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Abstract 

Background:  Critically ill patients with COVID-19 are at an increased risk of developing secondary bacterial infec-
tions. These are both difficult to diagnose and are associated with an increased mortality. Metabolomics may aid clini-
cians in diagnosing secondary bacterial infections in COVID-19 through identification and quantification of disease 
specific biomarkers, with the aim of identifying underlying causative microorganisms and directing antimicrobial 
therapy.

Methods:  This is a multi-centre prospective diagnostic observational study. Patients with COVID-19 will be recruited 
from critical care units in three Scottish hospitals. Three serial blood samples will be taken from patients, and an 
additional sample taken if a patient shows clinical or microbiological evidence of secondary infection. Samples will 
be analysed using LC–MS and subjected to bioinformatic processing and statistical analysis to explore the metabolite 
changes associated with bacterial infections in COVID-19 patients. Comparisons of the data sets will be made with 
standard microbiological and biochemical methods of diagnosing infection.

Discussion:  Metabolomics analyses may provide additional strategies for identifying secondary infections, which 
might permit faster initiation of specific tailored antimicrobial therapy to critically ill patients with COVID-19.
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Background
COVID‑19 and secondary infections
The novel coronavirus severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) continues to present a 
major healthcare burden globally, with over 170,000,000 
confirmed cases and 3,500,000 deaths worldwide [1]. 
Coronavirus Disease 2019 (COVID-19) has a spectrum 
of severity, and while the vast majority of cases result in 
a minor self-limiting illness, approximately 5% of patients 
will become critically unwell with severe respiratory 
failure which can progress to sepsis and multiple organ 

failure [2, 3]. Despite recent advances in treatment strate-
gies, the mortality rate for COVID-19 patients admitted 
to the intensive care unit (ICU) in Scotland remains high 
at around 35% [4, 5].

The incidence of secondary infections in hospitalised 
patients with COVID-19 appears relatively low with rates 
between 6 and 15% [6–8]. However the rates are signifi-
cantly higher in critically ill patients and carry a mor-
tality rate of around 50% [8–10]. The clinical features 
of COVID-19 such as pyrexia, cough and dyspnoea are 
non-specific and are also observed in bacterial pneumo-
nia [11]. It can therefore be difficult to make a diagnosis 
of secondary infection by clinical means [12]. Biomark-
ers such as lactate, C-reactive protein (CRP) and procal-
citonin have a well-established role in identifying septic 
patients who are at risk of further deterioration, but as of 
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yet a specific biomarker to detect the presence of a sec-
ondary infection remains elusive [13–15]. As such, liberal 
use of broad spectrum antibiotics has been observed in 
critically ill COVID-19 patients [2]. The World Health 
Organisation (WHO) and the Surviving Sepsis Campaign 
both recommend initiating empirical antibiotics for all 
severe cases of COVID-19 [12, 16], whereas the National 
Institutes of Health (NIH) and the National Institute for 
Health and Care Excellence (NICE) suggest only start-
ing antibiotics when there is a clear clinical suspicion of a 
secondary infection [17, 18]. Early initiation of antibiotic 
therapy has been shown to reduce mortality in bacterial 
sepsis [19], however unnecessary use of broad spectrum 
antibiotics increases the risk of side effects and pro-
motes antimicrobial resistance [20]. Prompt diagnosis of 
a secondary infection and identification of the causative 
pathogen is therefore important in optimal management. 
Microbiological cultures can guide antimicrobial therapy, 
but these are time-consuming, and have a low sensitiv-
ity [21]. Alternative diagnostic strategies to improve sen-
sitivity and provide rapid specificity would therefore be 
valuable.

All infections have the potential to cause major disrup-
tion to physiological processes, potentially leading to a 
degree of metabolic dysfunction [22, 23]. This can lead 
to alteration of the normal serum metabolome (all low 
molecular weight metabolites less than 1  kDa circulat-
ing in the bloodstream at a given point in time) [24]. The 
physiological response to an infection can result in deple-
tion of certain important nutrients, while simultaneously 
causing accumulation of other toxic by-products [23]. As 
such, variation in the composition of the metabolome 
can be indicative of pathological processes occurring fur-
ther upstream [24].

Metabolomics
Metabolomics is a discipline which is gaining much trac-
tion as a potential diagnostic tool. Metabolomic analysis 
using techniques such as liquid chromatography–mass 
spectrometry (LC–MS) can be used to provide a meta-
bolic profile of a patient. This acts as a ‘snapshot’ of the 
patient’s metabolome, providing a description of the met-
abolic state of a patient as a result of both genetic contri-
butions and environmental factors [24].

Metabolomics has been investigated for aiding diagno-
sis of a wide variety of diseases, however in recent years 
particular focus has been given to its use in identifying 
biomarkers for infections and sepsis, with several can-
didate metabolites showing promise. Derangement of 
fatty acid metabolism has been observed during a septic 
response, with increased levels of acylcarnitines in sep-
tic patients compared with non-septic controls, as well as 
lower levels of lysophosphatidylcholines in septic shock 

patients who responded poorly to initial therapy [25–28]. 
Animal and human studies have shown that changes in 
levels of tricarboxylic acid cycle intermediates can occur 
in response to infection. Derangement of concentrations 
of citrate, malate and succinate have been observed, par-
ticularly in response to gram positive infections includ-
ing Staph. aureus and Strep. Pneumoniae [29–31]. 
Increases in protein catabolism and amino acid degrada-
tion have also been reported during a septic inflamma-
tory response. Multiple studies have shown depletion of 
the essential amino acid tryptophan leading to a detect-
able accumulation of the toxic metabolite kynurenine 
[25, 32, 33]. The biogenic amine trimethylamine-N-oxide 
(TMAO) has also shown promise as a biomarker of infec-
tion. Gut microflora metabolise quaternary ammonium 
compounds such as betaine and choline to trimethyl-
amine (TMA), which is then converted to TMAO in the 
liver. TMAO levels are thus indirectly dependant on a 
functioning gut microbiome [34, 35].

The wide range of possibilities in terms of site of infec-
tion, organism type and physiological response means 
that the resulting metabolic changes will vary from 
patient to patient. As a result, a single biomarker is 
unlikely to be sufficient to diagnose a secondary infec-
tion. Consideration of groups, or panels of metabolites 
may be more sensitive for diagnosing secondary infec-
tions than individual biomarkers [36]. Moreover, differ-
ent types of infections may produce a unique signature 
metabolic profile, thus potentially making identification 
of the specific organism possible [37].

Study rationale
In critically ill patients with COVID-19, examination of 
metabolic profiles may permit characterisation of novel 
biomarkers. These could permit detection of specific 
underlying infective organisms more rapidly than tradi-
tional culture methods. This would allow for earlier initi-
ation of targeted antibiotic therapy, potentially improving 
outcomes in critically ill patients with COVID-19.

Aim
The primary aim of this study is to ascertain the diagnos-
tic capability of metabolomics for identifying secondary 
infections in critically ill patients with COVID-19 com-
pared with routinely collected markers of infection.

Secondary objectives will compare profiles between the 
following subgroups:

•	 Bacterial and fungal infections
•	 Gram positive and gram-negative infections
•	 Healthy controls and COVID-19
•	 Survivors and non-survivors
•	 Patients with and without septic shock
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This study aims to determine the potential diagnos-
tic capability of metabolomics in diagnosing secondary 
infections in critically ill patients with COVID-19. We 
hypothesise that metabolomic profiling of patients with 
COVID-19 may permit identification of those with sec-
ondary infections. As such it is hoped that metabolomic 
profiling may provide additional perspectives on the 
underlying pathogen, thus aiding targeted antimicrobial 
therapy.

Methods
Study design
A multi-centre prospective diagnostic observational 
study.

Participating centres

•	 Queen Elizabeth University Hospital, UK
•	 Glasgow Royal Infirmary, UK
•	 Royal Alexandra Hospital, UK

Participant selection

Inclusion criteria:
Patients over the age of 18 with a confirmed positive 

SARS-CoV-2 test in the previous 7 days who are admit-
ted for at least level 2 care will be eligible for inclusion.

Exclusion criteria:
Patients will be excluded if they cannot provide 

informed consent directly or by their nearest rela-
tive if they are incapacitated. Pregnant patients will be 
excluded, as will those who are deemed to be end of life.

Sample size rationale
Taking into consideration the number of intensive care 
admissions during the first wave of the COVID-19 pan-
demic, we aim to recruit 75–100 critically ill COVID-19 
patients and 50 healthy volunteers within a period of 
1 year.

The first patient was recruited in November 2020, and 
recruitment will continue until December 2021, or until 
a sufficient number of patients have been recruited to 
provide 50 healthy control samples and 300 critically ill 
COVID-19 samples.

Primary endpoint

•	 Comparison of metabolomic profiles of COVID-19 
patients with and without secondary infection

Secondary endpoints

•	 Sensitivity and specificity of metabolomics in identi-
fying secondary infections

•	 Comparison of profiles between bacterial and fungal 
infections

•	 Comparison of profiles between gram positive and 
gram-negative infections

•	 Identification of prognostic biomarkers through 
comparison of profiles between survivors and non-
survivors, and those with and without septic shock as 
per the Sepsis-3 definition [22].

Study procedures
Patients eligible for recruitment will be identified and 
approached by the local research team upon their admis-
sion to the critical care department. Eligibility will be 
assessed against the inclusion and exclusion criteria 
by a doctor with an up-to-date Good Clinical Practice 
certificate.

Informed consent will be obtained for all patients 
recruited to the study. Where possible, consent will be 
sought directly from the patient. Patients will be asked to 
sign two copies of the consent form: one which they will 
retain, and a second to be filed in their medical notes. The 
consent forms will be counter-signed by the researcher 
gaining consent. Where patients are incapacitated, their 
nearest relative will be approached for consent. This will 
be discussed either in person or by telephone. Patients 
who regain capacity after recruitment will be approached 
to discuss consent for ongoing participation in the study.

Recruited patients will have serial blood samples col-
lected at three time points: Day 0, day 3 and day 10. In 
addition, a blood sample will be collected if participants 
show evidence of a secondary infection. This includes 
growth of organisms from microbial cultures, or clinical 
deterioration which results in a septic screen being sent 
by the clinical team.

Blood samples will be centrifuged within 1  h of sam-
ple collection. Serum will be aliquoted and frozen at 
–  80  °C for storage. Metabolites will be extracted in 
chloroform:methanol:water, 1:3:1, v/v/v solution. Untar-
geted metabolomic analysis will be undertaken using 
LC–MS in both positive and negative ion modes on a 
Thermo Orbitrap system interfaced to a Dionex UltiMate 
3000 Rapid Separation LC platform with a zwitterionic 
polymeric hydrophilic interaction chromatography (ZIC-
pHILIC) column and ammonium carbonate in water/
acetonitrile gradient. The raw LC–MS data sets will be 
processed by in-house bioinformaticians through an 
established pipeline, which uses XCMS and MZMatch 
[38–40]. Core metabolite identifications will be validated 
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by comparison of the chromatographic retention times 
and the mass to charge values (m/z) values against a 
panel of authentic standards.

Clinical data
Relevant patient data will be extracted from clinical 
notes. Data will be collected by the local research team 
using standardised data collection forms. Completed 
forms will be transcribed to a password protected elec-
tronic spreadsheet kept on a secure server. Paper forms 
will then be stored securely in the site file within a 
locked office at the participating site. All data will be 
anonymised at site and a unique study number will be 
allocated to each patient.

The following clinical data will be collected:

•	 Age
•	 Sex
•	 Ethnicity
•	 Body mass index
•	 Pre-existing comorbidities
•	 Date of SARS-CoV-2 infection
•	 Hospital and critical care length of stay
•	 Survival outcome
•	 Organ support requirements
•	 Sequential Organ Failure Assessment (SOFA) score 

[22]
•	 Biochemical data including CRP, procalcitonin, white 

cell count and lactate
•	 Positive microbiological cultures—organism and site 

of infection
•	 Use of antibiotics, antivirals, corticosteroids and 

immune modulating drugs.

Common contaminants of blood cultures such as coag-
ulase-negative staphylococci, diphtheroids, Bacillus spe-
cies or Propionibacterium species will not be considered 
positive microbiological cultures unless they are cultured 
from serial samples and treatment is initiated.

Planned analysis
Statistical analysis of the untargeted metabolomic data 
sets will be guided by in-house bioinformaticians and will 
consist of univariate- and multivariate analyses.

Patient confidentiality
Patient confidentiality will be maintained throughout the 
study as per the Data Protection Act. Recruited patients 
will be assigned a unique study number. All data collec-
tion sheets, study reports and communication regarding 
the study will identify the patients by this study number 
and initials only.

Adverse event reporting
This is an observational study, and so adverse events are 
unlikely to occur. Any adverse events or serious adverse 
events will be recorded on case report forms, and an 
annual summary will be given to the ethics committee 
and research and development office.

Protocol deviation reporting
A variation of the approved protocol will be consid-
ered a protocol deviation. Any protocol deviations will 
be recorded on case report forms and reported to the 
sponsor.

Publication policy
Authorisation for all publications will be sought from the 
study chief investigator and will be reviewed by the spon-
sor prior to publication.

Discussion
The COVID-19 pandemic is a continually evolving situa-
tion, and the future remains uncertain. Despite success-
ful vaccine rollout, ongoing community transmission and 
the emergence of variants with increased virulence make 
continued hospital and critical care admissions likely. As 
such, secondary infections are likely to continue to be an 
issue in COVID-19 patients. Moreover, the increasing 
use of immune modulating therapies as part of COVID-
19 treatment could potentially increase rates of second-
ary infections further [41].

Metabolites identified in this study could be utilised as 
biomarkers of infection. These may be capable of detect-
ing secondary infections earlier, helping to identify spe-
cific pathogenic strains and allowing for monitoring of 
response to treatment. This would allow for initiation 
of tailored antimicrobial therapy, reducing reliance on 
broad spectrum empirical antibiotics, thus helping to 
reduce rates of antimicrobial resistance.

Trial status 
The trial is currently open for patient recruitment.
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