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CONSTRUCTION OF A MATHEMATICAL MODEL
OF MULTIOBJECTIVE OPTIMIZATION ON PERMUTATIONS

The article is devoted to the problem of constructing and solving mathematical models of applied problems as multiobjective prob-
lems on combinatorial configurations. This question is actual branch because any task of optimal design of complex economic and
technical systems, technological devices, planning and management etc. requires that the desired solution be found consider many
criteria. It is used transfer to Euclidian combinatorial configurations and using of discrete optimizations methods. Method for solv-
ing such problems is considered and it includes the analyzing of structural graph of Euclidean combinatorial configurations sets.
These methods can be modified by combining with other multiobjective optimization approaches depending on the initial condi-
tions of the problem. Models for defining real estate contribution plans and production planning as multiobjective discrete problems
are proposed. These models can be supplemented as needed by the required functions and, depending on the initial conditions, are
presented as tasks on different sets of combinatorial configurations.

Keywords: optimization problems, combinatorial configurations, Euclidean combinatorial set, optimization problems model, op-
timal solutions set.

cordingly, since it is impossible to adequately

Introduction

The optimization problems with several func-
tions arise in the investigation of many theo-
retical and applied problems [1—5]. Almost any
task of optimal design of complex economic
and technical systems, schemes, technolo-
gical devices, structures, planning and mana-
gement of industrial and commercial activities,
identification of model parameters by expe-
rimental data, etc. requires that the desired
solution be found consider many criteria. Ac-

express the conditions of the problem with one
complex criterion, it is more expedient to use the
multiobjective optimization apparatus to take
into account all the requirements of the applied
problem. It means that a classical single-crite-
rion optimization’s approaches are insufficient
for searching and adoption of effective solutions
to applied problems.

Also problems on combinatorial configurations
are of more practical interest [5—8]. The combi-
natorial properties of the feasible solutions field
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and their application are very well represented in
the classic problems of the salesman task and en-
terprise planning task.

Consideration of a problem model that takes
into account the properties of multi-criteria and
combinatorial properties of the feasible solutions
is interesting from a practical point of view. Such
problems are models of many applied problems
and are described in [3—5].

Formulation of the Problem

1. Combinatorial multiobjective problem

Let mappings ¢: IT> R', ieJ, J ={1, 2, ..., n}
be given on a combinatorial set. Then they can be
written as a vector criterion

D(1) = (¢,(70), P,(1), ..., P (T0)).

In the case of such an optimality criterion, we
are talking about a multiobjectivecombinatorial
optimization problem (MCOP).

Let 7, — extreme of ¢, than ¢i =@i(7i) — ex-
treme solution. If it is exist such n,.* , thatis Vi e J
@ =@i(7) , and AD*(n*) = (@; SP5»--@,), so 7" is an
ideal solution of MCOP.

The set of all such elements is the set of ideal
solutions of MCOP:

I(®,IT) = {n" e IT: O(7*) = D*.

However, the existence of an ideal element is un-
likely, but it is possible to find an effective solution
or effective solutions set.

Let n', n" € I, if for all ¢, i € J inequalities
hold ¢, (n") > ¢ (n") providing that ex#r = max and
3jeJ, @, (n') = ¢(n"), that said ©' exceed n" on I1,
so ' = n". Accordingly, ®(rt') is better than d(n"),
than is d(n') > ®(n"). Note that

(@) = (") & (Y i € J,0,(m) = 0 (7).

For multiobjective problems it is used the effec-
tive solution concept. Effective solutions satisfy
certain requirements. There are different types of
effective solutions, the most common of which are
Pareto-optimal solutions. Pareto optimal solutions

are those that cannot be improved by any other
solution [3], that is

P(D,IT) = {n € IT}: A’ € IT: D(n') = D(),
D(nt') # D(m).

2. Euclidean combinatorial multiobjective problem

Ifthe set I is a set of combinatorial configurations,
then it can be possible to solve the multi-criteria
combinatorial problem, to solve the problem in
Euclidean space, on Euclidean combinatorial con-
figurations E : find P(F, X) for

F(x) = (f,(x), /,(X), ... f,()) > extr, (1)
xeXcE, (2)

where X ¢ F — the set of feasible solutions, which
is formed from the set of Euclidean combinatorial
configurations with the help of additional restric-
tions; f: X— R', i € J — partial optimality criteria;
n — number of functions.

Problem (1)—(2) is Euclidean multiobjective
combinatorial optimization problem (EMCOP).
The MCOP and EMCOP are equivalent, provi-
ded that there is bijective correspondence between
their solutions.

Optimization on combinatorial configura-
tions is closely related to the theory of com-
binatorial polyhedral and graph theory. This
connection lies in the fact that combinatorial
configurations match to polyhedrons, which are
the convex hull of a configurations sets whose
elements coincide with the vertices of a polyhe-
dron [6—14].

Particular attention should be paid to the re-
lationship between combinatorial configurations
and graph theory. Since for a combinatorial per-
mutation configuration it is possible to construct
a configuration graph whose vertices coincide
with the elements of the set [15—21].

Partitioning the graph into sub graphs ac-
cording to a certain characteristic allows us
to determine the subsets that can be analyzed
in order to optimize the process of solving the
problem.
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The solving method for EMCOP

To solve the above formulated problem, it can be
used the method proposed earlier in [5], however,
it should be noted that it is possible to improve and
rationalize it by introducing an additional step of
constraint analysis. As a result of the computa-
tional experiments, the authors noticed the fact
that the closer the specified value of the constraint
b, to the corresponding value of the function on
the graph (the maximum for inequality of the form
g/(x) = b, or the minimum for g(x) > b,), the fewer
vertices of the graph are considered and the more
points are cut off. The closer the value b, to an ave-
rage of maximum and minimum of the restriction
function on the graphmeansthe more points will be
considered.

These results became the basis for the rationa-
lization of the method, since in a situation when,
after the formation of a set of configurations that
satisfy the constraint, their number is much smal-
ler than the initial one, then checking the resulting
set to satisfy all remaining constraints may be less
time-consuming than the complete execution of
the coordinate method procedure with subsequent
intersection of sets.

Thus, it is necessary to determine the constraints
for which the differences b, — min g and max g, — b,
will be minimal. It is likely that in such cases, or
most of the points will not be included in the de-
sired set, i.e. or the power of the set will be much
less than the initial one |[D| < |X]. The larger the
problem’s dimension, the more relevant the pre-
liminary analysis stage, since the method involves
breaking the combinatorial configuration graph
into grid graphs, and the larger the dimension, the
more grid graphs need to be investigated. In addi-
tion, there is a problem with variable substitutions,
since at the beginning of the procedure for each
constraint function, its coefficients are sorted in as-
cending order, which entails the need to substitute
the elements and then return to the original order.
Given these features, the option not to consider all
the many configurations, but only part of it, makes
it possible to use computing resources more eco-
nomically.
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Mathematical

model of determining

the effectiveness of real estate
deposits taking into account losses

Currently, models of such tasks are quite relevant.
Given the current situation in the world, it should
be noted that every factory, organization, busi-
ness needs careful analysis and possible forecast.
Obviously, all areas of the economy are suffering
losses, so it is important to consider models of
such problems.

Economics and planning are one of the impor-
tant areas of multiobjective combinatorial optimi-
zation. If an enterprise plans to invest in real estate,
it is advisable to calculate their effectiveness in or-
der to determine the most profitable plan that will
maximize profits and also be the least risky.

Let the company have k assets to invest in k real
estate — A = (a,, ..., a,). Suppose x" = (x, ..., X)
that the required real estate deposit plan is to be
found, where x, is the amount of the contribution
to the i real estate type.

The company has information about the risks
of investing in real estate of i-th type — c,ieJ,,
projected rental income of i-th type — ¢ ,ieJ,,
maintenance costs of the i-thtype of real estate
type — c,3 ,i € J,, the estimated magnitude of losses
in emergencies i-th type of real estate — cf Jded,.

Thus, in order to obtain an optimal real estate
investment plan, the following criteria should be
optimized:

= amount of contribution risks:

fi(x)=min<c ,x>ielJ;

= real estate rental income:

fr(x)=min<c’,x>ield,;

= maintenance costs of real estate:

fi=min<c, x> ieJ;

= estimated losses in emergency situations:

f,=min<c, x>, ieJ,.

Since the contribution to real estate is associ-
ated with the need for further maintenance costs,
thereareadditionalconstraintsassociatedwiththe
resources of the enterprise A[/xjs bj., where ieJ ,
J € J, where Ay,. — the cost of resources of the
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j-th type of maintenance of the i-th type of real
estate, bj — the availability of resources of the
Jj-th type.

The mathematical model of the problem will
look like: x™ = (x,, ..., x) — a plan for real es-
tate investments that you need to find. The set
x" = (x, ..., x) construct described above corre-
sponds to the set of Euclidean combinatorial con-
figurations E. Provided that all sums are different
and can be used for the same period, then the set
corresponds to the configurations of permuta-
tions £ (A). If the amounts are repeated, then we
get a configuration of permutations with repeti-
tions £ (A). Provided that the deposit options are
less than the amounts available, then we will have
combinatorial configurations of placements E; (4)
or placements with repetitions accordingly E;k(A).
Generalizing all the variants, we denote the com-
binatorial set by X. So we have the task: find the
values that are optimal for the functions:

fi(x)=min<c,x>ieJ,

fr(x)=min<c’,x>ielJ,

fi=min<c, x> iel,

fi=min<c, x> iel,
and satisfies the constraints A,»,xjﬁ bj.

This is an Euclidean multiobjective combinato-
rial optimization problem.

Conclusion

The article defines a multiobjective problem on
Euclidean combinatorial configurations, gives an
example of constructing a mathematical model for
a practical problem. One of the possible approa-
ches to solving the multiobjective problem on the
permutation configurations set is described.

The properties of combinatorial configurations
play an important role in the development of me-
thods for solving combinatorial problems; there-
fore, further studies in this direction are aimed
at studying such properties and their application
to develop new and improve existing methods for
solving the problems considered.

REFERENCES
1. Ehrgott, M., 2005. Multicriteria Optimization. Springer, Berlin : New York, 323 p.
2. Ehrgott, M., Gandibleux, X., 2003. “Multiobjective Combinatorial Optimization — Theory, Methodology, and

Applications”. In: Ehrgott, M. and Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art Annotated
Bibliographic Surveys, pp. 369—444. Springer US, https://doi.org/10.1007/0-306-48107-3_8.

3. Tymaofiyeva, N.K., Grytsenko, V.1., 2017. “Combinatory in the Artificial Intellect Problems”. Upravlausie sistemi

i masiny, 2, pp. 6-19, 37.

|[TumodieBa H.K., Tpuuenko B.I. KombiHaTopuka B 3agayax LITYYHOTO iHTEJIEKTY.

Vipasistomue cucreMbl 1 MainuHbL. 2017. Ne 2. C. 6-19, 37 (In Ukrainian)].

4. Koliechkina, L., Pichugina, O., 2018. “Multiobjective Optimization on Permutations with Applications”. DEStech
Transactions on Computer Science and Engineering, pp. 61—75, https://doi.org/10.12783/dtcse/optim2018/27922.

5. Koliechkina, L. N., Dvirna, O. A., Nagornaya, A.N., 2014. “Modified Coordinate Method to Solve Multicriteria
Optimization Problems on Combinatorial Configurations”. Cybernetics and Systems Analysis, 59 (4), pp. 620—626.

6. Korte, B., Vygen, J.,2018. Combinatorial Optimization: theory and algorithms. Heidelberg; New York :Springer,

698 p.

7. Pardalos, P.M., Du, D-Z., Graham, R.L., 2013. Handbook of combinatorial optimization. New York : Springer, 3409 p.

Papadimitriou, C.H., Steiglitz, K., 2013. Combinatorial optimization: algorithms and complexity. Mineola : Dover

Publications, 528 p.

26 ISSN 2706-8145, CHCTeMH KepyBaHHA Ta KOMM'toTepH, 2020, N° 2



Construction of a Mathematical Model of Multiobjective Optimization on Permutations

9. Sergienko, 1.V., Shilo, V.P., 2016. “Modern approaches to solving complex discrete optimization problems”. Journal of
Automation and Information Sciences, 48(1), pp.15—24.

10. Hulianytskyi, L., Riasna, I., 2017. “Formalization and classification of combinatorial optimization problems”.
Optimization Methods and Applications, S. Butenko et al.(eds.). Springer, New York, pp. 239—250.

11. Farzad, B., Pichugina, O., Koliechkina, L., 2018. “Multi-Layer Community Detection”. In: 2018 International
Conference on Control, Arti cial Intelligence, Robotics Optimization (ICCAIRO). Pp. 133—140.

12. Koliechkina, L., Pichugina, O.,2019. “A Horizontal Method of Localizing Values of a Linear Function in Permutation-
Based Optimization”. In: Le Thi, H.A., Le, H.M., and Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory,
Models, Algorithms and Applications, Springer, Cham, pp. 355—364. https://doi.org/https://doi.org/10.1007/978-3-
030-21803-4_36.

13. Koliechkina, L., Pichugina, O., Yakovlev, S., 2020. “A Graph-Theoretic Approach to Multiobjective Permutation-Based
Optimization”. In: Jacimovic, M., Khachay, M., Malkova, V., and Posypkin, M. (eds.) Optimization and Applications,
Springer International Publishing, Cham, pp. 383—400.

14. Koliechkina, L., Nahirna, A., Dvirna, O.,2019. “Quadratic Optimization Problemon Permutation Setwith Simulationof
Applied Tasks” [Electronic optimiza]. Proceedings of the Second International Workshop on Computer Modeling
and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15-19, 2019, pp. 651—663. (CEUR Workshop
Proceedings, Vol. 2353). Access mode: http://ceur-ws.org/Vol-2353 /paper52.pdf

15. Kozin, I.V., Kryvtsun, O.V., Pinchuk, V.P.,2015. “Evolutionary- Fragmentary Model of the Routing Problem”. Cybern.
Syst. Anal., 51, pp. 432—437.

16. Kozin, 1.V., Maksyshko, N.K., Perepelitsa, V.A.,2017. “Fragmentary Structures in Discrete Optimization Problems”.
Cybern. Syst. Anal., 53, pp. 931-936.

17. Yakovlev, S., Pichugina, O., 2019. “On Constrained Optimization of Polynomials on Permutation Set”. In:
Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-
2019). Pp. 570—580. CEUR Vol-2353 urn:nbn:de:00742353-0, Zaporizhzhia, Ukraine. http://ceur-ws.org/Vol-
2353 /paperdsS.pdf

18. Yakovlev, S., Pichugina, O., Yarovaya, O.,2019. “Polyhedral-spherical con gurationsin discrete optimization problems”.
Journal of Automation and Information Sciences, 51, pp. 26—40. https://doi.org/DOI: 10.1615/JautomatInfScien.
v51.11.30.

19. Emets, O.A., Nedobachii, S.I., Kolechkina, L.N., 2009. “An irreducible set of combinatorial polyhedron constraints in
the linear-fractional optimization problem on permutations”. Discrete Mathematics and Applications. 11, pp. 95—
103. https://doi.org/10.1515/dma.2001.11.1.95.

20. Chase, P., 1973. “Transposition Graphs”. SIAM J. Comput. 2, pp. 128—133.

21. Donets, G., Koliechkina, L., Nahirna, A., 2020. “A Method to Solve Conditional Optimization Problems
with Quadratic Objective Functions on the Set of Permutations”. Cybernetics and Systems Analysis, 56 (2),
pp. 278—288.

Received 14.04.2020

ISSN 2706-8145, Control systems and computers, 2020, N2 2 27



L.M. Koliechkina, O.A. Dvirna, A.M. Nahirna

Koneuxina JI. M., nox. ¢i3.-mat. Hayk, ripodecop,
Jlon3bkuii yHiBEpCHTET,

ByJ1. banaxa 22, Jlon3s 90-238, IMonbia,
Ikoliechkina@gmail.com,

Jeipua O.A., KaHA. (i3.-MaT. HayK, aCUCTEHT,
[TonTaBchbkuii yHiBepcUTET €KOHOMIKHU i TOPTiBJI,
ByJ1. Kosass, 3, 36000, Ykpaina,
lenadvirna@gmail.com

Hacipna A.M., xann. ¢i3.-mat. HayK, TOLIEHT,

HauionanbHuii yHiBepcutet «KneBo-MoruisiHcbka akaaeMis»,
By I. CkoBoponu, 2, m. Kuis, 04070, YkpaiHa,
naghirnaalla@ukr.net

MOBYAOBA MATEMATUYHOI MOJENI
BATATOKPUTEPIAJIbHOT OTUMIBALIT HA TEPECTAHOBKAX

Beryn. 3amada onmTumizanii mekinbkox (GyHKIINT BUHWKAE TIPU MOCHTIIKEHHI 0araTboX TEOPETUYHUX Ta MPUKIATHUX
npobnem. [lpakTnuHo Oynb-siKa 3amada ONTUMATBHOTO TIPOEKTYBAHHSI CKIAAHUX €KOHOMIUHMX i TEXHiYHUX CUCTEM,
CXeM, TeXHOJIOTIYHUX MPUCTPOIiB, KOHCTPYKIIiii, MJIAHYBaHHS i yIIpaBIiHHS BUPOOHUUYOIO i KOMEPLIiiTHOIO MisIbHICTIO,
ineHTUdikauii mapaMeTpiB Mojesi 3a eKCNepUMEHTAIbHUMU TaHUMKU BUMarae, 1oo IIyKaHWi po3B’SI30K 3HAXOIMBCS
3 ypaxyBaHHSIM 0aratbox KputepiiB. OCKiJIbKM HEMOXJIMBO al€KBAaTHO BUPA3UTU OJHUM KOMIUIEKCHUM KpUTEpieM
YMOBHU 3ajia4i, TO JJig 00JIiKYy BCiX BUMOT MPUKIIAHOI 3a7a4i TOLIIbHillle BUKOPUCTOBYBATH anapat 6araToOKpuTepialbHOL
onTuMizaitiii. Lle o3Hauae, 1110 anmapar KJ1aCU4HOi OJHOKPUTEPiaTbHOI ONTUMI3allil € HEAOCTATHIM JJIs1 MTOIIYKY i TPUMHSTTS
e(eKTUBHUX PO3B’SI3KiB MPUKIATHUX 3a1a4.

Merta. Crarrs npucBsuyeHa MoOyIoOBi OaraTOKpUTEpialbHUX MaTeMaTUYHUX MoJesell MNpUKIaAHUX 3agad Ha
KOMOiHATOpHMX KOHirypailisix Ta iX po3s’si3aHHIO. Lle mUTaHHS € aKTyaJlbHUM, TOMY III0 OyIb-sIKa 3aJaya ONTHMAalb-
HOTO MPOEKTYBAHHS CKJIAJHUX EKOHOMIYHUX i TEXHIYHUX CUCTEM, TEXHOJIOTIYHUX MTPUCTPOIB, TUIAHYBAHHS 1 YIIPaBIiHHS
BUMarae, 1mob6 0ys10 3HaliieHo OakaHUIi PO3B’SI30K 3 ypaxyBaHHSIM 0araTboX KPUTEpiiB.

Metoau. B cTaTTi 310iliCHIOETBCS Mepexin 10 eBKIIiZOBUX KOMOIHATOPHUX KOH}Irypaliii, BAKOPHUCTOBYIOTbCSI METOIU
NIUCKPETHOI Ta OaraToKpUTepiaabHOI ONTUMI3allii.

Pe3yasratu. [1oOynoBaHo Monenb I BU3HAYEHHS IUIAHIB BKJIAAYy B HEPYXOMICTb i BUPOOHUYOIO IJIAHYBaHHS,
sIKa TpeacTaBlieHa K OaraToKpuTepialibHa AUCKpEeTHA 3amayva. [IpemctaBiieHO METON PO3B’si3aHHS TaKoi 3amadi, 110
BKJIIOUA€E aHaJli3 CTPYKTYPHOIO rpada MHOXUH €BKIMIOBUX KOMOIHATOPHMX KOH(Dirypaiiii. [laHuii MeTon Moxe OyTH
3MiHEHMI LIJISIXOM CITOJIyYEHHSI 3 iHIIMMU O0araToKpUTepiaJbHUMU METOAAMU ONITUMI3allii B 3aJ1€3KHOCTI BiJl MOYaTKO-
BUX YMOB 3aj1ayi.

BucnoBku. 3ampomnoHOBaHy OaraToOKpuTepiadbHy MOJETh MOXHA TOTOBHIOBATH TIO Mipi HEOOXiMHOCTI TEeBHUMU
(YHKIIISIMU, 1 B 3aJIEXKHOCTI Bifl TOYAaTKOBMX YMOB, MPEACTABISTH Y BUIISIII 3a/1a4 Ha Pi3HUX MHOKMHAX KOMOiHATOPHUX
KoH®irypariiii. PO3risiHyTHi1 METOI MOXHA BUKOPUCTOBYBATH JIJIs pO3B’sI3yBaHHS 1aHOTO Kjacy 3ajaay.

Karouosi caosa: 3adaua onmumizauii, kombinamopui koupieypauii, Eexaidosuii kombiramopHuii npocmip, moodeas 3a0au
onmumizauii, MHONICUHA ONMUMANbHUX PO36°A3KIE.
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IMOCTPOEHUE MATEMATUYECKOMN MOJEH
MHOTOKPUTEPUAJIBHOM OTITUMU3ALIMU HA TEPECTAHOBKAX

BBenenue. 3amaua onTUMU3AIMY HECKOIBKUX (DYHKIIMI BO3HUKAET MTPU UCCIIETOBAHNY MHOTMX TEOPETUIECKUX U TIPU-
KJIagHbIX mpobiem. [IpakTuyecku mob6ast 3a1a4a ONTUMAIBHOTO TPOEKTUPOBAHUS CIOXKHBIX SKOHOMUYECKUX U TEXHU-
YECKUX CUCTEM, CXEM, TEXHOJIOTMYECKUX YCTPOUCTB, KOHCTPYKLIM, MIaHUPOBAHUS U YIIPABJIEHUSs TPOU3BOICTBEHHOMN
U KOMMEPYECKOI NeATeTbHOCTbIO, UIEHTU(DUKALIMY TTapaMeTPOB MOJEIHU MO KCIEPUMEHTAIbHBIM JaHHBIM TPEOYeT,
YTOOBI KICKOMOE PellIeHNe HaXOIUIOCh C YIeTOM MHOTUX KpuTepreB. COOTBETCTBEHHO, MTOCKOJIbKY HEBO3MOXKHO aIeK-
BaTHO BBIPA3UTh OJHUM KOMITJIEKCHBIM KPUTEPUEM YCIOBUS 3a/lauM, IS yueTa BCceX TpeOOBaHUI MTPUKIIATHON 3anauu
11eJiecoodpas3Hee UCIIOTb30BaTh alllapaT MHOTOKPUTEPUATHHOM ONTUMMU3AIUN. DTO O3HAYAET, UTO arlapaTa Kiaccude-
CKO¥l OMHOKPUTEPUATBHON ONMTUMM3ALIMY HEAOCTATOYHO [JIST IOUCKA U MPUHATUS d(PGHEKTUBHBIX PEIIeHUN MPUKIa-
HbIX 33/1a4.

Iens. CraThst MoCBsIIIeHa MPOOIEME MOCTPOSHUSI MHOTOKPUTEPUATBHBIX MATEMAaTUUECKUX MOJIENIel TPUKIIaJHbIX 3a-
a4 Ha KOMOMHATOPHBIX KOHMOUTYPALMSIX U UX PEIIEHHIO. DTOT BOIIPOC SIBJISIETCST aKTyaTbHBIM, TIOTOMY UTO JII00ast 3a1a4ya
ONTUMAJIEHOTO TPOSKTUPOBAHUSI CJIOKHBIX 9KOHOMUYECKUX W TEXHUIECKUX CUCTEM, TEXHOJIOTMUECKUX YCTPOICTB, TIa-
HUPOBAHUS U YIIPABIEHUS TPeOyeT, YTOOBI OBIJIO HAMIEHO JXelaeMoe pellieHre C YIeTOM MHOTUX KPUTEPUEB.

Metoapl. B ctaThe MCIOIB3yeTCs MEPexo K eBKIMIOBBIM KOMOMHATOPHBIM KOH(MUTYpalMsaM, a TAaKKe METO/bI JUC-
KPETHOU U MHOTOKPUTEPUATIbHON ONTUMU3ALIUU.

Pesyabratsl. [TocTpoeHa Mozesb IUIsl onpesieieHs TUIAHOB BKJ1aJa B HEABUXKUMOCTb Y MMPOU3BOACTBEHHOTO MJIaHU-
pOBaHUs KaK MHOTOKpUTEpHUaabHas AUCKpeTHas 3aaada. [IpenctaBiaeH MeTon pellleHus TaKOU 3a1auu, BKIIOYAIOIIUIA
aHaJIU3 CTPYKTYPHOTO rpada MHOXECTB €BKIUAOBBIX KOMOMHATOPHBIX KOHGUTYpaUU. DTOT METOI MOXET ObITh U3-
MEHEH MyTeM COYETaHUS C IPYTUMU MHOTOKPUTEPUATIbHBIMUA METOJAMU ONTUMU3ALMUA B 3aBUCMMOCTUA OT HaYaJIbHbIX
YCJIOBUY 33/1a4U.

BoiBoapl. [1penioxkeHHYI0 MHOTOKPUTEPUAIbHYIO MOJAEb MOXKHO JAOMOJHSIThH IO MEpe HEOOXOAMMOCTH TpeOyeMbIMU
(byHKLMSIMU U, B 3aBUCMMOCTHY OT HaYaJIbHbIX YCJIOBUI, MPEACTABISAThH B BUE 3aa4 Ha Pa3IMUHbIX MHOXECTBAX KOMOU -
HaTOPHBIX KOHUTYpalmii. PaccMOTpeHHBIN METO MOKHO MCITOJIB30BaTh IS PellieHUsT JaHHOTO KJlacca 3a1ay.

Karoueevte caoea: 3a0aua onmumuzauuu, Komounamophvle Kongueypauuu, Eeiaudoso kombunamoproe mHodscecmeo, moodens
ONMUMU3AUUOHHBIX 3A0a4, MHOJICECIEO ONMUMAAbHBIX PeUeHU].
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