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Abstract—In this paper, we present a novel and low-complexity
lossless compression for gray-scale images. The gray-scale image
is first separated into bit-planes. These bit-planes are then per-
formed a binary wavelet transform (BWT) to obtain an efficient
representation for compression. The BWT bits of significant
bit-planes are then encoded by the run-length coder that uses
Golomb-Rice codes for run-encoding. The experimental results
show that the algorithm obtained efficiency in image compression,
and low-complexity in implementation that is highly applicable
for image compression systems on small spacecraft’s on-board
computers.

Index Terms—Lossless image coding; bit-plane coding; binary
wavelet transform; Golomb-Rice coding; small spacecrafts’ on-
board computers;.

I. INTRODUCTION

Small satellites are recently increasing interest all over the
world for their attractive applications. An advantage of small
satellites is the fast and low-cost development, which makes
them a suitable platform for evaluating and demonstrating
rapid new technologies in space. Because of the limitation of
available size, mass, and power of small satellites, demanding
on high computational capabilities on small satellites is a
challenge to engineers. The future need for small satellites is to
process high resolution payload data (e.g., imaging payload),
and complex control algorithms.

Satellite imaging payloads mostly operate a store-and-
forward mechanism, whereby captured images are stored on
board and transmitted to ground stations later on [1]. With the
demanding of high spatial resolution imaging, space missions
are faced with the complexity of processing and conveying an
extensive amount of imaging datas. Thus image compression
becomes an important procedure in payload processing on-
board computers of small satellites. Image compression reim-
burses for the limited on-board computing resources, such as
mass memory and downlink’s bandwidth.

Image compression tries to exploit and remove redundancies
in image to obtain a high compression ratio and an acceptable
quality of the reconstructed image. There are different classes
of redundancies in an image, such as spatial, statistical, and
human vision redundancies. Image compression techniques
can be classified into two classes, lossless and lossy im-
age compressions. In lossless compression, the reconstructed
image is identical to the original one (there is no loss of

information). In an opposite manner, lossy image compres-
sion methods reconstruct the image with an information lost.
Lossless image compression is required for applications that
cannot tolerate any degradation of original image. For instance,
satellite images or geographical map images, where it cannot
be tolerated by distortion caused by compression techniques.

One approach for exploiting efficiently spatial correlations
for compression is to decompose the image into a set of
binary layers (bit-planes), and then compress these layers
by a binary image compression technique [2], [3], [4], [5].
The decompression is an inverse process of the compression,
where the compressed file is decompressed into a set of layers
which are then combined back into the gray-scale image.
The less significant bit-planes are typically difficult to predict
the structures to be compressed well. This is because bit-
plane separation destroys the gray-level correlations of the
original image. Thus, single lossless coding methods such as
dictionary-based, run-length codings are not efficient to encode
these insignificant bit-planes.

Recently, wavelet transforms have been applied to reduce
the entropy of the data source for lossless image compressions
[6], [7], [8]. Multiresolution image representation with high
coding efficiency are the most attractive attributes of wavelet-
based coding methods. The wavelet transforms are almost for
real-valued and complex-valued functions (i.e., the data to be
analyzed, the basis functions, and the arithmetic operators are
in the real or complex fields) [9]. These transforms have a
degree of computational complexity. Swanson and Tewfik [9]
have introduced the theory of binary wavelet transform (BWT)
for binary images over the finite Galois field of order 2, GF(2).
BWT shares many of the important characteristics of the real
wavelet transform. Furthermore, this BWT has several distinct
advantages over the real wavelet transforms, including: (¢) the
entire decomposition process is performed in GF(2), which
means that the intermediate and transformed data produced
by BWT are binary (This leads to no quantization effects
introduced and the decomposition is completely invertible);
(#7) the algorithm is extremely fast and much simpler since
the data remains in GF(2) and the transform uses modulo-
2 arithmetic operators which can be performed using simple
Boolean operations.

In this paper, we present a lossless image compression



using bit-plane coding, BWT, and run-length/Golomb-Rice
codes. The gray-scale iamge is first decomposed into bit-
planes by bit-plane separation methods. These bit-planes are
then sequentially performed BWT. The binary wavelet bits
are scanned and then applied run-length coding with Golomb-
Rice codes to obtain the compressed bit-stream. The proposed
method has some important advantages listed as follows.

1. It is a reversible coding method, in which the recon-
structed image is identical to the original one.

2. The algorithm is extremely fast since all the data pro-
cessing flow are in binary computation in the GF(2).

3. The algorithm is simple and applicable for the simple
implementations on microprocessors.

The rest of the paper is organized as follows. Sec. II gives
a background on bit-plane coding, BWT, and Golomb-Rice
codes. Sec. III describes the proposed compression method.
Sec. IV discusses experimental results. Finally, the paper ends
with the conclusions.

II. BACKGROUNDS
A. Bit-plane Coding

Bit-plane coding is a technique whereby a group of bits
is divided into subgroups so that some of the subgroups can
be summarily described [2]. Since data is commonly stored
in a binary format in most electronic computing devices, one
natural approach to implement an embedded coding system is
through sequential bit-plane coding, where the input data are
sequentially scanned and coded by bit-planes, usually from
the most significant to the least, to generate the compressed
bit-stream [3].

The foremost step in bit-plane coding is data decomposition
where data is decomposed into different bit-planes for later
encoding. There are three common decomposition methods:
(?) binary-coded separation (BCS); (i1) gray-coded separation
(GCS); and (412) prediction-error separation (PES). In this
work, we consider the BCS and GCS for bit-plane coding.

The BCS is a straightforward bit-plane separation. With a
gray-scale image, pixels have values varying from O to 255,
which can be represented by 8 bits binary data from the most
significant bit MSB to the least significant bit LSB. These
binary data is separated into 8 bit-planes from MSB bit-plane
which contains MSB bits of all pixels to LSB bit-plane which
correspondingly contains LSB bits of pixels. The eight bit-
planes of gray-scale image Cameraman with the size of 256-
by-256 are displayed in Fig. 1. The main disadvantage of BPS
is that pixels which differ by 1 or 2 in decimal values differ
in many bit positions in binary values.

The second separation method is a gray-code separation, in
which the pixel intensities are represented by gray codes so
that the change of pixel value by +1 or -1 causes the change of
only one bit in the corresponding bit-planes. The gray-codes
can be drawn by converting a binary number to a gray number.
Thus, the gray-coded separation can be implemented from the
binary-coded separation as follows. The gray-scale pixels are
first represented by binary codes. The binary codes are then

converted into gray codes. The bit-planes are created as the
same procedure of BCS that include eight bit-planes from
MSB to LSB bit-planes. An example of gray-coded separation
for the gray image Cameraman is shown in Fig. 1.

B. Binary Wavelet Transform

1) Binary Field Transform: A binary field, also called the
Galois Field of order 2 (GF(2)), has only two symbols 0
and 1. Operations of addition, subtraction, multiplication, and
division are defined over these two symbols only. Real field
transforms can be applied to the binary field, but it is complex
in computation. To overcome this difficulty, the binary field
transform (BFT) have been proposed by Swanson and Tewfik
[9]. For finite sequences, the BFT takes the form of a square
symmetric matrix. The construction of the BFT matrix and its
inverse is as follows.

Let us define
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where 1syyas is an NxM matrix of number 1. Matrix By _4 is
the result of applying the logical-not operation to each element
of the BFT matrix By_4.
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11
0 0
v=| 1! (5)
0 0

The lower-left submatrix Bllf, with the size of 2x(N-2) is
defined as the transpose of BY/, given by

By =By (©6)
For example, 8x8 BFT matrix is constructed as follow.
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Fig. 1.

Since det(By)=1 for all N > 2, By is invertible over the
binary field. The inverse B &1 can be evaluated using a simple
recursive formula for NV > 6 as follows.
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For the 8x8 BFT, the inverse BFT matrix is
(1 0 00 0 1 1 0]
01 1 0 0 1 1 0
01 1 1 1 000
1 _| 00101000
Bs'=1001 11100 12
1 100 1 1 00
1 100 0 0 1 1
| 000 0000 1 1|

We can see that the constructions of both transform and
inverse transform matrices do not require any matrix compu-
tations.

The BFT of vector x with the length of N is performed by
applying Bj\,l to all circular shifts of x. To compute the NxNV
matrix BFT X of x, we begin by forming the equivalent one-
circulant matrix X = 1 — circ(x), then evaluate the matrix by
matrix product by

X = XB,} (13)

Image deomposition into bit-planes for gray-scale image Cameraman.

The filter BFT (FBFT) of a vector x is performed by

X = XBy (14)

2) Binary Wavelet Transform: The theory of BWT is de-
veloped from the principle of BFT and parallels with the
theory of wavelet transform developed over the real field. The
construction of two-band discrete orthonormal binary wavelets
as equivalent to the design of a two-band perfect reconstruction
filter bank with added vanishing moments as shown in Fig. 2.
A filter bank is often cascaded with one or more additional
filter banks to provide further resolutions of the input signal.

e

Fig. 2. Two-band perfect reconstruction filter bank.

To guarantee that the binary multiresolution decomposi-
tion inherits the important characteristics of the real wavelet
decomposition, and still be able to reconstruct the original
signal perfectly, the filters must satisfy three constraints: (7)
the bandwidth constraint that restrict the bandwidths of the
low-pass and high-pass filters to guarantee that no information
is lost after the outputs of the two filters are downsampled
by a factor of 2; (i¢) the vanishing moment constraint to
guarantee that the BWT of slowly varying binary sequences
are very sparse; and (z¢¢) the perfect reconstruction constraint
to guarantee that the BWT is invertible. From the above three
constraints, the binary filters for BWT are designed as follows.

Suppose the N-tap low-pass filter I and the V-tap high-pass
filter h are formulated as | = [ lo |4 IN—1 ] and
h = [ ho hi hn—1 ] To satisfy the bandwidth, the
vanishing moment, and the perfect reconstruction constraints,
the filters I and h must follow the conditions given by [9]

N-—-2 N-1
Z l; = 0; and Z ;=1
i;(i,;ven i;&(idd (15)
> hi=1l;and Y hi=1
1=0,even i=1,0dd



From the designed filters I and h, we then formulate two-
circulant matrices Ly = 2 — circ(l) and Ho = 2 — circ(h).
The BWT matrix T is then setup by

r-[ 7]

The 2-D BWT of an image F' with the size NxN is
performed by

(16)

F=TFT" a7)

The transform in Eq. (17) corresponds to passing the image
F through a low-pass 2-D separable filter and three band-pass
2-D separable filters, and decimating by 2 in each direction as
shown in Fig. 3.
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Fig. 3. Two-band 2-D perfect reconstruction filter banks.

The inverse BWT is given by

- . -1
F=T'F (TT) (18)
Since the BWT is perfect reconstruction, F and F are
identical. To obtain multiresolution decomposition, we can
successively applying the decimated output of each LL filter
as the input to the next stage.

C. Golomb-Rice Codes

Golomb-Rice coders have been applied widely in image
compression systems [10]. Golomb-Rice coders are optimal
or nearly optimal for integer sources with two-sided geometric
distributions, which approximate quite closely the distribution
of uniformly quantized Laplacian sources [11]. The main
advantage of Golomb-Rice codes is that the output codewords
are easily computed for the corresponding input symbols by
changing a single integer parameter k, so that no explicit tables
are actually required. This makes the computation of Golomb-
Rice coders much faster than memory access based coding.
The theory and implementation of Golomb-Rice coders are
briefly introduced as follows.

For an integer number n, the principle of Golomb-Rice
coder with parameter k£ is defined by the encoding rule in
Fig. 4 [12], [13], [11].

The number n can be represented as a function of ¢ and k
by

n:q*?k—i—r:L%J*?k—i—r (19)

Input Value Output Codeword
G(nk)=111---110b__b, - b,
e Nt ML N
n prjﬁx. suffix,
g ols k bits

Fig. 4. Golomb-Rice coding principle with parameter k.

The prefix q bits is also called the quotient part which consists
of ¢ unary code bits. The remainder r is the fixed-length code
bits, k¥ LSB of the number n. For example, with £k = 3,
Golomb-Rice codes for number n = 1,4,8,11,16,20 are
shown in Table 1.

TABLE I
EXAMPLE OF GOLOMB-RICE CODES WITH k = 3.

n q r Codeword

1 0 1 0001

4 0 4 0100

8 1 0 10000
1 1 3 10011
16 2 0 110000
20 2 4 110100

III. PROPOSED ALGORITHMS

In this section, the proposed lossless compression of gray-
scale image is presented. The proposed technique is described
in Fig. 5.

Bit-planes

Gray Coded
Separation
Run-Length/ .
Golomb-lgice < B'”_l_ary v\ffavelet
Encoding ransform

}

Compressed Bit-stream

Fig. 5.

The proposed lossless image compression.

The proposed algorithm is described as follows. The gray-
scale image is first decomposed into bit-planes by using gray
coded separation (GCS) method. The bit-planes are then de-
composed in 3 levels by the binary wavelet transform (BWT)
sequentially from the MSB bit-plane to the LSB bit-plane. The
binary wavelet coefficients of each significant bit-planes (e.g.,
bit-planes MSB, 7, 6, and 5) are scanned to bit sequences for
run-length/Golomb-Rice encoding with the parameter k£ = 3.
The scanning procedure used in this work is shown in Fig. 7.



The decompression algorithm is the inverse procedure of the
compression algorithm.

The scaling filters used for the 3-level BWT are the 8-tap
low-pass filter L= 1 1 1 0 1 0 1 0 ], and the 8-
tap high-pass filter h = [ 11111100 ] The
BWT matrix T is then setup according to Eq. 16 by

11101010
10111010
10101110
101 01011
T= 11111100 (20
00111111
110 01 1 11
11110011

The 3-level BWT decomposition of the bit-plane MSB of
image Cameraman decomposed by gray-coded separation in
Fig. 1 is shown in Fig. 6.

Fig. 6. 3-level decomposition of bit-plane MSB of image Cameraman using
BWT.

LLLH
////’ LH

LLHL LLHH
HL HH

Fig. 7. Scanning procedure of binary wavelet coefficients for run-
length/Golomb-Rice encoding.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we use four different nature images shown
in Fig. 8 to evaluate the effectiveness of the proposed coding
algorithm. We first evaluate the compactness of the binary im-
age representation resulting from the binary wavelet transform.
We then evaluate the compression efficiency of the proposed
compression.

(b) Clock

(c) Lena (d) House

Fig. 8. Test images: (a) Cameraman; (b) Clock; (c) Lena; (d) House.
To measure the compactness of the binary image represen-
tation in 3-level BWT, we use the entropy function calculated
by
H(p) = —plogy(p) — (1 — p)logy(1 — p)

where p is the probability of pixel value 1 in the binary bit-
plane images. The measure takes values between O and 1. If
the entropy is small, it indicates more efficient compression
representation, and vice versus. The entropy results for four
different input images are displayed in Tables II, III, IV, and
V.

3y

TABLE I
ENTROPY RESULTS FOR INPUT IMAGE "CAMERAMAN’.

Bit-planes  Original Entropy = BWT Entropy
MSB 0.9732 0.6784
7 0.8305 0.4898
6 0.9845 0.7502
5 0.9999 0.8811
4 0.9820 0.9093
3 0.9998 0.9515
2 1 0.9998
1

1 1

From the entropy results in Tables II, III, IV, and V, it can
be seen that the entropy is significantly reduced at bit-planes
MSB, 7, 6, and 5 after applying 3-level BWT. It indicates



TABLE III
ENTROPY RESULTS FOR INPUT IMAGE "CLOCK’.

Bit-planes  Original Entropy = BWT Entropy
MSB 0.7061 0.4645
7 0.8616 0.5208
6 0.9964 0.7159
5 0.8245 0.7672
4 0.9569 0.8782
3 0.9820 0.9584
2 0.9954 0.9909
1 1 0.9995
TABLE IV

ENTROPY RESULTS FOR INPUT IMAGE "LENA’.

Bit-planes  Original Entropy = BWT Entropy
MSB 0.9994 0.6461
7 0.7653 0.6607
6 0.9988 0.7501
5 0.9947 0.8920
4 0.9999 0.9710
3 1 0.9952
2 1 0.9999
1 1 1

that the 3-level BWT is an efficient representation for the
compression of significant bit-planes. At the lower bit-planes,
the increases of BWT entropy imply that the BWT become
less efficient for the less significant bit-planes.

To evaluate the compression efficiency, we adopt the com-
pression ratio (CR) and the reduction percentage (RP) given
by

1%
CR=— 22
e (22)
RP = %100% (23)

where V' is the data volume of the original signal in binary
bits, and V* is the data volume of the encoded signal (i.e.,
length of the compressed bit-stream). The CR and RP results
for the compressions of four different test images are described
in Table VI.

The results in Table VI show that the proposed algorithm
obtains a moderate-well compression effectiveness in lossless
compression landscape.

V. CONCLUSIONS

We have studied efficient and low-complexity lossless com-
pression methods in binary domain. The theory of binary
wavelet transform with all computation in GF(2) is simple
and low-cost in hardware implementation. The Golomb-Rice
coder is also studied for fast and low-cost implementation.

The proposed lossless compression for gray-scale image is
presented. The experimental results show that the algorithm
obtains good efficiency in compression and less complexity in
implementation. The algorithm can be generalized for lossless
compression of any real data and can be implemented on a
small spacecraft’s on-board computer.

TABLE V
ENTROPY RESULTS FOR INPUT IMAGE "HOUSE’.

Bit-planes  Original Entropy = BWT Entropy
MSB 0.9994 0.7287
7 0.7803 0.5514
6 0.9949 0.5675
5 0.8660 0.7628
4 0.9794 0.9246
3 0.9966 0.9683
2 0.9999 0.9993
1 1 0.9998
TABLE VI
CR AND RP RESULTS.
Test Images CR RP

Cameraman  1.2441  19.62 %

Clock 1.3218 2434 %

Lena 1.2285  18.60 %

House 1.4058  28.87 %
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