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Abstract—With the increasing complexity of memory archi-
tectures and scientific applications, developing data structures
that are performant, portable, scalable, and support developer
productivity, is a challenging task. In this paper, we present
Warwick Data Store (WDS), a lightweight and extensible C++
template library designed to manage these complexities and
allow rapid prototyping. WDS is designed to abstract details of
the underlying data structures away from the user, thus easing
application development and optimisation. We show that using
WDS does not significantly impact achieved performance across a
variety of different scientific benchmarks and proxy-applications,
compilers, and different architectures. The overheads are largely
below 30% for smaller problems, with the overhead deceasing
to below 10% when using larger problems. This shows that the
library does not significantly impact the performance, while pro-
viding additional functionality to data structures, and the ability
to optimise data structures without changing the application code.

Index Terms—High Performance Computing, Data Structures,
Mini-Applications

I. INTRODUCTION

Over the last few years, there has been a noticeable shift
in the development of new, high performance computing
architectures. The disparity between processor speeds and
memory speeds has resulted in an increased focus on the
performance of the memory subsystem, as demonstrated by the
increasing use of high-bandwidth memory in newer CPUs such
as Fujitsu’s A64FX [1]] and GPUs such as NVIDIA’s A100 [2].
This is a necessary development in order to close the gap be-
tween the speed of performing data read and writes compared
to the speed of floating point operation in the same period
of time. As such, applications that relied on large amounts of
data movement between the processor and its memory would
not see as much of a performance increase when executing
on newer architectures. However, even with an increase in
memory performance, the memory efficiency is often lower
than its compute counterpart [3]. Combine this fact with the
increasing complex data structures used within applications,
and the need for code to be performance portable [4], the
structure of the data becomes incredibly important for ensuring
high memory and application performance.

In this paper we present the design and implementation of
a library that allows data structures to be abstracted away
from applications and algorithms. By so doing, we gain two
major benefits. Firstly, we are able to perform large-scale
changes to the data structure, without the need for a significant
proportion of the program to be re-written. These can range
from restructuring the data for the code to placing the data
onto a different level in the memory hierarchy or altering the
existing data structure. The changes specified here are set by
the user. Secondly, we are able to tweak the data structures
for different applications and hardware, thus allowing for
better utilisation across multiple architectures. Unlike the first
benefit, these changes are made within the library itself. To
demonstrate the need for a library such as the one described,
we are focusing on the challenges faced by different physics
applications.

The Warwick Data Store (WDS) is a template C++ library,
designed to replace hard-coded data structures in applica-
tions [5]. The resultant library provides a means whereby
data structures can be altered and optimised, without the risk
of large-scale changes to the code. Alongside this, further
functionality can be provided that would otherwise be difficult,
such as the ability to easily switch between different data struc-
tures, and change the data adjacencies of given variables (for
example, changing from row-major to column-major indexing,
and vice versa). All of this would need to be achieved with
as little cost to an application’s performance as possible.

We aim to demonstrate the key criteria of WDS as exten-
sibility, minimal size, ease of implementation and minimal
performance impact on an application, along with additional
functionality provided in the library. In order to do this, we
will show the following contributions:

o Design and implementation of a data structure abstraction
library.

e Development of a multi-material extension to the data
structure abstraction library and evaluation the perfor-
mance utilising representative multi-material kernels from
previous literature.

o Investigation of the on-node performance of the data
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Fig. 1: Basic data structures

structure abstraction library across different architectures,
compilers and mini-applications

The remainder of this paper is structured as follows:
Section [lI] explores other data structure and abstractions in
different contexts. Section |[II} outlines the structure and im-
plementation of Warwick Data Store, alongside additional
functionality provided by the library; Section [[V]explains how
the results were collected and analysed; Section M] details
how Warwick Data Store can be expanded for customised,
domain-specific data structures and the performance impact
this has on representative kernels; Section [[V-B] explores the
performance impact of Warwick Data Store on three physics
mini-applications, BookLeaf, MiniMD and Tealeaf; Finally,
Section [V] concludes this paper.

II. BACKGROUND

The way in which data is structured within an application
is incredibly important to its performance, and is often hard
to change once development has begun [[6]. As such, it is
key to look at the three basic data structures that are used as
the building blocks for more complex data structures. These
are Structure of Arrays (SoA), Array of Structures (AoS) and
Array of Structures of Arrays (AoSoA).

Figure [I] shows each of these data structures for three
variables, x, y and z. For ease of explanation, each variable
contains the same number of elements. In examples where the
variables are not the same size, a combination of these data
structures is required.

The first is Structure of Arrays (SoA, Figure , which
consist of an array of each variable. The data within each is
contiguous, allowing for programs to easily iterate through the
variable, and allows for more efficient use of memory. SoA
performs best when a few arrays are being used within a loop.

The converse of this is Array of Structures (AoS, Figure ['1;5]),
which sees each variables elements interleaved with one an-
other. The data is placed in contiguous memory, but depending
on implementation, may include padding at the end of each
loop. Where required, the padding is used to ensure an element
is not separated over cache lines, meaning each cache line
can be pulled from memory independently of each other. AoS
works well when the algorithm is required to process a large
number of variables at the same time.

Finally, a hybrid of both of these approaches can be used,
called Array of Structures of Arrays (AoSoA, Figure [Id).

This data structure interleaves multiple elements of the same
variable, between the variables. As such, it can make better use
of the cache, if done correctly. AoSoA is also the most flexible
data structure out of the three, as the number of elements for
each variable loop can differ between variables. For example,
rather than each loop having 2 elements from each variable,
the loop could contain one element from x, four from y and
two from z. However, because of the extra flexibility and the
need to fit well into cache to ensure good performance, the
data structure is more complex to design and manage.

A. Data Structure Abstractions

Two contemporary projects that provide the capability to
work with abstract data layouts are RAJA [[7]] and Kokkos [8§]].
The goal of both of these tools is to facilitate development
of performance-portable applications that can execute on a
wide range of hardware and achieve good performance. In
this paper, we instead make data storage and manipulation our
primary focus. We aim to inject domain-specific knowledge
into the library, and make converting between different layouts
a first-class feature. The functionality provided by Warwick
Data Store is therefore orthogonal to that offered by Kokkos
and RAJA.

Specialised data storage libraries have also been designed,
but these have been for specific use cases. One such example
of this is Atlas, designed by European Centre for Medium-
Range Weather Forecasts (ECMWF) [9]. This library is de-
signed to store unstructured mesh data within climate and
weather simulations, and provides a variety of layout options
depending on the type of discretisation used. Warwick Data
Store aims to support a wider range of applications.

Another example is Axom, developed by the Lawrence
Livermore National Laboratory [10]. This project aims to
provide tools for multi-physics applications, with one such
tool being a data management tool called Sidre. Sidre’s aim is
to allow for transparent data accesses for physics applications
across a large range of hardware options [11f]. Sidre provides
similar functionalities and capabilities as WDS and was de-
veloped at the same time, but independently to Warwick Data
Store. Sidre’s development shows the demand in a library that
performs these data structure abstractions.

Libraries have also been created to abstract the data layout,
allowing for auto-vectorisation, more utilisation of bandwidth
and thus higher performance. The most commonly used library
is Intel’s SIMD Data Layout Templates (SDLT) [12]]. While
the main aim for this library is to manipulate the data in order
to increase performance, Warwick Data Store aims to extend
the available features, such as the ability to convert between
data structures, and to allow more flexibility in how the data is
defined. One such example of WDS’ flexibility is that domain-
specific data structures can be created within the library, such
as those required for multi-material physics applications [13].

B. Multi-material data structures

In real-world problems of interest, it is common to find
highly specialised data structures that have been carefully



designed to address a particular issue. Examples include lock-
free hash tables for k-mer counting in Bioinformatics [14],
Morton-ordered texture caches in computer graphics [[15]], and
Compressed Sparse Row (CSR) data structures for sparse
linear algebra [16].

Another example, which we consider in some detail here,
are interface tracking algorithms in solid-fluid mechanics ap-
plications. Numerical methods designed for such applications
often run into difficulties treating the sharp discontinuities in
state variables that occur at boundaries between two distinct
physical materials. Interface tracking methods are a broad
family of approaches designed to ameliorate these issues by
keeping a record of exactly where such boundaries are located,
and applying correction terms to the solution variables in these
areas. The methods used to store this boundary information are
sometimes termed multi-material data structures [|13]].

A key design goal for WDS is to provide sufficient flexi-
bility that specialised domain-specific data structures such as
those required for multi-material problems can be efficiently
described and stored using its mechanisms.

III. WARWICK DATA STORE (WDS)

The Warwick Data Store (WDS) library is a template C++
library designed to allow for the abstraction of data structures
within applications [5]. By doing this, we can manipulate
and optimise the data structure without needing to change
the programs code. We can also implement additional func-
tionality that would be time-consuming to implement, such as
converting between different data structures. When developing
WDS, we focused on the core functionality alongside four
key criteria: extensibility, minimal size of library, ease of
implementation into applications, and the performance impact
of the library. By ensuring these four criteria are met alongside
the core functionality, we can ensure that the library maximises
its effectiveness and usability to the user.

The library has been designed to be as extendable as
possible, allowing for a wide range of applications. In order to
achieve this, the library consists of three collection of classes;
the high-level controller, a hierarchy of classes designed to
allocate and manage the memory (the variable classes), and
a hierarchy of classes to allow for quick and easy access to
the memory (the view classes). By splitting the library in this
way, we have the ability to extend one without impacting
the functionality of the others. This allows for new data
structures to be done with relative ease. Both the variable
and view classes consist of interface classes, that should
be extended when developing a new data structure. This
provides basic functionality, but will not be performant due
to inheritance and VTable lookups. Thus, the functionality
in WDS, Controller, ViewSpec and potentially View
classes should be extended to include the new data structure
variable and view classes. Each of these three collection of
classes can be seen in Figure [2]

The high level functionality collection of classes manages
large requests from the users, such as allocation and man-
agement of the underlying variables. This includes the setup

| User Application

l A A A

WDS

i

Controller

e
| Var Interface | | View Interface(. .. > |

View(...) |

1
[VarA || ViewA(....) | -}| ViewSpec({A,B},...) |

VarB | I ViewB(...)

Fig. 2: Control flow diagram of WDS. Bold arrows shows the
flow of data to and from the user. The red classes provides
the high level functionality to the user. The green classes are
variable classes. The blue classes are view classes.

of variables, the changing of dimensions and converting a
collection of variables from one data structure to another. By
not allowing the user direct access to the variable management
classes, we can extend the available data structures the user
can use, without affecting applications which do not require
this. Because this abstraction can see all variables and possible
data structures, adding and extending high-level functionality
becomes simpler compared to if this was done within, or
between specific programs.

The variable collection of classes controls the allocation
and management of the data itself. These classes are referred
to as Var within the library. Each of the data structures
implemented within WDS is created within a separate class in
this collection of classes, and inherits from the parent interface.
This ensures the data structures are sandboxed from each other,
and that the high level classes can access all of the necessary
functionality. These variable classes include everything that
would be needed for the data structure, except for how the
user accesses the data. This is managed by the final collection
of classes, the views.

The view collection of classes controls how the user ac-
cesses the data stored within the library. These classes inten-
tionally uses a very similar design to the variable collection
of classes. When a variable class is created for a new data
structure, at least one new view class should also be created.
This allows for a data structure with multiple parts to be
represented easily, as each part would be accessed through
its own view class. Each of these view classes inherit from
a common interface, to allow for the same flexibility as the
variable collection, and to allow this interface to be passed
to the user. This allows for the appropriate view class to be
called, while being data structure agnostic.

While the view interface is a good way to access the
variable without worrying about its data structure, it comes
at the cost of the code using VTable lookups. This means
that, for every data access, the application has to lookup
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Fig. 3: Multi-material example 3 x 3 mesh with four materials. Each sub-figure shows the same mesh in different representations.

how to access the data. To get around this, two separate
view classes were created. The first, simply named View is
designed to provide data access for any data structure with a
uniform striding pattern, and as such, is data structure agnostic.
This is very common within data structures, as it allows for
memory optimisations such as cache prefetching. The second
class is ViewSpec. This class allows for direct access to
the original view, without having to use VTables. To do this,
each of the functions are inlined within specialised versions
of ViewSpec. As such, the data structure is required to be
passed to the library by the user.

WDS has been designed to be easily implemented into an
application. Take Listing [I] as an example application. In this
block of code, two arrays are created a and b, which are then
passed into a kernel, performing a series of calculations on
a and b. The conversion of this application can be seen in

Listing [2}
Listing 1: Example of a kernel to be implemented with WDS

int main (int, char «=x)

{

// Create data arrays

// Specify the variables "a" and "b"
const int len = 250, depth = 4;
doublex a = new double[len];
intx b = new int[len, depth];
{
// Kernels operate on arrays, and has

// to have knowledge of the underlying
// layout or the kernel to operate
kernel (a, b, len, depth);
}
return 0;

}

As can be seen, there are three main changes between
Listings [T]and [2] First is the inclusion of the WDS header file.
This ensures the inclusion of all relevant classes are available
to the application.

The second and biggest change is the generation of the
variables a and b. WDS builds a queue of variables required
by the application through the use of the function addMeta.
This function takes the variable name, an array of dimensions
for the variable, and an example of the type required. Whilst
primitive types have been used in this example, user-defined
classes would also work. The variables are not created until
buildvar is called, where a data structure is passed to the
library. WDS then takes the queue, sanitises the meta data for
the required data structure, then allocates blocks of memory
as required.

The third and final difference is the parameters for the
kernel. Rather than passing pointers to the kernel, View
objects are passed. These are generated through the use of
the getView functionality in WDS, and uses the variable
names defined earlier to identify the correct variable objects to
generate the required View objects. Other than the alteration
to the parameters, the only other change required in the kernel
function is swapping [] for ().

Listing 2: Implementation of the code in Listing |1| with WDS

#include <wds.hpp>
int main (int, char «=x)
{
// Create data store
wds: :WDS datastore;

// Specify the variables "a" and "b"
const int len = 250, depth = 4;
datastore.addMeta ("a", {len}, double()));



datastore.addMeta ("b", {len, depth}, int()));
// Build the variables given the metadata

// provided, specifying the layout desired
datastore.buildVar (WDS_DT: :SOA) ;

{

// Views used to access and modify data
auto a = datastore.getView<double> ("a");
auto b = datastore.getView<int> ("b");

// Kernels operate on views without
// knowledge of the underlying layout
kernel (a, b, len, depth);

}

return 0;

}

A. Data Structure Specialisation

One of the key requirements of the data structure abstraction
library is that it should be extensible. To demonstrate this,
a specialised data structure for multi-material applications
has been implemented, in particular, the Compact Cell data
structure outlined by Fogerty et al. [[13|]. The data structure
consists of two parts, one for storing all cells containing only
a single material and associated metadata, and another for
storing multi-material cells in the form of a packed linked list.
We have also developed a variant on this entitled Compact Cell
Flat, where all the cell data, both single and multi-material,
is laid out contiguously in cell order, and then in material
order. Some computational kernels do not care whether a given
material state is a whole cell or a component of a multi-
material cell, so this latter arrangement avoids the need to
perform indirect accesses in these cases.

Figure [3] shows the same multi-material example in three
different formats. In the first format (Figure [3a), a graphical
representation of the mesh can be seen, showing that we are
representing a 3 X 3 mesh with four different materials. The
second format (Figure 3b) shows the Compact Cell equivalent
of the mesh, consisting of the cell data and multi-material data,
and shows how the two blocks are linked. The third section
(Figure depicts the Compact Cell Flat representation of
the mesh, and shows how the main components alongside how
they are linked.

We commenced by implementing Compact Cell Flat as a
separate variable class, with a corresponding view class. The
variable class create the arrays outlined in the overview shown
in Figure and outlines how elements from the array can
be added and removed. In its API, WDS treats the data as
a two-dimensional array, the first dimension being the cell
index and the second being the material. The library passes this
information to the variable and view classes, which interprets
it appropriately, depending on the required functionality. As
an example, when adding a new material to the cell, the
variable class will use this data to expand the arrays rather
than altering the dimensions of the variables. Another example
which demonstrates the flexibility of Warwick Data Store is
how the dimensions are treated in the Compact Cell Flat view
class. WDS allows for that data to be accessed in different
ways within the same view, depending on the data structure
and the need of the user. For Compact Cell Flat, [int ] allows

for direct access to the data array, (int) allows for access
to the first element of the given cell index thus allowing the
user to iterate through the cell without needing to know the
materials in the cell, and (int, int) allows for access to
the given material for a given cell. If an incorrect element
is given, the WDS specification specifies that this should be
classed as undefined behaviour.

We additionally implemented Compact Cell as originally
outlined. The variable class contains the required arrays for
storing the single material and multi-material data, in addition
to methods for extending the appropriate arrays for adding
new materials. Due to the arrangement of this particular
data structure, it would not be possible to easily implement
Compact Cell in a single view class. Instead, two views are
required, one for accessing data in the single material data,
and one for the multi-material data. WDS has the flexibility to
achieve this, by allowing a variable class to generate multiple
views, and for the controller to allow for multiple views to
be created from a single variable class, depending on the user
requirements.

One of the key benefits of abstracting the data structure is
that we are able to allow the user to carry out large changes
to the data with minimal effort. For example, we were able to
extend the functionality of the high-level controller to allow
for the user to convert between the different Compact Cell
implementations. This meant that the user can benefit from
iterating through all the data where appropriate, and has the
ability to iterate through just the multi-material data without
having to write large amounts of conversion code within the
application.

IV. EXPERIMENTAL RESULTS

Although the primary goal of Warwick Data Store is to
abstract data layout from an application and improve pro-
grammer productivity, minimising the impact on application
performance was also a significant target. As such, the goal
of this section is to show how the overhead incurred by
WDS is acceptably low for use in production applications. To
achieve this, we will present the overhead of a variety of mini-
applications. We will also show the impact of specialisation of
data structures within WDS by using these data structures and
extra functionality with key multi-material kernels outlined by
Fogerty et al. [[13]]. Finally, we will show that the performance
impact of implementing WDS into a full mini-application
is minimal, through the presentation of the overheads of
multiple applications using different parallelisation techniques
and problem sizes.

To ensure that the performance impact of Warwick Data
Store is small across a variety of HPC systems, we therefore
ran all problems across three different systems, each of which
use a different processor, and across two different compilers
on each system. Specifically, we use an ARM ThunderX2
system, an Intel Xeon Cascade Lake AP system, and a AMD
Rome Epyc system. Details for each of these systems can be
seen in Table [l Each of these have varying amounts of cache,
bandwidth and processing power, allowing for a wide range of



TABLE I: Systems used to measure the performance impact of WDS

Per Socket
System Processor Compiler MPI
Cores STREAM BW  Cache
CCE 9.1.3
Isambard ~ ARM Marvell Thunder X2 32 116.5 GB/s 32 MB L3 GNU 920 Cray MPICH 7.7.12
71.5 MB Intel 19.1.1
CLX-AP  Intel Xeon 9242 48 187.3 GB/s Smart Cache  GNU 8.2.0 IMPI 7.217
. AOCC 2.20 OpenMPI 4.0.3
Rome AMD EPYC 7742 64 176.4 GB/s 256 MB L3 GNU 9.2.0 OpenMPI 4.0.2

architectural differences to be inspected. To calculate the band-
widths, we used the STREAM benchmark [17] with optimisa-
tion flags. We used both the Ofast and appropriate OpenMP
flags across all systems. Where a compiler with streaming
stores was available, this was utilised along with the appro-
priate flag. For the Cascade Lake system, this meant using
the Intel 19.1.1 compiler with gopt—-streaming-stores
flag. For Rome, we used AOCC 2.2.0 with fnt-store and
transparent huge pages tuned off.

For all systems, we run all MPI problems across all phys-
ical cores in a node, all OpenMP problems across a single
NUMA region within a node, and all hybrid (MPI + OpenMP)
problems such that the MPI ranks are allocated to seperate
NUMA regions, with OpenMP threads filling each NUMA
region. For Isambard, each socket consists of a NUMA region,
so when running hybrid problems, two MPI ranks are used,
with each rank consisting of one thread per core. As such,
each Isambard NUMA region has 32 threads. Each socket in
the Cascade Lake node consists of two NUMA regions. This
means that when running hybrid problems on the Cascade
Lake system, four MPI ranks are used with each NUMA
region containing 24 threads. For Rome, the processor was
split into four NUMA regions. The hybrid runs were achieved
by splitting the processor further, and using a single MPI rank
per L3 region, consisting of four cores. Each NUMA region
consists of four L3 regions, so a configuration of 32 MPI
ranks, each with four OMP threads, was used. It should be
noted that the AMD processor can be configured to consist of
one NUMA region if required.

To ensure we measure just the performance impact of
the Warwick Data Store, we convert the kernels and mini-
applications from the reference version to a WDS version. For
this, we aim to make as few changes to the applications logic
as possible. This allows for a direct comparison between both
of the versions. The only exception to this is the multi-material
example, where the reference version uses the reference Com-
pact Cell, while WDS uses both Compact Cell and Compact
Cell Flat data structure as appropriate.

In order to compare the effectiveness of WDS, we measure
the effect of the library by analysing the overhead. To calculate
this, we take the library time and divide this by the reference
time. This provides us with a time and scale independent
metric to track how well the library performs.For the majority
of tables, both the time taken in seconds for the reference

version to complete, and the overheads, have been given. These
have been labelled as Ref and % respectively. If no indication
is given, the results presented is the overhead. For all results
tables within this section, a colour scheme has been used for
overheads to show the difference in results. All green cells are
values below 10%, cells are values between 10% and
30% inclusive, and red cells are values above 30%. The aim
for the library is to get the overhead as low as possible. It
should be noted that we expect to see trends across compilers
and architectures.

A. Multi-Material Kernel Results

One of the key features of Warwick Data Store is that new
data structures can be added with little cost to performance,
and are able to perform transformations transparently to the
user. To demonstrate this, we implement two multi-material
data structures into WDS, as described in Section To
ensure the data structure validates, and to test the performance
of these data structures, we used two multi-material kernels.
The first takes an average of all multi-material cells in a mesh,
and stored this in a single-material array. The second performs
an EOS material lookup. Two versions of the second kernel
were made; one which iterated though the cells and found
the EOS material it corresponded to, and the other iterated
through the EOS materials and then searched for cells with
that material. By using these kernels in this way, we demon-
strate the library can handle the two most common ways in
which multi-material data structures are used, either iterating
through single/multi-material cells, and iterating through all
data regardless of whether the cell is single or multi-material.

In order to exhaustively test the multi-material data structure
and kernels, we use the two extreme meshes outlined by
Fogerty et al. [[13]]. The first is a randomised mesh, with a given
proportion of cells containing two, three and four materials
within a cell. In particular, 20% of cells were randomly
picked to be multi-material cells. Of these multi-material cells,
62.5% were allocated two materials, 25% were allocated three
materials, and the remaining 12.5% were allocated four mate-
rials. A visual representation captured using the reference data
structure can be seen in Figure 4] The second multi-material
mesh is a geometric patterned mesh, as seen in Figure [5] This
consists of a much lower portion of multi-material cells to
single material cells, compared to the randomised mesh. To
ensure the kernels validate when using both meshes, and in
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order to guarantee a fair comparison, the mesh is generated
once, and duplicated for both the reference and WDS versions.

Table [l shows the kernels and which WDS data structure
was used for each. Specifically, we use the Compact Cell data
structure outlined by Fogerty et al. for the average kernel, and
the specialised version for the EOS kernels. For all reference
runs, the Compact Cell data structure is used.

We would expect to see a small overhead for the average
kernels, due to the addition of the libraries View object.
However, we would also expect to see a speedup when using
the library, as all the required memory in the Compact Cell
Flat data structure is concurrent in one block, rather than
split over two blocks. From Table [l, we can see that the
average kernels have a small overhead. We can also see that
the overhead for the EOS kernels have a negative overhead
for the majority of systems and configurations, with the lowest
being —32.1%. This negative overhead is most likely due to
the fact that under the reference version, the EOS kernel has to
be called twice (once for the single-material data, then again
for the multi-material data), whereas the Compact Cell Flat
version only needs to be called once. As well as this, the

TABLE II: Results of multi-material kernels within Bench-
marking suite, across different architectures and compilers

Isambard CLX-AP Rome
Mesh Kernel WDS Data Structure
Cray GNU Intel GNU AOCC GNU
Average Compact Cell 2.03 -274  -1.54 746 530 11.7
Random EOS (Cell) Compact Cell Flat -145 -874 -308 -253 252 -21.4
EOS (Mat) P 4.74 -106 178 -0.55 88l 3.42
Average Compact Cell -1.79 332 244 635 778 16.2
Geometric ~ EOS (Cell) Compact Cell Flat -3.57  -195 583 -2.09 637 7.48
EOS (Mat) pac -6.61 275 237 233 -45.5 -32.1

TABLE III: Input sizes for small and large problems across
all mini-aplications

Mini-app  Input Deck Small (S) Large (L)
BookLeaf Noh Problem Size 1200 x 60 2530 x 126
Sedov Problem Size 179 x 179 566 x 566
.. Problem Size 64 x 64 x 64 128 x 128 x 128
MiniMD 5 esteps 1000 500
Teal.caf Problem Size 1000 x 1000 8000 x 8000
Timestep 20 10

Compact Cell Flat data structure ensures all the valid data
is contiguous allowing for better utilisation of vectorisation.
This negative overhead is across all architectures, as expected.
Whilst the data is accessed in contiguous order for Compact
Cell, there are gaps where data does not need to be processed.
Finally, when looking at the version of the EOS kernel which
iterates through the cells first, the reference version is required
to check that there is a valid material at all given positions
before performing the calculations. This is not required in the
Compact Cell Flat version, as the data structure ensures all
pieces of data has a corresponding material.

There is also a difference between the two EOS kernels
for each of the meshes. For the random mesh, the method of
iterating through cells and then locating the materials performs
better than the reverse. The opposite is true for the geometric
mesh. However, on the kernels where the mesh does not match
the best EOS kernel, the overhead is not large across all
architectures.

B. Mini-applications with Warwick Data Store

In order to demonstrate how WDS performs in a more
realistic setting we have implemented the library into three dif-
ferent mini-applications [18]: small and self-contained codes
that are designed to be representative of larger applications,
and can be used to test and develop new ideas in an agile way.
We aim to demonstrate that using WDS incurs a low overhead
relative to the reference versions of these applications. We have
chosen BookLeaf [19], MiniMD [20] and TeaLeaf for this
study, which we describe in more detail below.

We use a small and large input deck for each mini-
application in order to explore how the size of the problem
affects the performance overhead of WDS. The different
problem configuration for each mini-application can be seen
in Table [

Each run is performed five times, and the average times
are used in our results. For each mini-application, WDS is set
to run using the same data structure as the mini-application
originally used. This is to ensure a fair comparison between
the original mini-application runtime, and the runtime of the
mini-application with WDS integration.

1) BookLeaf: BookLeaf [19], solves the compressible
Euler equations on an unstructured grid using an Arbitrary
Lagrangian-Eulerian (ALE) formulation. These equations de-
scribe the dynamics of inviscid fluids, and are used widely to
solve many problems in science and engineering. We use two



TABLE IV: Results for BookLeaf input decks across architec-
tures, compilers and input decks.

TABLE V: Results for all TealLeaf solvers, across all paral-
lelisations methods, architectures and compilers.

Input Isambard CLX-AP Rome
Result
Deck Cray GNU Intl GNU AOCC GNU
S Ref 32.0 354 15.9 19.9 16.8 20.4
5 % 16.3 6.21 26.3 18.2 31.9 17.4
Z | Ref 627 632 489 491 112 112
% 669 151 416 608 164 099
. S Ref 8.00 12.4 4.69 5.59 5.27 5.68
3 % 19.7 491 37.7 19.0 31.0 20.9
A L Ref 57.1 54.1 46.1 43.5 100 99.8
% 431 3.12 -1.50 5.85 2.16 1.49

classic test problems in our experiments: Sod’s shock tube [23]]
and Noh’s cylindrical artificial viscosity problem [24]. In this
paper, we utilise the C++ OpenMP version of the code as the
base for the WDS version, and also the reference version
used to compare the performance. Implementing WDS into
BookLeaf was relatively easy, as the reference C++ version of
BookLeaf contains a data store abstraction already built into
it. Thus, to implement WDS into BookLeaf involved swapping
the reference data store for WDS.

Most routines within BookLeaf have a low arithmetic in-
tensity, meaning that the code is typically memory-bound. As
such, we expect to see a larger overhead with smaller problem
sizes, and a relatively small overhead for larger problems. This
is due to the fact that on larger problems, the processor will
be more memory constrained, allowing for computation to be
done in the time the processor is waiting on data.

Table [[V| shows the overheads for all variations of problem
decks, processors and compilers. As expected, for both Noh
and Sedov problems, the small problem sets have a larger over-
head, than the large problem sets. This is independent of both
the system and the compiler, though there is some fluctuations
in how the compilers performed on the small problem sets.
For the large problem set, the compilers produced close to the
same overhead on the same system and across architectures.

Across both BookLeaf problem sizes, the WDS times are
very similar across the different compilers within a given
architecture. However, with the smaller problem size, the
runtimes are shorter than there large problem size counter part,
making the overhead more sensitive to differences. This is why
there is a larger range of overheads for the smaller problem
sizes, and why the slower runtime within an architecture has
the smaller overhead. Even with these factors, it is clear that
the overheads for the smaller problem is greater than the larger
problems across all architectures and compilers.

2) TeaLeaf: Tealeaf [25] solves the linear heat conduction
equation on a structured grid. Parabolic equations like this
are often solved using implicit methods, requiring the use
of a linear solver. TealLeaf’s primary purpose is to support
experimentation with different types of linear solver in a
simple setting [21]. A C/C++ version has been created by
the University of Bristol [26], which we use here, specifically
the MPI+OpenMP variant. We focus on the CG, PPCG and

Inbut Deck Result Isambard CLX-AP Rome
npu eC) esu
P Cray GNU 1Intel GNU AOCC GNU
S Ref 5.82 3.97 0.65 0.99 1.51 0.75
= % 12.1 12.2 39.5 30.5 3.14 53.1
= L Ref 1877 1441 862 854 1181 1182
%o 0.45 -1.38 -1.27 181 -0.52 -0.36
S Ref 12.3 113 417 7.75 8.22
Q % %o 3.25 -3.68 1.78 2.81 0.54
© 3 L Ref 3614 3106 3398 3369 9362
% 2.05 0.63 -2.01  -048 -0.05
= S Ref 6.96 7.90 1.27 4.63 1.56 0.82
5 % 4.24 -8.44 12.1 1.92 3.84 6.47
z L Ref 1885 1591 838 839 1178 1180
% 0.16 0.61 0.99 1.25 -0.17 -0.33
S Ref 1.82 1.96 0.33 0.53 0.37
= % 33.8 8.64 65.5 43.0 39.1
= L Ref 1583 1501 808 805 1111 1111
%o 0.25 0.19 -2.07  -054  -0.10 -0.32
E S Ref 4.45 5.35 2.48 3.02 2.46
E, % %o 4.46 -1.13 2.92 -7.40 0.33
° o L Ref 3238 3454 3179 3204 8855 8856
O % 0.83 0.95 -0.96  -0.40  0.00 0.00
= S Ref 1.88 3.32 0.66 0.41
5 %o 10.5 -8.15 13.9 16.9
:E’ L Ref 1647 1763 813 814 1113 1113
% 1.03 2.02 -2.64 090 -0.28 -0.15
s Ref 2.54 2.74 0.41 0.59 0.55
= % 23.1 8.03 66.5 39.8 422
= L Ref 2007 1970 1055 1055 1474 1479
%o 1.46 4.41 0.83 2.34 -0.25 -0.24
o S Ref 4.01 6.25 1.98 1.89 2.47
O % % 7.09 -3.16 1.63 104 2.02
& o L Ref 3562 4407 3669 3675 10348 10291
% 2.68 0.26 -038 042 -0.12 0.04
= S Ref 2.33 433 0.74 0.58 0.60
5 %o 6.15 -840  8.64 34.9 24.1
= L Ref 1824 2240 911 920 1379 1373
% 8.26 4.16 0.88 2.59 -0.22 -0.08

Chebyshev solvers.

Implementing WDS into TealLeaf was more difficult than
the implementation of WDS into BookLeaf. For Tealeaf,
WDS replaced the internal data structure Chunk. The kernels
parameters were then altered to pass the relevant view objects
by reference. Finally, the kernels were altered to use () when
accessing data, rather than [].

Tealeaf, like BookLeaf, is typically memory bound. As
such, we expect the smaller problem size to have a larger
overhead than the larger problem size, as less computation
can be shadowed by memory accesses. Table [V] shows the
overhead of the WDS version of Teal.eaf against the reference
version. We can see that, for the majority of cases, the smaller
problem sizes incur a higher overhead than the larger problem
size counterpart regardless of architecture.

Out of all three parallelisation methodologies, we see that
the MPI implementation incurs the highest overheads, fol-
lowed by the the hybrid implementation then the OpenMP
3. This is especially true in the smaller problem sizes. For
the smaller problem sizes, this is due to the fact that the
communications take up a large fraction of the runtime.
However, in the larger problems, the computation kernels take
up a much larger proportion of the runtime, compared to the



TABLE VI: Results for MiniMD input decks, across all
architectures and compilers.

Input Isambard CLX-AP Rome
Result
Deck Cray GNU 1Intl GNU AOCC GNU
S Ref 19.7 177 6.89 620 574 5.77
T % 633 1.37 041 620 0.72 0.81
= L Ref 814 735 28,5 265 226 22.3
% 554 -002 293 558 054 1.63
S Ref 599 71.1 48,6 397 454 46.6
E % 361 222 11.5 101 6.50 5.21
° L Ref 198 164 192 197
% 120 931 6.26 5.74
5 g Ref 33.9  40.1 141 11,5 649 6.59
5 % 358 242 10.1  8.02 752 6.69
E‘ L Ref 124 147 51.3 429 26.0 26.6
% 3.00 1.76 11.7 8.05 742 6.30

communications. Because this is not as much of an issue for
the hybrid version, and not an issue at all for the OpenMP
implementation, we see lower overheads.

Much like BookLeaf, the runtimes for Tealeaf are con-
sistent across compilers on the same architecture for the
majority of cases. This is true for both problem sets, but is
more prominent in the smaller problem size. When taking the
looking at the variance for the larger problem size, we can see
that the results overlap for the majority of cases. This means
that these results will have a small, if not 0% overhead.

3) MiniMD: MiniMD is a proxy-application for the much
larger LAMMPS molecular dynamics (MD) code developed
and maintained by Sandia National Laboratories [27]. MD
codes such as LAMMPS are widely used by scientists to study
the microscopic properties of matter. MiniMD is designed
to use the same algorithms as its parent code, but has been
structured to be much simpler to support co-design. The mini-
application supports two inter-atomic potentials: the Lennard-
Jones potential and the embedded atom model (EAM). For the
purposes of this paper, we test WDS with a simulation using
the Lennard-Jones potential and MPI+OpenMP.

The results for MiniMD across all systems and compilers
running on a single node can be seen in Table [VIl As we
can see, the overhead for the application does not go above
12% for any configuration of either problem size. Some of
the overheads are slightly negative. This is most likely due
to machine fluctuations. We also see that the OpenMP 3
implementation has the largest range of overheads, with the
OpenMP + MPI approach coming in second for all systems.

V. CONCLUSION

In this paper, we have shown how a data structure abstrac-
tion library can be built in such a way that allows transparent
data access to the user, incurs minimal cost to the performance
of different applications, and provides additional functional-
ity that would otherwise be time-consuming to develop and
inflexible to use. We have shown Warwick Data Store, a
data structure abstraction library that has been designed to
allow for flexibility and transparent operations to applications

and users. Through the use of multi-material data structures,
we have demonstrated how additional data structures can
be added without affecting the performance of other data
structures or applications, and how additional functionalities
can be included in to additional ease to the user. As well as
this, we shown how the library can be expanded to include
specialised data structures by using different multi-material
data structures, and how some of the additional functionality,
such as the ability to change between different data structures
with minimal user interaction, can be achieved.

In order to show the performance affect of Warwick Data
Store, we implemented the library into a variety of benchmark
kernels and mini-applications, and tested WDS across multiple
different architectures and compilers. We showed that the
library impacted the multi-material kernels to a small degree,
and that altering the data structure can give performance
improvements. When used within a mini-application, we found
that WDS generated a higher overhead when used on small
problems, especially when the problem is more memory bound
than compute bound. The overhead of the library is small when
used on larger problems, not going above 5% in most cases.

A. Future Work

We aim to push the library into more memory-centric
domains and optimisations. In particular, we aim to allow
for better optimisation of different NUMA regions and High
Bandwidth Memory, including those found on GPUs and
Intel Xeon Phi Knights Landing systems. We also aim to
develop the multi-material kernels into a full mini-application,
to further test the specialisation of Warwick Data Store,
and to further develop different multi-material data structures
including a material centred data layout. We can then see
the performance improvements of changing data layouts for
different kernels, compared to the cost of data structure
transformations. We also plan to further investigate the higher
overheads presented. Finally, we aim to investigate whether
Just-In-Time (JIT) compilation techniques would allow for
better compiler optimisations when utilising WDS, that would
not be possible otherwise.
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APPENDIX — Compilers:

ARTIFACT DESCRIPTION/ARTIFACT EVALUATION * AOCC 2.2.0
A. Summary of the Experiments Reported * GNU 9.2.0
- MPI:

We ran two multi-material kernels and three different
physics proxy applications. As well as this, counterparts with
Warwick Data Store were also executed and presented in this * When running GNU 9.2.0 - OpenMPT 4.0.2
paper. Each of these executions were done on three different 2) Input Decks: BookLeaf (Noh, Small)
systems, and two compilers. For each multi-material kernel, TIME:

* When running AOCC 2.2.0 - OpenMPI 4.0.3

the problem was executed ten times, taking the minimum as time_start: 0.0
the recorded value. For each proxy application, the program time_end: 0.6
. . . . dt_initial: 1.0e-4
was executed using two different input decks, each being dt max: 1.0e—2
ran five times, removing any outliers. The average runtime dt min: 1.0e-8
reported by the program is presented within the paper. dt_g: 1.02
B. Artifact Availability HYDRO :
1) Software Artifact Availability: Some author-created soft- cfl _sf: 0.5
ware artifacts are NOT maintained in a public repository or cviscl: 0.5
are NOT available under an OSI-approved license. cvisez: 0.75
2) Hardware Artifact Availability: There are no author- gos.
created hardware artifacts. - { type: ideal gas,
3) Data Artifact Availability: There are no author-created params: [1.6666667] }
data artifacts.
4) Proprietary Artifacts: No author-created artifacts are CUTOFE:
. zcut: 1.0e-40
proprietary. accut: 1.0e-40
5) List of URLs and/or DOIs where artifacts are available: pcut: 1.0e-40
. : MESH:
o Reference BookLeaf C++: https://github.com/ fype: LINZ
UK-MAC/BookLeaf_Cpp dims: [1200, 60]
o Reference Teal eaf: https://github.com/ material: O
UoB-HPC/Tealeaf sides:
o reference MiniMD: https://github.com/ - - { type: LINE, bc: SLIPY,
Mantevo/miniMD pos: [0.005,0.0,1.0,0.0] }
- — { type: ARC_A, bc: FREE,
All other code is available upon request. pos: [1.0,0.0,0.0,1.0,0.0,0.0] }
C. Baseline Experimental Setup, and Modifications Made for éozﬁ:/pe[(‘) . I(;,ITE(,), Obg, O?ggi?, }
the Paper - - { type: ARC_C, bc: WALL,
1) Relevant hardware details: pos: [0.0,0.005,0.005,0.0,0.0,0.0]
o Isambard: INDICATORS:
— Proccessor: ARM Marvell ThunderX2 regions:
— Processor configuration: Dual socket system - { type: mesh, name: air }

materials:

- Compllers: - { type: mesh, name: air }
* CCE 9.1.3
x* GNU 9.2.0 INITIAL_CONDITIONS:
i thermodynamics:
— MPI: Cray MPICH 7.7.12 | type: material, value: 0,
o CLX-AP: density: 1.0,
— Proccessor: Intel Xeon 9242 energy: 0.0 }
Lo kinematics:
- Proces'sor -conﬁguratlon. Dual socket system _ [ type: background, value: 0,
— Compilers: geometry: radial,
* Intel 19.1.1 params: [-1.0, 0.0, 0.0] }
* GNU 8.2.0 BookLeaf (Noh, Large)
— MPI: IMPI 7.217
TIME:
o Rome: time_start: 0.0
— Proccessor: AMD EPYC 7742 time_end: 0.1
dt_initial: 1.0e-4

— Processor configuration: Dual socket system


https://github.com/UK-MAC/BookLeaf_Cpp
https://github.com/UK-MAC/BookLeaf_Cpp
https://github.com/UoB-HPC/TeaLeaf
https://github.com/UoB-HPC/TeaLeaf
https://github.com/Mantevo/miniMD
https://github.com/Mantevo/miniMD

dt_max: 1.0e-2
dt_min: 1.0e-8
dt_g: 1.02
HYDRO:
cfl_sf: 0.5
cviscl: 0.5
cvisc2: 0.75
EOS:
- { type: ideal gas,
params: [1.6666667] }
CUTOFF :
zcut: 1.0e-40
accut: 1.0e-40
pcut: 1.0e—-40
MESH:
type: LINZ2
dims: [2530, 126]
material: O
sides:
- - { type: LINE, bc: SLIPY,
pos: [0.005,0.0,1.0,0.0]
- — { type: ARC_A, bc: FREE,
pos: [1.0,0.0,0.0,1.0,0.0,0.0]
- - { type: LINE, bc: SLIPX,
pos: [0.0,1.0,0.0,0.005]
- — { type: ARC_C, bc: WALL,
pos: [0.0,0.005,0.005,0.0,0.0,0.0]
INDICATORS:
regions:
- { type: mesh, name: air }
materials:
- { type: mesh, name: air }

INITIAL_CONDITIONS:
thermodynamics:
- { type:
density:
energy:

kinematics:
- { type:

geometry:

params:

BookLeaf (Sedov, Small)

TIME:
time_start: 0.
time_end: 1.0
dt_initial: 1.
dt_max: 1.0e-1
dt_min: 1.0e-6
dt_g: 1.02

0

HYDRO:
cfl_sf: O.
cviscl: O.
cvisc2: 0.
kappaall:

5
5
75
0.01
EOS:

- { type:
params:

ideal

material,

background,

value: 0,
1.0,
0.0 }

value:
radial,
[-1.0, 0.0, 0.0]

Oe-4

gas,

[1.6666666667] }

}

}

0,

}

}

}

MESH:
type: LIN1
dims: [179, 17
sides:
- - { type
pos: [
- - { type
pos: [
- - { type
pos: [
- - { type
pos: [
ALE:
zeul: true
INDICATORS:
regions:
- { type:
- { type:
materials:
- { type:

INITIAL_CONDITIONS
thermodynamics

- { type:
densit

energy:

type:

energy_scale:

energy

9]

: LINE, bc:
0.0,
: LINE, bc:
1.125, 0.0,
: LINE, bc:
1.125,
: LINE, bc:
0.0, 1.125,

background,
cell, name:

background,

region,
y: 1.0,
0.0 }
region,

: 0.2467966

BookLeaf (Sedov, Large)

TIME:
time_start: 0.
time_end: 0.05
dt_initial: 1.
dt_max: 1.0e-1
dt_min: 1.0e-6
dt_g: 1.02
HYDRO:
cfl _sf: 0.5
cviscl: 0.5
cvisc2: 0.75

7
kappaall: 0.01

EOS:
- { type:
params:
MESH:
type: LIN1
dims: [566, 56
sides:
- - { type
pos: [
- - { type
pos: [
- — { type
pos: [
- - { type
pos: [
ALE:
zeul: true

0

Oe-4

ideal gas,
[1.6666666667]

6]

: LINE, bc:
0.0,
: LINE,
1.125,
: LINE,
1.125,
: LINE, bc:
0.0, 1.125,

bc:
0.0,
bc:

0.0, 1.

1.125,

0.0, 1.

1.125,

SLIPY,

125,
FREE,

1.125,

FREE,

0.0,

0.0]

SLIPX,

0.0,

name:

source,

name:

value: O,

value: 1,
volume,

}

}

0.0]

}

1.125]

1.125]

}

air }

value:

air }

SLIPY,

125,
FREE,

1.125,

FREE,

0.0,

0.0]

SLIPX,

0.0,

0.0]

density:

}

1.125]

1.125]

}

}
}

.0,

}

}

0

}



INDICATORS: ymin=1.0 ymax=2.0

regions: state 4 density=0.1 energy=0.1
- { type: background, name: air } geometry=rectangle xmin=5.0 xmax=6.0
- { type: cell, name: source, value: 0 } ymin=1.0 ymax=8.0

materials: state 5 density=0.1 energy=0.1
- { type: background, name: air } geometry=rectangle xmin=5.0 xmax=10.0

ymin=7.0 ymax=8.0
INITIAL_CONDITIONS:

thermodynamics: xmin = 0.0
- { type: region, value: O, ymin = 0.0
density: 1.0, xmax = 10.0
energy: 0.0 } ymax = 10.0
- { type: region, value: 1, x_cells = 8000
energy_scale: volume, density: 1.0, vy_cells = 8000
energy: 0.2467966 }
use_cg
TeaLeaf (CG, Small) use_c_kernels
*tea check_result
state 1 density=100.0 energy=0.0001
state 2 density=0.1 energy=25.0 eps = 1.0e-15
geometry=rectangle xmin=0.0 xmax=1.0 max_iters = 5000
ymin=1.0 ymax=2.0
state 3 density=0.1 energy=0.1 initial_timestep = 0.004
geometry=rectangle xmin=1.0 xmax=6.0 end_step = 10
ymin=1.0 ymax=2.0 end_time = 100.0
state 4 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=6.0 halo_depth =2
ymin=1.0 ymax=8.0 num_chunks_per_rank = 1
state 5 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=10.0 ppcg_inner_steps = 350
ymin=7.0 ymax=8.0 epslim = 0.0001
presteps = 20
xmin = 0.0
ymin = 0.0 xendtea
xmax = 10.0
— - 10.0 TeaLeaf (Chebyshev, Small)
x_cells = 1000 *tea
y_cells = 1000 state 1 density=100.0 energy=0.0001
state 2 density=0.1 energy=25.0
use_cg geometry=rectangle xmin=0.0 xmax=1.0
use_c_kernels ymin=1.0 ymax=2.0
check_result state 3 density=0.1 energy=0.1
geometry=rectangle xmin=1.0 xmax=6.0
eps = 1.0e-15 ymin=1.0 ymax=2.0
max_iters = 5000 state 4 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=6.0
initial_timestep = 0.004 ymin=1.0 ymax=8.0
end_step = 20 state 5 density=0.1 energy=0.1
end_time = 100.0 geometry=rectangle xmin=5.0 xmax=10.0
ymin=7.0 ymax=8.0
halo_depth = 2
num_chunks_per_rank = 1 xmin = 0.0
ymin = 0.0
ppcg_inner_steps = 350 xmax = 10.0
epslim = 0.0001 ymax = 10.0
presteps = 20 x_cells = 1000
y_cells = 1000
xendtea
T use_chebyshev
ealeaf (CG, Large)
use_c_kernels
*tea check_result
state 1 density=100.0 energy=0.0001
state 2 density=0.1 energy=25.0 eps = 1.0e-15
geometry=rectangle xmin=0.0 xmax=1.0 max_iters = 5000
ymin=1.0 ymax=2.0
state 3 density=0.1 energy=0.1 initial_timestep = 0.004

geometry=rectangle xmin=1.0 xmax=6.0 end_step = 20



end_time = 100.0 geometry=rectangle xmin=5.0 xmax=10.0
ymin=7.0 ymax=8.0

halo_depth = 2
num_chunks_per_rank = 1 xmin = 0.0
ymin = 0.0
ppcg_inner_steps = 350 xmax = 10.0
epslim = 0.0001 ymax = 10.0
presteps = 20 x_cells = 1000
y_cells = 1000
+endtea
use_ppcg
Teal.eaf (Chebyshev, Large) use ¢ kernels
*tea check_result
state 1 density=100.0 energy=0.0001
state 2 density=0.1 energy=25.0 eps = 1.0e-15
geometry=rectangle xmin=0.0 xmax=1.0 max_iters = 5000
ymin=1.0 ymax=2.0
state 3 density=0.1 energy=0.1 initial_timestep = 0.004
geometry=rectangle xmin=1.0 xmax=6.0 end_step = 20
ymin=1.0 ymax=2.0 end_time = 100.0
state 4 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=6.0 halo_depth =2
ymin=1.0 ymax=8.0 num_chunks_per_rank = 1
state 5 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=10.0 ppcg_inner_steps = 350
ymin=7.0 ymax=8.0 epslim = 0.0001
presteps = 20
xmin = 0.0
ymin = 0.0 ~xendtea
xmax = 10.0
S _ 100 TeaLeaf (PPCG, Large)
x_cells = 8000 *tea
y_cells = 8000 state 1 density=100.0 energy=0.0001
state 2 density=0.1 energy=25.0
use_chebyshev geometry=rectangle xmin=0.0 xmax=1.0
use_c_kernels ymin=1.0 ymax=2.0
check_result state 3 density=0.1 energy=0.1
geometry=rectangle xmin=1.0 xmax=6.0
eps = 1.0e-15 ymin=1.0 ymax=2.0
max_iters = 5000 state 4 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=6.0
initial_timestep = 0.004 ymin=1.0 ymax=8.0
end_step = 10 state 5 density=0.1 energy=0.1
end_time = 100.0 geometry=rectangle xmin=5.0 xmax=10.0
ymin=7.0 ymax=8.0
halo_depth = 2
num_chunks_per_rank = 1 xmin = 0.0
ymin = 0.0
ppcg_inner_steps = 350 xXmax = 10.0
epslim = 0.0001 ymax = 10.0
presteps = 20 x_cells = 8000
y_cells = 8000
~xendtea
TeaLeaf (PPCG, Small) use_ppcg
use_c_kernels
*tea check_result
state 1 density=100.0 energy=0.0001
state 2 density=0.1 energy=25.0 eps = 1.0e-15
geometry=rectangle xmin=0.0 xmax=1.0 max_iters = 5000
ymin=1.0 ymax=2.0
state 3 density=0.1 energy=0.1 initial_timestep = 0.004
geometry=rectangle xmin=1.0 xmax=6.0 end_step =10
ymin=1.0 ymax=2.0 end_time = 100.0
state 4 density=0.1 energy=0.1
geometry=rectangle xmin=5.0 xmax=6.0 halo_depth =2
ymin=1.0 ymax=8.0 num_chunks_per_rank = 1

state 5 density=0.1 energy=0.1



ppcg_inner_steps = 350
epslim = 0.0001
presteps = 20
xendtea

MiniMD (Small)

Lennard-Jones input file for miniMD

17 units (1j or metal)
none data file (none or filename)
17 force style (1j or eam)

1.0 1.0 LJ parameters (epsilon and sigma;
COMD: 0.167 / 2.315)
64 64 64 size of problem

1000 timesteps

0.005 timestep size

1.44 initial temperature

0.8442 density

20 reneighboring every this many steps
2.5 0.30 force cutoff and neighbor skin

100 thermo calculation every this

many steps (0 = start,end)

MiniMD (Large)

Lennard-Jones input file for miniMD

13 units (1j or metal)

none data file (none or filename)

17 force style (1j or eam)

1.0 1.0 LJ parameters (epsilon and sigma;

COMD: 0.167 / 2.315)
128 128 128 size of problem

500 timesteps
0.005 timestep size
1.44 initial temperature
0.8442 density
20 reneighboring every this many steps
2.5 0.30 force cutoff and neighbor skin
100 thermo calculation every this
many steps (0 = start,end)

3) Paper Modifications: No modifications were made to
the hardware or software. Each system was used as is. Further
information is available upon request.
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