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H I G H L I G H S 8 

• Novel design method for the mini-channel cooling plate was proposed 9 

• Distribution characteristics of typical and streamline shape channels were studied 10 

• The efficiency of the mini-channel cooling plate could be significantly improved  11 

• The flow resistance could be effectively reduced by the proposed solution 12 

Abstract 13 

The mini-channel cooling plate has been widely used in the Lithium-ion battery thermal 14 

management for electric vehicles. The technology development of high efficiency and good 15 

temperature uniformity cooling plate can promote the application of electric vehicles by 16 

improving the lifespan of the battery. In this study, streamline concept, which is commonly 17 

used for the external design of car, aerospace and submarine system to improve the system 18 

performance, has been introduced to design and optimise the performance of inner mini 19 

channel cooling plate. The flow resistance was proved to be minimised when the streamline 20 
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shape design was adopted. Moreover, the results have proven the novel designed mini 1 

channel cooling plate can keep the heat exchange ability within the acceptable level. The 2 

maximum improvement of the heat exchanger efficiency with streamline shape design could 3 

be as high as 44.52 %. Results indicated the temperature uniformity could also be effectively 4 

improved. The streamline shape mini channel cooling plate could be a promising solution for 5 

Lithium-ion battery thermal management.  6 

Keywords: Mini channel, Inner streamline shape, Battery thermal management, CFD 7 

analysis, Electric vehicles   8 



3 

 

Nomenclature  P static pressure (Pa) 

A  surface area (m2) PCMs phase change materials ( ) 

pwc  heat capacity of the liquid (J·kg-1·K-1)  PHEVs Plug-in Hybrid Electric Vehicles ( ) 

0D  hydraulic diameter of the channel (m) Pr  Prandtl Number ( ) 

EVs Electric Vehicles ( ) qa heat flux (W·m2) 

f non-dimensional surface friction factor ( ) Re   Reynolds number ( ) 

FCVs Fuel Cell Vehicles ( ) ∆T 
temperature differences between the 

inlet and outlet (K) 

G  mass flow rate (kg/s) T  static temperature on the plate (K) 

h  
convective heat transfer coefficient 

(W·m2·K-1) 
Ta ambient temperature (K) 

ha 
convective heat transfer coefficient of fluid 

(W·m2·K-1) 
avgT

 

averaged surface temperature via surface 

area (K) 

HEVs Hybrid Electric Vehicles ( ) Tb local temperature (K) 

j  non-dimensional surface heat transfer ( ) wT
 

liquid temperature (K) 

k  
thermal conductivity of the fluid (W·m-1·K-1) 

tU
 

uniformity factor (K) 

wk  
thermal conductivity of the liquid 

 (W·m-1·K-1) 

  
velocity of the liquid (m/s) 

L characteristic dimension (m) vs mean fluid velocity (m/s) 

0L  characteristic length (m) Greek symbols 

1L  entire flow distance (m) μ fluid viscosity ( kg/m/s) 

Nu  surface Nusselt number ( ) ρ fluid density (kg/m3) 

∆P 
pressure drop between the inlet and outlet (Pa) 

w  density of the liquid (kg/m3) 

  1 

https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Characteristic_length
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1. Introduction 1 

Increasing attention has been focusing on the environment problems and energy crisis, which 2 

promote and lead the automotive industry to develop alternative technologies such as Electric 3 

Vehicles (EVs) [1], Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles 4 

(PHEVs) [2], and Fuel Cell Vehicles (FCVs) to potentially replace the existing Internal 5 

Combustion Engine burning fossil fuels [3, 4].  6 

The lithium-ion batteries are recognised as one of the best cell chemistries for EV, PHEV and 7 

HEV [4, 5]. The advantages of lithium-ion batteries can be summarised as follows: 1) high 8 

specific energy and power densities [3], 2) high nominal voltage and low self-discharge rate 9 

[6], 3) long cycle-life and no memory effect [7]. However, in order to achieve enough 10 

mileage equivalents to the conventional fossil-fuelled vehicle, EVs have to carry a large 11 

number of battery cells. Therefore, it is critical and important to maintain lithium-ion 12 

batteries operating under safety environmental conditions for EVs. During the discharging 13 

process, Lithium-ion batteries generate a large amount of heat during the working process [8, 14 

9], which may overheat the battery and induce some damages and accidents [10, 11]. In cold 15 

weather, the battery performance also would be damaged when the circumstance temperature 16 

is lower than at some particular level [12]. Thermal management systems are therefore 17 

necessary and critical to control the battery temperature within an appropriate range, maintain 18 

the temperature uniformity during the dynamical system operating [13-15].  19 

Several thermal management systems were employed for battery packs, which also affect the 20 

performance and cost of EVs [16]. There are many techniques have been widely applied and 21 
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discussed, such as forced convection with air [17-19] and liquids [18, 20, 21], phase change 1 

material [22-24], heat pipes [25, 26], and the combinations by some of them [16]. The forced 2 

convection air cooling technology suffers from the low thermal conductivity of the air [27], 3 

which limits the cooling system performance. Moreover, the temperature difference between 4 

the air inflow and outflow would induce the un-uniform in temperature distribution. 5 

Compared with forced convection air cooling technology, the liquid system is more complex 6 

but could offer higher ability by adopting a cold plate between the cells or submerging the 7 

cell in a dielectric fluid [16]. Multi-mini-channel structures have been widely used in liquid 8 

system working as heat sink or operating as cooling plates [28-30], which have been proved 9 

as high efficient and compactable heat exchange structures. The commonly used heat transfer 10 

mediums are mineral oil, water, refrigerants [31], dielectric fluid or ethylene glycol mixture. 11 

The operating characteristics of the cold plate are mainly determined by the shape of the 12 

channel, route, width and length [20, 21, 30]. Other technologies such as phase change 13 

materials (PCMs) utilising the physical property of phase change to absorb and release heat 14 

during a solid-liquid phase transition [32, 33] can also be used for electric vehicles thermal 15 

management. When PCM such as the graphite matrix embedded paraffin wax is applied to 16 

cooling the battery package, it also requires additional cooling system. Furthermore, it 17 

enhances the additional weight and undesirable mass of the cooling system. Another 18 

consequent of the large thermal mass and smaller heat transfer of the PCM technology leads 19 

to low cooling rate [16]. The mechanism of the heat pipe is to transfer the heat through latent 20 

heat of vaporization from the evaporator to the condenser, and the working medium can be 21 

circularly motivated by capillary pressure developed within a porous wick lining [5]. Heat 22 
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pipes can cool or heat the battery efficiently, but they are similar to the passive strategy 1 

offered by PCM. The combination of the heat pipe and air or liquid was proposed by Rao et 2 

al.[14], but as a new and potential strategy applied to cool or heat battery pack, heat pipes 3 

need to be further explored.  4 

Many factors should be comprehensively considered in designing a liquid thermal 5 

management system, such as space, weight, cost, potential leakage, efficiency, and the 6 

thermal contact between the cold plate and cell [5, 25]. A cooling plate with excellent 7 

performance is required to be in high efficiency, high uniformity, small size, low cost, and 8 

lightweight. Computational fluid dynamics (CFD) is commonly used and recommended for 9 

design and optimisation because of the advantages such as low cost and flexibility [5]. Zhao 10 

et al. designed a cooling strategy for cylindrical batteries based on a mini-channel liquid and 11 

applied the numerical model to investigate the variation of the channel quantity, mass flow 12 

rate, flow direction and entrance size [34]. Huo et al. developed a 3D thermal model of the 13 

cooling system and studied the effects of flow direction, inlet mass flow rate, number of 14 

channels and ambient temperature on temperature increase and distribution of the battery 15 

during the discharge [35]. The study reported by Huo et al. [35] investigated the influence of 16 

channel numbers on the cooling plate. The results pointed out when water was directed flow 17 

into the channels on the side of the electrodes, the best cooling performance could be 18 

achieved. However, the cooling plate from previously reported work only considered straight 19 

and parallel channels. The methods of flow separation from the main supplied channel and 20 

the pressure drop between the inlet and outlet of the cooling plate require further 21 
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investigations and research efforts. In summary, the detailed structure of the channel was 1 

found to be a key factor which directly affected the heat exchange efficiency. Since the area, 2 

thickness, inlet and outlet position of cooling-plate were restricted by the whole package 3 

design in most conditions, the optimizing direction would be focused on improving the 4 

structure of channels. Therefore, the research goal of this study is to achieve high efficiency 5 

and temperature uniformity by optimising the design of the channel structure.  6 

In this work, streamline concept, which is commonly used for the external design of car, 7 

aerospace and submarine system to improve the system performance was introduced into 8 

mini channel cooling plate to optimise the heat exchanger performance in the inner flow field. 9 

The design methods of the streamline shape mini channel have been first introduced and 10 

described. The proposed methods can be applied for different cooling plates with the 11 

potential to reduce the inner flow resistance of heat exchanger, maintain the heat dissipation 12 

ability of the mini-channel heat exchanger for the application of electric vehicle battery 13 

thermal management.  14 

2. Methodologies 15 

2.1 Description of the mini-channel plate model 16 

The battery package used in the electric vehicle usually composes of thousands of battery 17 

cells in order to meet the power demand. The battery cells are assembled into several battery 18 

modules. Each battery module is attached with several cooling plates to control the thermal 19 

conditions. When the shape of the battery is rectangular, the cooling plates can be inserted 20 
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into the gap of adjacent batteries. The inner temperature of the module is monitored and 1 

adjusted by controlling the liquid temperature and mass flow rate.  2 

 

Fig.1. Schematic structure of the cooling plate [36] 

A multi-channel plate with a typical structure as reported by Qian Z et al.[36] has been 3 

selected as the research object in this study. The width of all the gaps d1, d2, d3 and d4 of the 4 

plate are 3 mm as shown in Fig 1. And the height of the channel is 1mm. Some other plates 5 

which have the same outside size with a different number of channels (from 3-7) and the 6 

optimisation methods through the novel design method are also discussed in this paper.  7 

2.2 Control equations 8 

According to the theory of heat transfer, a convective boundary condition exists at each of the 9 

battery’s outer walls. Newton’s Law of Cooling suggests that the amount of heat dissipated 10 

due to the movement of a fluid can be found using Eq. (1), where Ta (K) is the ambient 11 

temperature. ha (W·m2·K-1) is the convective heat transfer coefficient of fluid.  12 
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)( abaa TThq −=  (1) 

The heat transfer fluid (water-ethylene glycol mix) was employed as the cooling medium. 1 

The energy conservation equations for the liquid within the cold plate channels are calculated 2 

by Eq. (2), where w (kg/m3), pwc (J·kg-1·K-1) and wk (W·m-1·K-1) are the density, heat 3 

capacity and thermal conductivity of the liquid, respectively. wT (K) is the liquid temperature 4 

and  (m/s) is the velocity of the liquid. 5 

)()()( wwwpwwwpww TkTcTc
t

=+



  (2) 

The mass and momentum conservation equations can be written as the following two 6 

equations, where P (Pa) is the static pressure. 7 

0)( =+

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
w

w

t
 (3) 

( ) ( ) P
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ww −=



+




  (4) 

2.3 Parameters 8 

/j f  is a non-dimensional factor [37, 38], which has been widely used in the heat exchanger 9 

to evaluate the comprehensive performance of the plate. The factor j  represents the 10 

non-dimensional surface heat transfer, which can be calculated by Eq. (5). Nu  is the 11 

surface Nusselt number, equals to 0 /hL k , where h (W·m2·K-1) is the convective heat transfer 12 

coefficient, 0L (m) is the characteristic length and k (W·m-1·K-1) is the thermal conductivity 13 

of the fluid. Re  is the Reynolds number in the channel. Pr  is the Prandtl Number, which 14 

is a taken as constant number (6.22, the Prandtl number when the water at 298K).  15 

https://en.wikipedia.org/wiki/Characteristic_length
https://en.wikipedia.org/wiki/Thermal_conductivity
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1 3
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N
j

R P
=


 (5) 

f  is the non-dimensional surface friction factor, reflects the flow resistance internal of the 1 

channels. Which could be calculated by Eq. (6) where 0D (m) is hydraulic diameter of the 2 

channel, P (Pa) is the pressure drop between the inlet and outlet, 1L (m) is the entire flow 3 

distance, G (kg/s) is the mass flow rate, and  (kg/m3) is the fluid density.  4 

0

2

14 2

D P
f

L G 


=   (6) 

tU  is the uniformity factor, which is used to evaluate the uniformity of temperature 5 

distribution, which could be calculated by Eq. (7) [39, 40].  6 

avg A

A
t

A

A

T T d

U
d

−

=



 

(7) 

avgT  (K) means the averaged surface temperature via surface area, could be written as Eq. (8), 7 

where A (m2) is the surface area and T (K) is the static temperature on the plate.  8 

A

A
avg

A

A

Td

T
d

=



 (8) 

2.4 Numerical analysis 9 

The three-dimensional cooling plate model has been numerical analysed in ANSYS FLUENT 10 

17.0. Before the numerical simulation, the model was discretized by HYPERMESH 14.0. 11 
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The local hexahedral mesh was generated in a boundary layer, seven type of hybrid grids 1 

with the cell number from about 38 thousand to 2.92 million were developed as listed in 2 

Table 1. In the simulations, water-ethylene glycol has been used as the cooling medium 3 

through the channels. The mass flow rate was set as constant at 1x10-3kg·s-1, the uniform inlet 4 

temperature was set at 298K. The material of the solid plate is Aluminium, and the constant 5 

heat flux condition was applied in the large top and bottom faces of the cooling plate. 6 

Reynolds number could be calculated by the mass flow rate define at the cooling channel 7 

inlet to confirm the use of a viscous model, which is defined as shown in Eq. (9), where vs 8 

(m/s) is the mean fluid velocity, L (m) is the characteristic dimension, μ ( kg/m-s) is the 9 

viscosity, ρ (kg/m3) is the fluid density. 10 

s
e

L
R




=  (9) 

The maximum mass flow rate was set at 5×10-3 kg·s-1, which corresponds to a Reynolds 11 

number less than 2300. Since the flow was laminar, the laminar model and SIMPLEC 12 

algorithm were used with second and third order equations.  13 

Table 1 14 

Grid type and corresponding cell number 15 

Type Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 6 Grid 7 

Cell Number 38809 90658 192067 470325 882117 1355279 2921580 

In order to identify proper grid number, the independent study of grid number through the 16 

comparison of pressure drops and temperature differences has first been conducted. Fig.2 17 

displays the results under different grid number. The grid type and corresponding cell number 18 
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are listed in Table 1. The results indicated when the grid numbers reach to about 0.88 million, 1 

the fluctuations of both ∆P and ∆T induced by the difference of grids number were less than 3% 2 

(actually is only around 2%) even the grid number was further increased. Therefore the Grid 3 

5 and corresponding mesh generating rules were selected as the final scheme in this study. 4 

The local display of the grids is shown in Fig.3.  5 

 

Fig.2. Effects of grid number on the pressure drops and temperature differences 

  

Fig.3. Local display of the grids 
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To validate the simulation results, six three-dimensional simulation models are established 1 

and discretized by the rules discussed previously. The results are compared with the reported 2 

data from the literature as illustrated in Fig. 4.  3 

 

Fig.4. Comparison of the numerical simulation results with literature  

(mass flow rate = 0.001kg/s) 

The calculated pressure drop can be well fit with results reported by Rao [34]. The maximum 4 

error is less than 4.5%, which proves the numerical simulation methods applied in this paper 5 

are acceptable and reliable. The results indicated that the pressure drops in plates with even 6 

number channels are much higher than the one in odd number channels plate.  7 

3. Design methods 8 

Multi-channels structure has been widely used in cooling-plate, the effects induced by some 9 

parameters such as the number of channels, mass flow rate and flow direction have been 10 

previously discussed [25]. However, the study of channel shape and corresponding influence 11 
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on the mini-channel plate have not been noticed and reported. With the development of 1 

technology, the design and manufacture of the non-straight channel can be achievable. The 2 

design procedure of internal streamline concept for multi mini channel plates can be 3 

described as follows,  4 

1. Determine the outside structure of the plate by objective conditions. The length, 5 

width, thickness, the location of the inlet and outlet are usually restricted by the 6 

spatial structure of the battery module. The plate shown in Fig.5 (a) is taken for 7 

example. Presuming the whole plate is an empty flow field, only the inlet, outlet, and 8 

the plate are modelled. 9 

2. Decide the boundary conditions through the estimation of working conditions, 10 

simulating the flow status of this plate. For example, the mass flow rate could be 11 

calculated through the pump lift and the number of cooling plates or through the 12 

cooling capacity required of the batteries under the maximum heat release.  13 

3. Extract the streamlines in the flow field of the plates by post-processing tools. 14 

According to the targeted channel number, extract the streamlines. The extract rule 15 

could be equidistant or adjust the spacing of streamlines according to the local flow 16 

rate. In Fig.5 (b), the streamlines are extracted equidistant. 17 

4. Expand the shape of streamlines to and the streamline-shape channels can be formed 18 

as illustrated in Fig.5 (c).  19 
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5. Develop a three-dimensional model with the streamline-shape channel, as shown in 1 

Fig.5 (d). Both step 4 and step 5 could be carried in CAD software, CATIA or 2 

SOLIDWORKS.  3 

  

(a) (b) 

  

(c) (d) 

Fig.5. The schematic of the novel channels design procedure (a) the empty plate (b) 

extracted streamline (c) build the channels in 2D (d) 3-Dimensional channels 

4. Results and discussion 4 

4.1 Distribution characteristics of the typical straight and streamline shape 5 

channel plate 6 

Five different plates with 3, 4, 5, 6, 7 channels were developed to investigate and compare the 7 

performance of the cooling plate with conventional shape channel and streamline shape 8 
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channel. All the plates were numerically studied, and the results were compared with the 1 

simulating results under the same boundary conditions. The cooling plates with streamline 2 

shape channel were named as S3, S4, S5, S6 and S7. The plates with typical rectangular 3 

shape are named O3, O4, O5, O6 and O7. The mass flow rates of 0.001kg/s, 0.002kg/s, 4 

0.003kg/s, 0.004kg/s, and 0.005kg/s were analysed.  5 

      

 O3 O4 O5 O6 O7 

 

 

 

 

 

 

 S3 S4 S5 S6 S7 

Fig. 6. The comparison of flow velocity distribution in channels 
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(mass flow rate = 0.002kg/s) 

Fig.6 compares the velocity contours in channels of different plates. In all the straight 1 

channel models, the water flow impacts to the lower wall of the upper horizontal channel 2 

accelerate the flow along to the lower wall. The layered velocity could be observed in all 3 

straight channel models. For even number channel models, very high velocity in the local 4 

of horizontal channel close to the inlet of two middle channels can be observed, as 5 

marked by the red arrow O4 shown in Fig. 6. Some vortex and turbulence flow might be 6 

generated in this area, which would increase the flow resistance and has a bad effect on 7 

the performance of the cooling plate. By adopting the streamline shape channel, the flow 8 

velocity can be effectively reduced in the same area, which means the vortex and 9 

turbulence flow can be avoided to improve the cooling plate performance. For odd 10 

number channel models, the difference of velocities between the middle channel and 11 

other channels is quite high in straight channel models. The velocities of streamline 12 

channel models with odd number channels are lower than that of straight channel models, 13 

which are desirable for the cooling plate.  14 

      

 O3 O4 O5 O6 O7 
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 S3 S4 S5 S6 S7 

Fig. 7. The comparison of pressure distribution at the mid- profile of channels 

(mass flow rate=0.002kg/s) 

Fig. 7 shows the pressure contours in all the models. In straight channel plates, the high 1 

pressure appears at the middle channel (odd channels plate) or the inlet tunnel (even 2 

channels plate) as circled by dashed lines. By comparing the colour distribution, the 3 

pressure could be effectively reduced by adopting the streamline design of channel shape, 4 

which means the entire flow resistance would be minimised. As illustrated in Fig. 7 in 5 

the models with even channels (4 channels and 6 channels), the high-pressure regions are 6 

observed in the top horizontal channels for straight channel models and when the 7 

streamline channel models are used, the pressure values can be effectively decreased 8 

since the colour changes from red to orange under the same pressure regions of straight 9 

channel models. As illustrated in Fig. 6 and Fig. 7, it could be noticed that there are two 10 

main factors which induce flow resistance in even channels. First, the flows turn around 11 

sharp corner. Second, the flows need to be separated from inlets. The first factor could be 12 

effectively avoided by using the streamline channels. The second factor requires 13 

optimisations on the separating zone.  14 
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 O3 S3 

Fig.8 The comparison of temperature distribution at the mid- profile of plates 

(mass flow rate=0.002kg/s, three channel) 

Fig.8 compares the temperature distribution at the mid-profile of plates when the mass flow 1 

rate is 0.002kg/s to study the cooling ability of these plates. The cooling performance of three 2 

channel shapes could be identified through the colour since all legends are same. The 3 

temperature in the up corner of plates with straight channels is slightly lower than the one in 4 

the plates with streamline shape channels as illustrated in Fig. 8. The temperature of the 5 

cooling medium in the outlet are quite similar in both models. The difference in velocity, 6 

pressure and temperature conditions using the typical straight channels and streamline shape 7 

channels can be observed in Fig. 6, 7 and 8, which can help to study the inner flow and 8 

thermal status. The study of distribution characteristics not only can be used as the assistant 9 
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reference for validation of the numerical simulation results but also be helpful to summarise 1 

the optimal strategies.  2 

4.2 Effects of channel structures on the cooling plate performance 3 

 

Fig.9. Effects of mass flow rate on the pressure drop of different plate models 

The pressure drop of different plates is plotted in Fig.9. Under the same mass flow rate, the 4 

pressure drop in streamline models is significantly less than the pressure drop in the typical 5 

straight channels. For the typical straight channel models, the flow resistance in the plates of 6 

even number channels is always higher than that of plates with an odd number of channels. 7 

However, when the streamline shape channels are used, the maximum pressure drop as 8 

indicated in Fig 9 is only 3877 Pa under mass flow rate at 0.005 kg/s, which is much lower 9 

than that of typical straight plate models. The results also indicate the effects of channel 10 

numbers on the pressure drop for streamline shape channel models is quite limited and the 11 

pressure difference with different channel numbers is lower than 100 Pa. This phenomenon 12 
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can also be observed with the assistant of a distribution diagram in Fig. 7, which shows flow 1 

impaction to the tunnel wall when the even number channels are used. When the mass flow 2 

rate is 0.005 kg/s, the pressure drop can be as high as 6581 Pa and 6043 Pa with four and six 3 

typical straight channel number, respectively. The difference between the pressure drops of 4 

typical straight channel models with three and seven channels is as high as 2350 Pa under the 5 

mass flow rate at 0.005 kg/s. The results in Fig. 7 and Fig. 9 have proven the streamline shape 6 

channels can effectively reduce the pressure drop and avoid the direct flow impaction.  7 

 

Fig.10. Effects of mass flow rate on temperature difference (cooling ability) of different plate 

models 

The temperature difference using different models have also been investigated under different 8 

mass flow rate and the results are plotted in Fig. 10. The investigation of temperature 9 

difference can be used to evaluate the cooling ability of the mini-channel cooling models. 10 

Results indicate the straight 7 channels model has the best cooling ability, which is coincident 11 
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with the results calculated by Rao [33]. Results indicate the maximum temperature difference 1 

is 2.07 K achieved by straight 7 channel model when the mass flow rate of the fluid is at 2 

0.001 kg/s and under the same conditions, the worst cooling ability is observed by straight 4 3 

channel model who can only achieve 1.68 K temperature difference. When the streamline 4 

shape channels are used, the temperature difference of the models with different numbers of 5 

the channel is quite similar to that of typical straight 5 channel model, which means the 6 

streamline channel models can keep the cooling ability in the same standard as the typical 7 

straight channel model. In summary, by introducing the concept of streamline into mini 8 

channel cooling plate, not only the pressure difference can be effectively reduced, but also the 9 

effects of different numbers on the cooling ability can be controlled.  10 

 

Fig. 11. Effects of mass flow rate on the /j f  factor of different plate models 

Fig.11 displays the /j f  factor of different plates at various mass flow rates. /j f  factor 11 

has been adopted to evaluate the efficiency of the heat exchanger. Both the heat exchange 12 
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capacity and the flow resistance are taken into consideration in this factor. /j f  factor in 1 

plates with streamline shape channels are significantly higher than that of typical straight 2 

channel models. With the increase of channel number, the difference between /j f  factor is 3 

reduced, which means under high channel numbers the improvement of heat exchanger 4 

efficiency is limited by introducing the concept of streamline shape model into cooling plate 5 

technology. The streamline 3 channel model has the highest. For straight models, 6 channel 6 

model has the lowest /j f  factor, which means the efficiency of it is the worst. However, 7 

for streamline models, 6 channel model is better than the 7 channel model, which prove the 8 

streamline design could restrain the flow resistance effectively as previously discussed. 9 

 

Fig. 12. The upgrade rate of j/f factor under different mass flow rates 
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Compare the /j f  factor of streamline models and straight models, the upgrade rate could 1 

be calculated as shown in Fig. 12. When the number of channels is 3, the streamline shape 2 

model can improve the /j f  factor by 44.52% as shown in Fig 11. When the channel 3 

number is seven, the streamline shape model can improve the /j f  factor by 10.08 %. 4 

When the mass flow rate is around 0.002kg/s, the improvements in 4 & 6 channel model are 5 

notably high. It might because the streamline shape is extracted from the flow field, which 6 

would be affected by flow velocity. If the current flow characteristics matching the channel 7 

shape coincidently, the efficiency could be further increased.  8 

 

Fig.13. The uniformity factor under different mass flow rates 

The temperature uniformity is also a very important factor for battery thermal management. 9 

The uniformity factor Ut  is adopted to study the temperature uniformity in the middle 10 

profile of plates. Fig.13 compares the uniformity factor of models at different mass flow rates. 11 

When the mass flow rate increased, the uniformity decreased accordingly. When the mass 12 
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flow rate is operating at low range such as 0.001 and 0.002 kg/s, the temperature uniformities 1 

in straight channel models with odd numbers have better performance than that of streamline 2 

channel models. However, when the channel numbers are even, the temperature uniformities 3 

in streamline models are significantly improved than that of straight channel models under 4 

the same mass flow rates. With the increase of channel numbers, the streamline models 5 

exhibit good uniformity. With further optimisation of the design of streamline shape channel 6 

models, the performance of temperature uniformity can be potentially further improved.  7 

  8 



26 

 

5. Conclusions 1 

This study proposed a novel approach introducing streamline concept to multi mini channel 2 

cooling plate to improve the overall cooling performance for Lithium-ion battery thermal 3 

management. The numerical simulation model has been studied and compared the results 4 

between the conventional straight channel plates and streamline channel cooling plates. The 5 

pressure difference, temperature difference, /j f  factor and uniformity factor Ut  of the 6 

multi mini channel cooling plates have been investigated. Main conclusions drawn from the 7 

study can be summarised as follows: 8 

1. The flow can be effectively adjusted to smooth by adopting streamline shape channel 9 

models, which means the vortex and impacting flow could be avoided. Moreover, the 10 

entire flow resistance can be reduced by using the streamline shape channel plate.  11 

2. The /j f  factor representing the comprehensive performance of heat exchanger 12 

with streamline shape channels are significantly higher than that of typical straight 13 

channel models. Results indicated by using streamline mini channel models the /j f  14 

factor can be improved by 10.08% to 44.52%. 15 

3. For the typical straight channel models, the flow resistance in the plates of even 16 

number channels is always higher than that of plates with odd number of channels. 17 

When the mass flow rate is 0.005 kg/s, the pressure drop can be as high as 6581 Pa 18 

and 6043 Pa with four and six typical straight channel number. When the streamline 19 

shape channels are used, the maximum pressure drop is only 3877 Pa. The streamline 20 
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shape channels can effectively reduce the pressure drop and avoid the direct flow 1 

impaction, especially in the cooling plates with even number channels.  2 

4. The temperature difference of streamline shape channel models with different 3 

numbers of the channel is quite similar to that of typical straight 5 channel model, 4 

which means the streamline channel models can keep the cooling ability at the same 5 

level as the typical straight channel model. The effects of different numbers on the 6 

cooling ability can be controlled by introducing a streamline shape concept to mini 7 

channel cooling plate.  8 
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