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Abstract

The goal of the article is twofold. The first one is to provide logics based on po-
sitional semantics which will be suitable for the analysis of epistemic modalities
such as ‘agent . . . knows/beliefs that . . . ’. The second one is to define tableau sys-
tems for such logics. Firstly, we present the minimal positional logic MR. Then,
we change the notion of formulas and semantics in order to consider iterations of
the operator of realization and “free” classical formulas. After that, we move on
to weaker logics in order to avoid the well known problem of logical omniscience.
At the same time, we keep the positional counterparts of modal axioms (T), (4)
and (5). For all of the considered logics we present sound and complete tableau
systems.
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1. Introduction

Sentences like ‘It is raining’ can realize in certain points. Those points can
be treated:

• temporally as moments or certain intervals: ‘It is raining now’, ‘It
has been raining since Monday’,
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• spatially as points or certain parts of space: ‘It is raining in Toruń’,

• epistemically as (ir)rational agents: ‘John knows that it is raining’.

Clearly, the amount of possible interpretations is much richer including
alethic, deontic, etc. The goal of introducing positional logics is to enable
one the expression of such relativized sentences. The difference between
positional and modal logic, which in a sense is also about such relativiza-
tion, is that the first one introduces points in the object language while
the latter treats them implicitly as only semantic entities that are talked
about in the metalanguage. On the other hand, the difference between
hybrid and positional logics is that the points (worlds) can be treated as
independent expressions in hybrid logic, whilst—in the case of positional
logics—they can only be used to form more complex formulas.

The origin of positional logic is mainly associated with the emergence
of temporal logic. The founder of positional logic, and at the same time
of temporal logic, was Jerzy Łoś. His aim was to provide a logical tool for
formalizing empirical sentences such as ‘it is sunny in Warsaw on 26th July
2019’. The expression ‘at . . . it is the case that . . . ’ which Łoś analyzed may
be called the connective of temporal realization. Nonetheless, the temporal
interpretation of realization is not the only possible one.

In [11] Łoś used the realization operator, i.e. the sentence-forming con-
nective from naming and sentential arguments, to express epistemic modal-
ity, while in [10] the temporal interpretation of such operator is considered.
The letter used by Łoś for the realization operator in his investigations
was U , but due to Rescher [15] it shall be denoted as R (cf. [17], [16]).
Generally, the formula RαA can be read in the following manner: A is
realised/realizes in α. In temporal understanding such formula would be
read as: A takes place/happens in moment α. In epistemic context RαA
means: agent α knows that A.

The work of Łoś was continued by Jarmużek and Pietruszczak in [6]
where the minimal system of positional logic MR was introduced (cf. [1]).
Logic MR is the minimal logic among positional logics that are closed under
the law of distribution of R over standard connectives. In [9] Karczewska
proved that MR is the maximal logic with respect to so-called single-index
rules. Weaker logics than MR, for which the problem of distributivity
of R is discussed, were considered by Tkaczyk in [20], [18], [19]. In [3,
pp. 209–224] the discussion of the applications of the R operator for the
analysis of the Master Argument was presented. In [8] an attempt to
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reduce unary modalities to R-structures was considered. In [7] Jarmużek
and Tkaczyk collected the main results and introduced some new ideas
concerning positional logic. In fact, they considered normal logics, i.e.
logics such that their connectives have the same standard meaning inside
and outside the scope of the R operator.

In [12] the possible application of positional logic for the analysis of
the reasoning concerning the social phenomena was presented. In this case
the R operator was modified by replacing the individual constant by a
tuple of individual constants. In [5] one can find investigations concerning
the extended version of positional logic’s language obtained by adding the
predicate symbols.

In this paper we start with the presentation of logic MR. After that,
we define logic MR+ in which we can consider the iterations of R. Such a
system is the basis for the epistemic interpretation of positional operator.
We consider three systems of epistemic positional logic. The first one is the
minimal one that contains the counterpart of (T). Then we consider its ex-
tensions that contain the counterparts of schemata (4) and (5) respectively.
In none of the epistemic logics the logical omniscience problem appears. For
all of the considered logics we define sound and complete tableau systems.

2. Logic MR

2.1. Language and semantics of logic MR

The language of MR consists of propositional variables p0, p1, p2, . . . (we
will use letters p, q, r); standard connectives ¬,∧,∨,→,↔; the operator of
realization R; individual constants a1, a2, a3, . . . (we will use letters a, b, c)
and parentheses ), (. Let VAR (resp. IC) be the set of propositional vari-
ables (resp. individual constants). By F we denote the set of formulas of
Classical Propositional Logic (for short: CPL) defined in the standard way.
The set of MR formulas, i.e. the set For, is the smallest set X meeting the
following conditions:

• if A ∈ F than RαA ∈ X, where α ∈ IC,

• if A ∈ X than ¬A ∈ X,

• if A,B ∈ X than (A ∗B) ∈ X, where ∗ ∈ {∧,∨,→,↔}.
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As we can see, in the language of MR there are no iterations of R operator
and no “free” CPL formulas outside the scope of R operator.

By the complexity of a formula A we mean number c(A), where c :
For −→ N is a function such that: c(A) = 1, if A = RαB; c(A) = c(B) + 1,
if A = ¬B; c(A) = c(B) + c(C) + 1, if A = B ∗C, where ∗ ∈ {∧,∨,→,↔}.
Note that the complexity of the RαA formula equals 1, regardless of the
formula A. In the proofs we present below, we will also use induction
on the complexity of CPL formulas defined similarly to complexity of MR
formulas as o(A), where o : F −→ N is a function defined as c except instead
of A = RαB we have A ∈ VAR and we put 1.

A model of MR (a MR-model) is a triple 〈W, f, v〉 such that:

• W is the non-empty set,
• f : IC −→W is the denotation function,
• v : W × F −→ {0, 1} is a valuation such that for any w ∈W , for any
A,B ∈ F:

v(〈w,¬A〉) = 1 iff v(〈w,A〉) = 0 (v1)
v(〈w,A ∧B〉) = 1 iff v(〈w,A〉) = v(〈w,B〉) = 1 (v2)
v(〈w,A ∨B〉) = 1 iff v(〈w,A〉) = 1 or v(〈w,B〉) = 1 (v3)
v(〈w,A→ B〉) = 1 iff v(〈w,A〉) = 0 or v(〈w,B〉) = 1 (v4)
v(〈w,A↔ B〉) = 1 iff v(〈w,A〉) = v(〈w,B〉). (v5)

We have the following truth-conditions for any A ∈ F and any B,C ∈ For:

M � RαA iff v(〈f(α), A〉) = 1 (m1)
M � ¬B iff M 2 B (m2)

M � B ∧ C iff M � B and M � C (m3)
M � B ∨ C iff M � B or M � C (m4)
M � B → C iff M 2 B or M � C (m5)
M � B ↔ C iff M � B iff M � C. (m6)

The notions of the relation of semantic consequence �MR and the validity
in MR are defined in the standard way. Logic MR might be identified with
the relation �MR. In the subsequent sections we will similarly define and
denote other relations of semantic consequence and identify certain logics
with them.
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For any A,B ∈ For:

R∧ :
A ∧B
A,B

R∨ :
A ∨B
A|B

R→ :
A→ B

¬A|B
R↔ :

A↔ B

A,B|¬A,¬B

R¬¬ :
¬¬A
A

R¬∧ :
¬(A ∧B)

¬A|¬B
R¬∨ :

¬(A ∨B)

¬A,¬B

R¬→ :
¬(A→ B)

A,¬B
R¬↔ :

¬(A↔ B)

A,¬B|¬A,B

Figure 1. Elimination rules for standard connectives outside the scope of
R operator

Let us notice that by [6, p. 150, p. 155] we have that, for any A ∈ F,
for any α ∈ IC:

if �CPL A then �MR RαA. (†)

2.2. Tableau system for logic MR

In this and subsequent sections, in our analysis of tableau systems, we will
adopt an approach described in [4] for relating logics that is based on the
metatheoretical approach to tableau presented in [2] originally developed
for modal logics. Let us start with a general definition of a t-inconsistent
(tableau inconsistent) set of formulas. Let X be a set of formulas:

• X is t-inconsistent iff there is a formula A, such that A,¬A ∈ X,
• X is t-consistent iff it is not t-inconsistent.

Let us present the tableau rules for logic MR. We are going to follow
the index-free approach presented in [7, pp. 128–131]. Firstly, we assume
classical rules for connectives outside the scope ofR operator (see Figure 1).
These are standard elimination rules for boolean connectives. Secondly, we
have specific elimination rules for connectives within the range of R which
are based on a kind of distribution of R operator over other connectives
(see Figure 2).

The set of all tableau rules for logic MR will be denoted as R. For any
rules from R formulas in numerator will be called input, while formulas
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from denominator will be called output. Let us take as an example the rule
RR∧. The input of RR∧ is {Rα(A∧B)} and the output is set {RαA,RαB}.
Notice that this rule is a non-branching one, i.e. it has only one output
(one set of formulas). On the other hand, R¬R∧ is a branching rule which
means that we have two outputs: {Rα¬A} and {Rα¬B}. Once we have
a notion of input we can define the notion of applicability of a rule. Let
R ∈ R and X ⊆ For. R is applicable to X iff for any A from the input of
the R, A ∈ X.

We define the relation of tableau consequence by referring to the concept
of closure under tableau rules, similarly as in [4]. Our general definition
enables one to define a notion of tableau consequence for MR but also for
logics considered in subsequent sections. Let Q be a set of tableau rules
and X,Y be sets of formulas. X is a closure of Y under tableau rules
from Q (for short: Q-closure of Y ) iff there exists such a subset of natural
numbers K that:

• K = N or K = {1, . . . , n} for some n ∈ N,

• there exists such an injective string f : K −→ {Z : Z is a subset of
formulas} that:

– Z1 = Y ,
– for all i, i + 1 ∈ K there exists such a tableau rule R ∈ Q that

its input is included in Zi, while one of its outputs is equal to
Zi+1 \ Zi,

– for all i, i+ 1 ∈ K for any tableau rule R ∈ Q if the input of R
is included in Zi and one of outputs of R is equal to Zi+1 \ Zi,
then for no j such that i < j, j + 1 ∈ K one of the remaining
outputs of R is equal to Zj+1 \ Zj ,

– for any tableau rule R ∈ Q if the input of R is included in⋃
i∈K Zi, then one of outputs of R is in

⋃
i∈K Zi,

• X =
⋃
i∈K Zi.

Clearly, a set X is closed under applications of rules from Q (for short:
Q-closed) if X is a Q-closure of some set Y . In practice, we can treat the
closure in the presented sense as the so-called complete branch. In fact, it
is a union of all elements that are on a complete branch.
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For any A ∈ F:

RR¬ :
Rα¬A
¬RαA

RR∧ :
Rα(A ∧B)

RαA,RαB
RR∨ :

Rα(A ∨B)

RαA|RαB

RR→ :
Rα(A→ B)

Rα¬A|RαB
RR↔ :

Rα(A↔ B)

RαA,RαB|Rα¬A,Rα¬B

R¬R¬ :
¬Rα¬A
¬¬RαA

R¬R∧ :
¬Rα(A ∧B)

Rα¬A|Rα¬B
R¬R∨ :

¬Rα(A ∨B)

Rα¬A,Rα¬B

R¬R→ :
¬Rα(A→ B)

RαA,Rα¬B
R¬R↔ :

¬Rα(A↔ B)

RαA,Rα¬B|Rα¬A,RαB

Figure 2. Elimination rules for standard connectives inside the scope of
R operator

A tableau consequence relation in logic MR is defined with respect to
R-closed sets. A formula A is a tableau consequence of X in MR (in symb.:
XBMR A) iff there is a finite set Y ⊆ X such that anyR-closure of Y ∪{¬A}
is t-inconsistent. And A is a thesis in MR (in symb.: BMRA) iff ∅BMR A.

2.3. Soundness and completeness of tableau system for MR

In order to prove the soundness and completeness of system MR and other
system considered in the subsequent sections, we need to introduce some
additional notions. Let M be a model and X the set of formulas. We say
that M is suitable for X iff for any formula A, if A ∈ X then M � A.

The following lemma shows that by the applications of the rules from
R from satisfiable formulas we receive some satisfiable formulas.

Lemma 2.1. Let X ⊆ For and M = 〈W, f, v〉 be a MR-model suitable for
X. If any rule from R has been applied to X, then M is suitable for the
union of X and at least one output obtained by application of that rule.

Proof: For the cases of applications of the elimination rules for standard
connectives outside the scope of R operator, i.e. rules R∗, R¬∗, where ∗ is
a propositional connective, the proof is standard (cf. [14]).
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Suppose RR¬ has been applied to X. Then Rα¬A ∈ X. Since model
M is suitable for X, then M � Rα¬A. Thus, by the truth-condition (m1),
v(〈f(α),¬A〉) = 1. Hence, by the condition (v1), v(〈f(α), A〉) 6= 1. Thus,
by the truth-conditions (m1) and (m2), M � ¬RαA.

Suppose R¬R¬ has been applied to X. Then ¬Rα¬A ∈ X. Since model
M is suitable for X, then M 2 Rα¬A. Thus, by the truth-condition (m1),
v(〈f(α),¬A〉) = 0. Hence, by the condition (v1), v(〈f(α), A〉) = 1. Thus,
by the truth-conditions (m1) and (m2), M � ¬¬RαA.

Suppose RR∧ has been applied to X. Then Rα(A ∧ B) ∈ X. Since
model M is suitable for X, then M � Rα(A ∧ B). Thus, by the truth-
condition (m3), v(〈f(α), A ∧ B〉) = 1. Hence, by the condition (v2),
v(〈f(α), A〉) = v(〈f(α), B〉) = 1. Thus, by the truth-conditions (m1),
M � RαA and M � RαB.

Suppose R¬R∧ has been applied to X. Then Rα¬(A ∧ B) ∈ X. Since
model M is suitable for X, then M � Rα¬(A ∧ B). Thus, by the truth-
condition (m1), v(〈f(α),¬(A ∧ B)〉) = 1. Hence, by the conditions (v1)
and (v2), either v(〈f(α),¬A〉) = 1 or v(〈f(α),¬B〉) = 1. Thus, by the
truth-condition (m1), either M � Rα¬A or M � Rα¬B.

For the remaining cases, we reason in the similar way.

Let us now introduce the notion of a model generated by a t-consistent
R-closed set. Let X be the t-consistent R-closed set and ICX := {α ∈ IC :
RαA ∈ X}. A MR-model generated by X (for short: MR-X-model) is a
MR-model 〈W, f, v〉 such that:

• W = ICX ,

• for any α ∈ IC we put:

f(α) =

{
α, if α ∈ ICX

amin{n∈N : an∈ICX}, if α /∈ ICX

• for any α ∈W and any A ∈ X ∩ VAR we put:

v(〈α,A〉) =

{
1, if RαA ∈ X
0, if RαA /∈ X

we extend v on W × F by means of conditions (v1)–(v5).
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We have the following fact:

Fact 2.2. Let X ⊆ For be the t-consistent R-closed set, M = 〈W, f, v〉 be
a MR-X-model and α ∈ IC. Then, for any A ∈ F:

• if RαA ∈ X then v(〈α,A〉) = 1,

• if ¬RαA ∈ X then v(〈α,A〉) = 0.

Proof: Base case. We obtain the result by the definition of a MR-X-
model and since X is t-consistent.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ F such that
o(A) ≤ n:

• if RαA ∈ X then v(〈α,A〉) = 1,

• if ¬RαA ∈ X then v(〈α,A〉) = 0.

Inductive step. Let A ∈ F and o(A) = n+ 1.
Let A = ¬B. Suppose Rα¬B ∈ X. Since X is a R-closed set, by

the application of the rule RR¬ ¬RαB ∈ X. By the inductive hypothesis
v(〈α,B〉) = 0. Thus, by the condition (v1), v(〈α,¬B〉) = 1. Suppose
¬Rα¬B ∈ X. Since X is a R-closed set, by the application of the rule
R¬R¬ ¬¬RαB ∈ X. Hence, by the application of the rule R¬¬, RαB ∈ X.
By the inductive hypothesis v(〈α,B〉) = 1. Thus, by the condition (v1),
v(〈α,¬B〉) = 0.

Let A = B ∗C, where ∗ ∈ {∧,∨,→,↔}. Suppose ∗ = ∧, for other cases
we reason in the similar way. Let us assume that Rα(B ∧ C) ∈ X. Since
X is an R-closed set, by the application of the rule RR∧ RαB,RαC ∈ X.
Hence, by the inductive hypothesis, v(〈α,B〉) = 1 and v(〈α,C〉) = 1. Thus,
by the condition (v2), v(〈α,B∧C〉) = 1. Suppose ¬Rα(B∧C) ∈ X. Since
X is a R-closed set, by the application of the rule R¬R∧ either Rα¬B, or
Rα¬C ∈ X. Thus, by the application of the rule RR¬ either ¬RαB ∈ X
or ¬RαC ∈ X. Hence, by the inductive hypothesis, either v(〈α,B〉) = 0
or v(〈α,C〉) = 0. Therefore, by the condition (v2), v(〈α,B ∧ C〉) = 0.

For the remaining cases we reason in the similar way.
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By means of fact 2.2 we can prove the following lemma:

Lemma 2.3. Let X ⊆ For be a t-consistent R-closed set and M = 〈W, f, v〉
be an MR-X-model. Then, for any A ∈ For:

• if A ∈ X then M � A,

• if ¬A ∈ X then M 2 A.

Proof: Base case. Let A ∈ For and c(A) = 1. Thus A = RαB, where
B ∈ F. SupposeRαB ∈ X. Then, by fact 2.2 (1), v(〈α,B〉) = 1. Therefore,
by the truth-condition (m1), M � RαB. Suppose ¬RαB ∈ X. Hence, by
fact 2.2 (2), v(〈α,B〉) = 0. Thus, by the truth-conditions (m1), M 2 RαB.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For such
that c(A) ≤ n:

• if A ∈ X then M � A,

• if ¬A ∈ X then M 2 A.

Inductive step. Let A ∈ For and c(A) = n+ 1.
Let A = ¬¬B. Suppose ¬¬B ∈ X. Hence, by the application of the

rule R¬¬, B ∈ X. Thus, by the inductive hypothesis, M � B. Therefore,
by the truth-condition (m2), M � ¬¬B.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. Suppose ∗ = ∧, for other
cases we reason in the similar way. Let us assume that B ∧ C ∈ X. Since
X is a R-closed set, by the application of the rule R∧ B,C ∈ X. Hence,
by the inductive hypothesis, M � B and M � C. Therefore, by the truth-
condition (m3), M � B ∧ C.

Let A = ¬(B ∗ C), where ∗ ∈ {∧,∨,→,↔}. Suppose ∗ = ∧, for the
other cases we reason in a similar way. Let us assume that ¬(B ∧C) ∈ X.
Hence, by the application of the rule R¬∧, either ¬B ∈ X or ¬C ∈ X.
Thus, by the inductive hypothesis, either M � ¬B or M � ¬C. Therefore,
by the truth-conditions (m2) and (m3), M � ¬(B ∧ C).

Having proven the introduced facts, we can easily receive the soundness
and completeness of our tableau system.

Theorem 2.4. Let X ∪ {A} ⊆ For. Then, X BMR A iff X �MR A.

Proof: Suppose there is finite Y ⊆ X such that any closure of Y ∪ {¬A}
on rules from R is t-inconsistent. Let us assume that there is a MR-model
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M such that M � X ∪ {¬A}. Hence M is suitable to X ∪ {¬A}, so also to
Y ∪{¬A}. By lemma 2.1 there is an R-closure of X ∪{¬A} to which M is
suitable. But such closure is t-inconsistent. Hence, there is A ∈ For such
that M � A and M 2 A. Therefore, for any MR-model M, if M � X then
M � A, and so X �MR A.

Suppose X �MR A. Let us assume that for any finite Y ⊆ X there
is t-consistent R-closure of Y ∪ {¬A}. Hence, there is a t-consistent R-
closure Z such that X∪{¬A} ⊆ Z. Otherwise, any of such a closure would
consist some t-inconsistency. But by the definition of a R-closure of a set,
this would mean that for some finite Y ⊆ X no R-closure of Y ∪ {¬A} is
t-consistent. As a consequence, by lemma 2.3, M � X ∪ {¬A}, where M
is a MR-Z-model. Therefore X 2MR A.

3. Logic MR+

As we noticed, in the language of MR there are no “free” CPL formulas
outside the scope of the R operator. Whereas on the ground of epistemic
logic, it is important to be able to refer both to sentences stating that a
given agent knows a given thing and to sentences simply expressing states
of affairs not propositional attitudes. Furthermore, in the language of MR
there are no iterations of theR operator. But iterations matter in epistemic
contexts, especially if we want to consider so-called positive and negative
introspection. For this reason, we introduce a modification of the language
and semantics of MR.

3.1. Language and semantics of logic MR+

The language of MR+ is an extension of the language of MR. The set of
MR+ formulas, i.e. the set For+, is defined in the usual way as the smallest
set X meeting the following conditions:

• VAR ⊆ X,

• if A ∈ X than RαA ∈ X, where α ∈ IC,

• if A ∈ X than ¬A ∈ X,

• if A,B ∈ X than (A ∗B) ∈ X, where ∗ ∈ {∧,∨,→,↔}.

Obviously F,For ⊂ For+.



188 Mateusz Klonowski, Krzysztof Aleksander Krawczyk, Bożena Pięta

Let us modify the notion of the complexity of a formula. We define
function c+ : For+ −→ N in the standard way, i.e.: c+(A) = 1, if A ∈ VAR;
c+(A) = c+(B) + 1, if A = ¬B or A = RαB; c+(A) = c+(B) + c+(C) + 1,
if A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}.

In this section we also employ the function assigning to a formula its
subformulas, i.e. a function s : For+ −→ P(For+) such that: s(A) = {A},
if A ∈ VAR; s(A) = {A}∪s(B), if A = ¬B or A = RαB; s(A) = {B ∗C} ∪
s(B) ∪ s(C), if A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. Let s(X) := {s(A) :
A ∈ X}.

Let W be a non-empty set. By
−→
W we denote the set of all finite strings

of elements from W . We have (w1, . . . , wn) ∈
−→
W iff n ∈ N and wi ∈W , for

any i such that 1 6 i 6 n. If a string has one element w we write w instead
of (w). A model of MR+ (a MR+-model) is an ordered triple 〈W, f, v〉 such
that:

• W, f are the same as in the case of MR-model,

• v : (
−→
W × For+) ∪ F −→ {0, 1} is such that:

– v�−→
W×For+ is a valuation such that for any −→w = (w1, . . . , wn) ∈

−→
W

and any A,B ∈ For+:

v(〈−→w ,¬A〉) = 1 iff v(〈−→w ,A〉) = 0 (v+
1 )

v(〈−→w ,A ∧B〉) = 1 iff v(〈−→w ,A〉) = v(〈−→w ,B〉) = 1 (v+
2 )

v(〈−→w ,A ∨B〉) = 1 iff v(〈−→w ,A〉) = 1 or v(〈−→w ,B〉) = 1 (v+
3 )

v(〈−→w ,A→ B〉) = 1 iff v(〈−→w ,A〉) = 0 or v(〈w,B〉) = 1 (v+
4 )

v(〈−→w ,A↔ B〉) = 1 iff v(〈−→w ,A〉) = v(〈−→w ,B〉) (v+
5 )

v(〈(w1, . . . ,wn), Rα1
. . .Rαm

A〉) = 1 iff

v(〈(w1, . . . , wn, f(α1), . . . , f(αm)), A〉) = 1 (v+
6 )

– v�F is the classical CPL valuation.

The truth-conditions (m1)–(m6) are now determined for formulas from
For+. Notice that in (m1) we now have a one element string (f(α)) not
a point f(α). Moreover, we add the following truth-condition, for any
A ∈ VAR:

M � A iff v(A) = 1. (m7)
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Thus we get that for any A ∈ F, M � A iff v(A) = 1. And so CPL is a
proper sublogic of MR+, i.e. �CPL⊂�MR+ . Let us also state that MR must
be the proper sublogic of MR+.

Let us notice that for MR+ we have the counterpart of the property (†).
For any α ∈ IC, for any A ∈ For+:

if �MR+ A then �MR+ RαA. (‡)

In order to prove that we define a notion of α-model.
Let M = 〈W, f, v〉 be a MR+- model and α ∈ IC. An α-model received

from M (for short: α-model) is a MR+-model N = 〈W, f, u〉 where u : (
−→
W×

For+) ∪ F −→ {1, 0} is such that, for any A ∈ VAR, for any (w1, . . . , wn) ∈
−→
W we put:

u(〈(w1, . . . , wn), A〉) =

{
1, if v(〈(f(α), w1, . . . , wn), A〉) = 1

0, if v(〈(f(α), w1, . . . , wn), A〉) = 0

u(A) =

{
1, if v(〈f(α), A〉) = 1

0, if v(〈f(α), A〉) = 0

we extend u on (
−→
W × For+) ∪ F by means of standard conditions for CPL

formulas and conditions (v+
1 )–(v

+
6 ).

We have the following fact:

Fact 3.1. Let M = 〈W, f, v〉 be a MR+- model, α ∈ IC and N = 〈W, f, u〉
be an α-model received from M. Then, for any A ∈ For+, for any (w1, . . . ,

wn) ∈
−→
W , v((f(α), w1, . . . , wn), A) = 1 iff u((w1, . . . , wn), A) = 1.

Proof: Base case. By the definition of an α-model.
Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For+ such

that c+(A) ≤ m, for any (w1, . . . , wn) ∈
−→
W , v((f(α), w1, . . . , wn), A) = 1

iff w((w1, . . . , wn), A) = 1.
Inductive step. Let A ∈ For+ and c+(A) = m+ 1.
Let A = ¬B. Then: v((f(α), w1, . . . , wn),¬B) = 1, by the condi-

tion (v+
1 ), iff v((f(α), w1, . . . , wn), B) = 0, by the inductive hypothesis, iff

u((w1, . . . , wn), B) = 0, by the condition (v+
1 ), iff u((w1, . . . , wn),¬B) = 1.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. We consider only case
for ∗ = ∧. For other cases we reason in the similar way. We have:
v((f(α), w1, . . . , wn), B∧C) = 1, by the condition (v+

2 ), iff v((f(α), w1, . . . ,
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wn), B) = v((f(α), w1, . . . , wn), C) = 1, by the inductive hypothesis, iff
u((w1, . . . , wn), B) = u((w1, . . . , wn), C) = 1, by the condition (v+

1 ),
iff u((w1, . . . , wn), B ∧ C) = 1.

Let A = RβB. Then: v((f(α), w1, . . . , wn),RβB) = 1, by the condition
(v+

6 ), iff v((f(α), w1, . . . , wn, f(β)), B) = 1, by the inductive hypothesis, iff
u((w1, . . . , wn, f(β)), B) = 1, by the condition (v+

6 ), iff u((w1, . . . , wn),
RβB) = 1.

By fact 3.1 we receive the following corollary:

Fact 3.2. Let M = 〈W, f, v〉 be a MR+- model, α ∈ IC and N = 〈W, f,w〉
be an α-model. Then, for any A ∈ For+, M � RαA iff N � A.

Proof: Base case. By the definition of an α-model.
Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For+ such

that c+(A) ≤ n, M � RαA iff N � A.
Inductive step. Let A ∈ For+ and c+(A) = m+ 1.
Let A = ¬B. Then: M � Rα¬B, by the truth-condition (m1), iff

v((f(α),¬B) = 1, by the condition (v+
1 ), iff v((f(α), B) = 0, by the truth-

condition (m1), iff M 2 RαB, by the inductive hypothesis iff N 2 B, by
the truth-condition (m2), iff N 2 ¬B.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. We consider only case for
∗ = ∧. For other cases we reason in the similar way. We have: M �
RαB ∧ C, by the truth-condition (m1), iff v((f(α), B ∧ C) = 1, by the
condition (v+

2 ), iff v((f(α), B) = v((f(α), C) = 1, by the truth-condition
(m1), iff M 2 RαB and M 2 RαC, by the inductive hypothesis iff N 2 B
and N 2 C, by the truth-condition (m3), iff N 2 B ∧ C.

Let A = RβB. Then: M � RαRβB, by the truth-condition (m1), iff
v(f(α),RβB) = 1, by the condition (v+

6 ), iff v((f(α), f(β)), B) = 1, by
fact 3.1, iff u(f(β), B) = 1, by the truth-condition (m1), iff N 2 RβB.

By fact 3.2, if there is a MR+- model M such that M 2 RαA, for some
α ∈ IC, then there is MR+- model N such that N 2 A. Therefore (‡) holds.

3.2. Tableau system for logic MR+

In the case of the elimination rules for standard connectives inside the scope
ofR operator (cf. Figure 1), the tableau rules forMR+ are of the same form
as rules for MR. The only difference is that the formulas in the numerator
and denominator vary over For+ instead of just For. The rest of tableau
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For any A,B ∈ For+:

RR¬ :
Rα1

. . .Rαn
¬A

¬Rα1
. . .Rαn

A
RR∧ :

Rα1
. . .Rαn

(A ∧B)

Rα1
. . .Rαn

A,Rα1
. . .RαnB

RR∨ :
Rα1

. . .Rαn
(A ∨B)

Rα1 . . .RαnA|Rα1 . . .RαnB

RR→ :
Rα1

. . .Rαn
(A→ B)

Rα1 . . .Rαn¬A|Rα1 . . .RαnB

RR↔ :
Rα1 . . .Rαn(A↔ B)

Rα1
. . .Rαn

A,Rα1
. . .Rαn

B|Rα1
. . .Rαn

¬A,Rα1
. . .Rαn

¬B

R¬R¬ :
¬Rα1

. . .Rαn
¬A

¬¬Rα1
. . .Rαn

A
R¬R∧ :

¬Rα1
. . .Rαn

(A ∧B)

Rα1
. . .Rαn

¬A|Rα1
. . .Rαn

¬B

R¬R∨ :
¬Rα1

. . .Rαn
(A ∨B)

Rα1
. . .Rαn

¬A,Rα1
. . .Rαn

¬B

R¬R→ :
¬Rα1

. . .Rαn
(A→ B)

Rα1 . . .RαnA,Rα1 . . .Rαn¬B

R¬R↔ :
¬Rα1 . . .Rαn(A↔ B)

Rα1
. . .Rαn

A,Rα1
. . .Rαn

¬B|Rα1
. . .Rαn

¬A,Rα1
. . .Rαn

B

Figure 3. Elimination rules for standard connectives inside the scope of
Rα1 . . .Rαn , for some n ∈ N.

rules, i.e. elimination rules for standard connectives inside the scope of
operator R, are presented in Figure 3. We will use, however, the same
notion for rules. The set of tableau rules for logic MR+ is denoted as R+.
The notions of thesis and tableau consequence in MR+ are defined as for
MR but with respect to R+.
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3.3. Soundness and completeness of tableau system for MR+

In order to prove the soundness of our system we use the counterpart of
lemma 2.1 for rules from R+. Notice that the first nine tableau rules in
Figure 1 work just fine for formulas of CPL, for any A,B ∈ F.

Lemma 3.3. Let X ⊆ For+ and M = 〈W, f, v〉 be a MR+- model suitable
for X. If any rule from R+ has been applied to X, then M is suitable for
the union of X and at least one output obtained by application of that rule.

Proof: Similarly as for lemma 2.1.

In order to prove completeness we use the same argument as before but
with respect to the modified version of the generated model. Let X ∈ For+

be a R+-closed set and ICX = {α ∈ IC : RαA ∈ s(X)}. A MR+-model
generated by X (for short: MR+-X-model) is a MR+-model 〈W, f, v〉 such
that:

• W, f are as in the previous case,

• for any A ∈ X ∩ VAR, for any (α1, . . . , αn) ∈
−→
W we put:

v(〈(α1, . . . , αn), A〉) =

{
1, if Rα1 . . .RαnA ∈ X
0, if Rα1 . . .RαnA /∈ X

v(A) =

{
1, if A ∈ X
0, if A /∈ X

we extend v on (W × For+) ∪ F by means of standard conditions for
CPL formulas and conditions (v+

1 )–(v
+
6 ).

First we prove the following fact:

Fact 3.4. Let X ⊆ For+ be a t-consistent R+-closed set and M = 〈W, f, v〉
be a MR+ X-model. Then, for any A ∈ For+, for any α1, . . . , αn ∈ IC:

• if Rα1 . . .RαnA ∈ X then v(〈(α1, . . . , αn), A〉) = 1,

• if ¬Rα1
. . .Rαn

A ∈ X then v(〈(α1, . . . , αn), A〉) = 0.

Proof: Base case. By the definition of the MR+ X-model and since X is
t-consistent.
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Inductive hypothesis. Let m ∈ N. Suppose that for any A ∈ For+ such
that c+(A) ≤ m, for any α1, . . . , αn ∈ IC:
• if Rα1

. . .Rαn
A ∈ X then v(〈(α1, . . . , αn), A〉) = 1,

• if ¬Rα1
. . .Rαn

A ∈ X then v(〈(α1, . . . , αn), A〉) = 0.
Inductive step. Let A ∈ For+ and c+(A) = m+ 1.
Let A = ¬B. Suppose Rα1

. . .Rαn
¬B ∈ X. Hence, by the ap-

plication of the rule R¬R ∈ R+, ¬Rα1 . . .RαnB ∈ X. By the induc-
tive hypothesis v(〈(f(α1), . . . , f(αn)), B〉) = 0. By the condition (v+

1 )
v(〈f(α1), . . . , f(αn)),¬B〉) = 1. Suppose ¬Rα1

. . .Rαn
¬B ∈ X. Hence,

by the application of the rule R¬R¬ ∈ R+, ¬¬Rα1
. . .Rαn

B ∈ X. By the
application of the rule R¬¬ ∈ R+, Rα1

. . .Rαn
B ∈ X. By the inductive

hypothesis v(〈(f(α1), . . . , f(αn)), B〉) = 1. Thus, by the condition (v+
1 ),

v(〈(f(α1), . . . , f(αn)),¬B〉) = 0.
Let A = B ∗C, where ∗ ∈ {∧,∨,→,↔}. We consider only case for ∗ =

∧. For other cases we reason in the similar way. Suppose Rα1
. . .Rαn

(B ∧
C) ∈ X. Hence, by the application of the rule RR∧ ∈ R+, Rα1

. . .Rαn
B ∈

X and Rα1
. . .Rαn

C ∈ X. Thus, by the inductive hypothesis, v(〈(f(α1),
. . . , f(αn)), B〉) = 1 and v(〈(f(α1), . . . , f(αn)), C〉) = 1. Thus, by the con-
dition (v+

2 ), v(〈(f(α1), . . . , f(αn)), B∧C〉) = 1. Suppose ¬Rα1 . . .Rαn(B∧
C) ∈ X. Hence, by the application of the rule R¬R∧ ∈ R+, Rα1

. . .Rαn
¬B

∈ X or Rα1
. . .Rαn

¬C ∈ X. By the application of the rule RR¬ ∈ R+,
¬Rα1

. . .Rαn
B ∈ X or ¬Rα1

. . .Rαn
C ∈ X. Thus, by the inductive hy-

pothesis, either v(〈(f(α1), . . . , f(αn)), B〉) = 0 or v(〈(f(α1), . . . , f(αn)),
C〉) = 0. Thus, by the condition (v+

2 ), v(〈(f(α1), . . . , f(αn))B ∧ C〉) = 0.
Let A = RβB. Suppose Rα1

. . .Rαn
A ∈ X (resp. ¬Rα1

. . .Rαn
A ∈

X), so Rα1
. . .Rαn

RβB ∈ X (resp. ¬Rα1
. . .Rαn

RβB ∈ X). Let us
assume that that Rβ is the longest iteration of R which appears right after
Rαn . If it is not then we can consider the longest since formula is a finite
string of symbols. Hence B is a propositional variable or is of the form ¬C
or C ∗D, where ∗ ∈ {∧,∨,→,↔}. Thus we can reason as in the previous
cases.

The following lemma enables one to prove completeness theorem:

Lemma 3.5. Let X ⊆ For+ be a t-consistent R+-closed set, M be an MR+

X-model. Then, for any A ∈ For+

• if A ∈ X then M � A,
• if ¬A ∈ X then M 2 A.
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Proof: We reason similarly as in the case of lemma 2.3. In the base
case we consider a propositional variable and receive the required result by
the definition of the MR+ X-model. In the inductive step we additionally
consider formulas of the form RαB and ¬RαB. In such cases we receive
the required result by fact 3.4.

As in the case for MR, by lemmas 3.3, 3.5 we get the following theorem:

Theorem 3.6. Let X ∪ {A} ⊆ For+. Then, X BMR+ A iff X �MR+ A.

4. Modal paradigm and logical omniscience

The standard approach to epistemic logic is based on modal logic, where
the necessitation operator � is rewritten as K. Formal interpretation of
� and K is the same if we consider modal logic at least as strong as logic
T. Operator � supposed to express a kind of necessity, very often called
metaphysical or alethic one, while operator K supposed to enable one to
express a propositional attitudes, that an agent knows this or that (see for
instance [13]). The distinguishing feature of the standard epistemic logic
is that it contains the schema (T): KA→ A. By (T) the classical property
of knowledge is expressed, i.e. what is known is true. Other interesting
properties that are often considered on the ground of modal epistemic logic
are so-called positive and negative introspection. The former means that if
an agent knows that A, then he knows that he knows that A. On the formal
ground it is expressed by the schema (4): KA → KKA. The latter means
that if an agent does not know that A, then he knows that he does not know
that A. Such a property is expressed by the schema (5): ¬KA→ K¬KA.

One of the big questions with respect to propositional attitudes is the
logical omniscience, i.e. a problem of the deductive closure of agent’s knowl-
edge and a problem of knowing by an agent all thesis of a given logic. On
the formal ground the schema (K) K(A → B) → (KA → KB) and the
Necessitation Rule (RN): if A is a thesis than KA is a thesis, also known
as the Gödel’s Rule, enable one to prove the Monotonicity Rule (RM): if
A → B is a thesis, then KA → KB is a thesis. The rule (RM) simply
says that an agent’s knowledge is deductively closed. And let us remember
that metavariables A and B represent formulas of arbitrary complexity.
While the bigger the complexity of formula is, the harder the reasoning to
perform. The deductive closure, however, makes sure that no matter how
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hard the reasoning is, the agent is able to derive the consequence. It seems
highly unintuitive with regard to empirical agents like human beings. From
this perspective even sole (K) and (RN) might seem to be unintuitive. For
(K) says that the agent’s knowledge is closed under the Modus Ponens and
no matter what formulas are taken into account. And (RN) says that agent
knows each thesis of a given logic which is rather impossible.

5. Epistemic positional logics

Let us stick to the language of MR+. Formulas of the form RαA might be
read: agent α knows that A. By counterparts of modal schemata (K), (T),
(4) and (5) in the positional language we mean the following schemata:

Rα(A→ B)→ (RαA→ RαB) (RK)
RαA→ A (RT)
RαA→ RαRαA (R4)
¬RαA→ Rα¬RαA. (R5)

The counterpart of (RN) is of the following form:

if A is valid, then RαA is valid. (RRN)

The rule (RRN) is not only positional but also a semantic counterpart of
(RN).

Our main goal is to obtain epistemic logic based on positional logic such
that:

• it contains the positional counterpart of (T),

• it does not contain the positional counterpart of (K),

• the positional semantic counterpart of (RN) is not satisfied,

• some of its extensions contain counterparts of (4) and (5).

5.1. Semantics

Notice that MR+ contains (RK). Suppose M � Rα(A → B) and M �
RαA. Then, by the truth-condition (m1), v(f(α), A → B) = 1 and
v(f(α), A) = 1. Hence, by the condition (v+

4 ), v(f(α), B) = 1. Thus, by
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the truth-condition (m1), M |= RαB. Moreover, by (‡) for MR+ (RRN) is
satisfied. Thus we have to change the notion of a MR+-model.

A non-standard MR+-model (for short: a non-standard model) is a triple
〈W, f, v〉 such that:

• W, f are as in the previous cases,

• v(
−→
W × For+) ∪ F −→ {0, 1} is such that:

– v �−→
W×For+ is such that (v+

6 ) is satisfied and for other cases is
arbitrary,

– v�F is a classical CPL valuation.

The truth-conditions are the same as in the case of MR+-models.
By means of non-standard models we avoid the problem of logical omni-

science. For instance, we still have that p∨¬p is valid but since the valuation
of a non-standard model is arbitrary on 〈w, p ∨ ¬p〉 it does not have to be
the case that for any α ∈ IC, Rαp ∨ ¬p. By means of such models we also
can falsify (RK). Consider a non-standard model M = 〈W, f, v〉 such that
W = {w}, f(IC) = {w} and v is such that, for any (w1, . . . , wn) ∈

−→
W :

• v(〈(w1 . . . , wn), q〉) = 0, if n = 1,

• v(〈(w1 . . . , wn), q〉) = 1, if n > 1,

• v(〈(w1 . . . , wn), A〉) = 1, for any A ∈ For+ \ {q},
• v(VAR) = {1} and is extended on F in the standard way.

Then M � Rα(p→ q) and M � Rαp but M 2 Rαq.
In order to validate formulas of the schema (RT) we need to stipulate

some additional restrictions on non-standard models. Let us consider the
following condition, for any α ∈ IC, for any A ∈ For+:

if v(〈f(α), A〉) = 1 then M � A. (?)

In order to validate formulas of the schema (R4) and (R5) we use the
following conditions, for any α ∈ IC, for any A ∈ For+:

if v(〈f(α), A〉) = 1 then v(〈f(α),RαA〉) = 1 (??)
if v(〈f(α), A〉) = 0 then v(〈f(α),¬RαA〉) = 1. (???)
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We receive the following fact:

Fact 5.1. Let M = 〈W, f, v〉 be a non-standard model, A ∈ For+ and
α ∈ IC. Then:

(1) (?) is satisfied iff M � RαA→ A,

(2) (??) is satisfied iff M � RαA→ RαRαA,
(3) (???) is satisfied iff M � ¬RαA→ Rα¬RαA.

Proof: Ad. (1). Suppose that (?) holds and M � RαA. Hence v(f(α), A)
= 1. By (?) we get M � A, hence M � A. For the other direction suppose
M � RαA→ A and v(〈f(α), A〉) = 1. This means M � RαA, which gives
us M � A.

Ad. (2). Suppose that (??) holds and M � RαA. Thus c(〈f(α), A〉) =
1. By (??) we get v(〈f(α),RαA〉) = 1, hence M � RαRαA. For the other
direction suppose M � RαA → RαRαA and v(〈f(α), A〉) = 1. Hence
M � RαRαA. By (v+

6 ) we obtain v(〈f(α),RαA〉) = 1.
Ad. (3). Suppose that (???) holds and M � ¬RαA. Thus v(〈f(α), A〉)

= 0. By (???) v(〈f(α),¬RαA〉) = 1, so M � Rα¬RαA. For the other
direction suppose M � ¬RαA → Rα¬RαA and v(〈f(α), A〉) = 0. Hence
M � ¬RαA, so M � Rα¬RαA which means v(〈f(α),¬RαA〉) = 1.

Any non-standard model such that (?) is satisfied shall be called amodel
of ER (for short: an ER-model). Any ER-model such that (??) (resp. (???))
is satisfied shall be called a model of ER4 (resp. a model of ER5) (for short:
an ER4-model, resp. an ER5-model). A logic ER might be considered the
minimal epistemic positional logic based in non-standard models. Logics
ER4 and ER5 are the minimal epistemic positional logics based on non-
standard models that contain (R4) and (R5) respectively.

5.2. Tableau systems of ER, ER4 and ER5

For logics ER, ER4 and ER5 the elimination rules for standard connectives
outside the scope of operator R are the same as in the case of MR+. For
our logics we also have to include the rule RR¬ from Figure 3 and the rule
RRT from Figure 4. In the case of logic ER4 (resp. ER5) we additionally
include RR4 (resp. RR5) from Figure 4. In the case of logic ER we assume
all the specific rules. The sets of tableau rules for ER (resp. ER4, ER5)
shall be denoted as RER (resp. RER4, RER5).
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For any A,B ∈ For+:

RRT :
RαA
A

RR4 :
¬RαRαA
¬RαA

RR5 :
¬Rα¬RαA
RαA

Figure 4. Specific rules for R operator

Let us notice an interesting dependence. By means of rules RRT, R¬¬
and R¬R¬ we can easily derive the rule RR5.

1. ¬Rα¬RαA

2. ¬¬RαRαA by the rule R¬R¬ and 1

3. RαRαA by the rule R¬¬ and 2

4. RαA by the rule RRT and 3 �

Clearly the rule R¬R¬ corresponds with the condition (v+
1 ). We have that

the logic determined by ER-models such that the condition (v+
1 ) is satisfied

contains (R5). Suppose M � ¬Rα¬RαA. Thus v(f(α),¬RαA) = 0, by
the condition (v+

1 ) v(f(α),RαA) = 1. By the condition (?) M � RαA.

5.3. Soundness and completeness of tableau systems for ER, ER4
and ER5

A soundness theorem might be proved similarly as in the case of MR+ and
MR. Let us notice that by fact 5.1 by applications of new rules RRT, RR4
and RR5 from satisfiable formulas we receive some satisfiable formulas.

Lemma 5.2. Let Λ ∈ {ER,ER4,ER5}, X ⊆ For+ and M = 〈W, f, v〉 be
a Λ-model suitable for X. If any rule from RΛ has been applied to X,
then M is suitable for the union of X and at least one output obtained by
application of that rule.

Proof: Similarly as for lemma 2.1.
Suppose that RRT has been applied to X. Hence RαA ∈ X. Since M

is suitable for X M � RαA. By 5.1 (1), we obtain M � A.
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Let Λ = ER4. Suppose that RR4 has been applied to X. Hence
¬RαRαA ∈ X. Since M is suitable for X M � ¬RαRαA. By 5.1 (2)
we obtain M � ¬RαA.

Let Λ = ER5. Suppose that RR5 has been applied to X. Hence
¬Rα¬RαA ∈ X. Hence M � ¬Rα¬RαA. Since M is suitable for X
M � ¬Rα¬RαA. By 5.1 (3) and the truth-condition (m2) we obtain
M � RαA.

In order to prove completeness we use the same argument as before
but with respect to modified version of the generated model. Let us first
present special extensions of sets closed under tableau rules. Let Λ ∈
{ER,ER4,ER5} and X be a RΛ-closed set. By XΛ we shall denote a set
such that:

• if Λ = ER then XΛ = X,

• if Λ = ER4 then XΛ is the smallest set Y ⊆ For+ such that X ⊆ Y
and if RαA ∈ Y then RαRαA ∈ Y ,

• if Λ = ER5 then XΛ is the smallest set Y ⊆ For+ such that X ⊆ Y
and if either ¬RαA ∈ X or RαA 6∈ Y then Rα¬RαA ∈ Y .

We have the following fact:

Fact 5.3. Let Λ ∈ {ER,ER4,ER5} and X be a RΛ-closed set. If X is
t-consistent then XΛ is t-consistent.

Proof: Let Λ = ER4. Assume that X is t-consistent and XER4 is t-
inconsistent. Note that there are no formulas of the form ¬A in XER4 \X
– there are formulas preceded by an R operator only. For this reason XER4

can be t-inconsistent only when ¬Rα . . .Rα︸ ︷︷ ︸
n

A ∈ X and Rα . . .Rα︸ ︷︷ ︸
n

A ∈

XER4 \X, for some n ≥ 1. Hence by definition of XER4, Rα . . .Rα︸ ︷︷ ︸
k

A ∈ X,

for some k < n. But by application of rule RR4 n − k times we obtain
¬Rα . . .Rα︸ ︷︷ ︸

k

A ∈ X, so X is t-inconsistent which gives us contradiction

with the assumption.
Let Λ = ER5. Reasoning in the same manner, we assume that X is t-

consistent andXER5 is t-inconsistent. HenceRα¬RαA ∈ XER5\X and ¬Rα
¬RαA ∈ X. By the definition of XER5, either ¬RαA ∈ X or RαA 6∈ XER5.
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In the second case we get RαA 6∈ X ⊆ XER5. By the application of the
rule RR5 we obtain RαA ∈ X. In both cases we get a contradiction.

Let Λ ∈ {ER,ER4,ER5} andX be aRΛ-closed set. A Λ-model generated
by XΛ (for short: a XΛ-model) is a Λ-model 〈W, f, v〉 such that:

• W, f are as in the previous case,

• for any for any (α1, . . . , αn) ∈
−→
W and any A ∈ For+:

v(〈(α1, . . . , αn), A〉) =

{
1, if Rα1

. . .Rαn
A ∈ XΛ

0, if Rα1
. . .Rαn

A /∈ XΛ

• for any A ∈ VAR we stipulate:

v(A) =

{
1, if A ∈ XΛ

0, if A /∈ XΛ

we extend vE on F in the standard way.

Because of the definition of valuation from XΛ-model, implications of
the fact 3.4 are obvious. The implications obviously hold if in the an-
tecedents we change X on XΛ.

Lemma 5.4. Let Λ ∈ {ER,ER4,ER5}, X be a RΛ-closed set and M be a
XΛ-model. Then, for any A ∈ For+:

• if A ∈ XΛ then M � A,

• if ¬A ∈ XΛ then M 2 A.

Proof: Base case. Let A ∈ For+ and c+(A) = 1. Thus A ∈ VAR. Suppose
A ∈ X. Then, by the definition of v, v(A) = 1.

Inductive hypothesis. Let n ∈ N. Suppose that for any A ∈ For+ such
that c+(A) ≤ n, if A ∈ X then M � A.

Inductive step. Let A ∈ For+ and c+(A) = n + 1. We consider the
following cases, the others are considered in a similar way.

Let A = ¬¬B. Suppose ¬¬B ∈ XΛ. Thus, by the definition of XΛ,
¬¬B ∈ X. Hence, by the application of the rule R¬¬, B ∈ X. Thus, by
the inductive hypothesis, M � B.

Let A = B ∗ C, where ∗ ∈ {∧,∨,→,↔}. We consider only case for
∗ = ∧. For other cases we reason in the similar way. Suppose B ∧C ∈ XΛ.
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Thus, by the definition of XΛ, B∧C ∈ X. Since X is RΛ-closed set, by the
application of the rule R∧, B,C ∈ X. Hence, by the inductive hypothesis,
M � B and M � C. Therefore, by the truth-condition (m3), M � B ∧ C.

Let A = ¬(B ∗ C), where ∗ ∈ {∧,∨,→,↔}. We consider only case for
∗ = ∧. For other cases we reason in the similar way. Suppose ¬(B ∧ C) ∈
XΛ. Thus, by the definition of XΛ, ¬(B ∧ C) ∈ X. Since X is RΛ-closed
set, by the application of the rule R¬∧, either ¬B ∈ X or ¬C ∈ X. Hence,
by the inductive hypothesis and the truth-condition (m2), either M 2 B or
M 2 C. Therefore, by the truth-condition (m3), M � B ∧ C.

Let A = Rα1
. . .Rαn

B. Suppose Rα1
. . .Rαn

B ∈ XΛ. By the def-
inition of a XΛ-model, the truth-condition (m1) and the condition (v+

6 )
M � Rα1 . . .RαnB.

Let A = ¬Rα1 . . .RαnB. Suppose ¬Rα1 . . .RαnB ∈ XΛ. By the def-
inition of a XΛ-model the truth-condition (m1) and the condition (v+

6 )
M 2 Rα1

. . .Rαn
B.

The following fact shows that generated models satisfy the proper con-
ditions.

Fact 5.5. Let Λ ∈ {ER,ER4,ER5}, X ⊆ For+ be a t-consistent RΛ-closed
set and M = 〈W, f, v〉 be a XΛ-model. Then:

(1) the condition (?) is satisfied,

(2) if Λ = ER4 then the condition (??) is satisfied,

(2) if Λ = ER5 then the condition (???) is satisfied.

Proof: Ad (1). Suppose v(〈f(α), A〉) = 1. Hence, by the definition of
a XΛ-model, RαA ∈ XΛ. Assume RαA ∈ X. Thus, by the rule RRT,
A ∈ X. By lemma 5.4 (1) M � A. Assume RαA 6∈ X. We have two
possible cases. Let RαA = RαRα . . .RαB. Thus, by the definition of a
XER4-model, Rα . . .RαB ∈ XER4. By lemma 5.4 (1) M � Rα . . .RαB. Let
RαA = Rα¬RαB. Thus A = ¬RαB and either (a) ¬RαB ∈ X ⊆ XER5 or
(b) RαB 6∈ XER5. If (a), then by lemma 5.4 (1) M � ¬RαB. If (b), then by
the definition of XER5-model, v(〈f(α), B〉) = 0. Hence, by truth-conditions
(m1) and (m2), M � ¬RαB.

Ad (2). Suppose v(〈f(α), A〉) = 1. Hence, by the definition of a XER4-
model, RαA ∈ XER4. Thus RαRαA ∈ XER4. By lemma 5.4 (1) M �
RαRαA. Hence, by the truth-condition (m1), v(〈f(α),RαA〉) = 1.
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Ad (3). Suppose v(〈f(α), A〉) = 0. Thus, by truth-conditions (m1) and
(m2), M 2 RαA. By lemma 5.4 (1) RαA 6∈ XER5. Hence, by the definition
of XER5, Rα¬RαA ∈ XER5. By lemma 5.4 (1) M � RαA¬RαA. Hence, by
the truth-condition (m1), v(〈f(α),¬RαA〉) = 1.

As before, by lemmas 5.2, 5.4, we get the following theorem:

Theorem 5.6. Let X ∪ {A} ⊆ For+. Then:

(1) X BER A iff X �ER A,
(2) X BER4 A iff X �ER4 A,
(3) X BER5 A iff X �ER5 A.
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