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Abstract: Inadequate climate data stations often make hydrological modelling a rather challenging
task in data-sparse regions. Gridded climate data can be used as an alternative; however, their ac-
curacy in replicating the climatology of the region of interest with low levels of uncertainty is im-
portant to water resource planning. This study utilised several performance metrics and multi-cri-
teria decision making to assess the performance of the widely used gridded precipitation and tem-
perature data against quality-controlled observed station records in the Lake Chad basin. The
study’s findings reveal that the products differ in their quality across the selected performance met-
rics, although they are especially promising with regards to temperature. However, there are some
inherent weaknesses in replicating the observed station data. Princeton University Global Meteor-
ological Forcing precipitation showed the worst performance, with Kling-Gupta efficiency of 0.13—
0.50, a mean modified index of agreement of 0.68, and a similarity coefficient SU = 0.365, relative to
other products with satisfactory performance across all stations. There were varying degrees of mis-
match in unidirectional precipitation and temperature trends, although they were satisfactory in
replicating the hydro-climatic information with a low level of uncertainty. Assessment based on
multi-criteria decision making revealed that the Climate Research Unit, Global Precipitation Clima-
tology Centre, and Climate Prediction Centre precipitation data and the Climate Research Unit and
Princeton University Global Meteorological Forcing temperature data exhibit better performance in
terms of similarity, and are recommended for application in hydrological impact studies—espe-
cially in the quantification of projected climate hazards and vulnerabilities for better water policy
decision making in the Lake Chad basin.

Keywords: gridded climate data; performance metrics; regional modelling; climate; Lake Chad
basin

1. Introduction

Accurate climate data are critical to the success of modelling processes in order to
reduce uncertainty and achieve better prediction in hydrological impact studies. Unfor-
tunately, reliable and long-term observed meteorological datasets are sparse and unavail-
able in some regions —especially sub-Saharan Africa and the Mediterranean —making hy-
drological studies a challenging task [1,2].
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Alternatively, high-resolution gridded data have been developed to address these
shortcomings; however, an understanding of their limitations in terms of observational
uncertainties and reliability is important in order to address the twin issues of choice of
dataset and suitability to represent basin features.

Some climate data products are more appropriate than others in their applications
for climate change impact studies across different regions; therefore, careful and adequate
assessment of their strengths and limitations is required in order to provide guidance for
future climate and hydrological studies —especially in data-sparse basins. An accurate hy-
dro-climatic impact study requires climate data at high temporal and spatial resolutions.
The most accurate measurement devices are rain gauges, and although these are often
situated on land and in populated areas for ease of measurement [3], there are a limited
number of ground-based rain gauge stations in most parts of the world for effective and
efficient hydro-climatic studies with reduced uncertainty in spatial climate prediction.
However, weather station records are typically site-specific, while most hydrological
studies in environmental sciences research require aerial observations of climate data in
order to achieve accurate modelling processes with minimal uncertainty in impact studies
[4].

Climate data have been seen to be an important component of hydrologic cycle anal-
ysis over time and space. The knowledge and understanding of their spatiotemporal dy-
namics are essential, and provide useful information for their practical applications in the
field of agriculture, aquaculture, water resource and river basin management, and hazard
and flood disaster warnings and management [5,6].

Climate and hydrological studies require complete and reliable rainfall and temper-
ature records at good spatial and temporal resolutions [7]. Unfortunately, climate records
from various databases contain gaps or missing data points due to systematic errors,
which are prevalent in the Mediterranean and sub-Saharan African countries, making hy-
drological studies difficult [7-9]. Several gridded climate data developed by various mod-
elling centres are used as alternatives, owing to their reliability, and are generated from
the observed climate station data after quality control, with enhanced reliability analysis
and long-term temporal and spatial coverage [10].

In a hydro-climatic studies, the choice of gridded data for the process of bias correc-
tion of general circulation models in data-sparse regions indicates an essential procedure
for climate change impact assessment studies [11]. However, the choice of reference da-
taset that is available in either station data, or gridded products derived from observations
[12,13], reanalysis data [14-16], or remote sensing data [17,18], is critical in the overall
uncertainty associated with projected climate change impact studies.

These datasets form the primary input in hydrological modelling studies and climate
change impact studies for the accurate assessment of hydrological variables such as
streamflow, runoff, soil moisture, evapotranspiration, etc., in order to manage hydro-
power operations, irrigation scheduling, and early warning systems for landslides and
changes in future water availability for climate change and basin hydrological cycle as-
sessment [19].

A study conducted in Africa showed varying degrees of spatial mismatch between
observed weather stations and reanalysis data [20]. The techniques and efforts in the anal-
ysis vary based on temporal coverage, climate variables involved, and the region of inter-
est [21]. However, gridded and reanalysis data are being updated due to advances in the
understanding of climate science over time, and detailed evaluation of their performance
at the catchment scale in Africa is rarely found in literature, although this may be at-
tributed to limited availability of reliable long-term climate records, expertise, and ease of
access to data [22,23].

Studies have shown that high-resolution gridded data have been developed to pro-
vide valuable information on disaster management, initialisation and validation of nu-
merical models, and resolving the diurnal global cycle of precipitation [24,25]. There are
many gridded data products available at different timescales (hourly, daily, and monthly)
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with a finer resolution of 0.5° x 0.5°, which can provide insight that relates (but is not
limited) to a model forecast of hydrological cycles, climate change trend analysis, climate
downscaling, etc. [13,26-34].

The downside in the use of gridded and reanalysis climate data lies in the fact that
gridded climate data are a combination of observed station data and quality-controlled
statistical interpolation that could result in the attenuation of local climate signals, while
reanalysis data are model-based forecasts that require parameterisation of the model,
good assimilation technique, and high-quality observation [21,35,36].

Gridded climate products are known to differ in their source, spatial and temporal
resolutions, domain size (global coverage), and available timescales, and also exhibit dif-
ferent error bands due to interpolation procedures and considerable differences in general
climatology, which are well known and acknowledged [12,37-39]. The choice and selec-
tion of reference datasets at the catchment scale should be based on observational uncer-
tainty and purpose via critical analysis of the gridded data products. The development
and application of gridded climate data is growing rapidly, especially due to the advances
in knowledge of their spatiotemporal resolution, latency, and reliability. However, the
uncertainty associated with their application across local and regional catchments is still
a cause for concern, and has led to some studies related to the ability of the gridded data
to replicate or mimic reliable but sparse ground-based data across the globe [40-47].

Furthermore, the performance of the gridded data is predicated on using individual
or combined statistical metrics to replicate some particular characteristics of the observed
data, and often exhibits contradictory results, making the decision making difficult
[6,48,49]. It has been posited that some gridded data have proven to be appropriate com-
pared to others in specific applications and in certain regions around the world [50], and
a single statistical metric cannot justify the performance or suitability of a particular grid-
ded dataset. Therefore, it is important to use various metrics to obtain an ideal solution,
based on optimal performance across all metrics,especially in data-sparse regions—for
prediction efficiency [49,51].

The objective of this study was to employ multi-criteria decision making to assess the
performance of five widely used and recently updated gridded precipitation datasets and
four temperature datasets in replicating the total and average monthly precipitation and
temperature of available gauge-based records in the Lake Chad hydrological basin. This
study was necessary to provide guidance on the choice of reference dataset(s) to be
adopted for future research in the basin, depending on performance and purpose in hy-
dro-climatic studies, in order to reduce uncertainty in predictions as well as computa-
tional time and resource costs.

Furthermore, the choice of the gridded dataset(s) in previous climate studies found
in the literature on the Lake Chad basin, for example [52-55], has been based on their
popularity and usage in other basins, without a proper justification of their suitability
compared to other available products for improving the reliability of predictions and re-
ducing model biases to provide an accurate representation of basin-scale hydrological fea-
tures. Additionally, some of the products are only available in monthly time steps, which
may not be suitable for downscaling of GCMs with daily time steps as input requirements
in some hydrological models and climate change impact studies.

This study employs entropy-based symmetric uncertainty (SU) [56]—a machine
learning approach that has been found to be an efficient tool for the assessment of agree-
ment in data that measure the shapes and patterns of data sequences via the concept of
mutual information theory, by comparing the similarity between two long time-series cli-
mate datasets, and has found its application in various fields [10,57]. The benefit of this
method is that it does not depend on the data distribution, unlike the statistical metrics
used in other studies [32,40,57]. Four statistical metrics were used in this study —namely,
Taylor diagrams, modified index of agreement (md), Kling-Gupta efficiency (KGE), and
normalised root-mean-square error (NRMSE) —and then finally trend analysis of the pre-
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cipitation and temperature data at the annual and seasonal scales of the gridded and ob-
served station records was compared for mean variability and temporal homogeneity
across the basin.

2. Study Area and Data
2.1. Study Area

The Lake Chad basin is one of the largest endorheic basins in the world, and occupies
an estimated area of ~2,500,000 km?—approximately 8% of Africa [58,59]. The basin cuts
across the entirety or part of Algeria, Cameroon, the Central African Republic, Chad,
Libya, Niger, Nigeria, and Sudan in Central Africa. The basin is geographically located at
latitudes of 5.2°-25.3° N and longitudes of 6.9°-24.5° E, right at the transition zone of the
Sahara region and the tropics of the Sudano-Sahelian region of West Africa [60], (Figure
1).

The basin is characterised by a vast and shallow freshwater lake located at its centre,
with inflows from Chari and Logone rivers (~90-95%) into the southern pool, the Yobe
and Komadugu rivers (~2.5-5%) in the western region, which enters the lake through the
northern pool [61-63], and other minor rivers such as the Gubio, Ngadda, Yedseram, and
El Beid, which supplied only ~1-2% inflow to the lake through the southwestern part of
the basin between 1961 and 2013 [64]. The basin serves as the main source of fresh water
that supports livelihoods across pastoral land, agricultural land, and fish farming [65],
with irrigation agriculture as the major user of the resource that supports a majority
(~60%) of the population [66].

The basin is divided into several climatic zones, namely, the Saharan zone located in
the north of the basin; the Sahelo-Saharan zone located in the central part of the basin,
which covers the north of Diffa, Niger, and Lake Chad; the Sudano-Sahelian zone, which
covers N'Djamena in the Chad Republic and the northern part of Cameroon and Nigeria;
and the Sudano-Guinean zone located in the south, which covers the south of Chad and
the Central African Republic, with annual precipitation of < 100 mm, 100-400 mm, 400-
600 mm, and 600-1500 mm, respectively. The average annual temperature in the basin
ranges from 35-40 °C in the northern part of the basin to as low as 26.5 °C in the southern
part [52], characterised by hot and dry, wet and dry, and cool weather during March—
June, June-October, and November-February, respectively [67].

The basin is located in a region that is characterised as having little relief, no surface
outlets, and a spatial extent that is quite sensitive to climatic variability; the elevation of
the basin ranges from -330 m to 3446 m (Figure 1). However, according to [68,69], the
basin is a relatively flat area with an average slope of <1.3%, except for some local hills,
plateaus, and mountains in the southern and northern parts of the basin.
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Figure 1. Map of the Lake Chad basin showing elevation, Lake Chad, climate stations, major river networks, and sub-
basins.

2.2. Observational Data and Sources

The observed climate data used in this study were acquired from a number of
sources; for example, 12 average monthly observed temperature datasets were obtained
from the Global Historical Climatology Network’s monthly temperature dataset, version
4 (Table 1) (http://www.ncdc.noaa.gov/ghcnm/v4.php, accessed on 2 March 2020 [68],
while 11 total monthly observed precipitation datasets were obtained from the Lake Chad
Basin Commission, and can be found as supplementary datasets online in [52]. We also
used 2 station records from the Nigerian Meteorological Agency (NIMET) and the NOAA
Global Historical Climatology Network Daily (GHCN-D) version 3.23
http://www.ncdc.noaa.gov/pub/data/ghcn/daily (Table 2).
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The observed station data considered in this study were carefully selected based on
the condition of having fewer missing records and an acceptable temporal span for hydro-
climatic analysis in order to achieve effective and reliable predictions. The observed miss-
ing climate data records were filled using the multivariate imputation by chained equa-
tions (MICE) package, due to its ability to impute continuous two-level data and maintain
consistency between imputations while employing passive imputation [70].

The data were checked for 100% completeness after imputation and assessed for com-
parison using a double-mass curve approach for subjective evaluation of heterogeneity in
the datasets [71], and finally subjected to absolute homogeneity tests —namely, the stand-
ard normal homogeneity test (SNHT), Pettitt test, and Von Neumann ratio test [72,73].

The double-mass curve showed an almost straight line at all stations without break-
points (Figure 2a,b), and absolute homogeneity test results were all less than the critical
values. The null hypothesis of all of the station data—that the climate data were homoge-
nous at a 95% level of confidence—cannot be rejected; therefore, the quality-controlled
data for precipitation and temperature are suitable for performance evaluation of the grid-
ded climate data.

Table 1. List of reliable observed temperature stations’ locations and temporal spans in the Lake
Chad basin.

S/No Station Name Data Range Missing Data (%)
1 Bilma 1950-2019 8.2
2 Bossangoa 1954-2016 35.0
3 Bouar 1951-2019 34.7
4 Geneina 1951-2019 11.5
5 Maiduguri 1910-2012 14.0
6 Maina sorda 1951-2019 11.5
7 Moundou 1951-2016 34.3
8 N’Djamena 1951-2019 26.3
9 Ngaoundere 1951-2019 35.2
10 Nguigni 1953-2019 5.8
11 Sahr 1941-2018 39.3
12 Zinder 1923-2019 3.5

Source: [74] http://www.ncdc.noaa.gov/ghcnm/v4.php.

Table 2. List of reliable observed precipitation stations’ locations and temporal spans in the Lake
Chad basin.

S/No Station Name Data Range Missing Data (%)
1 Abeche 1985-2015 0.0
2 Banda 1950-2013 0.0
3 Bongor 1950-2013 0.0
4 Bossangoa 1950-2013 0.0
5 Doba 19502013 0.0
6 Maiduguri 1979-2010 0.0
7 Moundou 1985-2015 0.0
8 N’Djamena 1985-2013 0.0
9 Nguigni 1968-2020 15.3
10 Potiskum 1980-2010 0.0
11 Sahr 1950-2013 0.0
12 Samry-1 1950-2013 0.0
13 Sategui Deressia 1950-2013 0.0
14 Tsanaga 1950-2013 0.0

Zinder 1906-2020 17.1

—_
a1
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Source: ((LCBC) [54], NIMET, GHCN-D http://www.ncdc.noaa.gov/pub/data/ghcn/daily.
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Figure 2. Double-mass curves for Lake Chad basin. (a): Cumulative annual precipitation at all sta-
tions against base station. (b): Cumulative annual temperature at all stations against base station.

2.3. Gridded Data and Sources

This study analysed five gridded precipitation and four temperature datasets, from
the University of East Anglia, Climate Research Unit CRU TS V4.04, German Weather
Service, Global Precipitation Climatology Centre (GPCC) v.2018 (precipitation only), US
Climate Prediction Centre (CPC), Princeton University Global Meteorological Forcing
(PGF) v.2, and University of Delaware (UDEL) V5.01. Table 3 summarises the climatic
variables, temporal and spatial resolution, temporal span, and sources of the gridded data.
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Table 3. Summary of gridded datasets considered in this study.

T 1 ial
Data Product  Variable(s) empoT‘a Data Span Spatla. Source
Resolution Resolution
Precipitation
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html,
CPC P, Tmax, Tmin  Daily  1979-2020 0.50 acessed on 5 June 2020
and temperature
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html,
acessed on 5 June 2020
CRU TS v.4.04 P, Tmax, Tmin Monthly  1901-2016 0.50 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04, acessed on 5 June 2020
PGF v.2 P, Tmax, Tmin  Daily 1901-2012 0.5 http://hydrology.princeton.edu/data.pgf.php, acessed on 5 June 2020
GPCC v.2018 P Monthly ~ 1901-2016 0.50 http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html, acessed on 5
June 2020
UDEL V5.01 P Tove Monthly ~ 1900-2017 0.50 https://psl.noaa.gov/data/gridded/data.UDEL_AirT_Precip.html, acessed
on 5 June 2020

The gridded datasets were developed from different modelling centres using differ-
ent interpolation techniques; for example, CPC gridded data were developed via optimal
interpolation of station- or gauge-based records of GTS [25]; CRU data were developed
via angular distance weighting of monthly observed station data from the World Meteor-
ological Organization, National Oceanic and Atmospheric Administration (NOAA) data-
base, and climate records from national meteorological agencies across the globe [75]; the
PGF dataset was developed based on findings from NCEP-NCAR reanalysis and other
global data via bilinear interpolation from their native gridded scale [76]; GPCC datasets
were developed by the combination of monthly gauged and quality-controlled records
from 7000 stations around the world, along with GTS synoptic weather reports, and inter-
polated to regular grids using an ordinary point Kriging method [13], while UDEL pre-
cipitation and temperature data were interpolated using shepherd algorithms for grid-
based data from various sources—such as GHCN2, NCAR, GHCN-D, GHCN-monthly
version 3, and records from national meteorological agencies [77,78].

3. Research Methodology

The performance of the gauge-based gridded precipitation and temperature data was
evaluated by multiple approaches—including machine learning, filter-based symmetric
uncertainty, statistical metrics (modified index of agreement, Kling—Gupta efficiency, nor-
malised root-mean-square error, and Taylor diagrams), and time-series analysis of trends
exhibited at annual and seasonal timescales—to assess the gridded data in terms of their
reliability in mimicking the observed data across all of the stations in the study area for
the period 1979-2012. The gridded datasets were sourced from the websites of the provid-
ers, as shown in Table 3, extracted using the raster and ncdf4 R packages, and interpolated
to the observed data station resolution using the inverse distance weighting method. The
detailed methodology of the study is outlined below.

3.1. Symmetric Uncertainty

Symmetric uncertainty is an entropy-based machine learning algorithm (filter
method) used in assessing the pairwise agreement between long time-series data. This
method utilises information entropy via the concept of mutual information (MI), which
measures the commonality between two variables. For example, if p(x) and p(y) are
considered probability density functions of the observed variable (x) and the gridded
variable (y), and p(x,y) represents the mutual probability distribution functions of
x and y, then mutual information can be evaluated as follows:

p(x,y)

P00 @

MI(x,y) = p(x,y) log
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The mutual information shown in Equation (1) can also be evaluated as the difference
between the mutual entropy of two time-series variables, and in this case, taking the ob-
served data as H(x), the gridded data as H(y), and the mutual entropy of the observed
and gridded data time series as H(y, x), MI can be written as:

MI(x,y) = H(y) —H(x,y) )

Thus, H(y) and H(y,x) indicate the amount of uncertainty inherent in the gridded
data, and join the gridded and observed probability density functions of the precipitation
and temperature time series data. The two independent variables in Equation (2) can be
expressed as:

p(x.y)
p()xp(¥) ©)

H(x,y) = Yo p(x,y) log

HOy) = — f p(y) log(p(y))dx (4)

The entropy estimated in Equation (3) implies the extent of mutual information be-
tween the gridded and observed precipitation/temperature data. The mutual information
tends to be zero in the absence of common information, and has a value of unity when the
model data series can depict the complete information associated with the observed data
series. However, biases are inherent when using time series with larger values if there are
less similar values between the two variables [79]; this drawback can be addressed
through the concept of SU, by dividing the value of mutual information gain and the sum
of the entropies of y and x, as shown in Equation (5):

Mi(x,y)

SU(X,y)ZZ X m )

The value of symmetric uncertainty ranges from 0 to 1, where 0 indicates poor simi-
larity and 1 indicates high similarity between the gridded and observed precipitation/tem-
perature time-series data [80]. This study utilised the FSelector package in R software [81]
to assess the similarity between the monthly gridded and observed precipitation/temper-
ature data (Table 4). Figure 3 shows the distribution of gridded precipitation and temper-
ature data of all available stations within the study area.

Table 4. Similarity score of gridded precipitation and temperature against observed datasets esti-
mated by SU.

Rank  Precipitation Dataset SU Temperature Dataset sU
1st CRU 0.395 PGF 0.765
2nd GPCC 0.387 CRU 0.725
3rd UDEL 0.369 UDEL 0.722
4th CPC 0.367 CPC 0.709

5th PGF 0.365
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Figure 3. Boxplot of distribution of the similarity coefficients across the Lake Chad basin (a): variation of similarity coeffi-
cient of gridded precipitation against observed station data. (b): Variation of similarity coefficient of gridded temperature
against observed station data.

3.2. Statistical Metrics

In this study, four statistical metrics were used to evaluate the ability of the selected
monthly gridded precipitation and temperature datasets to replicate the observed station
time series. Further details of the metrics are outlined below.

3.2.1. Kling-Gupta Efficiency

This is a metric that highlights three components —namely, correlation, bias, and ra-
tio of variances between gridded and observed time series data—as proposed in [82]; the
value of KGE varies between 0 and 1, which indicate no agreement and perfect agreement
between the gridded (xs) and observed (xobs) data, respectively. The coefficient can be
computed as given in Equation (6):

2 o 2
KGE =1 — (y—1)2+(1—”g)+(ﬂ> (6)
Hobs Uobs/l'lobs

3.2.2. Modified Index of Agreement

This is a statistical metric that evaluates the standardised measure of the degree of
model prediction error. This metric was modified from its original form proposed in [83],
which has shown to be less sensitive to extreme values; it has a value that varies between
0 and 1, indicating no agreement and perfect agreement between the gridded (xg) and
observed (xobs) data, respectively. The coefficient can be computed as given in Equation

7):
Z?:l(xobs,i - xg,i)L

Z?=1( | xg,i - m' + | Xobs,i — Xobs | )L

@)

3.2.3. Normalised Root-Mean-Square Error

This is a statistical metric that facilitates and summarises the magnitude of errors
between model (xg) and observed (xos) data with different scales, and is defined by the
ratio of root-mean-square error and the standard deviation of the data. This metric is con-
sidered to be a great measure of precision, and the predictive ability of the model is con-
sidered to be accurate with values closer to zero [84,85]. The value of NRMSE can be com-
puted by the following equation:
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o5t =]
NRMSE — o Di=1 1xg,i Xobs,i ®)
n f=1%g,i

3.2.4. Taylor Diagrams

These are a graphical representation that summarise proximity or similarity between
modelled and observed long time-series data. The similarity is quantified based on their
correlation, centred root-mean-square difference, and the amplitude of variations (stand-
ard deviations). These models are quite useful in gauging the relative performance of
models compared to the observed data [86,87].

3.2.5. Trend Analysis

In this study, trend analysis was carried out using the nonparametric Mann-Kendall
or modified Mann-Kendall tests [88,89], where significant autocorrelation was observed
in the time-series data, trend-free pre-whitening was applied to correct the anomaly [90],
and Sen'’s slope estimator was used to calculate the statistically significantly increasing or
decreasing trends and the magnitude of the trends. The Mann-Kendall statistics are given

as:
§ = TR Xk sen(x — xi) ©)
where x; and x; are sequential data values for n time series. The sgn of the series is de-
fined as:
1if x; > x;
sgn(x; —x) = { 0if x5 = x, (10)
-1 lf x] < Xy

The mean E(S), variance V(5), and the Z statistics can be computed as:
E(S)=0 (11)
V() = ={n(n—1)@n+5) - I, t:(t; — D(2t; +5)} (12)

I(iforS >0
JV(S)
Z=<0 forS=0 (13)

| S+1
\—forS <0

VvV ()

In the equation above, p represents the number of tied groups in the series, and each
of the tied groups is indicated by t;. All positive and negative values of the Z statistics
represent statistically increasing and decreasing trends in the time-series data.

The magnitude of the detected trends in the time-series data was computed by the
nonparametric Sen’s slope estimator, because this method is robust against outliers in
time-series analysis, as given below:

[ X .
SS=medLan[j_i ] foralli<j (14)

where x; represents the value of the data at time step i, and x; for timestep j.
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4. Results
4.1. Assessment of Gridded Data Using Symmetric Uncertainty

The performance of the gridded monthly total precipitation and average temperature
data for the period 1979-2012 was individually assessed at each station location after be-
ing downloaded at the station resolutions. The SU score obtained at the Zinder stations
located at latitude 13.8° N, longitude 8.9° E is given in Table 4. The results from the table
show that CRU and PGF were found to have the highest estimated similarity scores of
precipitation and temperature across the station. However, there were inconsistencies in
the performance of the gridded data at different stations in replicating the observed data.
The CRU, GPCC, and PGF datasets showed a better performance at 53.3%, 33.3%, and
13.3%, respectively, while CRU, PGF, and UDEL also showed a better performance, at
41.7%, 33.3, and 25.0% of the precipitation and temperature stations in the study area,
respectively.

The observed precipitation stations located in the Sudano-Guinean zone of the ba-
sin—for example, Bossangoa, Samry-I, Sategui, Tsanaga, Doha, and Moundou (SU 2
0.478) —were shown to have a better similarity coefficient compared to stations located in
the Sahelo-Saharan zone, e.g., Nguigni, Zinder (SU < 0.395), etc. However, the tempera-
ture stations located in the Saharan and Sahelo-Saharan zones (i.e., Bilma, Maina-Sorda,
Nguigni, and Zinder) performed better in simulating the observed temperature (SU >
0.692), while the worst performance in the study area was in the Sudano-Guinean zone
(SU £ 0.483). The consistency in the precipitation data in the Sudano-Guinean zone may
be attributed to the more numerous and accurate station records in the southern zone of
the basin, as well as the reduction and abandonment of ground-based gauged data and
errors in taking records resulting in systematic errors in the northern part of the basin,
due to migration, political instability, etc.

The mean SU of the gridded precipitation across the stations in the basin for the CPC,
CRU, GPCC, PGF, and UDEL datasets was 0.448, 0.504, 0.512, 0.472, and 0.480, respec-
tively, while the SU of the gridded temperature for the CPC, CRU, PGF, and UDEL da-
tasets was 0.482, 0.532, 0.523, and 0.519, respectively. These results show that there is a
slight variation in performance across the gridded datasets assessed in this study. Figure
3 shows the distribution of the similarity coefficients of the datasets across the stations
considered.

4.2. Statistical Metric Efficiency

The results of the statistical metrics of the gridded precipitation and temperature data
considered in this study for the period 1979-2012 show that there is a good agreement
between the gridded precipitation datasets and the observed data across the stations
within the basin, with the mean KGE and md coefficient in the range of ~0.7 and above
(Table 5) for the CRU, GPCC, CPC, and UDEL datasets, but not for the PGF data, which
performed the worst across the stations, with a mean KGE and md coefficient of 0.33 and
0.68, respectively. The results of NRMSE were consistent with all of the gridded datasets,
but had a higher value for the PGF data, with a mean value 1.07. However, the results for
the temperature datasets showed a better performance or mean similarity coefficient of all
of the gridded data products, with values generally above 0.85 for both KGE and md (Ta-
ble 6), along with almost similar NRMSE across the stations in the study area.

Table 5. Summary of the performance of statistical metrics of gridded precipitation data against observed data in the Lake

Chad basin.
TOTAL MONTHLY PRECIPITATION
STATION KGE md NRMSE
CPC CRU GPCC PGF UDEL CPC CRU GPCC PGF UDEL CPC CRU GPCC PGF UDEL
Abeche 0.64 0.63 0.52 0.24 0.71 0.89 0.87 0.85 0.62 0.91 1.058 1.272 1.237 1.308 1.093
Banda 0.84 0.84 0.80 0.44 0.87 093 0.96 0.93 0.73 0.95 0.615 0.455 0.639 0.926 0.508
Bongor 0.71 0.83 0.78 0.32 0.81 0.89 095 0.96 0.67 0.95 0.706 0.527 0.468 1.073 0.505
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Bossangoa 080 094 087 038 0.89 094 098 097 0.69 0.97 0.409 0.244 0.312 0.818 0.298
Doba 075 077 076 031 0.78 094 096 096 0.70 0.96 0.481 0405 0.394 0911 0.401
Maiduguri 070 083 085 037 0.44 084 093 093 0.66 0.90 0.949 0.668 0.701 1.188 0.888
Moundou 086 091 094 041 0.94 095 09 097 071 0.97 0513 0.443 0403 0.979 0.392
N’Djamena 072 066 061 027 0.73 090 086 086 0.62 0.90 0.827 0928 091 1.273 0.79
Nguigni 048 045 043 0.13 0.47 082 0.8 082 057 0.81 1.097 1.034 1.066 1.421 1.095
Potiskum 084 067 062 026 0.69 075 090 088 0.62 0.91 1.045 0728 0.795 1.209 0.711
Sahr 058 0.65 053 023 0.60 083 0.86 080 0.65 0.83 0.826 0.711 0.901 0.965 0.802
Samry-I 074 068 078 050 0.72 089 095 096 0.81 0.96 0.908 0.706 0.601 0.944 0.617
Sategui Deressia 0.70 0.60  0.64 049 0.51 091 090 091 0.86 0.89 0.777 0.893 0.81 0.706 0.975
Tsanaga 081 0.87 090 0.40 0.67 091 09 099 070 0.96 0.704 0.503 0.293 1.069 0.549
Zinder 064 063 052 024 0.71 089 087 085 0.62 0.91 0.837 0.899 0.918 1.248 0.772
Mean Value 0.72 0.73 0.70 0.33 0.70 0.89 0.92 0.91 0.68 0.92 0.78 0.69 0.70 1.07 0.69

Bold values indicate stations where gridded datasets have a better performance.

Table 6. Summary of the performance of statistical metrics of gridded temperature data against observed data in the Lake

Chad basin.
AVERAGE MONTHLY TEMPERATURE
STATION KGE md NRMSE
CPC CRU PGF UDEL CPC CRU PGF UDEL CPC CRU PGF UDEL
Bilma 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.038 0.041 0.042 0.038
Bossangoa 0.81 0.80 0.83 0.86 0.90 0.91 0.92 0.91 0.037 0.035 0.033 0.038
Bouar 0.77 0.73 0.74 0.85 0.83 0.71 0.67 0.89 0.054 0.08 0.091 0.043
Geneina 0.81 0.82 0.84 0.93 0.88 0.93 0.93 0.97 0.076 0.06 0.057 0.043
Maiduguri 0.77 0.76 0.75 0.49 0.92 0.93 0.92 0.68 0.064 0.059 0.063 0.12
Maina Sorda 0.97 0.97 0.96 0.97 0.99 0.99 0.99 0.99 0.033 0.026 0.026 0.026
Moundou 0.83 0.85 0.84 0.78 0.90 0.92 0.90 0.84 0.052 0.046 0.054 0.074
N’Djamena 0.92 0.94 0.94 0.93 0.96 0.97 0.96 0.97 0.047 0.04 0.045 0.042
Ngaoundere 0.70 0.75 0.73 0.73 0.84 0.85 0.81 0.84 0.052 0.051 0.061 0.053
Nguigni 0.98 0.95 0.96 0.98 0.99 0.99 0.99 0.99 0.031 0.024 0.025 0.024
Sahr 0.87 0.90 0.89 0.86 091 0.95 0.93 0.92 0.046 0.031 0.039 0.045
Zinder 0.99 0.99 0.99 0.98 1.00 1.00 1.00 0.99 0.019 0.017 0.018 0.022
Mean value 0.87 0.87 0.87 0.86 0.93 0.93 0.92 0.92 0.046 0.043 0.046 0.047

Bold values indicate stations where the gridded dataset has a better performance.

The results from Tables 5 and 6 reveal that the CPC, CRU, GPCC, and UDEL gridded
precipitation datasets show better performance, by approximately 20%, 20%, 26.7%, and
40%, respectively, in terms of KGE, and 13.3%, 40%, 46.7%, and 46.7%, respectively, in
terms of md, in all of the stations. The temperature data showed a better similarity with
the observed station data, with CPC, CRU, PGF, and UDEL recording a better perfor-
mance by 33.3%, 50%, 25%, and 50%, respectively, in terms of KGE, and 33.3%, 75%, 41.7%,
and 50%, respectively, in terms of md. The metrics used in this study are presented using
boxplots in Figure 4, revealing a consistent variation in their ability to replicate the ob-
served precipitation and temperature data—except for the PGF gridded precipitation
data, which may pose a large uncertainty in the prediction of climate variables. This may
be due in part to the interpolation technique, source, and quality of the observed data used
in its development, covering the entire Lake Chad basin.
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Figure 4. Boxplot of statistical metrics in the Lake Chad basin. (a): KGE and md of gridded precipitation against observed
station data. (b): KGE and md of gridded temperature against observed station data.

The similarity or agreement between the gridded precipitation/temperature datasets
and the observed data for the period 1979-2012 at annual, pre-monsoon, and monsoon
timescales was evaluated using Taylor diagrams (Figure 5). The results indicate that the
polar plots lie in the first quadrant, revealing that all correlation values are positive. The
results also reveal a notable variability in normalised standard deviation in the gridded
precipitation products in the three timescales. The GPCC and CPC datasets recorded the
best performance, with a Pearson’s correlation coefficient greater than 0.5, while PGF had
the worst performance due to wider variability and a lower Pearson’s correlation coeffi-
cient across the annual and seasonal timescales. However, PGF data showed a better per-
formance in the temperature datasets, with normalised standard deviation (variability)
~1.0 in the annual and monsoon season timescales, as well as a better correlation with the
observed data. Although the gridded temperature datasets in general exhibited better per-
formance with low observational uncertainty in replicating the observed data at the an-
nual timescale relatively well compared to the monsoon and pre-monsoon seasons, the
differences in their performance were apparent; however, a seemingly similar root-mean-
square difference was observed in the precipitation datasets at all timescales.
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Figure 5. Taylor diagrams for time series data (1979 — 2012). (a): Annual precipitation of gridded and observed station data
(b): Annual temperature of gridded against observed station data. (c): Monsoon precipitation of gridded against observed
station data. (d): Monsoon temperature of gridded against observed station data. (e): Premonsoon precipitation of gridded
against observed station data. (f): Premonsoon temperature of gridded against observed station data. Blue line is Normal-
ized station deviation, Green line is Pearson correlation coefficient and Red line is Normalized root mean square error.

4.3. Trend Analysis of Gridded Data

The trends of precipitation and temperature were evaluated at the annual and mon-
soon season timescales for the gridded datasets and observed station records for the pe-
riod 1979-2012. For the sake of clarity, the performance of the datasets was assessed based
on statistically increasing trends, decreasing trends, or no trends—arising due to limited
station records—to ease the complexity of analysis. The Z-statistic values (Tables 7-10)
showed the unidirectional trends of precipitation and temperature at the annual and mon-
soon season timescales, respectively. The results revealed that 20% and 26.7% of the ob-
served station data showed a statistically decreasing trend of precipitation at the annual
and monsoon season timescales, respectively, while 8.3% and 33.3% of the observed sta-
tion data showed a statistically decreasing trend of temperature at the annual and mon-
soon season timescales, respectively. The stations where the analysis recorded a declining
precipitation trend — for example, Maiduguri, Nguigni, and Bongor —were situated in the
semi-arid and Sudano zones. Declining temperature trends were observed at Sahr, Moun-
dou, N'Djamena, and Zinder in the Sudano-Sahelian and Guinean zones, while other sta-
tions indicated statistically increasing unidirectional trends in the study area, consistent
with the findings of [91-93]. However, the results revealed a variable degree of mismatch
between the gridded and observed station records across the basin; for example, the CPC,
CRU, GPCC, PGF, and UDEL data showed 66.67%, 73.33%, 60.0%, 66.67% and 73.33%
agreement in unidirectional trends at the annual timescale, and 73.33%, 73.33%, 46.67%,
66.67%, and 66.67% agreement in unidirectional trends in the monsoon season, respec-
tively, against the observed data. The evaluated trends indicated that the CRU and CPC
datasets have the ability to replicate the observed station records with a higher degree of
agreement compared to other datasets. The temperature datasets showed a higher degree
of agreement in unidirectional trends against the station records, with fairly similar re-
sults—for example, CRU, PGF and UDEL showed a better performance at the annual
(91.67%) and monsoon (66.67%) season timescales. However, the CRU gridded datasets
showed strong increasing trends, and a possible tendency to overestimate the temperature
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of the basin. Therefore, the choice of the dataset adopted for hydro-climatic studies is crit-
ical for accurate assessment in order to reduce uncertainty in the prediction of hydrologi-
cal variables in modelling studies and achieve good policy planning in water resource
management.

Table 7. Mann-Kendall Z-statistics values of linear trends in annual gridded and observed precipitation for the Lake Chad
basin (1979-2012).

Stations Precipitation Trend
OBSERVED CPC CRU GPCC PGF UDEL

Abeche -1.60 -0.85 2.59 1.96 2.23 2.43
Banda 2.02 0.15 1.07 2.05 0.00 1.10
Bongor -0.71 -1.63 1.17 0.15 1.42 1.63
Bossangoa 0.33 -0.82 0.60 -0.53 0.44 -0.53
Doba 0.16 -1.01 0.21 0.59 0.50 0.33
Maiduguri -2.19 0.79 2.25 2.16 2.45 -1.90
Moundou 0.69 0.26 1.21 0.18 1.01 0.34
N’Djamena 0.67 2.29 2.02 -0.29 1.42 2.54
Nguigni -0.20 0.71 2.31 0.92 2.02 2.31
Potiskum 1.82 1.51 2,51 0.19 1.96 1.28
Sahr 0.06 0.98 1.19 2.58 1.81 211
Samry-I 191 -1.57 1.16 0.15 1.63 1.63
Sategui D. 0.74 0.77 1.10 0.36 1.41 1.30
Tsanaga 1.13 0.27 1.39 1.75 1.69 1.39
Zinder 1.60 1.07 213 0.65 2.16 2.16
% Agreement - 66.67 73.33 60.00 66.67 73.33

Note: Highlighted bold values indicate significant trends.

Table 8. Mann-Kendall Z-statistics values of linear trends in monsoon season gridded and observed precipitation for the
Lake Chad basin (1979-2012).

Stations Precipitation Trend
OBSERVED CPC CRU GPCC PGF UDEL

Abeche -1.24 -0.38 0.24 1.68 2.39 2.07
Banda 1.07 1.17 0.50 1.07 -0.24 -0.27
Bongor -0.74 -0.95 1.51 -0.09 1.42 1.50
Bossangoa 0.01 -0.47 0.53 -0.92 0.12 -0.83
Doba 0.46 0.83 0.24 -0.06 0.71 0.53
Maiduguri -1.99 1.18 2.38 2.25 2.94 -1.80
Moundou 0.38 1.44 1.32 -0.14 1.24 0.34
N’Djamena 0.75 2.46 1.88 -0.08 1.51 2.42
Nguigni -0.47 0.53 2.16 0.62 1.96 2.25
Potiskum 1.40 1.70 2.69 0.54 2.22 1.28
Sahr 0.95 1.84 0.67 1.60 1.60 0.39
Samry-I 211 -0.95 1.51 -0.09 1.43 1.50
Sategui D. 0.36 1.33 1.90 0.24 2.16 0.85
Tsanaga 0.98 0.53 1.71 1.33 1.90 1.07
Zinder 1.10 1.39 2.08 0.62 2.11 1.96
% Agreement - 73.33 73.33 46.67 66.67 66.67

Note: Highlighted bold values indicate significant trends.
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Table 9. Mann-Kendall Z-statistics values of linear trends in annual gridded and observed temperature for the Lake Chad

basin (1979-2012).

Stations Temperature Trend

OBSERVED CPC CRU PGF UDEL
Bilma 3.21 3.18 4.28 3.33 3.39
Bossangoa 1.36 2.53 3.75 3.30 2.25
Bouar 0.50 2.58 3.43 2.65 1.90
Geneina 2.80 -1.79 2.46 3.21 2.00
Maiduguri 0.37 2.55 3.85 3.07 3.03
Maina S. 3.35 3.67 3.61 3.11 1.60
Moundou -0.37 2.65 3.49 3.30 3.86
N’Djamena 2.37 5.19 3.33 2.93 1.75
Ngaoundere 1.60 -0.02 3.64 3.05 3.83
Nguigni 2.99 2.96 3.42 2.95 2.03
Sahr 0.50 3.25 3.08 3.92 3.41
Zinder 2.76 2.92 3.73 3.14 3.83
% Agreement - 75.00 91.67 91.67 91.67

Note: Highlighted bold values indicate significant trends.

Table 10. Mann-Kendall Z-statistics values of linear trends in monsoon season gridded and observed temperature for the
Lake Chad basin (1979-2012).

Stations Temperature Trend

OBS CPC CRU PGF UDEL
Bilma 2.90 2.77 2.71 3.28 2.71
Bossangoa 1.46 1.29 3.33 3.46 1.45
Bouar 0.79 1.13 3.31 2.15 111
Geneina 1.41 -2.62 1.69 3.38 1.72
Maiduguri 1.59 0.78 2.57 1.45 2.21
Maina S. 1.60 1.53 1.89 0.92 0.47
Moundou -1.29 1.07 2.90 3.04 2.98
N’Djamena -0.45 3.27 2.61 2.02 0.62
Ngaoundere 0.50 -0.82 2.66 1.98 3.33
Nguigni 2.15 1.76 2.15 1.42 0.52
Sahr -0.82 0.77 3.25 3.31 1.66
Zinder -0.33 -0.50 1.41 0.62 217
% Agreement - 58.33 66.67 66.67 66.67

Note: Highlighted bold values indicate significant trends.

The results of Sen’s slope estimator for the trend analysis of the annual and monsoon
season timescales at a 95% level of confidence revealed that there were mismatches or
difficulties with the gridded precipitation and temperature datasets in reproducing a sim-
ilar magnitude of trends relative to the station records (Figures 6-9). For example, the
gridded datasets overestimated or underestimated the annual and monsoon season pre-
cipitation and temperature in most of the stations. However, the mismatch has been
acknowledged as one of the sources of uncertainty in modelling processes—although, in
this assessment, the median magnitude of the precipitation trends for CPC (1.200) and
GPCC (1.000), and of the temperature trends for CRU (0.0185) and CPC/UDEL (0.0075),
proved to be better than that of other datasets relative to the observed station data at the
annual and monsoon season timescales across the basin.
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Figure 6. Magnitude of linear trends in annual gridded and observed precipitation for the Lake Chad basin (1979-2012).

10

=)

E

)

ULh.lhjLuhLWLhﬂ

Magnitude of linear precipitation trend mm/yr

0
& I~ & & Q > o
o o & & . &90 s
_zv@ocg}‘ .o“.é“@"& ez’gvv
v ‘bq’%l&*&é&%@ % &5
-4
-6
-8

Stations

EOBSERVED
uCPC

uCRU
©“GPCC

= PGF
mUDEL

Figure 7. Magnitude of linear trends in monsoon season gridded and observed precipitation for the Lake Chad basin

(1979-2012).



Atmosphere 2021, 12, 1597 20 of 27

0.07

0.06
1=
=
® 005 # OBSERVED
E
= u CPC
S o004
g uCRU
=
’ﬂé 0.03 “ PGF
D
= 002 = UDEL
D
£
D
=
El
£ 0
§ § &S s & &

<b‘ SR é‘@ \29*% @“‘b oe? & o“ s < g
F M &

Stations

Figure 8. Magnitude of linear trends in annual gridded and observed temperature for the Lake Chad basin (1979-2012).

0.05

5 OBSERVED

0.035 uCPC

0.045

0.04

0.03 mw CRU
0.025 PGF
0.02 mUDEL
0.015

- Fl 1 I ||

) & N e}@ . ‘é\\ 5 &
% o o & & S ‘v S S S
) (bo%gb ¥ &b\b @% @o %&@ %Qgs& & Vv

(=1
(=3
S
W

Magnitude of linear temperature trend °C/yr

(=]

Stations

Figure 9. Magnitude of linear trends in monsoon season gridded and observed temperature for the Lake Chad basin (1979-
2012).

5. Discussion

The performance of widely used, updated, and recently available high-resolution
gridded precipitation and temperature datasets was assessed over the 15 available, qual-
ity-controlled, and reliable observed precipitation datasets and 12 temperature station rec-
ords across the Lake Chad basin. The study’s temporal span was set to be 1979-2012 for
consistency across all of the datasets, and met the requirements for a hydrological impact
study. The study adopted a 0.5° resolution dataset, and finally extracted and interpolated
the gridded dataset to station resolution using the inverse distance weighting method for
consistency, making it adequate for regional studies.
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In summary, the evaluated gridded climate datasets have proven to differ in their
performance across the selected metrics, although the performance exhibited across all of
the gridded climate datasets was promising —especially with regards to temperature, be-
cause climate models simulate temperature variables better than precipitation variables,
as acknowledged in [94] However, these notable differences observed in the performance
of the gridded datasets may be misleading in the selection or choice of a dataset based on
evaluation using a single metric. Therefore, a good gridded dataset should have the ability
to accurately replicate the climate patterns and amplitude of spatial and temporal varia-
bility across different performance metrics, which is critical for thorough and accurate
hydro-climatic applications. This, however, has been acknowledged by [38], who stated
that a single performance metric cannot adequately be relied upon for the selection of
gridded datasets for global application. The merit of this methodology is predicated on
the fact that the combination of multiple metrics for selection may reduce the chance of
underperforming models exhibiting better performance for the wrong reasons [1].

The gridded dataset exhibited some inherent weaknesses across the performance
metrics, especially in simulating the trends and magnitude of precipitation and tempera-
ture across the annual and monsoon season timescales; for example, the CRU data was
shown to have a better performance in replicating the observed station data relative to the
other datasets, but overestimated the temperature trends across the annual and monsoon
season timescales. However, the performance across the metrics considered in this study
Table 11., revealed that the CRU data perform better in 5 out of 6 (83.3%) performance
metrics considered for both precipitation and temperature, while CPC and GPCC have a
relatively worse performance, with 3 out of 6 (50%) for precipitation, and PGF had 5 out
of 6 (83%) for temperature in terms of the performance metrics. The superiority of the
CRU data may be attributable to their employing a larger number of station data than
other gridded datasets. However, the datasets were able to exhibit a satisfactory perfor-
mance and represent the variability reasonably well, indicating that they possessed the
ability to provide reliable hydro-climatic information with a lower level of uncertainty in
their predictions.

Table 11. Summary of the best two (or three when the metrics have the same performance) gridded precipitation and
temperature datasets across the performance metrics considered in this study.

Performance Metric Precipitation Temperature

CPC CRU GPCC PGF UDEL CPC CRU PGF UDEL
Symmetric Uncertainty - \ \ - - - N N -
Kling-Gupta Efficiency \ \ - - - V \ v -
Index of Agreement - \ R - N N N - R
NRMSE - v - - v v v v -
Taylor Diagrams S - N - - - - N _
Trend Analysis \ \ - - - - N N N

Ability across Performance Metrics 50% 83.3% 50% 0 33.3% 50% 83.3% 83.3% 16.7%

The findings of this study, using multi-criteria decision making based on the assess-
ment of the datasets by several performance metrics, revealed that the CRU, GPCC, and
CPC precipitation datasets and the CRU and PGF temperature datasets showed better
performance and, as such, should be recommended for application in hydro- climatic
studies in the Lake Chad basin in order to enhance prediction and achieve a low level of
uncertainty in terms of similarity to the observed station precipitation and temperature
data, respectively. Furthermore, this was the first study to evaluate the performance and
uncertainty associated with gridded precipitation and temperature datasets in the Lake
Chad hydrological basin, and cannot be compared to previous studies. However, findings
from other studies in regions with similar climatology have shown to be consistent with
the present findings. For example, a study in the arid region of Pakistan indicated that
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GPCC was found to have an acceptable agreement with the observed dataset [95]. The
CRU dataset was also found to have a better performance in the Niger Delta region of
Nigeria [2], while GPCC, CRU, and CPC were consistent with the observed climate data
in the mountainous region of South Africa [47].

Furthermore, the findings from our analysis also acknowledge the limitations asso-
ciated with the development of gridded datasets and their inherent sources of uncer-
tainty —such as spatial aggregation, the temporal period of analysis, and input uncer-
tainty [96] —and offer ways to reduce the level of uncertainty associated with the observed
station records—for example, sampling error, bias error, urbanisation effects, and rain
gauge and thermometer exposure changes [97]; therefore, caution has been taken in pur-
suit of a reliable assessment.

6. Conclusions

This paper evaluated the performance of a long-term time series of high-resolution
gridded precipitation and temperature datasets and their suitability for hydro-climatic
studies in the data-scarce Lake Chad basin. The emphasis in this assessment was to em-
ploy multiple performance metrics to evaluate the ability of the selected datasets to repli-
cate the quality-controlled observed meteorological station records available, and to pro-
vide methodological guidance based on multi-criteria decision making as to the choice of
reference dataset suitable for climate and hydrological impact studies in data-scarce re-
gions.

The results of the analysis revealed that all of the gridded precipitation datasets had
the ability to replicate the observed climate record with varying levels of uncertainty —
except for the PGF dataset, which exhibited unsatisfactory performance in terms of KGE,
md, and NRMSE. However, all of the temperature datasets showed a strong agreement,
and were consistent with the observed data. The results from the Taylor diagrams indicate
a notable variability in normalised standard deviation across the annual, pre-monsoon,
and monsoon season timescales, but have an acceptable Pearson’s correlation coefficient
relative to the observed data records.

The trend analysis results show that the temperature datasets exhibit better ability in
replicating the trends compared to precipitation datasets. Although there was a varying
degree of mismatch in the magnitude of the trends across the stations, the CRU data ex-
hibited a strong increasing temperature trend across all of the stations at the annual and
monsoon season timescales, and tended to overestimate the temperature of the basin rel-
ative to the observed gauge data. However, the multi-criteria decision-making approach
applied based on the performance exhibited across the metrics used in this study revealed
that the CRU, GPCC, and CPC datasets are appropriate for precipitation, while the CRU
and PGF datasets are appropriate for temperature, providing better replication of the ba-
sin’s climatology, with an acceptably low level of uncertainty in the prediction of climatic
and hydrological variables for better policy planning and water resource management.

Furthermore, the results of this study highlight that the choice of gridded data is crit-
ical for fair representation of historical and projected future climate changes, as acknowl-
edged in [1]. Therefore, due to differences in the temporal resolution of gridded datasets,
the daily CPC precipitation and PGF temperature datasets, along with the monthly CRU
precipitation/temperature datasets, are recommended for the downscaling and bias cor-
rection of global climate models in hydrological modelling processes, depending on the
input data requirements of hydrological models in the Lake Chad basin, as well as on the
need for improvement in the development of climate models in order to better reproduce
satisfactory temporal and spatial variability in climate indices, limit uncertainties, and im-
prove prediction accuracy in the quantification of projected climate hazards and vulnera-
bilities for better water policy decision making.
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