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During the COVID-19 pandemic, non-pharmaceutical interventions (NPIs) including school closures,
workplace closures and social distancing policies have been employed worldwide to reduce transmission
and prevent local outbreaks. However, transmission and the effectiveness of NPIs depend strongly on
age-related factors including heterogeneities in contact patterns and pathophysiology. Here, using
SARS-CoV-2 as a case study, we develop a branching process model for assessing the risk that an infec-
tious case arriving in a new location will initiate a local outbreak, accounting for the age distribution of
the host population. We show that the risk of a local outbreak depends on the age of the index case, and
we explore the effects of NPIs targeting individuals of different ages. Social distancing policies that reduce
contacts outside of schools and workplaces and target individuals of all ages are predicted to reduce local
outbreak risks substantially, whereas school closures have a more limited impact. In the scenarios con-
sidered here, when different NPIs are used in combination the risk of local outbreaks can be eliminated.
We also show that heightened surveillance of infectious individuals reduces the level of NPIs required to
prevent local outbreaks, particularly if enhanced surveillance of symptomatic cases is combined with
efforts to find and isolate nonsymptomatic infected individuals. Our results reflect real-world experience
of the COVID-19 pandemic, during which combinations of intense NPIs have reduced transmission and
the risk of local outbreaks. The general modelling framework that we present can be used to estimate
local outbreak risks during future epidemics of a range of pathogens, accounting fully for age-related
factors.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Throughout the COVID-19 pandemic, policy makers worldwide
have relied on non-pharmaceutical interventions (NPIs) to limit
the spread of SARS-CoV-2. Commonly introduced NPIs have
included school closures, workplace closures and population-
wide social distancing policies, all of which aim to reduce the num-
bers of contacts between individuals and disrupt potential chains
of transmission (Perra, 2021; Regmi and Lwin, 2020; Imai et al.,
2020; Thompson et al., 2020). Similar measures have previously
been adopted for countering other infectious diseases such as
Ebola and pandemic influenza (Hatchett et al., 2007; Kirsch et al.,
2017; Berkman, 2008), and are likely to remain a key line of
defence against emerging pathogens that are directly transmitted
between hosts. NPIs are particularly important when no effective
treatment or vaccine is available, and they are also beneficial when
vaccination programmes are being rolled out (Moore et al., 2021;
Spinelli et al., 2021; Thompson et al., 2021). If vaccines do not pre-
vent transmission completely, then NPIs may be important even
when vaccination is widespread (Sachak-Patwa et al., 2021). How-
ever, the negative economic, social and non-disease health conse-
quences of NPIs have been widely discussed, with the impact of
school closures on the academic progress and wellbeing of
school-aged individuals a particular concern (Berkman, 2008;
Donohue and Miller, 2020; Silverman et al., 2020; Sadique et al.,
2008; Brooks et al., 2020; Loades et al., 2020). Therefore, assessing
the effectiveness of different NPIs at reducing transmission is crit-
ical for determining whether or not they should be used.

Since NPIs such as school and workplace closures affect distinct
age groups within the population, when evaluating their effective-
ness it is important to account for age-dependent factors that
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influence transmission. Multiple studies have documented marked
heterogeneities in the patterns of contacts between individuals in
different age groups, with school-aged individuals tending to have
more contacts each day than older individuals (Prem et al., 2017;
Mossong et al., 2008; Danon et al., 2013; Leung et al., 2017;
Béraud et al., 2015; Ibuka et al., 2016; Read et al., 2014). Since close
contact between individuals is a key driver of transmission for res-
piratory pathogens such as influenza viruses and SARS-CoV-2,
these contact patterns influence transmission dynamics and conse-
quently the effects of interventions that target different age groups
(Mossong et al., 2008; Danon et al., 2013; Read et al., 2012;
Wallinga et al., 2006; Kucharski et al., 2014; Zhang et al., 2020).
Additionally, many diseases are characterised by significant age-
related variations in pathophysiology. For example, for SARS-
CoV-2, children may be less susceptible to infection than adults
(Zhang et al., 2020; Munro and Faust, 2020; Viner et al., 2021;
Goldstein et al., 2020; Davies et al., 2020b), and more likely to
experience asymptomatic or subclinical courses of infection
(Munro and Faust, 2020; Davies et al., 2020b; Ludvigsson, 2020;
Dong et al., 2020; Siebach et al., 2021; Mehta et al., 2020; Han
et al., 2021). Since the secondary attack rate (the proportion of
close contacts that lead to new infections) from asymptomatic or
subclinical hosts is lower than from hosts with clinical symptoms
(Pollock and Lancaster, 2020; Buitrago-Garcia et al., 2020;
Byambasuren et al., 2020; Koh et al., 2020; Madewell et al.,
2020; Qiu et al., 2021), children are likely to be less infectious on
average than older individuals who are at increased risk of devel-
oping symptoms (Pijls et al., 2021; Verity et al., 2020; Chen et al.,
2020).

Previous studies have used age-stratified deterministic trans-
mission models to investigate the effects of NPIs on COVID-19 epi-
demic peak incidence and timing. Prem et al. (2020) projected the
outbreak in Wuhan, China, over a one year period under different
control scenarios, and demonstrated that a period of intense con-
trol measures including school closures, a 90% reduction in the
workforce and a significant reduction in other social mixing could
delay the epidemic peak by several months. Zhang et al. (2020)
predicted that eliminating all school contacts during the outbreak
period would lead to a noticeable decrease in the peak incidence
and a later peak; however, they did not take differences between
symptomatic and asymptomatic cases into account explicitly. In
contrast, Davies et al. (2020b) used estimates of age-dependent
susceptibility and clinical fraction fitted to the observed age distri-
bution of cases in six countries to demonstrate that school closures
alone were unlikely to reduce SARS-CoV-2 transmission substan-
tially. Davies et al. (2020a) subsequently concluded that a combi-
nation of several strongly enforced NPIs would be necessary to
avoid COVID-19 cases exceeding available healthcare capacity in
the UK.

Rather than considering the entire epidemic curve, here we
focus on estimating the probability that cases introduced to a
new location trigger a local outbreak as opposed to fading out with
few cases. Localised clusters of transmission have been a feature of
the COVID-19 pandemic (Liu et al., 2020; Leclerc et al., 2020;
Rossman et al., 2020), and assessing the risk that such local out-
breaks occur requires a stochastic model in which the pathogen
can either invade or fade out. Stochastic branching process models
have been applied previously to assess outbreak risks for many
pathogens without considering different age groups explicitly
(Althaus et al., 2015; Thompson et al., 2019; Thompson, 2020;
Hellewell et al., 2020; Lovell-Read et al., 2021), and extended to
consider adults and children as two distinct groups (Nishiura
et al., 2011). However, the significant heterogeneities in contact
patterns and pathophysiology between individuals across the full
range of ages have never previously been considered in estimates
of local outbreak risks. Here, we develop an age-structured branch-
2

ing process model that can be used to estimate the probability of a
local outbreak occurring for index cases of different ages, and
demonstrate how the age-dependent risk profile changes when
susceptibility to infection and clinical fraction vary with age.

We use the model to investigate the effects on the local out-
break probability of NPIs that reduce the numbers of contacts
between individuals. Specifically, we use location-specific contact
data for the UK detailing the average numbers of daily contacts
occurring in school, in the workplace and elsewhere (Prem et al.,
2017) to model the impacts of school closures, workplace closures
and broader social distancing policies. We demonstrate that, for
SARS-CoV-2, contacts occurring outside schools and the workplace
are a key driver of sustained transmission. Thus, population-wide
social distancing policies that affect individuals of all ages lead to
a substantial reduction in the risk of local outbreaks. In contrast,
since school-aged individuals only make up around one quarter
of the UK population and tend to have large numbers of contacts
outside school, school closures are predicted to have only a limited
effect when applied as the sole NPI.

We then go on to consider the impacts of mixed strategies made
up of multiple NPIs, as well as additional NPIs that do not only
reduce numbers of contacts. Specifically, we show that rigorous
surveillance and effective isolation of infected hosts can reduce
the level of contact-reducing NPIs required to achieve substantial
reductions in the risk of local outbreaks. Although we use SARS-
CoV-2 as a case study, our approach can be applied more generally
to explore the effects of NPIs on the risk of outbreaks of any patho-
gen for which age-related heterogeneities play a significant role in
transmission dynamics.
2. Methods

2.1. Mathematical model

We considered a branching process model in which the popula-
tion was divided into 16 age groups, denoted G1;G2; � � � ;G16. The
first 15 groups represent individuals aged 0–74, divided into five-
year intervals (0–4, 5–9, 10–14 etc.). The final group represents
individuals aged 75 and over. The total number of individuals in
age group Gk is denoted Nk. Infected individuals in each age group
Gk are classified into compartments representing asymptomatic
(Ak), presymptomatic (Pk) or symptomatic (Sk) hosts, where an
individual in the Ak compartment does not develop symptoms at
any time during their course of infection.

An infected individual of any type in group Gk may generate
new infections in any age group. In our model, the rate at which
a single infected symptomatic individual in group Gk generates
infections in group Gj is given by

bkj ¼ BskxjCkj:

Here, sk represents the infectivity of individuals in group Gk, xj

represents the susceptibility to infection of individuals in group Gj,
Ckj represents the daily number of unique contacts a single individ-
ual in group Gk has with individuals in group Gj, and B is a scaling
factor that can be used to set the reproduction number of the
pathogen being considered (see Section 2.2). Since the initial phase
of potential local outbreaks are the focus of this study, we did not
account for depletion of susceptible hosts explicitly. The relative
transmission rates from presymptomatic and asymptomatic indi-
viduals compared to symptomatic individuals are given by the
scaled quantities gbkj and hbkj, respectively, where g and h were
chosen so that the proportions of transmissions generated by
presymptomatic and asymptomatic hosts were in line with litera-
ture estimates (Ferretti et al., 2020). The parameter nk represents
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the proportion of asymptomatic infections in group Gk, so that a
new infection in group Gk either increases Ak by one (with proba-
bility nk) or increases Pk by one (with probability 1� nk).

A presymptomatic individual in group Gk may go on to develop
symptoms (transition from Pk to Sk) or be detected and isolated (so
that Pk decreases by one). A symptomatic individual in group Gk

may be detected and isolated as a result of successful surveillance,
or may be removed due to self-isolation, recovery or death (so that
Sk decreases by one in either case). Similarly, an asymptomatic
individual in group Gk may be detected and isolated or recover
(so that Ak decreases by one). A schematic of the different possible
events in the model is shown in Fig. 1.

The parameter k represents the rate at which presymptomatic
individuals develop symptoms, so that the expected duration of
the presymptomatic infectious period is 1=k days in the absence
of surveillance of nonsymptomatic infected individuals. Similarly,
the expected duration of the asymptomatic infectious period in
the absence of surveillance is 1=m days. The parameter l represents
the rate at which symptomatic individuals are removed as a result
of self-isolation, recovery or death, so that the duration of time for
which they are able to infect others is 1=l days.

For each group Gk, the rate at which symptomatic individuals
are detected and isolated as a result of enhanced surveillance is
determined by the parameter qk. Analogously, the parameter rk

governs the rate at which presymptomatic and asymptomatic indi-
viduals in Gk are detected and isolated. We assumed that surveil-
lance measures targeting nonsymptomatic hosts are equally
effective for those who are presymptomatic and those who are
asymptomatic, and therefore used the same rate of isolation due
to surveillance for both of these groups.

2.2. Reproduction number

The effective reproduction number, R, represents the expected
number of secondary infections generated by a single infected indi-
vidual during their entire course of infection, accounting for inter-
ventions that are in place. Here, we take a heuristic approach to
derive the following expression for R:

R ¼
X16
k¼1

Nk

N

X16
l¼1

nkhbkl

mþ rk
þ 1� nkð Þ gbkl

kþ rk
þ k
kþ rk

bkl

lþ qk

� �� �
ð1Þ
Fig. 1. Schematic of the branching process model used in our analyses, showing the diffe
of the model are described in the text and in Tables 1–3.
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where N ¼ N1 þ � � � þ N16 is the total population size. To obtain this
expression, we first consider the expected number of secondary
infections an infected individual in age group Gk will generate in
age group Gl. If an individual in age group Gk experiences a fully
asymptomatic course of infection, which occurs with probability
nk, they will generate new infections in age group Gl at rate hbkl

and recover or be isolated at rate mþ rk. Therefore, the total number
of infections they are expected to cause in age group Gl is
hbkl= mþ rkð Þ. If instead the individual in age group Gk experiences
a symptomatic course of infection, which occurs with probability
1� nk, whilst presymptomatic they will generate new infections
in age group Gl at rate gbkl and be isolated or develop symptoms
at rate kþ rk. Thus, the total number of infections they are expected
to cause in age group Gl whilst presymptomatic is gbkl= kþ rkð Þ. If
they go on to develop symptoms before being isolated, which
occurs with probability k= kþ rkð Þ, applying similar reasoning they
are expected to cause bkl= lþ qkð Þ new infections in age group Gl

whilst symptomatic. Combining these possibilities leads to the term
in square brackets in expression (1), which is then summed over all
possible age groups Gl of the infectee. Finally, to obtain the full
expression (1) we take a weighted average across all possible age
groups Gk of the infector, where the weights Nk=N represent the
proportions of the population belonging to each age group. This cor-
responds to the assumption that the initial infected host is more
likely to belong to an age group containing more individuals than
an age group with fewer individuals.

In the absence of interventions, i.e. when rk ¼ qk ¼ 0 (repre-
senting no enhanced isolation as a result of surveillance) and bkl

is calculated using contact patterns that are characteristic of nor-
mal behaviour, the effective reproduction number, R, is equal to
the basic reproduction number, R0.

2.3. Model parameterisation

The numbers of individuals in each age group (values of Nk)
were chosen according to United Nations age demographic data
for the UK (United Nations, Department of Economic and Social
Affairs, Population Division, 2019) (Fig. 2A). The daily numbers of
contacts between individuals in each age group (values of Ckj) were
set according to the 16x16 ‘contact matrix’ for the UK, in which the
ðk; jÞth entry represents the expected daily number of unique
rent possible events in the model and the rates at which they occur. The parameters



Fig. 2. Age demographic and age-structured contact patterns for the United Kingdom. A. United Nations age demographic data for the UK in 2020, split into five-year age
groups (where the final age group contains all ages 75+) (United Nations, Department of Economic and Social Affairs, Population Division, 2019). B. Heat map of UK ‘all
contacts’ matrix, representing the expected daily number of unique contacts that an individual in each age group Gk has with individuals in each age group Gj (Prem et al.,
2017): C. The analogous figure to B, but showing only the subset of ‘all’ contacts that occur in schools (‘school’ contacts). D. The analogous figure to C, but showing only
‘workplace’ contacts. E. The analogous figure to C, but showing only ‘home’ contacts. F. The analogous figure to C, but showing only ‘other’ contacts (i.e. all contacts outside
schools, workplaces or homes).
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contacts an individual in age group Gk has with individuals in age
group Gj (Prem et al., 2017). In addition to matrices representing
‘all’ contacts (Fig. 2B), we also considered matrices detailing a
breakdown into ‘school’, ‘work’, ‘home’ and ‘other’ contacts
(Fig. 2C–F), allowing us to investigate the effects of control inter-
ventions that reduce contacts in each of these settings.

Since we considered SARS-CoV-2 as a case study, we used stud-
ies conducted during the COVID-19 pandemic to inform the epi-
demiological parameters of our model. Despite previous research
assessing the relationships between age and factors such as sus-
ceptibility to SARS-CoV-2 infection or the propensity to develop
symptoms, there is some variation in estimated parameters
between different studies. To test the robustness of our results to
4

this uncertainty, we conducted our analyses under three different
scenarios (A, B and C). In scenario A, we assumed that susceptibility
to infection (values of xk) and the proportion of hosts who experi-
ence a fully asymptomatic course of infection (values of nk) are
independent of age. In scenario B, susceptibility was assumed to
vary with age but the proportion of asymptomatic infections is
independent of age. In scenario C, we allowed both susceptibility
and the asymptomatic proportion to vary with age. The values
used for the parameters xk and nk in each of these three scenarios
are shown in Table 1 (see also Davies et al., 2020b).

In all scenarios considered, the inherent infectivity was not
assumed to be age-dependent (i.e. sk ¼ 1 for all values of k). In
other words, the expected infectiousness of infected hosts in differ-



Table 1
Baseline values for the age-dependent relative susceptibility to infection (xk) and the proportion of infections that are asymptomatic (nk) for each of the scenarios A, B and C
(Davies et al., 2020b).

Age group (Gk) Relative susceptibility (xk) Asymptomatic proportion (nk)

Scenario A Scenarios B & C Scenarios A & B Scenario C

G1;G2 (0–9)

1.0

0:4

0.584
(weighted average of age-dependent
values of nk in scenario C)

0:71
G3;G4 (10–19) 0:38 0:79
G5;G6 (20–29) 0:79 0:73
G7;G8 (30–39) 0:86 0:67
G9;G10 (40–49) 0:8 0:6
G11;G12 (50–59) 0:82 0:51
G13;G14 (60–69) 0:88 0:37
G15;G16 (70 + ) 0:74 0:31

Table 2
Baseline values of scenario-independent parameters (assumed not to vary between scenarios A, B and C). We also considered strategies involving enhanced surveillance
(qk;rk > 0Þ – see Fig. 6.

Parameter Meaning Baseline value Justification

R0 Expected number of secondary infections generated by a
single infectious host in the absence of interventions

R0 ¼ 3 Within estimated range for original SARS-CoV-2 virus (Lai et al., 2020;
Liu et al., 2020; Zhai et al., 2020; Zhao et al., 2020)

k Rate at which presymptomatic hosts develop symptoms k ¼ 1=2 days�1 (Wei et al., 2020)

l Rate at which symptomatic hosts are removed due to self-
isolation, recovery or death

l ¼ 1=8 days�1 (Arons et al., 2020; Bullard et al., 2020; Wölfel et al., 2020)

m Rate at which asymptomatic hosts are removed due to
recovery or death

m ¼ 1=10 days�1 Chosen so that, in the absence of interventions, the expected duration

of infection is identical for all infected hosts 1
m ¼ 1

k þ 1
l

� �
sk (Relative) infectivity parameter sk ¼ 1 for

k ¼ 1; � � � ;16
Assumed

qk Isolation rate due to surveillance of symptomatic individuals qk ¼ 0 for
k ¼ 1; � � � ;16

N/A

rk Isolation rate due to surveillance of nonsymptomatic
individuals

rk ¼ 0 for
k ¼ 1; � � � ;16

N/A
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ent age groups was governed solely by the proportion of asymp-
tomatic infections in that age group. We chose the scaling factors
g and h for the relative transmission rates from presymptomatic
and asymptomatic individuals compared to symptomatic individu-
als so that the proportions of infections arising from each of these
groups were in line with literature estimates (see Table 3 and
Ferretti et al., 2020).

In the absence of enhanced isolation, we set the expected dura-
tion of the presymptomatic infectious period and the time for
which symptomatic individuals are able to infect others to be
1=k ¼ 2 days and 1=l ¼ 8 days; respectively (Wei et al., 2020;
Arons et al., 2020; Bullard et al., 2020; Wölfel et al., 2020). The
asymptomatic infectious period was then chosen so that all
infected individuals are expected to be infectious for the same per-
iod (i.e. 1=m ¼ 10 days). In our initial analysis, we set the isolation
rates qk and rk equal to 0 for all k; later, we considered the effects
of increasing these rates.

Initially, we fixed R0 ¼ 3 (in line with initial estimates of SARS-
CoV-2 transmissibility (Lai et al., 2020; Liu et al., 2020; Zhai et al.,
2020; Zhao et al., 2020), before the emergence of more transmissi-
ble variants) and used expression (1) to determine the appropriate
Table 3
Baseline values used for the scaling parameters B;g and h for each of the scenarios A, B a

Parameter Meaning Value

Scenario
A

Scenario
B

B Transmission rate scaling factor 0.0386 0.0559

g Relative transmission rate of presymptomatic
hosts compared to symptomatic hosts

4.83 4.83

h Relative transmission rate of asymptomatic
hosts compared to symptomatic hosts

0.149 0.149

5

corresponding value of the scaling factor B. Later, when consider-
ing the impact of NPIs on the probability of a local outbreak, we
retained this value of B and used expression (1) to determine
how the reproduction number changes as a result of the control
implemented.

2.4. Probability of a local outbreak

The probability that an infected individual in a particular age
group initiates a local outbreak when they are introduced into
the population was calculated using the branching process model.
One possible approach for approximating the age-dependent local
outbreak probability using a branching process model is to run a
large number of stochastic simulations of the model starting from
a single infected individual in a particular age group, and record
the proportion of simulations in which the pathogen does not fade
out after only a small number of infections (Thompson et al., 2020).
This would then need to be repeated for index cases of different
ages. Here, we instead take an analytic approach, and derive a non-
linear system of simultaneous equations that determine the age-
dependent outbreak probabilities, as described below. The local
nd C.

Justification

Scenario
C

0.0607 Chosen so that R0 ¼ 3
(Lai et al., 2020; Liu et al., 2020; Zhai et al., 2020; Zhao et al., 2020)

4.83 Chosen so that the proportion of all infections arising from
presymptomatic hosts is 0:489 (Ferretti et al., 2020)

0.130 Chosen so that the proportion of all infections arising from entirely
asymptomatic hosts is 0:106 (Ferretti et al., 2020)
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outbreak probabilities are then obtained by solving these equa-
tions numerically, and are analogous to the probabilities that
would be derived from the simulation approach in the limit of infi-
nitely many simulations. The benefit of our analytic approach is
that it does not require a large number of stochastic simulations
to be run.

The probability of a local outbreak not occurring (i.e. pathogen
fadeout occurs), starting from a single symptomatic (or presymp-
tomatic, asymptomatic respectively) infectious individual in age
group Gk, was denoted by xk (yk, zk). Beginning with a single symp-
tomatic individual in Gk, the possibilities for the next event are as
follows:

1. The infected individual in Gk infects a susceptible individual in
Gj, so that either Aj increases by one (with probability nj) or Pj

increases by one (with probability ð1� njÞ). This occurs with
probability

akj ¼
bkj

lþ qk þ
P16

l¼1bkl

:

2. The infected individual in Gk recovers, dies or is isolated before
infecting anyone else, so that Sk decreases to zero (and there are
no infected individuals left in the population). This occurs with
probability

ck ¼
lþ qk

lþ qk þ
P16

l¼1bkl

:

If there are no infectious hosts present in the population, then a
local outbreak will not occur. Therefore, assuming that chains of
transmission arising from infectious individuals are independent,
the probability that no local outbreak occurs beginning from a sin-
gle symptomatic individual in Gk is

xk ¼ xk
X16
j¼1

akj njzj þ 1� nj
� 	

yj
� 	" #

þ ck: ð2Þ

Similarly, beginning instead with a single presymptomatic indi-
vidual in Gk, the possibilities for the next event are:

1. The presymptomatic infected individual in Gk infects a suscep-
tible individual in Gj, so that (as before) either Aj increases by
one (with probability nj) or Pj increases by one (with probability
ð1� njÞ). This occurs with probability

a
�
kj ¼

gbkj

kþ rk þ g
P16

l¼1bkl

:

2. The infected individual in Gk develops symptoms (transitions
from Pk to Sk). This occurs with probability

dk ¼ k

kþ rk þ g
P16

l¼1bkl

:

3. The infected individual in Gk is isolated before infecting anyone
else, so that Sk decreases by one. This occurs with probability

/k ¼
rk

kþ rk þ g
P16

l¼1bkl

:

Therefore, the probability that no local outbreak occurs begin-
ning from a single presymptomatic individual in Gk is

yk ¼ yk
X16
j¼1

a
�
kj njzj þ 1� nj

� 	
yj

� 	" #
þ dkxk þ /k: ð3Þ
6

Similarly, the probability zk that a local outbreak does not occur
starting from a single asymptomatic individual in Gk satisfies the
equation

zk ¼ zk
X16
j¼1

âkj njzj þ 1� nj
� 	

yj
� 	" #

þ �k; ð4Þ

where

âkj ¼
hbkj

mþ rk þ h
P16

l¼1bkl

and �k ¼ mþ rk

mþ rk þ h
P16

l¼1bkl

:

The system of simultaneous Eqs. (2)–(4) can be solved numeri-
cally to obtain xk; yk and zk (here, we did this using the MATLAB
nonlinear system solver ‘fsolve’). Specifically, we take the minimal
non-negative solution, as is standard when calculating extinction
probabilities using branching process models (Lovell-Read et al.,
2021; Norris, 1997). Then, for each k, the probability of a local out-
break occurring beginning from a single symptomatic (or presymp-
tomatic, asymptomatic respectively) individual in group Gk is given
by 1� xk (1� yk;1� zk).

Throughout, we consider the probability pk of a local outbreak
occurring beginning from a single nonsymptomatic individual in
group Gk arriving in the population at the beginning of their
infection:

pk ¼ nk 1� zkð Þ þ 1� nkð Þ 1� ykð Þ:
The average local outbreak probability, P, which is defined as

the probability of a local outbreak when the index case is chosen
randomly from the population, is also considered. The value of P
is therefore a weighted average of the pk values, where the weights
correspond to the proportion of the population represented by
each group:

P ¼ 1
N

X16
k¼1

Nkpk:

This reflects an assumption that the index case is more likely to
come from an age group with more individuals than an age group
with fewer individuals.

All computing code used to implement the above methods was
written in MATLAB version R2019a, and is available at https://
github.com/francescalovellread/age-dependent-outbreak-risks.

3. Results

3.1. Effect of the age of the index case on the risk of a local outbreak

We first considered the probability that a single infected indi-
vidual in a particular age group Gk initiates a local outbreak when
introduced into a new host population. This quantity was calcu-
lated for each of the three scenarios A, B and C (Fig. 3).

In scenario A, the variation in the local outbreak risk for intro-
duced cases of different ages is driven solely by the numbers of
contacts between individuals. As a result, due to their higher num-
bers of daily contacts, school- and working-age individuals are
more likely to trigger a local outbreak than children under five or
adults over 60, with index cases aged 15–19 posing the highest risk
(Fig. 3A). These findings do not change significantly when suscep-
tibility is allowed to vary with age in scenario B (Fig. 3B). However,
in scenario C, assuming that the clinical fraction also varies
between age groups alters the age-dependent risk profile substan-
tially. This is because asymptomatic individuals are assumed to be
less infectious than symptomatic individuals, and therefore an
index case in an age group with a high proportion of asymptomatic
infections is less likely to initiate a local outbreak. In this scenario,
index cases aged 40 or over had a disproportionately high probabil-

https://github.com/francescalovellread/age-dependent-outbreak-risks
https://github.com/francescalovellread/age-dependent-outbreak-risks


Fig. 3. The probability of a local outbreak depends on the age of the index case. A.
The probability that a single infected individual in any given age group triggers a
local outbreak (grey bars) for scenario A, in which susceptibility and clinical fraction
are assumed constant across all age groups. The weighted average local outbreak
probability P is shown by the black horizontal line. B. The analogous figure to A but
for scenario B, in which clinical fraction is assumed constant across all age groups
but susceptibility varies with age (Table 1). C. The analogous figure to A but for
scenario C, in which both susceptibility and clinical fraction vary with age (Table 1).
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ity of generating a local outbreak, with individuals aged 70–74 pre-
senting the highest risk (Fig. 3C). These individuals are more likely
to develop symptoms than younger individuals (Table 1), leading
to a higher expected infectiousness. In contrast, individuals under
the age of 40 had a below average probability of generating a local
7

outbreak, with individuals aged 10–14 presenting the lowest risk.
Noticeably, individuals aged 5–19 presented relatively low risks,
despite the high numbers of contacts occurring among these age
groups (Fig. 2B). In this scenario, the large number of contacts
was offset by the fact that individuals in these age groups are more
likely to be asymptomatic and consequently less infectious than
older individuals (Table 1). Therefore, an index case in one of these
age groups is likely to lead to fewer secondary transmissions. Fur-
thermore, the contact patterns between individuals in these age
groups are highly assortative with respect to age (Fig. 2B). There-
fore, in addition to the index case being less infectious, a high pro-
portion of the contacts they make are with individuals who are also
likely to be less infectious, as well as being less susceptible to infec-
tion in the first place.

We performed our subsequent analyses for each of the three
scenarios A, B and C, with qualitatively similar results. The figures
shown in the main text are for scenario C, since we deem this sce-
nario to be the most realistic for SARS-CoV-2 transmission, but the
analogous results for scenarios A and B are presented in Supple-
mentary Fig. S1-6.

3.2. Effect of the target age group on NPI effectiveness

We next considered the effects of NPIs that reduce the number
of contacts between individuals on the probability that an intro-
duced case will lead to a local outbreak. To approximate the rela-
tive effects of school closures, workplace closures and
population-wide social distancing policies, we calculated the age-
dependent risk profiles when each of these types of contact were
excluded from the overall contact matrix.

First, we removed all ‘school’ contacts from the total contact
matrix (Fig. 4A). For scenario C, removing ‘school’ contacts led
to a 4:2% reduction in the average probability of a local outbreak
(from 0:449 to 0:430). This small reduction is unsurprising for
scenario C, since in that scenario school-aged infected individuals
are assumed to be more likely to be asymptomatic than other
infected individuals, and therefore their expected infectiousness
is lower. However, even for scenarios A and B, in which school-
aged individuals present the greatest risk of triggering a local out-
break, the effectiveness of removing ‘school’ contacts alone at
reducing the local outbreak probability was limited (reductions
of 7:2% and 4:75% respectively; see Supplementary Figs S1A,
S4A). In each scenario, the reduction in risk was predominantly
for school-aged index cases, with the risk from index cases of
other ages only slightly reduced. Second, we considered the
effects of removing ‘work’ contacts from the total contact matrix
(Fig. 4B). This led to a more substantial 25:4% reduction in the
average probability of a local outbreak for scenario C (with corre-
sponding reductions of 19:0% and 24:0% for scenarios A and B
respectively; see Supplementary Figs S1B, S4B). As well as reduc-
ing the risk of a local outbreak from an index case of working age,
removing ‘work’ contacts also reduced the probability of a local
outbreak occurring starting from a school-aged individual. This
is because closing workplaces helps to block chains of transmis-
sion that begin with an infected child. For example, a transmis-
sion chain involving a child transmitting to an adult at home,
followed by subsequent spread around the adult’s workplace, will
be less likely to occur. Third, we investigated the effect of remov-
ing all ‘other’ contacts, reflecting perfect social distancing being
observed outside of the home, school or workplace (Fig. 4C). This
had the most significant effect of the three types of contact-
reducing intervention considered, reducing the probability of a
local outbreak by 41:7% for scenario C (and 30:7% or 33:2% for
scenarios A and B, respectively).

In the three cases described above, we considered complete
reductions in ‘school’, ‘work’ and ‘other’ contacts, respectively.



Fig. 4. The effects of interventions that reduce contacts between individuals on the probability of a local outbreak. A. The effect of removing all ‘school’ contacts on the
probability of a local outbreak. Pale grey bars and black dash-dotted line represent the local outbreak probabilities without any contacts removed (as in Fig. 3C). Red bars and
the solid red line represent the local outbreak probabilities and their weighted average when ‘school’ contacts are removed. B. The analogous figure to A, but with all ‘work’
contacts removed. C. The analogous figure to A, but with all ‘other’ contacts removed. D. Partial reductions in ‘school’, ‘work’ and ‘other’ contacts, and the resulting reductions
in the average local outbreak probability (solid red, dashed blue and dotted green lines respectively). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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In practice, such complete elimination of contacts is unlikely. We
therefore also considered partial reductions in ‘school’, ‘work’ and
‘other’ contacts, and compared the resulting reductions in the
local outbreak probability (Fig. 4D). For any given percentage
reduction in contacts, reducing ‘other’ contacts always led to
the largest reduction in the local outbreak probability (see also
Supplementary Figs S1D, S4D). This suggests that reducing social
contacts outside schools and workplaces can be an important
component of strategies to reduce the risk of local outbreaks of
SARS-CoV-2. However, this alone is not enough to eliminate the
risk of local outbreaks entirely. For greater risk reductions using
contact-reducing NPIs, a mixed approach involving combinations
of reductions in ‘school’, ‘workplace’ and ‘other’ contacts is
needed.

3.3. Mixed strategies for reducing the local outbreak risk

Next, we considered the effects of combining reductions in
‘school’, ‘work’ and ‘other’ contacts on the local outbreak probabil-
ity (Fig. 5; analogous results for scenarios A and B are shown in
Supplementary Figs S2 and S5). We allowed reductions in ‘school’
and ‘work’ contacts to vary between 0% and 100% whilst ‘other’
contacts were reduced by 25%, 50% or 75% (Fig. 5A,B,C,
respectively).
8

Since NPIs have negative economic, social and non-disease
health consequences, policy makers may choose to implement
public health measures in which the risk of local outbreaks is not
eliminated completely. These results provide contact reduction
targets for mixed strategies in which the local outbreak probability
is reduced to a pre-specified ‘acceptable’ level. For example, to
reduce the local outbreak probability to 0:25, ‘other’ contacts could
be reduced by 25% from the baseline level, and ‘school’ and ‘home’
contacts reduced as indicated by the red dotted contour marked
00:250 in Fig. 5A. Alternatively, to achieve the same local outbreak
risk, ‘other’ contacts can instead be reduced by 50% or by 75%with
the degree of ‘school’ and ‘work’ reductions chosen according to
the contours marked 00:250 in Fig. 5B,C respectively.

If a policy maker wishes to eliminate the local outbreak risk
entirely using contact-reducing NPIs, for the model parameterisa-
tion considered very significant reductions in multiple types of
contacts are needed in combination. For example, even if all
‘school’ and ‘work’ contacts are removed, ‘other’ contacts must
be reduced by 66% for the overall average local outbreak probabil-
ity to fall below 0:01 (Fig. 5D). Since such substantial reductions in
multiple types of contacts are unlikely to be possible, this suggests
that contact-reducing NPIs must be combined with other interven-
tions, such as effective surveillance and isolation strategies, to
eliminate local outbreaks.



Fig. 5. The effects of intervention strategies that combine reductions in ‘school’, ‘work’ and ‘other’ contacts. A. The effect of reducing ‘school’ and ‘work’ contacts on the
weighted average probability of a local outbreak (P), when ‘other’ contacts are reduced by 25% across all age groups. Red dotted lines indicate contours along which the local
outbreak probability is constant. B. The analogous figure to A, but with a 50% reduction in ‘other’ contacts. C. The analogous figure to A, but with a 75% reduction in ‘other’
contacts. D. The effect of reducing ‘other’ contacts on the average local outbreak probability when ‘school’ and ‘work’ contacts are not reduced at all (dotted line) and when
‘school’ and ‘work’ contacts are reduced by 100% (solid line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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3.4. Effect of surveillance on the contact-reducing NPIs required for
local outbreak control

We considered whether or not low local outbreak probabilities
can be achieved using limited contact-reducing NPIs in combina-
tion with other interventions. Specifically, the effects of surveil-
lance and isolation of infected individuals (through e.g. contact
tracing) as well as reducing contacts in schools, workplaces and
other locations, were assessed. While results are shown for sce-
nario C in Fig. 6, analogous results for scenarios A and B are pre-
sented in Supplementary Figs S3 and S6.

Initially, we considered the effect of increasing the rate at
which symptomatic and/or nonsymptomatic infected individu-
als are detected and isolated as a result of surveillance, in
the absence of contact-reducing NPIs (i.e. with no reduction
in the number of contacts between individuals compared to
the baseline case in Fig. 2B) (Fig. 6A,B). For symptomatic
hosts, this represents an enhanced rate of isolation compared
to the baseline rate of self-isolation already present in the
model. Isolation of nonsymptomatic hosts was more effective
at reducing the local outbreak probability than isolation of
symptomatic hosts (Fig. 6A,B), although of course this is more
challenging to achieve (Lovell-Read et al., 2021). However, if
fast isolation of nonsymptomatic hosts could be achieved
through efficient large-scale testing (potentially in combination
9

with contact tracing (Hart et al., 2021)), the probability of
local outbreaks could be reduced substantially through this
measure alone.

We then demonstrated the effects of combining contact-
reducing NPIs with enhanced isolation of infected hosts due to
infection surveillance. First, we increased the enhanced isolation

rate of symptomatic individuals to qk ¼ 1=2 days�1. In the absence
of other interventions, this reduced the local outbreak probability
by 22:0%(Fig. 6C). With this level of surveillance, the local outbreak
risk could be reduced below 0.01 with a reduction in ‘work’ and
‘other’ contacts of around 73% each, for example.

Finally, keeping the enhanced isolation rate of symptomatic

individuals equal to qk ¼ 1=2 days�1, we increased the isolation

rate of nonsymptomatic individuals to rk ¼ 1=7 days�1. In this
case, the local outbreak probability without contact-reducing NPIs
fell by 59:4% compared to a situation without enhanced surveil-
lance (Fig. 6E), and the reductions in ‘work’ and ‘other’ contacts
needed to bring the local outbreak probability below 0:01 were sig-
nificantly smaller (Fig. 6F). For example, if ‘work’ contacts can be
reduced by 50%, then ‘other’ contacts only need to be reduced by
43%. This indicates that effective surveillance of both symptomatic
and nonsymptomatic individuals can substantially lower the
extent of contact-reducing NPIs that are required to achieve sub-
stantial reductions in local outbreak risks.



Fig. 6. Surveillance as part of a mixed strategy to reduce the local outbreak probability. A. The effect of increasing the isolation rate of symptomatic (red line) or
nonsymptomatic infected hosts (blue line) on the average probability of a local outbreak (P), in the absence of contact-reducing NPIs. The isolation rates qk and rk are varied
in turn between 0 days�1 and 1 days�1. B. The effect of simultaneously varying the isolation rate of symptomatic and nonsymptomatic hosts on the average probability of a
local outbreak (P), again without contact-reducing NPIs. C. The age-dependent probability of a local outbreak when the isolation rate of symptomatic individuals is
qk ¼ 1=2 days�1, without contact-reducing NPIs or surveillance of nonsymptomatic infected individuals (purple bars and solid line). Pale grey bars and black dash-dotted
line represent the original local outbreak probabilities without any contact-reducing NPIs or enhanced surveillance (as in Fig. 3C). D. The effect of reducing ‘work’ and ‘other’
contacts when the isolation rate of symptomatic infected individuals is qk ¼ 1=2 days�1, as in C, without surveillance of nonsymptomatic infected individuals. E,F. The
analogous figures to C,D, with enhanced surveillance of both symptomatic and nonsymptomatic infected hosts (qk ¼ 1=2 days�1 and rk ¼ 1=7 days�1). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

During the COVID-19 pandemic, public health measures that
reduce the numbers of contacts between individuals have been
implemented in countries globally. These measures include school
closures, workplace closures and population-wide social distancing
policies. Contact-reducing NPIs have been shown to be effective at
reducing SARS-CoV-2 transmission, and have also been used previ-
10
ously during influenza pandemics (Hatchett et al., 2007; Huang
et al., 2021; Flaxman et al., 2020; Borse et al., 2011). However,
long-term implementation of these measures has negative social,
psychological and economic consequences (Berkman, 2008;
Donohue and Miller, 2020; Silverman et al., 2020; Sadique et al.,
2008; Brooks et al., 2020; Loades et al., 2020). It is therefore impor-
tant to assess the effectiveness of different contact-reducing NPIs
at lowering transmission and preventing local outbreaks, in order
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to design effective targeted control strategies that avoid unneces-
sarily strict measures.

Here, we constructed a branching process model to estimate the
risk of local outbreaks under different contact-reducing NPIs and
different levels of surveillance for symptomatic and nonsymp-
tomatic infected individuals. Unlike previous approaches for esti-
mating outbreak risks using branching processes (Althaus et al.,
2015; Thompson et al., 2019; Thompson, 2020; Hellewell et al.,
2020; Lovell-Read et al., 2021; Nishiura et al., 2011), we considered
the effects of age-related heterogeneities affecting transmission for
infected individuals of a wide range of ages, including age-
dependent variations in social mixing patterns, susceptibility to
infection and clinical fraction. Using SARS-CoV-2 as a case study,
we demonstrated that the risk that an introduced case initiates a
local outbreak depends on these age-related factors and on the
age of the introduced case (Fig. 3), as well as the age-structure of
the local population.

We used our model to assess the effects of reducing the num-
bers of contacts that occur in school, in the workplace and else-
where. Of the three contact-reducing NPIs considered, removing
‘school’ contacts had the smallest effect on the probability of
observing a local outbreak, even when age-dependent variations
in susceptibility and clinical fraction were ignored (Fig. 4A,D, Sup-
plementary Figs S1A,D and S4A,D). This can be attributed to the
fact that school closures predominantly reduce contacts between
individuals aged 5–19, who only account for approximately 23%
of the total population (United Nations, Department of Economic
and Social Affairs, Population Division, 2019). Additionally, these
individuals tend to have large numbers of contacts outside of the
school environment (Fig. 2E,F). Therefore, compared to other mea-
sures, interrupting within-school transmission may have only a
limited effect on transmission in the wider population, particularly
when school-aged individuals are less susceptible to infection and
more likely to experience subclinical courses of infection. In con-
trast, reducing contacts that occur outside schools or workplaces
was the most effective intervention, significantly lowering the
local outbreak risk across all age groups, and for those aged over
60 in particular (Fig. 4C,D, and Supplementary Figs S4C,D). This
could explain the success of social distancing strategies worldwide
for reducing observed COVID-19 cases and deaths.

Mixed strategies combining reductions in ‘school’, ‘work’ and
‘other’ contacts led to greater reductions in the local outbreak
probability than individual interventions (Fig. 5A–C), but very large
reductions in all three types of contact were required to eliminate
the risk of local outbreaks entirely (Fig. 5D). However, implement-
ing effective surveillance to identify infected hosts (followed by
isolation) led to substantial reductions in the risk of local outbreaks
even in the absence of other control measures (Fig. 6A,B). In the
scenarios considered here, with an efficient surveillance strategy
in place, significantly smaller reductions in ‘work’ and ‘other’ con-
tacts were needed to render the local outbreak probability negligi-
ble, even when ‘school’ contacts were not reduced at all (Fig. 6C–F).
This supports the use of surveillance that targets both symp-
tomatic and nonsymptomatic individuals, such as contact tracing
and isolation strategies or population-wide diagnostic testing, to
help prevent local outbreaks (Lovell-Read et al., 2021).

Although here we used SARS-CoV-2 as a case study, our model
provides a framework for estimating the risk of local outbreaks in
age-structured populations that can be adapted for other patho-
gens, provided sufficient data are available to parametrise the
model appropriately. The effects of age-structure on local outbreak
risks may vary for pathogens with different epidemiological char-
acteristics. For influenza-A viruses, for example, susceptibility to
infection tends to decrease with age, whilst the risk of an infection
leading to severe symptoms is greater both for the elderly and for
the very young (Davies et al., 2020b; Greer et al., 2010; Clohisey
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and Baillie, 2019). This is in contrast to SARS-CoV-2, for which chil-
dren are more likely to experience subclinical courses of infection.
In this study, we used age demographic and contact data for the
UK, but equivalent data for other countries are available and can
easily be substituted into our model to estimate outbreak risks
elsewhere (Prem et al., 2017; United Nations, Department of
Economic and Social Affairs, Population Division., 2019).

One caveat of the results for SARS-CoV-2 presented here is that,
although the epidemiological parameters of our model were cho-
sen to be consistent with reported literature estimates, there is
considerable variation between studies. In particular, the precise
age-dependent variation in susceptibility and clinical fraction
remains unclear, and the relative infectiousness of asymptomatic,
presymptomatic and symptomatic hosts has not been determined
exactly. Furthermore, the inherent transmissibility of SARS-CoV-2
is now higher than in the initial stage of the pandemic, due to
the appearance of novel variants. To explore ongoing local out-
break risks due to SARS-CoV-2, it would be necessary to update
the model to reflect the increased transmissibility of the Delta vari-
ant (Campbell et al., 2021). Due to the uncertainty in model param-
eter values, we conducted sensitivity analyses to explore the
effects of varying the parameters of the model on our results (Sup-
plementary Figs S1-12). In each case that we considered, our main
conclusions were unchanged: the probability that an introduced
case initiates a local outbreak depends on age-dependent factors
affecting pathogen transmission and control, with widespread
interventions and combinations of NPIs reducing the risk of local
outbreaks most significantly.

An important limitation of our approach to modelling contact-
reducing NPIs is that we made a standard assumption in our main
analyses that ‘school’, ‘work’ and ‘other’ contacts are independent
(Zhang et al., 2020; Davies et al., 2020b; Davies et al., 2020a). In
other words, reducing the numbers of contacts in one location
did not affect the numbers of contacts occurring in another. In real-
ity, this is unlikely to be the case. For example, closing schools also
affects workplace contacts, as adults may then work from home in
order to fulfil childcare requirements. Additionally, the contact
data that we used represent the number of unique contacts per
day and do not reflect the numbers of repeated contacts with the
same person, which affect the risk of transmission between indi-
viduals. These assumptions could in principle be removed, if rele-
vant data become available – for example, data describing the
effects of school closures on numbers of contacts in other locations.
To demonstrate how changes in multiple types of contact due to
NPIs could be implemented in the model, we conducted a supple-
mentary analysis in which we investigated the effects of removing
all ‘school’ contacts and allowing for concurrent changes in ‘work’,
‘home’ and ‘other’ contacts (Supplementary Figs S13-14). These
results support our conclusion that school closures are unlikely
to have a substantial impact on SARS-CoV-2 transmission when
applied as the sole NPI. The benefit of school closures could even
potentially be outweighed by the possible secondary effects on
other types of contacts. An improved understanding of how NPIs
affect different types of contact is important for more accurate
assessments of interventions in future.

Despite the simplifications made, our model provides a useful
framework for estimating the risk of local outbreaks and the effects
of NPIs. Different measures can be considered in combination in
the model to develop strategies for lowering local outbreak risks.
Our results emphasise the importance of quantifying age-
dependent factors that affect transmission dynamics, such as sus-
ceptibility to infection and the proportion of hosts who develop
clinical symptoms, for individuals of different ages. As we have
shown, it is crucial to take age-dependent factors into account
when assessing local outbreak risks and designing public health
measures.
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