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Investigating the Relationship Between Spatial Skills and 
Computer Science 

Jack Parkinson and Quintin Cutts 

The relationship between spatial skills training and computer science learning is unclear.  Reported experiments 

provide tantalising, though not convincing, evidence that training a programming student's spatial skills may 

accelerate the development of their programming skills. Given the well-documented challenge of learning to 

program, such acceleration would be welcomed. Despite the experimental results, no attempt has been made to 

develop a model of how a linkage between spatial skills and computer science ability might operate, hampering the 

development of a sound research programme to investigate the issue further. This paper surveys the literature on 

spatial skills and investigates the various underlying cognitive skills involved. It poses a theoretical model for the 

relationship between computer science ability and spatial skills, exploring ways in which the cognitive processes 

involved in each overlap, and hence may influence one another. An experiment shows that spatial skills typically 

increase as the level of academic achievement in computer science increases. Overall, this work provides a 

substantial foundation for, and encouragement to develop, a major research programme investigating precisely how 

spatial skills training influences computer science learning, and hence whether computer science education could be 

significantly improved.  

Introduction 

Skills in STEM subjects appear to be related to spatial skills (SS): STEM practitioners are reported to have high SS, 

relative to others [34]; training in SS can improve abilities in STEM subjects, particularly engineering [24]. There is 

tantalising evidence of such a relationship in computer science (CS), which, due to the cheap and easily accessible 

nature of SS training, could lead to higher achievement and lower dropout rates, as with engineering. 

Unfortunately, current studies in this area are limited and inconclusive - correlation has been identified [12], but 

only one study [33] shows that SS training appears to help in computing. Based on this inviting start, further study is 

warranted. 

SS are not easy to define strictly [30], and as such studies contain unclear and contradictory descriptions which are 

likely to hamper research efforts. Perhaps as a result of this, no studies postulate why the STEM/SS relationship 

exists to any great extent, and so current work may not be optimally focused. Furthermore, most studies in the field 

tend to concentrate on a single cohort, typically entry level CS students, without examining effects across experience 

levels. 

Based on these gaps, we present three main additions to the research in the field. First, we summarise what is known 

about SS, defining core elements of SS and how they can be measured. Second, we propose a model for the 

relationship between SS and CS, drawing on key cognitive processes which appear to be shared by both fields. 



Third, we describe an experiment to examine the relationship between SS and CS attainment across a range of CS 

practitioners, from entry level students to professors. 

Related Work in SS and STEM 

Spatial skills have been connected with STEM for almost seventy years, since Super and Bachrach examined the 

skills of mathematicians, engineers and scientists, and found SS to be a factor in all these fields [29]. In a broad 

study covering the work of dozens of researchers, Super and Bachrach attempted to classify the skills and traits of 

professionals in science and engineering, reviewing studies on such factors as mathematical ability, verbal ability 

and several other “special'” abilities, including SS. They found that not only are SS prominent in these fields, but 

that in cases where the relationship was tested, STEM practitioners outperformed non-STEM people in SS tests, 

even those recognised as being ``gifted'' in other fields. 

Wai et al. undertook an investigation of SS pertaining to Project TALENT data [34, 35]. Project TALENT consisted 

of a series of tests given to over 400,000 high school students in the US in 1960 and subsequent follow up 

questionnaires up to the 1970s. Of the students who went on to achieve a PhD in a STEM field, most scored highly 

in the Project TALENT spatial skills tests taken eleven years previously (with 45\% being in the top 4\% of SS 

scores). Again, the relationship is not causational; SS are shown only to be correlated to progression in STEM 

subjects. 

The STEM area with most research relating to SS is engineering. Sorby has investigated this relationship for over 20 

years, showing that engineering students who receive SS training do better in their engineering courses and have 

lower dropout rates [24]. In addition to developing a SS training course [26], Sorby has shown positive effects of 

training SS initially on self-selecting groups of low SS scorers in engineering, and then a similar effect in 

compulsory courses provided by Michigan Tech~\cite{sorby2007developing}. The effect of these studies are 

significant and well replicated: one can reliably train SS to see an improvement in engineering success. 

SS also have relationships with success in other STEM fields. In physics, Kozhevnikov et al. discovered that 

psychology undergraduates with better spatial visualisation skills performed better in, and could explain more 

clearly, kinematic physics problems [13]. Pallrand and Seeber conducted a separate examination in physics, 

identifying that not only did students taking a physics course show higher gains in SS compared with students taking 

liberal arts courses on pre/post tests, an experimental group undertaking additional SS training outperformed the 

placebo and control groups [16]. This study is like those undertaken by Sorby, showing the effectiveness of a 

training course which can be taken alongside standard teaching [24]. Crucially, it also shows that SS can be 

developed while studying a STEM subject, even with no explicit SS training, a point we will return to later. 

Carter et al. showed that those with higher SS outperformed those with lower SS in a general chemistry course [3].  

The same has also been found in organic chemistry, when manipulating and understanding 2D representations of 

molecular molecules [17]. 



Tartre identified that spatial orientation ability is applied in certain mathematical problems, and suggested that the 

ability was specifically related to particular mathematical skills, such as determining the area of irregular shapes and 

groupings of associated objects [30]. However, Tartre's chosen test for spatial orientation is more typically used as a 

test of closure speed [8], and one of the selected mathematical problems is very similar to an existing test of spatial 

relations (shown in figure~\ref{figure:3dc}). Another study indicating a connection between spatial visualisation 

and mathematics was conducted by Fennema and Sherman, who showed that spatial skills are a factor contributing 

to the gender gap found in mathematics [9]. 

In addition to these studies, Veurink and Sorby [33] have shown that the training course developed by Sorby and 

Baartmans [25] (and subsequently developed into a workbook [26]) can be used to potentially improve the results of 

engineering students undertaking non-engineering modules. Several cohorts of engineering students taking 

additional modules (in areas such as calculus, physics and chemistry) had their SS measured at the start of the 

course. Those who failed a SS test were offered a chance to increase their SS on the course, and ultimately those 

students who took up the offer did better in their respective elective modules than their peers who also failed the test 

but opted not to take the course [33]. 

In Veurink and Sorby's paper, another module in which students excelled after SS training was a computing module, 

specifically introductory programming. Students who initially failed the SS test and opted to take training showed 

significantly higher GPAs in their computing course than those who failed or marginally passed the test, but did not 

take additional training. This result is based on 6 cohorts, totaling 74 participants, of self selecting students between 

1996 and 2002. This implies a causal relationship from SS to programming, though self efficacy may be a factor in 

these findings: students self-selected to take the additional training, and it is possible that the students who have a 

more proactive attitude were both likely to take the course when offered and excel in their elective modules anyway. 

Additionally, there was no prior measure of computing ability, which could be a confound in the study. 

Though not making reference to the study by Veurink and Sorby, Cooper et al. attempted to show a similar result 

[5]. We are surprised that Cooper's study, of which Sorby is a co-author, does not reference this earlier, apparently 

highly-related, work. Cooper took a selection of summer school students intending to begin a university course in 

computing, and over a period of two weeks, trained their SS in an experimental group and compared their gains in a 

standardised computing test. The authors acknowledge some issues with the study, e.g. the questions used to test 

computing ability may not have been the most effective for the group of students they had. The increase in gains by 

the experimental group failed to reach significance, except when the six questions from the test with the highest item 

discrimination only were used in the analysis. Ultimately, the authors clearly state that they are not claiming 

causation, but a correlation which requires further research. 

A similar correlation was displayed earlier by Jones and Burnett [12]. They took a cohort of Masters students who 

had not previously studied computing, tested their SS and examined their end of year results. They did not see any 

correlation in the Introduction to Human Factors or the IT Management courses taken by these students, but did see 

a correlation between the Introduction to Programming course and the Object Oriented Systems course, both of 



which required a significant amount of programming. This suggests that it is possible that the connection with SS 

lies not strictly with computing generally, but specifically with programming. 

Based on this existing research, we identify two points. First, evidence of a causal relationship between SS and CS is 

limited, though there is something of interest in the area. Second, no researchers have attempted to explain why this 

relationship exists. In an effort to remedy this, we shall lay groundwork for the existence of such a model. It is our 

view that a stronger understanding of both SS and how they relate to CS will help researchers to pinpoint the effect 

of SS training and what gains it may provide in a computing context. Our next step therefore is to chart the SS 

territory more clearly than we have found elsewhere in the literature. 

Understanding Spatial Skills 

Spatial skills is a broad term lacking a concise definition, and as such making clear, distinct arguments about them 

can prove difficult. Tartre effectively summarises problems faced in discussing and communicating spatial ability 

and their impact: 

“Attempting to understand and discuss something like spatial orientation skill, which is by definition intuitive and 

nonverbal, is like trying to grab smoke: The very act of reaching out to take hold of it disperses it. It could be argued 

that any attempt to verbalize the processes involved in spatial thinking ceases to be spatial thinking.” [30] 

To reduce ambiguity and overcome issues pertaining to the rift between written descriptions of SS and their practical 

applications, various tests of specific SS factors are given when they are introduced into discussion. Most of these 

tests have been extracted from Ekstrom et al.'s manual for factor-referenced cognitive tests [8]. 

Over years of discussion and exploration of this difficult field, Carroll collates a wealth of research into a cohesive 

model consisting of the following factors [2]: 

• Spatial Visualisation 

• Spatial Relations 

• Closure Speed 

• Closure Flexibility 

• Perceptual Speed 

• Visual Imagery (though Carroll identifies this factor as a theoretical factor, without coming to a clear 

conclusion on its definition) 

Spatial visualisation is the factor that has been most examined in relation to STEM, including CS. McGee identified 

spatial visualisation prior to Carroll as one's proficiency in being able “to mentally rotate, twist, or invert pictorially 

presented visual stimuli” [14]. Tartre presents a substructure of two distinct factors contributing to spatial 

visualisation: mental rotation and mental transformation [31]. Mental transformation involves the manipulation and 

modification of objects, required for such practical applications as visualising cross sections or intra-part 



movements. This can be seen in practice in the Mental Cutting Test (MCT) [4] in figure 1. Mental rotation is the 

ability to perform rotations on mental constructs. Practically this typically translates to the ability to see a physical 

representation of a structure (a block on a table or an image on a piece of paper) and mentally imagine what this 

object or shape would look like rotated in a different orientation. Ho and Eastman discovered that 2D and 3D 

rotations are closely related, supporting Carroll, but also that one capable of performing 2D rotation may not be 

capable of performing 3D rotation [11]. An example of a test of 2D rotations is displayed in figure 2 [34], and an 

example of a 3D rotation test can be found in figure 3 [36]. 

 

Figure 1: Test of mental transformation, the Mental Cutting Test, consisting of 25 items in 20 minutes - identify the 

cross section after the following transformation has occurred (answer: second from right) [4]  

 

Figure 2: Test of 2D mental rotation, consisting of 24 items and presented as part of a larger test - which of the 

following corresponds to the original shape (answer: first from left) [34] 



 

Figure 3: Test of 3D mental rotation, the revised Purdue Spatial Visualisation Test of Rotations (PSVT:R), 

consisting of 30 items in 20 minutes (answer: B) [36] 

Mental rotation is related to another core factor of SS: spatial relations, which is the ability to understand the 

arrangement and orientation of objects or patterns within their environment. While this initially appears very similar 

to mental rotation, spatial relation applications do not strictly require rotation to take place, merely a decent 

understanding of object orientation. In practice, a test used to measure spatial relations is the Cube Comparison Test 

[8], displayed in figure 4 - as can be seen, to find the correct answer, objects do not need to be rotated (which in fact, 

would be difficult to do with the lack of information of the object); the examinee just needs to be able to relate each 

face of the cube to its neighbours. 



 

Figure 4: Test of spatial relations, the Cube Comparison Test, consisting of 25 items in 20 minutes - identify which 

of the following options corresponds to the original cube (answer: D) [4] 

Three further factors can be defined as follows: 

• Closure Speed: speed in identifying an unknown pattern from an obscured environment 

• Closure Flexibility: speed in identifying a known pattern from an obscured environment 

• Perceptual Speed: speed in identifying a known pattern from an unobscured environment 

The easiest way to perceive the application of these skills is using the tests associated with them. Closure speed is 

measured by the Gestalt Completion Test [28] (figure 5), which requires the test subject to pick out a representation 

of an object or image from a highly distorted image (in this example, a flag and hammer head). Closure flexibility 

can be tested by the Hidden Figures Test [8] (figure 6), in which the test subject is provided with a selection of 

figures (which are known) and a complex pattern, and are required to identify which of the given figures is obscured 

within the pattern. Perceptual speed is tested by the Identical Pictures Test [8] (figure 7), in which the test subject is 

presented with a figure and a lineup consisting mostly of figures similar to the given figure, with one figure being 

identical, and must identify the figure from the lineup matching the one provided. 



 

Figure 5: Test of closure speed, the Gestalt Completion Test, consisting of 20 items in 4 minutes (answers: flag, 

hammer) [28] 

 

Figure 6: Test of closure flexibility, the Hidden Figures Test, consisting of 32 items in 24 minutes (answers: A, D) 

[8] 

 



Figure 7: Test of perceptual speed, the Identical Pictures Test, consisting of 96 items in 3 minutes (answer: first 

from right) [8] 

Carroll also identifies a final first order factor of SS as visual imagery. Visual imagery is a somewhat vague factor in 

the discussion of SS, and lacks the definition and clarity of other first order factors of SS. Burton and Fogarty 

attempted to measure this factor, and ultimately decided that the best model they constructed was one which 

included three second order factors contributing to visual imagery [1]. These are: 

• Quality: “the ability to generate, maintain, and transform a clear visual image” 

• Self-report: “ability to generate, control, and/or rotate a visual image” 

• Speed: “latency measures derived from the experimental tasks” - that is, the tasks which were used to 

determine the existence of the above two factors 

These factors fit into spatial skills beneath the term visual imagery, contributing to the theoretical factor which 

Carroll identified. 

Modeling Spatial Skills and CS 

With an understanding of SS and the factors contributing to them, we can now attempt to show their connection to 

CS. We note that existing studies relating SS and CS have focused on programming, and we recognise that the 

underlying skills in programming, such as the development and manipulation of models and the ability to represent 

these textually and graphically, are core skills across much of CS. Hence we too will focus on aspects of 

programming.   

A fundamental ability in programming is program comprehension. Much research has gone into examining methods 

and cognitive frameworks involved in program comprehension [20]. One such model, presented by Détienne and 

Soloway [6], is the model of a mental schema. A schema is a kind of data structure stored in memory which 

represents some construct: it consists of a plan, which is some generic process or operation as the user understands 

it, the function the plan carries out, and cues, which are points of reference used to match up a plan with an 

associated function. In practice, an application of a schema may consist of identifying key variable declarations or 

structures in code (such as MAX or COUNT, or the beginning of a loop) and matching them with an associated 

schema (e.g. a find max schema). 

The schema model is of significance because operations involved in building and using a schema can be mapped to 

SS operations. The identification of cues requires that patterns be extracted from obscured environments, not unlike 

the process required in the application of closure flexibility. These cues are pointers to a model or structure which 

must be constructed mentally in order to formulate a process. This is similar to several exercises in Sorby's 

workbook involving the composition of isometric 3D objects from a selection of 2D orthographic views, taking note 

of specific, useful data points and constructing a more complex structure combining this data. 



Another code comprehension framework is the Block Model proposed by Schulte [21]. This involves a process of 

examining code at four levels, to identify (1) atoms (single words or simple statements in the code), an 

understanding of which is used to construct (2) blocks (“regions of interest that syntactically or semantically build a 

unit”), (3) relations (connections involving blocks and atoms such as a find maximum code section) and (4) the 

macro structure (the overall operation of the program). The method of building up from atoms to blocks and 

relations is similar to Détienne and Soloway's process of schema construction, and likely requires the same cognitive 

processes, again relating to the application of SS. 

Another important aspect of program comprehension is the notional machine, first identified by du Boulay as a 

combination of knowledge - of the programming language, environment and data - and a mental model [7]. Sorva 

describes the function of a notional machine as “an idealized abstraction of computer hardware and other aspects of 

the runtime environment of programs.” [27] Sorva closely connects the ability to form notional machines, and 

therefore appropriately and effectively comprehend programs, with the ability to construct abstract mental models. 

Experts develop more robust, adaptable mental models than novices, whose mental models tend to be “fragile”. 

Sorva discusses the “runnable” nature of a mental model, based on Norman's work [15], involving the user being 

able to “envision with the mind's eye how a system works,” and directly associates this with working memory and 

visualisation. 

When reviewing spatial skills factors, there are only two which match up with this process of forming a mental 

model: spatial visualisation (as Sorva briefly suggests) and spatial relations. Closure speed, closure flexibility and 

perceptual speed are all related to identifying patterns from environments, and visual imagery relates to capturing 

and recalling images, leaving the two aforementioned factors. An element of spatial relations would be required to 

construct a mental model, as the user requires an understanding of how various components are linked together (of 

how they relate), but spatial visualisation provides more robust abilities for these tasks. A robust mental model must 

be subject to development and restructuring as required - the ability to perform these actions mentally is closest to 

mental transformation (the ability to manipulate or modify a structure mentally) which is part of the spatial 

visualisation factor. An element of spatial relations may also be included, but typically spatial relations consist of a 

simple inter-object understanding (see figure 4 for an example) compared with mental rotation, which requires a 

deeper understanding of the constructs involved (see figure 3). This indicates that when trying to understand more 

complex constructs in a mental model and what they would look like in a different orientation or situation, spatial 

relations are likely to work to an extent, but the more complex operations are more likely to require mental rotation 

(another subset of spatial visualisation). 

A difficulty here arises with the definitions of spatial skills factors as given in the literature. From the CS side, 

considering mental models, we are constructing a mental representation of some operation or process. However, this 

does not directly relate to a specific factor of spatial skills, forming a neat, clear connection between the two. We 

identify the closest match as spatial visualisation, where typically the same ability to construct a mental structure is 



required before then performing some operation on it, such as a rotation or transformation. As such, we theorise that 

spatial visualisation is very likely to contribute to program comprehension in this regard. 

In addition to program comprehension, another core aspect of computing is the procedure of program generation. 

While generation must be closely related to comprehension, as any generation plan must also involve a process of 

debugging and review [20], there are elements of program generation not included in comprehension. 

Rist observed a method of program generation which he named “focal expansion” [18]. The process of focal 

expansion involves reviewing a problem and identifying a core function or plan on which to base the 

implementation. The process which follows involves taking the core plan and building outward, adding and 

expanding as necessary to facilitate the generation of a program that fully satisfies the problem. Rist links this 

process to working memory, and associates the ability to track the program generation mentally, from the focal point 

out to the full solution, with working memory capacity~\cite{rist1995program}. While this does appear to be the 

case, it is also possible that visualisation factors into the programmer's ability to track the expansion: to quote Sorva 

again, ``to envision in the mind's eye.'' Also pertinent to program generation is problem comprehension, the process 

of identifying a problem from some specification - this process is similar to the schema process of identifying a plan 

in practice, except that rather than looking for cues in a program they must be extracted from a problem description. 

Cues are a recurring concept in both program comprehension and problem comprehension which has briefly been 

touched on. This involves the process of identifying potential patterns from a broader environment consisting of 

more details than the user is currently interested in. There are also factors of SS which, in practical use, are used in 

performing a very similar task to these operations: closure speed, closure flexibility and perceptual speed. Recall 

that these processes involve the extraction of patterns (known or unknown) from environments (obscured or 

unobscured). 

The simplest factor is perceptual speed, which is simply identifying a known pattern from an unobscured 

environment - though rare, this may have an application in cue identification. In code comprehension a case may 

arise where the user knows the construct they are looking for and the code is laid out in such a way that there is 

minimal interaction and obscurity between lines (an example of this may be looking for a known variable name in a 

list of declarations, such as at the top of a file). More likely, the user will be searching for an pattern to match 

against a record of terms which they feel may have significance based on prior knowledge (such as the start of a 

loop or declaration of some telling variable). Pictorially, this would be very similar to the test in figure 6, so it is 

possible that the cognitive process involved in closure flexibility is relevant to this style of program comprehension. 

And finally we have a case for closure speed, in which an unknown pattern must be derived from an obscured 

environment. This is akin to an application of the schema model, in which the user searches the code space to 

identify cues which are not previously known to match them to known schema - at least this would be the case for 

experts; novices are likely to take a different approach which will involve less searching and pattern matching and 

more construction. 



In this section so far, we have analysed significant aspects of CS and connected them to SS, forming the elements of 

a model, a diagrammatic representation of which is presented in figure 8. 

 

Figure 8: Diagram of the relationships observed between spatial skills and computing science 

Bearing this model in mind, we shall now discuss the implications for the development of SS and what this could 

mean for CS. Sorby notes that the most effective method of training spatial skills is by hand sketching diagrams and 

drawings [22]. This can be seen in action in her workbook, which poses dozens of short form drawing questions to 

be completed over a relatively short period of time. We expect that the reason why spatial skills are connected with 

computing is because \textit{the same }cognitive functions are involved in computing and also in other more 

obvious applications of spatial ability, such as Sorby's exercises. This view suggests that while SS training could 

affect one's computing ability positively, as Pallrand observed in physics [16], so too could training in CS develops 

SS, also as observed by Pallrand for physics.  

If this view is correct, why would SS training be of any benefit when the same could be achieved with a standard 

computing course? We propose that SS training, such as Sorby's workbook, is far more focused and directed than a 

typical programming course. Whereas in an entry level programming laboratory, students may be expected to write 



a handful of short programs to achieve given goals over the space of a couple of hours, Sorby's exercises can consist 

of up to forty sketches to be completed in a similar time frame. Furthermore there are far fewer barriers to 

advancement: any given drawing could be attempted regardless of the student's experience (a complete novice who 

has never done any spatial skills training could pick up Sorby's book and attempt the questions), compared with a 

programming student who must first learn code snippets required for tasks before they can be reused in later tasks. 

The same skills are being developed, but at a slower rate for programming students who are learning both the CS 

content and the underlying skills we are interested in here. It is also possible that the students who fall behind in 

programming are the ones whose SS are not as developed as their peers, and the barriers to their progression are 

rooted in their inability to construct robust and adaptable mental models (key to programming comprehension and 

generation). 

With this in mind, we suggest that spatial skills themselves do not directly contribute to CS or other STEM domains, 

but rather than the cognitive functions involved in SS are also involved in STEM domains: such functions as the 

ability to form, manipulate and develop mental models, identify key points in an environment and understand 

relations between structures. Based on this theory, we present a simple model for this relationship in figure 9. 

 

Figure 9: Relationship between cognitive functions behind spatial skills and STEM domains 

Notice that the relationships between domains and the underlying cognitive ability are bi-directional. As stated, we 

believe that these cognitive skills can be developed by pursuing a STEM domain or by training SS, however due to 

the direct and precise nature of spatial skills training, this route is likely to produce results more effectively. 

Moreover, training this ability in one area is likely to have an effect on other areas which make use of the same 

skills: by training spatial skills, we may see one's ability to write or understand programs improve, or to study 

physics, chemistry, and so on. 



Spatial Skills and CS Attainment Level 

In previous experiments and studies of SS and CS, it has been typical to examine students either in their first year of 

study in computing (as an undergraduate degree, a Master's degree or an elective module) or about to start the 

former. Jones and Burnett's study suggests that those who are better at programming are likely to have better SS, but 

this is only across a single year. 

To better understand the relationship between SS and CS beyond a single year, the SS of students and staff at 

different levels of attainment in CS at the authors' R1 institution were measured. The study involved two research 

questions: 

• RQ1: Do spatial skills vary with academic attainment in CS? 

• RQ2: Do spatial skills vary with specialisation areas in CS? 

For RQ1, given Jones and Burnett's results, it was expected that the higher the attainment and so the “better” the CS 

skills, the higher the SS will be. 

RQ2 draws on Jones and Burnett's finding that SS are not significantly connected to non-programming courses. 

Each test participant was asked to record their specialised or most favoured area of computing. With this data, it was 

expected that those involved in heavily programming oriented areas of CS - such as software engineering or systems 

development - would overall have higher SS than those who were focused on more human based courses, such as 

HCI or human-centered security. 

Furthermore, studies have indicated that gender can affect the SS of participants [9, 32]. In order to account for this 

potential confound, the gender of each participant was also recorded. 

Method 

Five cohorts were selected from which to draw participants: 

• First year students, taking a CS0-style course designed for those without programming experience, many of 

whom are not intending to major in CS 

• Honours undergraduate students in their 3rd/4th year majoring in CS, who predominantly take the same 

courses at the same level 

• MSci students, in the fifth year of an undergraduate Masters programme 

• PhD students 

• Academic staff from the CS department 

30 participants were randomly selected from each group and then invited to take the SS test, with the exception of 

the first years who all took the SS test during a lecture and 30 were randomly selected. 



Participants were also required to indicate their specialised or preferred area of research. To reduce the granularity 

of the data, the participants were arranged according to which of the department's CS primary research areas they 

fell under, of which there are four. For the purpose of this paper, they are named as follows: 

• HCI: Human-computer interaction and human factors 

• Data: machine learning, info retrieval and data science 

• Sys: systems engineering and  networks 

• Th-Alg: algorithms, computational thinking, formal analysis and mathematical modeling 

First year students were not required to indicate a preferred area of computing. Additionally, some participants opted 

not to provide this information. Table 1 details the breakdown of the participants. 

 

Table 1: The characteristic breakdown of participants 

The test used was the Revised PSVT:R [36]. For all intents and purposes the Revised PSVT:R consists of the same 

questions as the original PSVT:R by Guay [10], but has been updated to have some graphical errors fixed and the 

questions arranged in order of difficulty. The test consists of 30 items with a 20 minute time limit. 

The test was provided in two separate formats: online and on paper. Online, the test was accessible through the 

institution's Moodle platform via a quiz with a time limit. On paper, one of the authors was present to ensure that the 

test was completed within the time limit and that the participants were not looking up answers or conferring. While 

we cannot absolutely confirm that those who completed the test online did not confer, the timer was not pausable 

and once the test was begun could not be reset, so in order to cheat participants realistically would have had to have 

begun the test with the intention of doing so. In addition to the fact that the answers to the PSVT:R are not readily 

available online, we do not expect that any of the participants would have attempted to invalidate the research 

deliberately. A more realistic concern is that people who completed the test without supervision may have used 

scratch paper or some similar aid in completing the questions. 



Once the tests were completed, the scores were collated along with level of attainment and demographic data, by 

which stage no names or other sensitive data was attached to any of the results. 

Analysis of Results 

Once the data had been collected, the mean and standard deviation for each group was calculated and are displayed 

in table 2. After breaking down participants into groups based on attainment level and gender, the SS means of these 

groups are displayed in table 3. 

 

Table 2: The mean, standard deviation and number of participants for each cohort 

 

Table 3: The means for each factor being analysed 

To confirm the validity and significance of the experiment, a two way analysis of variance (2-way ANOVA) was 

conducted. The results of this statistical method are displayed in table 4. Due to the unbalanced nature of the data, 

sum of squares Type II was used. 



 

Table 4: 2-way ANOVA significance and interaction between factors (in this instance, SS denotes Sum of Squares, 

MS denotes the Mean Square and DF denotes Degrees of Freedom) 

As can be seen here, the main effect of academic level is significant (p<0.01). Although the average SS score of 

male participants was slightly higher, neither this nor the interaction between gender and attainment level were 

found to be significant. 

Once the ANOVA identified that the main effect was significant, the effect size between groups was calculated 

using Hedges' g, favoured in this case over Cohen's D due to the small sample sizes of some groups. The results of 

this analysis are displayed in table 5. While recommending caution Cohen suggests that effects of 0.2=small, 

0.5=moderate and 0.8=large. 

 

Table 5: The effect size between groups, using Hedges' g 

One third of participants completed the test on paper and two thirds completed the test online (with the exclusion of 

the first year students, who all completed it on paper). In order to check for bias, the average scores two groups were 

compared. There was a slight bias in favour of the participants who completed the test on paper. 



Discussion 

As expected, with the exception of the PhD students, the average SS ability of each cohort increased as academic 

attainment increased. By examining the effect size between groups, we can see the Honours cohort being better than 

the level 1 cohort, the MSci cohort were better than them and so on. Although the incremental effect sizes are quite 

small, they compound to display large differences between cohorts on either ends of the scale. 

One theory for the PhD students not fitting this pattern is that their backgrounds are considerably more varied than 

any of the other cohorts tested. While the first year students will have graduated from differing high school 

programmes and curricula, all the students tested from the level 1 course specifically chose this course as they had 

limited programming experience, significantly balancing the background of the cohort. Honours and MSci students 

will have undertaken different modules, have different preferences and specialisations, but will all be some way 

along the same course at the same level of assessment. Staff members will also have had a varied background, 

however it can safely be assumed that they have achieved a relevant PhD and will have several years of experience. 

Conversely, PhD students attending the institution in question come from a wide range of first degrees undertaken at 

universities around the world. Each of these courses will have different focuses, teaching styles and methods of 

assessment, which may have had an influence on SS development. The test requires some reading at the start,and so 

there may be language issues. Note also that the deviation in scores for the PhD students is high, and in fact the 

highest recorded score on the test (a perfect score of 30) was achieved by a PhD student - indicating that rather than 

the group generally having SS out of sync with their level of advancement, instead, the spread is much broader than 

in other cohorts. 

With the exception of the anomalous PhD students, a clear pattern can be seen in that the average SS of those with 

higher levels of attainment are higher than those with a lower level of attainment. While this takes us a step closer to 

understanding the relationship between SS and CS, there are multiple conclusions which can be drawn from this 

result. One is that as one progresses in computing science, their SS are improved by the exercises and practices they 

are required to develop, as Pallrand noticed in physics. An alternative theory is that as cohort members progressed, 

only those with initially higher SS advanced, either because those with lower skills could not or chose not to. Both 

options are possible, and a longitudinal study of a cohort progressing through the system would be required to 

decidedly identify which hypothesis is true, if either. 

Concerning the research area of each participant and the mean scores of these groups, the results partially support 

the study by Jones and Burnett, as the HCI area has the lowest average SS. However, if programming were the 

primary factor to which SS contributed, it would be expected that the Sys area would have the highest SS, since this 

is the area most focused on working with programs. The Th-Alg section have the highest average SS, indicating that 

some other factor in CS is likely to be related to SS. 

It must be noted that there are significant differences between the participants involved in this study and those in 

Jones and Burnett's study. Jones and Burnett's cohort were a relatively known quantity, with participants having 



different backgrounds but none having done computing, and all being required to take the mentioned courses. The 

research groups in this institution are far more diverse, with members of staff having differing levels of experience, 

track records and overlapping interests. Additionally, some participants were not members of a research section and 

were only able to express their interests. Further, regardless of what research section one is associated with, this does 

not strictly indicate how much work they do which directly ties into this field. The purpose of collecting this 

information was to investigate in broad, preliminary terms whether or not this study's matched Jones and Burnett's. 

We feel that primarily it does, though also indicates that there is more at play than just programming, which supports 

our model. 

Owing to the fact that there was a slight bias in favour of those completing the test on paper vs those completing it 

online, we should highlight that future experiments of this nature should be conducted using one method only to 

eliminate this bias. It is an interesting result, however, since we expected that anyone who  was not supervised as 

they attempted the test would be more likely to have access to scratch paper or some other tools and would therefore 

score higher. Our suggestion moving forward would be to have everyone complete the test on paper under 

supervision. 

A final thought on the experiment described here was how these results would compare with other subjects, both in 

STEM and outwith. This was considered, but unfortunately was not feasible with the time and resource constraints 

of the project. It would be useful to see how closely related the results would be in other STEM fields and 

particularly to see if non-STEM fields follow the same pattern. However, regardless of what these results may 

indicate, it is still felt that the somewhat narrower view of this experiment yields valuable insights into the 

relationship between SS and CS. 

Conclusion 

In this paper we have reviewed literature concerning the relationship between SS and STEM, particularly in CS. 

This literature indicates that a correlation between SS and CS exists, with one study displaying what has been 

interpreted as a causal effect. Furthermore, we have identified that in one STEM field, SS improve over a period of 

learning - not as much as if they had received directed SS training, but more than a liberal arts student - which 

indicates that the relationship is likely to be a biased two-way relationship. 

We have also collated and presented a substantial discussion of spatial skills themselves, condensing and 

summarising a broad field in a format which is easy to grasp for the relatively uninitiated. Based on this, we have 

presented a model for the relationship between SS and CS. This model is rooted in existing research into cognition 

in CS, particularly in program comprehension, program generation and problem comprehension. The model 

indicates that particular factors of SS are likely to have an effect in the reading and identification of key points in 

code or problems, as well as the mental models constructed in attempting to understand programs and theoretical 

problems. 



Finally, we conducted an experiment to strengthen our understanding of the relationship between SS and CS 

achievement, showing that in general the average SS of a cohort increases with academic attainment, extending the 

research undertaken by Jones and Burnett. The experiment also supports our model connecting SS with CS, as the 

research area with the highest average SS was the section who engage mostly in abstract and theoretical thinking. 

Our contribution furthers our understanding of SS and their relation to CS and lays the groundwork for a larger 

experiment to determine if the relationship is causal. If SS training does benefit computing ability substantially, then 

it is worth introducing on a large scale, due to its cost-effectiveness, high accessibility and easy implementation. 
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