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Abstract: Mass multimedia data with geographical information (geo-multimedia) are collected and
stored on the Internet due to the wide application of location-based services (LBS). How to find
the high-level semantic relationship between geo-multimedia data and construct efficient index is
crucial for large-scale geo-multimedia retrieval. To combat this challenge, the paper proposes a deep
cross-modal hashing framework for geo-multimedia retrieval, termed as Triplet-based Deep Cross-
Modal Retrieval (TDCMR), which utilizes deep neural network and an enhanced triplet constraint
to capture high-level semantics. Besides, a novel hybrid index, called TH-Quadtree, is developed
by combining cross-modal binary hash codes and quadtree to support high-performance search.
Extensive experiments are conducted on three common used benchmarks, and the results show the
superior performance of the proposed method.

Keywords: geo-multimedia; nearest neighbor query; cross-modal hashing; triplet loss; TH-Quadtree

1. Introduction

With the rapid development of mobile internet, social networks, and Location-Based
Service (LBS), large numbers of multimedia data [1] with geographical information (a.k.a
geo-multimedia) [2], such as text, image [3,4], and video [5–8], are collected and stored on
the internet. As an important data resource, geo-multimedia data is used to support for
location-based recommendation, accurate advertising and data search. Nearest neighbor
spatial keyword query (NNSKQ) is a very important retrieval technique in LBS applications,
which only focuses on location information and keyword information to find spatial objects.
That means it is limited to structured data or text modality [9–11], which cannot be directly
applied to geo-multimedia data [12–14]. However, the traditional multi-modal retrieval
techniques ignore the geographic location information. To solve this dilemma, many
researchers have tried to integrate multi-modal information into the query and proposed
an effective nearest neighbor query method for geo-multimedia data [15].

In addition, two groups of tasks, i.e., cross-modal retrieval and spatial textual query,
interlock with geo-multimedia retrieval. Cross-modal retrieval [16] is a hotspot in the
multimedia community, which is aiming to search multimedia instance by queries of
different modalities [17–20]. The challenge of cross-modal retrieval is to diminish semantic
gap between different modalities, which is the main obstacle to measure cross-modal
semantic similarity. Recently, lots of deep learning-based works are proposed [13,14,21–24],
which outperform the traditional hand-crafted feature-based approaches. On the other
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hand, in order to better apply on large-scale multimedia database, many researchers focus
on cross-modal hashing method to reduce the search and storage cost [25–28]. Compact
binary hash codes are generated from multimedia instances by deep neural networks,
which contains semantic information. The other task, spatial textual query, is to do a
keyword-based query by the aid of geographical information to reduce the candidate
set substantially. Several important researches [29–33] are proposed in the last decade,
which are support efficient LBS. Recently, some studies [2,34,35] extended spatial indexes
to multimedia data, such as geo-images top-k query, k nearest neighbor query, spatial visual
similarity join, and geo-image reverse query. These works make full use of geo-multimedia
data via hybrid indexes to organize geo-multimedia instances through both contents and
geo-locations.

Motivation. Although great progress has been made, there are still two challenges
in cross-modal retrieval for geo-multimedia data. One challenge is insufficient semantic
similarity learning of geo-multimedia data lead to inaccuracy of retrieval. Two problems of
cross-modal hashing [36–38] cannot be neglected: On the one hand is how to extract the
multi-modal features effectively to capture high-level semantic features [39]. Traditional
methods use hand-crafted features for hash function learning, which cannot represent
high-level semantics efficiently. Compared with them, the deep neural network can be
used to extract the high-level semantics. On the other hand, how to establish the semantic
relationships effectively to narrow the semantic gap. The existing cross-modal hashing
methods use pairwise similarity constraints (pairwise label) as supervision information, so
that the distance between similar image-text pairs is less than that of dissimilar image-text
pairs [40]. That means the relative semantic relationship between cross-modal data is lost,
which limits the semantic representation capability during hashing learning. The other
challenge is inefficient index and retrieval algorithm in massive geo-multimedia database. To over-
come this problem, in Reference [41], a novel hybrid index called GMR-Tree is developed
that is an extension of R-Tree by integrating cross-modal representation. However, this
work ignores the cross-modal hashing representation that can enhance the search efficiency
significantly. The GMR-Tree-based search algorithm cannot be directly used for cross-
modal hashing retrieval. Therefore, to address these two challenges, we try to improve the
semantic similarity constraints to guide the deep neural networks and designed a hybrid
geo-multimedia index to organize cross-modal hash codes. Last but not least, we introduce
one detailed example to describe this problem more vividly as follows.

Example 1: As illustrated in Figure 1, a user wants to buy a blue shoe from a nearby
shop. Unfortunately, he does not know the brand and of the shoe, and it is hard for him
to use some words to describe the features of this shoe. Obviously, it is hard for him to
find suitable shoes from nearby shops with limited information. In this case, he can input
an image, which describes this blue shoe, and his location information by his mobile as
a spatial multimedia k nearest neighbor query to a geo-tagged multimedia data retrieval
system. According to his requirement, this system will return a result set, which contains k
geo-multimedia data meeting his requirements. This result set indicates the user which
shops have this kind of shoe and are close to his location.

Our Method. To this end, this paper proposes a novel efficient cross-modal hashing
approach, termed as Triplet-based Deep Cross-Modal Retrieval (TDCMR). Specifically,
a two-branch deep neural network-based backbone is integrated in the TDCMR frame-
work, which is used to learn abstract semantic concepts. Besides, an improved triplet
distance constraint is designed to capture multiple high-level similarities to capture se-
mantic relationship among heterogeneous multi-modal data. Thus, the integrating of
deep representation learning with an enhanced triplet distance constraint improves the
cross-modal semantic learning performance. In addition, to realize efficient search on
large-scale geo-multimedia data, a novel index, termed as TDCMR-Quadtree is proposed.
It is a geo-semantic hybrid index integrated quadtree with cross-modal hash codes, which
utilizes both geographic information and semantic similarity to realize candidate set prun-
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ing. Based on the index, an efficient cross-modal nearest neighbor query algorithm is
developed for geo-multimedia retrieval.
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Figure 1. An example of a spatial multimedia k nearest neighbor query on a geo-tagged multimedia
data retrieval system.

Contributions. The main contributions of our work are summarized as follows:

• We propose a triplet-based deep cross-modal hashing framework, named Triplet-
based Deep Cross-Modal Retrieval (TDCMR), which aims to extract deep sample
features to alleviate the semantic gap through a triplet deep neural network unified
feature learning and hash learning process.

• We carefully apply the efficiency TDCMR algorithm to utilize the Quadtree to improve
and enhance the search performance significantly, named TDCMR-Quadtree, which is
a novel index framework and can improve the retrieval efficiency.

• We have conducted extensive experiments on three common used benchmarks, and
the results demonstrate that our proposed method achieves very high performance.

Roadmap. In the remainder of this paper, we review the previous researches in
Section 2. In Section 3, we introduce the definition of geo-multimedia data k nearest
neighbor query and the related notions. In Section 4, we introduce the Triplet-based Deep
Cross-Modal Retrieval (TDCMR) framework and its implementation. In Section 5, we
evaluate our method on two geo-multimedia datasets. Finally, we conclude this paper in
Section 6.

2. Related Work
2.1. Cross-Modal Hashing

Cross-Modal Hashing aims to map high-dimension data of different modalities into a
common hash code space, in which the heterogeneous data realizes semantic representation
and similarity measurement. With the rapid development of deep learning [21,22], deep
learning-based cross-modal hashing [25–28] has made significant progress recently. It
can effectively capture high-level information and explore semantic relevance to bridge
modality gap [42]. To preserve the cross-modal similarities, a negative log-likelihood loss
function is used by Deep cross-modal hashing (DCMH) [43], which performs feature learn-
ing and hash-code learning in an end-to-end learning framework. Pairwise Relationship
Guided Deep Hashing (PRDH) [40] integrates different types of pairwise constraints to
guide the hash code learning from intra-modality and inter-modality, respectively, and
introduces additional decorrelation constraints to enhance the discriminative ability of
each hash bit. To enhance the retrieval accuracy, Self-Supervised Adversarial Hashing
(SSAH) [44] enhances the retrieval accuracy by jointly utilizing two adversarial networks,
but its training cost is a little high, and its practical value is too low.

2.2. Spatial Related Data Retrieval

With the proliferation of local services and GPS-enabled mobile phones, there is a
rapidly growing amount of spatio-textual data and increased need for spatial data retrieval,
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so Spatial Keyword k Nearest Neighbor Query (sKkNN) is becoming an important type
of query. Zhang et al. [29] designed a new index named IL-Quadtree and proposed an
efficient algorithm to improve the performance of query. Cong et al. [30] proposed a new
indexing framework, which adopts an invert file to search text data and employs R-tree
to index closed objects, based on top-k aggregation problem. In order to further improve
retrieval performance, Rocha-Junior et al. [32] invented spatial inverted index technology.

2.3. Quadtree

Quadtree is a tree data structure proposed by Raphael Finkel et al. in 1974. Spatial
indices store and manage the spatial data sequentially according to the geographic location,
shape and spatial relationship of spatial objects, which contain the identifier, pointer, and
other description information of spatial objects [29]. Compared to conventional index
types, spatial indices can efficiently handle spatial queries [45], such as how far two points
differ, or whether points fall within a spatial area of interest. We use the quadtree index to
organize the spatial data in this paper because of its simple structure and high retrieval
efficiency. Quadtree is an extension of binary tree in high-dimensional space and has many
variants, such as region quadtree, point quadtree, PR quadtree, MX quadtree, etc. The basic
idea of the quadtree is to recursively subdivide a two-dimensional space into different
levels of tree. Specially, it partitions the geographic space into four quadrants or regions in
two orthogonal directions, and it recursively subdivide the subspaces until the tree reaches
the maximum depth or the number of objects in the leaf node is less than or equal to the
predetermined amount.

3. Preliminaries

In this section, we propose the formal definitions of geo-multimedia data similarity
and k nearest neighbor query. Then, we review Siamese network and triple network, which
are the basis of our work. Table 1 summarizes the frequently used notations in this paper.

Table 1. The summary of notations.

Notation Definition

O Space multimedia datasets

o geo-multimedia Data Objects

o.uID Identification code o spatial objects

o.loc Geographical location information o spatial objects, composed of
longitude o.lng and latitude o.lat.

o.m Multimedia Data Information o Space Objects

o.vT Cross-modular hash code for spatial objects o text modes

o.vI Cross-modular hash code for spatial objects o image modes

q geo-multimedia data k nearest neighbor query

q.loc Geographical location information q query objects

q.m Multimedia Data Information q Query Object

fs(q, o) Spatial similarity between q and o

fs(q, o) Semantic similarity between q and o

FGM(q, o) q and o geo-multimedia data similarity

HTDCMR(·) TDCMR cross-modal hash function

3.1. Problem Definition

The cross-modal hash algorithm solves the problem of uniform representation and
mutual retrieval of multi-modal data through hash learning of multi-modal data. Assuming
a given set of training data containing n sets R = {Ti, Ii, ti}n

i=1, the i-th set of training data
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is composed of text modal data Ti, image modal data Ii, and category label ti. Tuple class
label subscripts constitute datasets Γ = {ai, pi, ni}m

i=1, and the label subscript (aj, pj, nj) of
the j-th group of triples indicates that the similarity between anchor sample ai and positive
sample pi, which is higher than that between anchor sample and negative sample ni. That
is, samples with aj and pj have common category labels, while samples aj and nj do not
have common category labels.

Definition 1 (Spatial similarity). Given a geo-multimedia query q = (q.loc, q.m) and a space
object o, then, spatial similarity between q and o is defined as ratio of euclidean space distance δ(q, o)
between q and o to maximum euclidean space distance δmax(q, O), which can be expressed as:

fs(q, o) = 1− δ(q.loc, o.loc)
δmax(q, O)

,

where δ(q.loc, o.loc) represents the euclidean distance between query q and spatial object o, and
δmax(q, O) represents the maximum euclidean distance between a query q and any spatial object in
the spatial object dataset O, which can be expressed as:

δ(q.loc, o.loc) =
√
(q.lng− o.lng)2 + (q.lat− o.lat)2

δmax(q, O) = max({δ(q.loc, o.loc)|∀o ∈ O}).

Definition 2 (Cross-modal semantic similarity). Given a geo-multimedia Query q = (q.loc, q.m)
and a space object o, then, the cross-modal semantic similarity between q and o is defined as the cosine
value of the TDCMR hash code and the spatial object, which can be expressed as:

fc(q, o) =
∑i∈q.vT q.vT(i) × o.vI(i)

||q.vT || × ||o.vI || , (1)

where vT represents text mode TDCMR hash code, vI represents image mode TDCMR hash code,
and ||q.vT || and ||o.vI || are query object and space object TDCMR Hash code module.

Definition 3 (geo-multimedia Data Similarity). Given a geo-multimedia data query
q = (q.loc, q.m) and a geo-multimedia data object o, then, the similarity between q and o is
defined as the weighted sum of spatial similarity and cross-modal semantic similarity, which can be
expressed as:

Fd = λ · fs(q, o) + (1− λ) · fc(q, o), (2)

where fs(q, o) and fc(q, o) are spatial similarity and cross-modal semantic similarity. Besides,
parameter λ ∈ [0, 1] is the weight factor used to balance spatial similarity and cross-modal semantic
similarity. Finally, geo-multimedia data similarity score refers to the weighted score of similarity
between query object and dataset object in spatial and semantic aspects, which can better meet the
query processing in practical application scenarios.

Definition 4 (Spatial multimedia k nearest neighbor query). Given a Spatial Multimedia
Query q = (q.loc, q.m) and a space object set O, make ∀o ∈ R ∧ ∀o

′ ∈ (O− R) and Fd(q, o) ≥
Fd(q, o′) to find a subset R having k spatial objects of O as a result of the query.

Spatial text object query spatial image object qt2i = (q.loc, q.mT) and return a result set Rt2i
with k spatial image objects, which can be described as:

Rt2i ={o|∀o ∈ R ∧ ∀o
′ ∈ (O− Rt2i), Fd(qt2i, o) > Fd(qt2i, o′)}.

Spatial image object query spatial text object qi2t = (q.loc, q.mI) and return a result set Ri2t
with k spatial text objects, which can be described as:

Ri2t = {o|∀o ∈ R ∧ ∀o
′ ∈ (O− Ri2t), Fd(qi2t, o) > Fd(qi2t, o′)}.
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As shown in Table 2, it gives an example of a space text object query space image
object GMkNN query, as a user visited a city, because the itinerary arrangement can only
selectively visit a certain scenic spot. At this point, the user can enter a text to describe
the site of interest, search engine can return to the user’s interest and close to the site of
the image, video and other content. Users can visually browse the image or video of the
scenic spot to decide whether to visit the scenic spot. In addition, there are six scenic spots,
o1, o2, o3, o4, o5, o6, in the city.

Table 2. GMkNN query sample similarity score.

Query fs(q, o) fc(q, o) FGM(q, o)

(q, o1) 0.8 0.33 0.57
(q, o2) 0.3 0.25 0.28
(q, o3) 0.4 0.42 0.41
(q, o4) 0.4 0.92 0.66
(q, o5) 0.7 0.75 0.73
(q, o6) 0.7 0.83 0.77

For a given spatial text, query qt2i = (q.loc, q.mT), and set α as 0.5. Compute the
spatial similarity and cross-modal semantic similarity of query object and space object,
respectively, o1, o2, o3, o4, o5, o6, and the geo-multimedia data similarity score between query
object qt2i and space objects o1, o2, o3, o4, o5, o6; therefore, as k = 1, the query qt2i result of
GMkNN is {o2}, which returns the object o2 of image content to the user.

3.2. Siamese Network and Triple Network

Siamese Network and Triple Network are members of multiple convolution neural
network model. Compared with simple convolution neural network, they are composed
of two or more convolution neural networks which have the same structure and shared
parameters. The following mainly discusses Siamese Network and Triple Network.

3.2.1. Siamese Network

Siamese Network consists of two convolution neural networks which have the same
structure and shared parameters, and it aims to map two input data to a measurable space
for similarity comparison via a common function. Its objective is to minimize the similarity
among the samples within the same category and maximize the similarity among the
samples within the different categories. Specifically, Siamese Network searches for a set
of parameters u through distance metric, such that, when T1 and T2 belong to the same
category, the similarity is low, and, when T1 and T2 belong to the different categories, the
similarity is high. From this, a pairwise constraint loss function is designed, which is
shown in Formula (3).

L(T1, T2; m) =
1
2
· I · D(T1, T2) +

1
2
· (1− I) · {max(0, m− D(T1, T2))}. (3)

In the formula, D(T1, T2) is defined as the square of the euclidean distance between
Siamese Network outputs, as shown in Formula (4):

D(T1, T2) = || f (T1)− f (T2)||22. (4)

f (T) is the output of network. I represents the category relationship between sample
T1 and T2. When samples T1 and T2 belong to the same category, I = 1, and, when samples
T1 and T2 belong to the different categories, I = 0. m is a boundary value used to control
the degree of the loss function.

3.2.2. Triple Network

The Triple Network model is developed based on Siamese Network, which consists
of three convolution neural networks with the same structure and shared parameters. The
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Triplet Network’s input is a triplet that contains an anchor sample, a positive sample, and a
negative sample. Generally, the anchor sample and the positive sample are sample pairs that
belong to the same category or have related content, while the relationship between anchor
sample and negative sample are opposite. The triplet describes the relationship between the
three samples, with which the network is trained. After distance metric optimization, the
distance of anchor sample is close to the positive sample and far away from the negative
sample. Specially, there are N triplets defined which represent anchor sample, positive
sample, and negative sample. The feature representation of the sample is obtained by the
convolution neural network. According to the distance relationship between the triples
constraint and the sample feature, the triples loss function is defined as below:

L(Ta, Tp, Tn; α) =
N

∑
i

max
{

D(Ta, Tp)− D(Ta, Tn) + α, 0
}

. (5)

In this formula, α refers to interval value of D(Ta, Tp) and D(Ta, Tn), similar to
Formula (4), and D(Ta, Tp) is defined as the square of the euclidean distance between
triple network outputs.

4. Methodology
4.1. Overview of the Framework

To solve the problem of low representation ability and slow query speed in geo-
multimedia data representation and query, this paper aims to narrow the cognitive gap
between human and computer in multimedia data semantic understanding through a deep
neural network, construct the deep cross-modal hash (Triplet-based Deep Cross-Modal
Retrieval, TDCMR) network model based on triples, and encode geo-multimedia data
semantically by a trained network model. Then, TDCMR Hashing Quadtree (TH-Quadtree)
geo-semantic hybrid index and its query algorithm are used to search the-nearest-neighbor
and semantic-related Top-k geo-multimedia data objects quickly and accurately in the
massive geo-multimedia database.

4.2. Quantitative Coding of Geo-Multimedia Data Schemes

According to geo-multimedia data has the characteristics of polymorphism, hetero-
geneity and semantic interconnection, the traditional cross-modal hash algorithm uses
low-level artificial features, and the existence of semantic gap leads to low semantic repre-
sentation ability of cross-modal hash code. To better alleviate the semantic gap, this paper
proposes a deep cross-modal hash algorithm based on triples TDCMR, which integrates
feature learning and hash learning process through triples deep neural network, as well
as designs improved triples distance constraints. The aim of this paper is to improve
the semantic representation of cross-modal hash codes by forcing the same kinds of het-
erogeneous data close to each other in hamming space, according to the valid semantic
quantization coding.

Figure 2 illustrates the proposed framework for TDCMR problem. As discussed above,
the whole framework is composed of a deep feature extraction module and a hash code
learning module, which is unified into an end-to-end framework. Among them, the first
part is the deep feature extraction module, which consists of a multi-layer perceptron to
extract text features and a deep convolutional neural network to extract image features,
aiming to extract deep features of samples to alleviate the semantic gap of heterogeneous
data. The second part is the hash code learning module, which constructs the semantic
association between anchor sample and positive sample and negative sample through a
distance learning process, and also constructs the semantic association between positive
sample and anchor sample and negative sample through a distance learning process. Two
distance learning processes are completed by one sample input, aiming at the heterogeneous
data of the same category in hamming space being forced to approach each other.
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Figure 2. The framework to solve the TDCMR problem. It consists of two modules, deep feature
extraction and hash code learning. To image, CNN-F transforms images from original space into
feature space to hash code representation. To text, Bag of Words and MLP convert text to hash
code. Then, by hash code learning, two categories of hash code are trained by triples loss to learn in
hamming space.

4.3. Deep Feature Extraction

In this subsection, we employ deep convolution neural network CNN-F to extract
the features of image modes and the multi-layer perceptron to extract the features of text
modes. Besides, the deep feature extraction module consists of two deep neural networks.

4.3.1. CNN-F

The Deep Convolution Neural Network CNN-F network [46] consists of 5 convolu-
tional layers and 3 fully connected layers. fc8 is a fully connected layer with a number
of nodes c the length of the hash code, so as to facilitate the mapping of the image depth
features extracted by the deep convolutional neural network into hash code representa-
tion. Among them, the first convolution layer conv1 uses convolution operation with step
size 4, and the second convolution layer conv2 to the fifth convolution layer conv5 all
use convolution operation with step size 1. In addition, maximum pooling operation in
conv1, conv2, and conv5 can effectively reduce model parameters and prevent over-fitting.
Similarly, the use of Dropout regularization techniques in full connection layers fc6 and fc7
can effectively prevent over-fitting.

4.3.2. MLP

Multi-layer perceptron network (MLP) consists of 3 fully connected layers. The
number of nodes in layer 1 is the same as the dimension of the word bag vector input
text data. The number of nodes in the layer 2 fully connected layer is set to 4096, and the
number of nodes in the last layer fully connected layer is set to hash code length c, so as to
facilitate the mapping of text modal depth features extracted by multi-layer perceptron
network into hash code representation.

4.4. The Baseline for Triplet-Based Deep Cross-Modal Hashing

Given a set of triples(Tai , Ipi , Ini ), triplet sample distance learning goals is to close
distance between anchor sample Tai , regular sample Ipi and long distance between anchor
sample Tai and negative sample Ini , so distance constraints of triplet samples can be defined as:

D(Tai , Ipi ) + α < D(Tai , Ini ), (6)

where α is the interval value of distance D(Tai , Ipi ) between anchor sample and positive
sample and the distance D(Tai , Ini ) between anchor sample and negative sample.
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The triples loss function as shown in Formula (5) can be constructed according to the
triples sample distance constraint in Formula (6). During the training of the network model,
it is found that, when the distance interval value α is smaller, the distance D(Tai , Ipi ) be-
tween the anchor sample Tai and the positive sample Ipi is closer to the distance D(Tai , Ini ).
Although the loss function can quickly converge and close to 0, similar text and image
modal samples are difficult to distinguish. When the distance interval value α is larger,
the distance D(Tai , Ipi ) between the anchor sample Tai and the positive sample Ipi is much
smaller than the distance D(Tai , Ini ). Similar text and image modal samples are easy to
distinguish, but network models are difficult to converge.

Based on the triples sample distance constraint, the improved triples sample distance
constraint is proposed. In detail, the improved triples sample distance learning goal
is to construct the similarity relationship between anchor sample and positive sample
and negative sample, so that the distance between anchor sample and positive sample
is less than that between anchor sample and negative sample, and, at the same time, to
construct the similarity relationship among positive sample, anchor sample, and negative
sample, so that the distance between positive sample and anchor sample is less than
that between positive sample and negative sample. By learning from two sets of sample
distance relationships, heterogeneous data of the same category is forced close to each
other to improve the learning ability of the network model and effectively realize that the
intra-class distance is less than the inter-class distance. Improved triples sample distance
constraints are formally expressed as shown in Formula (7):

D(Tai , Ipi ) + α < D(Tai , Ini )

D(Tpi , Ipi ) + β < D(Tpi , Ini )
, (7)

where the distance interval value α between D(Tai , Ipi ) and D(Tai , Ini ) is a custom parame-
ter, and the distance interval value β between D(Tpi , Ipi ) and D(Tpi , Ini ) is also a custom
parameter. These parameters control the distance relationship between anchor sample,
positive sample, and negative sample as balance parameters.

In cross-modal hash learning, the semantic relationship between triples samples is
described by the triples likelihood function. Assuming that the anchor sample is text mode
and the positive sample and negative sample are image mode, the improved triples likeli-
hood function is proposed according to the improved triples sample distance constraint in
Formula (7), as shown in Formula (8):

p(Γ|BT , BI , BI) =
m

∏
j=1

p((aj, pj, nj)|BT , BI , BI), (8)

p((aj, pj, nj)|BT , BI , BI) = σ(ξaT
j pI

j
− ξaT

j nI
j
− α + ξpI

j aT
j
− ξpI

j nI
j
− β), (9)

where ξaT
j pI

j
= ξpI

j aT
j
= 1

2 G>∗aj
BI∗pj

, ξaT
j nI

j
= 1

2 BT
>
∗aj

BI∗nj
, ξpI

j nI
j
= 1

2 BI
>
∗pj

BI∗nj
, BT∗j =

f TTj; uT , BI∗j = f I(Ij; VI), BT∗j and BI∗j are the feature output of text and image modes,
respectively, BT∗j ∈ {−1, 1}c, BI∗j ∈ {−1, 1}c, uT and uI are text feature extraction network
and image feature extraction network, and σ(T) denotes that the probability is calculated
as a sigmoid function. α is the interval value between anchor sample and positive sample
feature distance and anchor sample and negative sample feature distance, and β is the
interval between the positive sample and the anchor sample and the positive sample and
the negative sample.

Based on the improved triplet likelihood function, the heterogeneous association
between different modal data is established by its negative logarithmic likelihood loss. The
triplet loss function Lt2i from text mode to image mode is shown in Formula (10).



Appl. Sci. 2021, 11, 10803 10 of 23

Lt2i = −log(p(Γ|BT , BI , BI))

= −
m

∑
j=1

log(p((aj, pj, nj)|BT , BI , BI))

= −
m

∑
j=1

(ξaT
j pI

j
− ξaT

j nI
j
− α + ξpI

j aT
j
− ξpI

j nI
j
− β)

+
m

∑
j=1

log(1 + e
ξaT

j pI
j
−ξaT

j nI
j
−α+ξpI

j aT
j
−ξpI

j nI
j
−β

).

(10)

Similarly, the triplet loss function from image mode to text mode is shown in Formula (11).

Lt2i = −log(p(Γ|BT , BI , BI))

= −
m

∑
j=1

log(p((aj, pj, nj)|BT , BI , BI))

= −
m

∑
j=1

(ξaI
j pT

j
− ξaI

j nT
j
− α + ξpT

j aI
j
− ξpT

j nI
j
− β)

+
m

∑
j=1

log(1 + e
ξaI

j pT
j
−ξaI

j nT
j
−α+ξpT

j aI
j
−ξpT

j nI
j
−β

).

(11)

Therefore, according to Formulas (10) and (11), the complete form of loss function of
depth-span modal hash algorithm based on triples is shown in Formula (12):

minV,uT ,uI L = minV,uT ,uI Lt2i + Li2t

+ γ(||VT − BT ||2BI
+ ||V I − BI ||2BI

)

+ η(||BT1||2BI
+ ||BI1||2BI

),

(12)

s.t, VT ∈ {−1, 1}c×n, V I ∈ {−1, 1}c×n,

where BT represents the feature vector matrix of the learned text modal data, and BI
represents the feature vector matrix of the learned image modal data; they contain the
relative semantic relationship in the triple tag, and VT , VI , respectively, represent the text
modal hash code matrix of modal and image modal data, the data feature vectors pass
the semantic relationship to the corresponding hash code, where VT = sign(BT),V I =
sign(BI). Jiang et al. [43] confirmed by a large number of experiments that better network
performance can be obtained by assuming that the text mode hash code is the same as
the image mode hash code during the training of the network. Therefore, the constraint
condition V = VT = V I is added on the basis of the objective loss function shown in
Formula (10), and the final complete triples loss function is shown in Formula (11):

minV,uT ,uI L=minV,uT ,uI Lt2i + Li2t

+ γ(||V − BT ||2BI
+ ||V − BI ||2BI

)

+ η(||BT1||2BI
+ ||BI1||2BI

),

(13)

s.t, V ∈ {−1, 1}c×n.

By optimizing the loss function shown in Formula (14), the triple network can learn
deep neural network parameters and hash code representation at the same time, as well as
realize end-to-end learning. The first and second terms of the loss function are improved
triple-negative log-likelihood loss functions. In the optimization learning process of these
two terms, the cross-modal similarity of the data in the original semantic space is preserved.
The third term of the loss function γ(||V − BT ||2BI

+ ||V − BI ||2BI
) is the regularization term.

By optimizing this term, the quantization error is reduced, so that the cross-modal hash
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code better retains the semantic similarity in the data features. The fourth term of the loss
function η(||BT1||2BI

+ ||BI1||2BI
) is also a regularization term. By optimizing this term, the

balance of hash code values is ensured, i.e., the number of +1 and −1 elements in the same
position of the hash code is the same, so that each the information contained in the bit hash
code is maximized.

Driven by a large number of image-text datasets, the optimized text feature extraction
network parameters uT , image feature extraction network parameters uI , and hash code
matrix V are obtained by using random gradient descent algorithm and alternating iteration
strategy to quickly get and optimize the TDCMR network model; then, the network model
branches are selected according to the modal types of the input data, and the deep features
of the input data are extracted to obtain the cross-modal hash code.

Specifically, the optimization of the triple loss function shown in Formula (13) is a
non-convex problem. Therefore, the random gradient descent algorithm simultaneously
uses the alternating optimization strategy to learn parameters uT , uI , and the hash code
matrix V, when updating one parameter, the other two parameters are fixed, the third
parameter is optimized, and the optimization process is alternately carried out until the
model converges or reaches the maximum number of iterations.

4.4.1. Update uT

We learn uT with fixed uI and V. For each iteration, a batch-size data input network is
randomly selected from the training dataset, and the back-propagation algorithm is used
to learn the text features to extract the network parameters uT . The gradient of the i-th text
data object BT∗i to calculate the loss function is shown in Formula (14):

∂L
∂BT∗i

= −1
2

m

∑
j:(i,pj ,nj)

(1− σ(2ξipI
j
− ξinI

j
− α− ξpT

j nT
j
− β))

(2BI∗pj
− BI∗nj

) + 2γ(BT −V) + 2ηBT1

. (14)

Compute ∂L
∂uT

to update parameter uT :

∂L
∂uT

=
∂L

∂BT∗i
· ∂BT∗i

∂uT
. (15)

4.4.2. Update uI

We learn uI with fixed uT and V. For each iteration, a batch-size data input network is
randomly selected from the training dataset, and the back propagation algorithm is used
to learn the image features to extract the network parameters uI . The gradient of the loss
function is calculated by the i-th image data object, as shown in Formula (16):

∂L
∂BI∗i

= −1
2

m

∑
j:(i,pj ,nj)

(1− σ(2ξipT
j

− ξinT
j
− α− ξpI

j nI
j
− β))

(2BT∗pj
− BT∗nj

)

+ 2γ(BI −V) + 2ηBI1.

(16)

Compute ∂L
∂uI

to update parameter uI :

∂L
∂uI

=
∂L

∂BI∗i
·

∂BI∗j

∂uI
. (17)
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4.4.3. Update V

We have fixed parameters uT and uI as learning hash code matrix V. By the relation
between trace and norm of matrix, to matrix N, ||N||2BI

= tr(NN>) = tr(N>N). Thus, the
loss function can be simplified as shown in Formula (18):

maxV tr(V>(γ(BI + BT))) (18)

s.t.V ∈ {−1, 1}c×n.

Let B = γ(BI + BT):
maxV ∑

i,j
VijBij (19)

s.t.V ∈ {−1, 1}c×n.

Keep Vij and Bij the same sign:

V = sign(γ(BI + BT)). (20)

Given text modal data and image modal data, semantic quantization coding of text
modal data and image modal data can be realized by TDCMR model. Meanwhile, semantic
similarity of heterogeneous multimedia data can be measured by hamming distance.
During the concrete process, the text modal data T generates semantic quantization coding
vT , and the calculation process is shown in Formula (21):

vT = bT(T) = sign( f T(T; uT)). (21)

Image modal data I generate semantic quantization coding vI , as shown in Formula (22):

vI = bI(I) = sign( f I(I; uI)). (22)

As shown in the Algorithm 1, the following is our optimization procedure of the
proposed TDCMR.

Algorithm 1 Optimization procedure of the proposed TDCMR

1: Input Textual dataset T ; Image dataset I ; Tuple label Γ;
2: Output Text feature extraction network parameters uT ; Image feature extraction net-

work parameters uI ; Hash code matrix V;
3: Initialize parameter uT and uI ;
4: The number of samples taken for each iteration NT = NI = 128;
5: The maximum number of iterations tT = n

NT
tI =

n
NI

;
6: for p = 1 to N do
7: for i = 1 to tT do
8: Random sampling of NT text samples from T to build a batch of dataset;
9: Taking anchor samples from batch data to build a set of triples samples;

10: For each text sample Ti, calculated G∗i = f T(Ti; uT) by forward propagation;
11: Gradient ∂L

∂uT
in Equations (3)–(10);

12: Update parameters uT by backward propagation;
13: end for
14: for j = 1 to tI do
15: Random sampling of NI text samples from I to build a batch of dataset;
16: Taking anchor samples from batch data to build a set of triples samples;
17: For each text sample Ii, calculated BI∗i = f I(Ii; uI) by forward propagation;
18: Gradient ∂L

∂uI
in Equation (15);

19: Update parameters uI by backward propagation;
20: end for
21: Update V in Equation (18);
22: end for
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4.4.4. Algorithm Analysis

Based on the analysis of the training effect of TDCMR algorithm, the selection of
triplet samples is the key of model training effect. Give a triples sample (Ta, Tp, Tn), which
is divided into the following categories:

• Simple triples: triples with a loss function value of 0. The distance of triples is satisfied
D(Ta, Tn) > D(Ta, Tp) + margin, i.e., the distance between anchor sample Ta and
positive sample Tp is less than the distance between anchor sample Ta and negative
sample Tη margin, and the negative sample is easy to identify.

• Semi-difficult triples: triples with a loss function close to 0 and the distance relation of
triples satisfied D(Ta, Tp) < D(Ta, Tn) < D(Ta, Tp) + margin, and negative sample Tn
is close to anchor sample Ta, and negative sample is easy to identify.

• Difficult triples: triples with a loss function value greater than 0, the distance relation
of triples satisfied D(Ta, Tn) < D(Ta, Tp), and the negative sample Tn is closer to
the anchor point sample Ta than the positive sample Tp, and the negative sample is
difficult to identify.

The selection of triples affects the training effect of the model. Simple triples are easy
to identify but cannot provide effective information for network model training. Besides,
difficult triples are difficult to identify, and all difficult triples are easy to diverge the
network model and seriously affect training efficiency. With the training of network model,
the number of easy triples and semi-difficult triples will be much larger than the number
of difficult triples, which leads to the difficulty of continuous optimization of network
model in the later stage of training. Therefore, we adopt a two-stage strategy to select
the three-component sample training network model. In the early stage of training, the
semi-difficult triples are selected as the training data to train the network model, which
makes the network model fit converge. In the later stage of training, the difficult triples are
selected as the training data, and the network model is fine-tuned to obtain the optimal
network model parameters and improve the training efficiency of the network model.

4.5. The TDCMR-Quadtree-Based Index Method

Figure 3 illustrates the proposed framework for index problem. The quadtree and the
semantic hash table are integrated in the vertical dimension by the order of first space and
then semantics. The location information is first organized according to the structure of
the quadtree, then the spatial objects contained in the quadtree leaf nodes are semantically
quantized by the cross-modal hash algorithm, and the hash table (Hash table) is associated
to the corresponding leaf nodes according to the cross-modal hash code. The geo-semantic
hybrid index TH-Quadtree is established to speed up the access to the spatial objects
in the O of the geo-multimedia dataset. The structure is shown in Figure 3, and the
quadtree is a tree-type index structure for accelerating spatial distance, which can organize
spatial information efficiently; The TDCMR, where the cross-modal hash code describes
the semantic information of geo-multimedia data, hash table supports organizing semantic
information with lower storage space and search time; organizing quadtree and semantic
hash table by spatial-first coupling can ensure that geo-multimedia data k nearest neighbor
queries can quickly retrieve spatial objects that meet the requirements in a given spatial
limitation and query semantics. The TH-Quadtree index combines the information of
geo-multimedia data object space and semantics. It is a two-layer hybrid index structure,
which is mainly composed of two parts: the quadtree of the spatial layer and the hash table
of the semantic layer.
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Figure 3. The framework of TDCMR-Quadtree-based index method, and it includes two layers which
is space layer and semantic layer.

4.5.1. Space Layer

TH-Quadtree is a two-tier hybrid index structure that integrates the spatial and
semantic layers on the vertical dimensions. In the spatial dimension, the spatial information
of spatial objects is generally represented by two-dimensional latitude and longitude
coordinates, which has better pruning effect than high-dimensional semantic information.
Therefore, the spatial layer index is constructed by using the spatial position relation of
spatial objects in geo-multimedia dataset, as the first layer of TH-Quadtree index structure.
In this paper, quadtree is used to index the spatial position information of all spatial objects,
which is efficient in two-dimensional spatial information organization. First, all spatial
objects are regarded as the point set in the geographical space, and then each spatial object
belongs to a minimum boundary rectangle MBR, i.e., each node on the quad tree, and
then all the MBR are organized into different levels of tree structure according to the
spatial distribution. In general, geospatial recursion is divided into hierarchical tree-type
structures. Geo-multimedia data objects are all stored on each leaf node, while the root and
middle nodes do not store spatial objects.

4.5.2. Semantic Layer

For each leaf node of the quadtree spatial layer, a hash table index is associated as the
semantic layer of the second layer of the TH-Quadtree index structure to facilitate pruning
in the semantic dimension. The semantic quantization coding of all geo-multimedia data
objects in leaf nodes is obtained according to the TDCMR cross-modal hash algorithm, i.e.,
cross-modal hash code. Then, the uID identification code of geo-multimedia data objects is
stored in a hash bucket with c bit binary encoding as key value to generate a hash table
containing all spatial object semantic information of leaf nodes. The spatial objects in the
hash table are located in the same hash bucket, and they have high spatial similarity, on
the one hand, in the same leaf node; on the other hand, they have high semantic similarity
due to the same semantic quantization coding.

4.6. TH-Quadtree-Based Nearest Neighbor Query Algorithm

The main idea of geo-multimedia data nearest neighbor query algorithm based on TH-
Quadtree is: Given a query object q, the spatial object is searched orderly in the spatial layer
and semantic layer. Starting with the root node of the index structure, the TH-Quadtree
index structure space is traversed by TH-Quadtree index structure space according to the
Spatial Best Match Proximity according to the principle of the best priority nodes of the
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layer to continuously obtain the tree nodes closest to the spatial position q the query object,
where the optimal spatial similarity calculation is shown in Formula (23):

fsbm(q, N) = λ · fs(q, N), (23)

where fs(q, N) stands for the spatial similarity node N and query objects q, and optimal
spatial similarity fsbm(q, N) is the lower bound of the score of spatial object similarity o geo-
multimedia data in query object q and node N. Based on the above optimal spatial similarity
fsbm(q, N), when the query processing process accesses the leaf node, it transforms from the
spatial layer search to the semantic layer search. The candidate sets related to query object
semantics in the hash table associated with the leaf node are obtained quickly by Hashing
Looking. Then, for the spatial object fusion spatial similarity and semantic similarity in
the candidate set, the optimal spatial object update result set R is selected according to the
geo-multimedia data similarity score FGM(q, o). During the whole search, the result set R
is used maintain the traversed space object dynamically, and the current knot is formed,
and a small geo-multimedia data similarity score k the fruit set is used as the upper bound
of the result set, and the search is terminated when the node that has not been accessed
satisfies the condition of Formula (24), and the current result set is returned as the optimal
query result.

fsbm(q, N) > Dub, (24)

where fsbm(q, N) is the distance lower bound of the spatial similarity between all spatial
objects with N as the root node q the spatial similarity of the query object. When the
distance lower bound of the spatial similarity is larger than the distance upper bound R
the known result set, then, all spatial objects that are not accessed have no chance of better
than the Top-k results in the current result set, then the search process terminates.

Since the spatial distance between query q and any spatial object o in node N is
greater than the spatial distance from query q to node N, the spatial similarity between
query q and node N will not be higher than that between query q and any spatial object
o spatial similarity, i.e., fs(q, o) ≥ fs(q, N), similarly, since node N is the top element
of priority queue L, the spatial similarity of query q and node N is the lower bound of
the spatial similarity of all currently unvisited nodes and query q. As fsbm(q, N) > Dub,
the similarity scores of all spatial objects FGM(q, o) that have not been accessed, and the
geo-multimedia data of query q would be greater than the upper bound of distance Dub,
λ · fs(q, o) + (1− λ) · fc(q, o) > Dub. Therefore, compared with the current Top− k search
results, all unaccessed spatial objects have no chance to be closer to the query q, and the
current result set R is the optimal solution, which can terminate the query process.

Given a geo-multimedia data k nearest neighbor query q, the distance upper bound
of the result set R and the priority queue L sorted according to the spatial similarity score
from small to large. In the query process, for the top element N popped by the priority
queue L, the query termination condition is λ · fs(q, N) > Dub.

5. Experiments
5.1. Dataset and Workload
5.1.1. Datasets

Performance of the proposed method TDCMR is evaluated on dataset MIRFlickr-
25k and NUS-WIDE, and some samples of them are illustrated in Figure 4. The brief
introduction of them is shown as follows.

• MIRFlickr-25k [47]. This dataset consists of 25,000 image-text pairs obtained from
the Flickr website, and each pair has an image and its corresponding text labels. The
dataset contains 24 manually labeled category tags, and each pair was marked with
one or more category tags.

• NUS-WIDE [48]. This dataset consists of 269,648 image-text pairs obtained from Flickr
website and contains 81 manually labeled category tags, and each data pair is also
marked as one or more category tags.
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Performance of the proposed index TH-Quadtree is evaluated on dataset real data FL
and synthetic set IN. The brief introduction of them is shown as follows.

• FL. This dataset is generated by image sharing website Flickr (http://www.Flickr.com/
(accessed on 1 July 2021)), containing 1 million images with geographic location
information, each containing at least one user-annotated text tag information.

• IN. This dataset is a classical image database where each node of the hierarchy is
represented by at least 500 images, each concept quality controlled and manually
annotated, obtaining spatial location mapping from the U.S. Place Names Commission
website (http://geonames.usgs.gov(accessed on 1 July 2021)).
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Figure 4. Some samples of MIRFlickr-25k and NUS-WIDE.

5.1.2. Workload

All the experiments are run on a PC with Intel(R) i7-6800K CPU, 64 G memory, and
NVIDIA GeForce GTX 1080ti GPU, running the Ubuntu 16.04 LTS Operation System.

5.2. Settings

To evaluate the performance of the TDCMR algorithm, six cross-modal hashing
algorithms are introduced for comparison in the experiments. Among these algorithms,
CCA is a multivariate statistical analysis method, CVH [49], STMH [50], CMSSH [51],
CMFH [52], SCM [53] and SePH [54] are shallow cross-modal hashing algorithms based on
artificial features, and DCMH [43], PRDH [40], and TDH [38] are deep cross-modal hashing
algorithms, which use the same network as TDCMR algorithm. We use mAP value and PR
curve to quantitatively evaluate algorithm performance. We provide a Table 3 to show the
benefits and drawbacks of our comparison algorithm.

In the experiment, for the MIRFlickr-25k dataset, 2000 samples are randomly extracted
as the test set, and the remaining samples are used as the validation set. During the training,
10,000 samples are randomly extracted from the validation set as training data. For the
NUS-WIDE dataset, 1866 samples are randomly extracted as the test set, and the remaining
samples are used as the validation set. Similarly, 10,000 samples are randomly chosen from
the validation set as training data. The experiment refers to the parameter settings of the
paper, and sets the distance parameters α and β to half the length of the hash code. We

http://www.Flickr.com/
http://geonames.usgs.gov
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set the default values of balance parameters, the number of samples for each iteration 128,
and the maximum number of iterations 500. If the retrieved data has the same label as the
query data, it is considered to be the correct neighbor.

Table 3. The benefits and drawbacks of various methods.

Method Benefit Drawback

CVH

High retrieval efficiency in large-scale datasets. Small datasets cannot give full play to the advantage of high efficiency.STMH

CMSSH

CCA Relatively effective, easy to train and implement. It is difficult to simulate the complex correlation of cross media data,
and most can only simulate two media types.

CMFH High retrieval efficiency in large-scale datasets. Small datasets cannot give full play to the advantage of high efficiency.

SCM It is helpful for merging different types of information. The optimization problem with large amount of data is a challenge.

SePH More than two media types can be emulated. Large time and space overhead.

PRDH Providing more accurate information helps to improve the
retrieval accuracy. Large time and space overhead.

DCMH Feature learning and hash code learning are combined into
the same framework for the first time.

Unsupervised: cannot well overcome the barriers of different modes.
Instead of manually extracting features, overcome barriers and go

further.

TDH Triplet network to process paired data and unpaired data at
the same time, and learn feature expression for them.

It is difficult to adjust the training parameters due to the supervision of
GAN.

TDCRM

The improved triple loss function effectively alleviates the
semantic gap,Th-quadtree efficiently organizes the spatial

information and semantic information of spatial
multimedia data.

It cannot be directly extended to network-based studies.

5.3. Performance Evaluation

In this sectoion, the correctness of our proposed method is verified by the mAP value
and PR curve, and the effectiveness of our proposed method is evaluated by the response
time in the experiment.

5.3.1. Correctness Comparison

Tables 4 and 5 are the mAP values of each algorithm on the image-to-text retrieval task
and the text-to-image retrieval task under different hash code lengths on the MIRFlickr-25k
dataset. Tables 6 and 7 are the mAP values of each algorithm on the NUS-WIDE dataset.
The best mAP values are displayed in bold font. It is observed from the mAP values
in Tables 4–7 that the performance of the TDCMR algorithm outperforms the other ten
cross-modal hashing algorithms.

Table 4. Performance comparison in terms of mAP scores in Image to Text on the MIRFlickr-25k
dataset. The highest accuracy is shown in boldface.

Task Method
Hash Code Length

16 Bit 32 Bit 64 Bit

Image To Text

CVH 0.557 0.554 0.554
STMH 0.602 0.608 0.605

CMSSH 0.585 0.584 0.572
CCA 0.563 0.563 0.563

CMFH 0.579 0.581 0.583
SCM 0.614 0.628 0.629
SePH 0.643 0.648 0.652
PRDH 0.685 0.693 0.701
DCMH 0.698 0.705 0.711

TDH 0.702 0.711 0.718
TDCMR 0.711 0.719 0.727
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On the MIRFlickr-25k dataset, the performance of the TDCMR algorithm in both
retrieval tasks is slightly better than the PRDH and DCMH algorithms. On the NUS-
WIDE dataset, the performance of the TDCMR algorithm in both retrieval tasks is also
superior to the PRDH and DCMH algorithms. The reason is that PRDH and DCMH
algorithms employ pair-wise similarity constraints of category labels for hash learning
without considering the relative semantic relationship between samples, which, to some
extent, loses rich semantic information and results in limited retrieval accuracy. The
TDCMR algorithm employs the relative semantic relationship between the three samples to
build more semantic associations, while the improved triple loss function allows the hash
code to retain more category information. To some extent, it overcomes the disadvantage
of pairwise similarity constraint, enhances the representation ability of hash code, and,
thus, has higher retrieval accuracy.

Table 5. Performance comparison in terms of mAP scores in Text to Image on the MIRFlickr-25k
dataset. The highest accuracy is shown in boldface.

Task Method
Hash Code Length

16 Bit 32 Bit 64 Bit

Text To Image

CVH 0.557 0.554 0.554
STMH 0.600 0.606 0.608

CMSSH 0.567 0.569 0.561
CCA 0.564 0.563 0.563

CMFH 0.578 0.579 0.581
SCM 0.611 0.618 0.620
SePH 0.646 0.648 0.652
PRDH 0.728 0.732 0.739
DCMH 0.727 0.734 0.741

TDH 0.736 0.742 0.749
TDCMR 0.741 0.748 0.756

On the MIRFlickr-25k and NUS-WIDE datasets, the retrieval performance of TDCMR,
PRDH, and DCMH algorithms based on deep learning is significantly better than those
based on artificial features, such as CCA, CMFH, SCM, and SePH. This is because the
algorithms based on deep learning can extract deep salient features of data, and the
representation ability of deep features are better than artificial features, which shows the
superiority of deep neural network in saliency feature extraction.

Table 6. Performance comparison in terms of mAP scores in Image to Text on the NUS-WIDE dataset.
The highest accuracy is shown in boldface.

Task Method
Hash Code Length

16 Bit 32 Bit 64 Bit

Image To Text

CVH 0.400 0.392 0.386
STMH 0.522 0.529 0.537

CMSSH 0.511 0.506 0.493
CCA 0.374 0.367 0.362

CMFH 0.383 0.386 0.389
SCM 0.489 0.494 0.499
SePH 0.531 0.534 0.542
PRDH 0.615 0.619 0.627
DCMH 0.622 0.627 0.638

TDH 0.627 0.638 0.654
TDCMR 0.638 0.651 0.667

On the MIRFlickr-25k and NUS-WIDE datasets, with the increase of the hash code’s
length, the retrieval performance of the seven algorithms has been improved to a certain
extent. The reason is that as the length of the hash code increases, the richer the semantic
information contained in the code, which improves the retrieval accuracy. It should be
noted that, on the one hand, the retrieval performance improves with the increase of
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the code length in a certain range; on the other hand, excessive coding length leads to
over-fitting and other problems, which reduces the retrieval performance.

Table 7. Performance comparison in terms of mAP scores in Text to Image on the NUS-WIDE dataset.
The highest accuracy is shown in boldface.

Task Method
Hash Code Length

16 Bit 32 Bit 64 Bit

Text To Image

CVH 0.372 0.366 0.363
STMH 0.496 0.529 0.532

CMSSH 0.449 0.389 0.380
CCA 0.373 0.367 0.361

CMFH 0.392 0.394 0.399
SCM 0.460 0.466 0.469
SePH 0.508 0.511 0.517
PRDH 0.642 0.651 0.658
DCMH 0.648 0.658 0.667

TDH 0.658 0.671 0.679
TDCMR 0.665 0.678 0.688

On the MIRFlickr-25k and NUS-WIDE datasets, the performance of the text-to-image
retrieval task is always better than image-to-text retrieval task, probably because the hidden
semantic information in image is more difficult to extract, so that the text feature extraction
network can learn more information.
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Figure 5. Precision—recall curve on MIRFlickr-25k dataset. (a) T2I + 32 + MIR; (b) I2T + 32 + MIR.

Figure 5a,b show the accuracy recall curve of each algorithm when using 32-bit hash
code on the MIRFlickr-25k dataset, while Figure 6a,b show the accuracy recall curve of
each algorithm when using 32-bit hash code on NUS-WIDE dataset. According to the
introduction of the accuracy recall curve, the larger the area enclosed by PR curve and
coordinate axis, the better retrieval performance algorithm has. The area of TDCMR
algorithm is larger than that of the other baseline methods, which is consistent with the
mAP value.

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

Pre
cis

ion

R e c a l l

����
�����
����
��
	�
�	
��
�����
����
�����

(a)

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

Pre
cis

ion

R e c a l l

����
�����
����
��
	�
�	
��
�����
����
�����

(b)
Figure 6. Precision—recall curve on NUS-WIDE dataset. (a) T2I + 32 + NUS; (b) I2T + 32 + NUS.

Above all, we validate the cross-modal retrieval performance of TDCMR on MIRFlickr-
25k and NUS-WIDE datasets, and evaluate the retrieval accuracy through mAP value and
accuracy-recall curve. The experimental results show that our proposed deep cross-modal
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hash algorithm has the best performance in the cross-modal retrieval task. Therefore,
TDCMR can better retain the semantic information of the original data, as well as achieve
state-of-the-art retrieval performance in the field of geo-multimedia data semantic quanti-
zation coding.

5.3.2. Effectiveness Comparison

Figure 7a,b show results of this experiment in which we investigate the effect of the
number of results (k) by varying the value k from 5 to 25 on dataset FL and IN. As expected,
both the response time of each index increase with an increasing value of k. A larger value
of k leads to a larger search region in query processing. Compared with traditional spatial
pruning technique Quadtree, our proposed technique, TH-Quadtree, takes advantage of
the semantic layer hash tables to reduce unnecessary disk access.
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Figure 7. Varying the number of results (k) on FL and IN. (a) Varying k on FL. (b) Varying k on IN.

Figure 8a,b show results of this experiment in which we investigate the effect of the
dataset size (n) by varying the value n from 50 K to 250 K. Similarly, when the dataset
size increases, the response time of each index increases since more quadtree cells will be
accessed. It is observed that the performance of TH-Quadtree is significantly superior to
that of traditional quadtree.
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Figure 8. Varying the dataset size (n) on FL and IN. (a) Varying n on FL. (b) Varying n on IN.

6. Conclusions

To solve the problems of semantic gap and low semantic representation in the cross-
modal hash method, this paper investigates a deep cross-modal hash algorithm based on
TDCMR. By integrating feature extraction and hash code learning processes into an end-
to-end triplet deep neural network model, sample deep features containing rich semantic
information are extracted to better narrow the semantic gap. At the same time, this paper
optimizes the triples sample distance relation and proposes an improved triples loss
function, which makes the same heterogeneous data forced close to each other in Hamming
space, and improves the semantic representation ability of the cross-modal hash code. By
means of theoretical analysis and experiments, TDCMR cross-modal hash codes have better
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preserved the semantic information of the original data and have better advantages in the
semantic quantization coding of geo-multimedia data.

Aiming at the problems of slow speed and low efficiency in the nearest neighbor
query of spatial multimedia data, a new hybrid index TH-Quadtree is proposed based
on TDCMH cross-modal hash code and quadtree. TH-Quadtree efficiently organizes the
spatial information and semantic information of spatial multimedia data. At the same
time, based on TH-Quadtree, the nearest neighbor query algorithm is proposed to support
GMkNN query, and the NE nearest neighbor expansion strategy is introduced to optimize
the semantic layer search process, so as to quickly and accurately find the spatial nearest
neighbor and semantically related spatial multimedia data objects in the massive spatial
multimedia database. Theoretical analysis and nearest neighbor query experiments show
that the nearest neighbor query algorithm of spatial multimedia data based on quadtree
effectively improves the query speed.

Our future work:
(1) Semantic quantization coding based on target attention mechanism
There has always been an insurmountable semantic gap between different modal data.

This paper extracts the features of image mode and text mode through a deep convolution
neural network and multi-layer perceptron, which can extract the sample features with rich
semantic information and make up the semantic gap to a certain extent. In the future, we
try to improve and optimize the feature extraction network structure, learn the features of
the target area of image or text by introducing the target attention mechanism, and obtain
the data features with more significant information, and further narrow the semantic gap,
so as to promote the representation ability of semantic quantitative coding.

(2) Nearest neighbor query of spatial multimedia data under road network
At present, a large number of LBS applications are based in the Euclidean space.

Euclidean distance is the linear distance between any two points in space. Based on it, this
paper uses Euclidean distance to measure the spatial similarity between spatial objects,
and the road network distance is the road length between two points in the actual road
network, which can more truly reflect people’s living environment, our work tends to
further expand the nearest neighbor query of spatial multimedia data to the road network
environment. G-tree [55] is a road network index structure based on R-tree and preserving
the spatial structure, which supports fast processing of kNN query in the road network.
Therefore, how to design an efficient road network spatial semantic hybrid index structure
and query algorithm based on g-tree is also content that merits being deeply studied in
the future.
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