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Abstract

Almost all life on earth exhibit circadian rhythms of behaviours that are tied to
the natural day and night cycle. In mammals, the suprachiasmatic nucleus (SCN) is
responsible for generating and communicating these rhythms to peripheral tissues. The
neurons of the SCN function as noisy molecular clocks, expressing circadian genes in an
oscillatory fashion over the course of 24 hours through a transcriptional/translational
feedback loop (TTFL). The cells synchronise to form a robust clock, capable of exact
timekeeping and entrainment to external stimuli, e.g. light, via intercellular signalling.
This thesis investigates spatio-temporal inference for stochastic models of the TTFL,
motivated by the availability of high-resolution bioimaging data of core circadian genes
Period and Cryptochrome from mouse SCN.

We begin by introducing the mammalian clock and SCN bioimaging data. We
then cover various methodologies for mechanistic and stochastic modelling of gene tran-
scription, including chemical reaction networks, the chemical Langevin equation, and
Markov chain Monte Carlo methods for Bayesian inference. We derive stability criteria
for a model of the single-cell TTFL that describes transcriptional inhibition through a
distributed delay. The model is fitted to imaging data of the gene Cry1, which allows
us to infer the dynamics of circadian gene transcription and molecular population sizes.

A Bayesian hierarchical framework is developed to model spatial dependencies
observed in the parameter estimates of the single-cell model. The methodology is applied
to bioimaging data of the Cry1-gene and the analysis tools are developed further by
deriving a Bayesian period estimator and an inhibition profile which allow us to study
the spatial distribution of key properties of the TTFL across SCN tissue.

Finally, the methodology is extended to include an additional molecular species
that captures transcriptional activation. This extension confers a mechanistic spatial
interpretation to the model by describing the effect of intercellular signalling. By eliciting
informative prior distributions for parameters of the circadian Per2 feedback loop, we
are able to fit the model to simultaneous recordings of Per2 and calcium. The model fit
represents a first step in obtaining a complete model of both single-cell and organ-wide
dynamics with empirically estimated parameters.
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Chapter 1

Introduction

The work presented in this thesis revolves around statistical analyses of circadian bioimag-

ing data. Biologists have developed methods to observe and record the gene-regulatory

clockwork of circadian rhythms on a microscopic scale and the resulting data are often

analysed using standard spectral analysis or other phenomenological models. While such

tools may already be implemented in scientific software and require little computational

power and customisation, they typically disregard potentially interesting aspects of the

rich data, such as intrinsic stochasticity due to molecular noise and spatial correlations

across imaged tissues. Throughout the thesis we develop and apply statistical methodol-

ogy that allows for further scientific investigation of circadian gene transcription. This is

achieved, wherever feasible, through mechanistic modelling of the underlying biological

and experimental processes and Bayesian parameter inference, producing biologically

interpretable results along with uncertainty quantification.

1.1 Outline

The thesis is structured into seven chapters. Chapters 3, 5 and the first half of Chapter

7 are focused on theory while Chapters 2, 4, 6 and second half of 7 revolve around

applications to experimental data and are written with accessibility to a wider audience

of anyone interested in modelling of gene transcription in mind.

The first and present chapter provides a motivating introduction to molecular

oscillators, circadian gene expression and the mammalian clock. Competing modelling

approaches are discussed and modelling that accommodates varying sources of stochas-

ticity are motivated, both from a biological and more general, scientific perspective.

Chapter 2 introduces bioimaging data from mammalian SCN tissue, which moti-
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vates a large part of the methodology developed throughout the thesis. An exploratory

analysis of such data using the spectral bootstrap is presented, which provides a means

to quantify the level of variation in periodicity, phase and amplitude of circadian gene

expression.

Chapter 3 contains most of the mathematical techniques and theory utilized

throughout the subsequent chapters. We move away from spectral methods and instead

review and discuss mechanistic modelling approaches based on chemical reaction net-

works. Methodology that circumvents the inferential intractability of highly detailed

models is covered, such as the Chemical Langevin Equation and likelihood approxi-

mation using Extended Kalman-Bucy filtering. Differential equations with distributed

delays are reviewed along with stability theory for such equations.

A large portion of the chapter is devoted to Markov chain Monte Carlo method-

ology for Bayesian parameter inference. Adaptive and delayed acceptance random walk

Metropolis algorithms are discussed in detail, building the foundation for their applica-

tion in subsequent chapters. Chapter 3 is concluded with a novel measure of “robustness”

of biological system that arises naturally in Bayesian inference and is consistent with

general definitions robustness available in the systems biology literature.

In Chapter 4 a model for circadian mRNA transcription that describes negative

auto-regulation through a feedback loop is reviewed and stability criteria for the macro-

scopic mean are derived. The methodology from the previous chapter is used to infer

parameters of the transcription model using bioimaging data from organotypic SCN

tissue where the circadian gene Cry1 is imaged. The methodology is geared towards in-

dividual time series representing the concentration of some molecular species over time,

hence inference is repeated a large number of times at locations across the SCN tissue to

obtain spatial distributions of parameter estimates, allowing investigation of functional

variation between sub-regions of the SCN.

The spatially independent inference is extended in Chapter 5 to a spatio-temporal

setting using a flexible Bayesian hierarchical model with parsimonious Markov Random

Field prior distributions. The methodology is adapted to the circadian gene transcrip-

tion model from the previous chapter and issues concerning the computational costs are

discussed. We show how to implement an algorithm that explores the posterior distribu-

tion, while taking advantage of multiple processor cores for the likelihood approximation

which dominates the computational cost. The parallel implementation reduces the com-

putational cost approximately linearly with the number of available cores, making the

inferential framework feasible on modern desktop PCs.

The sixth chapter provides an empirical application of the spatio-temporal method-

2



ology developed in Chapter 5. Three experimental replicates of Cry1-luc expression data

are analysed in high resolution, which is made possible by the efficient and parallel al-

gorithm for sampling the posterior distribution. The mechanistic model along with the

parameter uncertainty quantification provided by the Bayesian methodology allows for

scientific investigation of various properties of the SCN.

In the seventh and final chapter the modelling and inferential methodology is

extended to a setting where a second transcription factor governs transcriptional regu-

lation, in addition to the delayed auto-regulatory mechanism considered in the preced-

ing chapters. The methodology is applied to simultaneous recordings of Per2:luc and

GCaMP3-reported calcium concentration from mouse SCN.

1.2 The mammalian circadian clock

Most living organisms exhibit rhythmic behaviours tuned to the natural day-night cycle

of their environment. These rhythms are self-sustained and entrainable to external cues

such as light and temperature (Takahashi, 1995). In mammals, metabolic processes in

most cells oscillate with a 24-hour cycle but rhythms of peripheral tissues are governed

by what can be described as a “master clock” located in the suprachiasmatic nucleus

(SCN) in the anterior hypothalamus. The SCN is a master clock in the sense that the

constituting neurons exhibit an endogeneous rhythm of gene transcription, i.e. sustained

oscillations that do not require an oscillating input. Furthermore, the SCN is able to

coordinate the rhythms of other tissues (Meijer and Rietveld, 1989). Experiments have

shown that cell cultures of peripheral tissues sustain oscillations for a few cycles before

dampening while SCN neurons are able to maintain a 24-hour cycle for weeks without

external input (Reppert and Weaver, 2002).

The biological mechanisms that constitute the clock were first studied in Drosophila

melanogaster (Konopka and Benzer, 1971), Pisum sativum (Kloppstech, 1985) and a few

other species accessible to early genetics. The current model organism is the mouse and

homologues of several of the genes responsible for the clock in Drosophila are found in

mammals (Reppert and Weaver, 2002). Studies of the circadian clock have over the

years come to garner large attention and the 2017 Nobel prize in medicine was awarded

to the three chronobiologists Jeffrey Hall, Michael Rosbash, and Michael Young for their

respective discoveries of circadian mechanisms (Burki, 2017).

The working hypothesis is that oscillations in the SCN and thus behaviour aligned

with the solar cycle is achieved through auto-regulatory transcriptional/translational

feedback loops (TTFLs) where protein products repress the transcription of their re-

3



sponsible genes. Two interlocked TTFLs are thought to be the main mechanism for the

stable oscillations in the mammal SCN (Hastings et al., 2008). In the primary loop het-

erodimers of transcription factors CLOCK and BMAL1 promote transcription of Period

and Cryptochrome genes (Per1-3, Cry1 and Cry2 in mice) by binding to E-box motifs

in the promoter-region of Pers and Crys. Negative autoregulation of transcription oc-

curs when PER:CRY heterodimers translocate back to the cell nucleus and act on the

CLOCK:BMAL1 complex, thus inhibiting further transcription (Shearman et al., 2000).

The secondary loop consists of CLOCK:BMAL1 activating transcription of nuclear re-

ceptors Rev-erbα and Rorα, whose protein products respectively repress and activate

Bmal1, producing oscillatory behaviour of Bmal1 (Ko and Takahashi, 2006).

While the TTFL models oscillations on the cellular level, the neurons compris-

ing the SCN belong to highly synchronised sub-populations (Yamaguchi et al., 2003).

Transcription of Per2 typically exhibits a spatial wave emanating from the dorsomedial

region and travelling to the ventrolateral (Evans et al., 2013; Pauls et al., 2014), see

Figure 2.1 for a diagram of the SCN labeled by region. Taylor et al. (2017) find that the

typical phase difference of peak Per2 expression between dorsomedial and ventrolateral

neurons is 2.4 hours. Evidence suggests that not only is inter-neuronal connectivity im-

portant for robust oscillations, it also sets the SCN aside as the master clock (Mohawk

and Takahashi, 2011). Furthermore, experimental protocols with changes in light-dark

cycle show that retino-recipient parts of the SCN (ventrolateral) respond and adapt Per1

expression faster to such external stimuli and it is suggested that this is then relayed

to dorsomedial parts of the SCN with fewer retinal fibers (Nakamura et al., 2005). Gu

et al. (2017) desynchronize the ventrolateral and dorsomedial subpopulations using an

artificial 22 hour light dark cycle (11:11) and show that with an artificial cycle length

sufficiently different from the normal 24h the SCN cannot completely entrain to external

cues. The light-information insensitive dorsomedial region keeps its intrinsic 24h period

while the ventrolateral region adapts to information regarding new light schedules from

the optic chiasma.

Cytoplasmic Ca2+ (calcium) is also highly circadian in SCN neurons and is be-

lieved to play an important role as input/output in both TTFLs of individual cells as

well as in synchronisation of separate cellular oscillators (Hastings et al., 2014). The

neuropeptide vasoactive intestinal peptide (VIP) is only present in the retino-recipient

ventrolateral SCN neurons (Hastings et al., 2014) and is believed to carry a synchronis-

ing mechanism (Maywood et al., 2006). Specifically, VIP binding to the VPAC2 receptor

activates Gq-signalling and leads to an increase in intracellular calcium which promotes

transcription of Per1 and Per2 genes that carry a calcium responsive element (CRE)
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(Hastings et al., 2014). Brancaccio et al. (2013) show experimentally that VIP knock-

out SCN slices loose synchrony of oscillations of CREs. Furthermore, Irwin and Allen

(2010) find that high levels of VIP suppress calcium and does so to a greater extent

during daytime when calcium levels are generally high.

A better understanding of the machinery that governs circadian rhythms is im-

portant as there is evidence for a link between misalignment or disruption of the circadian

rhythm and increased risk of various chronic diseases such as cancer (Innominato et al.,

2014), metabolic syndrome (Shi et al., 2013) and psychiatric disorders (Coogan et al.,

2013). Disruption of the circadian rhythm is classified as a probable carcinogen by the

World Health Organization, and several studies have found links between Cry1-2 genes

and tumour formation, where inactivation of these genes led to decreased survival rate

in mice exposed to radiation (Chan and Lamia, 2020). In Chapters 4 and 6 of this thesis

expression of the Cry1 gene is studied in detail. A research area of specific impact is the

optimisation of medical interventions, both surgical and drug intake, with respect to the

circadian rhythm known as chronotherapy (Lévi, 2001), which is shown to improve the

prognosis of cancer patients (Lévi et al., 1999).
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Chapter 2

Data & exploratory analysis

This chapter acts as a introductory text to organotypic SCN imaging data that we re-

turn to in several of the following chapters. Simultaneous recordings of Per2:luc and

GCaMP3-reported calcium from Brancaccio et al. (2013) are investigated and spatial

distributions of period, phase and amplitude of their circadian oscillations are estimated

using spectral analysis. In addition, uncertainty quantification of the estimates is ob-

tained using the spectral bootstrap method of Costa et al. (2013). For details on the

experimental protocol used to obtain the recordings, and the two fusion constructs “:”

and “-” we refer to Brancaccio et al. (2013), however a short description of the experi-

mental procedure is given in this chapter (and expanded on in the first section of Chapter

4 to motivate some of the modelling assumptions made there).

Summarising the results, we find that circadian oscillations of Per2 and calcium

are laterally symmetric and mirrored for the two halves of the SCN. While Per2 is

primarily expressed in SCN tissue, calcium is found in adjacent tissues but only oscillates

with the clock in SCN tissue. Calcium is likely to have less well defined oscillations than

Per2 in the SCN as we find it has a lower signal-to-noise ratio, although the differences in

experimental method for the two species could in part explain this difference. Circadian

expression of Per2 exhibits a clear spatial wave-like trajectory that begins in the region

next to the third ventricle (see Figure 2.1). Our findings regarding the phase delay

between early and late Per2 peaks are consistent with those in the literature, with the

addition of the finding that the earliest tissues in terms of Per2 expression tend to

show non-circadian calcium expression (defined as a period length outside 18-30 hours).

The spatial phase difference for calcium is less pronounced, although the uncertainty

in the phase estimates is considerably higher for calcium. We find that both Per2 and

calcium exhibit fairly exact 24 hour oscillations in SCN tissue, and the uncertainty in
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the estimates, in terms of bootstrap confidence intervals, are similar despite the overall

higher level of noise in the calcium signal.

In the final section of the chapter we discuss how the results from the exploratory

analysis can be translated into insights that help in a more detailed, mechanistic mod-

elling approach. Furthermore, limitations of the phenomenological modelling approach

are discussed which serves as motivation for the methodology developed and presented

in the rest of the thesis.

2.1 Exploratory analysis of Per2 and calcium expression

in mammal SCN

This section aims to explore spatio-temporal features of Per2 and calcium expression

across the SCN. Spectral analysis and bootstrap are used to determine period and phase

of their respective reporter constructs. Uncovered features along with biological knowl-

edge motivate the structure of models used in subsequent chapters, and for some of the

modelling assumptions made to facilitate parameter inference. This section begins with

a presentation of the available data and methods and further subsections are devoted to

presenting the results of the analysis.

A schematic of a cross-sectional cut of the SCN labeled with the relevant regions

is given in Figure 2.1. The organ consists of two laterally symmetric halves which in mice

contain roughly 10 000 neurons each (Welsh et al., 2010). Each half can be anatomically

subdivided into the dorsomedial (DM, or shell) and ventrolateral (VL, or core), which

connects to and receives photic input from the optic chiasma (Abrahamson and Moore,

2001). In the following chapters we use shell/DM and core/VL interchangeably, and

when reference is made to the interior of either of the two halves the term central SCN is

used. A third axis, the rostral-caudal direction lies perpendicular to the two-dimensional

slice of the SCN. In general we adhere to the assumption that experimental replicates

originate from the approximate center of the third axis such that central locations of the

slices are in the center of the three-dimensional organ.
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Figure 2.1: Diagram of the SCN, labeled with regions of interest. The anatomical subdi-
vision of the two halves is laterally symmetric and each half is made up of approximately
104 neurons. The dorsomedial region partially envelops the ventrolateral SCN, hence is
referred to as the SCN shell. The ventrolateral region is retinally innervated via the
optic chiasma and receives photic input that is transmitted to the rest of the SCN via a
combination of neuronal firing and neurotransmitter signalling.

2.1.1 Available data

Brancaccio et al. (2013) use viral transduction and flourescence/bioluminescence imaging

to obtain simultaneous recordings of Per2 and calcium in mouse SCN. Calcium is re-

ported by synthetic GCaMP3 which is activated without delay and Per2 is imaged using

a genetically encoded luciferase contstruct Per2:luc (Yoo et al., 2004) where the reporter

is delayed circa 1 hour, which accounts for transcription and translation (Brancaccio

et al., 2013). Organotypic slices of the SCN were kept in medium while luminescence

was recorded every 0.5h for 4-5 days. The experimental procedure yielded 183 frames

of 423 by 453 pixels for the Per2 and calcium sequences. For experimental details and

data see Brancaccio et al. (2013), Movie S3.

The extent of a typical neuron is roughly the size of an 8 by 8 block of pixels,

although the neurons have highly irregular shapes. In order to reduce computational

cost and obtain time series from tissue that more closely resembles the extent of neurons

each frame is aggregated by taking the cross sectional arithmetic mean of blocks of 4
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by 4 raw pixels. The aggregation can be assumed to preserve spatial features that lie

on the scale of the regions of the SCN (see Figure 2.1) consisting of tens or hundreds of

neurons, while leaving stochasticity at the approximate single cell level of interest.

A trend is present in most of the resulting aggregate pixels which is due to

the experimental procedure: for Per2 the trend is negative as the luciferin substrate

is consumed over time. The calcium reporter on the other hand exhibits a positive

trend. Therefore the data are de-trended by fitting a linear trend using least squares

to the logarithm of the data. As two different reporter constructs are used for calcium

and Per2 there is no way of comparing the amplitude of oscillations of their respective

underlying chemical species; hence, we do not require a transformation that preserves

the relative amplitude of the two species.

Figure 2.2 gives a representative picture of the peak expression of Per2 (left) and

peak calcium concentration (right). The image is calculated by taking the maximum for

each pixel across the 91.5 hour recording. This is done to circumvent the fact that SCN

neurons are not expressing circadian genes in complete synchrony but with a spatial

phase delay on the order of hours. High peak expression of Per2 is contained within the

two halves of the SCN whereas calcium is present in surrounding tissues in relatively

higher concentrations.

Figures 2.3 and 2.4 contain pictures of the SCN with a suitably chosen 5 by 4

grid of pixels (left) and time series of these pixels (right). The blue time series refers

to raw data and the red to the detrended series. The transformation works sufficiently

well to remove any trend in most of the grid. It is worth noting that some pixels show

plateaus during peaks (Figure 2.3), presumably because of overexposure in the recording.

These truncated peaks may in turn cause issues with automated image analysis, however

substantial truncation is only present in the first cycle and the problem is alleviated when

data are log transformed. For Per2, pixels corresponding to the center of each half of

the SCN have well defined peaks whereas pixels located along the edges have lower

amplitude. Calcium has a visibly lower signal-to-noise ratio compared to Per2 but a

similar spatial pattern with sharp peaks in central regions. Taken together with Figure

2.2, this suggests that while calcium is present in surrounding tissues it only oscillates

with the 24 hour clock in the SCN. This finding is consistent with the fact that VIP

is not present in surrounding tissues along with the findings of Irwin and Allen (2010)

that VIP suppresses calcium levels during day time. Overall the data show clear signs

of circadian oscillation with 4 distinct peaks over a circa 90 hour time frame.

9



Figure 2.2: Representative image of Per2:luc (left) and GCaMP3-reported calcium
(right) bioluminescence across the two halves of the SCN. The image is obtained by
taking the pixel-wise maximum across the length of the experiment (approximately 4
days). Bioluminescence/flourescence of reporter constructs is used as a proxy for gene
expression and calcium concentration. Per2 reporter has a circa 1 hour delay accounting
for transcription and translation whereas the calcium reporter is instantaneous.
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In an initial exploratory analysis of SCN imaging data we shall employ spectral

analysis where each pixel-block is considered to be a time series. Spectral analysis relies

on the fact that any signal can be represented as a combination of frequencies, where

the Power spectral density (PSD) for the random signal y(t), t > 0, sample size n and

frequency ω > 0, defined as

f(ω) = lim
n→∞

E

[
1

n

∣∣∣∣ n∑
t=1

y(t)e−iωt
∣∣∣∣2
]

(2.1)

where i =
√
−1, determines the weight of component ω in the frequency domain repre-

sentation (Stoica and Moses, 2005). The asymptotically unbiased, sample equivalent of

Eq. (2.1), the periodogram, given by

f̂p(ω) =
1

n

∣∣∣∣ n∑
t=1

y(t)e−iωt
∣∣∣∣2 (2.2)

is easy to compute using the fast Fourier tranform. It is however an inconsistent estima-

tor of the true PSD. A better estimator, in terms of bias-variance trade off, is obtained

by applying a window function to the observed signal (Percival and Walden, 1993). A

variety of window functions for this purpose with slightly different properties are avail-

able in the literature, see e.g. (Stoica and Moses, 2005, Chapter 2) for an (incomplete)

list.

Once a satisfactory estimate of the PSD is obtained, the period is simply the

inverse of the frequency corresponding to the largest peak of the PSD. As the data in

this chapter exhibit clear circadian oscillations we expect to find a large peak in the PSD

around the frequency corresponding to 24 hours. However, the molecular oscillators are

not exact 24 hour clocks, hence we report the spatial distribution of period estimates of

the dominant frequency, i.e. the frequency at which the estimated PSD is maximised.

Similarly, the phase of the dominant frequency is the angle, tan−1, of the complex Fourier

coefficients whose squared magnitude are the maximum of the estimated PSD.

To quantify the uncertainty in period and phase estimates we resort to using

the width of bootstrap confidence intervals. Costa et al. (2013) propose a spectrum

bootstrap methodology for period estimation which uses the fact that the empirical

spectrum can be approximately described by

I(ωk) = f(ωk)εk, k = 1, ..., n/2, (2.3)
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where {εk}
n/2
k=1 is a sequence of i.i.d. standard exponential random variables, f(·) is the

true spectrum, I(·) is the empirical counterpart evaluated at frequencies ωk and n is the

sample size in terms of time. A consistent estimate of f(ωk) is needed to resample the

multiplicative residuals in Equation (2.3). First f̂b†(ωk) is estimated and residuals calcu-

lated. Bootstrap samples of the periodogram are then calculated using another estimate

of the spectrum f̂b‡(ωk). The bootstrap sample of the spectrum is finally calculated

by smoothing the periodogram sample to get f̂b(ωk). The three different smoothing

parameters used are, b = cn−1/5 b† = cn−1/4 b‡ = cn−1/6. The three smoothing pa-

rameters act to balance bias and variance of the estimator (Costa et al., 2013). We

obtain phase estimates in a similar fashion and only analyse the phase and period of the

dominant circadian frequency, i.e. the maximum of the spectral density estimate if that

mode corresponds to a frequency between 18 and 30 hours. Matlab code provided as

supplementary material to Costa et al. (2013) is used for the calculations.

To avoid that the resulting period estimates look discrete, zero-padding is used

for the initial spectrum estimate. The effect of this is an interpolation of the peak of the

spectrum when the temporal resolution is not sufficiently high (Percival and Walden,

1993, Chapter 3). The lengths of the series are 183 observations and these are padded

with zeros such that the lengths of the padded series are 2048. The bootstrap algorithm

is run for each block of 4 by 4 pixels, the bootstrap sample size is 200 and the percentiles

that correspond to a 95 percent confidence interval are stored. The bootstrap sample size

of 200 is motivated by the computational load, where three major reasons contribute:

temporal resolution (padding), spatial resolution (large number of pixels) and bootstrap

sample size. Spatial and temporal resolution are vital as dynamics along these axes are

investigated.

For point estimates of period, phase and amplitude we resort to non-parametric

spectral analysis. After detrending, applying a Hann window (Percival and Walden,

1993, Chapter 6), centering and zero-padding, each time series is decomposed using the

Fast Fourier Transform. The frequency that maximizes the spectral density estimate

is converted back to hours for a period estimate and the Fourier coefficients are used

to calculate the phase of the dominant frequency, mapped to circadian time (CT0-

24). Following Brancaccio et al. (2013), the phase mapping is done such that the peak

of Per2:luc expression is at CT12 for the average pixel block. This utilizes biological

knowledge of when Per2 expression typically peaks and the spatial variation of phase

delay between calcium and Per2 can be investigated.
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Figure 2.5: Heatmap of period of dominant frequency of Per2 (left) and calcium (right).
Pixels with low luminosity (below average across locations and time points) or non-
circadian expression (<18h or >30h) are omitted. Colours are mapped to period in
hours.

Figure 2.5 shows point estimates of the period of the dominant frequency of circadian

Per2 (left) and calcium (right) across the SCN, mapped to colour where blue represents

shorter periods and red longer. The period of Per2 is spatially homogeneous and close to

24 hours over the whole set of pixels. The homogeneity of the perioid is to be expected

as Per2 is a core clock gene and the SCN is the master clock. Nearly all examined sites

exhibit a period between 22 and 26 hours. The mean period of Per2 for the shown sites

is 24.16 hours. Calcium on the other hand has varying period length and some tissue

exhibit non-circadian expression, especially along the third ventricle (between the two

halves). In the dorsal and ventrolateral region the period length is however close to 24

hours with lower spatial variation locally. The mean period length for calcium across

examined sites is 23.82 hours. This is consistent with the findings of Enoki et al. (2012)

which showed that calcium has a homogeneous phase between the two subregions.
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Figure 2.6: Heat map of width of 95 percent confidence interval of Per2 period (left)
and calcium (right). Pixels with low luminosity (below average across locations and time
points) or non-circadian expression (<18h or >30h) are omitted.

The confidence interval heat map in Figure 2.6 give estimates of the uncertainty in the

period lengths. The width of the 95 per cent bootstrap confidence interval is mapped

to color with blue representing a relatively narrow interval and red a wide interval (see

colour bar for specific values). The width of the interval does not exhibit any clear

spatial features for Per2 (left) and most intervals are narrow, less than 3 hours. This is

consistent with the de-trended time series presented in Figure 2.3 showing well defined

peaks and a high signal to noise ratio. Furthermore, it is consistent with the hypothesis

that Per2 is a highly synchronised and exact component of the circadian clock across

the SCN. Additionally, we find no differences in the period and phase between the left

and right halves of the organ.

The homogeneity of the period, i.e. high synchrony of Per2 transcription across

the SCN is important to note for our further analysis as any spatial variation of the

phase of this dominant frequency cannot be attributed to differing periods nor their

variability. This means that we are in fact investigating the properties of a fairly exact

24 hour clock. Similarly, due to the the stochastic and irregular behaviour of calcium

along the third ventricle we do not expect any clear spatial features of the phase of
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calcium in that region, as opposed to the smooth wave-like trajectory of Per2.
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Figure 2.7: Heat map of phase of dominant frequency of Per2 (left) and calcium (right)
mapped to 0-24 hours. Pixels with low luminosity (below average across locations and
time points) or non-circadian expression (<18h or >30h) are omitted. Calcium is phase
advanced compared to Per2, except for along bands along the dorsomedial region of
the SCN. Circadian calcium has a homogeneous phase whereas Per2 shows clear spatial
features.

The phase mapping in Figure 2.7 reveals clear spatial features of Per2 expres-

sion. The dorsomedial region is phase-advanced compared to the lateral and ventral

regions. This is clear from the dominance of green areas in the top half of the organ

compared to yellow in the bottom half and outer sides. This phase variation of Per2

transcription should however not be mistaken as a spatial flow of information between

neurons, feeding in to the TTFL across the SCN network. Enoki et al. (2012) note that

neuronal interactions are faster compared to the wave-like progression of Per2 transcrip-

tion and instead the difference in phase is attributed to intrinsic differences between

subregions such as differing periods. While the current data does not support differing

period lengths between SCN subregions there is no evidence of a causal phase difference

either.
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As Per2:luc is mapped to peak at CT12 on average, Calcium peaks at CT6.73

which is consistent with Brancaccio et al. (2013) on the same data and similar to the

5.67h phase advance of calcium compared to Per2:luc found by Enoki et al. (2012) on

a different recording using a different reporter for calcium. These findings reinforce the

idea that calcium is an input in the TTFL, at least in certain regions of the organ.

Calcium itself is spatially homogeneous with peak expression between CT4 and CT10,

except for a region around the third ventricle that peaks considerably later. This region

corresponds to the same area that shows erratic period estimates in Figure 2.5 and it is

likely to not be systematic but a consequence of the noisy periodicity.

Furthermore, a narrow band along the third ventricle (the area between the two

halves) of the dorsomedial SCN exhibits a marked phase advance of Per2:luc compared

to the rest of the organ. This phase advance is more evident on the left half of the SCN.

The earliest peak of this region is around CT7.7 and when taking into account the delay

of the luciferace construct used for Per2 (circa 1h) compared to the near instantaneous

reporter of calcium these results suggest that the most phase advanced regions begin

transcription of Per2 at around the same time, or right after circadian calcium peaks in

the organ as a whole. This complicates the picture of calcium as an input to the TTFL,

suggesting that such a mechanism is not identical across the SCN circuit.

In addition to Figure 2.7, Figure 2.8 gives the same phase mapping of calcium

and Per2:luc but only displays Per2:luc in areas where calcium is non-circadian, i.e. the

period estimate is <18h or >30h. A clear pattern emerges of medially located neurons

coinciding with the markedly phase advanced population in Figure 2.7. These neurons

exhibit peak Per2:luc considerably earlier at CT9.67 compared to the rest of the organ.

This suggests two distinct sub-populations of SCN neurons. The phase delay of these

medially located sites is around 2.3 hours compared to the SCN as a whole which is

similar to the 2.4 hour phase difference between dorsomedial and ventrolateral regions

described in Taylor et al. (2017) on a different set of data.
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Figure 2.8: Heat map of phase of dominant frequency of Per2 (left) and calcium (right)
mapped to 0-24 hours. Pixels with low luminosity (below average across locations and
time points) or non-circadian expression (<18h or >30h) are omitted for calcium. Per2
pixels are only shown where calcium appears non-circadian.
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Figure 2.9: Heat map of width of 95 percent confidence interval of phase. Pixels with low
luminosity (below average across locations and time points) or non-circadian expression
(<18h or >30h) are omitted.

19



The width of a 95 per cent bootstrap confidence interval for phase is given in Figure

2.9. There are no clear spatial features for the Per2:luc interval (left), except possibly

a slight clustering of wide (>10 hours) intervals along the third ventricle. Most of the

intervals are however between 4 and 8 hours. Calcium on the other hand exhibits wider

intervals, especially towards the edges of the two halves. This reflects the higher noise

in the calcium series visible in Figure 2.4 and the irregularity along the third ventricle

visible in Figure 2.7.
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Figure 2.10: Heat map of amplitude of dominant frequency of Per2 (left) and calcium
(right) mapped to 0-24 hours. Note that specific values of the amplitude cannot be
compared between Per2 and calcium as the measurement processes are different.

The heatmap of amplitude (Figure 2.10) reveals oval-shaped regions in the centre of

each half of the SCN with high amplitude and lower amplitudes along the edges. This

is true for both Per2 and calcium but high amplitude regions for calcium are located

more medially. The Per2 findings are consistent with Taylor et al. (2017) which reports

essentially identical spatial organization of amplitude on another set of data. It has been

hypothesized that cellular oscillators can be divided into weak and strong types, where

weak oscillators are in fact superior synchronisers with faster phase response (Webb
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et al., 2012). In Figure 2.10 the ventral regions of each half have a relatively low Per2

amplitude compared to the rest of the organ. A possible hypothesis is that photic input

to these regions is communicated to the rest of the organ and these neurons have to be

weakly oscillating in order to respond to and transmit external stimuli.

2.2 Discussion

The spatial and temporal properties of Per2 and GCaMP3-reported calcium across a

mouse SCN slice in vitro were investigated using spectral analysis and spectral bootstrap.

The results of the analysis were in line with previous empirical results regarding the

mammalian clock, both on the same data (Brancaccio et al., 2013) and other data

with slightly different experimental procedures and reporter proteins (Enoki et al., 2012;

Taylor et al., 2017).

In general, the two halves of the SCN show very similar properties of Per2 and

calcium oscillations. We find that calcium is present, albeit in lower concentrations, in

adjacent non-SCN tissue but only oscillates with the clock in the SCN. We find a phase

delay between early and late Per2 peaks that is well-documented in the literature (Evans

et al., 2013; Pauls et al., 2014). The additional finding that the earliest tissues in terms

of Per2 expression tend to exhibit non-circadian calcium expression (defined as a period

length outside 18-30 hours) may be an intriguing phenomenon for further study.

Limitations of the spectral analysis approach employed in this chapter is that

we cannot differentiate between phenomena that arise through the use of two different

imaging techniques and differences in the dynamics of the underlying molecular species.

For example, calcium is likely to have less well defined oscillations compared to Per2 in

the SCN tissue as we find it has a lower signal-to-noise ratio, although this difference

could in principle be caused by differences between the synthetic GCamp3 reporter and

genetically encoded luciferase construct used to image calcium and Per2, respectively.

Additionally, spectral methods rely on high frequency observations in order to provide

results with high temporal resolution, while bioimaging data are typically available at

sampling rates of 1 or 2 frames per hour due to the low levels of light emitted by the

reporter protein. To overcome the limitations of phenomenological modelling on the level

of observed data we aim to adopt and further develop approaches where the mechanism

of gene expression and experimental procedure used to obtain data are explicit parts of

the model formulation.

The analysis in Section 2.1 along with previous findings available in the litera-

ture on the network properties of the SCN make it clear that the SCN is not spatially
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homogeneous and modelling on the level of a single cell oscillator cannot capture the

full dynamics of the neuronal circuit which makes the master clock. Spatial proper-

ties should be considered in a realistic model, but it is not obvious what the proper

approach is. There is evidence in the literature for distinct sub-populations of SCN

neurons with slightly different functionality, e.g. strong and weak oscillators and local

variation phase and amplitude (Taylor et al., 2017). A possible approach is to model

pre-defined regions of the SCN, e.g. the core and shell separately. On the other hand,

there is evidence for differences even within these putative sub-populations and there is

the additional problem of defining a border between regions in experimental data. A

less parsimonious model, capable of smooth spatial variation is likely to be required to

accurately model local variation, such as the wave-like trajectory exhibited by Per2:luc

transcription. Such fine-grained spatial variation could for example be captured with

a hierarchical Bayesian approach where means of parameters are themselves modelled

with a parametrised spatial variation.

The availability of simultaneous circadian gene and calcium recordings along with

model formulations of a two-component clock (Calderazzo, 2016, Chapter 5), means

that in principle a more complicated yet realistic description of the SCN TTFL can be

investigated. A major obstacle in inference for detailed, realistic models of the clock is

identifiability of parameters, due to the unavailability of data on the different molecular

species involved in the cellular clock. Although the data set analysed in this chapter

contains thousands of time series, interest primarily lies in differences in the dynamics

those time series exhibit. In addition the time series are relatively short, less than 200

observations in this case, due to the low light intensity of reporter proteins requiring long

exposure times to generate single frames and the difficulties in sustaining organotypic

tissue in the required experimental settings for long periods of time. Bayesian inference

provides a principled way to combine existing knowledge with data through the use of

prior distributions. By developing informative prior distributions for a subset of the

parameters of a mechanistic model it may be possible to fit more detailed models of the

TTFL that capture the both the dynamics of individual SCN neurons and synchronising

mechanisms between them.
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Chapter 3

Reaction networks, inference &

stability

This chapter introduces several key ideas and methodological components in a general

setting with some motivating examples based on bioimaging data of gene expression.

The methods covered here are subsequently used in an empirical setting for modelling

and parameter inference in Chapters 4 and 6. This chapter begins with an introduction

to chemical reaction networks along with the chemical Langevin equation and stochastic

distributed delay models. Methodology for parameter inference is covered in the fol-

lowing two sections: likelihood approximation using the Extended Kalman-Bucy filter

for delay models in Section 3.4 and Markov chain Monte Carlo for Bayesian inference

in Section 3.5. The chapter is concluded by Section 3.6 where we develop a Bayesian

robustness measure for oscillating biological systems.

3.1 Chemical reaction networks

This section begins by describing reaction networks and simulation strategies. Some

approximate and deterministic modelling approaches are discussed and stochastic ex-

tensions are motivated from biochemical and statistical perspectives.

Chemical reaction network simply describe the interactions of a finite set of species

through a finite set of reactions (Feinberg, 2019) and thus provide a tool to model chem-

ical systems. An example of a simple model which incorporates inhibition, transcription,

translation, and degradation of mRNA and protein is given by the following set of reac-
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tions:

G+ P 
 H

G −→ G+R

R −→ R+ P

R −→ ∅

P −→ ∅.

(3.1)

The reaction G+P 
 H describes an auto-repressive mechanism where protein P binds

to the regulatory region of gene G (creating a blocked region H). The binding reaction

inhibits transcription by disabling G −→ G + R: the transcription of gene G resulting

in mRNA molecule R. Translation of mRNA to protein is captured by R −→ R + P .

Two-sided arrow indicate reversibility, i.e. that the reaction can occur in the opposite

direction. In this case a blocked regulatory region can become unblocked, freeing up

a protein molecule P and a regulatory region G. Finally, the reactions R −→ ∅ and

P −→ ∅ describe degradation of mRNA and protein molecules, respectively. Note that

this models degradation as an irreversible reaction where the molecules disappear from

the system without leaving any waste products.

The classical, deterministic approach in chemical kinetics is to consider the vari-

ables continuous real-valued functions and analysing the system of reactions in Eq. (3.1)

by invoking the law of mass action, i.e. that the rate of each reaction is proportional

to the concentrations of each reactant (see e.g. Wilkinson (2011)). Let P (t) denote the

concentration of protein P at time t, and similarly for the other species G, H and R.

By first specifying reaction rates ci for each of the six reactions in Eq. (3.1) we can

write a set of ODEs for the system where each equation describes the time-evolution of

a reacting species. The corresponding ODEs for Eq. (3.1) are given by

dP (t)

dt
= −c1G(t) + c2H(t) + c4R(t)− c6P (t)

dG(t)

dt
= c2H(t)− c1P (t)

dH(t)

dt
= c1G(t)P (t)− c2H(t)

dR(t)

dt
= c3G(t)− c5R(t).

(3.2)

The equations in Eq. (3.2) provide a deterministic description of the system in Eq.

(3.1). That is, subject to some initial condition φ0 = (P0 G0 H0 R0) and reaction rates
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ci, i = 1, ..., 6, the concentration at any time t > 0 is exactly determined. Note that

mass-action allows for a scale-free description and the real-valued functions in Eq. (3.2)

are obtained by an implicit unit conversion from molecular population to concentration,

e.g. by dividing each population by a common system size parameter Ω.

McQuarrie (1967) argues that such a deterministic representation is inadequate

when the molecular population sizes are small, e.g. in biological cells, and introduces

what has come to be known as the Chemical master equation (CME). The CME describes

the time evolution of the probability distributions of the system and the possible states

are the natural numbers. The CME hence provides a stochastic and exact description of

the number of each type of molecule. Stochasticity arises from the fact that reactions are

caused by molecular collisions and the initial condition only specifies population sizes of

each reactant species, not their individual positions and momenta.

Gillespie (1992) provides general solutions of the CME for systems interact-

ing through first-order reactions and a handful of higher order systems. The exact

stochastic description is obtained by considering N species interacting through M re-

actions R1, ..., RM inside a container of fixed volume Ω and a random state vector

X(t) = (X1(t), ..., XN (t)) where Xi(t) is the number of molecules of the ith species

at time t. In general and unless otherwise stated, capital letters indicate random vari-

ables and lower case letters their realisations. Bold face indicates non-scalar quantities,

i.e. vectors or matrices. Now define a set of propensity functions cj , j = 1, ...,M such

that

cj(x)dt := Probability that a reaction

Rj occurs in the time interval [t, t+ dt).
(3.3)

Here we require dt such that the probability of more than one reaction is negligible

compared to cj(x)dt. Additionally define a M by N stoichiometry matrix S such that

the element sj,i is the change in the ith species due to the jth reaction. We can now

analyse conditional probability statements on the form

P(X(t) = x|X(0) = x0), (3.4)
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by the recursive relationship

P(X(t+ dt)|x0) = P(X(t)|x0)

1−
M∑
j=1

cj(x)dt


+

M∑
j=1

(P(X(t)− sj |x0)cj(x(t)− sj)dt) + o(dt),

(3.5)

which after rearranging and taking the limit dt→ 0 gives the CME

d

dt
P(X(t)|x0) =

M∑
j=1

(cj(x− sj)P(X(t)− sj |x0)− cj(x)P(X(t)|x0)) . (3.6)

The subtle non-linearity in Eq. (3.1), introduced by the reaction G+P −→ H is however

enough to make solutions to the CME cumbersome and it should be noted that from

an applied perspective Eq. (3.1) is most likely a much too simplified model of gene

regulation to provide any interesting biological insight. In other words, there is a gap

between the systems we want to study and the systems we can study exactly.

Darvey and Staff (1966) prove that for general systems of N species interacting

through first-order reactions, the CME provides expected values that coincide with the

deterministic description. For systems with higher order reactions however the ODE

representation and CME may predict different population sizes given the same initial

conditions. In these higher order systems, the difference between the solutions provided

by the deterministic set of equations and expected value of the stochastic CME is larger

for small population sizes. As the population sizes grow the deterministic dynamics begin

to dominate and the differences vanish. Hence the deterministic approach is considered

a “macroscopic” rate equation, obtained when the container size of the system is scaled

up sufficiently.

As the CME proves difficult to work with for reasonably realistic models, sev-

eral approximations have been developed that retain the influence of noise but do not

correctly capture all the moments of the probability distribution of the system states.

These approximate methods include the the linear noise approximation (Kurtz, 1972;

van Kampen, 2006) and the chemical Langevin equation (Gillespie, 2000) which we shall

cover in detail in Section 3.4. Chemical kinetics is typically concerned with empirically

determining the rate constants ci in systems such as that in Eq. (3.2) and a less discussed

motivation for a stochastic approach, approximate or exact, is that in a well-specified

stochastic model the noise can aid in estimation of the rate parameters. The inclusion of
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a diffusion term restricts the model by an additional equation that describes the expected

size of random fluctuations about the mean that may enable structural identification.

A model where the diffusion term is parametrised by the same rate parameters as the

mean function poses, in a statistical sense, an easier inferential problem compared to

inference based solely on the mean.

3.1.1 Stochastic simulation algorithm

While realistic systems typically are intractable in the sense that closed form expressions

of the probability distributions of states do not exist, i.e. solutions to the CME do not

exist, it is possible to draw samples from the distribution of possible states at any time

t > 0 using the stochastic simulation algorithm (SSA) (Gillespie, 1977). By assuming

that the reactions take place in a container of fixed volume and uniform mixture, i.e. well-

stirred, and treating the time evolution of the system as a stochastic process, specifically

a continuous time Markov process with discrete state space, stochastic simulation is

straightforward. Let M denote the number of different reactions and hj(x, ci) the hazard

for reaction j where x is the vector of molecule counts of reactants, cj the rate constants

for reaction j and j = 1, ...,M . The total hazard, h0, for a reaction occurring is then

given by

h0(x, c) :=
M∑
j=1

hj(x, cj). (3.7)

To generate realisations from a stochastic reaction system for all time points up to time

Tmax, the SSA is executed as follows:

Algorithm 1 Stochastic simulation algorithm to simulate exact states of reaction net-
work

Initialise t = 0 and states x = [x1, ... , xN ]
while t < Tmax do

for reaction j = 1, ... ,M do
Calculate hazard hj(x, cj)

end for
Calculate total hazard h0(x, c) =

∑M
j=1 hj(x, cj)

Draw time to next reaction t := t+ ∆t, ∆t ∼ Exp(h0(x, c))
Draw reaction index i ∈ {1, ... ,M} with probability P (i = j) = hj(x, cj)/h0(x, c)
Update x according to reaction i
Save x and t

end while

where y ∼ Exp(λ) denotes that y is exponentially distributed with rate parameter
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λ.

Using the SSA one may simulate exact realisations, however the inverse problem

of obtaining the likelihood of a specific realisation, given a set of parameters (e.g. rate

constants) is intractable. To this end, exactness may be traded for tractability by em-

ploying approximations, such as diffusion processes describing the population sizes of

the chemical species.

3.2 Diffusion approximation through the chemical Langevin

equation

A typical approach to modelling transcriptional dynamics in the context of circadian

rhythms is through a system of ODEs such as the three component Goodwin oscilla-

tor (Goodwin, 1965) or larger, more intricate systems of ODEs consisting of tens of

equations describing the molecular oscillator that constitutes the circadian clock (Gonze

et al., 2005; Relógio et al., 2011). While the deterministic approach provides a flexible

framework to capture interactions between a large number of reactions and molecu-

lar species, it is well known that such interactions at the cellular level are intrinsically

stochastic due to the low number of molecules (McAdams and Arkin, 1997).

To account for stochasticity, the time evolution of N chemical species X(t) =

[X1(t), X2(t), ... , XN (t)] in a system of M reactions can be described by the continuous

time, discrete state space Markov Jump Process (MJP) resulting from Eq. (3.3). Under

that description, conditional on the system being in state x at time t, the jth reaction

has an instantaneous hazard rate hj(x) and the time to next reaction is exponentially

distributed with hazard h0(x) =
∑M

j=1 hj(x). The number of reactions during a given

time interval is well approximated by a Poisson random variable if the interval is short

enough such that the change in species do not change the reaction probabilities appre-

ciably. Specifically, the change in the state vector during an infinitesimal time interval

dt is given by SdRt, where S is the matrix of stoichiometries that summarize the con-

sumption and production of species arising from the jth reaction, and dRt is a M -vector

of Poisson(hj(x)dt) random variables (Wilkinson, 2011, Chapter 6). Stochastic simu-

lation from such a model is straightforward using the Stochastic Simulation Algorithm

(Gillespie, 1977), outlined in Section 3.1, but statistical inference is typically infeasible

for descriptions with that level of detail, at least in large scale due to computational

complexity.

The chemical Langevin equation (CLE) provides a continuous state-space (diffu-
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sion) approximation to the dynamics of the MJP. Instead of counting the occurrences of

each reaction with a Poisson-process, a Gaussian approximation that matches the mean

and variance of the Poisson-process represents the infinitesimal change in the state vec-

tor. The approximation is valid under the conditions on the existance of a macroscopic

infinitesimal time interval, i.e. the time step dt is small enough that the hazards do not

change appreciably and big enough such that one should expect to see a sufficiently large

number of each reaction during dt (Wilkinson, 2011). We shall follow the derivation of

Gillespie (2000) here.

Suppose that the state of the system at time t is X(t) = xt and let the random

variable Kj(xt, τ) be the number of reactions of the jth kind that occur in the time

interval (t, t + τ ] for some fixed τ > 0. We then have that the number of molecules of

the ith species is

Xi(t+ τ) = xt,i +
M∑
j=1

sj,iKj(xt, τ), i = 1, ..., N. (3.8)

We shall now make use of two conditions on the time scale τ , firstly we need that τ is

small enough such that

cj(X(t+ ε)) ≈ cj(xt), for all ε ∈ (0, τ ] and j = 1, ...,M. (3.9)

That is, we want few reactions, such that none of the reaction probabilities change

appreciably. If this condition holds Kj(xt, τ), j = 1, ...,M are independent Poisson

random variables with mean and variance cj(xt)τ . The second condition is that we need

τ large enough such that we expect to see a large number of each reaction type, i.e.

E[Kj(xt, τ)]� 1, for all j = 1, ...,M. (3.10)

The second condition allows for a Gaussian approximation of the Poisson random vari-

ables, i.e. Kj(xt, τ) ∼̇ N (cj(xt)τ, cj(xt)τ) and hence we can write

Xi(t+ τ) ≈ xt,i +

M∑
j=1

sj,iYj , i = 1, ..., N (3.11)

where Yj = cj(xt)τ +
√
cj(xt)τWj , Wj ∼ N (0, 1) are independent (due to τ small)

Gaussian random variables. Now let τ = dt be a “macroscopically infinitesimal” time

scale that satisfies both conditions. By removing the implicit conditioning on X(t) = xt
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and subtracting X(t) from both sides, letting dX(t) = X(t + dt) −X(t) we obtain an

equation of the form

dX(t) = Sc(X(t))dt+
√

S diag{c(X(t))}SᵀdW (t), (3.12)

where W (t) tends to an N -dimensional Wiener process as dt → 0, c(·) is the

M -dimensional vector [c1(·), ..., cM (·)], diag{c(X(t))} is a matrix with c(X(t)) along the

main diagonal, and S is the M by N matrix of stoichiometries.

At first glance it seems heroic to assume the existence of a time-scale that con-

tains both a small and large number of reactions. However, the first condition is only

indirectly an assumption on the number of reactions and may be rephrased as relatively

small changes in the population sizes of each species, which is clearly helped by large

population sizes. The second assumption requires large absolute numbers of reactions

and similarly relies on large enough population sizes. Hence, one can expect the CLE to

be a good approximation of systems where population sizes are large enough for the two

assumptions to be mutually realistic and useful when population sizes are small enough

to disobey laws of mass action.

Another limitation of the CLE is that, depending on the functional form of the

diffusion coefficient, the variance of the jth component is not necessarily zero for Xj(t) =

0, meaning that there is some positive probability for Xj(t) < 0. This requires some

caution as the CLE is almost always used to model non-negative quantities. In fact, it can

be shown that solutions break down in finite time (Schnoerr et al., 2014). Nonetheless,

the CLE provides a description that is easier to work with, however, analytical solutions

and closed form transition densities are only available for a small class of diffusion

processes, meaning inference is again non-trivial.

An approach to obtaining closed form transition densities is provided by the so-

called Linear noise approximation (LNA). Wallace (2010) provides a simplified derivation

the LNA, originally derived by Kurtz (1971) from the forward equation of the MJP, but

with the novel interpretation as an approximation to the CLE. The key feature of the

LNA is that the non-linear rate functions are approximated by their first order Taylor

expansion about the deterministic limit of the process. This yields Gaussian transition

densities as the approximation is linear in the state variable and the diffusion term does

not depend on the current state. This was further developed and exploited for Bayesian

inference by Komorowski et al. (2009), Finkenstädt et al. (2013), Stathopoulos and

Girolami (2013) and Fearnhead et al. (2014). Additionally, experimental data consist of

observations at discrete time points, often observed with some measurement error. In
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Section 3.4 we shall review how the typically intractable likelihood for processes on the

form of Eq. (3.12) may be approximated under these conditions.

3.3 Distributed delay differential equations

Introducing delays provides a parsimonious way to model biochemical processes that

depend on a large number of reactions and species. A discrete delay involves letting

the rate at time t depend on the state at a single previous time point t − τ , while a

distributed delay formulation incorporates an entire past path, either on (−∞, t] or up

to a maximum delay time [t − τm, t]. Dependence on the past, not just on a discrete

time point but the entire trajectory is intuitively more realistic and this “memory” of

the past is typically introduced as a weighted average where the weighting is deter-

mined by a density function, hence the name distributed delay. Monk (2003) motivates

delay models by the fact that when incorporating negative feedback, they can exhibit

behaviours that match the oscillatory expression of genes without requiring additional

explicit modelling of intermediate steps such as transcription and protein synthesis. Ko-

renčič et al. (2012) show that a single negative feedback loop with discrete delay can give

rise to sustained oscillations in a model of the circadian gene Per2. However, distributed

delays, although deterministic in formulation, arise naturally in systems with intrinsic

stochasticity. Smith (2011) describes the “linear chain trick” with which a distributed

delay equation arises from a set of ODEs by the following theorem:

Theorem 1 (Linear Chain Trick, Smith (2011)). Let dx
dt = ẋ and consider the N + 1-

dimensional system of ODEs given for all t > 0 by

ẋ0(t) = f(xN (t))

ẋj(t) = c[xj−1(t)− xj(t)], j = 1, ..., N,
(3.13)

with possibly nonlinear, continuously differentiable f and initial value function φ : (−∞, 0]→
R,

x0(t) = φ(t)

xj(t) =

∫ ∞
t

φ(−s)gj,c(s)ds,
(3.14)

for t < 0, where

gN,c(u) =
cNuN−1e−cu

(N − 1)!
, u ≥ 0 (3.15)
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is the density of a gamma distributed random variable with shape N and rate c. We have

that

ẋ0(t) = f

(∫ ∞
0

x0(t− s)gN,c(s)ds
)

= f

(∫ t

−∞
x0(s)gN,c(t− s)ds

)
. (3.16)

Proof (Smith, 2011). Note that the gamma density satisfies g1,c(0) = c, and for j ≥ 2

gj,c(0) = 0, along with derivatives g′1,c(u) = −cg1,c(u) and g′j,c(u) = c(gj−1,c(u)−gj,c(u)).

Now define

xj(t) =

∫ t

−∞
x0(s)gj,c(t− s)ds, j = 1, 2, ..., N. (3.17)

For x1(t) we have that

ẋ1(t) = x0(t)g1,c(0) +

∫ t

−∞
x0(s)

d

dt
g1,c(t− s)ds = c[x0(t)− x1(t)] (3.18)

and similarly for j = 2, 3, ..., N

ẋj(t) =

∫ t

−∞
x0(s)

d

dt
g1,c(t− s)ds

=

∫ t

−∞
x0(s)c[gj−1,c(t− s)− gj,c(t− s)]ds

= c[xj(t)− xj−1(t)].

(3.19)

From a modelling perspective, Theorem 1 allows for examining the dynamics of x0

without explicit modelling of the intermediate steps in Eq. (3.13), i.e. j = 1, ..., N . The

final product x0 is instead considered to be available after a random delay with mean c/N

and variance c/N2. In the context of biochemical processes with low molecule numbers,

this interpretation contains a link to the stochastic nature of molecular interactions as

the time at which a molecule has progressed through the intermediate steps is random.

That is, we may transform the system specified by a single non-linear reaction and N

first order reactions,

X0
f(XN )−−−−→ X1

X1
c−−−−→ X2

...

XN−1
c−−−−→ XN

(3.20)

32



to the lower dimensional system

∅
f(

∫∞
0 X0(t−s)gN,c(s)ds)−−−−−−−−−−−−−−−→ X0. (3.21)

The new, delayed reaction assumes mass action laws for the intermediate species

that enter the distributed delay, i.e. that their dynamics are well-approximated by their

deterministic macroscopic rate equations. The key assumption is that the observable

species of interest, X0, is responsible for the molecular noise and its dynamics are accu-

rately modelled through dependence on the deterministic mean trajectory of the interme-

diate species. If in addition the usual assumption of the existence of a macroscopically

infinitesimal time scale holds, the reduced CRN in Eq. (3.21) may be approximated

using the CLE.

3.4 Likelihood approximation for SDEs

In this section we shall review a likelihood approximation for CLE’s that are non-linear

and non-Markovian due to the incorporation of a distributed delay. Additionally, the

process may be observed indirectly with Gaussian measurement errors.

3.4.1 Extended Kalman-Bucy filter for CLE’s with distributed delay

Bayesian parameter inference requires computing the posterior distribution of parame-

ters given data. For discrete-time Gaussian state space models the likelihood is avail-

able using Kalman filtering (Kalman, 1960), and in a continuous time setting using the

Kalman-Bucy filter (Kalman and Bucy, 1961). Computing the likelihood of the CLE is

challenging as the transition densities are typically not available in closed form. Calder-

azzo et al. (2018) recently derived a filtering approach to approximate the likelihood for

the CLE of models that accommodate non-linear dynamics and distributed delays using

the LNA. Consider a CLE with distributed delay, for computational purposes truncated

at some maximum delay time τm, given by

dX(t) =f

(∫ t

t−τm
X(s)gp,a(t− s)ds,X(t)

)
dt

+

√
A

(∫ t

t−τm
X(s)gp,a(t− s)ds,X(t)

)
dW (t).

(3.22)
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Here f = S h(·) and A = S diag{h(·)}Sᵀ which reduces the dimensionality of the system

from P reactions to N species, as in Eq. (3.12).

Replacing f and A by their first order Taylor expansions about the deterministic

mean ρ(t) and assuming that X(0) ∼ N (ρ(0), P (0)) the following, approximate Gaussian

transition densities are obtained,

X(t) ∼̇ N (ρ(t), P (t)), (3.23)

where the mean and covariance are given by

dρ(t) =f

(∫ t

t−τm
ρ(s)gp,a(t− s)ds, ρ(t)

)
dt

dP (t) =Jf

(∫ t

t−τm
ρ(s)gp,a(t− s)ds, ρ(t)

)
P (t)dt

+ P (t)ᵀJf

(∫ t

t−τm
ρ(s)gp,a(t− s)ds, ρ(t)

)ᵀ
dt

+A

(∫ t

t−τm
ρ(s)gp,a(t− s)ds, ρ(t)

)
dt,

(3.24)

and Jf is the Jacobian of f (Calderazzo et al., 2018). Approximate solutions to the

LNA mean and covariance equations can be obtained numerically using e.g. the Euler

method. With a suitable choice of time-step δt and by approximating the integral of the

delay with a discrete sum, the numerical solution of the mean equation ρt is propagated

with

ρt+δt = ρt + δtf

 τm∑
s=δt,2δt...

ρt−sgp,a(s)δt

 , (3.25)

and similarly the covariance.

Inferring parameters of a model describing the dynamics of a set of chemical

species from observations at discrete times, typically measured with noise, requires an

additional measurement model. Assume that X(t) is the molecular concentration of

a species of interest and is proportional to the light signal generated by a fluorescent

reporter protein, perturbed by additive Gaussian noise generated by signal amplification

in the measuring equipment. We assume that this measurement process can be expressed

as

Yt = κ

∫ t

t−∆t
X(s)ds+ εt, εt ∼ N (0,Σε), (3.26)

where κ > 0 is a scaling parameter between light intensity and molecular concentration
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and ∆t is the time between observations, as well as the time during which a camera is

recording photons from the reporter to make the measurement Yt.

We shall now make the assumption that the continuous-time process can be

suitably approximated by some discretization at small intervals such that

X0:T = [X0, Xδt, X2δt, , ..., XT ].

The discrete-time approximation is crucial for computational purposes in the empirical

applications presented in the following chapters and thus, whenever we refer to the

stochastic distributed delay differential equation a suitable discrete-time approximation

is invoked. In the final section of the present chapter some aspects of the choice of

discretization time-step are investigated. We typically have that δt < ∆t, i.e. the

frequency at which observations are received is too coarse to directly approximate the

transition density as being normally distributed on that time scale. While ∆t is often

predetermined by experimental procedures the choice of δt is flexible in the sense that

we only require ∆t/δt to be an integer. The measurement process in Eq. (3.26) can

then be approximated by

Yt = κF̃X(t−∆t+δt):t + εt, εt ∼ N (0,Σε), (3.27)

where F̃ is a ∆t/δt by N matrix averaging the unobserved states over ∆t. For ease of

notation, let κ be absorbed into F̃ and define κF̃ = F while still treating F̃ as fixed and

κ as part of the parameter set.

Propagating Eq. (3.24) gives an estimate of the mean and variance of the con-

ditional distribution of the unobserved states given observations and parameters θ until

time t, π(X(t+∆t−τm):(t+∆t)|Y0:t, θ), which is subsequently updated by conditioning on

Yt+∆t using the Kalman update

ρ∗(t+∆t−τm):(t+∆t) = ρ(t+∆t−τm):(t+∆t) + C(yt+∆t − Fρt+∆t)

P ∗(t+∆t−τm):(t+∆t) = P(t+∆t−τm):(t+∆t) − CFPt+∆t,(t+∆t−τm):(t+∆t)

(3.28)

where

C = P(t+∆t−τm):(t+∆t),t+∆tF
ᵀ(FPt+∆tF

ᵀ + Σε)
−1. (3.29)

Note that an initial estimate is required of ρ∆t:τm and P∆t:τm , which can either be

obtained using some initial data model that does not contain a delay or by starting to

propagate Eq. (3.24) at t = τm + ∆t and thus using the observations during t = [0, τm]
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as initialisation.

For parameter estimation we are interested in evaluating the marginal likelihood

of parameters given observations. Let θ denote the set of parameters of interest. Then

L(θ;Y1:T ) = π(Y1:T |θ) =
∏T
t=1 π(Yt|Y1:t−1, θ), known as the prediction error decomposi-

tion (first given by Schweppe (1965), see Durbin and Koopman (2012, Chapter 7) for

a modern treatment). We have Gaussian errors and E(Yt|Y1:t−1, θ) = Fρ(t−∆t+δt):t, and

Var(Yt|Y1:(t−1), θ) = FP(t−∆t+δt):tF
ᵀ + Σε. Letting et = Yt − Fρ(t−∆t+δt):t denote the

prediction error we can write the marginal log-likelihood, up to an additive constant, as

logL(θ;Y1:T ) = −1

2

T∑
t=1

[log |FP(t−∆t+δt):tF
ᵀ + Σε|+ eᵀt (FP(t−∆t+δt):tF

ᵀ + Σε)
−1et] + c,

(3.30)

where the required terms are calculated at each iteration of the filtering procedure,

and the resulting sum is interpreted as a function of the parameters given the fixed

observations.

3.5 Bayesian Inference

In this section we present a short review of the general ideas underlying Bayesian statis-

tics, which will be the main mode of inference throughout the rest of the thesis. Lesaffre

and Lawson (2012) provide a comprehensive introductory text on the subject from a

biostatistics perspective and for the initiated statistician Gelman et al. (2013) is highly

recommended and followed in this exposition.

Bayesian statistics provides a principled approach to incorporate expert knowl-

edge regarding parts of the analysis through the use of prior distributions. Inference

begins by specifying a full probability model for the problem being studied. The word

full refers here to the fact that to proceed, a joint probability distribution is required,

not just for data, Y, but for the parameters, θ, one wishes to infer. The probability

model for the unknown parameters are referred to as prior distributions, which we shall

denote π(θ), and the goal is to compute a posterior distribution π(θ|Y) by combining

the assumed probability model with observational data. To this end, Bayes’ theorem is

applied, which states that

π(θ|Y) =
π(Y|θ)π(θ)∫
Θ π(Y,θ)dθ

. (3.31)

The numerator contains the full probability model, factored as the probability of observ-

ing data Y given parameters θ, and the prior distribution on the parameters. Typically
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π(Y|θ) is replaced with L(θ; Y) to emphasize that the likelihood is considered a function

of the parameters for some fixed observed data, although the difference is semantic.

The denominator contains the marginal distribution of data, obtained by inte-

grating the joint probability distribution over the support of the parameters. As the

parameters are integrated out, the denominator is a fixed normalising constant. The

notation here uses boldface to highlight that data and parameters are often high di-

mensional, rendering the integral in Eq. (3.31) non-trivial unless specific care is taken

in the choice of probability model. If analytical tractability is required it may be rea-

sonable to use conjugate prior distributions which ensure that the posterior distribution

is from a known distributional family. For example a binomial likelihood and a beta

distribution prior on the probability parameter of the binomial model produces a beta

posterior distribution. However, the list of conjugate probability distributions is short

compared to the list of useful probability models, hence methods to handle intractable

posterior distributions are necessary. Markov chain Monte Carlo is one such approach

and is covered in the next section.

3.6 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms provide a method to draw samples from

intractable probability distributions. A rapid increase in computational power available

in the average workstation coupled with large scale development of the theory behind

MCMC algorithms has lead to a massive increase in their practical relevance, often

being the tool-of-choice for the Bayesian statistician to explore intractable posterior

distributions.

The idea is that it is in many cases easier to construct a Markov chain with a

given stationary (target) distribution compared to directly sampling from that target

distribution. Theoretical justification for sampling using MCMC was initially developed

by Tierney (1994) who provided a Markov chain central limit theorem (CLT) and Chan

and Geyer (1994) who relaxed the required conditions. A good review of the field is given

by Jones (2004). Sampling using MCMC relies on being able to generate a Markov chain,

X(t) with stationary distribution f . We require a law of large numbers, such that for a

function h with finite variance,

lim
t→∞

h̄t = lim
t→∞

1

t

t∑
i=1

h(X(i)) =

∫
X
h(X)f(X)dX = Ef [h(X)], (3.32)
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and a CLT such that √
t(h̄t − Ef [h(X)])

d−→ N (0, σ2
h), (3.33)

where the variance of the limiting distribution is given by

σ2
h = Varf (X(0)) + 2

∞∑
i=1

Covf [h(X(0)), h(X(i))]. (3.34)

The law of large numbers lets us use h̄t to estimate the expectation Ef [h(X)] and the

variance of the CLT tells us how good such an estimate is expected to be. Estimating

the variance σ2
h is not straightforward, but in Section 3.6.4 one approach is reviewed in

detail.

The result obtained by Chan and Geyer (1994) establishes a CLT for geometrically

ergodic Markov chains, i.e. those where the total variation distance to the stationary

distribution f can be bounded by a geometric series. Formally, let F denote the collection

of events for which the target distribution assigns probabilities and let f (t)(x,A) =

P(X(t) ∈ A|X(0) = x) denote the distribution of the chain at time t. The chain is

geometrically ergodic if there exists a nonnegative real-valued function M and a constant

0 < r < 1 such that

||f (t)(x, ·)− f(·)||TV := sup
A∈F
|f (t)(x,A)− f(A)| < M(x)rt (3.35)

for all x (Jones, 2004).

In the following sections we shall cover the Metropolis-Hastings algorithm, along

with two techniques that accelerate exploration of the target distribution: adaptive

MCMC which under fairly mild conditions allows for varying the proposal variance “on

the go”, often decreasing the number of iterations required in practice and reducing the

amount of tuning required for the algorithm to work adequately. We also cover delayed

acceptance MCMC, which achieves a speed-up by carefully choosing when to evaluate

an expensive target density and when to approximate it.

3.6.1 Metropolis Hastings

Originally described by Metropolis et al. (1953) and generalized into the well known

Metropolis Hastings (MH) algorithm by Hastings (1970) has by now become a rich class

of algorithms where a thorough treatment is given by (Robert and Casella, 2004, Chapter

7). For notational simplicity, this section uses X and Y for random variables of interest,

not for data. The reader is urged to keep in mind that the algorithms described here
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are often used in Bayesian inference to explore a posterior distribution, in which case

the the random variable of interest is the parameters, θ, of the probability model. With

abuse of notation in mind, let X denote a random variable of interest with realizations

x and probability density f(x), and let Y denote proposals with density q(y). For the

target density f and proposal density q such that the ratio f(y)/q(y|x) is known up

to a constant free of x, the goal is to generate an ergodic Markov chain x(t) that has

stationary distribution f . A general statement of the algorithm is given in Algorithm

(2).

Algorithm 2 Metropolis-Hastings algorithm

Initialise x1 and t = 1

while t < Tmax do

Generate a proposal Yt ∼ q(y|xt)
Take

xt+1 =

Yt, with probability α(xt, Yt)

xt, with probability 1− α(xt, Yt)

Set t := t+ 1

end while

The acceptance probability is given by α(xt, Yt) = min{ f(y)
f(x)

q(x|y)
q(y|x) , 1}, which, if

the proposal distribution is taken to be symmetric around xt, reduces to α(xt, Yt) =

min{ f(y)
f(x) , 1}. A common symmetric proposal density is the Gaussian, centred on the

current state of the chain. I.e. proposals are given by Yt ∼ N (xt, σ
2). This algorithm is

referred to as Random Walk Metropolis (RWM) (Robert and Casella, 2004) and in the

next section we shall discuss choice of variance for the RWM proposal kernel.

3.6.2 Adaptive MCMC

While the proposal q is close to arbitrary in theory and the mathematical justification

of MH algorithms rely on asymptotics, in practice significant efficiency gains (in terms

of mixing and convergence) can be achieved by a careful choice of the variance of the

proposal distribution. In the case of RWM, if the variance is too low most proposals will

be accepted but exploring the target distribution takes a long time, i.e. the mixing is

slow. On the other hand, if the variance is too large very few proposals will be accepted

and the exploration of the target distribution is again slow. These observations hint

at the fact that the asymptotic acceptance rate of the algorithm is a useful measure of
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its efficiency, which can be estimated by the proportion of accepted proposals while the

algorithm is running (Roberts and Rosenthal, 2001).

Most of the early results are with regards to choice of σ for proposal distri-

butions of the form N (x(t), σ2Id), where d is the dimension of the target distribu-

tion, i.e. RWM algorithms. Under the assumption of a target density of the form

f(x1, x2, ..., xd) = g(x1)g(x2) . . . g(xd) Roberts et al. (1997) proved that the optimal ac-

ceptance rate as d→∞ is 0.234, attained by scaling the variance of the target by 2.382.

These tangible numbers have since proved to be robust to various relaxations: the class

and dimension of the target distribution, where 0.234 is close to optimal in dimensions

as low as d = 5 and various families of distributions; non-spherical target densities where

the optimal proposal distribution is given by N (x(t), 2.382Σ), i.e. matching the target

density covariance and applying the same scaling constant to achieve an asymptotic

acceptance rate of 0.234. However, if the target distribution is one dimensional, e.g.

in the case where a Metropolis-within-Gibbs algorithm samples individual components

conditionally on the rest of the target distributions components, the optimal acceptance

rate is instead closer to 0.44 (Roberts and Rosenthal, 2001).

These theoretical optimality results have given rise to a large body of literature on

adaptive MCMC, which is already a broad class of algorithms which share the common

feature that the proposal variance is tuned automatically by some empirical criterion of

optimality, often the acceptance rate (Haario et al., 2001). It is important to note that

letting the proposal distribution depend on the past trajectory of the chain by defini-

tion destroys the Markov property, however, various theoretical results on ergodicity of

adaptive MCMC have been developed (Haario et al., 2001; Andrieu and Moulines, 2006;

Roberts and Rosenthal, 2007) that give conditions around which adaptive algorithms

can be constructed in practice. Roberts and Rosenthal (2007) proved that asymptotic

convergence holds under the conditions of Diminishing Adaption (DA) and Containment,

and Rosenthal (2011) notes that as the latter holds for almost all adaptive schemes in

very general settings it is DA that in practice should be the main concern. The DA

condition requires that the total variation distance for successive proposal kernels goes

to zero over the entire support, formally that

lim
t→∞

sup
x∈X
||PΓt+1(x, ·)− PΓt(x, ·)||TV = 0 in probability, (3.36)

where PΓt is the transition kernel of the chain with adaptive parameters Γt at iteration t

and X is the support of x. This condition is satisfied if the magnitude of adaption done

at iteration t goes to zero as t→∞. In practice this is easily incorporated by letting the
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adaption amount depend inversely on t or simply stopping the adaption at some point

in the chain (Rosenthal, 2011).

An adaptive RWM algorithm, inspired by Atchadé and Rosenthal (2005) and

Roberts and Rosenthal (2009) is given in Algorithm (3).

Algorithm 3 Random walk Metropolis algorithm with adaptive proposal variance

Initialise x1, γ1, and t = 1

while t < Tmax do

Draw Yt ∼ N (xt−1, γtΣ)

Draw Ut ∼ Unif(0, 1)

if ut < min(f(yt)/f(xt−1), 1) then

Set xt = Yt

else

Set xt = xt−1

end if

if t mod n = 0 and t < S then

Calculate proportion pt of accepted proposals in the last n iterations

if pt > 0.234 then

Set γt+1 = exp{γt + min(c, t−1)}
else

Set γt+1 = exp{γt −min(c, t−1)}
end if

end if

Set t := t+ 1

end while

Here the adaption targets the scaling, γ, of the proposal covariance matrix by

the exponential of a small constant c, is stopped completely after S iterations and is

diminishing before that. Adaption is done after examining the acceptance rate of batches

of n proposals.

3.6.3 Delayed acceptance MCMC

In the case where f(y) is expensive to evaluate but an approximation f∗x(y) is cheap,

Christen and Fox (2005) propose a modified algorithm that avoids evaluating f(y) for

proposals that are likely to be rejected. By introducing a nested step, proposals y are
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first promoted for possible acceptance with probability

α1(x, y) = min

(
q(x|y)

q(y|x)

f∗x(y)

f∗x(x)
, 1

)
(3.37)

and rejected with probability 1−α1(x, y). For promoted proposals a second acceptance

probability is calculated as

α2(x, y) = min

(
f(y)

f(x)

f∗x(x)

f∗x(y)
, 1

)
. (3.38)

The resulting algorithm accepts proposals with probability α1α2 but only calculates the

expensive f(y) for proposals that are likely to be accepted. Christen and Fox (2005) note

that while introducing a delayed acceptance step reduces statistical efficiency compared

to a standard Metropolis-Hastings algorithm it can increase the efficiency for a given

CPU time. In the ideal case the delayed acceptance gives a speed-up corresponding to

the inverse of the acceptance rate of the algorithm. This occurs when the approximation

is good such that α2 ≈ 1 and the computational cost of evaluating f∗x is negligible

compared to f .

Delayed acceptance algorithms have been used successfully for inference in stochas-

tic kinetic models by Golightly et al. (2015) who use a particle MCMC method with the

LNA as a cheap likelihood approximation in a nested step and (Calderazzo et al., 2018)

who increase the discretisation coarseness of the CLE in a nested step.

3.6.4 Gelman-Rubin convergence diagnostic & effective sample size

A widely used method to determine if a MCMC sampler has converged to the target

distribution is the Gelman-Rubin (GR) diagnostic (Gelman and Rubin, 1992). Let f

denote the target distribution with mean µ and variance σ2. The diagnostic relies on

generating multiple independent chains and using two different estimators of the target

variance that are strongly consistent, i.e. converge almost surely to σ2 as T →∞ where

T is the sample size, in this case the length of the chain. In finite samples the estimators

are biased, one from above and the other from below, and as the sample size increases

GR diagnostic formed by the square root of their ratio converges to unity. We now give

a definition of the univariate GR diagnostic. Let m denote the number of chains and let

Xi,t denote the state of the ith chain at iteration t. Consider the quantities

X̄i =
1

T

T∑
t=1

Xi,t, µ̂ =
1

m

m∑
i=1

X̄i
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the within-chain mean and overall mean respectively, and similarly

s2
i =

1

T − 1

T∑
t=1

(Xi,t − X̄i)
2, s2 =

1

m

m∑
i=1

s2
i

the within-chain and overall sample variance. As MCMC samples typically exhibit

positive autocorrelation, s2
i (and s2), while asymptotically consistent, underestimate

the variance of the target distribution in finite samples. The sample variance of sample

means can be estimated from the m chains by

S̃

T
=

1

m− 1

m∑
i=1

(X̄i − µ̂)2

which in turn yields an estimator for σ2 given by

σ̂2 =
T − 1

T
s2 +

S̃

T
,

that is biased from above if the chains have over-dispersed starting conditions relative

to the target density.

The GR diagnostic is constructed as

R̂ =

√
σ̂2

s2
. (3.39)

For observed R̂ close to 1, as a rule of thumb R̂ < 1.1, the sampler is terminated and

the output used for scientific investigation.

With the rise of high-dimensional inferential problems, e.g. Bayesian hierarchical

modelling of big spatio-temporal data sets, the computational cost of running multiple

chains is increasingly prohibitive as the time spent in the transient phase typically grows

with the dimension of the target density. This problem is exacerbated by the fact that the

GR diagnostic requires over-dispersed starting conditions which means that to calculate

it requires intentionally initialising the sampler in regions of low probability. As the

iterations the chains spend in the transient phase have to be treated as burn-in and

discarded, one would rather devote a given computational budget to a single chain such

that a higher proportion of the iterations will be spent at stationarity compared to the

transient phase.

Vats and Knudson (2018) propose an alternative construction of the GR diagnos-

tic. By replacing the original estimator S̃ by the lugsail batch means (LBM) estimator
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of Vats and Flegal (2018) the computational requirements of the original GR diagnostic

are alleviated. Let T = a · b where a is the number of batches of size b and again assume

m independent chains. Define the kth batch mean for the ith chain as

X̄i,k =
1

b

kb∑
t=(k−1)b+1

Xi,t, k = 1, ..., a.

For the ith chain the batch means (BM) estimator of the CLT variance, τ2
T = T ·Var(X̄i)

is given by

τ̂2
b,i =

b

a− 1

a∑
k=1

(X̄i,k − X̄i)
2

and the LBM estimator by

τ̂2
i,L = 2τ̂2

b,i − τ̂2
b/3,i,

where τ̂2
b/3,i is the BM estimator using batch size b/3. The LBM estimates for each chain

are combined to form an estimator for τ2
T by taking their simple averages,

τ̂2
L =

1

m

m∑
i

τ̂2
i,L.

A biased-from-above estimator of σ2 is given by

σ̂2
L =

T − 1

T
s2 +

τ̂2
L

T

and an alternative GR diagnostic by

R̂L =

√
σ̂2
L

s2
. (3.40)

Vats and Knudson (2018) note that the large sample variance of the LBM estimator

τ̂2
L is free of m. This means that if a is taken to increase with T we are in principle

free to take m = 1. In addition, the estimator is biased-from-above in finite samples

by construction meaning that over-dispersed initialisation is not required. They further

propose a direct multivariate generalization of the alternative GR diagnostic in Eq.

(3.40). The multivariate diagnostic for a p-dimensional Markov chain is constructed by
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replacing all variance estimators by their covariance counterparts and calculating

R̂(p) =

√
T − 1

T
+

det(Ŝ−1τ̂L)(1/p)

T
(3.41)

where Ŝ is formed by calculating the sample mean of sample covariances of the m chains

and τ̂L is the LBM estimator of T · Cov(X̄i).

While a converged Markov chain gives samples from the target density, those

samples often have non-negligible positive autocorrelation by construction. The effective

sample size (ESS) is a widely used measure to determine the sample size of an i.i.d.

sample with the same dispersion as the serially correlated Monte Carlo sample. Several

definitions and estimators of ESS are available in the literature. Gong and Flegal (2016)

consider a univariate construction of ESS given by

ESS = T
σ2

τ2
∞

(3.42)

which can be estimated consistently by replacing σ2 and τ2
∞ by their respective consistent

estimators. Vats et al. (2019) consider a multi-chain generalization given by

ESS(p) = mT

(
det(Σ)

det(τ∞)

)1/p

, (3.43)

and Vats and Knudson (2018) link the ESS to the lugsail GR diagnostic by considering

the lugsail ESS estimator, given by

ÊSS
(p)

L = mT

(
det(Ŝ)

det(τ̂L)

)1/p

. (3.44)

If we consider the case m = 1 we can write

R̂L ≈

√
ÊSSL + 1

ÊSSL
, (3.45)

which is a very good approximation for any resonable chain length T .

It is worth noting that the estimator of ESS in Eq. (3.44), and similarly the

alternative GR diagnostic in Eq. (3.45) depends heavily on the choice of batch size. The

estimate can vary dramatically even within the span of commonly used bT 1/3c to bT 1/2c.
A conservative choice is to calculate R̂L or ÊSS

(p)

L for several batch sizes and report the
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worst case scenario ESS.

3.7 Stability of dynamical systems

Stability analysis is concerned with the behaviour of a system of ODEs in equilibrium

when subjected to some small perturbation. A steady-state solution x∗, or a fixed point

is a solution to the system ẋt = f(xt) such that f(x∗) = 0. Strogatz (2018) gives a

treatment of the principle of linearised stability analysis about a fixed point that we

follow here. Let xt = x∗ + εt be a solution to the nonlinear ODE

ẋt = f(xt). (3.46)

We can examine the behaviour of the perturbation ε(t) by noting that because x∗ is a

constant ε̇ = ẋ. Taylor expanding f about x∗ gives

f(x∗ + ε) = f(x∗) + εf ′(x∗) +O(ε2). (3.47)

Because x∗ is a fixed point f(x∗) = 0 by definition. Now if εt is sufficiently small we

have

ε̇t ≈ εtf ′(x∗) (3.48)

which is a linear ODE for the (small) perturbation εt to the ODE in Eq. (3.46) close

to its equilibrium. There are three cases for the dynamics of εt. If f ′(x∗) < 0 the

perturbations decay, if f ′(x∗) > 0 the perturbations grow, or if f ′(x∗) = 0 the nonlinear

terms dominate and linearised stability analysis cannot provide any classification of the

dynamics.

For a system of ODEs the linearized stability analysis generalises to examining

the eigenvalues λ of the Jacobian of the system, evaluated at the equilibrium solution

of interest. Higher dimensional systems may exhibit chaotic behaviour, however, by

the Poincaré-Bendixson theorem, continuous systems in R2 do not (see e.g. Teschl

(2012)). For these systems, complex eigenvalues correspond to oscillations with period

given by 2π/Imag(λ) and the real part of the eigenvalues determine stability of the

oscillations. Smith (2011) gives a thorough review of stability results for systems of

ODEs, particularly the case max Re(λ) < 0, where λ are the eigenvalues of the Jacobian,

evaluated at the fixed point x∗, then x∗ is locally asymptotically stable, meaning that near

x∗ there is a b > 0 such that |φ−x∗| < b implies that limt→∞ xt(φ) = x∗. That is, if the

initial value φ is sufficiently close to the equilibrium any solution with initial value φ will
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converge to the equilibrium (the omega limit point is the equilibrium solutions). Global

asymptotic stability is a stronger result in which case the omega limit set consists of the

(unique) equilibrium and convergence is guaranteed for any initial value function, not just

those sufficiently close to equilibrium. In some cases, e.g. linear time-invariant systems,

the rate of convergence can be bounded by |xt(φ)− x∗| ≤ K|φ− x∗|emax Re(λ)t/2, t ≥ 0,

which implies exponential stability. The bounded convergence rate allows for interpreting

|max Re(λ)|−1 as the characteristic timescale (CTS), i.e. the order of magnitude of

the time for perturbations to decay and thus a measure of the sensitivity to noise. If

max Re(λ) > 0, the equilibrium x∗ is unstable when subjected to a small perturbation,

which for complex eigenvalues correspond to solutions consisting of either a set of periodic

orbits or exploding oscillations.

3.7.1 Robustness of biological systems

While robustness is a widely studied concept in the context of biological systems, several

definitions are available in the literature. Kitano (2007) uses the following definition:

“robustness is a property that allows a system to maintain its functions against internal

and external perturbations” and proposes a mathematical formalisation of the robust-

ness, R, of system s , with regard to some property a of the system against a set of

perturbations P . This robustness is defined as

Rsa,P =

∫
P
πP (p)Ds

a(p)dp (3.49)

where πP (p) is the probability distribution of perturbation p and Ds
a(p) is a function that

evaluates to what degree perturbation p impairs property a. Depending on the specific

system and property, the evaluation function can be boolean, such that Ds
a(p) = 1

when property a is present under perturbation p and Ds
a(p) = 0 when perturbation p

abolishes property a. Alternatively, D can return a ratio given by fa(p)/fa(0) where

fa(0) is the system output under unperturbed conditions. In either case, Eq. (3.49) is the

expected degree with which the system remains intact with respect to property a when

its parameters are subjected to perturbations characterized by πP . A desirable property

of the robustness definition is that it takes values 0 ≤ Rsa,P ≤ 1, regardless of system

or property. It is thus not specific to π, s or a and in principle allows for comparing

the relative robustness of two or more separate systems with different properties and

perturbation mechanisms.

A word of caution is required here however. In this context the term robustness
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should not be interpreted in the statistical sense, i.e. an estimator that is insensitive

to outliers or deviations from distributional assumptions (Huber, 2004). We emphasise

that the definition provided in Eq. (3.49) instead quantifies some output of a model

when the parameters are varied.

3.7.2 A Bayesian measure of biological robustness

Woods et al. (2016) propose a measure of robustness for evaluating the effect of noise on

transcriptional oscillators in the context of model design. By combining a MCMC sam-

pler that explores model space with the formalisation of robustness by Kitano (2007),

where the perturbation distribution is taken to be a Bayesian prior distribution, the au-

thors compare relative robustness between a large number of models using the Bayesian

model evidence.

We propose a variation of Eq. (3.49), still within the framework of Kitano,

obtained when considering a single model and the distribution of perturbations is instead

taken to be the posterior distribution of parameters given observed data. Our choice of

πP = π(θ|Y) is motivated by the fact that Bayesian inference produces a distribution

of statistically plausible values of θ and thus incorporates parameter uncertainty in a

formal manner while conditioning on empirical data.

To study the robustness of a dynamical system with respect to oscillations we

propose an evaluation function Iω that takes the value 1 when the parameters θ give rise

to a limit cycle and 0 when the system exhibits damped oscillations for θ, i.e. when the

long-run solutions converge to an equilibrium. Formally,

Iω(θ) =

1 ω is a periodic orbit

0 ω = x∗
(3.50)

where ω is the omega limit set and x∗ the equilibrium solution. With this choice of

evaluation function we define the robustness of oscillations by

Plim. cyc =

∫
Θ
π(θ|Y)Iω(θ)dθ, (3.51)

where π(θ|Y) is the posterior distribution of parameters θ given the observed data Y.

The definition in Eq. (3.51) coincides with the Bayesian posterior probability of a limit

cycle and in Chapters 4 and 6 we shall use this statistic to infer the robustness of os-

cillations for a distributed delay, negative feedback model of circadian gene expression.

Estimates of Plim. cyc can be obtained straightforwardly by evaluating the indicator func-
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tion and storing the results at each iteration of an MCMC algorithm targeting the model

parameters. The resulting chain can then be averaged to produce a posterior mean es-

timate P̂lim. cyc.

The resulting estimates can either be used for model validation, i.e. under the

assumption that data are generated by a limit cycle oscillator, we may wish to verify

that the model is consistent with that behaviour. The model validation view is similar to

the ideas of Woods et al. (2016), the only difference being conditioning on observed data

through Eq. (3.51). On the other hand, one may, under the premise that the model is

the true data generating process, make inferences regarding the dynamics of the system

of study, obtaining e.g. credible intervals for the probabilities for some type of dynamic

behaviour.

3.8 Discussion

In this chapter we have reviewed most of the mathematical and statistical tools and

theory that are used throughout the remaining chapters. We show how to approximate

a detailed chemical reaction network involving several chemical species that follow evo-

lution laws given by the CME by a CLE of lower dimension but with a distributed delay.

Furthermore we review methodology developed by Calderazzo et al. (2018) that allows

approximating the likelihood of such a distributed delay CLE when observations are

discrete and corrupted with additive Gaussian noise.

MCMC methodology, specifically the random walk Metropolis algorithm, adap-

tive MCMC and the delayed acceptance algorithm of Christen and Fox (2005) were

reviewed in Section 3.6. These methodologies shall be used in the following chapters

to sample intractable distributions in the context of Bayesian inference. Random walk-

type proposals typically give rise to samples with positive autocorrelation and hence

underestimate the variance of the target distribution. This fact motivates the review

of the Gelman-Rubin diagnostic and effective sample size. As we shall see in the up-

coming chapters, inference for spatio-temporal imaging data presents a computationally

expensive problem. The lugsail batch means estimator allows for obtaining an estimate

of the effective sample size without running multiple MCMC chains which would be

prohibitively expensive in our applications.

We end the chapter with a review of stability analysis. The concept of classifying

the behaviour of a dynamical system as either stable limit cycle or damped (noise driven)

oscillations is connected to a formalisation of biological robustness of Kitano (2007). Us-

ing that connection, we propose a novel, empirical measure of robustness of oscillations,
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corresponding to the Bayesian posterior probability of limit cycle oscillations.
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Chapter 4

A spatially independent model for

Cry1-luc data

In this chapter we apply methodology developed in Chapter 3 to imaging data of the

circadian gene expression of Cry1 from mouse SCN. A recently proposed model for auto-

regulatory dynamics of circadian genes is derived and its validity for Cry1 is motivated

from biological and mathematical perspectives. Some limitations of the model are dis-

cussed and stability criteria for the corresponding deterministic reaction rate equation

are derived.

In an empirical setting, we show how to elicit an informative prior distribution

for the measurement noise variance in imaging data when reference “dark” recordings

from the camera are not available. Furthermore, an ad hoc two-stage prior distribution

is proposed for the light-to-molecule scaling parameter which mitigates some difficulties

associated with identification of molecular population sizes. Parameter estimation for

a large number of locations across the experimental replicate is achieved by combining

the MCMC methodology and Extended Kalman-Bucy filter from Chapter 3 with the

informative prior distributions.

The results are interpreted using (i) a clustering algorithm that classifies loca-

tions based on the posterior means of parameters associated with mRNA dynamics and

(ii) the measure of oscillatory robustness proposed in the previous chapter. Both meth-

ods are able to distinguish SCN neurons from adjacent tissues but the latter approach

provides the added benefit of parameter uncertainty quantification and a clear biologi-

cal interpretation. The chapter is concluded with a discussion of the limitations of the

methodology and findings, along with suggestions for further reasearch.
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4.1 Available Cry1-luc data

Cry1 is a key gene in the circadian TTFL in mammalian cells and its transcriptional

promotion is driven by CLOCK/BMAL1 binding to E-box motifs. Unlike Per1 and 2 it

lacks a calcium responsive element, hence the model employed in this chapter relies on

a purely auto-regulatory feedback loop. Available data consist of a video recording of

organotypic cross sections of mouse SCN, where Brancaccio et al. (2013) use a genetically

encoded luciferase construct (Cry1-luc) to image Cry1 expression. Tissue samples of

mouse SCN were kept in medium for 6 days while luminescence was recorded using an

EM-CCD camera with an exposure time of 0.5 hours (Brancaccio et al., 2013). Resulting

data consist of of 288 frames each around 350 by 200 pixels in size. The resolution is such

that a neuron is approximately the size of an 8 by 8 block of pixels and in the analysis

we consider super-pixels where 4 by 4 blocks are aggregated by taking their within-block

arithmetic mean for each frame. The purpose of aggregating pixels is to achieve a level

of stochasticity that approximately corresponds to that of single cell measurements, such

that the implied molecular population sizes are realistic.

The experimental procedure uses a luciferin substrate that is gradually consumed

throughout the experiment. This results in an approximately linear trend which is

removed by estimating the least squares linear trend for each super-pixel. Furthermore,

at some locations early peaks of luminosity are overexposed, resulting in a truncation

of data. This phenomenon is typically only seen in the first cycle and the effect on the

likelihood and subsequently the parameter estimates are assumed to be mitigated by

using the first 24 hours of data to initialise the model.

4.2 A stochastic distributed delay model for autorepres-

sive circadian gene regulation

We now combine the general filtering approach for delayed SDEs with the stochastic

transcription model proposed by Calderazzo et al. (2018). Let X0 denote the molecular

count of Cry1 mRNA, transcribed according to rate function ν̂(Xp) and degrading with

rate µ. The argument Xp is the copy number of a protein product that has undergone

transport between the cell nucleus and cytoplasm, dimerization with Per protein and

is available in the nucleus again to repress transcription of Cry1. Furthermore, let Xi,

i = 1, ..., p − 1 denote copy numbers of different species in the chain between mRNA

and transcription inhibitor. We assume that the intermediate reactions can be modelled
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with a common reaction rate α, resulting in the following set of reactions,

∅ ν̂(Xp)−−−−−→ X0

X0
βX0−−−−−→ ∅

Xi−1
aXi−1−−−−−→ Xi−1 +Xi

Xi
aXi−−−−−→ ∅,

(4.1)

for i = 1, ..., p, where the transcriptional inhibition is modelled using the Hill function

ν̂(Xp) =
R0

1 +
(
Xp
K

)n , (4.2)

where R0 is the maximum transcription rate in molecules per hour. The dissociation con-

stant K represents the number of molecules at which 50 percent inhibition is achieved,

and the Hill coefficient, n, represents the number of binding sites for the inhibitory com-

plex under strict assumptions, and more generally the degree of inhibitory cooperativity.

The Hill-function is widely used in modelling circadian oscillators (see e.g. Gonze and

Abou-Jaoudé (2013)).

The birth/death process above involving multiple intermediate species can be

represented as a univariate process using a distributed delay over the unobserved inter-

mediate species through the linear chain trick given in (Section 3.3, Theorem 1). This

provides a reduction of the number of reactions to two, namely

∅ ν(X)−−−−→ X

X
βX−−−−→ ∅

(4.3)

where X = X0,

ν(X) =
R0

1 +

(∫ t
−∞X(s)gp,a(t−s)ds

K

)n , (4.4)

and gp,a is a gamma density with shape parameter p and rate a.

While the biochemical process of interest involves a multitude of reactions and

species, the distributed delay formulation captures the auto-repressive behaviour of Cry1

on its own transcription without explicitly modelling the intermediate reactions such as

protein synthesis and transport. The approach is useful for empirical purposes as usually

measurements can be made of only a single species at any given time.
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The lack of CREs in the promoter region of Cry1 underpin the simplification

that transcriptional dynamics are driven by a purely auto-regulatory loop of delayed

Cry1 mRNA. Additionally, transcriptional induction by CLOCK/BMAL1 is assumed

approximately constant throughout the ciradian cycle, and is modelled by the maximum

transcription rate R0.

The corresponding CLE obtained by a Gaussian approximation that matches the

mean and variance of the Poisson-processes counting occurrences of the reactions in Eq.

(4.3) is

dX(t) =

 R0

1 +

(∫ t
−∞X(s)gp,α(t−s)ds

K

)n − βX(t)

 dt
+

√√√√√ R0

1 +

(∫ t
−∞X(s)gp,α(t−s)ds

K

)n + βX(t) dW (t)

(4.5)

where X(t) is approximate mRNA molecule count at time t as it is no longer integer-

valued and W (t) is a standard Wiener process.

We shall here review some common criticisms of the CLE that are applicable to

the model in Eq. (4.5). As the drift term scales with population size and the dispersion

term with square root of population size, exploding solutions can be ruled out with

the argument that as population size grows, the monotonically decreasing drift term

dominates the dynamics and forces the process towards the deterministic equilibrium,

given by the solution to ν(x) − βx = 0. In fact, large population sizes are exactly

the condition that allows for approximating the dynamics of the reaction network using

the deterministic reaction rate equation, which corresponds to the drift in Eq. (4.5).

However, a problem arises for population sizes close to zero. Due to the fact that

the dispersion term does not go to zero with population size, there is some positive

probability of reaching negative concentrations, which are of course unrealistic and an

undesirable property of the model. What is worse is that for sufficiently negative X(t),

solutions may break down altogether due to the problem of evaluating non-integer powers

of negative quantities. In fact, there are no general existence or uniqueness results

for solutions of CLEs where such breakdowns occur (Leite and Williams, 2019). In

the case of Eq. (4.5) the dispersion term vanishes for ν(X) = −βX(t) which at first

glance seems to prevent a breakdown, but as the process may reach negative values,∫ t
−∞X(s)gp,a(t− s)ds can take negative values such that breakdown occurs.
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Several modifications to the CLE to obtain existence and uniqueness of solutions

have been proposed. These include extending the domain to the complex numbers

(Schnoerr et al., 2014) and reflective boundaries that prevent the process from reaching

negative states (Leite and Williams, 2019). We argue however that for our purposes the

CLE as stated in Eq. (4.5) is adequate with the argument that it is a local approximation

to the much more cumbersome reaction network, in the sense that the transition densities

of the CLE are close to those of the CME for observed data. I.e. we are using the CLE as

a stepping stone to obtain an approximate likelihood for the well-posed set of reactions

in Eq. (4.1) and data that are generated under the laws of nature.

4.2.1 Stability analysis of the distributed delay single-cell model

The ideas of stability analysis, covered in Chapter 3, Section 3.7, have been extended to

e.g. nth-moment stability and stability in probability for stochastic dynamical systems

(see Khasminskii (2011) for a review). The general idea is to classify solutions as t→∞,

and, as discussed in the previous subsection, solutions to Eq. (4.5) may not be available

after the first time the process reaches negative values. We thus restrict our attention

to the stability of the macroscopic rate equation, in a sense studying the dynamics as

t→∞ and the reaction container volume Ω→∞, or big enough for negligible influence

of intrinsic noise.

The macroscopic rate equation (and LNA mean equation) corresponding to the

reactions in Eq. (4.3) is given by

ρ̇(t) = f

(∫ t

t−τm
ρ(s)gp,a(t− s)ds, ρ(t)

)
(4.6)

where

f

(∫ t

t−τm
ρ(s)gp,a(t− s)ds, ρ(t)

)
=

R0

1 +

(∫ t
t−τm ρ(s)gp,a(t−s)ds

K

)n − βρ(t). (4.7)

Due to the distributed delay, the differential equation in (4.6) is infinite dimensional.

Dependence on an entire portion of the past trajectory complicates the usual method of

studying the behaviour of its solutions, i.e. the approach described in Chapter 3, Section

3.7 where the linearised dynamics around a special, equilibrium solution ρ∗ are examined

and classified. It is easy to verify that the required derivative f ′(ρ∗) = dρ̇(t)/dρ∗ is in

fact an infinite dimensional gradient for any continuous solution ρ.

Various methods of studying the stability of distributed delay differential equa-
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tions are suggested by Hale and Lunel (2013) and reviewed by Bani-Yaghoub (2017) in

the context of biology and medicine. These include the extension of Lyapunov functions

to Lyapunov functionals, the method of characteristics using the Routh-Hurwitz crite-

rion, and the method of reduction to ODEs. In our case, reducing the equation to a

system of ODEs is straightforward as the distributed delay initially arose from a high

(but finite) dimensional system of ODEs through application of the linear chain trick

(Section 3.3).

By applying the linear chain trick “in reverse”, one may expand the macroscopic

rate equation into a system of ODEs, for 0 ≤ t < T

ρ̇0(t) = f0(ρp(t), ρ0(t))

ρ̇i(t) = fi(ρi(t), ρi−1(t)), i = 1, ..., p.
(4.8)

where

f0(ρp(t), ρ0(t)) =
R0

1 + (ρp(t)/K)n
− βρ0(t), (4.9)

and

fi(ρi(t), ρi−1(t)) = a[ρi−1(t)− ρi(t)], i = 1, ..., p. (4.10)

The resulting equations represent a p+ 1-dimensional monotone cyclic feedback system

(Mallet-Paret and Smith, 1990), meaning that flows through the system are unidirec-

tional, i.e. for some δi ∈ {−1, 1}, δi dfi(ρi,ρi−1)
dρi−1

> 0 for all i and ρi ∈ R+. Furthermore, the

sign of
∏p
i=0 δi characterizes whether the system as a whole exhibits positive or negative

feedback. Mallet-Paret and Smith (1990) prove that omega-limit sets of bounded orbits

of such systems can be embedded in R2 and thus admit a Poincaré-Bendixson theorem

ensuring global asymptotic stability. If additionally(
p∏
i=0

δi

)
det(−J) < 0 (4.11)

where J is the Jacobian of Eq. (4.9)-(4.10), omega-limit sets are either (i) the unique

fixed point or (ii) unique periodic orbits.

To show that Eq. (4.11) holds, we first note that in our case it is equivalent to

det(−J) > 0 as for any p ∈ N+ the system in Eq. (4.9)-(4.10) exhibits negative feedback,

i.e.
∏p
i=0 δi = −1. One may then note that the Jacobian of the system is a p + 1 by
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p+ 1 matrix with a specific structure, given by

J(ρ∗) =



−β 0 . . . 0 f ′0(ρ∗)

a −a 0 . . . 0

0 a −a 0 0
... 0

. . .
. . .

...

0 0 0 a −a


, (4.12)

where

f ′0(ρ∗) = −
nR0

(
ρ∗

K

)n
ρ∗
(

1 +
(ρ∗
K

)n)2 . (4.13)

Let A be the bidiagonal p by p sub-matrix obtained by deleting the first row and column

of −J(ρ∗). The determinant of A is trivially ap and additionally we have that β, a > 0

and f ′0(ρ∗) < 0. We thus conclude that

det(−J(ρ∗)) = β det(A)− (−1p)f ′0(ρ∗) det(−Aᵀ) = (β − f ′0(ρ∗))ap > 0 (4.14)

holds uniformly in ρ∗, i.e. Eq. (4.11) holds for any fixed point and as t → ∞ solutions

are either the unique positive equilibrium or unique periodic orbits. A necessary and

sufficient condition for the latter is given by Mallet-Paret and Smith (1990, Theorem

4.1) which in our case corresponds to J having at least two eigenvalues with strictly

positive real part.

The existence of a periodic orbit, or limit cycle, is largely determined by the

value of the Hill coefficient, n and delay dispersion σ2
Γ = p/α2. Letting nmin be the

minimum n for a periodic orbit and letting the delay distribution converge to a point

mass at the mean µΓ = p/a we have that nmin ↓ 1 if the degradation rates of all the

involved species are the same, i.e. β = a. In our case the degradation rate of the first

component is different from that of the intermediate states and thus nmin ↓ c where c

depends on some unknown function of the other parameters (Tyson, 2002). Generally,

a limit cycle may be created by increasing the Hill-coefficient or decreasing the delay

dispersion. With this in mind, we conclude that distributed delay systems exhibit weaker

oscillations, in the sense of a limit cycle, for a given Hill coefficient. We shall return to

properties of these two parameters in Chapter 6, where we explore entrainability, i.e. to

what degree a given perturbation phase shifts the system away from a limit cycle, and

discuss how varying degrees of entrainability may be modelled by a delay distribution

and nonlinearity.
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4.2.2 Measurement model and likelihood approximation

The model in Eq. (4.5) may be used to describe the evolution of the underlying mRNA

concentration but available data are measurements of light intensity emitted by the

reporter protein. In addition, a single measurement is the average light intensity during

a time interval, ∆t, corresponding to the camera exposure time required to record a single

frame. For the available Cry1-luc data, Yt, we have ∆t = 0.5 hours and continue under

the assumption that the measurement process is adequately modelled by discretising the

underlying states in representative tissues X(t) and parametrising the molecule count-

to-light by a multiplicative parameter κ. A Gaussian measurement error model produces

the following measurement equation (Calderazzo et al., 2018),

Yt = κFX(t−∆t+δt):t + ηt, ηt ∼ N (0, σ2
η), (4.15)

where F is a vector that averages X over t = t−∆t+δt, ..., t−δt, t and κ is a parameter

that scales the underlying molecular population size to light intensity.

Truncation of the delay distribution of the model in Eq. (4.5) at some τmax is

required to approximate the likelihood using the EKBF detailed in Section 3.4.1. We

argue that τmax = 24 hours is a suitable assumption, containing the negative feedback

to one circadian cycle. This is supported by the fact that previous estimates of the delay

distribution parameters on a single time series of Cry1-luc data produced a mean and

SD of 9.67 and 3.56, respectively (Calderazzo et al., 2018), placing 99.87 percent of the

probability mass below 24 hours.

Using the EKBF methodology in Section 3.4.1 to approximate the likelihood of

the model in Eq. (4.5) together with (4.15) additionally requires a choice of time grid

coarseness δt. While the process is univariate, the entire past path entering the dis-

tributed delay has to be updated at each iteration of the filter. This is equivalent in

computational cost to filtering a process with dimension equal to the number of evalu-

ation points of the distributed delay integral, given by τmax/δt. Specifically, evaluating

the covariance matrix of the past path is expensive as it involves multiplication of a

square matrix with a vector of length τmax/δt. The computational cost of the filter thus

scales with (τmax/δt)
2, meaning that for computational purposes we want τmax small

and δt large.

To investigate the trade-off between accuracy of the likelihood approximation

and computation time, data from the full multivariate birth/death process obtained

from the reactions in Eq. (4.1) are simulated using the stochastic simulation algorithm

(see Section 3.1.1) with biologically plausible parameter values, given in the caption
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of Figure 4.1. Counts of the species of interest are stored at the reaction times and

transformed into synthetic measurements by multiplying the counts by a pre-fixed value

of κ and, furthermore, averaging over a time grid equivalent to the camera exposure

time for each frame (0.5h) in available data. These synthetic measurements are subse-

quently corrupted with additive Gaussian noise with variance approximately deduced

from data to represent a somewhat realistic level (see Section 4.3.1). The likelihoods

of each of the eight parameters are then evaluated using the EKBF while holding the

other parameters fixed at their true simulation values. This procedure is repeated at two

time-discretisation levels, δt = 0.5 and δt = 0.1 to determine if there is a considerable

difference in the bias between the two levels. The results are reported in Figure 4.1.

The findings suggest that the bias is low for both levels of δt as the maximum

of the likelihood functions coincide well with the simulation values (given by the black

lines) for all parameters except the measurement error SD. The measurement error SD

exhibits slightly less bias for the coarser approximation δt = 0.5, possibly due to the

two consecutive approximations (reaction network to CLE, and CLE to discrete-time

process) introducing bias in opposite directions. The difference in bias is however small

relative to the curvature width and the measurement noise process can in fact be esti-

mated accurately outside of the state-space model (see Section 4.3.1). The shapes of the

likelihood functions are similar for the remaining parameters across the two choices of

δt, suggesting that the coarser grid of δt = 0.5 may be adequate in this application and

will be used in later chapters for comparison. Here, we resort to using a combination

discretisation schemes in a delayed acceptance step in the MCMC algorithm which ef-

fectively results in the finer approximation at a reduced computational cost. It is worth

noting that the computational cost for the likelihood evaluation with δt = 0.1 is roughly

25 times that of δt = 0.5.
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Figure 4.1: Likelihood approximation with varying discretisation coarseness of the un-
observed process X(t) and true simulation parameter values (black line). Parameter
values are set to R0 = 100, K = 100, µΓ = 8, σΓ = 3.27, n = 3, β = 0.25, κ = 2× 10−3,
ση = 5× 10−3.

4.3 Prior distributions

We generally use diffuse prior distributions, specified for the mean and SD of the delay

distribution µΓ, and σΓ, and the logarithms of the maximum transcription rate R0,

dissociation constant K and Hill coefficient n. The prior distribution for the logarithm

of the degradation rate is elicited from Yamaguchi et al. (2003) who infer the half-life of

the luciferase reporter construct. The same distribution for the degradation rate is used

by Calderazzo et al. (2018) where the variance is assumed to account for the reporter

process not being explicitly modelled. These prior distributions are summarised in Table

4.1.
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Table 4.1: Prior distributions for parameters of the transcriptional feed-
back loop and degradation.

µΓ σΓ logR0 logK log n log β

Unif(0, 24) Unif(0, 20) N (0, 10) N (0, 10) N (0, 10) N (−0.54, 0.25)

We additionally suggest two approaches to elicit informative prior distributions

for the measurement error dispersion π(ση) and light scaling parameter π(κ). The

method used to obtain π(ση), described in Section 4.3.1, is principled in the sense that

we do not require the data itself, but a reference recording from the experimental proce-

dure. However, in the absence of a reference recording we demonstrate how to substitute

it with the data itself, using a transformation that renders the data free of information,

other than that of the measurement error distribution.

The method to obtain an informative prior for the light scaling parameter π(κ)

is not principled in the sense of a judgement a priori analysing data. Instead we will

argue that it can be seen as an approximation to a hierarchical Bayesian model that

allows sharing statistical strength between the pixel-wise time series, which are assumed

independent within the modelling framework.

4.3.1 Measurement error dispersion

An informative prior distribution for the measurement error variance, σ2
η, can be elicited

from any replicate of the same experimental procedure. The CCD camera used for

measuring Cry1 concentration relies on collecting photoelectrons at discrete collection

sites called potential wells. The digital image is created when an amplifier transforms the

electric charge at each potential well into measurable voltage. The amplifier generates

so-called read noise with zero mean, independent of the number of recorded electrons,

which at low signal levels dominates other sources of measurement noise such as shot

noise that arises from the discrete nature of recorded electrons (Healey and Kondepudy,

1994). The video data is stored as a sequence of multichannel (red-green-blue) images,

resulting in two separate measurements of Cry1 concentration. The red and blue channel

thus contain the same signal and the differences in the two channels can be assumed to
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be dominated by realizations of camera read noise process. Consider

Y R
t = κ

∫ t

t−∆t
X(s)ds+ ηRt

Y B
t = κ

∫ t

t−∆t
X(s)ds+ ηBt

(4.16)

where Xt is the concentration of Cry1 mRNA at time t, Y R
t and Y B

t are the recorded light

intensities of the red and blue channel respectively and ηRt , ηBt is the measurement noise

in the respective channel. Further assume that V (ηRt ) = V (ηBt ) = σ2
η and Cov(ηRt , η

B
t ) =

0 for all t. Then

V [(Y R
t − Y B

t )/
√

2] = σ2
η. (4.17)

Let Y D
t = Y R

t − Y B
t denote the difference between the two channels. The log SD is

estimated at each super-pixel using

ln

√√√√T−1

T∑
t=1

(Y D
t − Ȳ D

t )2 = ln σ̂η, (4.18)

where in fact T−1
∑T

t=1 Y
D
t = Ȳ D

t ≈ 0 at all locations, why the scaling constant κ can

be assumed to be identical for the two channels. If the assumption of a common variance

of the two channels is violated, one may instead opt use the sum of the two channels for

analysis and obtain estimates of the measurement error variance in the composite signal

using the fact that the variance of the difference is equal to the variance of the sum if

the covariance is equal to zero.

The estimated SD is assumed to be spatially uniform, consistent with read noise,

and verified by visual examination. Therefore the prior distribution is taken to be identi-

cal across the whole biological sample instead of location specific. This gives an empirical

distribution of log SDs to which a Gaussian distribution is fitted as N (−5.3, 0.172). The

empirical distribution along with a fitted normal distribution is given in Figure 4.2. The

fitted distribution is then used as a prior for σ2
η in the measurement equation.
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Figure 4.2: Blue histogram: Empirical distribution of the logarithm of the estimated
measurement error SD, ln σ̂η. Red curve: A Gaussian distribution (mean = −5.3,
variance = 0.172) fitted to the empirical to be used as prior distribution.

4.3.2 Light-scaling constant

The parameter κ, which relates measured light intensity to concentration of Cry1 mRNA

could be expected to be spatially homogeneous as both Cry1-protein and luciferase are

produced in similar proportions throughout the SCN. However, findings from preliminary

inference using a weakly informative N (0, 102) prior show considerable spatial structure,

in that κ is estimated to be greater in central compared to peripheral locations in the

sample, meaning that the center of the sample shines brighter than the edges. There

are two presumptive causes: firstly an edge effect caused by light scattering through the

tissue, and secondly, the geometry of the sample as the center is raised and thus photons

have a longer distance to travel to reach the camera if originating from the edges (M.

Brancaccio 2018, personal communication, 31 May).

The spatial structure of κ is not a fundamental issue as the parameter is intended

to parametrize varying luminosity from a given concentration of molecules. Since the

cause of heterogeneity is most likely due to the experimental procedure (as opposed to

biological) we take an approach where “strength is borrowed” between nearby locations
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when inferring κ. The results from an initial run on a sparse grid using a weakly informa-

tive Gaussian prior distribution on log κ with mean zero and variance 10 are smoothed

using a Gaussian kernel with bandwidth selected using leave-one-out cross validation.

This produces a surface across all locations of the tissue. The prior distribution on κ

for the further inference is then taken to be Gaussian with mean equal to the smoothed

surface at that location and variance equal to the squared distance between the initial

estimate and the surface. In the case where no initial point is available the nearest (in

terms of Euclidean distance) point and surface are used for the variance. Generally, the

prior variance is low due to the spatial smoothness of initial estimates. In Figure 4.3 the

smoothed surface along with the initial estimates are shown.
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Figure 4.3: Left: Initial estimates of κ on a sparse grid across the sample. Right:
Surface of κ-values using a Gaussian smoothing kernel. Smoothing bandwidth chosen
by leave-one-out cross validation and minimising the sum-of-squared distances between
initial points and surface.

4.4 MCMC algorithm

The posterior distribution associated with the EKBF likelihood approximation to the

model in Eq. (4.15), and prior distributions from the previous section is intractable. We
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thus have to resort to simulation-based inference and draw samples from the posterior

until we can describe its moments sufficiently well. To this end, we design a random

walk Metropolis algorithm based on the techniques outlined in Chapter 3, Section 3.6.

We begin by using a coarse likelihood discretisation with δt = 0.5 and univariate

proposal distributions, updating the parameters one-at-a-time in a fixed scan Gibbs fash-

ion with all parameters except delay distribution mean and SD sampled on the log-scale.

The log-transformation makes the posterior exhibit similar scales in different directions

which is important for MH-algorithms to work well. Additionally, we avoid proposing

negative values, which would always be rejected, for positive real-valued parameters.

During the initial 4k iterations of univariate proposals the proposal variance is tuned to

achieve an empirical acceptance rate of α = 0.44, which is the acceptance rate found to

minimize first-order autocorrelation when exploring a one-dimensional Gaussian target

(Roberts and Rosenthal, 2001). After the initial 4k iterations we partition the parameters

into two blocks, where the first block consists of b1 = {µΓ, σΓ, logR0, logK, log n, log κ}
and the second block consists of b2 = {log β, log ση}. The within-block covariance

matrices are estimated after discarding the first 1000 iterations and used to form block

proposal distributions given by N (θ
(i−1)
j , γ

(i)
bj

Σ̂bj ) where θ
(i−1)
j is the state of the MCMC

chain of the jth block at iteration i − 1 and γ
(i)
bi

is tuned to produce an empirical ac-

ceptance rate of α
(opt.)
1 = 0.234 (Roberts and Rosenthal, 2001) for b1 and α

(opt.)
2 = 0.33

for b2. The value 0.33 is chosen by rough approximation, i.e. in between the univariate

and high dimensional optimal rates as the dimension of b2 is 2. The covariance scaling

is tuned by adding/subtracting a small constant c(i) = c(i−1) − c(1)/104 and c(1) = 0.02

to the logarithm of γ
(i)
bj

if the acceptance rate over the last 50 iterations is above/below

optimal. Formally, let {aj} denote a chain where a
(i)
j = 1 if the ith proposal of the jth

block is accepted and zero otherwise. The covariance scaling is then implemented by

log γ
(i)
bj

=

log(γ
(i−1)
bj

+ c(i)), if 1
50

∑49
k=0 a

(i−k)
j > α

(opt.)
j

log(γ
(i−1)
bj

− c(i)), if 1
50

∑49
k=0 a

(i−k)
j < α

(opt.)
j .

(4.19)

To decrease the computational cost a delayed acceptance step (see Section 3.6.3) is in-

troduced after the initial 4k iterations, where the likelihood is first calculated in a nested

step using δt = 0.5 and proposals that are accepted in the nested step are subsequently

evaluated using a expensive likelihood evaluation where δt = 0.1 (see e.g. Calderazzo

et al. (2018)). As suggested by the computational complexity of the likelihood scaling

with (τmax/δt)
2, the evaluation using δt = 0.5 is approximately 25 times faster than that

with δt = 0.1. The computational speed up by the delayed acceptance implementation
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thus amounts to a speed up close to the inverse of the acceptance rate.

The MCMC algorithm is run for 10k iterations after the initial 4k iterations of

coarse likelihood evaluations and univariate proposals, for a total of 14k iteration. The

first 5k iterations are discarded as burn-in, as determined by visual examination of the

likelihood trace plots. The whole procedure is repeated for a grid of 216 evenly spaced

pixels across the experimental replicate, which can easily be implemented in parallel for

additional speed-up.

4.5 Results

Before interpreting the resulting parameter estimates various diagnostics of the MCMC

algorithm and residual time series are presented. Residuals are tested for normality and

periodicity to verify the model fit, while the autocorrelation of the MCMC chains is

inspected using effective sample size. Parameter estimates are presented in this chapter

in terms of their posterior means. Their spatial distribution is explored by a clustering

approach that classifies locations based on the inferred posterior mean of the biological

parameters. The resulting clusters are compared to results obtained by calculating

equilibrium population sizes of Cry1 mRNA across the biological tissue sample and

evaluating the proposed measure of oscillatory robustness from the previous chapter.

4.5.1 Effective sample size

The MCMC chains are evaluated using univariate lugsail batch means ESS, reviewed

in Section 3.6.4. The estimates are conservative in the sense that several batch sizes

ranging between N1/3 and N1/2, where N is the nominal length of the chains after burn-

in is discarded, are calculated and the lowest ESS estimate is reported. The procedure

is repeated for the 216 pixels and 8 parameters and results reported in Figure 4.4. The

effective sample sizes are typically between 50 and 100, i.e. about 1% of the nominal

chain length, apart from the measurement error SD which exhibits a considerably higher

ESS, between 150 and 400.
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Figure 4.4: Distribution of conservative univariate effective sample sizes, calculated
using lugsail batch means estimator with batch size between N1/3 and N1/2.

4.5.2 Residual diagnostics

To examine the model fit, residual time series are calculated as the difference between

observed data and the filter mean, evaluated at the mean of the posterior distribution

at each spatial location. While calculating residuals from point estimates of the param-

eters ignores parameter uncertainty in the model fit evaluation, the primary motivation

behind our residual analysis is the examine whether the model can capture the approx-

imately 24 hour oscillations observed in data, and to examine the spatial distribution

of inconsistencies between data and model. Hence, the residual time series here may

be seen as approximate representative single draws from an implied posterior residual
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distribution at each spatial location.

To test whether the residual time series are approximately normally distributed

the one-sample Kolmogorov-Smirnov test (Massey Jr, 1951) is employed with the null

hypothesis that residuals come from a normal distribution. Letting F̂ denote the empir-

ical cumulative distribution function (cdf) of the residual time series and G the cdf of

the normal distribution, the test statistic is given by

D = max(|F̂ (x)−G(x)|) (4.20)

and the implementation in Matlab R2019a (MATLAB, 2019) computes the critical value

by interpolation of a table of critical values.

To investigate how well the model captures the oscillatory behaviour of data

the residuals are tested for periodicity. Because the first cycle is used as initialisation

the residuals are calculated from the second cycle and onwards. The periodogram of

the residual time series is calculated at each location and tested for significant spectral

component using Fishers G-statistic (Percival and Walden, 1993), given by

g =
max1≤k≤mŜ

(p)(fk)∑m
k=1 Ŝ

(p)(fk)
, (4.21)

with distribution under the null given by

P(g > g0) =
M∑
j=1

(−1)j−1

(
m

j

)
(1− jg0)m−1, (4.22)

where Ŝ(p)(fk) are the periodogram terms, m = bT/2c and M is the largest integer

satisfying M < 1/g0 and M ≤ m.

As the hypothesis tests for normality and periodicity are repeated at 216 locations

the 5 percent significance level is adjusted using Bonferroni correction. The results of the

hypothesis tests are shown in Figure 4.5, where locations with residual time series that

significantly deviate from normality are shown in red and those where normality cannot

be rejected in green. A majority of pixels can be assumed to have normally distributed

residuals and non-normality is predominantly found along edges of the biological sample

corresponding to tissue that is adjacent to the SCN cells. In the right panel of Figure

4.5, pixels that have a significant spectral component in the residuals are displayed along

with the period of the component.

The significant residual periodicities correpond to either 12 or 24 hours oscil-
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lations, i.e. circadian periodicity or harmonics thereof. While residual circadian (24

hour) periodicity is rare (3.7 percent of locations) and scattered across the tissue sam-

ple with some tendency towards the third ventricle, the 12 hour periodicity is frequent

(20.4 percent of locations) and concentrated to SCN tissue. Presumptive causes of the

12-hour periodicity are cell-autonomous clock mechanisms that oscillate with 12 hours

as found in liver tissue by Zhu et al. (2017). Westermark and Herzel (2013) show that

circadian transcription factors binding to separate binding sites in the same promoter

region can produce 12 hour rhythms and since our approach only models a single bind-

ing site and purely autoregulatory dynamics the residuals are likely to capture rhythms

due to additional transcription factors and binding sites. Additionally, low amplitude

anti-phasic oscillations of Cry1 in astrocytes (Brancaccio et al., 2017), a type of glial cell

that outnumber neurons five to one (Sofroniew and Vinters, 2010), may produce resid-

ual periodicity if not explicitly modelled. The reasoning is that additional signalling,

while not part of the intracellular TTFL, produces a slight distortion of the waveform

of observed Cry1-luc in each pixel, i.e. an additional periodicity, that the model cannot

accommodate.
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Figure 4.5: Left: Test of normality of residual. Green indicates compliance with nor-
mality while red indicates rejection of the null hypothesis that residuals are normally
distributed (α = 0.05, adjusted for multiple testing using Bonferroni-correction). Right:
Locations with significant residual periodicity, using Fishers g-statistic. The periodicity
is indicated by colour. A few locations show significant 24 hour periodicity. Loca-
tions with significant 12 hour periodicity (α = 0.05, adjusted for multiple testing using
Bonferroni-correction) are clustered in the SCN.

4.5.3 Parameter estimates and clustering

Posterior means of the parameters are reported in Figure 4.6. In general, we find rel-

atively low spatial variation across SCN locations in parameter estimates of the delay

mean µΓ, maximum transcription rate R0, dissociation coefficient K and measurement

error SD ση. This finding is expected as the period of oscillations is homogeneous across

the biological sample and is mainly driven by the delay mean. Similarly we expect similar

population sizes of Cry1 mRNA between neurons as copy numbers are mainly driven by

R0 and K. High values of R0 (> 140) and K (> 200) are found along the left edge of the

tissue sample and these locations are typically associated with a relatively high posterior

dispersion for at least one of the two parameters. A presumptive cause is that the spa-

tial smoothing used to obtain an informative prior on κ (Section 4.3.2), which is highly

correlated with the two population size parameters, may create an asymmetric “edge
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effect” as additional tissue is present outside the cropped frame on the left side (but not

right). The measurement error SD is assumed to be spatially homogeneous through an

informative prior as specified in Section 4.3.1 and the low spatial variation in posterior

means of the parameter is indicative that we are able to separate the measurement noise

source from stochasticity in the underlying process.

Systematic spatial structure is found for the delay dispersion σΓ, Hill coefficient

n, the light scaling parameter κ and, to lesser degree, the degradation rate β. The

light scaling parameter closely follows the structure imposed by the informative prior

distribution specification and is arguably caused by the experimental process, specifically

the light scattering in tissue combined with the geometry of the biological sample. The

other three parameters with posterior means that follow a clear spatial distribution are

known to be important for the dynamics of the process (Tyson, 2002) and also exhibit

clear differences between SCN and surrounding tissue.
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Figure 4.6: Posterior means of the eight parameters. Size of dots are inversely propor-
tional to the coefficient of variation such that a small dot indicates large uncertainty
(large posterior dispersion compared to mean).

An exploratory approach to attempt identification of subregions of the biological

sample and SCN is cluster analysis, where locations are assigned to a given cluster based

on the associated posterior means. In the clustering procedure we disregard parameters

that are associated with the measurement equation (κ and ση) and focus on those in-

volved in the transcriptional feedback loop. The 216 estimates of the parameter vector

are treated as a sample and standardized to have zero mean and unit variance. Standard-

ization is motivated by the fact that the posterior mean with the highest spatial variance

otherwise dominates cluster assignment. A k-medoids clustering algorithm is then used

to classify locations into either two or three different clusters. The choice of number

of clusters is based on the fact that the sample contains SCN neurons and surrounding
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tissues, and the SCN neurons are either VIP-ergic or AVP-ergic. The VIP-ergic neurons

are predominantly found in the core while AVP neurons are found in the shell of the

SCN. We also used k-means clustering and Principal Components Analysis (PCA), as

well as kurtosis maximization Independent Components Analysis (ICA) (Moore, 2018)

to verify the robustness of the findings. The algorithm used to assign cluster membership

is given by Hastie et al. (2009) as follows.

1. For each of the k cluster centres ck, identify the points that is closer to ck than

any other centre cj , j 6= k.

2. Compute the mean (median) for each variable for the points in each cluster. Set

the cluster centre to the mean (median) vector.

The resulting classification for k = 2 is given in the left panel of Figure 4.7 and

gives a clear spatial boundary where locations corresponding to SCN tissue are classified

to belong to the same cluster while locations from adjacent tissue form another cluster.

For k = 3 a similar pattern is produced, albeit with more overlap between the three

clusters. The classification in this case roughly finds one cluster in the dorsal shell,

one in the ventral SCN and a third corresponding to non-SCN tissue. However there

is considerable overlap between cluster assignment of ventral SCN and adjacent tissue

locations. With k = 3 the proportion of location in each cluster is 32.9 percent in the

non-SCN cluster, 36.6 percent in the dorsal cluster and 30.5 in the ventral cluster (Figure

4.7, right panel).
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Figure 4.7: Left: The output of k-medoids clustering of the parameter estimates with
k = 2. Locations are classified as either SCN tissue or adjacent tissue with little overlap.
Right: The output of k-medoids clustering with k = 3. The locations are largely
classified as ventral (blue), dorsal (yellow), or non-SCN (green). There is substantial
overlap between the classification of ventral and non-SCN tissues.

4.5.4 Robustness of oscillations

Using the stability criteria derived in Section 4.2.1 combined with the posterior distribu-

tion of parameters obtained from the MCMC chains enables calculating, at each pixel,

the robustness of the oscillations, evaluated by the posterior probability of a limit cycle

Plim. cyc. (see Eq. (3.51)). The calculation involves constructing the Jacobian matrix

in Eq. (4.12) for each sample of the posterior distribution and calculating its eigenval-

ues where the real part of the largest eigenvalue is the quantity of interest, along with

whether or not the eigenvalues have non-zero imaginary part. In practice this approach

can be prohibitively expensive, in which case the eigenvalues of the Jacobians for thinned

MCMC chains may be evaluated instead.

A limitation of the stability criteria obtained by transforming the DDE to a

system of ODEs using the linear chain trick is that it is only valid for integer-valued

shape parameters of the associated Gamma distribution, which does not hold in practice

unless specifically enforced by design in the model and inference. We deem such a
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design unfavourable for two reasons, firstly due to the difficulties in constructing good

MCMC samplers for distributions where some coordinates are integer-valued and others

real-valued. Secondly, the closed form distributed delay arises by assuming that the

intermediate processes have the same rate parameter and additionally restricting the

number of intermediate processes to be integer-valued may well yield a delay distribution

that is a worse approximation to the true data generating process when the assumption

on the rate parameters is violated.

To evaluate the required Jacobians we construct a rounding scheme of the shape

parameter p that preserves the dispersion of the delay distribution. Let µΓ and σ2
Γ denote

the mean and variance of the delay distribution. The shape and rate parameters of the

distribution are given by p = µ2
Γ/σ

2
Γ and a = µΓ/σ

2
Γ, respectively, which are rounded

using

p∗ = bpe

a∗ =

√
a2
p∗

p

(4.23)

where b·e denotes rounding to nearest integer. To assess the influence of rounding the

calculations are repeated for p∗ = bpc and p∗ = dpe which we found to have negligible ef-

fect on Plim. cyc.. Furthermore, we note that it is possible to bound the uncertainty in the

final estimates induced by rounding as the propensity for a limit cycle is monotonically

increasing/decreasing with decreasing/increasing delay dispersion, other parameters held

fixed. Hence, an alternative rounding scheme that preserves the mean of the delay dis-

tribution can be used and calculating two different Plim. cyc. using the floor and ceiling

functions to obtain integer p give the widest possible interval due to rounding.

In addition to the posterior probability of limit cycle dynamics, the equilibrium

solution for each sample of the posterior distribution is recorded at every pixel and aver-

aged to produce an estimate of the posterior mRNA population size. The two statistics

are reported in Figure 4.8, where from the left panel it is evident that Plim. cyc. accu-

rately distinguishes SCN neurons from surrounding tissues by their stronger oscillatory

dynamics. Most of the SCN has a Plim. cyc. greater than 0.5 and the dorsal SCN typi-

cally has a Plim. cyc. close to 1. Immediately neighbouring non-SCN tissues have values

of Plim. cyc. close to 0 despite data from a majority of such locations exhibiting clear

24 hour oscillations of Cry1:luc. Our approach based on mechanistic modelling of the

TTFL successfully distinguishes between SCN neurons that can exhibit such oscillations

persistently as opposed to noisy oscillators in the surrounding tissue. Interestingly, a
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small cluster of relatively low values of Plim. cyc. is also found in the ventral and cen-

tral SCN which is associated with different neuropeptides (VIP) compared to the dorsal

organ (AVP).

In the right panel of Figure 4.8 the posterior means of mRNA population sizes

are given for the 216 locations. The variation of mRNA copy numbers is found to be low

with typical values for SCN tissues in the range 50−150. Larger estimated copy numbers

along the left side of the tissue sample may be due to the smoothing used for κ which

results in a restrictive prior distribution and gives values of κ that are too low towards

the left edge of the sample, resulting in over-estimation of population size parameters

R0 and K. While empirical results on mRNA copy numbers for circadian genes in the

SCN are unavailable in the literature our findings here are consistent with approximate

Per mRNA counts from Abel et al. (2015) who forward-simulate a stochastic model of a

set of coupled circadian oscillators and find oscillations in the range 0− 300 molecules.

Our population size estimates suggest that the approximations we employ in modelling

and data transformations produces a level of stochasticity that is typical of single cells

and that the analysed pixels are representative of tissue corresponding to single cells.
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Figure 4.8: Left: Posterior probability of limit cycle dynamics (oscillatory robustness).
The statistic accurately identifies SCN neurons from surrounding tissues by the propen-
sity of cell-autonomous oscillations. Right: Posterior mean of equilibrium solution,
corresponding to typical population sizes of mRNA in representative tissues.
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4.6 Discussion

In this chapter we combined a recently proposed stochastic model of circadian gene

regulation in single cells with the inferential methodology from the previous chapter

to model the circadian rhythm of Cry1-luc in spatio-temporal bioimaging data from

mouse SCN. Stability criteria of the deterministic rate equation were derived which

allow calculation of the proposed measure of oscillatory robustness. A method to obtain

informative prior distributions was developed for the measurement error dispersion by

a transformation of data that isolates realisations of the noise process such that the

variance can be estimated using a maximum likelihood estimator and the variance of the

sampling distribution informs the prior dispersion.

For the light scaling parameter, a prior was designed in two steps where statistical

strength is shared by spatial smoothing of a set of initial estimates and may be viewed

as a crude approximation to a Bayesian hierarchical model. The informative prior on

the light scaling parameter substantially improved inference for other parameters related

to molecular copy numbers, i.e. R0 and K which were difficult to identify without an

informative prior. By calculating the posterior mean of the equilibrium solution we

obtained a measure of approximate mRNA copy numbers which, for SCN neurons, were

previously not available in the literature. Population sizes are identifiable only when

explicitly modelling the intrinsic stochasticity separately from the measurement process

and we find that typical population sizes of Cry1 mRNA molecules are in the range

50 − 250. These population sizes are consistent with simulation-based results obtained

by Abel et al. (2015) who make the assumption that population sizes are similar for SCN

neurons and cells in peripheral tissues, an assumption that we do not make here. The

population sizes were estimated somewhat higher along the left edge of the biological

sample which may be an indication that over-smoothing of κ causes over-estimation of

population size parameters. In the next chapter we shall extend the idea by introducing

an explicit spatial model in an hierarchical setting which will prevent such issues.

To estimate the parameters of the model we designed a random walk Metropolis

algorithm with an adaptive proposal variance and a delayed acceptance step. Residuals

were examined for normality and periodicity and autocorrelation of MCMC chains was

evaluated using the lugsail batch means estimator of effective sample size. Residual

time series from SCN tissue are typically consistent with the normality assumption but

exhibit low amplitude 12 hour rhythms in central locations of the SCN. These residual
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periodicities may be caused by additional processes that are not included in the TTFL

model, such as anti-phasic Cry1 oscillations in astrocytes or non-constant influence of

additional transcription factors and binding sites.

Parameters were interpreted in terms of their posterior means and coefficient of

variation. The posterior dispersion is homogeneous for all parameters except R0 and K,

which relate the dynamics to mRNA copy numbers. These parameters exhibit higher

posterior variance in tissue that is adjacent to the SCN. The variation in dynamics

between sub-regions of the SCN is driven mainly by the Hill coefficient n and delay dis-

persion σΓ which are estimated higher in SCN tissue compared to surrounding locations,

and higher in the central SCN compared to the SCN shell.

Cluster analysis of the posterior means of parameters governing transcription and

degradation rates classified tissue as SCN or adjacent tissue. The addition of a third

cluster hinted at a distinction between ventral and dorsal SCN but did not clearly reveal

two separate regions of the SCN tissue as hypothesised from the different neuropeptide

types documented in dorsal and ventral SCN. The analysis was repeated using clustering

of principle and independent components obtained by PCA and ICA with highly similar

results.

The posterior probability of a limit cycle, i.e. robustness of oscillations, allowed

for a clear distinction between SCN and adjacent tissue as the adjacent tissue exhibits

Plim. cyc. close to 0 for all locations and the SCN tissue values greater than 0. We empha-

size that as data are oscillatory, methods such as spectral analysis that are often used

to analyse circadian data (see Chapter 2) cannot detect such a distinction. The find-

ings support the hypothesis that SCN neurons exhibit strong self-sustained oscillations.

Furthermore, the SCN tissues may be divided into a dorsal shell region with Plim. cyc.

close to 1 and a ventral core region with Plim. cyc. around 0.5. As data are generated by

molecular oscillators in an intact circuit, we cannot differentiate between dynamics being

robust due to inter-cellular signalling or if this is a property of the single-cell feedback

loop. While our proposed framework allows to answer questions regarding the capabil-

ity of SCN neurons to generate sustained oscillations, a more precise answer regarding

the role of signalling requires further analysis of data from dissociated cells or a model

specification that is extended to explicitly capture signalling. Both of these issues are

addressed in Chapter 7.
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Chapter 5

A Hierarchical model for

spatio-temporal bioimaging data

with CAR priors

Throughout the earlier chapters the statistical techniques have been focused on inference

for single time series. These univariate approaches have been repeated for large numbers

of time series that are themselves associated with a spatial coordinate in order to build

empirical spatial distributions over biological tissues. Such an approach is motivated

by lower model complexity and computational cost as spatial coordinates are a priori

disregarded and calculations can be trivially parallellised. In this chapter the univariate

approach from the previous chapters is extended to a spatial setting, allowing analyses

of bioimaging video data that do not disregard the spatial coordinate associated with

each time series when performing inference. To this end, Bayesian hierarchical modelling

is employed to combine single cell and spatial modelling in a computationally feasible

manner.

The chapter begins with an introduction to Bayesian hierarchical models for spa-

tial data. The conditional autoregressive model is covered in detail and implemented as

a spatial prior distribution for a subset of the parameters in the single-cell model of cir-

cadian gene regulation from Chapter 4. An MCMC algorithm is designed to sample the

posterior distribution of the hierarchical model and some aspects of updating strategies

of the spatial components are investigated. The chapter is concluded by a simulation

study where synthetic circadian gene expression data is generated from the single-cell

TTFL model and the methodology proposed in this chapter used to re-estimate the

parameters.
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5.1 Bayesian hierarchical modelling for spatial data

Hierarchical models (HM) provide a principled approach to letting multiple sources of

uncertainty propagate to the resulting inference. The HM decomposes the full model

into nested conditional probability models, or layers. Berliner (1996) expresses a general

hierarchical model using the following three layers:

1. Data model: P [data|process, parameters]

2. Process model: P [process|parameters]

3. Parameter model: P [parameters].

Here each stage represents a conditional probability model whose product is a model

for the data along with all unknown quantities. If the final stage represents a prior

distribution of the unknown quantities one has specified a Bayesian Hierarchical Model

(BHM). The final stage can also be a point estimate of the parameters based on observed

data. This case is referred to as an Empirical Hierarchical Model (EHM) or empirical-

Bayesian model (Cressie and Wikle, 2015, Chapter 3). The key idea is that each layer

contributes uncertainty to the resulting inference. The hierarchical structure provides

tractability as the product of the conditional models is far too involved to be studied

without the decomposition into conditional probabilities. See e.g. Cressie and Wikle

(2015) for a treatment in the context of spatial and spatio-temporal modelling.

The statistical methodologies for spatial data, i.e. data where every observation

is associated with a spatial coordinate, stem from applications in mining engineering

(geostatistics, kriging etc.), agriculture and forestry. The massive growth of the field

since the mid 90’s has been driven in large part by advances in high speed computing as

the models are rarely tractable and hence require computationally intensive simulation

based inferential procedures such as MCMC.

Hierarchical modelling is appealing in the context of spatial data as spatial de-

pendencies observed in data can be modelled in either parameter or process models

instead of explicitly in the data model. This layer of abstraction is often convenient

from a practical point of view, e.g. the mechanism by which spatial dependencies arise

is too complicated to be modelled explicitly. Alternatively, the mechanism of spatial

dependency can arise at a different layer than the actual observations. This is the case

when modelling mRNA concentration using recorded luminosity from a reporter protein.

The data are subject to measurement noise that can be assumed to be homogeneous and

spatially i.i.d. Meanwhile, non-linear functions of the data are highly spatially correlated
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as, for example, nearby cells tend to oscillate with similar period and phase. This spa-

tial dependence can be captured in the process model or the parameter model through

location specific random effects.

In a spatial setting random effects are typically specified as non i.i.d. with a

dependence structure that obeys the first law of geography: everything is related to

everything else, but near things are more related than distant things (Tobler, 1970).

Fitting of hierarchical models is typically done using MCMC methods but even with

the substantial gains in computing power over the last 30 years, inference for large scale

spatial data sets remain infeasible as the time complexity typically grows with the cube

of the number of spatial locations. Solutions to this problem come in three categories:

approximations of the spatial process on a lower dimensional subspace, spectral domain

approaches where the likelihood is approximated in terms of spectral densities, or replac-

ing/approximating the spatial process by a Markov random field (MRF) (see Banerjee

et al. (2008) for a review). In the following two chapters, we shall direct our attention

to MRFs for solving the issues of computational complexity in spatial modelling.

5.1.1 Conditional autoregressive (CAR) models

Introduced by Besag (1974), the conditional autoregressive (CAR) model is a convenient

and computationally tractable specification of an MRF to model spatial correlation using

a set of conditional probability models. The exposition here follows that of Carlin et al.

(2014) and Cressie and Wikle (2015) and, although not essential for the main ideas,

we restrict attention to the Gaussian case. Let εi, i = 1, ..., L be a finite collection

of random variables, each associated with a spatial location on a grid and let negative

sub/superscript denote the set of variables excluding the index, i.e. −i = {1, ..., i−1, i+

1, ..., L}. Now assume a neighbourhood structure defined by a proximity matrix W , such

that random variables εi and εj are neighbours if they share a common border, encoded

by the (i, j)th element of W : wi,j = 1. We shall denote this by j ∈ Ni, i.e. jth location

is in the neighbourhood of the ith location. If locations i and j are not neighbours then

wi,j = 0 and j 6∈ Ni. Next we impose a distribution on each εi conditional on the other

locations of the grid

εi|ε−i ∼ N

∑
j 6=i

w̃i,jεj , τi

 , i, j = 1, ..., L, (5.1)

such that the conditional mean of the ith component is an average of its neighbours,

weighted by w̃i,j and the conditional variance τi is location specific. In practical appli-
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cations it is typically assumed that w̃i,j ≥ 0 as negative spatial autocorrelation is rarely

observed (Griffith and Arbia, 2010). The full set of conditional distributions imply that

for ε = [ε1, ε2, ..., εL]

π(ε) ∝ exp

(
−1

2
εᵀD−1(I − W̃ )ε

)
(5.2)

hinting at a multivariate normal distribution with (sparse) precision matrix Σ−1 =

D−1(I − W̃ ) where the matrix W̃ is composed of the weights w̃i,j and Di,i = τi is a

diagonal matrix. To ensure symmetry of the precision matrix we need

w̃i,j
τi

=
w̃j,i
τj

. (5.3)

One possible solution to obtain a symmetric matrix is to set w̃i,j = wi,j/wi,+ and τi =

τ/wi,+, where wi,+ is the column sum of the ith row of W , i.e. the number of members

of Ni. This parametrisation, known as the intrinsic CAR model has several appealing

features: a single parameter, τ , parametrizes the variances of the L locations in such a

way that locations with large neighbourhoods have a lower variance than those with small

neighbourhoods. Furthermore, the contribution to location i is shared evenly between

the population of its neighbourhood, Ni, such that the weights in Eq. 5.1 are equal and

sum to one. However, this parsimony comes with a drawback. Because the rows of W̃

sum to one, the rows of (I−W̃ ) sum to zero, hence the precision matrix is not invertible.

This means that the full set of conditional distributions imply a joint distribution which

is not proper and the intrinsic CAR model cannot be used to model (or generate) data.

Instead, it is typically used as a prior distribution (Cressie and Wikle, 2015).

Several variations of the CAR model that resolve the issue of impropriety are

available in the literature. Lee (2011) gives a review of four such models in the context

of Bayesian disease mapping. The most parsimonious variation is referred to as the

Cressie model (Stern and Cressie, 2000) where a propriety parameter, ρ, controls the

degree of spatial correlation. The Cressie model is given by

εi|ε−i ∼ N

ρ∑
j 6=i

w̃i,jεj , τi

 , i, j = 1, ..., L (5.4)

which has the intrinsic CAR model as a special case when ρ = 1 and implies a proper

joint distribution for ε if |ρ| < 1, given by

ε ∼ N (0, (I − ρW̃ )−1D). (5.5)
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The added flexibility attained by parametrizing the degree of correlation through ρmeans

that this model can also capture weaker correlation structures than the intrinsic CAR

model which imposes ρ = 1. It is worth noting that while ρ = 0 implies zero spatial

correlation, the variance of the ith component is still given by τ/wi,+, a function of the

number of neighbours of i, which is incompatible with the notion of spatial independence.

We shall for the most part make use of the intrinsic specification as a prior distribution

in this chapter and the empirical application in Chapter 6. However, for the simulation

study in Section 5.3 we require the ability to simulate data and thus make use of the

Cressie model as a data generating process.

5.1.2 Incorporating spatial prior distributions for the single-cell tran-

scription model

To incorporate spatial dependence for the parameters of the transcription function of

the Cry1 model in Eq. (4.5), let subscript denote the index i = 1, 2, ..., L of pixels

and superscript denote the parameter index p = 1, ..., P . We assume a spatial prior

on five parameters, namely the mean and SD of the delay distribution µΓ and σΓ, the

maximum transcription rate R0, the dissociation coefficient K and the Hill coefficient

n, thus P = 5. For the neighbourhood structure we assume that every pixel is a priori

correlated with all its surrounding pixels (8-connected) as opposed to only the pixel

with which it shares a border (4-connected) as this gives longer range correlations which

appear to more closely resemble the spatial structures seen in the parameter estimates

obtained using a spatially independent model in Chapter 4.

The logarithm of each of the spatially dependent parameters Θ = [Θ(1), ...,Θ(5)]

is modelled by random effects model

log Θ(p) = logµΘ(p) + ε(p), (5.6)

with a global location parameter µΘ(p) and location-specific random effects ε(p), amount-

ing to a multiplicative random effects model for the untransformed parameters, where

ε
(p)
i |ε

(p)
−i , τ

(p)
i ∼ N

∑
j∈Ni

w̃i,jε
(p)
j , τ

(p)
i

 , p ∈ {1, ..., P}, i ∈ {1, ..., L}. (5.7)

and Θ(p) is assumed independent of Θ(−p). To ensure that the precision matrix of the

full set of conditionals is symmetric we take assume w̃i,j = wi,j/wi,+ and τ
(p)
i = τ (p)/wi,+

which further reduces the number of unknown parameters as τ = [τ (1), ..., τ (5)] along
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with the fixed neighbourhood structure parametrizes the variance of all 5 parameters

and L locations. From Eq. 5.6-5.7 it is evident that value of log Θ
(p)
i is modelled as

deviating from the common mean logµΘ(p) with deviations obeying a first order MRF

process.

Furthermore, the three remaining parameters, namely the degradation rate µ, light

scaling parameter κ and measurement error SD ση are a priori spatially i.i.d. Let Ψi =

[µ, κ, ση]i, modelled by assuming π(Ψi) = π(Ψj), j, i = 1, ..., L, and components of Ψi a

priori uncorrelated.

The full Bayesian hierarchical model is then specified for data Y , unobserved process

X, locations i = 1, ..., L, spatially modelled parameters Θ(p), p = 1, ..., 5, and a priori

spatially i.i.d. parameters Ψ as

Observation model:

Yi,t = κ

∫ t

t−∆t
Xi(s)ds+ ηi,t, ηi,t ∼ N (0, σ2

η)

Process model:

dXi(t) =

 R0

1 +

(∫ t
−∞Xi(s)gp,α(t−s)ds

K

)n − βXi(t)

 dt
+

√√√√√ R0

1 +

(∫ t
−∞Xi(s)gp,α(t−s)ds

K

)n + βXi(t) dWi(t)

Spatial parameter model:

Θ
(p)
i = µΘ(p) · exp ε

(p)
i

Prior distributions:

ε
(p)
i |ε

(p)
−i , τ

(p) ∼ N

∑
j∈Ni

w̃i,jε
(p)
j , w−1

i,+τ
(p)


log τ (p) ∼ N (0, σ2

τ )

log Ψi ∼ N (0,ΣΨ)

logµΘ(p) ∼ N (0, σ2
Θ(p))

(5.8)
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5.2 Inference for hierarchical Bayesian models with CAR

priors

To infer the parameters of the full model we resort to an adaptive random walk Metropo-

lis (RWM) as this has proven to work well in practice, both for the gene transcription

model in Eq. 4.5 (Calderazzo et al., 2018) as well as for spatial models, e.g. in ecology

(Wikle, 2003) and disease mapping (Waller et al., 1997).

Let Y denote the full data and let Yi = [Yi,∆t, ..., Yi,T ] denote time series data

associated with location i = 1, ..., L. Conditional independence between data and hyper-

variances τ given Θ gives π(y|Θ,Ψ, τ ) = π(y|Θ,Ψ). Furthermore, dependence between

Yi and Yj is captured by the dependence between Θi and Θj . Hence we have “spatial

factoring” of the likelihood π(y|Θ,Ψ) =
∏L
i=1 π(yi|Θi,Ψi) where each term in the prod-

uct can be evaluated in parallel. The prior independence of Θ(p) and Θ(q), p 6= q gives

“horizontal” factoring of the hierarchical prior π(Θ|τ ) =
∏P
p=1 π(Θ(p)|τ (p)).

The unknown parameters are the five parameters of the transcription function,

each associated with L random effects, the degradation rate, light scaling and measure-

ment error SD at each of the L locations and the hyper-variances, τ (p), p = 1, ..., 5 of

the CAR prior. The total number is given by 5(L+ 2) + 3L. Neal et al. (2006) explore

blocking strategies to speed up convergence of RWM algorithms and note that there

is often computational overhead associated with updates of the full target if it is high

dimensional. For the spatial prior specification considered here, partitioning the pixels

and updating only a subset of the random effects at a time for a given parameter requires

some care as no update block can contain any neighbours. The possible partitions vary

between 8-connected and 4-connected grids as an 8-connected grid requires at least four

blocks while a 4-connected grid only requires two.
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Figure 5.1: The grid on the left shows a configuration where no block (A-D)
contains any neighbours. To fill an 8-connected grid with blocks where no
neighbours share block label requires four or more groups. The grid on the
right is divided in a similar minimal configuration for a 4-connected grid
where it can be done with only two labels.

In Figure 5.1 example configurations with the smallest number of subsets are given for

the two neighbourhood structures. Note however that it is possible in both cases to

update all L random effects in a single update, even in the case of specifying the prior

distribution with a non-invertible precision matrix as the joint density over all random

effects exists but is non-integrable. That is, there is no strict need to devise a blocking

scheme in order to evaluate the prior distribution imposed on the random effects as the

expression in Eq. 5.2 exists and is sufficient.

To evaluate blocking strategies in sampling the random effects, for each parame-

ter, the L pixels are divided into B blocks that are arranged such that their components

are a priori independent, i.e. no neighbours belong to the same block. This is important

as it allows for sampling components of a block by a single Metropolis update and eval-

uation of the associated prior distributions and likelihoods can be performed in parallel.

The partitioning is done such that the blocks are balanced, each containing L
B random

effects. If we assume that updating an entire block takes unit time, meaning that we

have L
B processor cores available (fully parallelizable assumption), we want the blocks to

be big as this corresponds to exploring the target distribution in more directions with

a single update. However, increasing the block size (decreasing the number of blocks,

B) results in smaller jumps in each coordinate of the target density. We thus want to

find a suitable trade-off between the speed with which we are exploring the conditional

distributions and the number of conditional distributions we are exploring in a single
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update.

Let θ
(k)
i denote the state of the Markov chain at location i and iteration k. The

expected squared jumped distance (ESJD), defined as

E||θ(k) − θ(k−1)||2 (5.9)

is used by Pasarica and Gelman (2010) to adaptively scale the proposal distribution to

improve mixing and convergence. With the fully parallelizable assumption, the quantity

ÊSJD =
1

B

L∑
i=1

(
1

kmax

kmax∑
k=1

||θ(k)
i − θ

(k−1)
i ||2

)
(5.10)

uses a sample estimate of Eq. 5.9 to measure the average distance explored in unit

time. Taking B small (blocks big) increases the number of directions with which we

explore the target density with a single proposal but decreases (the expected value of)

the size of jumps. Conversely, taking B big (blocks small) decreases the number of

directions but increases the (expected value of) the jump sizes. Theory on optimal

scaling of random walk Metropolis proposal distributions suggests that the quantity in

Eq. 5.10 remains fairly constant for varying B. The optimal proposal variance, for a

spherical d-dimensional Gaussian target, is given by σ2
dId where σ2

d is O(d−1) (Roberts

and Rosenthal, 2001) and hence exactly cancels what is gained by exploring the target

in more directions simultaneously.

5.2.1 Random walk Metropolis algorithm for hierarchical spatial ran-

dom effects model

In this section an MCMC algorithm for sampling the posterior of parameters, random

effects and hyper-variances of the hierarchical model is presented. The steps are given

in Algorithm (4).

All proposals are of random walk-type, i.e. Gaussian, centred on the state of

the chain at iteration k and variances γ·,k are adaptively scaled using the scheme in

Section 3.6.2. To implement a blocking scheme for the random effects, the step involving

proposing random effects can be expanded to several nested steps where in each sub-step

a subset of the random effects are updated for non-neighbouring locations, e.g. according

to the partitioning given in Figure 5.1.
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Algorithm 4 Random walk Metropolis algorithm to sample posterior distribution of
Hierarchical TTFL-model with spatial random effects

while k ≤ max iterations do
Set µΘ,k = µΘ,k−1, τ k = τ k−1, εk = εk−1 and Ψk = Ψk−1

Propose global location parameters µ̂Θ ∼ N (µΘ,k−1, γµ,kΣ̂µΘ) and set µΘ,k = µ̂Θ

w.p. min

(
1,

∏L
i=1 π(Yi|µ̂Θ,ε

p
i ,Θ
−p
i )π(µ̂pθ)∏L

i=1 π(Yi|µΘ,ε
p
i ,Θ
−p
i )π(µpθ)

)
for parameter p = 1, ..., P do

Propose hyper-variance τ̂ (p) ∼ N (τ
(p)
k−1, γτ,k) and set τ

(p)
k = τ̂ (p) w.p.

min
(

1, π(ε(p)|τ̂ (p))π(τ̂ (p))

π(ε(p)|τ (p))π(τ (p))

)
Propose random effects ε̂(p) ∼ N (ε

(p)
k−1,diag(γε,k)) and set ε

(p)
k = ε̂(p) w.p.

min

(
1,

∏L
i=1 π(Yi|µΘ,ε̂

p
i ,Θ
−p
i )π(ε̂pi |ε

p
Ni
,τp)∏L

i=1 π(Yi|µΘ,ε
p
i ,Θ
−p
i )π(εpi |ε

p
Ni
,τp)

)
end for
for location i = 1, ..., L do

Propose parameters Ψ̂i ∼ N (Ψi,k−1, γi,Ψ,kΣ̂Ψ) and set Ψi,k = Ψ̂i w.p.

min
(

1, π(Yi|Θi,Ψ̂i)π(Ψ̂i)
π(Yi|Θi,Ψi)π(Ψi)

)
end for
Set k := k + 1

end while

5.3 Simulation study

In this section a simulation study is conducted to evaluate the performance of the algo-

rithm proposed to infer parameters and random effects of the hierarchical CAR model

outlined in this chapter. Simulation parameter values are set to represent realistic levels

based on the results of Chapter 4. As it is not possible to simulate data from the prior

distribution specification of the random effects we resort to using the Cressie model as

data generating process with propriety parameter set to ρ = 0.99 and an 8-connected

neighbourhood configuration. The parameter means and variances used for simulating

data are summarized in Table 5.1.

Table 5.1: Parameter values used to generate synthetic data.

Parameter µΓ σΓ R0 K n β κ ση

Global location parameter 9 2 60 120 3.5 0.3 5× 10−3 5× 10−3

Random effect variance (τ) 0.05 0.05 0.2 0.2 0.05 - - -
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5.3.1 Evaluation of blocking strategies

Synthetic Cry1 concentrations are generated by Euler-Maruyama approximations (Kloe-

den and Platen, 1992) to the model in Eq. 4.5, which are subsequently averaged over

0.5 hour intervals and corrupted with Gaussian measurement noise to replicate the true

measurement process. This is repeated for L = 400 locations on a 20 by 20 grid.

Inference is carried out using Algorithm (4) outlined in Section 5.2.1. All param-

eters are sampled on a log-scale to ensure positivity and constrict the variation along

the different dimensions to a similar scale. Prior distributions used in the simulation

study are all Gaussian and centred at the true simulation value except for the delay dis-

tribution parameters where a uniform prior is used. The priors for the degradation rate,

light scaling and measurement error are informative while the priors for the transcription

function parameters and hyper-variances are vague.

For the five parameters subject to spatial random effects only the product µ
(p)
Θ exp(ε

(p)
i )

is identifiable. Hence a sum-to-zero constraint on each full set of random effects ε(p) is

required for identifiability of the overall location parameter and random effects sepa-

rately. The constraint is implemented by centering ε(p) and adding the mean to the

corresponding logµθ(p) at every iteration of the algorithm after updating all random

effects but before updating µθ(p) .

To investigate blocking strategies for the high dimensional random effects updates

the ESJD for various block sizes are examined. In Table 5.2 the ESJD and wall-clock

times for various blocking strategies are reported. The ESJD appears similar for all

strategies apart from that where 4 locations at a time are updated which has a con-

siderably lower ESJD and hence worse performance. The wall clock times of complete

updates of parameters and random effects are given for the various block sizes. There is a

significant cost associated with choosing smaller block sizes that are updated sequentially

as a complete update of the 400 locations takes more than twice the time in the strategy

where random effects are updated in blocks of 4 compared to a joint full update. Part of

this difference is likely due to inefficient queueing between processor cores because when

updating only four locations at a time three cores are idle while the slowest likelihood

evaluation finishes. The results suggest that there is no computational or statistical

gain from a blocking strategy for the random effects which instead should be updated

simultaneously, at least for dimensions corresponding to the application considered here.

89



Table 5.2: Wall-clock time and estimated average ESJD for single full update of all
parameters and random effects of 400 locations using four Intel Core i7-6700 processor
cores at 3.40 GHz. Average time over 100 iterations.

Random effect block size 4 16 25 100 400

Time (sec) 33.72 21.28 20.09 16.76 15.62

Average ÊSJD 1.4× 10−4 2.5× 10−4 2.8× 10−4 2.8× 10−4 2.8× 10−4

5.3.2 Inference validation using synthetic data

To investigate to what extent the methodology developed in this chapter is able to recover

the spatial distribution of parameters, data are generated on an 8 by 8 grid using the

model in Eq. (5.8) and the parameters (values given in Table 5.1) are re-estimated using

the MCMC algorithm given in Section 5.2.1.

For the study to represent a realistic scenario, the prior distributions are highly

disperse apart from those of the measurement error SD and degradation rate for which we

have informative priors. The prior distributions for hyper-variances are uninformative,

uniform on [0, 10]. For the logarithm of global location parameters of R0, K and n, and

log κ we use Gaussian priors with zero mean and variance 10. For the global location

of delay mean and SD we use uniform priors on [0, 24] and [0, 20] respectively. For

the degradation rate log β and measurement error SD log ση the Gaussian priors are

centered on the true simulation value and have variances 0.25 and 0.172, respectively,

representing realistic prior knowledge about these parameters as obtained from previous

studies of degradation rates of reporter proteins (Yamaguchi et al., 2003) and estimates

of the measurement error variance obtainable from reference recordings (Section 4.3.1).

The random effects are initialised by a draw from Eq. (5.5) with ρ = 0.99, i.e.

the Cressie model which imposes a propriety parameter on the CAR model to obtain

a valid data generating process. The value of ρ is chosen to produce a correlation

structure that is close to the intrinsic CAR specification, which has an implied value of

ρ = 1. The hyper-variances are initialised at τ = 1 and the global location parameters

and parameters modelled without random effects in a region of high posterior density,

(±20% away from the true simulation value). The algorithm is run for 25k iterations

with the initial 10k iterations discarded as burn-in. In Figures 5.2 and 5.3 we report

the spatial distributions of posterior means of the transformed parameters, along with

the spatial distribution of the true simulation parameters. Additionally, in Figure 5.4

we report the posterior probability of a limit cycle and the equilibrium population size,
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along with the dynamics and population size under the true parameters used to generate

data.

For the five spatially modelled parameters shown in Figure 5.2 we find that

the spatial distribution of posterior means closely resembles that of the true parameter

values, both in terms of values of individual pixels and the typical variability across

the grid. Some over-smoothing is observed for the delay SD (second row) where the

posterior means exhibit a smoother spatial distribution than the true parameter values.

We note however that in this scenario, i.e. the first order CAR model being the data

generating process, the scale of spatial variability is likely to be much smaller than that of

available resolutions of circadian bio-imaging data. In other words, the 8 by 8 grid poses

an easier problem in the sense of dimensionality of the posterior, while recovering the

spatial variability of the first order CAR process is likely to pose a harder problem than

inference for circadian bio-imaging data due to the small-scale structures observed here

in the distributions of true values compared to the fairly smooth variability displayed

by the estimates from the real data in Chapter 4, Figure 4.6.

True values of the degradation rate β and parameters associated with the exper-

imental procedure, κ and ση, are identical across the grid. The posterior means are on

average very close to the true value and the spatial variability is small, especially for κ

and ση. The posterior means of β hint at spatial dependency despite true values being

spatially homogeneous. This may be due to dependency structures of the posterior, e.g.

similarity can be seen between overestimation of K and the structure of estimated β.

In Figure 5.4 we compare the dynamics, in terms of limit cycle propensity, and

population sizes, associated with the true and estimated parameter values. The poste-

rior probability of a limit cycle largely recovers the spatial distribution of the indicator

function for sustained oscillations of the macroscopic mean. Some locations exhibit sub-

stantial uncertainty (P̂lim. cyc. ≈ 0.5). Typically, such locations neighbour both strong

and weak oscillators and hence we assert that there is some degree of spatial smoothing

of the dynamics. The posterior means of the equilibrium population size are generally

very similar to the true values with large differences generally occurring along edges and

in corners of the grid, i.e. locations with few neighbours.
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Figure 5.2: Left column: Spatial distribution of posterior means of pa-
rameters equipped with spatial prior after 25k MCMC iterations with 10k
iterations discarded as burn-in. Right column: True values used to generate
data. Values are drawn from the prior distribution CAR model.
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Figure 5.3: Left column: Spatial distribution of posterior means of param-
eters without spatial prior after 25k MCMC iterations with 10k iterations
discarded as burn-in. Right column: True value used to generate data.
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Figure 5.4: Left column: Spatial distribution of posterior probability of
a limit cycle and equilibrium population size after 25k MCMC iterations
with 10k iterations discarded as burn-in. Right column: Values under data
generating parameters.

5.4 Discussion

In this chapter we have considered Bayesian hierarchical modelling, and two variations

of the CAR model. The TTFL and measurement model from the previous chapter

were extended to a spatial setting using hierarchical modelling by equipping parameters

associated with the transcriptional birth-process with a spatial random effects model.

By placing a CAR prior distribution on the random effects and designing an MCMC

algorithm to sample the otherwise intractable posterior we develop a methodology to
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simultaneously infer parameters for a large number of locations, or pixels, of circadian

bioimaging data.

Due to the high-dimensional nature of the posterior distribution we directed some

attention to efficiency of blocking strategies for sampling the posterior distribution of

the random effects. Here we find that, in our setting, no gains, in terms of ESJD or

wall-clock time are achieved by sampling the random effects in smaller blocks. The

finding regarding the ESJD is consistent with theoretical results for optimal scaling of

the proposal variance for exploring a d-dimensional Gaussian distributions by Roberts

and Rosenthal (2001), which suggest that the gain achieved by simultaneously exploring

more dimensions is exactly cancelled by the smaller jump-sizes required to optimally

explore those dimensions. Instead the optimal exploration of the target distribution,

in terms of both sample ESJD and wall-clock time, is achieved when simultaneously

updating the whole set of random effects.

To validate the methodology we re-estimated parameters of data simulated from

the model. We find that we are able to recover slightly smoothed spatial distributions

of parameters, along with the dynamical behaviour of the macroscopic rate equation,

i.e. limit cycle behaviour and population sizes, as generated by the CAR model. This

finding is a preparation to applying the methodology to circadian bio-imaging data of

Cry1-luc in the following Chapter 6. The data are subject to spatial variability, as seen

in the resulting parameter estimates of Chapter 4, on a typically coarser scale compared

to the synthetic data generated here by the CAR model. I.e. our interest primarily

lies in spatial structures on the order of tens of pixels, while we are able to recover the

dynamics of individual pixels with a large degree of accuracy.
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Chapter 6

Application of spatio-temporal

model to Cry1-luc data

In this chapter the Bayesian hierarchical framework developed in Chapter 5 is applied

to three experimental replicates of the Cry1-luc imaging data introduced in Chapter 4.

Parameters of the underlying stochastic single-cell model are estimated using random

walk Metropolis along with the random effects and hyper-variances of their respective

spatial parameter models, in addition to the experimentally related parameters that

govern light-scaling and measurement error variance. Analyses of the data are done

at a higher spatial resolution than before which is made possible by the fact that the

spatial parameter model allows sharing statistical strength between the large number of

time series present in each experimental replicate. The spatial distribution of parameter

estimates are interpreted in terms of the robustness measure from Section 3.7.2, where we

find that it accurately classifies tissue as either SCN or non-SCN through the posterior

probability of limit cycle dynamics of the macroscopic rate equation.

We show how to obtain a posterior distribution of the main oscillation period

from the MCMC output using model based stability criteria. We find that the credible

intervals are narrower compared to the confidence intervals obtained through spectral

bootstrap. The reason for this may be that period estimation using our method, while

computationally expensive, provides a higher temporal resolution and precision as the

measurement noise is explicitly modelled, in contrast to the spectral bootstrap used in

Chapter 2 as an exploratory “black-box” tool, which is limited by the frequency at which

data are observed.

Further analysis of the model is carried out by deriving an inhibition profile for the

single-cell model, defined as the derivative of the transcription rate with respect to the
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delayed inhibitory species. A simulation study is designed to examine how the shape of

the inhibition profile affects synchrony and the ability to phase shift from a given periodic

orbit (entrainability) of ensembles of molecular oscillators. By evaluating the inhibition

profiles at the posterior means of parameters across the SCN locations we are able to

investigate the spatial distribution of qualitative properties of the TTFL, in particular

differential responses to perturbations in molecular concentration. We generally find

that such perturbations cause a smaller phase dispersion in the central organ compared

to the edges. This phenomenon can be given a mechanistic interpretation in terms of

the inhibition profile and is related to a well documented trade-off between synchrony

and entrainability of molecular oscillators (Hasegawa and Arita, 2014).

6.1 Spatial modelling of Cry1-luc

Available data consist of three experimental replicates of Cry1-luc imaging data from

the right half of the SCN, denoted Replicate 1-3. To model the spatial dependence ob-

served in the parameters of the single-cell TTFL-model in Chapter 4, the hierarchical

model with CAR random effects introduced the previous chapter is assumed. While

both parameters and non-linear functions of the data, such as period and amplitude

of oscillations, are highly correlated between neighbouring locations, modelling spatial

correlation in the parameter layer instead of the process layer of the hierarchical model

is motivated by the fact that while temporal filtering provides estimates of the underly-

ing states, i.e. molecular concentration per pixel, we cannot infer the spatial extent of

neurons based on pixel observations. Such a procedure would be the first step to fitting

a more detailed model where connections between individual neurons are parametrized

and mapped. While the network topology of the SCN is an area of ongoing study, fea-

sible approaches suffer some limitations due to the complexity of the problem. Vasalou

et al. (2009) simulate and compare various connectivities in a network of highly detailed

but synthetic circadian oscillators, Abel et al. (2016) employ a model-free approach,

inferring functional connections from experimental bio-imaging data using the maximal

information coefficient and McBride and Petzold (2018) construct a deterministic model

for the network topology and fit parameters to experimental data by assuming a sim-

plistic phase-amplitude oscillator for the network nodes. The mechanistic single cell

transcription model we use here is highly parametrized and additional coupling param-

eters describing the synchronization between cells in a mechanistic fashion would not

be identifiable from the available data. We opt instead to model spatial dependency

by parametrizing the correlation of biologically interesting model parameters of nearby
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pixels.

The hierarchical approach serves two purposes: firstly, a joint posterior distribu-

tion for the entire biological tissue sample is obtained. This is a more principled, albeit

computationally expensive, way of inference compared to the approach taken in Chapter

4 where inference was done independently at each spatial location. Secondly, we are able

to effectively borrow statistical strength across the entire biological sample which reduces

the variance of the resulting estimates while still providing information regarding the

spatial variation of parameters which is the property of primary interest. Additionally,

the Markov random field specification of the prior distribution of the random effects is

specified for points on a regular grid, and while pixels form a regular grid the cells do

not. The necessary speed up of the inferential algorithm achieved by assuming a MRF

for the spatial process thus relies on adequately capturing spatial dependence on the

scale of pixels instead of the cells whose locations are only partially observed.

6.1.1 Data processing

In this chapter, two further Cry1-luc recordings are available, denoted Replicate 1 and 3,

in addition to Replicate 2 which was analysed in Chapter 4. In Figure 6.1 the recordings

are summarised through their average luminosity at each pixel. Recall that the resolution

of the raw data is such that a neuron is roughly the size of an 8 by 8 square of raw pixels.

Data preprocessing involves averaging across 4 by 4 raw pixels to produce pixels with a

level of stochasticity that was found in Chapter 4 to be realistic for the chemical Langevin

approximation. The aggregated time series are de-trended using the same method as

in Chapter 4, i.e. subtracting a linear trend estimated using least squares. We use a

sub-sample of the data by discarding even-numbered pixel rows and columns. The sub-

sampling significantly reduces the computational cost of the analysis. As the parallel

implementation of the joint likelihood scales linearly with the number of pixels, the cost

of evaluating the likelihood of the sub-sampled data is one quarter of that using the

full set of pixels. Furthermore, the exploration of the posterior distribution, specifically

for the random effects, is faster when the dimension is reduced, in the sense that the

MCMC algorithm requires fewer iterations to adequately explore a lower dimensional

space. The sub-sampled data are deemed to have approximate correspondence between

the three slices regarding the number of pixels and number of neurons, given that the

two halves of the SCN are approximately spherical and symmetric and consist of around

104 neurons each, and therefore we can reasonably assume that the sub-sampling retains

enough spatial resolution to uncover local structures in the organ.
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Figure 6.1: Average luminosity of three replicates of Cry1-luc imaging data after prepro-
cessing and sub-sampling. Images cover the right side of the organ along with adjacent
tissues in the upper half of the frames due to the drop-shaped geometry of the organ.

6.1.2 Spatial parameter model and prior distributions

The aim is to fit the single-cell distributed delay transcription model from Chapter 4,

Eq. (4.5) to the data obtained at each of the pixels of the three experimental replicates.

Parameters of the transcription function, µΓ, σΓ, R0, K and n are each equipped with

the spatial parameter model introduced in Chapter 5, i.e.

θi = µθ exp(εi) (6.1)

where θi is the parameter value at the ith pixel, µθ is a global location parameter that

is common for all pixels of each experimental replicate and εi is a multiplicative random

effect that is location and parameter specific. The the prior distribution for the L random

effects for the pth parameter, p = 1, ..., 5, conditioned on all pixels except i is given by

ε
(p)
i |ε

(p)
−i , τ

(p)
i ∼ N

∑
j∈Ni

wiε
(p)
j , τ

(p)
i

 , p ∈ {1, ..., 5}, i, j ∈ {1, ..., L}, (6.2)
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where Ni is the neighbourhood of the ith pixel, here defined as the pixels that share a

border or corner with pixel i and wi is the reciprocal of the size of the neighbourhood,

which accounts for pixels at edges and corners having fewer neighbours. Similarly, the

variances are parametrised as τ
(p)
i = τ (p)wi, where τ (p) is a constant, i.e. random effects

at pixels with fewer neighbours have a higher a priori variance. The prior distributions

of the hyper variances and global location parameters are taken to be highly dispersed

log τ (p) ∼ N (0, 102) and logµθ(p) ∼ N (0, 102) for p = 1, ..., 5.

The prior for the log degradation rate, log β, is again taken to be N (−0.55, 0.252),

as elicited from Yamaguchi et al. (2003) who report the mean estimates along with stan-

dard errors of the functional half-life of luciferase in slice cultures from a 20 neuron

experiment. For the logarithm of the measurement error standard deviation log ση we

invoke the procedure outlined in Section 4.3.1 where the variances of the scaled differ-

ence of two simultaneous recordings are estimated using maximum likelihood under the

assumption of Gaussian measurement noise. We find that this estimation technique pro-

duces identical sampling distributions for the three replicates, fitted as N (−5.3, 0.172).

Finally, preliminary simulations suggest that the spatial parameter model, specifically

for population-size parameters R0 and K brings enough statistical strength to place a

disperse prior on the light-scaling parameter κ (log κ ∼ N (0, 102)), which was previously

found difficult to estimate from single time series.

6.1.3 MCMC algorithm

To explore the posterior distribution we again resort to an adaptive random walk Metropo-

lis algorithm where the likelihood is approximated using the EKBF in Section 3.4.1 with

time step dt = 0.5h. The algorithm is explicitly described in the previous chapter,

Section 5.2.1 and again briefly summarised here. For each experimental replicate, the

parameters are divided into blocks consisting of the hyper-variances, τ , random effects

for each parameter of the transcription function εθ, global location parameters µθ and

parameters that are modelled without random effects Ψ = [β, κ, ση]. The dimension

of the update of each block is given in Table 6.1, where L is the total number of pixels

for each experimental replicate (LRep.1 = 840, LRep.2 = 1152, LRep.3 = 1125). Note

that as β, κ and ση are a priori spatially independent the likelihood evaluation in the

accept-reject step can be fully parallelised as no computational gains are made by jointly

updating these parameters for multiple locations. The proposal variance is scaled adap-

tively to achieve an empirical acceptance rate of 0.234 (Roberts et al., 1997) using a

diminishing adaptation scheme. For the L-dimensional updates the proposal kernel has
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a spherical covariance due to the computational cost arising from matrix multiplication

involved in generating high-dimensional Gaussians with dependence structure, while for

the other blocks proposals are made using the empirical covariance matrix estimated

from the MCMC chain. For further details of the algorithm we refer to Section 5.2.1.

Table 6.1: Subdivision of parameters and dimension of updates.

Block τ εµΓ εσΓ εR0 εK εn µθ Ψ

Dimension 5 L L L L L 5 3

To further decrease the computational cost we aim too initialise chains in dense

regions of the parameter space in order to achieve faster convergence. The transcription

function parameters and random effects are initialised at values obtained in the inde-

pendent analysis in Chapter 4, suitably transformed to give preliminary estimates of the

random effects and global location parameter of the transcription function parameters

that can serve as starting values. Previous results are only available for a grid of pixels

and linear interpolation is used to obtain initial values between these points for the full

subset of L pixels.

Let θ̂
(p)

= [θ̂
(p)
1 , ..., θ̂

(p)
L′ ] be the preliminary estimates of the pth parameter of

the transcription function, where L′ < L, i.e. there are only estimates for a subset

of the total number of pixels. Now assume that log θ̂
(p)

= log µ̂
(p)
θ + ε̂(p) where ε̂(p)

sum to zero by construction. The global location parameters are then initialised at
1
L′
∑L′

i=1 log θ̂
(p)

= µ̂(p) and the random effects, where available, at log θ̂
(p)
i − log µ̂(p).

Similarly, the parameters modelled without a spatial prior distribution (degradation

rate β, light scaling κ and measurement error SD ση) are initialised everywhere at the

spatial mean of posterior means from Chapter 4.

For each of the three replicates, the algorithm is run for 60k iterations and the

initial 30k iterations are considered as burn-in and discarded. The number of iterations

is taken to produce effective sample sizes of > 100 while the length of the burn-in is

chosen by visually examining a subset of trace-plots and discarding iterations until the

chains look approximately stationary. The effective sample size of the remaining samples

are evaluated using the lugsail batch means ESS estimator of Vats and Knudson (2018),

reviewed in Chapter 3, Section 3.6.4.
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6.1.4 Effective sample size

In Table 6.2 the minimum, across pixels, conservative univariate lugsail ESS of the

resulting chains are calculated and reported. Conservative estimates are obtained by

varying the batch size between N1/3 and N1/2 where N is the nominal chain length

after burn-in is discarded and the batch size resulting in the lowest ESS is chosen. The

parameters typically have an ESS around .3 percent of the nominal length of the chain,

indicative of a high degree of autocorrelation and slow mixing.

Table 6.2: Minimum lugsail batch means effective sample sizes.

Parameter µΓ σΓ R0 K n β κ ση

Rep. 1 ESS 106 106 106 106 106 101 103 104

Rep. 2 ESS 105 105 105 105 105 113 111 111

Rep. 3 ESS 106 106 105 105 105 109 109 110

6.1.5 Residual analysis

Residuals time series are obtained at each pixel by comparing the filtering mean output

evaluated at the posterior mean of the parameters with the observed data. To verify

approximate normality of the residuals a one-sample Kolmogorov-Smirnov test is per-

formed with the null hypothesis that the residuals come from a normal distribution. The

test is repeated at each pixel and the resulting p-values are adjusted using Bonferroni

correction to account for multiple testing. The test does not reject the null hypothesis

at any of the locations apart from three in Replicate 3.

To assess the goodness of fit the residual time series are tested for significant

periodicity. The spectral densities, specifically the bootstrap distributions of the period

of the residual series are estimated using the spectral resampling methodology developed

by Costa et al. (2013) and reviewed in Chapter 2. If the 99 percent bootstrap confidence

interval has endpoints in the range 0−30 hours, the mean period is recorded and reported

in Figure 6.2. Generally, we can locate low amplitude 12 hour periodicity in central

SCN tissue and oscillations with period close to 0h, consistent with noise, are found in

adjacent tissues. The majority of locations are free of 24 hour periodicity in the residuals,

indicating that the model and estimated parameters essentially capture the circadian

dynamics. We note that the findings are consistent with those in Chapter 4 but bring a

higher spatial resolution to the distribution of 12 hour periodicity, highlighting that the
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generating mechanism is limited to the SCN tissue, though not present everywhere.

0

12

24

Figure 6.2: Dominant periodicity in residual time series, if period is in the range 0−30h,
obtained by spectral resampling.

6.1.6 Parameter estimates

The posterior means of the spatially modelled parameters are calculated by recombining

the chains for the spatial parameter means and random effects using the identity in

Eq. (6.1) after discarding the first 30k iterations. The resulting parameter estimates for

the three replicates are reported in Figures 6.3-6.5 while numerical values are given in

Appendix A, Tables A.1-A.3.

The estimates of the delay distribution mean are consistent between the three

experimental replicates with values between 8.5 and 9.5 hours. There is some spatial

structure in the estimates that varies between the three replicates but the SCN neu-

rons generally oscillate with a period very close to 24 hours and as the mean of the

delay distribution strongly influences the period of the oscillations a low variation in the

estimates is expected. Our estimates are highly consistent with those of Ananthasub-

ramaniam et al. (2014) where a delay of 9.5 hours produced circadian oscillations with
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a period of 23.7 hours in a deterministic, discrete delay model of autorepressive Per

transcription mediated by VIP.

The dispersion of the delay distribution dispersion is a key parameter in tuning

the strength of oscillatory dynamics, along with the Hill coefficient and degradation rate.

All three replicates exhibit higher delay dispersion estimates for central SCN locations

compared to shell locations. The estimates are consistent across the three replicates with

values ranging between 2 and 4.5 hours and somewhat lower for Replicate 3. Both the

maximum transcription rate, R0 and the dissociation coefficient K show no consistent

spatial structure between the three replicates. Values for the two parameters are more

similar for Replicates 1 and 2 (45 < R̂0 < 65 and 100 < K̂ < 150) while somewhat

higher for Replicate 3 (70 < R̂0 < 90 and 150 < K̂ < 210). Both parameters are

related to the underlying molecular population, R0 being the maximum transcription

rate (molecules/hour) and K the population of delayed Cry1 required for a 50 percent

decline in transcription. In Figure 6.4 we report approximate molecular counts associated

with the equilibrium solution at each location across the three replicates and find that

higher estimates of R0 and K combined with lower estimates of κ in fact suggest a higher

average population size. The estimated molecular population sizes are consistent with

those obtained assuming the spatially independent approach in Chapter 4. It should be

noted that the estimates reflect a temporal mean at each location and do not convey the

magnitude of the oscillations about that mean. For typical amplitudes we refer to Figure

6.11 in which paths of the stochastic model are simulated for parameter values typical

of Replicate 1 and 2, suggesting counts ranging between 50 and 200 molecules across

the circadian cycle. These estimates are likely to be very sensitive to slight variations in

the experimental procedure and violations of the model assumptions and specific counts

should therefore only be viewed as approximate indicators of molecular population sizes

involved. Single neuron measurements of Cry1 mRNA population sizes are not available

in the literature, however, Abel et al. (2015) simulate data using a stochastic model of

Per mRNA and find population sizes in the range 0− 400, consistent with our findings.

In addition to the delay dispersion, the Hill coefficient, n, is also a decisive pa-

rameter in tuning the degree with which solutions oscillate and whether a limit cycle

exists. Interestingly, estimates of n are systematically higher in central locations of the

SCN compared to the shell and this is consistent across all three replicates. The spatial

distribution is similar to that of the delay dispersion, suggesting an interaction between

the two parameters which we will explore further in Section 6.2.

The estimates of parameters modelled without a random effect component, namely

the degradation rate β, the light scaling κ and the measurement error standard deviation
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ση, are reported in Figure 6.5. Neither the degradation rate nor standard deviation of

the measurement error show any noticeable spatial structure in Replicate 3, however in

Replicates 1 and 2 the degradation rate is estimated to be lower in the central SCN.

Heterogeneity of β is unexpected, in fact the parameter is modelled without a priori

spatial dependence. The spatial mean of the estimates are consistent between the three

replicates and the posterior distributions are more concentrated than the informative

priors, (0.1 < β̂ < 0.3 and 2 × 10−3 < σ̂η < 10−2). The light scaling parameter has a

clear structure, similar to that of the smoothed estimates used to elicit prior means in

Chapter 4. The structure is again likely due to the geometry of the biological sample

where the centre is raised and closer to the camera (see Chapter 4, Section 4.3.2). The

estimated values are more similar for Replicates 1 and 2, while for Replicate 3 the es-

timated values are slightly lower, which is consistent with a higher average population

size.
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Figure 6.3: Posterior means for delay distribution mean µΓ (top row), delay distribu-
tion standard deviation σΓ (second row), maximum transcription rate R0 (third row),
dissociation coefficient K (second row from bottom) and Hill coefficient n (bottom row)
for three replicates of Cry1-luc imaging data. Colour-scaling varied between the three
replicates to illustrate similarity of spatial distribution.
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Figure 6.4: Estimated molecular population sizes for three experimental replicates of
Cry1-luc. The molecule counts are obtained by calculating the unique positive equilib-
rium solution of the macroscopic rate equation.
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Figure 6.5: Posterior means for degradation rate β (top row), light-scaling κ (second
row) and measurement error standard deviation ση (third row) for three replicates of
Cry1-luc imaging data.

Replicate 2 was analysed in Chapter 4 on a sparser grid assuming a spatially

independent univariate time series methodology and a finer likelihood discretisation. The

results obtained in this chapter are similar for the parameter estimates corresponding

to the SCN tissue but now provide a higher spatial resolution. A compelling argument

in favour of the random effects formulation used in this analysis is that it results in an

improved identification of the light scaling parameter. The reason is that R0, K and

κ are all related to population size, R0 and K of the underlying molecular population

and κ of the light signal from a given population. If the noise level is low due to large

molecule counts the likelihood surface of the three parameters has very little curvature.

With the approach taken here the global location parameters of R0 and K become easier

to estimate as more data can be used to evaluate the likelihood. This, combined with

the sum-to-zero constraint on the random effects results in an improved identification

of κ despite its marginal likelihood using the same amount of data as the spatially

independent inferential procedure and the prior being diffuse.
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6.1.7 Robustness of oscillations

In Figure 6.6 the posterior probability of a limit cycle, P̂lim. cyc. is reported for the

three replicates (see Section 3.7.2, specifically Eq. (3.51)). This quantity is estimated

by calculating the proportion of the MCMC chain for which the parameters imply a

positive real part of the principal eigenvalue of the Jacobian. The rounding scheme in

Eq. (4.23) is used to construct an approximate integer-size Jacobian.

0
0.05

0.5

1

Figure 6.6: Posterior probability of a limit cycle for three replicates of Cry1-luc imaging
data.

The resulting estimates are very similar to those obtained previously using spatially

independent prior distributions in Chapter 4 but offer a higher spatial resolution. The

SCN tissue locations typically have a P̂lim. cyc. close to 1 with a few locations in Replicate

1 and 2 exhibiting low values in the central and ventral SCN.

A high value of P̂lim. cyc. is associated mainly with high values of the Hill co-

efficient, n, as well as an increase in σΓ. Recall from Section 4.2.1 that, as the delay

distribution variance goes to zero, the Hill coefficient required for limit cycle decreases.

Thus, holding all other parameters fixed, a large value of the delay distribution disper-

sion σΓ is associated with less robust oscillators in the sense of Eq. (3.51), but this
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effect here is compensated by an increased Hill coefficient n. The relationship between

the two parameters is examined in Figure 6.9 where estimates of σΓ and n are plotted

for the three experimental replicates and coloured coded with respect to P̂lim. cyc.. A

clear positive relationship between the two parameters is evident and generally, weak

oscillators tend to have low values of both parameters while the strong oscillators are

associated with higher Hill coefficient and a higher variability in delay dispersion. This

relationship and its effect on the robustness of circadian dynamics in the SCN is explored

in further detail through a simulation study in Section 6.2 in the end of this chapter.

6.1.8 Bayesian Period estimation

Estimation of the period of oscillations is typically a key step in the analysis of circa-

dian data. For example, several different techniques for period estimation are used and

implemented in BioDare2, a data repository and data analysis platform available at bio-

dare2.ed.ac.uk (Zielinski et al., 2014). The techniques provided in BioDare are typically

based on spectral analysis and are generally computationally fast but lack uncertainty

quantification, with the exception of the spectrum resampling method by Costa et al.

(2013) (see Chapter 2). Here, we shall discuss and apply a model-based Bayesian ap-

proach for period estimation and uncertainty quantification and compare the results to

the spectrum resampling method for the Cry1-luc data.

Recall from Section 3.7 that dynamical systems with oscillating solutions have

Jacobian matrices with complex eigenvalues, and that the period of the oscillatory solu-

tions are given by P = 2π/Imag(λ). With this in mind, it is straight forward to obtain

e.g. the posterior mean of the period P from the MCMC output on the parameter esti-

mates, in a similar fashion to how we calculate the posterior probability of a limit cycle.

Formally, the quantity we want to estimate is

E[P |Y] =

∫
Θ

2π

Imag(λθ)
π(θ|Y)dθ, (6.3)

where λθ depends on the parameters θ through the Jacobian in Eq. (4.12). The posterior

mean period can in practice be estimated by constructing the Jacobian of the system

for each sample of the posterior distribution and recording its eigenvalues, which are

subsequently used to construct samples of the posterior distribution of the period of

oscillations using P (i) = 2π/Imag(λθ(i)). Similarly, one may construct credible intervals

by calculating the relevant percentiles of the samples of the period posterior distribution.

The Bayesian approach to period estimation allows for, as in our case, separately
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modelling the measurement process and underlying process of interest. Hence parameter

uncertainty is propagated to the period uncertainty while the measurement noise is

not. Additionally, while spectral methods rely on frequently sampled data to give high

temporal resolution in period estimates, the Bayesian approach only relies indirectly on

high frequency observations as it typically improves parameter inference. However, the

Bayesian approach relies on the assumed model and may thus be sensitive to model

misspecification. Additionally, in our case the eigenvalues used to construct the period

estimator are those of the macroscopic rate equation, hence the period estimates ignore

any effects of the noise term on period length.

We note that the identity P = 2π/Imag(λ) is undefined for strictly real eigenval-

ues and thus we are in a sense conditioning on the existence of oscillations to guarantee

existence of Eq. (6.3). In the case of posterior mass lying in a region where Imag(λ) = 0

an alternative definition is obtained by replacing π(θ|Y) with π(θ|Y, Imag(λ) > 0) and

integrating over the parts of the parameter space for which Imag(λ) > 0, producing a

posterior mean of the period conditional on oscillating solutions. In our case however

all posterior mass lies in a region where the eigenvalues are strictly complex, i.e. the

posterior probability of non-oscillating solutions is zero.

In Figure 6.7 we report the spatial distribution of period estimates obtained using

spectral resampling along with the width of 95 percent bootstrap confidence interval for

the three experimental replicates. The period estimates are close to 24 hours across

the entire SCN and the widths of the confidence intervals are 1.5-2.5 hours. In Figure

6.8 the posterior mean of the period is reported, along with the width of 95 percent

credible intervals. The color-scaling is kept fixed between the two methods, revealing an

increased temporal resolution in period estimates obtained using the Bayesian approach.

Furthermore, the widths of the credible intervals are between 0.5 and 1.5h. Note however

that widths of the bootstrap confidence intervals and Bayesian credible intervals are not

directly comparable as their interpretations differ: the bootstrap confidence intervals

capture uncertainty in period estimates due to measurement and molecular noise, while

the credible intervals capture the uncertainty due to unknown parameter values of an

approximating deterministic process.

Application of the model-based Bayesian period estimator reveals evidence for

spatial variation of the periodicity of the molecular oscillators. Specifically Replicate 1

and 2 exhibit a lower period (< 23h) in central regions of the SCN compared to the

edges of the organ. Such spatial variation is not found using the spectral resampling

methodology, which produces period estimates close to 24 hours across all SCN tissue.

Li et al. (2020) recently found experimental evidence that intrinsic noise, i.e.
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noise caused by the discrete nature of molecular interactions and here modelled by the

CLE, may lengthen the period of circadian oscillations. By treating single cells with a

transient transcriptional noise enhancer the authors found that the period of circadian

oscillations was significantly increased by approximately 1.5 hours. For the single-cell

TTFL model, we find that intrinsic noise can both increase and decrease the period

length when simulated trajectories of the stochastic model are compared to numerical

solutions of the macroscopic rate equation. The mean difference in period depends

largely on the assumed parameter values and for parameters corresponding to those

inferred from the Cry1-luc data the difference between the deterministic and stochastic

oscillator and is in the range −2 to 2 hours. Our empirical findings, taken together

with those of Li et al. (2020) suggest that intrinsic noise may play an important role in

circadian functionality and may have different impact in different regions of the SCN.
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Figure 6.7: Mean of bootstrap estimates of period corresponding to the dominant peak
of the spectral density and widths of 95 percent bootstrap confidence intervals.
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Figure 6.8: Posterior mean of period and widths of 95 percent HPDIs calculated using
Bayesian model-based method.
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6.2 Inhibition profile & Entrainment of molecular oscilla-

tors

We find that the propensity for limit cycle dynamics is mainly driven by the Hill coef-

ficient, n, consistent with the theory on the Hill function discussed in Section 4.2.1 and

Tyson (2002). That is, for other parameters held fixed, limit cycle oscillations can be in-

duced by increasing n to some critical value which depends on the other parameters and

for the special case of a fixed delay is known to be exactly nmin = 1. The delay dispersion

and Hill coefficient can thus trade-off in a way such that an noise induced oscillator, i.e.

where Re(λ) < 0 and Imag(λ) 6= 0, may have a relatively High hill coefficient due to

a high delay dispersion, and vice versa. This trade-off can be inspected in Figure 6.9,

where only locations corresponding to SCN tissue are plotted with the estimated values

of the Hill coefficient on the y-axis and estimated values of the delay dispersion (SD)

on the x-axis for the three replicates. Additionally, the points are coloured according to

their posterior probability of a limit cycle.
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Figure 6.9: Scatter plot of estimated delay distribution standard deviation and Hill
coefficient for the three experimental replicates, color coded by probability of limit cycle.
Oscillators lie on a ridge in the space formed by the Hill coefficient and delay SD. Weak
oscillators are found primarily at the lower end of the relationship and typically have
lower estimates of both parameters.

We find that the oscillators lie on a ridge in the parameter space such that there
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is a positive correlation between the Hill coefficient and delay SD for all three replicates.

The relatively weak oscillators typically occupy the lower part of this relationship with

estimates of n, and interestingly of the delay dispersion as well. As lowering the delay

dispersion theoretically increases the propensity for limit cycle dynamics, and a wide

range of estimates for the delay dispersion are found for the relatively strong oscillators,

we hypothesize that the shape of the delay distribution may have other qualitative effects

on the behaviour of the oscillators.

To study putative dynamical differences induced by moving along the (n, σΓ)-

ridge we define the inhibition profile (IP) of the transcription function as the derivative of

the transcription rate with respect to the past levels of mRNA, evaluated at and divided

by the equilibrium level x∗ to produce a normalised quantity that may be compared

between different oscillators. As the IP can only be evaluated at a finite number of

points between 0 and the maximum delay time τmax we state it here in discretised form,

where gj are the weights given by the gamma delay distribution,

Inhibition(t) = (x∗)−1 d

dxt

R0

1 +
(∑τmax

j=0 xτmax−jgj
K

)n . (6.4)

The magnitude of the IP evaluated at time t ∈ (0, τmax) corresponds to the change

in transcription rate due to a small increase in inhibiting species at t. The function allows

us to examine how perturbations in mRNA affect the transcriptional activity over the

subsequent 24 hours through the delay distribution. In Figure 6.10 the IPs of various

oscillators along the (n, σΓ)-ridge are visualised.
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Figure 6.10: Inhibition profile for various estimated combinations of Hill coefficient and
delay dispersion. Low delay dispersion gives a peaked inhibition profile while a high delay
dispersion produces a flatter curve. Colour spectrum (blue to red) of curves corresponds
to moving along the (n, σΓ)-ridge (low to high).

The IP is more peaked for oscillators with low delay dispersion, meaning that the

inhibitory action is concentrated to a shorter time period, and the onset of the inhibition

is not as gradual compared to an oscillator with wide IP. Oscillators with a low delay

dispersion are driven by inhibitory dynamics that are closer to a step function, i.e. an

“on-off” switch for the inhibition due to a certain mRNA fluctuation. In contrast, a

wide IP distributes the inhibitory action over a longer time period with earlier and less

sudden onset and a lower maximum effect.

As circadian timekeeping is an emergent property of the aggregate of synchro-

nised, noisy cellular clocks, we turn our attention to the ensemble properties of the single

cell model and investigate the sensitivity of the synchronisation of the circadian rhythms

to perturbations. While our model lacks a mechanism for inter-cellular signalling and

zeitgeber (e.g. light) input, which are the de-facto conferrers of synchrony and entrain-

ment in intact SCN tissue (Herzog et al., 2017), we achieve synchronised oscillations of

the ensemble through a common initial condition and approximate a zeitgeber input by

a shock that is inconsistent with the oscillators’ natural limit cycle.

Synchrony and entrainability intuitively trade-off as the former is the ability of

an ensemble of oscillators to remain on or close to a given periodic orbit and the latter

the ability to phase-shift to a new orbit (see e.g. Hasegawa and Arita (2014) where our

definition of synchrony is referred to as regularity). We stress that in the absence of a
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coupling mechanism, defining synchrony as the phase coherence of ensembles of oscilla-

tors is reasonable. The trade-off between synchrony and entrainability is experimentally

studied in SCN neurons by An et al. (2013) who find that faster entrainment is achieved

when high levels of VIP desynchronise individual neurons. Our working hypothesis is

that molecular oscillators with wide inhibition profiles exhibit greater resilience to de-

synchronisation in terms of periodicity and phase when exposed to exogenous shocks

in mRNA counts, as a given shock acts over a longer time interval. To investigate this

hypothesis, a simulation study is designed where ensembles of two prototypical oscil-

lators on either end of the (n, σΓ)-ridge are forward simulated from a common initial

data function containing a positive burst of mRNA with varying duration (0-4h) and

amplitude corresponding to a typical mRNA peak. The distribution of the phases for

the varying shock scenarios are recorded and compared to the distribution of phases of

the unperturbed ensembles.

For each oscillator type 2000 realisations are simulated using an Euler-Maruyama

approximation (Kloeden and Platen, 1992) with step size dt = 0.1. The Hill coefficients

are set to 5.6 and 3.82 and delay SD to 4.2 and 2.2 for the two oscillator types, respec-

tively. To achieve oscillators with identical period the delay mean is set to 9.4 and 9.1h,

respectively, for the two types. All other parameters are set identical for the two oscilla-

tors, and are based on estimated values for the three experimental replicates: R0 = 50,

K = 100, β = 0.25. The phase distributions are obtained by estimating the phase of

each simulation replicate based on five circadian cycles following the initial data using

spectral analysis.

The results of the simulation study are summarised in Figure 6.11, where the

initial data along with the first cycle of oscillations are shown for a randomly selected

subset of the replicates to avoid over-plotting. Trajectories of the oscillator type with

wide IP are given in red and narrow IP in blue. The panels in the top row of Figure 6.11

reveal that in the unperturbed scenario the two oscillator types have similar dynamics

in terms of phase, amplitude and period. As the duration of the shock increases the

oscillators with narrow IP tend to oscillate with a small peak directly following the

shock, followed by a larger oscillation which is phase-shifted by a larger value than the

red ones. The temporal smoothing of the wide IP mitigates a sudden transcriptional

response, instead delaying the first oscillation post-shock which appears less stochastic.

The polar histograms reveal that in the unperturbed scenario both oscillator types

have similar phase dispersion. As the duration of the shock is increased the synchrony

of both oscillator types is gradually weakened, in that the phase dispersion is increased.

The loss of synchrony is greater for the narrow IP oscillator, along with total shift in
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ensemble mean phase. Interestingly, the longest (4 hour) shock duration produces exact

time keeping with a low phase dispersion compared to shorter shocks.
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Figure 6.11: Simulations of trajectories with large perturbation of varying length (0-4
hours). Red lines and histograms have parameter combinations with large delay distri-
bution SD (σΓ = 4.2) and Hill coefficient (n = 5.6) while blue have low values for both
σΓ = 2.2, n = 3.82. Polar histograms in bottom panels show deviation between average
peak times of the non-perturbed and perturbed cases. The “wide IP oscillators” (red)
exhibit smaller phase dispersion and phase shift compared to the “narrow IP oscillators”
(blue).

To investigate whether we can construct spatial heterogeneity of phase-resetting

and dispersion in different regions of the SCN the simulation study is conducted for the

4 hour shock scenario but this time using the spatially distributed posterior means of

the parameters, evaluated at each pixel for each of the three experimental replicates.

Due to the relatively large number of pixels the number of replicates is reduced to

200 for each pixel. The results, summarised by the standard deviation of the phase

distribution, are reported in Figure 6.12. We find consistently across all three replicates

that centrally located oscillators have a lower phase dispersion compared to the shell

oscillators following a 4 hour peak-sized shock in mRNA levels. The spatial distribution
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of the phase dispersion is similar to that found for the delay dispersion parameter (see

Figure 6.3), and hence the shape of the inhibition profile.
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Figure 6.12: Spatial distribution of phase dispersion (SD) following a 4 hour peak-size
shock in initial data during trough. For each pixel we generate 200 realisations of the
model using the location specific parameter estimates and record the phases to obtain a
phase distribution with an associated standard deviation. The positive shock in mRNA
count causes a stochastically induced de-synchronisation of the ensemble timekeeping
that increases the standard deviation of the phase distribution to 1-5 hours. The phase
dispersion is typically lower for centrally located oscillators due to their wider inhibition
profiles, suggesting that the ensemble timekeeping in the central SCN is less sensitive to
exogenous shocks compared to the shell.

The relative insensitivity to large shocks in the central SCN can be understood

by the delay distribution acting as a regulator of delayed mRNA. A highly dispersed

delay distribution (high σΓ) gives a wide IP, meaning that time with which Cry1 mRNA

is transcribed and the resulting protein products undergo transport and dimerization is

highly variable. This in turn diminishes the effect of the perturbation by distributing

the repressive input over a wider time interval. The decreased oscillatory capability

associated with an increase in σΓ can be counteracted by an increased responsiveness to

a given repressive input through a higher Hill coefficient.
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The results suggest that ensembles of core-type oscillators remain relatively syn-

chronised when subjected to large shocks and phase shift to a new circadian regime

in a predictable fashion. The shell-type oscillators on the other hand may exhibit a

similar degree of synchronisation when unperturbed, but we find that large enough per-

turbations desynchronise the individual oscillators such that circadian timekeeping of

the ensemble is lost. The difference in phase shift between the two types of oscillators

after a 4 hour perturbation suggests that while core-ensembles phase shift in unison,

that predictability comes at a cost: the phase of the core-ensemble is less adjusted to

the new circadian regime compared to the shell-ensemble. Additionally, the (n, σΓ)-

ridge suggests that there are not two distinct sub-populations with regards to synchrony

and entrainability but SCN neurons instead lie on a spectrum with a higher density of

sensitive neurons in the shell and insensitive neurons in the central SCN.

6.3 Discussion

In this chapter we estimated the parameters of a spatio-temporal Bayesian hierarchi-

cal model, describing auto-repressive Cry1 transcription at the process layer. Inference

was achieved using an MCMC algorithm that utilizes parallelisation for the likelihood

approximation which is the dominating step of the algorithm in terms of the total com-

putational cost. While still computationally costly, the algorithm is executable on a

standard modern PC, taking approximately 300 hours to achieve an effective sample

size of > 100 for all parameters for a dataset consisting of ≈ 1000 pixels and 280 time

points on an Intel Core i7-6700 processor running at 3.40 GHz.

The model fit was evaluated by examining residual normality and periodicity. Lo-

cations associated with weak oscillators, i.e. adjacent tissues generally show good model

fit while locations associated with strong oscillations in SCN tissue exhibit low ampli-

tude 12 hour residual periodicity, these findings are consistent with those of Chapter 4,

but the higher spatial resolution provided by the spatio-temporal model provides addi-

tional evidence that SCN tissues oscillate with 12 hour rhythms that are not consistent

with a simple autoregulatory feedback loop. A likely explanation is that low amplitude,

oscillating expression of Cry1 mRNA has recently been observed in astrocytes which is

antiphasic to the SCN neurons, as described by Brancaccio et al. (2017).

The output allowed us to study spatial variation in parameter estimates and

conclude that Cry1 mRNA population sizes are relatively uniform across the SCN. Our

measure of oscillatory robustness clearly identifies SCN neurons from surrounding tissues

and the additional spatial resolution provided here gives evidence that the entire (intact)
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circuit of SCN neurons should be modelled as limit cycle oscillators, in the sense of the

dynamics of the macroscopic mean of Cry1 levels.

We show how to obtain the posterior distribution of the period of oscillations from

the MCMC output when stability properties of the model are known. While a compu-

tationally costly approach to period estimation, it comes with the benefit of uncertainty

quantification while allowing separate modelling of the measurement error process. The

Bayesian period estimation approach is compared to spectrum resampling (Costa et al.,

2013) which also offers uncertainty quantification through bootstrap confidence inter-

vals. Spectral methods rely on high frequency sampling to provide a high temporal

resolution while the our approach does not. This is relevant for circadian data which is

typically available at sampling frequencies of 1 or 2 observations per hour. We identify

spatial differences in periodicity across SCN tissues, specifically that the central neurons

oscillate with a lower period (< 24 hours) compared to the shell (> 24 hours). As the

Bayesian approach estimates the period of the macroscopic rate equation, this finding

suggests that intrinsic noise, which is found to have a period lengthening effect by Li

et al. (2020), may play a differential role in the generation of rhythms across the SCN

circuit.

A novel finding is also that centrally located neurons have a higher delay disper-

sion, i.e. the timing of the feedback loop, from transcription of mRNA to binding and

inhibition of the regulatory dimer has a higher variability. We show through a simulation

study that the increased stochasticity of intermediate species may in certain situations

produce oscillators with a higher degree of ensemble synchrony. This phenomenon is

given a mechanistic interpretation in terms of the inhibition profile.

A simulation study was designed to investigate ensemble properties of model

output. Trajectories of two prototypical oscillators from either end of the (n, σΓ)-ridge

were forward-simulated for seven circadian cycles. As the model does not describe inter-

cellular communication, synchronised synthetic data was obtained by a common path

of initial values along with common perturbations of varying duration and synchrony

was defined as the ensemble regularity of phases. The results give evidence of additional

functional differences between the shell and core SCN: perturbations disrupted syn-

chronisation of the shell-type oscillators while central oscillators maintained relatively

synchronised circadian time-keeping.

The findings were consistent across three experimental replicates, and with previ-

ously obtained estimates from Chapter 4 using a spatially independent model, suggesting

that the results are characteristic of intact organotypic slice cultures of SCN neurons,

and thereby constitute empirical input parameters of a model of auto-regulated Cry1
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transcription in the SCN, capable of generating realistic synthetic mRNA data. In the

next chapter we shall apply a model incorporating calcium as a transcription factor, in

addition to autoregulatory inhibition of delayed mRNA. This additional transcription

factor will allow an investigation of synchronisation in a mechanistic fashion by means

of calcium signalling. Studying the effect of an additional transcription factor is possible

due to strong priors on the inhibition dynamics of the auto-regulatory loop and simul-

taneous recordings of calcium and Per2, which contains a calcium responsive element

(CRE) in addition to the E-box motif common between Cry and Per.
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Chapter 7

Synchronisation through a second

transcription factor

This chapter extends the statistical methodology from Chapters 3 and 4 to a more general

model of circadian gene transcription where activation is regulated via a transcription

factor in addition to the auto-regulatory TTFL.

In Section 7.1 we present a Goodwin-type model that incorporates both auto-

repression and transcriptional regulation through a second transcription factor. In the

subsequent sections we adapt the statistical methodologies from Chapter 3 to the ex-

tended transcription model and propose a phenomenological state-space model for a

partially observed secondary transcription factor. This allows for matching the discrete-

time approximation frequency of the circadian gene and transcription factor processes,

required for the likelihood approximation. An MCMC algorithm is proposed for sam-

pling the posterior distribution of the model.

In the final section of this chapter we estimate the parameters associated with

the secondary transcription factor from experimental data of simultaneously recorded

Per2:luc and GCaMP-reported calcium from wild-type (WT) mouse SCN. This is achieved

by equipping parameters associated with the idiosyncratic core TTFL Per2 loop with

informative prior distributions. These prior distributions are obtained by fitting a sim-

pler model, reviewed in Chapter 4, to Per2 expression in VIP-null SCN tissue, made

available by Maywood et al. (2011). As VIP signalling acts through the same pathway

as calcium (see Section 7.4.1), imaging data from VIP-null tissue allows us to obtain

estimates for a subset of the model parameters describing the core TTFL mechanism in

the absence of the VIP, calcium and CRE signalling cascade. The remaining parame-

ters, describing activation of Per2 transcription by calcium responsive element binding
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protein (CREB) are subsequently estimated from the simultaneous recording of Per2:luc

and GCaMP-reported calcium.

7.1 A model of the TTFL with a secondary activation

mechanism

Calderazzo (2016) derives a distributed delay SDE that assumes Hill-type dynamics for

calcium-induced activation and auto-repressive regulation of circadian gene transcrip-

tion. In this section we follow that derivation in a general setting of delayed auto-

repression and activation through a secondary exogenous transcription factor. Our con-

tribution consists of a rescaling of the deterministic dynamics from mRNA counts to

“promoter saturation”, effectively decoupling the regulatory dynamics from molecular

population sizes (Section 7.1.2).

7.1.1 Macroscopic deterministic model

Let X(t) denote population of mRNA of circadian gene, e.g. Per, and let Xi(t) denote

concentrations of intermediate species of the TTFL. Additionally, let Z(t) denote the

concentration of the activating transcription factor at time t and define delayed Z(t) as

Zτ (t) =

∫ t

−∞
Z(s)gaTF ,pTF (t− s)ds, (7.1)

where ga,p denotes the density of a gamma distributed random variable with rate a and

shape p. The delay distribution for the transcription factor relies on the linear chain trick

(Smith, 2011) and provides flexibility for settings where Z(t) does not directly activate

transcription but instead represents an observed species that mediates activation through

a series of reactions. These unobserved reactions and species are modelled by

dZj(t)

dt
= aTF [Z

(TF )
j−1 (t)− Zj(t)], j = 1, ..., pTF , (7.2)

where ZpTF is the end-product activating species, while we wish to model activation by

the “earlier” species Z1 in the chain of reactions.

We assume that the intermediate species in the circadian mRNA TTFL can be
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modelled by the following system of ODEs

dX(t)

dt
= ν(Xp(t), Zτ (t))− βX(t)

dXi(t)

dt
= a(Xi−1(t)−Xi(t)), i = 1, ...p,

(7.3)

where X0(t) := X(t) and ν(·, ·) and β are transcription and degradation rate, respec-

tively, of the species of interest. This is identical to the description in Section 4.2, except

we now let the birth-rate ν depend on the additional variable Zτ (t). Note that Zτ (t)

is an exogenous (but time varying) variable and hence Eq. (7.3) is in fact a system of

non-delayed differential equations. As before in Chapter 4, we apply the linear chain

trick and write the system in Eq. (7.3) as a distributed delay differential equation of the

form
dX(t)

dt
= ν(Xτ , Zτ (t))− βX(t), (7.4)

where

Xτ (t) =

∫ t

−∞
X(s)ga,p(t− s)ds. (7.5)

The delay distribution for mRNA accounts for the same intermediate processes as in

the purely auto-regulatory model used in previous chapters, i.e. translation, transport,

dimerisation and nuclear import/export.

Assuming Hill-function dynamics, transcriptional activation by the transcription

factor Zτ (t) and an interaction effect between inhibition due to delayed mRNA and

activation by Zτ (t), Calderazzo (2016) derives a macroscopic rate equation for circadian

mRNA transcription, given by

dX(t)

dt
=
R0 +RTF

(
Zτ (t)
KTF

)nTF
−Rint.

(
Zτ (t)
KTF

)nTF (Xτ (t)
K

)n
1 +

(
Xτ (t)
K

)n
+
(
Zτ (t)
KTF

)nTF
+
(
Xτ (t)
K

)n (
Zτ (t)
KTF

)nTF − βX(t). (7.6)

It is easy to see that for Zτ (t) := 0 we recover the single transcription factor model used in

the previous chapters. Hence, R0 molecules per unit time is the maximum transcription

rate of mRNA in the absence of activation through Zτ (t) and K is the count of delayed

mRNA at which that transcription rate is at 50 percent of the maximum rate. Letting

Xτ (t) := 0 and Zτ (t)→∞ reveals that RTF is the “partial” maximum activation due to

Zτ (t) and for Zτ (t) = KTF activation is at 50 percent. In addition, the model captures

a non-linear interaction effect of transcriptional activation/inhibition due to the delayed

species through Rint.. Letting Zτ (t)→∞ for some fixed Xτ (t) reveals that the maximum
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activation due to Zτ (t) is given by RTF −Rint.(Xτ (t)/K)n. Idiosyncratic non-linearity is

captured by factor specific Hill coefficients nTF and n that parametrise the cooperativity

of the binding sites for the activating and inhibiting species, respectively.

7.1.2 Rate rescaling and decoupling of population size

Parameters R0 and K are specified in terms of circadian gene mRNA per unit time

while KTF is specified in terms of Zτ (t) molecules. Unless molecular population sizes

of the exogenous transcription factor are known, which is typically not the case, KTF

is not directly identifiable. However, we note that Zτ (t) only enters the transcription

function through the fraction Zτ (t)/KTF . Under the reasonable assumption that cZτ (t)

is known for some unknown constant c and unknown population size Zτ (t), e.g. the

case where Zτ (t) is measured by a proportional light signal such as in bioluminescence

imaging techniques, it is helpful to rewrite the relevant fractions as(
Zτ (t)

KTF

)
=

(
cZτ (t)

cKTF

)
=

(
cZτ (t)

K∗TF

)
. (7.7)

The interpretation of K∗TF is the level, in arbitrary units, of cZτ (t) at which the exoge-

nous activation of circadian gene mRNA transcription is at 50 percent of maximum.

We shall now consider an additional rescaling of the deterministic dynamics given

in Eq. (7.6) from molecular population size to “promoter saturation”, which decouples

the dynamics from population size and hence reduces the number of parameters. By

defining

X ′(t) =
X(t)

R0
, (7.8)

we obtain the following delay differential equation for the evolution of X ′,

dX ′(t)

dt
=

1 +R′TF

(
cZτ (t)
K∗TF

)nTF
−R′int.

(
cZτ (t)
K∗TF

)nTF (X′τ
K′

)n
1 +

(
X′τ
K′

)n
+
(
cZτ (t)
K∗TF

)nTF
+
(
X′τ
K′

)n (
cZτ (t)
K∗TF

)nTF − βX ′(t). (7.9)

where R′TF = RTF /R0 and R′int. = Rint./R0 have the interpretation of exogenous

activation and interaction relative to the baseline maximum, respectively. Similarly,

K ′ = K/R0 is not expressed in terms of molecular population but instead is interpreted

as the level at which repression is 50 percent, relative to the non-inhibited transcription

rate. Furthermore, Hill coefficients n and nTF , degradation rate β and delay distribution

parameters are unaffected by the rescaling and hence independent of population sizes in

both Eq. (7.6) and (7.9).
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7.1.3 CLE approximation

To account for stochasticity due to low numbers of mRNA molecules we assume a birth-

death process as in Calderazzo (2016). The delay differential equation in Eq. (7.6)

implies the following set of reactions

∅ ν(Xτ ,Zτ )−−−−−−→ X

X
β−−−−−−→ ∅.

(7.10)

In the first reaction circadian mRNA is synthesized from abundant reactants with rate

given by the first term of the right hand side of Eq. (7.6). The second reaction describes

linear degradation of mRNA with rate β. As discussed in Chapter 3, and by additionally

conditioning on the exogenous transcription factor, i.e. treating Zτ (t) as a time-varying

parameter of the system, we can approximate the associated Markov Jump process by

the CLE to obtain an equation on the form

dX(t) = (ν(Xτ (t), Zτ (t))− βX(t)) dt+
√
ν(Xτ (t), Zτ (t)) + βX(t)dW (t), (7.11)

where W (t) is a standard Wiener process. By applying the rate rescaling from Section

7.1.2 we can decouple the drift function from population size and obtain the following

delayed SDE

dX ′(t) =

1 +R′TF

(
cZτ (t)
K∗TF

)nTF
−R′int.

(
cZτ (t)
K∗TF

)nTF (X′τ
K′

)n
1 +

(
X′τ
K′

)n
+
(
cZτ (t)
K∗TF

)nTF
+
(
X′τ
K′

)n (
cZτ (t)
K∗TF

)nTF − βX ′(t)
 dt

+

√√√√√γ

1 +R′TF

(
cZτ (t)
K∗C

)nTF
−R′int.

(
cZτ (t)
K∗TF

)nTF (X′τ
K′

)n
1 +

(
X′τ
K′

)n
+
(
cZτ (t)
K∗TF

)nTF
+
(
X′τ
K′

)n (
cZτ (t)
K∗TF

)nTF + βX ′(t)

dW (t)

(7.12)

where γ = R−1
0 is a dispersion parameter that links the level of stochasticity at the

population level of mRNA to the level of promoter saturation X ′(t).

7.1.4 Measurement model and Extended Kalman-Bucy filter for the

TTFL model with secondary activation

In addition to the model in Eq. (7.12) we need a model that accounts for measurement

noise and time-aggregation of the underlying concentrations. As before (see Section
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3.4.1), we assume that the observations, available at t = ∆t, ..., T , are formed by scaled

temporal aggregates of underlying states, corrupted with additive Gaussian measurement

noise ηt with time-homogeneous variance σ2
η to represent camera exposure time and

measurement noise, i.e.

Yt = κ

∫ t

t−∆t
X ′(s)ds+ ηt. (7.13)

The EKBF for delayed systems, developed by Calderazzo et al. (2018) and re-

viewed in Chapter 3, Section 3.4.1 can be adapted to approximate the likelihood of the

extended transcription model in Eq. (7.12) along with measurement equation in Eq.

(7.13). We treat the second transcription factor as exogenous and hence the likelihood is

given by the probability of observed data under a given value of the parameter set Ψ =

[R0, RTF , ..., β] and a fixed sequence of the activating transcription factor Z(t), t ∈ [0, T ],

interpreted as a function of the parameters, i.e. L(Ψ;Y∆t:T , Z0:T ) = P (Y∆t:T |Ψ, Z0:T ).

In the next section we propose a stochastic model to describe the time evolution and

measurement process of the second transcription factor, but for now the likelihood is

conditioned on an available sequence of measurements of the underlying concentration

of the activating transcription factor, up to a multiplicative constant as shown earlier

by the rate rescaling.

To approximate the likelihood, we assume a common discretisation of the un-

derlying circadian mRNA X0:T = [Xδt, X2δt, ... , XT ] and activating species Z0:T =

[Zδt, Z2δt, ... , ZT ]. The delay distributions for both of the species are truncated at a

maximum delay time τmax = 24, which implies that the effects of the delayed species are

fully exhausted within a full circadian cycle. The mean and variance of the discretised

CLE are linearised by Taylor expanding around a deterministic mean ρt. These quan-

tities are propagated forward by δt using Eq. (3.24) and subsequently updated using

the Kalman update in Eq. (3.28). The steps are given explicitly in Appendix B. A

Gaussian likelihood follows from assuming X0 ∼ N (ρ0, P0), approximate linearity of the

process on subintervals of length δt, linearity of the measurement equation and additive

Gaussian measurement errors.

7.2 A harmonic dynamic linear model for a partially ob-

served exogenous transcription factor

In practice, it is often the case that recordings of an additional transcription factor consist

of time-averaged measurements corrupted by some measurement noise process. If the

aim is parameter estimation, we first require some methodology to infer the underlying
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states of the transcription factor, given the noisy measurements. The reason for state

inference is twofold: firstly, the measurement process of the transcription factor can

cause biases in the estimation of the transcription model if not appropriately modelled.

For example, conditioning inference on a single realisation of noisy measurements will

result in underestimation of the posterior dispersion. Secondly, data for the transcription

factor and the circadian gene expression might be available at discrete time points with

interval length dictated by the experiment, and the EKBF likelihood approximation

requires evaluation of the circadian mRNA and transcription factor processes at some

discrete time points δt, t ∈ [1, T ] with common interval length δ, where δt is smaller than

the time interval ∆t, at which measurements are taken. As the primary interest in the

exogenous transcription factor lies in reconstructing the states we develop a harmonic

dynamic linear model for Z(t) which can be solved by Kalman filtering and smoothing.

Petris et al. (2009) gives a thorough treatment of Fourier form dynamic linear

models, which is followed here. Assume some arbitrary time discretisation of the under-

lying concentration Z(t), represented by some periodic function

Zt =

s/2∑
j=1

Sj(t), (7.14)

where s is the period. The jth harmonic and conjugate harmonic are given by

Sj(t) = aj cos(tωj) + bj sin(tωj)

S∗j (t) = −aj cos(tωj) + bj sin(tωj)
(7.15)

for Fourier frequencies

ωj =
2πj

s
, j = 1, ...s/2. (7.16)

Eq. (7.15) can be shown to have the following iterative form

Sj(t+ 1) = Sj(t) cos(ωj) + S∗j (t) sin(ωj)

S∗j (t+ 1) = −Sj(t) cos(ωj) + S∗j (t) sin(ωj)
(7.17)

with

Sj(0) = aj , S∗j (0) = bj (7.18)

130



which can be written in matrix form as[
Sj(t+ 1)

S∗j (t+ 1)

]
=

[
cos(ωj) sin(ωj)

− sin(ωj) cos(ωj)

][
Sj(t)

S∗j (t)

]
, t = 0, ..., T, j = 1, ...,

s

2
. (7.19)

For modelling purposes it is generally the case that fewer than s/2 harmonic frequencies

are needed to give an adequate summary of the signal. Let n denote the number of

Fourier frequencies to retain, corresponding to a truncation of the sum in Eq. (7.14),

so that terms j = 1, ..., n are included. To model this collection of harmonics we collect

the components representing the state variables in a 2n-dimensional vector θt,

θt =



S1(t)

S∗1(t)
...

Sn(t)

S∗n(t)


. (7.20)

The evolution of the n harmonic components is then given by

θt+1 = Hθt + εt, εt ∼ N (0, Q) (7.21)

where H is a 2n by 2n block diagonal matrix reproducing Eq. (7.19) for each of the

frequencies included and εt is a Gaussian noise term.

As the transcription factor may be measured in a similar fashion to circadian

mRNA, i.e. using a reporter protein whose emitted light is recorded over a time in-

terval, measurements constitute time-aggregates of the underlying states. To model the

experimental procedure we construct a measurement equation for observed signal at time

t. Let k = ∆/δ denote the number of states of the discretised underlying concentration

per observation time interval, and

Z
(obs)
t =

1

k

t∑
i=t−k+1

Zi + υt = FΘt + υt, (7.22)
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where υt ∼ N (0, R) represents measurement noise,

Θt =


θt

θt−1

...

θt−k+1

 (7.23)

and

F =
(

1
k 0 1

k . . . 1
k 0 1

k

)
. (7.24)

Eq. (7.21-7.22) can be combined to obtain the following state space model

Z
(obs)
t = FΘt + υt, υt ∼ N (0, R)

Θt+1 = HΘt + εt, εt ∼ N (0,Q)
(7.25)

where εt = [εt 0 ... 0]ᵀ and the matrix H is equal to H in the first 2n rows and columns

and subsequent entries make up a shifted identity matrix which reproduces θj = θj for

j = t− 1, ..., t− k+ 1. Hence, the distribution of εt is degenerate with Q having at most

2n non-zero diagonal entries. Note that including εt (and εt) means that the states are

not strictly periodic as Eq. (7.14) does not hold for all t. As the state space model in Eq.

(7.25) is linear and Gaussian it is straightforward to use a Kalman filter and smoother

to perform inference for and generate draws from the distribution of the states given the

observations (see e.g. Durbin and Koopman (2012)). An explicit algorithm is given in

Appendix B.

7.3 An MCMC algorithm for sampling the posterior dis-

tribution of the extended transcription model

For the extended TTFL model we again resort to designing an adaptive random walk

Metropolis algorithm, given in Algorithm (5), to generate samples from the posterior dis-

tribution of parameters Ψ, governing the dynamics of mRNA transcription. To account

for partial observations of the activating species we propose an empirical hierarchical

approach, where the parameters of the harmonic dynamic linear model describing the

activating species, i.e. the number of harmonics, their coefficients aj and bj and the

variance of the measurement noise process R may be treated as fixed hyper-parameters

and estimated a priori using e.g. maximum likelihood. Inference is subsequently con-

ditioned on the resulting mean estimates, E(θδt:T |Zobs∆t:T ), calculated using the Kalman
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smoother in Appendix B, at the time points dictated by the choice of discretisation used

for the likelihood approximation of the transcription model. It should be noted that the

likelihood evaluation requires a partial reconstruction of the unobserved species using

Eq. (7.20), and Eq. (7.14) truncated at the appropriate number of harmonics.

Algorithm 5 Random walk Metropolis algorithm to sample posterior distribution of
TTFL model with additional activating TF

Initialise iteration counter k = 1, parameters Ψ(1), proposal variance scaling γ(1) and

transcription factor θ̃δt:T = E(θδt:T |Zobs∆t:T )

while k < max iteration do

Set Ψk = Ψk−1

Draw Ψ̂(k+1) ∼ N (Ψ(k), γ
(k)
Ψ Σ̂Ψ) and let Ψ(k+1) = Ψ̂(k+1) w.p.

min

{
1, L(Ψ̂(k+1);Y∆t:T ,θ̃δt:T )π(Ψ̂(k+1))

L(Ψ(k);Y∆t:T ,θ̃δt:T )π(Ψ(k))

}
if The proportion of accepted proposals in iterations 1 : k is > 0.234 then

Set γ(k+1) = exp{log γ(k) + min(c, k−1)}
else

Set γ(k+1) = exp{log γ(k) −min(c, k−1)}
end if

Set k := k + 1

end while

7.4 Application to Per2:luc and GCaMP-reported Calcium

imaging data

We shall now return to the data introduced in Chapter 2, obtained by Brancaccio et al.

(2013) using simultaneous recording of Per2:luc and GCaMP-reported calcium in organ-

otypic wild type (WT) SCN tissue. A cropped and sub-sampled frame of recorded

Per2:luc expression is shown in Figure 7.1, along with 15 locations across the right half

of the SCN at which we shall fit the extended TTFL model. The small number of lo-

cations is motivated by balancing the computational cost of the analysis and providing

a proof of concept of the methodology. For representative time series of Per2:luc and

calcium the reader is referred to Figures 2.3 and 2.4 in Chapter 2 where the data was

initially introduced and analysed.
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Figure 7.1: Per2:luc expression in organotypic, wild type SCN with simultane-
ous GCaMP-calcium recording (Brancaccio et al., 2013). Inference is done at
15 locations, each consisting of 2 by 2 pixel blocks across the right half of the
organ and marked in magenta.

7.4.1 Calcium induced transcriptional activation of Per2

Circadian expression of Per2 is only partly driven by the intercellular TTFL. Rhythmic

firing of neurons, which peaks during the subjective day (Cutler et al., 2003), also drive

intercellular coupling and entrainment to photic stimuli entering the dorsal SCN via the

optic chiasma (Herzog et al., 2017). The neuropeptide VIP is only expressed by these

ventral SCN cells but binds to the VPAC2 receptor present in all SCN neurons (An et al.,

2012). This binding activates Gq-signalling, increasing calcium levels and subsequently

promoting Per2 transcription via calcium responsive element binding protein (CREB)

(Hastings et al., 2014). Brancaccio et al. (2013) show experimentally that VIP knock-out

SCN cultures lack synchrony of oscillations of Calcium and CREB, and blocking calcium
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influx abolishes rhythmic expression of Per2:luc (Lundkvist et al., 2005). Maywood

et al. (2011) make available recordings of genetically modified SCN cultures that do not

express VIP (VIP-null) where the Per2::luc reporter exhibits damped and desynchronised

expression.

Availability of Per2::luc expression from VIP-null SCN cultures allows us to ob-

serve the core circadian, auto-regulatory feedback loop of Per2. To formulate informative

prior distributions for the extended model we shall fit the simpler model from Chapter 4

to the Per2::luc expression data using the hierarchical framework developed in Chapter

6. The resulting estimates, along with the formulation of prior distributions for the

extended model are summarised in Section 7.4.3

The role of calcium signalling as a mediator of inter-cellular communication con-

fers a spatial interpretation of the model. While we do not parametrise or estimate the

network topology, calcium-induced transcription may be viewed as a coupling mechanism

between individual oscillators for some assumed topology. A thorough investigation of

such an interpretation is outside the scope of this thesis, however some further discussion

on the topic is presented in the Further research section of the Conclusions.

7.4.2 Simplifying assumptions and parameter restrictions

While the informative prior distributions derived from the analysis of Per2 expression

in VIP-null SCN tissue are necessary, we shall impose some additional restrictions to

simplify inference. We choose to incorporate calcium by treating the observed GCaMP-

reported calcium as the underlying transcription factor in the model. In practice, this

amounts to omitting maximum likelihood estimation of the parameters of the model in

Eq. (7.25) and instead evaluating the likelihood approximation at observed calcium. The

effects of this additional approximation are likely to be small as the activating species in

Eq. (7.12) enters through a convolution with a delay distribution, producing a weighted

average of past levels of the species. We deem that the temporal smoothing of the sig-

nal due to the delay distribution sufficiently mitigates both the effects of measurement

noise and temporal smoothing due to the camera exposure time on parameter inference.

The proposed empirical hierarchical model provides flexibility for different experimen-

tal protocols and choices of discretisation, however, in our application the data consist

of simultaneous 0.5h measurements of the two species and a finer discretisation than

0.5h makes the likelihood approximation prohibitively expensive. Hence the interpolat-

ing mechanism of the state-space model for the additional transcription factor is not

required.
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Another parameter restriction related to the measurement process is imposed on

the measurement error dispersion. As the Per2:luc signal is available in two of the three

RGB channels realisations of the measurement error process are available as the scaled

difference of the two channels. The SD is held fixed at its pixel-wise ML estimate (see

Section 4.3.1 for formal procedure to obtain these estimates). For the delay distribution

which accounts for time delays between CREB and observed calcium, which serves as

a proxy, we assume an exponential distribution (which is a special case of the Gamma

distribution, obtained by restricting the shape parameter to 1).

The dissociation coefficient for delayed Per2, K, is held fixed at a level corre-

sponding to the spatial mean across VIP-null SCN tisue. This restriction is motivated

by the difficulty in inferring molecular population sizes. In the analysis of Cry1-luc in

Chapters 4 and 6, this was circumvented by running very long MCMC chains and pool-

ing statistical strength across tissues using the hierarchical model from Chapter 5 to

explore the posterior distribution. Inference for additional parameters associated with

a second transcription factor significantly exacerbates the problem hence the restriction

on K is deemed necessary.

Finally, a restriction on the local variation of parameters is imposed. This in-

volves inferring the parameters for a 2 by 2 pixel block simultaneously and restricting

the parameters to be identical within the block. The motivation is that in previous

analyses of Cry1-luc the spatial distribution of parameter estimates was found to be

fairly smooth, apart from at the border between the SCN and adjacent tissues. In other

words, we expect spatial parameter variation to lie on a scale that is far greater than

individual pixels (and neurons if approximate correspondence between pixels and neu-

rons is achieved) and neighbouring pixels to have very similar parameter values. This

assumption adds curvature to the likelihood as the amount of data is quadrupled and

neighbouring pixels have very similar signal for both Per2:luc and calcium. While the

likelihood evaluation is computationally expensive, a parallel implementation of the joint

likelihood over the 2 by 2 block of pixels is straightforward as the assumption of inde-

pendence of data conditioned on the model parameters allows for pixel-wise factoring of

the likelihood, i.e. the joint likelihood of the pixel block is equal to the product of the

likelihood evaluated at the individual pixels.

7.4.3 Prior distributions

As parameter identification is a considerable challenge in inference for the TTFL model

with an additional transcription factor in Eq. (7.12), investigation of the transcriptional
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activation of intracellular calcium on Per2 requires the formulation of informative prior

distributions on a subset of the parameters.

The aim here is to be able to infer parameters governing the calcium induced acti-

vation of Per2 transcription by placing informative prior distributions on the parameters

of the auto-regulatory Per2 feedback loop while placing diffuse priors on the unknown

parameters related to transcriptional activation by calcium. To elicit informative prior

distributions on the core TTFL, the hierarchical spatio-temporal framework developed

in Chapter 5 is used to estimate the parameters of a model containing just the simple

auto-regulation, i.e. the model in Eq. (4.5) on bio-imaging data of Per2::luc expression

in VIP-null SCN tissue obtained by Maywood et al. (2011). Parameter estimation is

achieved using the RWM algorithm described in Section 5.2.1 with 80k iterations and

the same de-trending and prior distributions as for the Cry1-luc expression data in Chap-

ter 6. For the VIP-null data no pixel aggregation is done as the resolution of raw pixels

is considerably lower compared to the Cry1-luc data, however the video is sub-sampled

such that only every fourth pixel column and row are analysed. Additionally, the video

is cropped to include only the right half of the SCN and shortened by excluding the first

three days of recording due to overexposure that causes a truncation of the data. The

preprocessing results in 31 by 17 pixels and 146 frames corresponding to approximately

6 days (see Figure 7.2).
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Figure 7.2: Raw and cropped frame of Per2::luc expression in VIP-null SCN
obtained by Maywood et al. (2011). Right image contains full extent of the
cross-section of right half of the SCN.

The cropped video contains mostly SCN tissue and captures the full extent of a

section across the right half of the SCN. The informative prior distributions for param-

eters governing the auto-regulatory inhibition of Per2 and the degradation rate, i.e. R0,

Kp, n, µΓ, σΓ and β, are obtained by fitting a Gaussian distribution to the posterior of

the logarithm of each of the parameters, i.e. across the MCMC chains and pixels. The

resulting distributions are summarised in Table 7.1 and presented in Figure 7.3, while

the diffuse prior distributions associated with calcium induced transcriptional activation

are summarised in Table 7.2.
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Table 7.1: Mean and standard deviation of Gaussian prior distributions
for the auto-regulatory Per2 feedback loop and light scaling parameter.
Informative prior distributions are obtained by fitting a Gaussian to the
posterior parameter estimates obtained from VIP-null Per2::luc data.
Only the mean of the fitted distribution for logK is used for further
inference while the SD is set to 0, motivated by the difficulty associated
with inferring molecular population sizes.

Parameter log µΓ(p) log σΓ(p) logR0 logK log n log β log κ

Prior mean 2.23 0.97 4.50 4.78 0.69 −1.31 0

Prior SD 0.07 0.28 0.41 0.37∗ 0.41 0.28 10

2 2.2 2.4 0 0.5 1 1.5 2 3.5 4 4.5 5 5.5 6

3.5 4 4.5 5 5.5 -1 0 1 2 -2 -1.5 -1 -0.5 0

Figure 7.3: Empirical distributions of Hill-function parameters and degradation rate from
VIP-null SCN, along with fitted Gaussian distributions. Estimates are obtained from pos-
terior distributions obtained by fitting a model of simple auto-repressive gene regulation to
Per2::luc expression from organotypic VIP-null SCN tissue.
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Table 7.2: Mean and standard deviation of diffuse Gaussian (lower and upper
bound of uniform) prior distributions for parameters governing the calcium in-
duced transcriptional activation.

Parameter log µΓ(c) logRTF logKTF log nTF logRint

Prior mean (or lower bound) (0) 0 0 0 0

Prior SD (or upper bound) (12) 6 3 5 6

7.4.4 Results for the full model with an exogenous activation mecha-

nism

The MCMC algorithm described in Section 7.3 is run for 10k iterations at each of

the marked locations in Figure 7.1. The chains are initialised at the prior means for

parameters with informative prior distributions and at regions of high posterior density

for the remaining parameters, obtained by pilot runs of the algorithm at a single location

in the middle of the biological sample. The initial 500 iterations are discarded as burn-in

and the remaining 9500 iterations used for analysis.

We first examine the parameter trace plots and posterior distributions of log-

parameters compared to prior distributions from a randomly chosen location corre-

sponding to the second row, first column of marked locations in Figure 7.1. Results

for the parameters of the auto-regulatory Hill-function (partial maximum transcription

rate R0, Hill-coefficient n, and mean and standard deviation of the delay distribution

approximating the Per2 loop, µ
(p)
Γ and σ

(p)
Γ ) are given in Figure 7.4. Results for param-

eters corresponding to calcium activation (activation rate RTF , dissociation coefficient

and Hill coefficient of the approximated transcription factor KTF and nTF , mean of

the exponential delay distribution µ
(TF )
Γ accounting for delay between GCaMP-reported

calcium and CRE binding, and interaction rate Rint.) are presented in Figure 7.5 while

light scaling κ and degradation rate β are treated in Figure 7.6.

For the parameters of the Per2 feedback loop, equipped with informative prior

distributions, there is still considerable additional concentration of the posterior. As the

prior distributions encompass spatial variation of parameters across the VIP-null tissue

while the posterior distributions are obtained by analysing a 2 by 2 pixel block in the WT

SCN, some such concentration can be expected. For the maximum transcription rate

R0, concentration is likely, at least in part, due to fixing the dissociation coefficient K at

the spatial mean estimate obtained from the VIP-null data. The posterior distribution
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of the Hill coefficient n also shows considerable additional concentration compared to

the prior and the posterior mean of log n is 1.29, higher than the prior mean of 0.69,

suggesting a greater degree of non-linearity of the auto-regulatory loop in the WT SCN

compared to the VIP-null. The mean of the auto-regulatory delay distribution exhibits

concentration around levels higher than the prior mean while the standard deviation of

the delay distribution closely follows the prior distribution. The chains, as examined by

the trace plots exhibit relatively rapid convergence and good mixing.
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Figure 7.4: Results for one location corresponding to the second row, first column of marked
locations in Figure 7.1. Top row: MCMC chains of parameters associated with the auto-
regulatory Per2 loop for 10k MCMC iterations. The trace plots suggest rapid convergence and
good mixing (low autocorrelation). Bottom row: Posterior distributions of log parameters
and prior distribution over the support of the posterior. The posterior distributions are
unimodal and exhibit concentration compared to the prior distributions.

The chains of parameters associated with calcium activation also show rapid convergence

and good mixing. Interestingly, the posterior distribution of the interaction rate between

delayed Per2 and calcium activation is consistent with Rint. = 0, i.e. that the degree of

activation associated with a given calcium concentration is constant for varying levels

of delayed Per2. The dissociation coefficient of the additional transcription factor, KTF
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has a posterior mean of 0.42, which coincides with the temporal mean of the GCaMP-

calcium signal. This is indicative of a “symmetry” in transcriptional induction, as the

degree of transcriptional activation is at 50 percent of maximum at the temporal mean

level of calcium.

The posterior of the degradation rate β and light scaling constant κ have means of

0.29 and 3.1× 10−3, respectively, which is consistent with previous estimates of Per2:luc

in VIP-null SCN and Cry1-luc in WT SCN from Chapters 4 and 6.
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Figure 7.5: Results for one location corresponding to the second row, first column of marked
locations in Figure 7.1. Top row: MCMC chains of parameters associated with calcium-
induced activation of Per2 transcription over 10k MCMC iterations. The trace plots suggest
rapid convergence and good mixing (low autocorrelation). Bottom row: Posterior distri-
butions of log parameters and prior distribution over the support of the posterior.
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Figure 7.6: Results for one location corresponding to the second row, first column of marked
locations in Figure 7.1. Top row: MCMC chains for degradation rate β and light scaling
κ over 10k MCMC iterations. The trace plots suggest rapid convergence and good mixing
(low autocorrelation). Bottom row: Posterior distributions of log parameters and prior
distribution over the support of the posterior.

7.4.5 Parameter estimates across SCN tissue

The analysis is repeated at 15 locations, each consisting of a 2 by 2 pixel-block, across

the SCN and the resulting posterior means are plotted in Figures 7.7 and 7.8 where

the size of each marker is inversely proportional to the square root of the coefficient

of variation, thus giving an indication of the posterior dispersion. Note that since the

proportionality constant is different for each parameter, the posterior dispersion is only

comparable between locations, not parameters.

The results suggest that the parameters of the Per2 loop, along with degradation

rate β and light scaling κ have low spatial variation of the posterior dispersion. Fur-

thermore, there is little evidence of systematic variation of the parameters across the

biological tissue, apart from κ which has higher posterior means in the top left locations,

corresponding to the dorsal SCN.
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Figure 7.7: Posterior means of parameters associated with Per2 loop, along with degradation
rate β and light scaling κ across WT SCN tissue. Size of markers is inversely proportional
to the square root coefficient of variation of the posterior distribution.

The parameters governing calcium activation in Figure 7.8 have higher spatial

variation of the posterior dispersion, which is expected due to their disperse prior dis-

tributions. Here, the transformed parameter RTF /R0 is reported, which has a posterior

mean in the range 2− 8. A value above 1 indicates that the activating effect of CREB

binding is greater than the activating effect of CLOCK/BMAL which is captured by R0

and assumed constant in the model. Furthermore, a majority of locations have estimates

of Rint. that are consistent with no (or very low) interaction effect between delayed Per2

and calcium.

The mean of the delay distribution of calcium has a posterior mean of < 8h for

all locations except one. The “mean of means”, across the 15 locations is 3.82h which is

slightly lower than the phase difference between calcium and Per2 found in Chapter 2

(5.27h) for the same data. However, the average phase difference relates the peak timing

of the two species while the delay mean relates peak timing of calcium to maximum
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transcription rate of Per2, which is achieved before peak concentrations.
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Figure 7.8: Posterior means of parameters associated with calcium induced activation of Per2
transcription across WT SCN tissue. Size of markers is inversely proportional to the square
root coefficient of variation of the posterior distribution.

The model fit is evaluated by examining residuals obtained by subtracting the

filter mean, evaluated at the posterior mean of the parameters, from the observed data.

The residuals are tested for normality using the one-sample Kolmogorov-Smirnov test

with Bonferroni correction and Fishers g-statistic (Section 4.5.2). The tests generally

show compliance with normality as the null hypothesis of normality is rejected in only

10 percent of analysed pixels (6 out of 60). Residual periodicity is only significant and

in the circadian range (18-30 hours) for a single full 2 by 2 pixel block (fourth row, third

column). A handful of other pixels show significant residual period, possibly due to the

restriction that all parameters are equal within each pixel block. However, it is worth

noting that the residuals do not show such systematic 12 hour periodicity as found for

the Cry1-luc data and TTFL model with simple auto-regulation in Chapters 4 and 6.
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7.4.6 In silico CREB knock-out experiment

The transcription model with purely auto-regulatory dynamics treated in Chapter 4 is

a special case of the TTFL model with a secondary activation mechanism in Eq. (7.12).

The functional form of the two models is identical if the exogenous transcription factor,

in this case calcium, is set equal to zero. Hence the stability criteria derived in Chapter

4 can also be used to analyse the macroscopic rate equation in Eq. (7.6) in the absence

of the activating species. With this in mind, we construct an experiment to examine the

effects of calcium-induced activation by evaluating the posterior probability of a limit

cycle, developed as a measure of oscillatory robustness in Sections 3.7.2 and 4.5.4. We

shall also examine the effects of the activating mechanism on the period of the circadian

oscillations by applying the period estimation technique outlined in Section 6.1.8 for the

parameter estimates obtained for Per2 and the extended transcription model.

The interpretation of the limit cycle and period estimates is the effects of an

artificial removal of calcium/CREB from the circuit, which we hypothesize results in

dynamics that are similar to those observed for Per2 in VIP-null SCN tissue, i.e. damped

oscillations. For the procedure to obtain these estimates from the MCMC output we

refer to Chapter 4, Section 4.5.4 and Chapter 6, Section 6.1.8 for the posterior probability

of a limit cycle and period estimation, respectively, and present here only the results in

Figure 7.9.

Despite the fact that the Hill coefficient associated with delayed Per2 is estimated

to be higher for the WT SCN compared to the VIP-null SCN from which the prior

distribution was elicited, the posterior probability of limit cycle dynamics is close to zero

for all 15 locations apart from one where it is > 0.9. The posterior mean population size

is around 100 for most locations and the period is typically greater than 24 (mean across

locations is 26.72 hours) and greater than the estimates obtained using spectral analysis

on the same data (see Chapter 2, Figure 2.5). Interestingly, observational studies have

found evidence that the intrinsic period of circadian rhythms in mammals, which emerges

in the absence of external stimuli, is in fact longer than 24 hours (see e.g. Campbell

(2000) and Czeisler et al. (2000)).

In summary, our findings suggest that removal of calcium signalling induces

damped oscillations of the macroscopic mean, and a lengthened period that, in the

absence of molecular noise, reach an equilibrium at around 100 mRNA molecules.
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Figure 7.9: Posterior probability of limit cycle dynamics of the macroscopic mean, posterior
mean population size and posterior mean period of oscillations of Per2 mRNA and synthetic
calcium removal, for 15 pixel blocks across WT SCN tissue.

7.5 Discussion

In this chapter we have reviewed a stochastic model of the TTFL governing circadian

gene transcription developed by Calderazzo (2016) that accommodates a time-varying,

exogenous activation mechanism in addition to delayed self-inhibition. The functional

form of the model is motivated by the fact that the promoter region of the Per2 gene

exhibits CREs and transcription of the gene is thus up-regulated by CREB, which is a

circadian species downstream of calcium in the VIP signalling cascade. The model incor-

porates a distributed delay for both the auto-regulatory mechanism and the exogenous

species, allowing for the use of an upstream proxy of the true activation mechanism.

We derived the explicit dependence between parameters and population sizes of

the two molecular species which yielded a decoupling of the drift term/macroscopic rate

(but not noise term) from molecular counts. A harmonic dynamic linear model was

developed to account for temporal smoothing and measurement errors in observations of

the exogenous circadian species. Finally, an MCMC algorithm was proposed to jointly

sample the posterior of parameters of the extended TTFL model and unobserved states

of the exogenous transcription factor.

In Section 7.4 we applied the methodology to simultaneous recordings of Per2:luc

and GCaMP-reported calcium from Brancaccio et al. (2013). As the full set of param-
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eters was not identifiable using the available data, we elicited informative prior distri-

butions for the parameters of the auto-regulatory loop of Per2 by fitting the purely

autoregulatory TTFL model from previous chapters to Per2 expression data from VIP-

null SCN obtained by Maywood et al. (2011). These prior distributions, in combination

with a series of simplifying assumptions allowed us to estimate the parameters governing

the CREB-induced transcriptional activation of Per2.

The results suggest that transcriptional activation by CREB, and by extension

VIP-signalling is typically 2-8 times that of the basal transcription rate R0 which cap-

tures a time-constant CLOCK/BMAL1-induced activation. Additionally, we find evi-

dence of a low or non-existent interaction effect between CREB activation and delayed

Per2 inhibition, i.e. transcriptional activation through CREB binding is not found to

be dependent on the concentration of the inhibitory Per2 heterodimer, modelled here by

delayed mRNA. It should however be noted that while we model the calcium cascade as

an exogenous input, Maywood et al. (2011) suggest that calcium is not only an input

but its rhythmic expression is tuned by the TTFL in an interdependent fashion, which

limits conclusions regarding the causal relationship of Per2 and calcium.

While the analysis only covers a small subset of locations across the right half

of the SCN, there are indications of spatial heterogeneity of parameters between the

dorsomedial and ventrolateral SCN. Specifically regarding the mean delay between ob-

served calcium and Per2 and the Hill coefficient of unobserved CREB, which were both

estimated to be higher in the VIP-ergic ventrolateral SCN. The Hill coefficient of CREB

is estimated in the range 10 − 30 for several locations across the tissue, which is likely

to be an unrealistic degree of cooperativity. This finding may indicate that transcrip-

tional activation by the VIP-signalling cascade is accurately modelled by a fast acting

transcriptional on-off switch.

As the autoregulatory TTFL model in Chapters 4 and 6 is a special case of the

extended model assumed in this chapter, the stability criteria derived in Section 4.2.1

may be applied to determine the dynamics in the absence of the activating mechanism.

This is exploited to design an in silico CREB-knockout experiment, where the posterior

probabilities of a limit cycle, equilibrium population sizes, and periods of oscillations

are calculated from the MCMC output. We find that in the absence of CREB, the

macroscopic mean of the cellular clocks typically exhibit damped oscillations of Per2

(Plim. cyc. < 0.5 in 14 out of 15 locations). The equilibrium population sizes are around

100 mRNA molecules, similar to those inferred in wild-type Cry1-luc data. Interestingly,

removal of CREB was found to cause lengthening of the circadian period to 24−30 hours.
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Conclusions

In this work we have studied methodology motivated by its use in analysing stochastically

driven circadian gene transcription and regulation. Methodologies have been developed

and extended in two main directions: inferential approaches motivated by the detailed

form of mechanistic models and the availability of high-dimensional spatio-temporal

imaging data from biological tissue, and analysis approaches that facilitate biological

insight from the intricate structure of the resulting model fits.

In Chapters 1 and 2 the reader is introduced to the molecular machinery that

underlies the generation of circadian rhythms in the SCN. Bioimaging data of Per2

expression is investigated using spectral methods which are commonly used as a phe-

nomenological analysis tool for circadian data. Future research directions are outlined

and some limitations of spectral methods are discussed. While the spectral resampling

method of Costa et al. (2013) used in Chapter 2 provides uncertainty quantification, it is

not possible to separate different sources of noise, e.g. intrinsic noise, due to the discrete

nature of molecular interactions, and measurement noise generated by the experimental

procedure. Additionally, spectral methods rely on high frequency observations to pro-

vide results with high temporal resolution and bioimaging data typically requires long

exposure times (0.5-1 hours) due to the low light intensity of the involved reporter pro-

teins. We find that the phenomenological approach is limited in the type of inferences

that can be made, motivating approaches where transcriptional regulation is modelled

in a mechanistic fashion.

From Chapter 3 and onwards, we review, develop and apply mechanistic mod-

elling approaches for transcriptional regulation of circadian genes. Chapter 3 serves as

an introduction to most of the methodology used in the subsequent chapters. Chemi-

cal reaction networks, along with approximations that lead to the Chemical Langevin

Equation are explained, with the motivation that molecular noise may be an impor-

tant aspect in the generation of biological rhythms. We discuss Bayesian inference and

likelihood approximation using the extended Kalman-Bucy filter. Markov chain Monte

149



Carlo methodology, which we rely on to sample from intractable posterior distributions

in Chapters 5-7, is reviewed. Finally, we review stability analysis and propose a novel

measure of Bayesian biological robustness, given by the posterior distribution of some

system output. Our definition is consistent with a more general definition of biologi-

cal robustness by Kitano (2007) and can be applied to study e.g. to what extent SCN

neurons exhibit sustained oscillations.

Generally, the expression of circadian genes in SCN neurons has previously been

described using either limit cycle oscillators or damped oscillators, and often, the dy-

namics are deterministically modelled. The question whether single SCN neurons should

be modelled as deterministically sustained oscillators or damped/noise-induced oscilla-

tors has previously been studied by Westermark et al. (2009). An advantage of the

model fitting approach employed in Chapters 4, 6 and 7 is that various aspects of the

dynamic behaviour of the molecular oscillators may be empirically inferred from ob-

served data, and we propose a coherent methodology to answer questions regarding the

long-run dynamics of molecular oscillators. In Chapter 4 we derive a stochastic dis-

tributed delay model for circadian gene expression, originally proposed by Calderazzo

et al. (2018). Our methodological contribution consists of deriving stability criteria

for the macroscopic mean, corresponding to the drift term of the Chemical Langevin

equation, enabling estimation of our proposed measure of robustness.

An empirical application is provided where the model is fitted to bioimaging data

of Cry1-luc expression obtained by Brancaccio et al. (2013). The posterior distribution is

sampled using an adaptive, delayed acceptance random walk Metropolis algorithm and as

the data is spatio-temporal, the inferential procedure is repeated across a large number

of locations to build a spatial distribution of parameter estimates. We subsequently

use the stability criteria to construct a spatial distribution of posterior probabilities of

a limit cycle across the imaged tissue and find that in intact tissue, the SCN single-

cell oscillator exhibits sustained oscillations whereas adjacent tissue does not. We are

thus able to accurately classify SCN tissue from surrounding tissue using the novel

robustness statistic. Estimates of the involved molecular population sizes are consistent

with simulation-based results obtained under strict assumptions by Abel et al. (2015).

Studying the residuals of the model fit reveals 12 hour periodicities in central locations

of the organ that are not adequately modelled by the auto-regulatory feedback loop.

These additional periodicities may be generated by astrocytic circadian gene expression

that is antiphasic to the neuronal oscillators, described by Brancaccio et al. (2017).

The spatial aspect of imaging data is tackled in Chapter 5. A Bayesian hier-

archical model that captures spatial dependencies at the parameter level is proposed,
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specifically a spatial random effects model where a conditional autoregressive prior dis-

tribution is placed on the random effects. This approach provides a parsimonious model,

where inference across a large number of pixels can be done in parallel. Spatial hierarchi-

cal models have been used successfully in e.g. rainfall modelling (Cooley and Sain, 2010)

and disease mapping (Best et al., 2005) but modelling spatial dependence between pixels

in bioimaging data is, to the best of our knowledge, a novel application. A random walk

Metropolis algorithm is developed to sample the posterior distribution of parameters

and random effects and a simulation study is designed to investigate optimal blocking

strategies. Finally, we validate the methodology by re-estimating parameters of syn-

thetic circadian bioimaging data and find that we are able to recover spatial structures

of parameters and dynamics to a satisfactory degree.

In Chapter 6 we present an empirical application of the methodology developed

in the previous chapter. The Cry1-luc imaging data from Chapter 4 is re-analysed using

the Bayesian hierarchical model, along with two additional experimental replicates of the

same gene. We find that using the hierarchical model enables estimation of population

sizes without an informative prior on the light scaling parameter κ, due to parameter

restrictions imposed by the spatial model, along with the increased amount of data

entering the likelihood. Biologically interpretable findings were found to be largely

similar to those obtained using the spatially independent approach in Chapter 4, but we

obtain results with much higher spatial resolution for additional data sets.

We further develop methodology to analyse various aspects of the model under

the estimated parameters. Specifically, we propose a Bayesian period estimator which,

unlike spectral methods, does not rely on high frequency observations to produce period

estimates with high temporal resolution. Our estimator reveals spatial heterogeneity

of the period of the macroscopic mean for the three experimental replicates, which we

are unable to detect using spectral methods. This finding suggests that either the sam-

pling rate of data is inadequate to produce high temporal resolution of period estimates

obtained by spectral analysis, or that period homogeneity is driven by intrinsic noise.

An inhibition profile for the distributed delay model is derived, which yields

a mechanistic interpretation to an observed relationship between the Hill coefficient,

n, and dispersion of the delay distribution, σΓ. In a simulation study, the shape of

the inhibition profile is linked to a well-known trade-off between two key features of

SCN neurons: synchrony and entrainability (Hasegawa and Arita, 2014). Repeating the

simulation study in a spatial setting using the empirical spatial distribution of parameter

estimates provides evidence that central SCN neurons exhibit a smaller phase dispersion,

or loss of synchrony, compared to those along the edges of the organ.
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In the final chapter of the thesis we go beyond transcriptional auto-regulation and

incorporate a second, exogenous transcription factor that represents signalling between

cells and hence a synchronising mechanism. A model, originally proposed by Calderazzo

(2016), that captures both transcriptional inhibition and activation through distributed

delays is derived. Our contribution consists of a rate rescaling that clarifies parameter

interpretation in the case where the two molecular species involved are specified in

arbitrary units. The rescaling decouples the drift term from molecular counts and places

a dispersion parameter in the noise term that reflects population size. The EKBF for

distributed delay models is adapted to the extended transcription function involving an

additional exogenous species and a harmonic dynamic linear model is developed for a

partially observed, circadian transcription factor.

An empirical application is provided using simultaneously recorded Per2 and cal-

cium expression bioimaging data from organotypic SCN tissue, obtained by Brancaccio

et al. (2013). Informative prior distributions for parameters of the auto-regulatory loop

are developed by applying the hierarchical model from the previous chapter to bioimaging

data of Per2 expression from VIP-null SCN tissue developed by Maywood et al. (2011).

These prior distributions allow for fitting the extended TTFL model to Per2 and calcium,

which serves as a proxy for CREB, from wild-type SCN tissue. The approach allows us

to make inferences regarding the relative importance of the modelled transcription fac-

tors and the parameter estimates provide input values for a realistic, synthetic model of

the SCN. Additionally, inference for the extended TTFL model constitutes a first step

in developing a mechanistic spatial model for ensembles of SCN neurons as rhythmic

CREB is the output of a signalling cascade that begins with light-information reaching

retinally innervated ventral SCN neurons. The chapter is concluded with an in silico

experiment where we exploit the fact that the extended TTFL model contains the purely

auto-regulatory TTFL model from Chapter 4 as a special case. In the experiment we

study the effect on the dynamics of Per2 expression by an artificial removal CREB and

find that such an intervention leads to damped oscillations with an increased period.

Throughout the thesis we show that it is indeed possible to estimate parameters

of mechanistic and stochastic models through principled statistical analysis of circadian

bioimaging data. The models, while simpler than those typically employed to study

the SCN, have rich dynamics, such that the results elucidate mechanisms with which

biological rhythms are created and maintained. The findings constitute input parameters

for an empirically tuned, synthetic model that may be used by experimentalists in an

iterative manner to construct novel biological experiments.
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Further research

Most of the empirical applications in this thesis are computationally costly, with algo-

rithms taking days or weeks of wall-clock time to produce useful output. This is likely

to be prohibitively expensive for practitioners that aim to implement the methodology

developed in this thesis. A direction for future research is thus techniques that allows

for faster likelihood approximation or faster exploration of posterior distributions. Sig-

nificant speed-up is likely to be achieved if quantification of parameter uncertainty is

abandoned and an optimisation approach is used instead. Such a view would however

restrict the type of inferences that may be made as e.g. our robustness measure relies

on being able to quantify some behaviour over a range of parameter values.

Inference for the extended TTFL model in Chapter 7 constitutes a first step in

developing a mechanistic spatial model for the SCN circuit as the additional transcrip-

tion factor is an output of a inter-cellular signalling cascade. The network topology of

the SCN is studied by e.g. Vasalou et al. (2009) using detailed deterministic models

but no parameter estimation and Abel et al. (2016) using principled inference for the

coupling strength of simplistic phase-amplitude oscillators. Combining our inference for

the extended TTFL model with an additional model describing the circuit connectivity,

e.g. in an hierarchical framework, would yield a “complete” model of both single-cell

and organ-wide dynamics.
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Appendix A

Numerical values of parameter estimates for hierarchical

model fit to Cry1-luc data

Table A.1: Spatial distribution of posterior mean estimates, Replicate 1.

Parameter R0 K µΓ σΓ n β κ ση

10th percentile 52.23 103.16 8.34 2.69 4.08 0.132 0.0028 0.0047

Spatial mean 57.38 117.13 8.84 3.58 5.24 0.197 0.0036 0.0055

90th percentile 61.88 131.85 9.18 4.63 6.85 0.246 0.0043 0.0066

Table A.2: Spatial distribution of posterior mean estimates, Replicate 2.

Parameter R0 K µΓ σΓ n β κ ση

10th percentile 49.18 97.23 8.18 2.60 3.82 0.154 0.0020 0.0049

Spatial mean 53.13 107.20 8.67 3.17 4.56 0.203 0.0034 0.0062

90th percentile 57.36 118.01 9.22 3.72 5.29 0.269 0.0046 0.0076

Table A.3: Spatial distribution of posterior mean estimates, Replicate 3.

Parameter R0 K µΓ σΓ n β κ ση

10th percentile 71.19 165.50 8.48 2.43 3.99 0.193 0.0017 0.0046

Spatial mean 75.55 177.84 8.70 2.93 4.55 0.219 0.0026 0.0057

90th percentile 79.9 191.07 8.95 3.46 5.10 0.253 0.0036 0.0069
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Appendix B

Likelihood approximation of TTFL model with exogenous

activation using Extended Kalman-Bucy filter

The discrete-time approximation of the CLE may be written

Xt+δt = Xt + f(Xτ , Xt) +
√
δt
√
A(Xτ , Xt)Wt, (A.1)

where dependence on the additional transcription factor Z is suppressed, as it is treated

as an observed constant. For the extended TTFL model the explicit form is

Xt+δt = Xt +

R0 +RTF

(
Zτ
KTF

)nTF
−Rint.
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(A.2)

where

Zτ =

τmax∑
s=δt

Zt−sg
′
aTF ,pTF

(s)

Xτ =

τmax∑
s=δt

Xt−sg
′
a,p(s),

(A.3)

and g′(s), s = δt, 2δt, ... , 24 are weights from the truncated and normalised gamma

delay distribution and Wt ∼ N (0, 1). Similarly, the time integration in the measurement

equation may be approximated in discrete time by

Yt = κF̃X(t−∆t):t + ηt = FX(t−∆t):t + ηt, ηt ∼ N (0, σ2
η). (A.4)
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Replacing f and A by their first order Taylor approximation about the deterministic

mean ρ and assuming X0 ∼ N (ρ0, P0), we obtain Gaussian transition densities through

the LNA equations, which are propagated in discrete time until the next observation by

ρt+δt = ρ∗t + f(ρ∗τ , ρ
∗
t )δt

Pt+δt = Jf (ρ∗τ , ρ
∗
t )P

∗
t δt+ P ∗ᵀt Jf (ρ∗τ , ρ

∗
t )
ᵀδt+A(ρ∗τ , ρ

∗
t )δt,

(A.5)

where again, subscripted τ denotes the discrete-time convolution with the delay distri-

bution weights

ρ∗τ =

τmax∑
s=δt

ρ∗t−sg
′
a,p(s), (A.6)

and
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(A.7)

is the Jacobian of f , w.r.t. Xt:(t−τmax), evaluated at the updated deterministic mean

ρ∗t:(t−τmax). While the predicted mean and covariance are obtained by propagating Eq.

(A.5), the updated quantities ρ∗ and P ∗ are calculated using the Kalman update

ρ∗(t+∆t−τmax):(t+∆t) = ρ(t+∆t−τmax):(t+∆t) + C(Yt+∆t − Fρt+∆t)

P ∗(t+∆t−τmax):(t+∆t) = P(t+∆t−τmax):(t+∆t) − CFPt+∆t,(t+∆t−τmax):(t+∆t)

C = P(t+∆t−τmax):(t+∆t),t+∆tF
ᵀ(FPt+∆tF

ᵀ + σ2
η)
−1.

(A.8)

Finally, the likelihood is calculated using the prediction errors et = Yt − Fρ(t−∆t+δt):t

and

logL(Ψ;Y∆t:T ) = −1

2

T∑
t=∆t

[log |FP(t−∆t+δt):tF
ᵀ+σ2

η|+eᵀt (FP(t−∆t+δt):tF
ᵀ+σ2

η)
−1et]+c,

(A.9)
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where, as discussed in the main text, normality follows from linearity and additive Gaus-

sian measurement errors.

Kalman Filter and simulation smoother for dynamic har-

monic linear model of exogenous transcription factor

We shall here describe a Kalman filter and simulation smoother for the state-space

representation of the model describing the exogenous activating species, given by

Z
(obs)
t = FΘt + υt, υt ∼ N (0, R)

Θt+1 = HΘt + εt, εt ∼ N (0,Q).
(A.10)

Let Θt|t−1 = E[Θt|Z(obs)
1:t−1] and Pt|t−1 = V [Θt|Z(obs)

1:t−1]. The Kalman filter (forward)

recursion is then given by

Θt|t−1 = HΘt−1|t−1

Pt|t−1 = HΘt|t−1H
ᵀ + Q

v̂t = Z
(obs)
t − FΘt|t−1

Vt = FPt|t−1F
ᵀ +R

Kt = Pt|t−1F
ᵀV −1

t

Θt|t = Θt|t−1 +Kᵀt v̂t

Pt|t = Pt|t−1 − Pt|t−1F
ᵀV −1

t FPt|t−1.

(A.11)

By linearity and normality, the log-likelihood is given by

logL(θ1:T , Q,R;Z
(obs)
1:T ) = c−

T∑
t=1

(
v̂2
t

Vt
+ log |Vt|

)
. (A.12)

While the filter (forward) recursion gives the distribution of Θt|Z(obs)
1:t the smoothing

(backward) recursion gives the expected value of states conditioned on the entire set of
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observations, i.e. Θ̂t = E[Θt|Z(obs)
1:T ]. Let rT = 0, then

Lt−1 = H−HKt−1F

rt−1 = FV −1
t v̂t + L′trt

ν̃t−1 = RV −1
t−1v̂t−1 −RHK ′t−1rt−1

ε̃t−1 = Qrt−1

and forward

Θ̂t = HΘt|t + Qrt.

(A.13)

158



Bibliography

John H Abel, Lukas A Widmer, Peter C St John, Jörg Stelling, and Francis J Doyle.

A Coupled Stochastic Model Explains Differences in Cry Knockout Behavior. IEEE

Life Sciences Letters, 1(1):3–6, 2015.

John H Abel, Kirsten Meeker, Daniel Granados-Fuentes, Peter C St John, Thomas J

Wang, Benjamin B Bales, Francis J Doyle, Erik D Herzog, and Linda R Petzold. Func-

tional network inference of the suprachiasmatic nucleus. Proceedings of the National

Academy of Sciences, 113(16):4512–4517, 2016.

Eric E Abrahamson and Robert Y Moore. Suprachiasmatic nucleus in the mouse: retinal

innervation, intrinsic organization and efferent projections. Brain Research, 916(1-2):

172–191, 2001.

Sungwon An, Connie Tsai, Julie Ronecker, Alison Bayly, and Erik D Herzog. Spatiotem-

poral distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachi-

asmatic nucleus. Journal of Comparative Neurology, 520(12):2730–2741, 2012.

Sungwon An, Rich Harang, Kirsten Meeker, Daniel Granados-Fuentes, Connie A Tsai,

Cristina Mazuski, Jihee Kim, Francis J Doyle, Linda R Petzold, and Erik D Herzog. A

neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Pro-

ceedings of the National Academy of Sciences, 110(46):E4355–E4361, 2013.

Bharath Ananthasubramaniam, Erik D Herzog, and Hanspeter Herzel. Timing of neu-

ropeptide coupling determines synchrony and entrainment in the mammalian circadian

clock. PLoS Computational Biology, 10(4):e1003565, 2014.
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Inẽs Chaves, Binhai Zheng, Kazuhiko Kume, Cheng Chi Lee, Michael H Hastings, and

Steven M Reppert. Interacting molecular loops in the mammalian circadian clock.

Science, 288(5468):1013–1019, 2000.

Shu-qun Shi, Tasneem S Ansari, Owen P McGuinness, David H Wasserman, and

Carl Hirschie Johnson. Circadian disruption leads to insulin resistance and obesity.

Current Biology, 23(5):372–381, 2013.

Hal L Smith. An Introduction to Delay Differential Equations with Applications to the

Life Sciences, volume 57. Springer, 2011.

Michael V Sofroniew and Harry V Vinters. Astrocytes: biology and pathology. Acta

Neuropathologica, 119(1):7–35, 2010.

Vassilios Stathopoulos and Mark A Girolami. Markov chain Monte Carlo inference for

Markov jump processes via the linear noise approximation. Philosophical Transactions

of the Royal Society A, 371(1984):20110541, 2013.

Hal S Stern and Noel Cressie. Posterior predictive model checks for disease mapping

models. Statistics in Medicine, 19(17-18):2377–2397, 2000.

168



Petre Stoica and Randolph L Moses. Spectral Analysis of Signals. Pearson Prentice Hall

Upper Saddle River, NJ, 2005.

Steven H Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry, and Engineering. CRC Press, 2018.

Joseph S Takahashi. Molecular neurobiology and genetics of circadian rhythms in mam-

mals. Annual Review of Neuroscience, 18(1):531–553, 1995.

Stephanie R Taylor, Thomas J Wang, Daniel Granados-Fuentes, and Erik D Herzog.

Resynchronization Dynamics Reveal that the Ventral Entrains the Dorsal Suprachi-

asmatic Nucleus. Journal of Biological Rhythms, 32(1):35–47, 2017.

Gerald Teschl. Ordinary Differential Equations and Dynamical Systems, volume 140.

American Mathematical Soc., 2012.

Luke Tierney. Markov chains for exploring posterior distributions. The Annals of Statis-

tics, pages 1701–1728, 1994.

Waldo R Tobler. A computer movie simulating urban growth in the Detroit region.

Economic Geography, 46(sup1):234–240, 1970.

John J Tyson. Biochemical oscillations. In Computational Cell Biology, pages 230–260.

Springer, 2002.

N.G. van Kampen. Stochastic Processes in Physics and Chemistry. North Holland, 2006.

Christina Vasalou, Erik D Herzog, and Michael A Henson. Small-world network mod-

els of intercellular coupling predict enhanced synchronization in the suprachiasmatic

nucleus. Journal of Biological Rhythms, 24(3):243–254, 2009.

Dootika Vats and James M Flegal. Lugsail lag windows and their application to MCMC.

arXiv preprint arXiv:1809.04541, 2018.

Dootika Vats and Christina Knudson. Revisiting the Gelman-Rubin Diagnostic. arXiv

preprint arXiv:1812.09384, 2018.

Dootika Vats, James M Flegal, and Galin L Jones. Multivariate output analysis for

Markov chain Monte Carlo. Biometrika, 106(2):321–337, 2019.

Edward WJ Wallace. A simplified derivation of the linear noise approximation. arXiv

preprint arXiv:1004.4280, 2010.

169



Lance A Waller, Bradley P Carlin, Hong Xia, and Alan E Gelfand. Hierarchical Spatio-

Temporal Mapping of Disease Rates. Journal of the American Statistical Association,

92(438):607–617, 1997.

Alexis B Webb, Stephanie R Taylor, Kurt A Thoroughman, Francis J Doyle III, and

Erik D Herzog. Weakly circadian cells improve resynchrony. PLoS Computational

Biology, 8(11):e1002787, 2012.

David K Welsh, Joseph S Takahashi, and Steve A Kay. Suprachiasmatic nucleus: cell

autonomy and network properties. Annual Review of Physiology, 72:551–577, 2010.

P̊al O Westermark and Hanspeter Herzel. Mechanism for 12 hr rhythm generation by

the circadian clock. Cell Reports, 3(4):1228–1238, 2013.

P̊al O Westermark, David K Welsh, Hitoshi Okamura, and Hanspeter Herzel. Quan-

tification of circadian rhythms in single cells. PLoS Computational Biology, 5(11),

2009.

Christopher K Wikle. Hierarchical Bayesian models for predicting the spread of ecological

processes. Ecology, 84(6):1382–1394, 2003.

Darren J Wilkinson. Stochastic Modelling for Systems Biology. CRC press, 2011.

Mae L Woods, Miriam Leon, Ruben Perez-Carrasco, and Chris P Barnes. A statistical

approach reveals designs for the most robust stochastic gene oscillators. ACS Synthetic

Biology, 5(6):459–470, 2016.

Shun Yamaguchi, Hiromi Isejima, Takuya Matsuo, Ryusuke Okura, Kazuhiro Yagita,

Masaki Kobayashi, and Hitoshi Okamura. Synchronization of cellular clocks in the

suprachiasmatic nucleus. Science, 302(5649):1408–1412, 2003.

Seung-Hee Yoo, Shin Yamazaki, Phillip L Lowrey, Kazuhiro Shimomura, Caroline H Ko,

Ethan D Buhr, Sandra M Siepka, Hee-Kyung Hong, Won Jun Oh, and Ook Joon Yoo.

PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent

circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy

of Sciences, 101(15):5339–5346, 2004.

Bokai Zhu, Qiang Zhang, Yinghong Pan, Emily M Mace, Brian York, Athanasios C

Antoulas, Clifford C Dacso, and Bert W OMalley. A Cell-Autonomous Mammalian

12 hr Clock Coordinates Metabolic and Stress Rhythms. Cell Metabolism, 25(6):

1305–1319, 2017.

170



Tomasz Zielinski, Anne M Moore, Eilidh Troup, Karen J Halliday, and Andrew J Millar.

Strengths and limitations of period estimation methods for circadian data. PloS One,

9(5), 2014.

171


	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	List of Tables
	List of Figures
	Chapter Introduction
	Outline
	The mammalian circadian clock

	Chapter Data & exploratory analysis
	Exploratory analysis of Per2 and calcium expression in mammal SCN
	Available data

	Discussion

	Chapter Reaction networks, inference & stability
	Chemical reaction networks
	Stochastic simulation algorithm

	Diffusion approximation through the chemical Langevin equation
	Distributed delay differential equations
	Likelihood approximation for SDEs
	Extended Kalman-Bucy filter for CLE's with distributed delay

	Bayesian Inference
	Markov chain Monte Carlo
	Metropolis Hastings
	Adaptive MCMC
	Delayed acceptance MCMC
	Gelman-Rubin convergence diagnostic & effective sample size

	Stability of dynamical systems
	Robustness of biological systems
	A Bayesian measure of biological robustness

	Discussion

	Chapter A spatially independent model for Cry1-luc data
	Available Cry1-luc data
	A stochastic distributed delay model for autorepressive circadian gene regulation
	Stability analysis of the distributed delay single-cell model
	Measurement model and likelihood approximation

	Prior distributions
	Measurement error dispersion
	Light-scaling constant

	MCMC algorithm
	Results
	Effective sample size
	Residual diagnostics
	Parameter estimates and clustering
	Robustness of oscillations

	Discussion

	Chapter A Hierarchical model for spatio-temporal bioimaging data with CAR priors
	Bayesian hierarchical modelling for spatial data
	Conditional autoregressive (CAR) models
	Incorporating spatial prior distributions for the single-cell transcription model

	Inference for hierarchical Bayesian models with CAR priors
	Random walk Metropolis algorithm for hierarchical spatial random effects model

	Simulation study
	Evaluation of blocking strategies
	Inference validation using synthetic data

	Discussion

	Chapter Application of spatio-temporal model to Cry1-luc data
	Spatial modelling of Cry1-luc
	Data processing
	Spatial parameter model and prior distributions
	MCMC algorithm
	Effective sample size
	Residual analysis
	Parameter estimates
	Robustness of oscillations
	Bayesian Period estimation

	Inhibition profile & Entrainment of molecular oscillators
	Discussion

	Chapter Synchronisation through a second transcription factor
	A model of the TTFL with a secondary activation mechanism
	Macroscopic deterministic model
	Rate rescaling and decoupling of population size
	CLE approximation
	Measurement model and Extended Kalman-Bucy filter for the TTFL model with secondary activation

	A harmonic dynamic linear model for a partially observed exogenous transcription factor
	An MCMC algorithm for sampling the posterior distribution of the extended transcription model
	Application to Per2:luc and GCaMP-reported Calcium imaging data
	Calcium induced transcriptional activation of Per2
	Simplifying assumptions and parameter restrictions
	Prior distributions
	Results for the full model with an exogenous activation mechanism
	Parameter estimates across SCN tissue
	In silico CREB knock-out experiment

	Discussion

	Conclusions
	Appendix A: Numerical values for parameter estimates of the Hierarchical TTFL model
	Appendix B: Filtering and smoothing algorithms for extended TTFL model and partially observed activating species
	Bibliography

