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Abstract

We examine whether it is worthwhile eliciting subjective judgements to account for dependency in a multivariate
Poisson-Gamma probability model. The challenge of estimating reliability during product design motivated the choice of
model class. For the multivariate Poisson-Gamma model we adopt an empirical Bayes methodology to present an esti-
mator with improved accuracy. A simulation study investigates the estimation error of this estimator for different
degrees of dependency and examines the impact of dependency being mis-specified when assessed by subjective judge-
ment. Our theoretical and simulation findings give analysts insights about the value of eliciting dependency.
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Introduction

Probability modelling is an established means of repre-
senting and analysing uncertainties associated with risk
and reliability problems. Dependencies between uncer-
tain variables expressed probabilistically require appro-
priate modelling to provide meaningful results.
Consider a problem that can be characterised by multi-
ple uncertain variables, then dependency will arise if
information for one variable provides information
about other variables. That is, the conditional expecta-
tion of a variable differs from its unconditional expec-
tation. Some modelling classes explicitly capture
dependency within the probabilistic structure. For
example, Bayesian belief networks (BBN) reported in a
range of contexts'> as well as multivariate distribu-
tions for risk and reliability problems.*”’

Quantifying probability models with dependent vari-
ables means that the joint, or conditional, probability
distributions need to be expressed in addition to the
marginal probability distribution. Data might not be
available to support such quantification for various
reasons. For example, if the purpose of the model is to
support analysis of the reliability of new designs or dur-
ing product development, or if the model is to analyse
risk in a context with rare events, then in such contexts
observed events might be unavailable in whole or part
given the nature of the data generating processes. We

could also encounter situations, say for operational sys-
tems, where data might be too expensive to collect. An
alternative to data can involve assessing dependency by
eliciting subjective probabilities.

Many methods and processes for the structured elici-
tation of subjective probabilities exist.® ' Specifically,
there has been consideration of the particular chal-
lenges of assessing dependency using subjective judge-
ment.'" '3 A comprehensive literature review of issues
associated with assessing dependency via elicitation is
given in Werner et al.'* This review emphasises the
need for a structured approach to support the assess-
ment of informed subjective judgements and to explore
particular issues, such as cognitive fallacies, that might
affect the accuracy of the assessments made. Methods
for elicitation of probabilistic dependency are sum-
marised and classed as direct models (this includes
many approaches used in risk and reliability such as
BBN, multivariate distributions) and indirect models
where auxiliary methods are used (such as regression
models). While the majority of methods considered by
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Werner et al.'* express judgements as probabilities,

they also consider methods that express dependencies
using moments, referencing'> who evaluated this
approach for modelling the reliability of new system
designs to inform assurance decisions. Building on their
review in Werner et al.'* an elicitation process for
dependent events is proposed in Werner et al.'® This
process is designed to mitigate the particular cognitive
challenges associated with eliciting dependency.

We argue that representing dependencies appropri-
ately is important if we are to build good models for
risk and reliability problems. However drawing on the
literature'* and references therein, as well as, for exam-
ple, 231718 we also recognise that eliciting dependency
for real model building is challenging and resource
intensive. This leads us to ask whether eliciting depen-
dency is worth the effort?

We do not seek to provide a universal answer to this
question. Rather, we investigate this issue for a particu-
lar multivariate probability model, a Poisson-Gamma
model. This model has underpinned analysis for real
industry problems. For example, recent modelling
(involving two of the authors) to support decisions
about the reliability of a one-shot system during new
product development. This was a new generation of a
product design family for which data from earlier
design generations was deemed relevant for some ele-
ments of the new system together with test data gener-
ated for the new design throughout its development
project. A correlation parameter represents the depen-
dency in the multivariate Poisson-Gamma probability
model used for this reliability estimation problem for
the new design. The dependencies were elicited from
suitably qualified engineers using a structured process
based on the method described in Quigley and Walls."”
This elicitation methodology maps the model para-
meters to the engineering expertise then uses relevant
data (say from related past design elements and/or test)
to quantify the dependency in view of the elicited jud-
gements. The elicitation approach, grounded in a spe-
cifically designed defensible protocol, was resource
intensive. It was also cognitively demanding for those
expressing their subjective assessments despite having
adopted an approach which asked engineers to express
their engineering, rather than probabilistic, expertise.

This research aims to investigate, in the context of
the multivariate Poisson-Gamma probability model,
whether accounting for correlation in the analysis is
worth the effort. To address this aim we state two
objectives which examine the statistical value of model-
ling dependency, thereby enabling an analyst to trade-
off the wider benefits and the costs of elicitation. Our
first objective is to examine the benefits towards error
reduction, and hence estimation accuracy, when we
explicitly account for the correlation in the model. Our
second objective is to explore the consequences of the
correlation being mis-specified when assessed via sub-
jective judgement elicitation. Our findings contribute

new insights for this particular probability model by
providing a formula to express the mis-specification
error in the dependency parameter. Although our
results are limited by both the chosen probability model
and its parameter sets examined, we provide analysts
with an approach to considering modelling choices
applicable to a wider classes of probability models with
dependency.

The paper is structured as follows. First we present
an estimator for the multivariate Poisson-Gamma
model that pools data from correlated processes and
should result in reduced model estimation error. We
develop this estimator through a comparative argument
based on alternative inference approaches. We describe
a simulation study to investigate the accuracy of the
proposed inference approach given the degree of depen-
dency (controlled through the correlation parameter)
and the amount of data (controlled by the number of
processes in the pool). This study is extended to further
examine the impact of subjective mis-specification of
the correlation parameter. We conclude by reflecting
on the limitations of our study, the implications of our
findings and provide suggestions for further work.

Model and inference framework

Our first objective is to develop an understanding of
how pooling data from similar processes can reduce
estimation  error.  Specifically, we  consider
Homogeneous Poisson Processes (HPP) and we adopt
an empirical Bayes framework to support the inference
under the assumption of Gamma marginal prior distri-
butions. These are conjugate to the Poisson and so are
mathematically convenient as well as flexible. To moti-
vate the value of the proposed inferential framework
for our multivariate Poisson-Gamma model, we
develop our reasoning through comparisons with stan-
dard methodological approaches. After describing a
classical inference approach, which provides a bench-
mark for later assessing estimation error, we present
the Bayesian approach and show the theoretical error
reduction resulting by incorporating prior information.
Since expressing subjective judgement in the form of a
prior distribution can be challenging and resource
intensive to elicit,”® we are motivated to present an
empirical Bayes approach where the Bayes mechanism
is used but the prior distribution is estimated by pool-
ing data on similar processes. Finally in this section we
consider the pooling of data from multiple processes
which are measurably correlated in their underlying
mean rates, such that data from other processes can be
explicitly incorporated into the inferential updating to
reduce estimation error.

Classical inference

Under classical inference we assume a probability
model that measures the variation in the data as a
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function of a parameter. We consider a Poisson distri- i A Bapa—l oA

bution with parameter A which corresponds to the P(N =n) = J l () dx

mean value of the distribution: 0o (5)

n,—A

P(N = n;A) =

=012 (1)

A typical classical approach to estimation would be
either to estimate A through a moment matching
approach or a maximum likelihood approach.
Assuming we have ¢ observations from the same sto-
chastic process, where the observations are denoted by
n;, then the estimator is given by:

t
>N
i<

t

A=

)

To assess the accuracy of such an estimator we treat the
data as random variables from the probability distribu-
tion and evaluate the Mean Square Error (MSE) which
is given by:

~ | >

The MSE( for the classical estimator approaches 0 as
the sample size increases.

Bayesian inference

Under Bayesian inference we again assume the Poisson
distribution but now consider it as a conditional prob-
ability distribution assuming the true mean, denoted by
A, is known. This mean is then modelled as a random
variable where the uncertainty is described by a prior
distribution. Here we assume the prior distribution
(A) belongs to the Gamma distribution family. This
Poisson-Gamma model is given by:

P(N=nlA=21) =" n=0,1,2,...
' 4)

7(\) = EXEE 6> 0,8>0,0>0

Combining the Poisson and Gamma models, we obtain
the predictive distribution which is essentially a
weighted average of Poisson distributions where the
weights are provided by the prior distribution. For this
combination of Poisson and Gamma, the predictive
distribution is in the form of a Negative Binomial
distribution:

_Tle+m/ B\ 1Y
I'a)n! \B+1 B+ 1
Since Bayesian inference incorporates prior information
on the process then the mean prior, denoted by E[A],
should be specified before observing any data, where:

E[A] = (6)

Once data have been observed on the process (such as
the aforementioned ¢ observations), the prior distribu-
tion can be updated using Bayes’ Theorem to give the
following posterior distribution:

a+ inj a+ Z’nﬁl

B+ Ao i e~ B+ DA
m(A[n) = ) (7)
Ma+ > n
=1
The associated posterior mean is:
t
at >on
=1
E[A|n] = ﬁ (8)

To facilitate comparison with the classical inference for
the same model, we calculate the MSE assuming a
Bayesian framework by first averaging over the mean
and subsequently over the data that will be realised to
obtain:

MSEg = ExEA[(A — E[A| N))*|N]

a+ iNJ (9)

j=1 a
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=Ey

B+

The MSEjp for the Bayesian estimator also approaches
0 as the sample size ¢ increases. Further, inspection of
MSEp shows that it is less than E[A], which is to say
that prior to observing any data we anticipate that the
M SEg will be smaller than the expected value of the mean.
Moreover, we anticipate that MSEp < MSE¢ since the
denominator of the former is 8 + ¢ rather than just ¢ as
for the latter. This insight is not surprising given more data
are being introduced to the analysis in the form of prior
information. As B increases, the smaller the variance of
the prior distribution (consistent with more precise judge-
ment) and hence a smaller MSEp.
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Empirical Bayes inference

An empirical Bayes inference approach presumes we
have a pool of Poisson processes, each with their own A
all of which have been realised from the same probabil-
ity distribution, namely the prior distribution. Thus, by
pooling the data associated with the rates allows esti-
mation of the prior distribution. Then Bayes’ Theorem
can be applied (as in a traditional Bayes approach) to
provide a tailored posterior estimator for the process of
interest.

The empirical Bayes estimator for the Poisson-
Gamma model is given by:

&-i—n[
B+t

E[A,lN, = n[] = (10)

where the estimators of the prior distribution are
denoted by (a,8) and we index the mean values with
subscript i to correspond to the ith process in a pool of
m Poisson processes. The corresponding mean square
error is given by:

¢ 2
at YN,
MSEgs = Ex |Ex | | A ——Z—1 | |,
EB N | En, R, |N
t t 2
O[+ ZN, a+ EN/
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+ Ev|E / - N
N B+t B+t 2

= MSEg + MSEpg
(11)

The MSEgp can be decomposed into two terms. The
first term is the MSEp (equation (9)) and the second
term is the M SEpg, which is the pool parameter estima-
tion error. This implies that MSEgp is affected by both
the number of processes in the pool and the number of
observations in each process since MSEp only
decreases as more data are observed for process i and
MSEpg decreases as the number of process in the pool
increases. Thus, an empirical Bayes estimator provides
a means of reducing estimation error since it allows the
error to become closer to that of a Bayes estimator
without the need for a prior distribution. However, we
note that the role of increased pool size is to reduce
MSEpg only and not MSEg.

Dependency between processes

We now consider the situation of primary interest
where we wish to include data that is correlated with a
process of interest with the aim of reducing MSEg. To
accommodate this we require a multivariate prior

distribution to model the correlation between the data
generating processes. This multivariate prior model can
be used within a Bayesian approach if obtained by sub-
jective judgement or within an empirical Bayes
approach if the parameters have been estimated from
observations across a pool of processes.

As a motivating example, we could consider estimat-
ing the rate of occurrence of major accidents at a speci-
fied location. By pooling data on major accidents
across multiple locations then an empirical Bayes esti-
mator could be derived to improve the accuracy of the
estimators. However, we can also include data on
minor accidents at each location where the rates are
likely to be correlated with each other but not necessa-
rily perfectly. As such, the data from the minor acci-
dents for the same location can have a direct impact on
reducing the MSEp due to its correlation with the
major accidents at that location.

Here we propose a framework that could be opera-
tionalised with a Bayesian or an empirical Bayes
approach to inference depending upon how the prior
parameters have been obtained. Let

p = corr(A1, Ay) (12)

For p <1 we assume the following bivariate Gamma
distribution developed by Minhajuddin et al.?! for
which the marginal distributions for each process have
a Gamma prior:

a a—]e—B). r r;(—le—BA
77()\1,)\2) = £ )LI[‘(O() Le /\“[‘(a) :
- 52 (13)
X (1=p)* o1 |l [a; (q) PAIA;
where
5 \2
oF |11 (1) oo
) ¢ 14
L a (e ()
- /Z:o T(a + k!

For p = 1, we assume the Gamma prior distribution
(L), given in equation (4).

The bivariate Gamma distribution in equation (13)
was first proposed as a multivariate prior for an HPP
by Quigley et al.* where many of the results we require
are derived. Here we state only those results which are
key for our research. The posterior mean for this model
which is given by:

n,+a+E[K]

t+ £
—-p

E[Ai|n1,n2] = (15)

where K is a discrete random variable whose probability
distribution belongs to generalised hypergeometric fam-
ily of distributions.? This distribution is expressed as:
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P(K = k) =

s V)
C(@)(m + a + KTy + a + k) (p(ru )+B> >

I'a + HI(n + a)'(ny + @) k!
8 2
2 Fy [[ﬂi + al, M;P(m) ]
,k=0,1,2, ...
(16)
Further Quigley et al.* show that:
. n; + «
})ILI(l)E[A;|n1,I’l2] = l+,8 (17)
. _mtmta
ll)ll‘[} E[A,"I’ll,l’lz] = W (18)

These results indicate that as the correlation
approaches 0, we obtain the Bayes estimate for the
multivariate Poisson-Gamma model. Also, as correla-
tion approaches 1, we obtain the same estimate as we
would derive if all 27 observations were observed from
the same Poisson process. While we can reason the
effect of dependency under perfect and no correlation,
we are interested to understand the effects for varying
degrees of dependency.

Hence now that we have presented an estimator
that, by pooling data from correlated processes, should
reduce estimation error, we investigate the accuracy of
this method for changes in the degree of correlation
and the size of the pool of processes.

Simulation study for estimation error

We conduct a simulation study to investigate the MSE
of the estimator obtained from pool dependent data,
where the parameters of the marginal distribution are
estimated from observations using an empirical Bayes
approach but the correlation parameter is specified
through subjective judgement. This reflects the general
modelling situation where engineering experts identify
relevant data sets and provide a measure of their simi-
larity between these data sets. Specifically this is the
case for our motivating industry problem when we esti-
mated the reliability of a new variant engineering sys-
tem design.

After describing the simulation study design, we dis-
cuss the conditions that lead to under dispersed data
being generated in our simulations under dispersion
occurs when the variance of the Negative Binomial dis-
tribution used to model the distribution of the data in
the pool is less that the corresponding mean. Then we
present the results from the simulation study and pro-
vide an expression that relates the MSE to correlation
and pool size.

Table |. Parameter values controlled in the simulation study.

Input parameter Specified values

m 5, 10,20, 30, 40, 50, 60

a 0.5,1,5,10,20,30,40,50

p 0,0.1,0.2,0.3,...,0.7,0.8,0.9, |
Study design

We assume the correlation between two processes has
been specified by subjective judgement but that the
marginal Gamma distributions have been estimated
with observed data, hence an empirical Bayes inference
approach is adopted (e.g. following Quigley and
Walls'?). We assume a pool of HPPs each with a pair
of correlated observations. The purpose of the study is
to assess the impact of the correlation (p) and pool size
(m) upon the MSE of the estimator. As in the previous
section, the rates are assumed realised from a Gamma
distribution. But, without loss of generalisation, we set
the scale parameter to be B = 1. Moreover, we assume
the data are realised from the HPP given their rates. To
estimate the parameters of the marginal distribution
(a, B), following,”® we use a moment based approach to
obtain the following estimators:

U2
a=-—— 1
a A (19)
~ U
= 2
B (20)
where
R >on
U=" andw="1__y (21)
m m

A range of values are specified for the three para-
meters we wish to control in the simulation study corre-
lation, pool size, shape parameter of the marginal
distribution as shown in Table 1.

The algorithm for the study is as follows.

Treatment of underdispersion

Since we use a Negative Binomial distribution for the
data in the pool when sampling from Poisson-Gamma
model we risk encountering the problem of underdis-
persed data, as discussed in Kokonendji et al*
Underdispersion occurs if the variance of the Negative
Binomial distribution is smaller than its mean due to
sampling and compromises the moment estimator pro-
posed by Quigley et al.*

Figure 1 shows the probability of underdispersion
given the choice of pool size and shape parameter
across all simulation combinations in our study. The
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Figure 1. Probability of underdispersion for simulation
combinations of shape parameter and pool size.

plot shows that the highest chance of underdispersion
ocurring is for our smallest combination of shape para-
meter and pool size (o = 0.5, pool size = 5). We find
an area of low underdispersion for a =5, pool size
=30 and our plot suggests that a smaller pool size
matters more than a small value of «. If underdisper-
sion occurs then we have two options to address it;
either to discard the samples or to take the mean and
use it as our best estimate. We chose the latter option.

MSE results

We now consider the findings of the simulation study
to examine the impact of the shape parameter («), pool
size (m) and correlation (p) upon the MSE of the esti-
mator. First we investigate the relationship between the
MSE and the shape parameter («). We find this rela-
tionship to be linear. For example, Figure 2 shows the
MSE as a function of & when the pool size is m = 20
and for six settings of the true correlation (p) between 0
and 1. Although not shown here, similar patterns are
found for other input combinations. Evidence of a lin-
ear relationship between the MSE and « is not surpris-
ing given the analytical results shown in the Appendix
which allow comparison to the simulation study.

Next we examine the relationship between the ratio
of MSE/a with the correlation and the pool size. Figure
3 shows the MSE values computed for simulation com-
binations together with a model fitted to this relation-
ship. After investigating a variety of transformations to
this relationship, we obtain the following expression for
the best fitting model through a regression analysis:

MSE =« -(0.71 — 0.051n (m) — 0.17p?) (22)

Interestingly we find that the interaction terms between
p and m do not contribute to the model. Moreover, the

Parameter values controlled in the simulation study.

Algorithm I. Simplified simulation steps in code inner loop:

I: Set: a,m and p
2:forj=1:mdo

3: Simulate: A jj, Ay~T'(a, 15 p)
4: Simulate: [N}, Nyj]~Poisson(A ijt, A yt)
5: end for

6 ] momenﬁ)timator
7

: Calculate: [@, 3 [Ni., N2

tifa<0or <0 then > underdispersion

8 E[A|] — 2
9: else
10: for j=1:mdo
I 1: Calculate: E[A j|Ny;, Ny, &, B, p]
12: end for
13: end if
I14: for j=1:mdo
I5: Calculate: E[Aj|Nij, Ny, &, B, p] — A1 =ey;
16: end for
2.
17: Calculate: MSE = | =

Figure 2. Relationship between MSE and the prior shape
parameter for pool size =20 and selected values of the true
correlation.

impact of m and p are proportional to the value of the
shape parameter «.

While this regression model is defensible only for
the range of parameter values used in the simulation
study, we can build upon our earlier consideration of
the inference approaches to develop analytical results
to provide the limit of the MSE as m tends to infinity
and as p tends to one. Since an infinite pool size cor-
responds to the Bayesian estimator, and if the obser-
vations are perfectly correlated, then this implies the
sample size is doubled in relation to the case of no
correlation when processes are statistically indepen-
dent. Thus we find:
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0 5 10 20 30 40 50 60 .p
m

Figure 3. MSE at different values of shape parameter o for
settings of pool size and true correlation parameter with fitted
model of the form MSE = a - (co + ¢ In(m) + c2p?).

lim MSE = 3 (23)
p—1,m—oe

lim MSE= % (24)
p—0,m—x 2

The difference between these two limits, 0.17«, is
consistent with the coefficient for the correlation in the
regression model (equation (22)). However, the regres-
sion model does not have these limits. Consider the situ-
ation where pool size is m = 1, which is outside the
range investigated in the simulation study where the
minimum is m = 5. When m = 1 an empirical Bayes
approach is not appropriate because there is no pool of
processes from which to estimate the pool variability.
Under such circumstances where we have prior infor-
mation, then we would apply a classical approach as
described earlier, which would have the following limits:

- _a

pH111’12H1MSE— > (25)
lim MSE =« (26)

p—ro,lﬂ—?l

Therefore, extrapolating our regression model would
underestimate the MSE when processes are indepen-
dent and overestimate the MSE when processes are per-
fectly dependent.

Dependency mis-specification

Let us now investigate the implications of mis-
specifying the correlation parameter. We extend the
simulation study to explore situations where we assume
a correlation p = p 4 has been specified, say by an engi-
neering expert’s subjective assessment, when the true
correlation is actually p = p;. In the study we simulate

0 0.2 0.8 1

Figure 4. MSE when correlation is mis-specified, where p, is
assessed correlation, under selected true correlations p; and for
case of & =50, m=60.

data under the case p = p; then analyse it as if it was
specified as p = p, to mimic the parameter mis-specifi-
cation. We share a selection of results to illustrate key
findings.

Figure 4 shows the relationship between the MSE
and p, for situations where « =50, m =60 and
pr =0, 0.5 and 1. Regardless of the true correlation,
we find the same MSE when no dependency is specified
(p4 =0). However when p; =0 and p, increases
towards 1 then there is a nonlinear growth in the MSE.
Whereas for pr = 1 there is an almost linear decrease
in the MSE and for p; = 0.5 there is relatively little
change in the MSE as p, increases to 1. Similar pat-
terns are found for other combinations of pool size and
shape parameter.

By assuming a true « value, we can examine the
effects of mis-specifying the correlation under either
Bayesian inference or for the empirical Bayes asympto-
tic case when the pool size m tends to infinity. Figure 5
shows the relationship between the ratio MSE/a and
p4 for pr =0, 0.5 and 1 for three settings of the prior
shape parameter « = 0.5, 10 and 50. We find that the
limits agree with the findings discussed earlier (equa-
tions (23) and (24)). That is, for p, =0 then
MSE/a=0.5 and for p, = py = | then MSE/a = 1/3.
Figure 5 also shows the effects of varying & on MSE/a
for pr = 0. Further analysis (see Appendix) reveals the
following:

Ta

MSEPT =0p,=17 ? (27)

Therefore, incorporating data under the assumption it
is realised from the same HPP (i.e. p, = 1) when in fact
there is no correlation (p; = 0) can introduce consider-
able estimation error depending on the variability of
the pool of processes.
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Figure 5. MSE/a for assessed correlations, p, under selected
values for the true correlations, py, and prior shape and scale
parameters.

Conclusion and further work

Our study has investigated the effect of incorporating
data that is correlated with the event process of interest
to reduce estimation error. This requires the correlation
between processes to be assessed by subjective judge-
ment, which under many circumstances can require a
resource intensive elicitation exercise. Through our
study we have explicated the relationship between cor-
relation, pool size and MSE within the context of a
particular probability model to provide insight as to
whether gains from MSE reduction are worth the cost
of elicitation.

Empirical Bayes is a rich methodology offering the
opportunity to gain the benefits of error reduction
enjoyed by the Bayesian methodology but without the
same elicitation burden for subjective assessment with its
recognised associated biases. Empirical Bayes relies on
pooling relevant data together. It is well known that the
more homogeneous this data pool, then the stronger the
inference in the sense that the estimation error will be
smaller. One way of homogenising the pool is to assess
correlations between processes and so discriminate
between degrees of similarity for the events of interest.
For example, in our motivating industry case, the events
related to failures, the candidate pools were formed by
data on events experienced by earlier design generations
or on test for the new system design, and the correlation
was assessed by engineering experts via a structured elici-
tation. However, regardless of how well this elicitation
was constructed and managed there still lurks the possi-
bility that the dependency is mis-specified. This will be
the case more generally too when we develop risk and
reliability models with probabilistic dependencies.

Our study has explored the impact of corrupting the
inference through mis-specifying the correlation. We

have derived a formula to explicate the MSE in relation
to the parameters of the marginal distribution under
cases of assumed assessed and true correlations. A more
general derivation is shown in the Appendix. Such for-
mulae can inform analytical choices about the incor-
poration of data from perceived correlated processes by
aiding assessment of the consequences. These findings
can guide practical choices about the elicitation method
selected to support inference about the reliability of a
new system design or other applications where a multi-
variate Poisson-Gamma model is appropriate. Further,
the methodological approach we have adopted to assess
an understanding of mis-specification could be applica-
ble to examine the implications for estimation errors for
a wider class of probability models.

Is elicitation worth the effort? Rather anti-climati-
cally, our answer is it depends. It depends on how accu-
rate the results need to be so that the value of elicitation
can be assessed in relation to a fuller consideration of
the costs and benefits. Costs include not only the time
and effort to plan and conduct an elicitation but also
the cognitive burden to those providing subjective
assessments. For the particular context of our study,
the value depends on the potential of the candidate cor-
related processes. This potential is determined by both
the correlation as well as the characteristics of the mar-
ginal distribution, since the benefits of eliciting the
dependency are found to be proportional to the shape
parameter in our study for a multivariate Poisson-
Gamma model.

There are a number of limitations of our study even
within the context of HPPs. First, we had a specific
form to our multivariate prior distribution. It would be
interesting to investigate the sensitivity to the form of
this distribution to both the dependency structure and
the marginal distributions. Second, it would be interest-
ing to explore the impact of using data to assess the
correlation between processes to allow a full empirical
Bayes solution to be found. Thirdly, it would be of
value to develop a value of information framework to
coherently assess the decision as to whether more pre-
cise assessments of correlation is worth learning. This
latter point opens up questions in relation to probabil-
ity models with dependencies more generally and need
not be constrained to the particular model considered
here.
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Appendix

The general derivation of the Mean Squared Error
(MSE) is as follows:

MSE = E[(E, [A|Ni,N2] — A)?]
= En.n, [EPT[EPA [A|NI>N2]2
—2,,[AIN1, No] + A?|Ny, NS
= Ex, m|E,, [A|N1, NJ*]
—2Ew,.x, [EPA [A‘NlaNZ]EpT[A|Nl,N2]]
+ Eny v, [Ep, [A’|N1, o]

The moments under different assumptions are given by:

a+ N
E, = o[AIN1, N> = S (29)
_at Ny + N,
E,, —1[AIN1,Ny] = B EV (30)

E,, = o[A*|N\, Ny] =

a+ N+ (a+ Ny)
B+ 1y

(31)

E,, —1[A’|Ny, No]
_a+ N+ N+ (@+ N+ Ny
B+2)

(32)
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Epy~o[Ni] = By, ~o[N:] = (33)
E, —1[N)] = E, —1[N,] = % (34)
+ 2
Ey, ~o[N}] = E,, - o[N3] = % + “,T“ (35)
2
Ep = [N) = By [V = § “% (36)
a2
Ey = o[NiN2] = — (37)
o+ a2
EPT: 1[N1N2] = Bz (38)

Substituting the moments into the expression for the
MSE results in the following:

_*
BB+ 1)
= MSEPA =0,p7=0

= MSEp

MSE,, =0.p=1 =
(39)

This form is as we would expect because we are
ignoring the information from N, as we are assuming
independence.

Assuming dependence when the rates are indepen-
dent results in the following:

(B + 4B+ 2a

MSE,, =1,p,=0 = BB + 2)? (40)

Assuming dependence when the rates are dependent
results in the following:

a

BB +2)
= MSEp

MSE,, ~1,p,=1 = (1)

Again this is as we would expect because we are cor-
rectly using a Bayesian approach with two observations.
Setting 8 = 1 as in the main paper we obtain:

MSEy =0p,=18=17 5 (42)
Ta

MSEp, = 1.p,=0p=17 5 (43)
o

MSE, =1pp=18=17 3 (44)



