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Abstract: An electric field propagating along a non-planar
path can acquire geometric phases. Previously, geometric
phases have been linked to spin redirection and indepen-
dently to spatial mode transformation, resulting in the
rotation of polarisation and intensity profiles, respectively.
We investigate the non-planar propagation of scalar and
vector light fields and demonstrate that polarisation and
intensity profiles rotate by the same angle. The geomet-
ric phase acquired is proportional to j = 𝓁 + 𝜎, where 𝓁
is the topological charge and 𝜎 is the helicity. Radial and
azimuthally polarised beams with j = 0 are eigenmodes
of the system and are not affected by the geometric path.
The effects considered here are relevant for systems rely-
ing on photonic spin Hall effects, polarisation and vector
microscopy,aswellas topologicaloptics incommunication
systems.

Keywords: angularmomentum; geometric optics; geomet-
ric phases; vector beams.

1 Introduction
Throughout history, mirrors have been used for the most
sacred and profane purposes, as well as for a multitude of
scientific and technological purposes. The earliest docu-
mented mirrors have been constructed in Neolithic times
from polished obsidian [1], followed by metallic mirrors,
not unlike the ones used in this paper, developed in
Mesopotamia around 4000 BCE, Venetian molten glass
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mirrors from around 1400 and the modern day dielectric
mirrors. Contrary to popular misconceptions, mirrors do
not ‘swap left and right’ but rather ‘near and far’. In an
optical context we might say that the propagation direc-
tion of a light beam perpendicular to the mirror surface is
reversed.

Mirror reflection also affects light’s (spin and orbital)
angularmomentum, however in a subtly different way: the
angular momentum component perpendicular to the mir-
ror surface is conserved,whereas theparallel component is
reversed – effectively reversing the projection of the angu-
lar momentum with respect to the propagation direction.
When taking light via multiple mirrors along a non-planar
trajectory, these successive angular momentum redirec-
tions add up, and the propagation of the electric field may
be modelled as parallel transport along the beam trajec-
tory [2, 3], resulting in a rotation of both the polarisation
and intensity profile.

Polarisation rotation may be understood by consid-
ering the action of individual optical elements along the
non-planar beam path on the electric field vector [4–6].
This has been confirmed using optical fibres curled into a
helix [7–9] or by using a succession ofmirror reflections [2,
10]. Propagation along a non-planar trajectory also causes
a rotation of the beam intensity profile [11–17], which can
be seen from simple ray tracing.

In this paper, we investigate experimentally and the-
oretically the rotation of intensity, polarisation and vector
field profiles, using the same experimental setup to trans-
port a beamof light along anon-planar trajectory.We show
systematically that the rotationangledependssolelyon the
non-planarity of the beam path, and interpret it in terms
of geometric phases. For polarisation rotations, these are
the well-established spin-redirection phases: Upon non-
planar propagation, the right and left handed circularly
polarised components of the light field acquire equal and
opposite phases, leading to a rotation of the polarisation
ellipse. Similarly, a spatial modewith a given orbital angu-
lar momentum (OAM) acquires a phase proportional to
its topological charge [18], which we shall call orbital-
redirectionphase.Weshowthat thedifferentialphaseshifts
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acquired by the various modal contributions result in a
rotation of the overall intensity profile.

The geometric phase provides a unifying concept in
physics and specifically in optics [19, 20], where it is com-
monlywitnessed instructured lightfields [21]. It describesa
phasemodulation that, unlike the dynamic phase, is inde-
pendent of the optical path length but results exclusively
from the geometry of the optical trajectory [22]. Such geo-
metric phases play a crucial role in the photonic spin Hall
effect [23–25] and its scalar equivalent, the acoustic orbital
angularmomentumHall effect [26], spin–orbit transforma-
tions in general, and the closely related rotational Doppler
effect [27–30].

In our work we apply the concept of geometric phases
to the simplest possible experimental setup, comprising
nothing but a succession of metal mirrors in a non-planar
configuration. For the first time, however, we study polari-
sationand imagerotation forawiderangeofscalarandvec-
tor beams, including beams with inhomogeneous spatial
polarisation distributions [31], which are non-separable in
their spinandorbitaldegreesof freedom[32].Wesystemati-
cally show thatpolarisationprofiles and imagesare rotated
by the same angle, confirming the concept of an angular
redirection phase as the origin of optical beam rotation.

In Section 2 we introduce our experimental setup and
define a parameter that characterises its non-planarity.
Sections 3 and 4 demonstrate and analyse image rotation
and polarisation rotation respectively in terms of orbital

and spin redirection phases. We then, in Section 5, gener-
alise these ideas to present the rotation of vector beams,
followed by concluding remarks in Section 6.

2 Experimental setup
In order to investigate the rotation of intensity and polari-
sation profiles of light travelling along a non-planar trajec-
tory, we built the setup outlined in Figure 1(a) and inspired
by earlier work [33, 34], comprising four mirror reflections.
Mirrors M2, M3 and M4 define a (vertical) plane. The beam
path is arranged such that the input and output wavevec-
tors k0 and k4 point in the same direction (chosen as the z
axis), which allows us to define rotations unambiguously.

Experimentally, we parameterize the degree of non-
planarity by the angle

𝜃NP = 𝜋∕2− 𝛼, (1)

where 𝛼 is twice the angle of incidence onmirrorM1. In our
experiment, 𝛼 is adjusted by shifting the position ofmirror
M1 and adjusting M2 accordingly.

We generate beam profiles with arbitrary intensity
and polarisation structures using a digital micromirror
device (DMD), following techniques outlined in [35, 36].
This allows us to investigate homogeneously polarised
beams as well as those with spatially varying polarisation
profiles, simplybychanging themultiplexedhologrampat-
tern on the DMD. Our setup generates vector beams as
superpositions of different spatial modes in the horizontal

Figure 1: Non-planar trajectory and its interpretation in on the kn-sphere and angular momentum sphere.
(a) A succession of mirror reflections takes the beam along a non-planar trajectory, with kn labelling the wave vector after reflection off the
nth mirror (Mn). The non-planarity of the beam path can be adjusted by shifting M1 (as indicated by M′

1) and is parametrized by the angle 𝛼.
For illustration we include a measured intensity profile (HG2,0) at the input and output plane, and indicate the change of the polarization
direction along the beam path. Insert: corresponding k-sphere showing the evolution of the k vector along the beam path. (b) Interpretation
in terms of the total angular momentum, J for the case where the initial angular momentum J0 is aligned with the initial wave vector k0. The
angular momentum redirection sphere is shown as inset. The rotation angle 𝜃 is equal to the solid angle of the enclosed section indicated in
blue.



A. McWilliam et al.: Angular momentum redirection phase of vector beams | 729

and vertical polarisation components. The resulting vector
modes can, of course, be rewritten as a modal decomposi-
tion of circular polarisations, which will be more helpful
when discussing polarisation rotation in terms of spin
redirection phases.

The rotation of intensity patterns is determined by
analysis of images obtained via a CMOS camera, and the
(spatially resolved) polarisation rotation by full Stokes
tomography [35, 36].

We note that dielectric mirrors and mirror coatings
can lead to significant polarisation changes, with optical
dichroism causing polarisation rotations whichwould dis-
guise rotations that result from propagation along a non-
planar trajectory. In order to minimise unwanted optical
activity we use gold mirrors, which for our range of reflec-
tion angles and frequencies do not alter the polarisation
state.

Throughout the paperwe are using the coordinate sys-
temindicated inFigure 1(a).Apositive rotationangle𝜃 then
corresponds to a clockwise rotation if defined in the direc-
tion of beam propagation, which appears anticlockwise
when observed on the camera.

3 Image rotation
When sending a beam along the non-planar trajectory,
we find that its intensity profile is rotated by an angle
𝜃 that is identical to the degree of non-planarity 𝜃NP as
defined in (1), irrespective of the specific mode. Figure 2
illustrates this for various HG intensity profiles before and
after non-planar propagation for a fixed angle 𝛼.

Figure 2: Image rotation: experimental images (from the camera’s
perspective) of the original (top row) and rotated (bottom row) mode
profiles for a fixed non-planar trajectory with 𝜃NP = (21.4± 0.5)◦,
indicated as yellow dashed line.

This effect can perhaps most easily be explained by
spatially resolved ray propagation, taking into account the
action and alignment of the various optical components,
which indeed reveals that any intensity profile exiting the
experiment is rotated by the angle 𝜃 = 𝜃NP.

In the following we show that any mode rotation can
be interpreted in terms of geometric phase, specifically the
orbital-redirection phase. If 𝜓(r, 𝜙) is the original mode
expressed in cylindrical coordinates, then a rotation by 𝜃
will result in the mode 𝜓 ′(r, 𝜙) = 𝜓(r, 𝜙+ 𝜃). Expressing
this mode in the Laguerre–Gaussian (LG) basis, with LG𝓁

p
= u𝓁p(r) exp(i𝓁𝜙), we can write the original mode as

𝜓(r, 𝜙) =
∑
p,𝓁

⟨LG𝓁
p|𝜓(r, 𝜙)⟩LG𝓁

p, (2)

where ⟨a|b⟩ denotes the inner product which may be
evaluated as mode overlap. The rotated mode is then

𝜓
′(r, 𝜙) =

∑
p,𝓁

⟨LG𝓁
p|𝜓(r, 𝜙+ 𝜃)⟩LG𝓁

p

=
∑
p,𝓁

e−i𝓁𝜃⟨LG𝓁
p|𝜓(r, 𝜙)⟩LG𝓁

p. (3)

Here we have evaluated the inner product as

⟨LG𝓁
p|𝜓(r, 𝜙+ 𝜃)⟩ = ⟨u𝓁p(r)ei𝓁𝜙|𝜓(r, 𝜙+ 𝜃)⟩

= ⟨u𝓁p(r)ei𝓁(𝜙−𝜃)|𝜓(r, 𝜙)⟩
= e−i𝓁𝜃

∑
p,𝓁

⟨LG𝓁
p|𝜓(r, 𝜙)⟩,

where the second line results from relabelling the angular
variables. We find that a rotation by 𝜃 is associated with
an orbital-redirection phase of −𝓁𝜃 for every LG mode of
topological charge𝓁. This is of course adirect consequence
of the fact that LG modes are eigenmodes of the angular
momentum operator −i𝜕𝜃, and the angular momentum
operator acts as the generating function of rotations.

Redirection-phases are said to be geometric because
theydependonthegeometryof thepath formedonthe rele-
vant sphere of angularmomentumdirections. For paraxial
beams, the spin and orbital angular momentum vectors
S, and L, respectively, and hence also the total angular
momentum J = L+ S are aligned with the k vectors, but
the component of J perpendicular to the mirror does not
change orientation after every mirror reflection [37], as
indicated inFigure 1(b).With this inmind, thek redirection
sphere, shown in the inset of Figure 1(a), can be translated
into an angular momentum redirection sphere, as shown
in the inset of Figure 1(b). For the image rotations consid-
ered here, 𝜃 is equal to the solid angle Ω, corresponding
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to the blue curve on the orbital redirection sphere upon
propagation.

In the remainder of this section we illustrate the
orbital-redirection phase for some simple examples of HG
modes. HG modes HGn,m and LG modes LG𝓁

p are charac-
terized by a mode number N = n+m = 2p+ |𝓁|. Gener-
ally, any transverse spatial mode of mode order N can be
expressed as superposition ofN + 1modes froma different
mode family (i.e., HG or LG) with the samemode order. For
the full mathematical expressions of HG and LG modes,
see Appendix C.

Thefirst ordermodeHG0,1, as shown in the left column
of Figure 2 rotated by an angle 𝜃 in the clockwise direction
(as defined with beam propagation), may be expressed as

HG′
0,1 =

1√
2
(LG−1

0 e−i𝜃 + LG+1
0 ei𝜃)

= cos 𝜃 HG0,1 + sin 𝜃 HG0,1, (4)

in the LG basis and the HG basis, respectively.
Similarly, the second order mode HG2,0, shown in the

right column of Figure 2 rotated by 𝜃 can be written as:

HG′
2,0 =

1
2 (LG

+2
0 e−i2𝜃 −

√
2LG0

1 + LG−2
0 e+i2𝜃)

= cos2(𝜃)HG2,0 +
sin(2𝜃)√

2
HG1,1 + sin2(𝜃)HG0,2. (5)

A more detailed treatment of basis transformations
between HG and LG modes is given in Appendix A.

In order to confirm the relationship between non-
planarity and image rotation experimentally, we realise
non-planar trajectories, with 𝛼 set to various angles
between 15◦ and 70◦, and identify the image rotation for all
14 HGn,m modes, with a mode number N = n+m ≤ 4. We
first low-pass Fourier filter the camera images to remove
artifacts due to diffraction, and then convert them to polar
plots. We obtain the rotation angle from the angular offset
between the rotated and input beam profiles.

As expected, the rotation angle does not depend on
the specific transverse input mode. For each geometric
configuration, determined by the angle 𝛼, we evaluate the
rotation 𝜃 by averaging over the individual rotation angles
found for our 14 test modes. The blue data points and fit in
Figure 3 show the rotation angles 𝜃 of these intensity dis-
tribution for various incidence angles 𝛼, confirming that
𝜃 = 𝜃NP = 𝜋∕2− 𝛼, i.e. the image rotation angle is directly
givenby thedegree of non-planarity of thebeam trajectory.

Figure 3: Image and polarisation rotation for non-planar
trajectories: experimental measurements and theoretical prediction
of the relationship between non-planarity set by 𝛼 and the intensity
rotation 𝜃. The lower plot shows the difference between the
measured 𝜃 and the theoretically expected 𝜃NP. The error in 𝛼 is
estimated to be smaller than 0.5◦.

4 Polarisation rotation
Using the same experimental setup we confirm that prop-
agation along non-planar trajectories rotates not only
images, but also the axis of the polarisation ellipse char-
acterizing the electric field.

We confirm this experimentally, by identifying the
polarisation rotation of an initially horizontally polarised
fundamental Gaussian beam after it has passed along a
non-planar trajectory with various angles of 𝜃NP = 𝜋∕2−
𝛼.Aselectionof thesemeasurementsareshowninFigure4.

Polarisation rotation of homogeneously polarised
light is independent of the spatial mode, as illustrated in
Figure4(b) for theexampleofahorizontallypolarisedHG1,1
mode. It is evident that both the intensity and polarisation
profiles have rotated by the same angle.

Our spatially resolved measurements show that, as
expected, the polarisation remains homogeneous across
the beam profile. We quantify the rotation angle 𝜃 by aver-
aging over the spatially resolved Stokes measurements
before and after propagation, with the error in 𝜃 given
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Figure 4: Polarisation rotation:
(a) experimental observation of polarisation rotation of a
horizontally polarised Gaussian beam (left), for different non-planar
geometries (b) polarisation profile of a homogeneously polarised
HG1,1 mode before and after rotation. The colour scheme used here
and in Figure 5 to map polarisation ellipticity 𝜒 and orientation 𝜓 is
shown in (c), while intensity is represented as opacity.

by the standard deviation. A plot of measured experimen-
tal angle, 𝛼, against measured polarisation rotation, 𝜃,
is shown by the orange data points and fit in Figure 3,
confirming that the polarisation rotation is equal to the
non-planarity parameter, 𝜃 = 𝜃NP = 𝜋∕2− 𝛼, and more-
over that polarisation and images are rotated by the same
angle.

The propagation of the light along a non-planar tra-
jectory can bemodelled using Jones vector formalism [38],
where the action of each mirror on the polarisation vector
is described by a Jones matrix that arises from simple ray
optics.Asweareworking ina3Dgeometry, theelectricfield
is E = Ehĥ+ E𝑣𝑣+ Ezẑ, where ĥ, 𝑣 and ẑ are unit vectors
in the horizontal, vertical and propagation direction.

As shown in Appendix B, the action of propaga-
tion along the non-planar trajectory is given by the Jones
matrix,

P =
⎛⎜⎜⎝

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎞⎟⎟⎠
(6)

where, 𝜃 = 𝜃NP = 𝜋∕2− 𝛼. This is, of course, a general
rotation matrix, showing that the mirror system rotates an
input polarisation state by an angle 𝜃 about the z axis.

Just like image rotation, polarisation rotation can also
be explained in terms of geometric phases, in this case
between the circular polarisation components. Any parax-
ial linearly polarized beam of light, propagating along the
z direction, may be written as:

E = E0(r, 𝜙)
(
cos 𝜃0ĥ+ sin 𝜃0𝑣

)
, (7)

where E0(r, 𝜙) describes the transverse spatial mode, and
0 ≤ 𝜃0 ≤ 2𝜋 is the angle of the polarisation direction to the
horizontal. Applying the rotation matrix (6) results in the
rotated mode

E′ = E0(r, 𝜙)
(
cos(𝜃0 + 𝜃)ĥ+ sin(𝜃0 + 𝜃)𝑣

)
. (8)

One may easily verify that the initial and rotated field,
expressed instead in termsof thecircularpolarisationbasis
r̂ = (ĥ− i𝑣)∕

√
2 and l̂ = (ĥ+ i𝑣)∕

√
2, become

E = (E0(r, 𝜙)∕
√
2)
(
ei𝜃0 r̂ + e−i𝜃0 l̂

)
, (9)

E′ = (E0(r, 𝜙)∕
√
2)
(
ei(𝜃0+𝜃)r̂ + e−i(𝜃0+𝜃) l̂

)
. (10)

Hence,polarisation rotationmaybe interpretedas the right
and left hand polarisation components, with a spin angu-
lar momentum of∓ℏ per photon, acquiring a phase factor
of exp(±i𝜃). This result also holds for general elliptical
beams, but for simplicity we have omitted the lengthy
calculation.

In summary, a rotation by 𝜃 is associated with a spin-
redirection phase of −𝜎𝜃 for every circularly polarised
modes of helicity 𝜎, leading to polarisation rotation, and
an orbital-redirection phase of−𝓁𝜃 for every spatial mode
component with an OAM of 𝓁ℏ. For both cases, the rota-
tion angle 𝜃 is equal to the solid angle Ω formed by the
path traced on the appropriate (spin or orbital) angular
momentum redirection sphere shown in Figure 1(b).

5 Rotation of vector beams
Finally, we study the rotation of beams of light present-
ing an inhomogeneous polarisation distribution. These
are non-separable in spatial and polarisation degrees of
freedom. General vector beams can be written as 𝝍 =
𝜓l(r, 𝜑)l̂ + 𝜓r(r, 𝜑)r̂, butherewerestrictourselves,without
loss of generality, to beams of the form

𝝍 = LG𝓁1
p1 l̂ + e−i𝜑LG𝓁2

p2 r̂. (11)

Asdiscussed in theprevious sections, theactionof thenon-
planar propagation results in orbital redirection phase of
exp(−i𝓁𝜙) formodewithOAMof𝓁ℏ, anda spin redirection
phase of exp(−i𝜎𝜙) for a mode with a spin of 𝜎ℏ along
the propagation direction. The total geometric phase is
henceproportional to the totalangularmomentumnumber
j = 𝓁 + 𝜎. Applied to our vector beam Eq. (11), this leads
to a simultaneous rotation of the intensity pattern and the
polarisation by 𝜃:

𝝍
′ = e−i(𝓁1+1)𝜃LG𝓁1

p1 l̂ + ei𝜑e−i(𝓁2−1)𝜃LG𝓁2
p2 r̂. (12)
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Figure 5: Polarisation plots of experimentally measured vector beams before (top row) and after (bottom row) the system, for a fixed rotation
angle of 𝜃 = (21.4± 0.5)◦. Beams in (a), and (b) contain only linear polarisation and are of the form LG±1

0 l̂ + exp(−i𝜑)LG±1
0 r̂, for 𝜑 = (0, 𝜋).

The first column in (c) is a Poincaré beam and the second column shows a beam containing polarisations along a great circle on the Poincaré
sphere. Smaller inserts show the corresponding theory plots, and we have used the polarisation colour scheme from Figure 4 in order to aid
the eye.

In particular, if j = 0, the original beam will be recov-
ered after rotation, meaning that the output beam will be
indistinguishable from the input, both in polarisation and
intensity. As 𝜎 can only take values ±1, this only hap-
pens for LG modes with l1 = −1 and l2 = 1. These beams
remain unchanged and can be considered the eigenmodes
of the system and therefore can be thought of as con-
served quantities. This makes intuitive sense, as beams
with these properties are rotationally symmetric, both in
their intensity and polarisation profile, making them rota-
tion invariant. For the simple case of p1,2 = 0, we obtain
radial polarisation for 𝜑 = 0, and azimuthal polarisation
for 𝜑 = 𝜋, as shown in Figure 5(a). However, for all other
values of j, the angular redirection phase will cause a rota-
tion of the beam. Figure 5(b) and (c), shows the rotation
of a selection of general vectorial beams for which j ≠ 0,
including counter-rotating vector beams, for which 𝓁1 = 1
and 𝓁2 = −1, these beams correspond to themirror images
of radially and azimuthally polarized beams.

6 Conclusions
The orbital and spin angular momentum refer to funda-
mentally different properties of light: The former is extrin-
sic and arises from twisted phasefronts of a light beam
or photon wavefunction, the latter is intrinsic, relating to
the vector nature of electromagnetic fields or more specifi-
cally their circular polarisation. It is therefore surprising
that taking a light beam along a non-planar trajectory
affects both spin components in the same way, by adding

an angular momentum redirection phase of exp(−ij𝜃NP),
where j = 𝜎 + 𝓁 is the combined spin and angularmomen-
tum number of the light, and 𝜃NP parametrizes the non-
planarity of the trajectory.

We have experimentally and theoretically looked at
the rotation of intensity, polarisation and vector field pro-
files, which arises from propagation along a closed non-
planar trajectory. This rotation has been interpreted in
terms of both spin and orbital redirection phases, for the
polarisation and intensity, respectively. We have demon-
strated that the intensity and polarisation rotate in the
same direction by the same angle, which is dependent on
the solid angle enclosed by the path on the associated redi-
rection sphere. By looking at the rotation of vector modes,
with spatially varying polarisation, we have shown that
the geometric phase acquired is proportional to the total
angular momentumnumber of the beam, j = 𝓁 + 𝜎. When
j = 0, the total geometric phase is null, and the polarisa-
tion profile appears unrotated by our system. This is the
case for radial and azimuthally polarised modes, which
can be considered as eigenmodes of the system.

Due to their robustness against aplanarity, radial and
azimuthal vector modes constitute ideal candidates for
optical communication based on optical fibres, inherently
subject to twisting and bending constraints [11], and for
microscopy applications, where these modes can also
be tightly focused [39]. Our findings are also relevant
for twisted optical cavities and mirror-based resonators
[40–42] and for quantum metrology [43]. The redirection
phases evidenced in this work can be linked to optical Hall
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effects, as both can be attributed to the existence of Berry
potentials [18], and also constitute elegant additions to the
landscape of geometric phases of light, so far dominated
by their planar counterparts [44, 45].
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Appendix A: Basis rotation
We here give an explicit derivation of image rotation in
terms of a basis change to the LG mode basis, linking the
rotation angle 𝜃 and the orbital redirection phase.We start
with the general case and then give the transformation
matrices for specific examples of some HG modes used in
the experiment.

AnHGmode rotated by an angle 𝜃, denoted |HG′⟩, can
bewritten as a superposition of fundamental HGmodes by
first expressing the mode in the Laguerre–Gaussian (LG)
basis, applying a rotation matrix RLG(𝜃), then returning to
the HG basis [46]:

|HG′⟩ = BHG←LG ⋅ RLG(𝜃) ⋅ BLG←HG|HG⟩ (A1)

where RLG(𝜃) = diag(e−i𝓁1𝜃, e−i𝓁2𝜃,… , e−i𝓁N+1𝜃) imparts an
orbital-redirection phase, e−i𝓁𝜃, to the LG component of
topological charge 𝓁. Since LG and HG modes both form
their own complete and orthonormal basis, one can be
converted into a superposition of the other via:

|HGn,m⟩ =
∑
𝓁,p

⟨LG𝓁
p|HGn,m⟩|LG𝓁

p⟩ (A2)

|LG𝓁
p⟩ =

∑
n,m

⟨HGn,m|LGl
p⟩|HGn,m⟩ (A3)

where the overlaps ⟨LGl
p|HGn,m⟩ and ⟨HGn,m|LGl

p⟩ yield the
elements of the mode conversion matrices. While compli-
cated general expressions for these overlaps exist in the
literature, it is simplest to calculate these directly from the
overlap of the respective modes using:

⟨a|b⟩ =
∬

(ua(x, y,0))∗ub(x, y,0)dxdy (A4)

where u are the amplitudes of the beams.

For first ordermodes, the explicit formsof thematrices
describing the mode transformations are

BN=1HG←LG =
1√
2

(
1 1
i −i

)
(A5)

RN=1LG (𝜃) =
(
e−i𝜃 0
0 e+i𝜃

)
(A6)

BN=1LG←HG =
1√
2

(
1 −i
1 i

)
(A7)

For second order modes, the transformations are:

BN=2HG←LG =

⎛⎜⎜⎜⎜⎜⎜⎝

1
2 − 1√

2
1
2

i√
2

0 − i√
2

− 1
2 − 1√

2
− 1
2

⎞⎟⎟⎟⎟⎟⎟⎠

(A8)

RN=2LG (𝜃) =
⎛⎜⎜⎝

e−i2𝜃 0 0
0 1 0
0 0 e+i2𝜃

⎞⎟⎟⎠
(A9)

BN=2LG←HG =

⎛⎜⎜⎜⎜⎜⎜⎝

1
2

− i√
2

− 1
2

− 1√
2

0 − 1√
2

1
2

i√
2

− 1
2

⎞⎟⎟⎟⎟⎟⎟⎠

(A10)

Appendix B: Polarisation rotation
For this, we need to consider a system of three orthog-
onal vectors corresponding to each mirror, the incident
wavevector, k, and two orthogonal polarisation compo-
nents, one which lies in the plane of incidence of the
mirror, p, and one which lies perpendicular to it, s. In
this appendix we apply the three-dimensional polarisa-
tion ray tracing approach discussed in [47] to our system.
The action of an optical element q on a polarisation vector
eq is;

eq = Pq ⋅ eq−1 (B1)

where Pq is some 3 × 3 matrix to be found. This equation
is written in global coordinates. It is equivalent to another
equation written in local coordinates, namely;

𝑤q = Jq ⋅𝑤q−1 (B2)

Any general polarisation vector can be written in terms of
a pair of orthogonal basis states a and b. Then the global
relation (B1) becomes the following pair of statements;

e′a = Pq ⋅ ea e′b = Pq ⋅ eb (B3)
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which represent six equations in total. The matrix Pq
has nine elements, so we need three more equations to
uniquely define it. We choose the matrix form of the law of
reflection (in global coordinates)

kq = Pq ⋅ kq−1 (B4)

furnishing us with nine equations in nine unknowns,
which can be solved for the elements of Pq. The properties
of each optical element are specified by its Jones matrix,
which works on local Jones vectors. We therefore need to
transform from global to local coordinates, let the optical
element act, then transformback to global coordinates. All
of this should be contained within Pq, so it will have the
form;

Pq = OG←L ⋅ Jq ⋅ OL←G (B5)

where OG←L transforms from local to global and OL←G
transforms from global to local.

We will first consider the global to local transforma-
tion. Our orthogonal coordinate system before the optical
element is {sq,pq,kq−1}, whichweneed to project onto the
local z direction for that element. This kind of change of
basis is obtained by a matrix whose rows are the coordi-
nate vectors of the new basis vectors (local, {sq,pq,kq−1})
in the old basis (global, {x, y, z}), so;

OL←G =
⎛⎜⎜⎝

sx,q sy,q sz,q−1
px,q py,q pz,q−1
kx,q ky,q kz,q−1

⎞⎟⎟⎠
(B6)

To transform from local to global coordinates, we take the
inverse of this but replace the basis vectorswith those after
the element.

O−1
G←L = OT

G←L =
⎛⎜⎜⎜⎝

s′x,q p′x,q kx,q
s′y,q p′y,q ky,q
s′z,q p′z,q kz,q

⎞⎟⎟⎟⎠
(B7)

where the first equality follows from the fact that this is
an orthogonalmatrix, since the basis vectors {sq,pq,kq−1}
are orthogonal. This now means the matrix Pq shown in
Eq. (B1) is fully determined if the Jones matrix of the par-
ticular optical element and the vectors {sq,pq,kq−1} are
known. These can all be expressed entirely in terms of kq
and kq−1;

sq =
kq−1 × kq
|kq−1 × kq| s′q = sq

pq = kq−1 × sq p′q = kq × s′q (B8)

The power of this method lies in the fact that Q optical
elements can be cascaded bymultiplying their Pq matrices
to find an overall matrix P;

P = PQ ⋅ PQ−1 ⋅ · · · ⋅ Pq ⋅ · · · ⋅ P2 ⋅ P1 (B9)

Therefore to describe a system all we need are the Jones
matrices of each element and the k vectors, which in turn
will be determined by the position of each mirror.

As shown in Figure 1 in the main text, we have four
mirrors and five k vectors. The Jones matrix for reflection
at an ideal mirror is;

Jq =
⎛⎜⎜⎝

1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎠
(B10)

and the five k vectors are;

k0 =
⎛⎜⎜⎝

0
0
1

⎞⎟⎟⎠
k1 =

⎛⎜⎜⎝

sin 𝛼
0

− cos 𝛼

⎞⎟⎟⎠
k2 =

⎛⎜⎜⎝

0
1
0

⎞⎟⎟⎠

k3 =
⎛⎜⎜⎝

1
0
0

⎞⎟⎟⎠
k4 =

⎛⎜⎜⎝

0
0
1

⎞⎟⎟⎠
= k0 (B11)

Using these in Eqs. (B5)–(B10), the combinedmatrix Pq for
this system turns out to be;

P = P4 ⋅ P3 ⋅ P2 ⋅ P1 =
⎛⎜⎜⎝

sin 𝛼 − cos 𝛼 0
cos 𝛼 sin 𝛼 0
0 0 1

⎞⎟⎟⎠
(B12)

Defining 𝜃 = 𝜋∕2− 𝛼 as in the main text, we end up with;

P = P4 ⋅ P3 ⋅ P2 ⋅ P1 =
⎛⎜⎜⎝

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎞⎟⎟⎠
(B13)

which is Eq. (6) in the main text. This represents an anti-
clockwise rotation of points in the xy plane around the z
axis. Since the beam is travelling in the positive z direction,
this represents a clockwise rotationwhen viewed along the
propagation axis of the beam.

Appendix C: Expressions for LG
and HG modes
The Laguerre–Gauss modes are expressed in cylindrical
coordinates r =

√
x2 + y2, 𝜙 = arctan(y∕x), and are given

by;
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LG𝓁
p =

C𝓁
p
𝑤

[
r
√
2

𝑤

]|𝓁|
L|𝓁|p

(
2r2
𝑤2

)
e
− r2
𝑤2

+i
(
k r2 z
2(z2R+z

2)
+𝓁𝜙+Φ

)

(C1)
where C𝓁

p =
√

2p!
𝜋(|𝓁|+p)! , Φ = −(2p+ |𝓁|+ 1)𝜒 with 𝜒 =

arctan(z∕zR) is the Gouy phase, L|𝓁|p is an associated
Laguerre polynomial, 𝑤 = 𝑤0(1+ (z∕zR)2)1∕2 is the beam
radius for waist𝑤0 and zR = 𝜋𝑤2

0∕𝜆 is the Rayleigh range.
The Hermite–Gauss modes are given by

HGnm = HGn(x)HGm(y) (C2)

where

HGn(x) =
Cn√
𝑤
Hn

(√
2x
𝑤

)
e
− x2
𝑤2

+ ikx2z
2(z2+z2R)

−i(n+ 1
2 )𝜒 (C3)

where Cn =
(

2
𝜋

)1∕4√ 1
2nn! and Hn is a Hermite polynomial

of order n. These can then be used in the overlap integral
(A4) to generate the elements of the matrices shown in
Appendix A, for example

⟨LG1
0|HG20⟩ =

∞

∫
−∞

∞

∫
−∞

(
LG1

0
)∗ HG20dxdy = − 1√

2
(C4)

which is the entry in the first row, second column of the
matrix shown in (A8), and appears as the coefficient of the
second term in the first line of Eq. (5).
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