Back)
can be proved in a similar way.

Now we show how to construct a graded tuple bisimulation out of a
graded bisimulation, with the following lemmas:

Lemma 7.7. Let M and M′ be Kripke models and Z :M, w -gM′, w′.

(1) If u ∈ R[w], then there exists u′ ∈ R′[w′] with uZu′.

(2) If u′ ∈ R′[w′], then there exists u ∈ R[w] with uZu′.

Proof: (1) Since u ∈ R[w], {u} ∈↑ P≥1(R[w]). By (Forth), there exists
Y ′ ∈ ↑P≥1(R′[w′]) such that ∀y′ ∈ Y ′∃x ∈ {u} : xZy′. It follows that
∀y′ ∈ Y ′ : uZy′. Since Y ′ ∈↑P≥1(R′[w′]), there exists u′ ∈ R′[w′] such that
u′ ∈ Y ′. It follows that uZu′.

Claim (2) can be proved in a similar way by using (Back).

Let W and W ′ be sets, X ⊆ W , X ′ ⊆ W ′ and Z ⊆ W ×W ′. Sets X
and X ′ are called a Z-pair if ∀x ∈ X∃x′ ∈ X ′ : xZx′ and ∀x′ ∈ X ′∃x ∈
X : xZx′.

Lemma 7.8. Let M and M′ be Kripke models and Z :M, w -gM′, w′.

(1) If X ⊆ R[w] and |X| = i ≥ 1, then there exists X ′ ⊆ R′[w′] with∣∣X ′∣∣ = i such that X and X ′ form a Z-pair.

(2) If X ′ ⊆ R′[w′] and
∣∣X ′∣∣ = i ≥ 1, then there exists X ⊆ R[w] with

|X| = i such that X and X ′ form a Z-pair.

Proof: (1) The proof is by induction on i. If i = 1, we may assume that
X = {u}. Since X ⊆ R[w], we have u ∈ R[w]. By Lemma 7.7, there exists
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u′ ∈ R′[w′] with uZu′. Let X ′ = {u′}. It follows that
∣∣X ′∣∣ = 1 and that X

and X ′ form a Z-pair.
Consider the case that i > 1. We may assume that X = {u} ∪ Y ,

where Y ⊆ R[w] and u 6∈ Y . It follows that |Y | = i− 1 ≥ 1. By induction
hypothesis, there exists an Y ′ ⊆ R′[w′] such that

∣∣Y ′∣∣ = i − 1 and that
Y and Y ′ forms a Z-pair. Since u ∈ R[w], by Lemma 7.7, there exists
u′ ∈ R′[w′] with uZu′. If u′ 6∈ Y ′, let X ′ = Y ′ ∪ {u′}. Then

∣∣X ′∣∣ = i and
X and X ′ forms a Z-pair.

If u′ ∈ Y ′, there are two subcases: ∃y ∈ Y ∃v′ ∈ R′[w′]\Y ′ : yZv′ and
for all y ∈ Y and v′ ∈ R′[w′]\Y ′, not yZv′.

Consider the case that ∃y ∈ Y ∃v′ ∈ R′[w′]\Y ′ : yZv′. Let X ′ =
Y ′ ∪ {v′}. Then

∣∣X ′∣∣ = i. Since Y and Y ′ form a Z-pair, uZu′ and yZv′,
X and X ′ form a Z-pair.

Consider the case that for all y ∈ Y and v′ ∈ R′[w′]\Y ′, not yZv′.
Since X ∈↑P≥i(R[w]), by (Forth), there exists B′ ∈↑P≥i(R′[w′]) such
that ∀b′ ∈ B′∃x ∈ X : xZb′. Since B′ ∈↑P≥i(R′[w′]), there exists B′′ ⊆ B′
such that B′′ ⊆ R′[w′] and

∣∣B′′∣∣ ≥ i. Since
∣∣Y ′∣∣ = i − 1, there exists

b′′ ∈ B′′ such that b′′ ∈ R′[w′]\Y ′. Since for all y ∈ Y and v′ ∈ R′[w′]\Y ′,
not yZv′, we have for all y ∈ Y , not yZb′′. Since ∀b′ ∈ B′∃x ∈ X : xZb′

and X = {u} ∪ Y , we have uZb′′. Let X ′ = Y ′ ∪ {b′′}. Then
∣∣X ′∣∣ = i.

Since Y and Y ′ form a Z-pair and uZb′′, X and X ′ form a Z-pair.
Claim (2) can be proved in a similar way by using (Back).

Proposition 7.9. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke
models and Z ⊆ W ×W ′ a non-empty relation such that Z : M -g M′.
Define a tuple of relations Z = (Z1,Z2, . . .) as: Z1 = {({w}, {w′}) | wZw′},
and Zn = {(X,X ′) | |X| =

∣∣X ′∣∣ = n, X and X ′ form a Z-pair}, for n > 1.
Then Z :M -gtM′.

Proof: Since Z is non-empty, Z1 is non-empty. So item (1) in Definition
7.5 is satisfied. Items (2), (3) and (4) are satisfied by the definition of Z.
Items (5) and (6) are satisfied by Lemma 7.8. Item (7) is satisfied by the
definition of Zi and the definition of Z-pairs.

In summary, we showed how to construct a graded bisimulation out of
a graded tuple bisimulation (Prop. 7.6), and vice versa (Prop. 7.9). Hence,
graded bisimulation (Def. 7.3) and graded tuple bisimulation (Def. 7.5)
are equivalent. Another notion of bisimulation called resource bisimulation
was proposed in [1], which is very similar to the notion later proposed in
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[13]. A precise comparison of graded bisimulation to these notions is left
for future research.

8. Conclusion

Inspired by graded models, we proposed a class of graded neighbourhood
frames, and we showed that the axiomatiziation GrK is sound and strongly
complete for this class. We further showed that graded neighbourhood
frames are first-order definable but not modally definable. We also ob-
tained a new definition of graded bisimulation building upon the notion
of monotonic bisimulation, where some details concerning resource bisim-
ulation are left for further research. Our results show that techniques for
monotonic modal logics can be successfully applied to graded modal logics.

There are many options for further research:

(1) Using the approach developed in this paper, updating neighbourhood
models [12] can be compared to updated graded models [13].

(2) Building on multi-type display calculi for monotonic logics [5] we plan
to introduce multi-type display calculi for graded modal logic.

(3) With yet another notion of bisimulation on graded frames, and al-
gorithms to calculate two-sorted first-order correspondence on neighbour-
hood frames [10, 5], we plan to get two-sorted first-order correspondence
on graded frames.

(4) Finally, given the logic GrK in Section 2 for n grades, and given its
alternative incarnation as a monotonic modal logic in Section 3, we wish
to find the axiomatization of the graded modal logic for one grade. In
Proposition 3.1 we showed that (RMn) is admissible in GrK. As GrK
only has necessitation for �, this is indeed of some minor interest. We can
also pose this question in the other direction: is GrK derivable in some
extension of MN, that makes the monotonic character of the logic clearer?
Because of the axioms (Ax4), (Ax5) and (Ax6), we should not expect this
to be without interaction axioms for different modalities. However, an
interesting case is graded modal logic for a single modality ♦n: is there a
monotonic modal logic axiomatizing this case, without interaction axioms?
This logic should contain ♦n⊥ ↔ ⊥, corresponding to the requirement that
for all states w in the domain of a model, ∅ /∈ νn(w). Such a logic should
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also contain, for example, (♦nφ ∧ ♦n¬φ) → (♦nψ ∨ ♦n¬ψ). It is easy to
see that this is valid in GrK. However, (♦nφ ∧ ♦n¬φ) → (♦nψ ∨ ♦n¬ψ)
is not derivable in monotone modal logic, as there are models of monotone
modal logic in which it is false. We leave the axiomatization of single-grade
graded modal logic for future research.
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