
CONGRESO INTERNACIONAL DE CIENCIAS BÁSICAS E INGENIERÍA – CICI2016 1

Parallelizing an Experiment to Decide Shellability
on Bipartite Graphs Using Apache Spark

Julián David Arango-Holguı́n, Milena Cárdenas-Alzate and Andrés David Santamarı́a-Galvis˚

Abstract—Graph shellability is an NP problem whose classifi-
cation either in P or in NP-complete remains unknown. In order
to understand the computational behavior of graph shellability on
bipartite graphs, as a particular case, it could be useful to develop
an efficient way to generate and analyze results over sets of
shellable and non-shellable instances. In this way, a sequentially
designed exponential time experiment for deciding shellability
on randomly generated instances was proposed in literature.
In this work, with the aim of improving the performance of
that experiment, we propose two alternative approaches using
Apache Spark™: a multi-core one and a multi-node one. We
tested and compared their execution time for bipartite graphs
with 10, 12, 15, 20 and 50 vertices with regard to the original
version, and we got speedups between 1.37 and 1.67 for the
former and between 2.34 and 3.56 for the latter. The results
suggest that parallelization could relieve the large execution times
of the original approach.

Index Terms—Bipartite graph shellability, graph shellability,
unclassified NP problems, parallel experiments, Apache Spark™,
Apache™ Hadoop®.

I. INTRODUCTION

S IMPLICIAL complexes are combinatorial structures fre-
quently used in geometrical applications because of their

flexibility for modeling objects from different spatial dimen-
sions. The presence of one of their combinatorial properties,
known as shellability, has proved to be useful in practical
situations (see, for example, [1]–[4]). The concept also appears
in graph theory where, through the Stanley–Reisner correspon-
dence, a simplicial complex may be associated to a graph [5].

Simplicial complex shellability and its graph counterpart
have been well-studied and widely used in diverse mathe-
matical and practical issues, but there exists relatively little
work about their computational complexity. Although deciding
shellablility requires significant amounts of computational
time, it is currently unknown if the problem is either in P
or in NPC (i.e. NP-complete) [6].

In order to understand the computational behavior of graph
shellability, and based on some combinatorial characteriza-
tions, the problem is commonly tackled by analyzing particular
graph families. Fortunately, in the case of bipartite graphs a
complete characterization was made in [5] and [7] that was
further used in [8] to propose a bipartite graph shellability
solver called isShellable_BG.
isShellable_BG decides bipartite graph shellability in

exponential time and was used in a sequentially designed
experiment as a tool for collect some data that could be used

˚Ingenierı́a de Sistemas, Universidad de Antioquia, Medellı́n, Colombia,
(julian.arango2|milena.cardenasa|david.galvis)@udea.edu.co

to construct some conjectures about the problem behavior for
increasing values of its parameters. In this paper, with the aim
of improving the performance of the sequential experiments
performed in [8], we propose and implement two parallel
alternatives using Apache Spark™ [9].

This paper is structured as follows: in section II, the
main notions, required results, and the original experimental
protocol are properly introduced. In section III, our alternative
approaches are presented and, in section IV, we describe a way
to compare their efficiency with respect to the original one.
Section V presents the results and discusses the performance
of our proposal. Finally, in section VI, the conclusions and
some possibilities of future work are shown.

II. MAIN NOTIONS AND REQUIRED RESULTS

A (simple and finite) graph G is a tuple of two finite sets
pV,Eq where V is the set of vertices and E is a set of
unordered pairs over V called the edges of G; no edge is
repeated and loops, i.e. edges from one vertex to itself, are
not allowed. A subset F of V is an independent set of G if
e Ę F , for all e P E; F is a maximal independent set if it
is not properly included inside another independent set. Two
vertices x1 and x2 are adjacent if px1, x2q P E. If x is a vertex
of V , we denote by Npxq the open neighborhood of x, i.e.,
the set of all vertices adjacent to x, N rxs :“ txu YNpxq the
closed neighborhood of x, and degpxq :“ |Npxq| the degree
of x. A vertex with degree 1 is called a pendant vertex. A
graph G is bipartite if its set of n vertices can be partitioned
in two sets Va and Vb such that no edge exists in vertices of the
same set. Fig. 1 (left) represents a bipartite graph. We say that
a bipartite graph is complete if every vertex in Va is adjacent
with every vertex in Vb. By Kr,s we denote a complete graph
with r “ |Va|, s “ |Vb|, and r ` s “ n.

v3

v6v2

v1

v4 v5

G

v3

v6v2

v1

v4 v5

F1

F2

F3

F4

F5

F6

∆G
Fig. 1. A bipartite graph G and its associated (pure) simplicial complex ∆G.
The ordering F1, F2, F3, F4, F5, F6 is a shelling of ∆G; consequently, ∆G

is a shellable simplicial complex and G is a shellable graph.

CONGRESO INTERNACIONAL DE CIENCIAS BÁSICAS E INGENIERÍA – CICI2016 2

A(n abstract) simplicial complex ∆ over a set of vertices
V is a finite and nonempty collection of subsets of V called
faces, such that if A is a face of ∆, then so is every nonempty
subset of A. Fig. 1 (right) shows a graphical representation
of a specific simplicial complex. The dimension of a face
A is defined as dimpAq :“ |A| ´ 1 and the simplicial
complex dimension is defined as dimp∆q :“ maxpdimpAqq.
The maximal faces in ∆ are called facets. If every facet in
∆ has dimension d, then ∆ is d-dimensional and is called
pure. For sets A Ď B, there exists the boolean interval
rA;Bs “ tC | A Ď C Ď Bu. Let Ā :“ r∅;As. A complex of
the form Ā is called a simplex [10], [11].

We can define shellable simplicial complex and its related
decision problem as follows.

Definition 1 (Shellable simplicial complex [10]). A simplicial
complex is called shellable if its facets can be arranged in a
linear order F1, F2, . . . , Ft in such a way that the subcomplex
´

Ťk´1
i“1 Fi

¯

X Fk is pure and dimpFk´1q-dimensional for all
k “ 2, . . . , t. Such an ordering of facets is called a shelling.

Problem 1 (SCS: simplicialComplexShellability [6])
INPUT: A simplicial complex ∆ represented by a list

of its facets.
QUESTION: Is ∆ shellable? (return either YES or NO).

It is easy to show that SCS is a decision problem in NP, but
it is currently unknown whether it is in P, NPC or even fits
in another class into NP [6]. With the aim of understanding
the complexity of SCS we could deal with a related problem.
The next definition introduces a kind of simplicial complex
which could be generated from a given graph. Thus, SCS
could be partially studied through some graph families where
shellability is fully characterized1.

Definition 2 (Independence (simplicial) complex of a graph
[5]). Let G “ pV,Eq be a graph on the vertex set V “

tx1, . . . , xnu. By identifying the vertex xi with the variable xi

in the polynomial ring R “ krx1, ..., xns over a field k, can
be associated to G a quadratic square-free monomial ideal
IpGq “ ptxixj | txi, xju P Euq where E is the edge set of
G, the ideal IpGq is called the edge ideal of G. Using the
Stanley–Reisner correspondence, can be associated to G the
simplicial complex ∆G, called the independence (simplicial)
complex of the graph G, where I∆G

“ IpGq. Thus, the faces
of ∆G are the independent sets of G and, consequently, its
facets are the maximal independent sets of G.

Now, we can define shellable graph and graph shellability
as a decision problem.

Definition 3 (Shellable graph [5]). Let G be a graph and ∆G

its independence complex. G is shellable if ∆G is a shellable
simplicial complex.

1There are complete characterizations for the property on chordal, bipartite,
arc-circular, vertex decomposable, simplicial and recursively simplicial graphs
are characterized in [5], [7], [12], [13].

Problem 2 (GS: graphShellability)
INPUT: A graph G or a list of all its maximal

independent sets.
QUESTION: Is G shellable? (return either YES or NO).

It is also unknown whether GS is either in P or in NPC,
and that is also the case for bipartite graphs; however, as we
shall show in detail, the next theorem is useful to decide GS
for bipartite graphs.

Theorem 4 (Van Tuyl & Villarreal [5], and Cruz & Estrada
[7]). Let G be a bipartite graph. Then G is shellable if and
only if there are adjacent vertices x and y with degGpxq “ 1
such that the graphs GzNGrxs and GzNGrys are shellable.

Notation: From now on, and for the sake of brevity, we shall
use GSbipartite when we refer to GS for bipartite graphs.

A. isShellable_BG: A solver for GSbipartite

Let G be a bipartite graph on the vertex set V with n :“ |V |
and StpGq be the set of maximal independent sets of G. A
direct interpretation of the theorem 4 leads to the exponential
time algorithm isShellable_BG (procedure 1), which was
proposed by [8] as a tool to analyze the computational
behavior of GSbipartite. It was implemented in C/C++ using the
igraph library [14], [15]. It supposes an advantage regarding
the direct way to deal with GS, i.e. by first obtaining all
the maximal independent sets of G, but the mere problem
of finding the maximum independent set in G is an NP-
hard optimization problem for the general case. Fortunately,
isShellable_BG offers a way to solve GSbipartite directly
from G by avoiding the heavy precalculations required to
construct StpGq.

Procedure 1: Algorithm isShellable_BG pGq [8]
Data: A bipartite graph G “ pV,Eq
Result: true if G is shellable, false otherwise

begin
1 if p|V | ď 2q then return true
2 xÐ a pendant vertex in VG

3 if px “ nullq then return false
4 y Ð NGpxq
5 if pisShellable_BG(GzNGrys) and

isShellable_BG(GzNGrxs)q then
return true

else
return false

To understand the asymptomatic behavior of GSbipartite over
increasing values of n and to build some conjectures, a
sequentially designed experiment was also implemented by
[8] using isShellable_BG. The next section explains the
protocol over which the experiment was performed.

B. Original experimental protocol

For several values of n, a set of t initial instances was
created. Each initial instance is a complete bipartite graph
Kr,s, r ` s “ n with its rs edges randomly stored in a

CONGRESO INTERNACIONAL DE CIENCIAS BÁSICAS E INGENIERÍA – CICI2016 3

file; besides, r and s are also randomly chosen from the
given n. Every initial instance was used to generate a set
of actual instances. Let K

piq
r,s denote the i-th initial instance

and Gu,v an (actual) instance of GSbipartite with u vertices
and v edges. Once t and ε P p0, 1q are fixed, an experiment
could be performed for several values of n by using the next
experimental protocol:

Procedure 2: Experimental protocol [8]
Data: n P N, t P N, ε P p0, 1q

begin
1 Generate t initial instances
2 mÐ tεnu

3 foreach i P t1, . . . , tu do
4 Take the first m edges from K

piq
r,s and generate Gn,m.

5 Decide shellability of Gn,m with isShellable_BG.
6 mÐ m` tεnu.
7 If m ď rs, then go back to line 4, otherwise, continue

with the next instance (line 3)

Thus, a sequentially designed experiment was performed
in [8] after setting the values ε “ 0.1, t “ 200, and
n “ 50, 100, 150 in the previous protocol. Here, the word
sequential is employed to mean that in the whole experiment
there was used just a single computer (node) and, inside it,
only one core; the other cores remained idle. Because of the
low values of n that could be tested there, no conclusive results
were obtained regarding the asymptotic behavior of GSbipartite.

Therefore, in this work, under the assumption that par-
allelization could relieve to some extent the computational
burden involved in the original sequentially performed exper-
iment, we propose two parallel ways of running the afore-
mentioned experiment by slightly modifying some steps in
the protocol. Here, it is important to stress that our parallel
approaches are intended for the experimentation itself, not for
the exponential time routine isShellable_BG.

III. OUR PROPOSAL

To achieve parallelization over the experimentation, we
propose two options by using Apache Spark™ [9] as a
framework for cluster computing and Apache™ Hadoop® [16]
as underlying distributed file system. We call them multi-
core approach and multi-node approach. Both are completely
defined by the modifications they impose over the protocol2:

1) After line 1, the whole set of actual instances is generated
from the initial ones. They are stored in Hadoop.

2) Depending on the approach, Spark runs line 5, origi-
nally intended to be run under a sequential scheme, in
just one of these ways: (i) in the multi-core approach,
Spark uses just one node during all the experimentation,
but every single core inside is always busy running
isShellable_BG over a different instance. Although
the cores are independently used, the other resources
(main memory, cache, etc.) are shared. (ii) In the multi-
-node approach, Spark uses several nodes: one node as

2In this description, we intentionally omit those accessory details we
consider were strictly operative.

master and several nodes as slaves. Every slave can decide
GSbipartite by using all its resources, but just one core per
node is actually used.

IV. PERFORMANCE TEST

Let us fix the values ε “ 0.1 and t “ 200. Then, to contrast
the efficiency of our proposal, we proceed as follows:

For every value of n in t10, 12, 15, 20, 50u, a set of initial
instances was created; after that, the set of actual instances
was generated and stored in Hadoop in order to be evaluated
by the solver afterwards. For increasing values of n, the sets
of instances was run over the three approaches in this way:

(i) The protocol from procedure 2 was run as is since line
3 to line 7. The total time Topnq (in seconds) that it took to
accomplish the whole task (i.e., to solve the problem for every
instance in the given n), was stored and used as reference. Note
that this is, in fact, the original approach. (ii) In an analogous
way, we run the modified protocols for the multi-core and
multi-node approaches over the same lines and we store the
respective total times TMCpnq and TMNpnq (in seconds).

The multi-node approach used one master and two slaves;
besides, the same master is also used as the single node for the
other approaches. The master node has 4 cores and 57GB of
RAM, and the slave nodes have 2 cores and 15GB of RAM.

Once the experiments were finished, we had to choose an
appropriate measurement for their relative efficiency. Thus, in
the sense of [17], we opted for the speedups of the enhanced
experiments. The speedup of some computational task reflects
an improvement in speed of its execution and consequently
means an improvement in its efficiency. The speedup could
be properly defined as the ratio between the execution time
for a task without using the enhancement and the execution
time for the same task using the enhancement. Thereby, we
could use it to define SMC, the multi-core speedup, and SMN,
multi-node speedup, as SMC :“ To

TMC
and SMN :“ To

TMN
.

V. RESULTS

The table I displays the execution time for the aforemen-
tioned approaches alongside the speedups of our proposal, both
over increasing values of n. Time is rounded to the nearest
second in each case.

TABLE I
EXECUTION TIMES AND SPEEDUPS OVER INCREASING VALUES OF n

n To TMC TMN SMC SMN

10 59 43 23 1.372 2.565
12 82 49 35 1.673 2.343
15 121 75 34 1.613 3.559
20 116 73 34 1.589 3.412
50 396 290 168 1.366 2.357

Total execution times To, TMC and TMC (in seconds) for the original,
multi-core and multi-node approaches, respectively. SMC and SMN stand
for the multi-core and multi-node speedups, respectively.

The results suggest significant improvements regarding the
original version: the speedups fluctuate between 1.37 and 1.67
for the multi-core approach, and between 2.34 and 3.56 for

CONGRESO INTERNACIONAL DE CIENCIAS BÁSICAS E INGENIERÍA – CICI2016 4

the multi-node case; that means an improvement between 37%
and 67% for the former and between 134% and 256% for the
latter. This can be evinced in the Fig. 2 where time gradually
reduces from one approach to the other, and in Fig. 3 where
the speedups for the former case are always under the latter
one. Maybe, the use of several machines with independent
resources for the multi-node approach played the differential
factor in the performance.

10 12 15 20 50

100

200

300

400

n

Ti
m

e
(s

ec
)

To

TMC

TMN

Fig. 2. Total time from the different approaches over increasing values of n.

Although the results graphically suggest trends in the way
that the multi-node approach outperforms the other (Fig. 2)
and in the seemingly regular behavior of the speedups over a
fixed approach (Fig. 3), it could be hazardous to generalize for
every value of n: the experiments were run over small values
of n and the test was intended to verify whether one of these
enhanced approaches could be used instead of the original one.

10 12 15 20 50

2

3

4

5

n

Sp
ee

du
ps

SMN

SMC

Fig. 3. Speedups of each approach for increasing values of n.

VI. CONCLUSIONS AND FUTURE WORK

The speedups suggest that the proposed versions are fair
options to relieve, to some extent, the computational burden

of the original experiment by [8] which was initially intended
to analyze the asymptotic behavior of GSbipartite. The speedup
ranges are notoriously higher in the multi-node approach: it
gets execution times between 2.34 and 3.56 times faster than
the sequential approach for the tested values of n; that makes
this version the best candidate to deal with higher values of n
in an asymptotic analysis of the problem.

As a future work, a full-parallel version with Apache
Spark™ and Apache™ Hadoop® could be implemented by
allowing parallelization in all the cores of a multi-node cluster;
besides, the new version should try the new library GraphX
of Apache Spark™ in order to deal directly with some graph
related functionalities. The use of GraphX could be better
than our approach because the library coexists in the same
architectural level of the framework.

In a more general sense, we suggest this parallel scope to
deal with similar combinatorial problems where experimenta-
tion over massive sets of data is required either to construct
conjectures or to analyze their asymptotic behavior.

REFERENCES

[1] M. Herlihy, “Applications of shellable complexes to distributed com-
puting – (invited talk),” in CONCUR, ser. Lecture Notes in Computer
Science, P. Gastin and F. Laroussinie, Eds., vol. 6269. Springer, 2010,
pp. 19–20.

[2] M. Herlihy and S. Rajsbaum, “Concurrent computing and shellable
complexes,” in DISC, ser. Lecture Notes in Computer Science, N. A.
Lynch and A. A. Shvartsman, Eds., vol. 6343. Springer, 2010, pp.
109–123.

[3] L. De Floriani, P. Magillo, and E. Puppo, “Compressing triangulated
irregular networks,” Geoinformatica, vol. 4, pp. 67–88, 2000.

[4] M. Müller–Hannemann, “Shelling hexahedral complexes for mesh gen-
eration,” Journal of Graph Algortihms and Applications, vol. 5, no. 5,
pp. 59–91, 2001.

[5] A. Van Tuyl and R. H. Villarreal, “Shellable graphs and sequentially
Cohen-Macaulay bipartite graphs,” J. Combin. Theory Ser. A, vol. 115,
no. 5, pp. 799–814, 2008.

[6] V. Kaibel and M. E. Pfetsch, “Some algorithmic problems in polytope
theory,” in Algebra, Geometry, and Software Systems (outcome of a
Dagstuhl Seminar). Springer-Verlag, 2003, pp. 23–47.

[7] R. Cruz and M. Estrada, “Vértices simpliciales y escalonabilidad de
grafos,” Morfismos, vol. 12, pp. 21–36, 2008.

[8] A. D. Santamaria-Galvis, “On algorithmic complexity of shellability
in graphs and their associated simplicial complexes,” Master’s the-
sis, Facultad de Minas, Universidad Nacional de Colombia, Medellin,
Colombia, 2013.

[9] Apache Spark™, Lightning-fast cluster computing. Available from
http://spark.apache.org/. The Apache® Software Foundation, 2016.

[10] A. Björner and M. L. Wachs, “Shellable nonpure complexes and posets.
I,” Trans. Amer. Math. Soc., vol. 348, no. 4, pp. 1299–1327, 1996.

[11] L. Schläfli, Theorie der vielfachen Kontinuität; hrsg. im Auf-
trage der Denkschriften–Kommission der Schweizer. Naturforschenden
Gesellschaft. Zürich: Zürcher & Furrer, January 1901.

[12] R. Woodroofe, “Vertex decomposable graphs and obstructions to shell-
ability,” Proc. Amer. Math. Soc, vol. 137, no. 10, pp. 3235–3246, 2009.

[13] I. D. Castrillón and R. Cruz, “Escalonabilidad de grafos e hipergrafos
simples que contienen vértices simpliciales,” Matemáticas: Enseñanza
Universitaria, vol. 20, no. 1, pp. 29–80, June 2012.

[14] G. Csárdi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal Complex Systems, 2006. [Online].
Available: http://igraph.sf.net

[15] ——. (2012, June) The igraph software package for complex
network research, (ver. 0.6). Available at http://igraph.sf.net. [Online].
Available: http://igraph.sf.net

[16] Apache™ Hadoop®. Available from http://hadoop.apache.org/. The
Apache® Software Foundation, 2016.

[17] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 5th ed. Elsevier – Morgan Kaufmann, 2012.

