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Abstract

Credit card minimum payments are designed to ensure that individuals pay down their
debt over time, and scheduling minimum automatic repayments helps to avoid forgetting
to repay. Yet minimum payments have additional, unintended psychological default effects
by drawing attention away from the card balance due. First, once individuals set the
minimum automatic repayment as the default, they then neglect to make the occasional
larger repayments they made previously. As a result, individuals incur considerably more
credit card interest than late payment fees avoided. Using detailed transaction data, the
authors show that approximately 8% of all of the interest ever paid is due to this effect.
Second, manual credit card payments are lower when individuals are prompted with minimum
payment information. Two new interventions to mitigate this effect are tested in an experiment,
prompting full repayment and prompting those repaying little to pay more, with large
counter effects. Hence, shrouding the minimum payment option for automatic and manual
payments and directing attention to the full balance may remedy these unintended effects.
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Default options are frequently presented to individuals across a broad set of contexts and

varying financial stakes, including in the domains of organ donation, retirement saving, charitable

donations and energy efficiency. Typically, defaults are applied either automatically or as a

prompt to action. How do defaults affect individual actions in practice, and do they work as

intended? We examine this question using a ubiquitous example of a default payment option

— the credit card minimum payment. Designed to protect consumers from spiralling debts and

ensure that credit card companies receive a flow of payments, credit card minimum payments

are designed to suppress levels of debt and, in the case of automatic minimum payments,

provide a form of insurance against forgetting to pay. Other examples of default automatic

payments include standard repayments for mortgages and cell phone bills. Other examples of

default prompted payments include suggested tip amounts for cabs and restaurants (Haggag

and Paci, 2014).

Analyzing the default effects of minimum payments is important both for understanding the

effects of defaults and for consumer protection in the credit card market. Credit card holders

can choose from a range of levels of repayment, such as the full balance on their credit card,

a fixed sum of money, or the minimum payment due. They can choose to make payments

manually each month, or set up an automatic payment (with the option to manually pay more

on top each month). The minimum payment is typically a small fraction of the balance, plus

fees and interest. If choosing automatic minimum payments, the card provider automatically

debits the card holder’s checking account with the minimum due each month.

Understanding the consequences of minimum payment choices for repayment behavior is

an important policy issue. Financial media outlets regularly warn their readerships against

persistently paying only the minimum payment due (e.g., Nerdwallet’s online calculator of the

excess interest arising due to making only the minimum payment – CNBC 2018). Moreover,

credit card borrowing is the main form of unsecured borrowing by consumers in the United

States. Credit card debt in the United States exceeds $900bn (Federal Reserve Bank of New

York Consumer Credit Panel / Equifax, 2019), having grown steadily over the past decade

following a decline during the 2007-2009 Great Recession. Most households are affected,

with average household credit card debt of approximately $6,300 (Federal Reserve Survey of
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Consumer Finances, 2019).

In this paper we use credit card-level transaction data and an online experiment to study the

default effects of minimum payments. In particular, we investigate the unintended consequences

of minimum payments. While in theory minimum payments reduce the level of debt, and

automatic minimum payments minimise forgetting, in practice there may be unintended outcomes.

For example, while minimum automatic repayments reduce missed payments as consumers

do not need to remember to repay, an unintended affect may be lower average payments due

to consumers not paying attention to the balance (which might prompt them to make larger

payments). In this way, understanding effects across multiple outcomes (in this case missed

and average payments) is critical to both for evaluate how and whether defaults work, and for

policy recommendations. In the presence of unintended consequences, the positive effects of

this default in theory may not be seen in practice.

Our first main contribution is to show that the default effect of credit card minimum automatic

payments has an unintended consequence of higher interest payments. We use a field study

of credit card transaction data to study what happens when consumers switch to automatic

repayments. We estimate causal effects using two identification methods: (i) a difference-in-differences

design utilizing a matched control group (e.g., Fisher, Gallino, and Xu, 2019; Gill, Sridhar, and

Grewal, 2017) and (ii) an instrumental variables analysis exploiting peer effects in the adoption

of minimum automatic repayment (e.g., Rutz, Bucklin, and Sonnier, 2012; Shi, Grewal, and

Sridhar, 2021). Our results show that, while reducing the probability of missed payments to

near-zero, default minimum automatic payments also reduce overall payments (by approximately

40%). This thereby causes higher revolving balances, and higher interest costs. We simulate

the magnitude of this effect and show that it is large. The simulations show that cards using

minimum automatic repayments at least once in the data period could save about 19.8% of

interest and fees if they did not switch to minimum automatic repayment. This is about 8.4%

of the all interest and fees paid in the credit card market.

Our second main contribution is to test new remedies to overcome the default effect of

presenting the credit card minimum payment. Using an experimental study, we replicate the

existing finding that merely presenting minimum payment information to card holders whilst
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they choose a level of manual repayment is also detrimental, reducing average repayments by

16% and causing the distribution of payments to be bunched at or just above the minimum.

Presenting the minimum payment as a default, implicit repayment amount appears to anchor

the manual repayment decision upon the minimum payment. We test two new remedies, both

of which have large effects. First, we find that prompting people to pay in full increases average

repayments by 24% - without crowding out the effect of removing the minimum payment

anchor (a result we replicated from prior studies). Second, we find that, when low payment

prompts are provided only to people who would had initially chosen to pay the minimum or

an amount close to it, these people are then more than twice as likely than not to revise their

repayments choice to a higher amount. Hence, our results show that interventions can work to

override the default effect. This finding may be applicable in other contexts in which a default

option delivers benefits, but unintended consequences require mitigations to ensure that adverse

outcomes are avoided.

Effects of defaults

Psychological theories suggest that a default option has a large probability of being chosen

because of people’s cognitive laziness or status quo bias (Johnson and Goldstein, 2003). A large

literature assumes that default options can be used to the benefit of consumers. This literature

has achieved significant policy impact, in a wide variety of domains including organ donation,

retirement saving, energy efficiency and web marketing. Jachimowicz, Duncan, Weber et al.

(2019) provide a meta analysis of 58 published studies. However, while more than 45 of these

studies identify positive effects from defaults in the outcomes observed (with only 4 estimating

negative effects), the authors find a wide range of effect sizes.

In addition, studies which focus on target outcomes (in our example, whether an individual

missed a credit card repayment) might omit important other outcomes, especially those which

exhibit unintended consequences (in our example, reduced average repayment). Hence, while

a particular default might in theory achieve a proximate outcome indicating success, the distal

effects of the default include unintended consequences which could potentially render the net

effect of the default harmful (Guttman-Kenney, Adams, Hunt et al., 2021).

We summarize the findings from previous studies, including evidence of potential downsides
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of default options, in Table 1 (see Jachimowicz, Duncan, Weber et al. (2019) for more details).

For example, studies of automatic enrolment into retirement saving using pension contribution

data from US employers show that the introduction of automatic enrolment increases pension

coverage among employees. However, automatic enrolment to a default level of saving can

reduce savings rates for employees who would otherwise have saved at a higher rate when

making an active choice (Choi, Laibson, Madrian et al., 2001), reduce saving by other means,

and increase the level of indebtedness held by consumers (Beshears, Choi, Laibson et al., 2019).

Hence it is not clear whether auto-enrolment increases the overall level of saving (which is the

key objective of the policy). Hence, in a variety of settings, there is a need to understand the

full effects of defaults and how to mitigate against potential downsides of default options.

Defaults in the credit card market

A large number of studies have focused on default effects in the credit card market. Attention

to this issue has been drawn both by the magnitude of credit card debt, and therefore importance

of regulatory policy regarding minimum payments, but also due to the availability of objective,

high frequency credit card records providing data on a variety of outcomes. This makes the

credit card market a promising test-bed for evaluating defaults and informing policy design,

especially as policy changes result in fast feedback compared with other settings (such as organ

donation and retirement saving).

Findings from these studies are summarised in Table 2. A first set of studies has focused

on whether default information disclosures help to stimulate higher payments. For example,

Agarwal, Chomsisenghpet, Mahoney et al. (2015) find, in mass transaction data, that including

the minimum level of repayment required to clear debt in 3 years by default, as mandated by the

US CARD Act, had no overall effect on repayments. Studies from Mexico (Seira, Elizondo,

and Laguna-Müggenburg, 2017) and the UK (Adams, Guttman-Kenney, Hayes et al., 2021)

show similar ineffectiveness of informational nudges. A second set of studies has focused

on whether shrouding the minimum payment on credit card statements and/or online payment

journeys (for example, by either removing the minimum payment completing, or only showing

the minimum payment when the card holder attempts to pay below the minimum payment

due) might help to increase payments.Showing the level of minimum payments may reduce
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attention to balances, which might also interact with present-biased preferences (O’Donoghue

and Rabin, 1999). The minimum payment may also act as an anchor. It is well known that

an anchor value selected by an experimenter causes the participant’s subsequent estimation to

biased towards the anchor (Tversky and Kahneman, 1974). Theoretical explanations vary from

insufficient adjustment from the anchor (Tversky and Kahneman, 1974; Epley and Gilovich,

2001, 2006), numerical priming (Jacowitz and Kahneman, 1995; Wong and Kwong, 2000),

selective availability and semantic priming of information during hypothesis testing (Chapman

and Johnson, 1994; Mussweiler and Strack, 1999, 2001), elaboration (Wegener, Petty, Blankenship

et al., 2010), and scale distortion (Frederick and Mochon, 2012) — an overlapping and non-exhaustive

list. Even arbitrary numbers affect choices, such as using the last few digits of a phone number

(Russo and Shoemaker, 1989) or social security number (Ariely, Loewenstein, and Prelec,

2003).

Our study complements the existing literature by studying the unintended consequences

of minimum payments, exploring whether the forms of unintended consequence seen in the

domains described in Table 1 might also exist in the credit card market. If such unintended

consequences exist, there is a rationale for mitigating actions to preserve the positive impact

of the default while mitigating the unintended negative consequences. We explore examples of

this in the experimental study which follows.

FIELD DATA STUDY: AUTOMATIC MINIMUM PAYMENTS

In this first study, we explore the effects on repayments of switching to a default minimum

automatic repayment.

Empirical Approach

Our empirical approach uses card-level data for a large sample of UK card holders. Assignment

to a default minimum automatic repayment is non-random, so we therefore use quasi-experimental

methods. We first use a difference-in-differences approach based upon a matched sample of

non-treated cards. We also use an instrumental variable approach, exploiting peer effects in the

adoption of default minimum automatic repayment. These methods yield consistent results.

6
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Data and Sampling

Data source. The data were provided by UK credit card issuers, who together account for

40% of the UK credit card market by number of cards. Credit card products in the UK resemble

those in the US, with many US credit card issuers active in the UK market. The distributions of

credit card spending, balances and payments in UK (Financial Conduct Authority, 2016) and

US data (Keys and Wang, 2019) are similar to one another. In addition, repayment patterns

found in UK data (Gathergood, Mahoney, Stewart et al., 2019b) have replicated in US data

(Gathergood, Mahoney, Stewart et al., 2019a). The data were extracted and provided by Argus

Information & Advisory Services in collaboration with the UK Cards Association, without

constraint on the research agenda. Card holders and issuers are not identified in the data we

received. The data are a 10% random sample of all UK consumers who held a credit card

during January 2013 to December 2014 within Argus’s database, which covers nearly 100% of

UK card holders.

Complete R source code is available for all steps from importing the data exported from

Argus to the statistics, tables, and figures in this paper. We are retaining the data for 10 years.

Data are proprietary but are available for replication on a local computer.

Data cleaning. The cleaned data include card identifiers, balances, required minimum

amounts, purchase amounts, purchase types, repayment amounts, and various types of fees and

finance charges. The unit of observation in the sample is a card-month. Repayments appear

on the statement date for the month after the statement containing the balance. For example,

repayments reported in December 2014 statements were made against the bill showing the

balance and the required minimum in November 2014. Because no repayment data are available

for January 2015, repayments for balances in December 2014 are unknown. Thus, the data

provide at maximum 23 balance-repayment observations per card from January 2013 to November

2014. Automatic payment was available as a repayment option for all cards throughout the data

period.

The data include records of minimum payment amounts due, together with a record of

whether the payment was made manually or automatically. The minimum amount card holders

must pay each month is, in the UK, normally interest and fees accrued within the month plus

7
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1% of the card balance, or a fixed sum (typically £5 or £25) whichever is the greater. As long as

the card-holder pays at least the minimum payment they will be in good standing with the card

issuer and avoid a late payment fee or other costs such as additional interest costs on balances in

arrears and missed payments being recorded on their credit file. Making a repayment of at least

the monthly accrued interest ensures that the value of the debt does not grow. Additionally,

repaying 1% of the balance implies that over time the debt will be repaid, though the pay-down

horizon is typically many years. Automatic repayments are made by a mechanism known as

“Direct Debit”. Direct Debit is an extremely common method for paying bills in the UK, and

has growing coverage in the US, where it has been introduced more recently and is variously

known as “AutoPay” or “automatic repayment”.

Sample restrictions. We applied a number of sample restrictions to create a baseline sample

for analysis. First, we excluded cards which were closed or charged-off during the data period.

Second, we excluded cards having a balance transfer and those having a zero merchant APR

for part of the data period, as balances on these cards do not accrue interest. (Cards were

treated as having a balance transfer when an aggregation of the beginning balance and all

transaction amounts within a month including purchases, cash advances, fees, finance charges,

and repayments differ from the end of the month balance by £10 or more.) Third, we excluded

a small number of cards with unidentified transactions. Fourth, we restricted the sample to

extracted card-months with a positive balance due.

Illustrative Results

Finding 1: Switching to automatic payment is common, especially automatic minimum

payment. Over one-third of cards in the sample pay by automatic payment, with this share

increasing over time. In the sample, 5% of cards switched to automatic repayment during the

sample period. Switching back to manual payment is a rare event. If manual payment is made

ahead of the automatic payment date, the automatic payment is not taken. Given card holders

can pre-pay in this way, the benefits to cancelling an autopay instruction are small. 29% are

already paying by automatic payment from the start of the sample period. The remaining 66%

using manual payment throughout the period.

We classify cards switching to automatic payment into three types by the level of payment:

8
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the minimum payment, a fixed monetary value between the minimum and full payment, and the

full payment. Table 3 presents a breakdown of switches to different automatic repayment types.

Among all cards switching during the data period, we observe 46.7% switching to a minimum

automatic repayment. For approximately 15% of card we cannot identify the repayment type.

For example, we cannot identify the automatic repayment policy for cards whose balance is

sufficiently small in all months that the minimum payment required is sufficient to clear the

balance. Such cards could be set to repay the full balance, for example, but with the full

balance being equal to the minimum payment we cannot determine the repayment policy from

observed payment behavior.

Table 4 shows card-month level descriptive statistics for account terms and card usage

before and after switching for the sample of switchers. These indicate that switching does not

appear on average to be associated with large changes in account terms (such as APR or credit

limit). In additional analysis using linked geodata we find there are socio-economic differences

between those switching to full automatic repayments and those switching to minimum automatic

repayments (full results in Web Appendix table W1).

Finding 2: Missed payments drop after switching to automatic minimum payment. Figure

1 illustrates the proportion of payments before and after switching to automatic minimum

payment. The categories shown are missed (i.e., payment below the minimum payment due),

minimum, large (a payment between minimum and full) and full. Note that the figure shows

their total actual payments made rather than their automatic payment amount. For example, an

individual might have an automatic minimum payment but choose to pay a larger amount, or

full amount. The leftmost bars show that after switching the proportion of missed payments

falls from approximately 12% per month to 1% per month. Missed payments are not completely

eliminated because the account holder may have insufficient funds in the checking account from

which the automatic payment is being drawn. This large reduction in missed payments shows

the benefit of automatic payment.

Finding 3: Switching to automatic minimum payment reduces large and full payments..

The bars on the right-hand side of Figure 1 illustrate that after switching the proportion of large

and full payments drops (from approximately 40% to 10%, and 29% to 25% respectively).

9

Page 9 of 76

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

This is due to a large increase in the proportion of minimum payments, which increases from

approximately 19% to 52%. This reduction in large and full payments shows the effect of

individuals choosing automatic minimum payments as the default no-action outcome, and

not making manual payments to the same value as they made before switching. This is the

potential downside of automatic minimum payments, as it implies higher revolving balances

and therefore excess interest charges.

Difference-in-Differences Estimates

Identification Strategy. The illustrative results presented suggest that switching to minimum

automatic repayments leads to reduced payments due to card holders being much less likely to

make additional payments over the minimum. This result is descriptive. Ideally to test the

causal effect of the treatment (switching to minimum automatic repayment) on the outcome

variable (level of repayment) we might like to exploit a randomised-control trial or naturally

occurring experiment. However, in reality switching is likely to be non-random, and might

be correlated with an intention to pay less in future, an omitted variable which could generate

endogeneity bias. In such a scenario, payments would have decreased even absent the switch

to the automatic minimum payment as default. We therefore need an empirical approach to

determine the casual effect of automatic minimum repayment on repayment behavior.

To address this, we utilise a difference-in-differences model and, separately, an instrumental

variable model. Both of these methodologies are well-established in the marketing literature

(e.g. Chevalier and Mayzlin, 2006; Fisher, Gallino, and Xu, 2019; Gill, Sridhar, and Grewal,

2017; Rutz, Bucklin, and Sonnier, 2012; Shi, Grewal, and Sridhar, 2021). The difference-in-differences

approach is to estimate the effect of minimum automatic repayments on payment behavior

by introducing a control group whose payment behavior is used as a counterfactual for the

switching group (i.e., what would have happened in the absence of the switch). This approach

compares the change in repayments of the treatment group (those switching) with the change in

repayment of a control group of non-switchers. The general form of the econometric equation

to be estimated is given by:

Repaymenti,t = β1 + β2Switcheri + βT3 Di,t + βT4 Switcheri × Di,t + ε1,i,t

10
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in which the outcome variable is the level of repayment by individual i in month t, Switcheri

is a dummy variable whose coefficient captures level differences in repayment between switchers

and non-switchers, Di,t is a dummy variable whose coefficient captures level differences in

repayment before and after the month individual i switches, and the coefficient for the interaction

between the two captures the difference in the change in repayments across the switching and

non-switching groups given by βT4 . This general model relies upon the assumption that the

treatment and control groups have common trends in repayment, and that no other confounding

change which might differentially affect repayment by the treatment and control group occurs

at the same time as the treatment.

In our setting, estimation of the difference-in-difference model is complicated by two factors.

First, we observe repayments only for individuals in months when card holders make a repayment

(i.e. non-missed payments). As seen in Figure 1, some card holders miss payments in months

both before and after adoption of automatic minimum payment. Second, we do not have a

naturally occurring control group. We address the first issue using a first-stage equation to

model repayment (using a single-hurdle model exploiting card tenure as an exclusion restriction)

and address the second issue through construction of a control group using matching methods.

Single hurdle difference-in-differences model specification. Given that switching to minimum

automatic repayments greatly affects the likelihood of a missed payment, our econometric

model needs to account for whether a payment is made. One option could be to omit observations

of missed payments from the analysis altogether (see later robustness tests), however this

approach reduces the sample size and fails to account for the existence of missed payments.

We therefore use a single-hurdle selection model (Cragg, 1971) (implemented in R using

the code provided by Carlevaro, Croissant, and Hoareau (2009)) to model missed payments.

The model includes a single hurdle of a repayment being made (i.e., not-missed) before card

holders making a “choice” of a positive repayment value. As an exclusion restriction we draw

upon card tenure, exploiting the tendency of missed payments to reduce with card tenure due

to a tendency of cardholders to forget to repay their cards when first issued, a feature of credit

card repayments we document and explore in a recent paper (Gathergood, Sakaguchi, Stewart
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et al., 2021). This provides an arguably exogenous source of variation in missed payments.

In the model, Ii,t is an indicator having a value of 0 if the card holder i misses the repayment

in month t, otherwise 1. Using the probit model, the first component of our model estimates

the probability of not-missing a repayment through a latent dependent variable, P(Ii,t = 1) =

P(Repayment∗1,i,t > 0). Note that the superscript ∗ for Repayment∗1,i,t indicates latent repayment.

The subscript of 1 for Repayment∗1,i,t indicates the first component of the model, the choice

over missed or not-missed. Similarly, the subscript 2 for Repayment∗2,i,t used below indicates

the second component of the model, the level of payment conditional on not missing a payment.

The first equation, for missed or not-missed payment, is given by:

Repayment∗1,i,t = β0 + β1Switcheri + βT2 Di,t + βT3 Switcheri × Di,t + β4Tenurei,t + βT5 xi,t + ε1,i,t,

P(Ii,t = 1) = P(Repayment∗1,i,t > 0),

where Switcheri is a dichotomous variable having a value of 1 if the card i switches to a

minimum automatic repayment, otherwise 0. Di,t is a vector of dummies specifying months from switch

(11 levels from -5 to 5). Tenurei,t is card tenure in years. xi,t is a vector of covariates including

balance, utilization, spending amount, merchant APR, cash APR, and charge-off rate (all are

month-card level variables). The error term, ε1,i,t, is assumed to be normally distributed.

The second stage of the model estimates the differences in differences model (the general

form of which is shown above) where the outcome is the repayment amount Repayment∗2,i,t,

and given by:

Repayment∗2,i,t = exp(β6 + β7Switcheri + βT8 Di,t + βT9 Switcheri × Di,t + βT10xi,t + ε2,i,t),

where Switcheri, Di,t and xi,t are defined as in the first regression. The error term, ε2,i,t, is

assumed to be normally distributed. In addition, ε1,i,t and ε2,i,t are assumed to be uncorrelated.

The above first and second components of the model are jointly estimated on observed

monthly repayment amounts, Repaymenti,t.

Repaymenti,t = Ii,t × Repayment∗2,i,t

Control group design. We construct the control group by using matching methods to select

a set of non-switching cards that have very similar characteristics to the switching cards in the

pre-switch time period. The implicit assumption in this design is that the constructed control
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group represents the counterfactual repayment behavior of switchers were they not to have

switched to automatic repayments. Hence, any observed difference in post-switch repayments

between the groups is attributable to the effects of switching to automatic repayment. This

approach relies on the availability of a good match between treatment and control observations

such that the two groups show common trends and characteristics in the outcome of interest.

By constructing a control group to resemble the treated group, this matched differences in

differences approach estimates the average treatment effect on the treated (ATT) group of

switchers.

Control group designs based upon matching methods have become widely applied in empirical

research in economics and other disciplines (on which see Abadie (2021)), with Athey and

Imbens (2017) arguing that they are “arguably the most important innovation in the policy

evaluation literature in the last 15 years”. Such control group designs offer “systematically

more attractive comparisons” by creating improved control groups compared with standard

difference-in-differences designs. Fisher, Gallino, and Xu (2019) and Gill, Sridhar, and Grewal

(2017) provide recent examples of such methods in marketing.

The data we use provide repeated observations of the same individuals (i.e., time-series

cross-sectional sample), and thus, the standard matching methods, which have been developed

mostly for cross-sectional sample, may not be appropriate for our case. To overcome this

issue, we follow a control group designed by Simmons and Hopkins (2005), together with the

matching method formalized by Ho, Imai, King et al. (2011).

We first extracted card-months of switchers for the six month periods pre- and post- switch

(total 12 months; we label theses as the treatment observations). For each card, we then take

the average of the covariate values over card-months for the six months before the switch.

The covariates used are card balance, utilization rate, spending amount, merchant APR, cash

APR, charge-off rate, and card tenure. Second, to create a candidate sample for matches, we

extract all consecutive six card-months of non-switchers and all consecutive six pre-switch

card-months of switchers which do not overlap to the treatment observations. (We follow

Simmons and Hopkins (2005) where the effect of countries signing to an international agreement

(treatment effect) is studied. They define treatment observations as country-years taken from
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signer countries between 4 year before the signatory and 1 year after that (i.e., 6 country-years

for each signer country), and then, define the universe of possible control cases as all continuous

6-year country-periods of both signer and non-signer countries, except signers’ country-years

which overlap with the treatment observations.) Then, the covariate values within those six

card-months are averaged. This procedure reduces the treatment and control observations to a

single data point per covariate. We then apply matching to these observations.

After the above transformation of the data, we conducted one-to-one nearest neighbor

matching between switchers and candidate cards based on the Mahalanobis distance in the

averaged covariates. The result is that each switching card has one matched control card which

is very similar in its six month average of covariate values. Finally, post-switch card-months

of switchers and subsequent six months following the candidate observations of the matched

control group were combined to the matched pre-switch observations. As a consequence, the

matched data for analysis include 12 consecutive card-months of each card which consist of

six months pre-switch and six months post-switch observations. As a result, treatment group

includes 3,311 cards and control group includes 3,239 cards. (Note that some cards in control

group match to multiple cards in treatment group.) Both groups have 39,732 card-month

observations, equally split between pre- and post-switch periods.

Results. Table 5 compares pre-switch average card profiles between two groups, indicating

that the matching created a well-matched control group with similar pre-switch card profiles to

those of switchers. (p-values were taken from the bootstrap Kolmogorov-Smirnov test.)

Web Appendix D also shows the matching exercise produces switching and control groups

which are closely matched by socio-economic characteristics (Table W4) and by pre-switch

monthly balances (Figure W5).

The main estimates from the single hurdle difference-in-differences are illustrated in Figure

2 which plots the coefficient estimates and 95% confidence intervals for Switcher×Months from Switch

interactions for the dummies from five months before switching to minimum automatic repayment

through to five months after the switch, shown on the x-axis.

Results indicate that the coefficient on the interaction term is at or close to zero for the

months preceding the month of switch, indicating no difference in repayment levels prior to
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the switch. At the switch month (month zero) the coefficient becomes negative and statistically

significantly different from zero. The coefficients also show no trend upwards or downwards in

the pre-switch period. This indicates a reduction in payments due to switching. The coefficient

on the interaction terms for the subsequent months remains negative and statistically significantly

different from zero in each month. Hence there is a precisely defined downwards effects of

switching to minimum automatic repayments on the level of payment.

The coefficient estimates are shown in Table 6. Results from the first-stage regression are

shown in the top panel. The coefficient on the tenure variable is positive, indicating that the

probability of not missing a payment rises with tenure, as suggested found in previous studies.

The coefficients for the interaction terms of switcher dummy and months from switch dummies

are positive and precisely estimated for post-switch months, confirming the beneficial effect of

automatic repayments eliminating a chance of forgetting a repayment.

Results from the second-stage regression are shown in the bottom on panel. The coefficients

on the covariates indicate that the level of repayment increases with card balance and card

spend in the preceding month, and decreases with utilisation, merchant and cash APRs, and the

charge-off rate.

The coefficients for the interaction terms are negative and precisely estimated for all post-switch

months, confirming the adverse effect of the minimum automatic repayment reducing ongoing

repayments as observed in Figure 2. The coefficient values reange from -.65 in the first month

after the switch, rising to -.36 after four months. A coefficient value of approximately -.4 for

the post-switch interaction in the second element of the model implies that switchers reduce

their payments by approximately 40%, which equates to on average £148 (evaluated against

the baseline predicted level of repayment from the model).
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Instrumental Variable Model

The instrumental variable approach uses an exogenous source of variation in the likelihood

of treatment, which serves as an instrument to the treatment selection. This approach has the

advantage that it introduces as-good-as-random variation in the likelihood of treatment, but has

the challenge of needing to find an instrument that predicts treatment (here, switching) but is

exogenous to the individual’s repayment choice.

Here, we exploit geographic peer group switching rates as the instrument in a two-stage

design. The rationale for this instrument is that the switching rate to automatic payments within

an individual’s peer group is likely to spill over to affect the individual’s behavior through

shared knowledge and social norms. Peer effects have been found to be important determinants

of financial decisions in prior literature (e.g. Bursztyn, Ederer, Ferman et al., 2014; Bailey,

Cao, Kuchler et al., 2018). In marketing, peers have been used as instruments to identify

the effects of chief marketing officers on firm performance (Germann, Ebbes, and Grewal,

2015) and herding in spending disclosure decisions (Shi, Grewal, and Sridhar, 2021) (see Rossi,

2014, for an examination of instrumental variable approaches in marketing). We estimate the

local average treatment effect (LATE) of peer effects induced switching on repayments using a

two-stage least squares approach:

Post-Switchi,t = α0 + αT1 Wi,t + α1Switching-Ratet,p + ui,t (1)

log(Repaymenti,t) = β0 + βT1 Wi,t + β2 ̂Post-Switchi,t + εi,t (2)

where Repayment by individual i in month t is modelled as a function of a set of covariates

W which vary by individual and month (as in the earlier analysis, these include card balance,

utilization rate, spending amount, merchant and cash APRs, and the charge-off rate) plus a

dummy capturing whether the month is pre- or post-switch. This dummy variable is instrumented

using a first stage regression in which the instrument is the switching rate in month t among

the peer group, p. Here the peer group is defined as the postcode district of residence of

the cardholder (UK postcode districts contain 25,000 residents on average). Both regression
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contain the same set of covariates, W.

Results are reported in Table 7. In the first-stage regression, the coefficients on the covariates

indicate that the likelihood of switching increases with the merchant APR and decreases with

the cash APR, charge-off rate and level of spending. The coefficient on the instrument is

positive (.950) and precisely defined with a standard error of .004, indicating a strong correlation

between the switching rate in the locality and the likelihood of the card holder switching.

In the second stage regression the coefficients on the covariates show that repayments

increase with the balance and spend, and decrease with the merchant and cash APR, the

charge-off rate and account utilization. The coefficient on the instrumented post-switch variable

is negative, taking a value of -.553. This is within the range of the post-switch coefficients from

the difference-in-differences model, implying a 55% reduction in repayment arising due to the

switch to automatic minimum payment.

Robustness Tests

Conditional difference-in-differences model. An alternative approach to modeling repayments

in the difference-in-differences framework is to model only non-missed payments. While the

single-hurdle selection model including missed payments is the preferred model, for comparison

here we also present OLS estimates of the repayment equation. This is estimated on the subset

of observations with a non-missed payment (67,475 observations, 92.1% of observations from

the sample used in the single-hurdle selection model).

Results, shown in Web Appendix F, reveal the same pattern in the difference-in-differences

coefficient estimates on the interaction term (Figure W7), with the estimated coefficient for

the pre-switch months indicating no difference in repayment levels prior to the switch. At

the switch month (month zero) the coefficient becomes negative and statistically significantly

different from zero. This again indicates a reduction in payments due to switching. Coefficient

estimates are reported in Table W5. The estimates from the OLS model are similar in magnitude

to those from the single-hurdle selection model (the coefficient on the interaction term for

month zero is -.67 in the OLS estimates compared with -.65 in the single-hurdle selection

model estimates).
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Type II tobit model. The single-hurdle selection model assumes independence in the error

terms across the first-stage and second-stage equations, ε1,i,t and ε2,i,t. However, in practice

the error terms may be correlated. To test the robustness of our results to this assumption

of independence, we also present estimates from an exponential type II Tobit model, which

assumes dependence of errors across equations. This model is estimated on the same sample

of observations as the single-hurdle selection model.

Results, shown in Web Appendix G, again reveal the same pattern in the difference-in-differences

coefficient estimates on the interaction term (Figure W8), with the estimated coefficient for

the pre-switch months once again indicating no difference in repayment levels prior to the

switch. At the switch month (month zero) the coefficient becomes negative and statistically

significantly different from zero. This again indicates a reduction in payments due to switching.

Coefficient estimates are reported in Table W6. The coefficient on the interaction term for

month zero is again of similar magnitude in the Type II Tobit model estimates (-.78) to that in

the single-hurdle selection model estimates (-.65).

Lender-induced switching sample. As an additional robustness test, we exploit a feature

of lenders’ account management practices that arguably introduces a degree of exogeneity in

switching for a subset of accounts. Specifically, we focus on a subsample of accounts where

lenders are more likely to have played a role in setting-up minimum automatic repayments via

offering refunds to customers to induce them to switch to automatic payment. Results from this

analysis, which are included in Appendix E, are consistent with our main results for the effects

on levels of repayment of switching to automatic minimum payment.

Excess Interest Cost Simulations

We have used Monte Carlo simulation to estimate the financial cost arising from lower

repayments among card holders switching to a minimum automatic repayment (see Web Appendix

I for details). We also conducted a simulation estimating what proportion of total interest and

fees incurred by all cards across the entire credit card market is due to minimum automatic

repayments (detailed in Web Appendix J).

The simulation is implemented as follows. We assume two types of agents. The first type of

agents never switch to automatic repayment (Remaining as Non-Auto Cards) while the second
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type of agents switch to a minimum automatic repayment (Switching to Min-Auto Cards). To

resemble real-life use of credit cards, the simulation assumes a steady continuation of purchases

and repayments.

For both types of agents, we simulate their monthly card usages and repayments, using

card-month observations of cards switching to minimum automatic repayments during the

data period. At each time-step (i.e., month) in the simulation, a repayment category is drawn

from the actual distributions in card-months with similar card profiles. The categories include

”missed”, ”minimum” (with £10 buffer for rounding-up), and ”full”. Repayments in the actual

distribution which are included in neither missed, minimum, nor full category were categorized

as their own absolute value (e.g., 50.00, 100.00, 200.00). Repayments are capped at a corresponding

full balance at the time-step. For Remaining as Non-Auto Cards, we use the pre-switch distribution

while, for Switching to Min-Auto Cards, we use the post-switch distribution. Thus, in the

simulations, Remaining as Non-Auto Cards are repaid as if card holders had not switched

to a minimum automatic repayment. If an agent missed a repayment, a late payment fee

was incurred. In addition, spending and cash advance amounts are also drawn from these

distributions. If an agent made a cash advance or the utilization rate exceeded 1, a cash advance

fee or an over-limit fee was incurred (regulated fee levels in the UK were used). The simulation

continued for 24 months. We ran the simulation with the mean balance in the months where

card holders switched to minimum automatic repayments (£1,330.34). Further technical details

are presented in Web Appendix I.

Figure 3 shows the results where we see consistently higher balances (Panel (a)) and higher

total costs (Panel (b)) in the 24-month period. Therefore, even accounting for the higher

prevalence of late payment fees among Remaining as Non-Auto Cards, the simulations show

that Switching to Min-Auto Cards creates higher costs of debt for the consumer.

Simulation responses (Web Appendix J) further show that cards using minimum automatic

repayments at least once in the data period could save about 19.8% of interest and fees if they

did not switch to minimum automatic repayment. This is about 8.4% of the all interest and

fees paid in the credit card market. Even an effect ten times smaller would be economically

significant.
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EXPERIMENTAL STUDY: ANCHORING EFFECTS OF MINIMUM PAYMENTS ON

MANUAL PAYMENTS

In our second study, we focus on manual credit card repayments and use an online experiment

to explore how minimum payments also affect repayment behavior among manual payers (i.e.,

not using automatic payments). We first replicate the finding from previous studies that people

anchor upon the minimum payment information presented in the credit card payment journey,

showing reduced repayments (Jiang and Dunn, 2013; Navarro-Martinez, Salisbury, Lemon

et al., 2011; Salisbury and Zhao, 2020; Stewart, 2009).

We extend the experimental design to test potential remedies to the effect of presenting

minimum payments. Specifically, we test for effects of i) prompting people to pay in full before

offering partial and minimum payments options and, ii) prompting those who choose to repay

below or near the minimum to repay more. These interventions aim to lower the anchoring

effect of minimum payments. In the first case, prompting people to pay in full before offering

other options was intended to raise this option in people’s minds before they chose an amount

to repay. In the second case, prompting people who pay too little to pay more provided them

with critical information about the time to repay at the moment of choice, without suggesting

low repayments to those who spontaneously chose to repay more. We anticipated that these

treatments would be effective because they were easy and timely (Service, Hallsworth, Halpern

et al., 2014).

The experiment was conducted in collaboration with the UK financial regulator – the Financial

Conduct Authority (FCA) – as part of their study investigating the UK credit card market.

The experiment was not externally preregistered because of the nature of this. The experiment

received ethical approval from the University of Warwick research ethics committee (128/15-16:DR@W).

A unique property of this experimental design is that it has increased external validity, as

a subsequent study demonstrates that hypothetical repayment responses are correlated with

real-world repayments on linked credit card transaction data (Guttman-Kenney, Leary, and

Stewart, 2018).

Method
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Participants. We recruited 1,000 participants from the crowd-sourcing platform Prolific

Academic, who were living and employed in the UK and spoke English as a first language. We

decided in advance to eliminate (in a sequential process) those who did not reach the end of the

experiment (7), duplicate submissions (112), submissions from the same IP (35), participants

who did not answer “yes” to a question asking if they answered carefully (54), the top 5%

of fastest responses (37) and a further 56 people for whom the experiment duration was not

recorded. This left 699 participants.

Design. Participants were randomly assigned to one of four cells in a 2×2 design, crossing

omission or inclusion of a minimum payment prompt with initially prompting or not for a

full repayment. While we did not have a theoretical reason for expecting an interaction,

an interaction would have implications for policy design. Table 8 describes the treatments.

The Control Condition included the minimum payment prompt but did not prompt for full

repayment, just as in real-world credit card statements. The Omit Minimum Condition differed

only in omitting minimum payment information from the bill. The Include Prompt Condition

retained the minimum payment information and, additionally, initially asked participants whether

they would like to pay the bill in full before offering other payment options. The Omit and

Prompt Condition combined both of the previous treatments, omitting minimum payment information

and initially prompting for full repayment.

Procedure. Participants were asked to imagine that they had received a credit card bill,

asked to consider how much money they actually had, and decide how much of the hypothetical

bill they would repay. The bill was for the 2011 UK median of £977.17, with the corresponding

median minimum payment of £23.97 (Navarro-Martinez, Salisbury, Lemon et al., 2011).

In the Control Condition – with the minimum payment amount and without an initial full

repayment prompt – participants were given the bill information and typed their hypothetical

repayment (see Figure 4a). In the conditions without the minimum payment amount, the

minimum payment information was omitted from the bill (Figure 4b). In the conditions with

an initial full repayment prompt participants were first asked whether they would like to pay in

full or not (Figure 4c). If they selected “no”, they typed the payment amount.

Afterwards, we asked participants to self-report whether they have a credit card and whether
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they paid their bill in full in the previous month. Balance tests in Web Appendix K shows that

conditions were about equal and did not differ significantly in the fraction of participants using

credit cards or paying their bill in full last month.

We also collected a secondary measure for some participants, conditional upon their initial

payment choice. If a participant initially chose a repayment amount at or lower than the

minimum payment, they were then shown a ‘Low payment prompt’ offering six options: the

payment required for 1, 2, and 3 year paydown, the minimum, the amount they originally chose,

and a blank box for any other amount (Figure 5). If participants chose a repayment above the

minimum but below 1.5 t/imes the minimum, they were offered five of the six options. For these

participants, we omitted the minimum payment option, because they had already spontaneously

chosen to pay more than the minimum and did not want to re-anchor them to this amount.

Measures. Our primary dependent variable was the amount that participants selected as

their repayment for the bill. We also had, as secondary dependent variable, a (potentially)

revised repayment amount after participants making low payments were prompted to make

higher repayments. We describe these in more detail below, along with the independent variables

and covariates.

Repayment Amount. The dependent variable was the amount that participants selected

as their repayment for the bill, measured in £. In conditions with a full repayment prompt,

participants could select a radio button to make a full repayment, which was recorded as

£977.17. In conditions without a full repayment prompt, or after selecting “no, repay less than

the full outstanding statement balance” in conditions with a full repayment prompt, participants

typed a repayment in £ in a text box.

Revised Repayment Amount. As described above, if participants made a low repayment

they were offered a series of prompts to make a higher repayment. The measure was also in £,

with radio button responses coded as their £ amount. This secondary dependent variable was

only measured for those who chose an initial repayment below 1.5 times the minimum (i.e.,

below £35.96).

Independent Variables. As described above, we had two independent variables: (a) whether

minimum payment information was included or omitted from the credit card statement and (b)
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whether participants were asked if they would like to pay in full before, if they declined, being

able to give an open response of any repayment amount.

Measures for Data Quality. We collected three variables to screen for data quality (e.g.,

Buchanan and Scofield 2018). We asked participants if they chose a repayment option carefully

and thoughtfully, with response options of “Yes, I took care” or “No, I just want the payment”.

We had decided in advance to exclude anyone answering “No”. We also recorded the duration

of the experiment, having decided in advance to exlude the 5% of people who were fastest. We

recorded the IP address and Prolific Academic ID to delete, as planned, participants making

duplicate submissions.

Data and code for the analysis will be posted online on publication.

Results

Our primary analysis compares repayments with and without minimum payment information

and with and without prompting for full repayment. Table 9 reports the mean repayments. As

hypothesised, repayments were higher when minimum payment information was omitted and

repayments were higher when participants were first prompted to pay in full.

To quantify the above description, we analyzed repayments with a linear regression of

repayment amount on a minimum payment information dummy, a full repayment prompt

dummy, and their interaction. Because the interaction was not significant and we had no

theoretical reason to expect one, we report here the regression without an interaction. The

coefficient for the minimum payment information dummy estimates the increase in repayments

when minimum payment information was omitted. The coefficient for the full repayment

prompt dummy estimates the increase in repayments when full repayment is prompted.

Model 1 in Table 10 shows the coefficients. Averaging over full repayment prompting,

omitting minimum payment information raised the mean repayment from £447, 95% CI [£404,

£490] to £535, 95% CI [£491, £579]. This was a significant increase of £88, 95% CI [£26,

£149], t(696) = 2.79, p = .005. Averging over minimum payment inclusion, repayments were

also higher when the full repayment prompt is included. Including a full payment prompt raised

the mean repayment from £438, 95% CI [£395, £481] to £545, 95% CI [£501, £589]. This is a
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significant increase of £107, 95% CI [£45, £169], t(694) = 3.40, p < .001.

One possibility is that the behavior of participants in our online experiment in part reflects

their own financial situation. For example, some participants might select minimum payments

as this is their usual repayment behavior on their own credit card, for example due to facing low

income or liquidity constraints in their finances. At the suggestion of a reviewer, we draw upon

the self-reported information provided by participants on their real-world financial position to

control for this possible confound (note also that, as reported in Appendix K, conditions were

balanced on these variables). Models 2 and 3 in Table 10 include a card-user dummy indicating

whether the participant has a real credit card. The dummy is included as a covariate in Model

2 and additionally interacted with the experimental manipulations in Model 3. The pattern of

results for the experimental manipulations is unchanged. Holding a card is associated with

higher repayments. The null interaction show no evidence that the experimental manipulations

are affected by card holding. Models 4 and 5 repeat the exercise with a full-repayment dummy

indicating whether the participant normally repays their bill in full. Again the pattern of results

is unchanged for the experimental manipulations. A history of full repayment is associated

with higher repayments but does not interact with the experimental manipulations.

Because the distribution of repayments departs from Gaussian, we have included supplementary

analyses. In Appendix K we show, consistent with the analysis of the means above, that the

distribtion of repayments when the minimum is omitted first order stochastically dominates the

distribution when the minimum is included. Further, the distribution of repayments when full

repayment is prompted first order stochastically dominates the distribution when full repayment

is not prompted. We also analyse the probability of making minimum repayments, which is

reduced when the minimum is omitted and full repayment is prompted, and the probability of

making full repayments, which is increased when the minimum is omitted and full repayment

is prompted – again consistent with the analysis of the means above.

Low payment prompts. Figure 6 shows how the 106 people paying at or below 1.5 times the

minimum (here £35.95) revised their payments after the low payment prompts. 28 kept their

original repayment, no one decreased their repayment, and 78 people revised their repayment

upwards – typically to be one of the prompted payment amounts. For some people, the increase
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was substantial - for example, moving from initially selecting to pay only the minimum to then

selecting to pay an amount that would amortize debt in a year (‘One-Year Paydown’) is more

than a tripling of payment amounts. Participants were 2.53, 95% CI [1.68, 3.92] times more

likely to increase their payment than leave it unchanged.

Experiment Discussion

Omitting minimum payment information increased repayments, replicating findings from

Jiang and Dunn (2013), Navarro-Martinez, Salisbury, Lemon et al. (2011), Salisbury and Zhao

(2020), and Stewart (2009). We also tested two new interventions. An initial prompt to pay in

full also increased repayments. Prompting people who initially selected to pay at or near the

minimum to repay more, by providing scenarios about the payments needed to clear the debt in

1, 2, or 3 years, also increased repayments for the majority prompted. We think this prompt was

successful because (a) it provided scenario information at exactly the right time, unlike earlier

interventions which found only small effects local to the scenario repayment amount (Agarwal,

Chomsisenghpet, Mahoney et al., 2015; Hershfield and Roese, 2015; Keys and Wang, 2019;

Navarro-Martinez, Salisbury, Lemon et al., 2011) and (b) prompting people to make a second

choice is a Gricean indication that their first choice was poor (Rose and Blank, 1974) - a finding

in line with a recent meta-analysis that concluded that defaults are more effective when they are

seen to communicate what a choice architect thinks a decision-maker should do (Jachimowicz,

Duncan, Weber et al., 2019).

GENERAL DISCUSSION

Defaults exist in many areas of individual choice, and are commonly used by policymakers

as a device to achieve behavioral change. However, there is concern that defaults may have

unintended consequences and that the positive effect of introducing a default on one outcome

may co-occur with negative effects on other outcomes.

Our analysis of minimum payments indeed shows the unintended effects of defaults once

multiple outcomes are examined. Our analysis shows that setting an automatic repayment has

the mixed effect of nearly eliminating the likelihood of missed repayments, but it also decreases

average payments. Why does this occur? One interpretation is that the minimum payment being
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paid automatically reduces attention to balances. Consumers choosing minimum automatic

repayments are selecting a potentially powerful psychological default, one which facilitates

inattention. This results in repeated minimum repayments, which greatly increases the debt

revolved from month to month and thus the interest paid.

This unintended effect of the default raises the need for potential mitigations. Our experimental

study explored the efficacy of interventions. We first replicate the now robust result that

merely providing minimum payment information reduces repayment. We have also shown that

providing alternative information—namely a prompt for full repayment or to reconsider low

repayments with explicit higher repayment suggested—mitigates the effect of anchoring on the

minimum repayment. While other attempts have failed, we believe ours succeeded because

the information was presented just in time, exactly when it was required. Whether consumers

are opting in to their own minimum payment default by setting an automatic repayment, or are

anchoring their free choice manual repayments upon the minimum, minimum payments are

having detrimental effects.

We have focused here upon credit card repayments where consumers face an explicit choice

about the size of their automatic repayment, and can easily make additional manual repayments.

But the power of setting a default repayment is applicable more widely. For example, choosing

the term of a mortgage or choosing fixed monthly repayments for a personal loan also sets

powerful defaults, and these defaults are administratively harder to change, and changes can

even incur additional costs. If people are initially conservative in their choice of level, so they

can be sure they can meet their monthly repayments, our findings suggest that they are unlikely

to get round to making additional repayments over and above the default even if they can afford

to make additional repayments to save interest costs.

A limitation of our study is that we cannot provide direct evidence that attention is the

mechanism underlying consumer behavior, and therefore the theoretical contribution of our

study is limited. Hence, looking to future research, we suggest approaches which could help

understand better the underlying theoretical mechanism, potentially leading to policy solutions.

It may be that the unintended effect of minimum automatic repayment could be partially

addressed through interventions which bring the repayment decision back to the top of the
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consumer’s mind, drawing attention to the repayment decision and shrouding the minimum

payment. More generally, what should policymakers and industry do to avoid introducing

defaults with unintended effects? We have two suggestions. The first is to consider the

status quo effects resulting from the default itself—is the new status quo unambiguously in

the consumer’s interest? The second is to assess the effect of the defaults across as broad a

range of outcome behaviors as are available, and to follow up on these assessments over time.

This approach will help policymakers to fully evaluate the impact of defaults and consider

whether mitigations are necessary in the presence of unintended consequences.
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Figure 1: Bar chart of proportion of repayments in months before and after switching in four
mutually exclusive and exhaustive categories: missed (below minimum), minimum, large and
full. The unit of observation is a card-month (total repayments to a particular card in a particular
month). The sample consists of monthly repayments made between an account opening date or
the beginning of the data period (Jan. 2013) whichever is latter and the end of the data period
(Nov. 2014). The sample was restricted to cards switching to automatic repayments during the
data period. The number of months contributing to the figure differs among cards while the
number of months included in before and after periods differs within a card. Card-months with
no balance were excluded.
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Figure 2: Coefficient estimates and confidence intervals for the effect on payments of switchers
switching to a minimum automatic repayment. Error bars are 95% confidence intervals.
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Figure 3: The results from the excess interest cost simulation. The shaded area and the error
bars are 95% confidence intervals obtained by the bootstrap method (1,000 resamples) in Panels
(a) and (b), respectively.
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Figure 4: The presentation of hypothetical statements in the experiment.

(a) Control condition statement

(b) Omit minimum

(c) Prompt for full repayment
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Figure 5: Low payment prompts shown to those selecting to pay below 1.5 times the minimum
in the experiment.
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Figure 6: Revised payments for those prompted to pay more in the experiment. Dot area
is proportional to the number of participants. Points above the diagonal are participants
revising their payment upwards. Points on the diagonal are participants leaving their repayment
unchanged.
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Table 1: Summary of Studies on Effects of Defaults
Topic Studies Key Findings

Organ Donation

Johnson and Goldstein
(2003); Willis and Quigley
(2014); Shepherd,
O’Carroll, and Ferguson
(2014); Arshad, Anderson,
and Sharif (2019); Li,
Hawley, and Schnier
(2013); Van Dalen and
Henkens (2014)

Opt-out policies for organ donation (in
contrast to opt-in policies) lead to large
increases in donation rates, though raise
ethical concerns and can lead to
post-death dispute with next of kin.

Retirement Saving

Cronqvist and Thaler
(2004); Choi, Laibson,
Madrian et al. (2001); Choi,
Laibson, Madrian et al.
(2003); Beshears, Choi,
Laibson et al. (2006);
Madrian and Shea (2001);
Beshears, Choi, Laibson
et al. (2019)

Auto-enrolment into pensions increases
coverage rates and level of pension saving
for most participants. However, reduced
other saving (including non-pension
saving) and increased levels of debt might
offset the increase in pension saving.

Energy Efficiency

Momsen and Stoerk (2014);
Anda and Temmen (2014);
Fowlie, Wolfram, Spurlock
et al. (2017); Bastida,
Cohen, Kollmann et al.
(2019); Hedlin and Sunstein
(2016)

Defaults can be effective at increasing
uptake of renewable energy usage, but
may have only short-lived effects as
consumers switch to cheaper energy deals
at renewal points.

Charitable Giving

Zarghamee, Messer, Fooks
et al. (2017); Goswami and
Urminsky (2016); Fiala and
Noussair (2017); Schulz,
Thiemann, and Thöni
(2018)

Default options increase occurrences of
charitable giving, but may reduce overall
value of amount given by reducing giving
over-and-above the default level.
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Table 2: Summary of Studies on Effects of Defaults in the Credit Card Market
Topic Studies Key Findings

Repayment horizon
information disclosures

Agarwal, Chomsisenghpet,
Mahoney et al. (2015);
Adams, Guttman-Kenney,
Hayes et al. (2021); Seira,
Elizondo, and
Laguna-Müggenburg
(2017); Hershfield and
Roese (2015); Keys and
Wang (2019);
Navarro-Martinez,
Salisbury, Lemon et al.
(2011)

Disclosing the level of repayments
necessary to clear debt within shorter time
periods and/or illustrating savings from
faster repayments has no effect on
observed payments even if information is
non-neutral nudging encouraging debt
reduction.

Shrouding the minimum
payment

Bartels and Sussman
(2018); McHugh and
Ranyard (2016);
Navarro-Martinez,
Salisbury, Lemon et al.
(2011); Salisbury (2014);
Salisbury and Zhao (2020);
Stewart (2009);
(Guttman-Kenney, Leary,
and Stewart, 2018);
Guttman-Kenney, Adams,
Hunt et al. (2021)

The minimum payment may act as an
anchor, reducing payments below the level
which would otherwise be paid.
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Table 3: Counts of Switching from No Automatic Repayment to Different Automatic
Repayment Types in the Field Data

Statistics Min Fixed Full Mixed/Unknown Total
Num. of Repayments 188,288 53,363 91,203 63,542 396,396
Proportion (%) 47.5 13.5 23.0 16.0 100.0
Num. of Cards 9,803 2,698 5,162 3,315 20,978
Proportion (%) 46.7 12.9 24.6 15.8 100.0

Note. “Min” column represents minimum automatic repayment. “Fixed” column represents fixed
automatic repayment covering more than the minimum but less than the full balance. “Full” column
represents full automatic repayment of the balance. “Mixed/Unknown” column represents automatic
repayments which changed between types across months or automatic repayments which we cannot
identify the type mostly due to sufficiently small balances and payments throughout the data period.
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Table 4: Summary Statistics for the Field Data.
Statistics Switch to Min-Auto Switch to Fixed-Auto Switch to Full-Auto

Before After Before After Before After
Number of observations 62,708 125,580 21,728 31,635 44,435 46,768
Number of cards 9,803 9,803 2,698 2,698 5,162 5,162
Median balance 1,089 1,081 1,122 1,140 387 317
Median credit limit 4,500 4,850 4,000 4,000 5,000 4,800
Median utilization .343 .319 .419 .420 .084 .074
Median spending amount 124 77 72 24 383 333
Median merchant APR .180 .189 .189 .199 .169 .170
Median cash APR .249 .249 .249 .249 .249 .249
Median charged-off rate .005 .006 .005 .005 .002 .002

Note. “Min-Auto” represents minimum automatic repayment. “Fixed-Auto” represents fixed automatic
repayments covering more than the minimum and less than the full balance. “Full-Auto” represents full
automatic repayment. Median values are calculated using all card-month observations with a positive balance.

Table 5: Comparison of Pre-Switch Average Card Profile
Treatment Control p-value

Ave. Balance 1,843.25 1,827.69 1.000
Ave. Credit Limit 5,462.62 5,425.64 0.951
Ave. Utilization .41 .41 1.000
Ave. Spending 406.43 397.30 .537
Ave. Merchant APR .20 .20 1.000
Ave. Cash APR .25 .25 1.000
Ave. Charge-off Rate .03 .03 .118
Card Tenure 7.54 7.54 .450

Note. p-values are taken from bootstrap Kolmogorov-Smirnov
test (1,000 resamples).
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Table 6: Coefficient Estimates from Single-Hurdle Selection Model
Estimate Std. Error t-value p-value

h1.(Intercept) 1.4804 .0370 39.9968 .0000 ***
h1.Tenure .0085 .0013 6.3989 .0000 ***
h1.Switcher -.1335 .0493 -2.7059 .0068 **
h1.Months fr Switch : –5 -.0393 .0501 -.7856 .4321
h1.Months fr Switch : –4 -.0511 .0499 -1.0247 .3055
h1.Months fr Switch : –3 -.0367 .0501 -.7320 .4642
h1.Months fr Switch : –2 -.0063 .0505 -.1245 .9009
h1.Months fr Switch : –1 .0250 .0509 .4903 .6239
h1.Months fr Switch : 0 .0573 .0516 1.1103 .2669
h1.Months fr Switch : 1 .1114 .0526 2.1174 .0342 *
h1.Months fr Switch : 2 .0790 .0522 1.5142 .1300
h1.Months fr Switch : 3 .0687 .0522 1.3173 .1877
h1.Months fr Switch : 4 .0812 .0525 1.5456 .1222
h1.Months fr Switch : 5 .0189 .0515 .3680 .7129
h1.Switcher × Months fr Switch : –5 -.0158 .0687 -.2301 .8180
h1.Switcher × Months fr Switch : –4 -.0708 .0680 -1.0412 .2978
h1.Switcher × Months fr Switch : –3 -.1479 .0677 -2.1836 .0290 *
h1.Switcher × Months fr Switch : –2 -.7375 .0657 -11.2345 .0000 ***
h1.Switcher × Months fr Switch : –1 .1643 .0714 2.3007 .0214 *
h1.Switcher × Months fr Switch : 0 1.1440 .1077 10.6174 .0000 ***
h1.Switcher × Months fr Switch : 1 1.0999 .1105 9.9586 .0000 ***
h1.Switcher × Months fr Switch : 2 1.0992 .1084 10.1397 .0000 ***
h1.Switcher × Months fr Switch : 3 .9672 .0986 9.8051 .0000 ***
h1.Switcher × Months fr Switch : 4 .9391 .0978 9.5992 .0000 ***
h1.Switcher × Months fr Switch : 5 .9511 .0947 10.0450 .0000 ***
h2.(Intercept) .3721 .0381 9.7605 .0000 ***
h2.Balance .0002 .0000 75.3268 .0000 ***
h2.Utilization -.7081 .0180 -39.4148 .0000 ***
h2.Spending Amount .0008 .0000 131.1278 .0000 ***
h2.Merchant APR -.8939 .1321 -6.7660 .0000 ***
h2.Cash APR -1.9690 .1309 -15.0435 .0000 ***
h2.Charge-off Rate -.4501 .1042 -4.3213 .0000 ***
h2.Switcher .0155 .0335 .4634 .6430
h2.Months fr Switch : –5 -.0041 .0330 -.1244 .9010
h2.Months fr Switch : –4 .0455 .0330 1.3800 .1676
h2.Months fr Switch : –3 .0098 .0330 .2958 .7674
h2.Months fr Switch : –2 .0206 .0329 .6260 .5313
h2.Months fr Switch : –1 .0181 .0328 .5508 .5818
h2.Months fr Switch : 0 -.0084 .0328 -.2562 .7978
h2.Months fr Switch : 1 .0207 .0328 .6324 .5271
h2.Months fr Switch : 2 -.0186 .0329 -.5660 .5714
h2.Months fr Switch : 3 -.0224 .0330 -.6783 .4976
h2.Months fr Switch : 4 -.0130 .0331 -.3940 .6936
h2.Months fr Switch : 5 .0237 .0331 .7152 .4745
h2.Switcher × Months fr Switch : –5 -.0201 .0474 -.4247 .6711
h2.Switcher × Months fr Switch : –4 -.0748 .0474 -1.5770 .1148
h2.Switcher × Months fr Switch : –3 -.0048 .0474 -.1012 .9194
h2.Switcher × Months fr Switch : –2 -.0495 .0484 -1.0221 .3067
h2.Switcher × Months fr Switch : –1 .0576 .0468 1.2316 .2181
h2.Switcher × Months fr Switch : 0 -.6508 .0461 -14.1062 .0000 ***
h2.Switcher × Months fr Switch : 1 -.4074 .0463 -8.7986 .0000 ***
h2.Switcher × Months fr Switch : 2 -.4349 .0465 -9.3490 .0000 ***
h2.Switcher × Months fr Switch : 3 -.3933 .0467 -8.4234 .0000 ***
h2.Switcher × Months fr Switch : 4 -.3683 .0467 -7.8831 .0000 ***
h2.Switcher × Months fr Switch : 5 -.4443 .0468 -9.4871 .0000 ***
Num. Observations 73,250
Log Likelihood -127838.93

Note. ∗∗∗p < .001, ∗∗p < .01, ∗p < .05. The prefix of h1 indicates the estimation of the probability
of not-forgetting a repayment (the first component of the model). The prefix of h2 indicates the
estimation of latent repayment given not forgetting a repayment (the second component of the model).
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Table 7: Coefficient Estimates from Instrumental Variable Estimate

Dependent variable
Post - Switch Log(Repayment)

OLS 2SLS

(1) (2)

Balance –.00000 .0002∗∗∗

(.00000) (.00000)

Utilization .006 –.443∗∗∗

(.004) (.014)

Spending Amount –.00001∗∗∗ .001∗∗∗

(.00000) (.00000)

Merchant APR .916∗∗∗ –.864∗∗∗

(.027) (.101)

Cash APR –.930∗∗∗ –2.316∗∗∗

(.027) (.101)

Charge - off Rate –.208∗∗∗ –1.236∗∗∗

(.031) (.117)

Switching Rate .950∗∗∗

(.004)

Post - Switch –.553∗∗∗

(.015)

Constant .117∗∗∗ 5.376∗∗∗

(.006) (.025)

Observations 139,516 139,516
R2 .316 .294
Adjusted R2 .315 .294
Residual Std. Error (df = 139508) .378 1.412
F Statistic 9,186.110∗∗∗ (df = 7; 139508)

Note. ∗∗∗p < .001, ∗∗p < .01, ∗p < .05.
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Table 8: Experiment design

Minimum payment amount
Full repayment prompt Included Excluded

Excluded Control: Minimum included,
full repayment prompt omitted

Omit Minimum: Minimum
excluded, full repayment
prompt omitted

N = 181 N = 176

Included
Include Prompt: Minimum
included, full repayment
prompt given

Omit and Prompt: Minimum
excluded, full repayment
prompt given

N = 173 N = 169

Table 9: Experiment Repayments Means [95 % Confidence Intervals]

Minimum payment amount
Full repayment prompt Included Excluded
Excluded £376 [£316–£436] £500 [£439–£561]
Included £520 [£458–£581] £569 [£507–£632]

Note. Mean repayments [95% confidence intervals].
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Table 10: Repayment Regression Estimates Including Controls for Card Usage

Dependent variable:

Repayment in £

(1) (2) (3) (4) (5)

Full Repayment Prompted 106.910∗∗∗ 103.676∗∗∗ 176.690∗∗ 77.041∗∗ 98.752∗∗

(45.553 – 168.267) (42.724 – 164.629) (60.892 – 292.487) (26.890 – 127.191) (31.508 – 165.995)
Minimum Payment Omitted 87.783∗ 83.343∗ 173.814∗∗ 72.653∗∗ 88.837∗

(26.436 – 149.131) (22.373 – 144.313) (57.924 – 289.704) (22.583 – 122.724) (21.736 – 155.937)
Card User 115.011∗∗∗ 219.800∗∗∗

(46.903 – 183.119) (105.209 – 334.391)
Full Repayment Prompted x Card User –98.691

(–234.792 – 37.410)
Minimum Payment Omitted x Card User –123.214

(–259.398 – 12.969)
Full Repayer 482.671∗∗∗ 523.955∗∗∗

(432.167 – 533.175) (437.072 – 610.838)
Full Repayment Prompted x Full Repayer –47.997

(–149.040 – 53.046)
Minimum Payment Omitted x Full Repayer –35.198

(–136.094 – 65.697)
Constant 393.907∗∗∗ 314.590∗∗∗ 239.213∗∗∗ 202.619∗∗∗ 184.839∗∗∗

(341.403 – 446.411) (244.418 – 384.761) (142.719 – 335.706) (155.342 – 249.896) (128.546 – 241.132)

Observations 699 699 699 699 699
R2 .027 .042 .049 .354 .355
Adjusted R2 .025 .038 .042 .351 .350
Residual Std. Error 413.735 (df = 696) 410.808 (df = 695) 409.918 (df = 693) 337.511 (df = 695) 337.671 (df = 693)
F Statistic 9.775∗∗∗ (df = 2; 696) 10.261∗∗∗ (df = 3; 695) 7.188∗∗∗ (df = 5; 693) 126.750∗∗∗ (df = 3; 695) 76.246∗∗∗ (df = 5; 693)

Note: Intervals are 95% CIs. p < .05; * p < .01; ** p < .005; *** p < .001
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Appendix A CHARACTERISTICS OF SWITCHERS

Table W1 compares socio-economic statistics across card holders switching to different types
of automatic repayment. To do so, we retrieved census records from the UK National Census
for 2011 which includes detailed household information. (5% sample of raw data are available
for researchers via the UK Office for National Statistics.) In our field data, card holders across
2,994 different postcode districts while the census statistical unit is smaller, 8,436 Middle-super
output areas (MSOA). We weighted averaged the socio-economic variables across MSOAs
within each postcode districts, and matched with postcode districts where card holders locate.

Those switching to minimum automatic payment are disproportionately drawn from localities
with on average lower incomes, education levels and house prices, and higher rates of jobless
claimants and claimants of free school meals for children, which is a proxy measure of UK
social security benefit receipt.

Table W1: Comparison in Socio-Ecnomic Variables Among Cards Switching to Different
Autopay Types

Switch to Min-Auto Switch to Fixed-Auto Switch to Full-Auto
Mean house price (GBP) 219,879 201,129 235,457

(—) (0.000) (0.000)
Jobless claimants (%) 2.45 2.64 2.23

(—) (0.000) (0.000)
Mean weekly income (GBP) 763.46 734.18 786.81

(—) (0.000) (0.000)
Education level 4+ (%) 29.50 27.90 30.74

(—) (0.000) (0.000)
Mean Acorn category (1-6) 3.16 3.25 3.05

(—) (0.000) (0.000)
Free-school meal (%) 12.25 13.27 11.27

(—) (0.000) (0.000)

Note. The numbers in the parentheses are p-value taken from the t-test with Switch to Min-Auto cards.
Acorn category is a postcode-level affluence score constructed by the UK statistics authority. The lower
the Acorn category the higher the affluence.
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Figure W1: The distribution of repayments in the months where a manual repayment was made.
Each bar is a 1-penny-wide bin.
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Seeing repayments cluster at prominent numbers is common (Albers, 1997) and, more
generally, such a tendency for people to prefer prominent numbers has been evident in both
experimental (Whynes, Philips, and Frew, 2005) and field data (Ball, Torous, and Tschoegl,
1985; Christie and Schultz, 1994; Converse and Dennis, 2018; Harris, 1991; Kandel, Sarig,
and Wohl, 2001). However, after switching to automatic payments, the proportion covered
by these top four payments is almost eliminated, dropping to only 2.5% (Web Appendix B
confirms this pattern in a multinomial logistic regression, which controls for balance, credit
limit, how much of the credit limit is utilized, and credit score).

Interestingly, in the rare months in which individuals make additional manual repayments
in the range between the minimum and full, the distribution of repayments remains dominated
by prominent numbers (see Figure W1 in Web Appendix A). This suggests that, because
of inattention, people do not have to take a manual repayment decision, and thus cannot be
attracted by psychologically prominent numbers as repayments. Yet when they do pay attention
in the post-switch months where there is a manual repayment, people are just as attracted
to prominent number repayments as pre-switch. Web Appendix C shows conditional upon
a manual repayment being made, the probability of a full repayment is larger after switch
than before switch (using a logistic regression with card profile controls), providing further
evidence that people’s switching to a minimum automatic repayment is unlikely to be due to
their financial inability to repay the bill.
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Figure W2: Histograms of the change in monthly repayments before and after cards switch
to a minimum automatic repayment (“Min-Auto”), fixed automatic repayment (“Fixed-Auto”),
and full automatic repayment (“Full-Auto”). The unit of observation is a card-month (total
repayments to a particular card in a particular month). For the absolute amounts, each bar is
a 1-penny-wide bin. The sample consists of monthly repayments made between an account
opening date or the beginning of the data period (Jan. 2013) whichever is latter and the end
of the data period (Nov. 2014). The sample was restricted to cards switching to automatic
repayments during the data period. The number of months contributing to the figure differs
among cards while the number of months included in before and after periods differs within a
card. The card-months with no balance were excluded.
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Appendix B MULTINOMIAL LOGIT MODEL OF THE EFFECT OF SWITCHING
TO A MINIMUM AUTOMATIC REPAYMENT

To confirm the findings in the top panels of Figure W2 (i.e., change in repayments before
and after switching to a minimum automatic repayment), we fitted a multinomial logit model
of repayments to control for card characteristics (Equation W1). The model estimates the
probability that card holder i’s repayment at time t falls into each of seven categories: Missed,
Minimum, Larger 1, Larger 2, Larger 3, Larger 4, and Full. We use this categorical classification
because ”missed”, ”minimum”, and ”full” are discrete repayment types distinguishable from
other monetary amounts. Missed includes repayments less than the required minimums. Minimum
includes repayments which are equal to or greater than the required minimum and less than the
required minimum plus £10. This £10 allowance is for including repayments slightly larger
than the minimum, which were possibly caused by rounding up of the required minimum.
Larger 1 includes repayments which are not included in Missed and Minimum and are less
than 25% of the balance. Larger 2 includes repayments equal to or more than 25% of the
balance and less than 50% of the balance. Larger 3 includes repayments equal to or more than
50% of the balance and less than 75% of the balance. Larger 4 includes repayments equal to
or more than 75% of the balance and less than the full balance. Full includes repayments equal
to or more than the full balance. If a repayment was equal to the required minimum which
was also equal to the full balance, the repayment was included in Full. We included Balance,
Credit Limit, Utilization (how much of the credit limit is utilized), and Charge-off Rate (a
monotonic transform of credit score). The independent variable of interest is Post-Switch
which is a dichotomous variable having a value of 1 if a card had started using a minimum
automatic repayment, otherwise having a value of 0. We make the standard assumption that the
observation of repayment category k follows the Bernoulli distribution with mean P(Repayment Categoryi,t+1 =
Category k).

log

(
P(Repayment Categoryi,t+1 = Category k)

P(Repayment Categoryi,t+1 = Missed)

)
=β0 + β1Balancei,t,k + β2Credit Limiti,t,k + β3Utilizationi,t,k+

β4Spending Amounti,t,k + β5Merchant APRi,t,k + β6Cash APRi,t,k+

β7Charge-off Ratei,t,k + β8Post-Switchi,t,k

(W1)

Figure W3 shows the results. Table W2 reports the coefficients. Consistent with the finding
in the top panels of Figure W2, after setting a minimum automatic repayment the likelihood of
paying only the minimum within the month increases sharply from .204, 95% CI [.188, .221] to
.591, 95% CI [.578, .603]. The likelihood of other levels of repayment decreases: the likelihood
of missing the minimum payment decreases sharply from .112, 95% CI [.105, .119] to .016,
95% CI [.014, .018], while the likelihood of repayment in Larger 1 category decreased from
.276, 95% CI [.265, .287] to .108, 95% CI [.102, .113] and the likelihood of paying the full
balance halves from .243, 95% CI [.228, .258] to .178, 95% CI [.167, .190]. Thus the results
of the multinomial logit regression shown in Figure W3 confirms the pattern in the simple
histogram in the top panels of Figure W2: after switching to a minimum automatic repayment
card holders are more likely to repay the minimum and are less likely to miss repayments, but
are also less likely to make larger repayments.
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Figure W3: The fraction of balance repaid each month before and after cards switch to a
minimum automatic repayment. Repayment category probabilities are from a multinomial
logit model. Error bars are 95% confidence intervals. The standard errors were corrected
by clustering by cards and months.
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Table W2: Coefficients for Equation W1

Estimate LL UL Clustered SE z-value p-value
Intercept:Minimum 1.428 0.696 2.159 0.373 3.823 0.00013 ***
Intercept:Large1 2.336 1.618 3.054 0.366 6.378 0.00000 ***
Intercept:Large2 2.210 1.474 2.947 0.376 5.880 0.00000 ***
Intercept:Large3 1.859 1.105 2.612 0.385 4.833 0.00000 ***
Intercept:Large4 1.797 0.991 2.603 0.411 4.370 0.00001 ***
Intercept:Full 5.118 4.397 5.839 0.368 13.919 0.00000 ***
Balance:Minimum 0.000 0.000 0.000 0.000 -1.819 0.06889
Balance:Large1 0.000 0.000 0.000 0.000 -0.694 0.48788
Balance:Large2 0.000 0.000 0.000 0.000 -5.394 0.00000 ***
Balance:Large3 0.000 0.000 0.000 0.000 -5.837 0.00000 ***
Balance:Large4 0.000 0.000 0.000 0.000 -6.141 0.00000 ***
Balance:Full -0.001 -0.001 -0.001 0.000 -18.351 0.00000 ***
Credit Limit:Minimum 0.000 0.000 0.000 0.000 5.936 0.00000 ***
Credit Limit:Large1 0.000 0.000 0.000 0.000 6.595 0.00000 ***
Credit Limit:Large2 0.000 0.000 0.000 0.000 3.765 0.00017 ***
Credit Limit:Large3 0.000 0.000 0.000 0.000 3.678 0.00023 ***
Credit Limit:Large4 0.000 0.000 0.000 0.000 3.753 0.00017 ***
Credit Limit:Full 0.000 0.000 0.000 0.000 1.581 0.11396
Utilisation:Minimum 0.937 0.713 1.161 0.114 8.202 0.00000 ***
Utilisation:Large1 1.072 0.848 1.296 0.114 9.374 0.00000 ***
Utilisation:Large2 -0.339 -0.627 -0.050 0.147 -2.302 0.02134 *
Utilisation:Large3 -0.562 -0.914 -0.211 0.179 -3.137 0.00171 **
Utilisation:Large4 -0.821 -1.170 -0.473 0.178 -4.621 0.00000 ***
Utilisation:Full -2.133 -2.408 -1.859 0.140 -15.224 0.00000 ***
Spending Amount:Minimum 0.000 0.000 0.000 0.000 -5.642 0.00000 ***
Spending Amount:Large1 0.000 0.000 0.000 0.000 3.404 0.00067 ***
Spending Amount:Large2 0.001 0.001 0.001 0.000 13.994 0.00000 ***
Spending Amount:Large3 0.001 0.001 0.001 0.000 15.872 0.00000 ***
Spending Amount:Large4 0.001 0.001 0.001 0.000 15.284 0.00000 ***
Spending Amount:Full 0.001 0.001 0.002 0.000 24.037 0.00000 ***
Merchant APR:Minimum 1.437 0.074 2.801 0.696 2.066 0.03884 *
Merchant APR:Large1 0.818 -0.491 2.127 0.668 1.225 0.22060
Merchant APR:Large2 1.163 -0.270 2.595 0.731 1.591 0.11159
Merchant APR:Large3 0.302 -1.297 1.901 0.816 0.370 0.71150
Merchant APR:Large4 -0.084 -1.894 1.726 0.923 -0.091 0.92757
Merchant APR:Full -3.381 -4.748 -2.014 0.698 -4.848 0.00000 ***
Cash APR:Minimum -6.251 -8.935 -3.567 1.370 -4.564 0.00001 ***
Cash APR:Large1 -8.744 -11.434 -6.054 1.372 -6.371 0.00000 ***
Cash APR:Large2 -10.501 -13.251 -7.751 1.403 -7.484 0.00000 ***
Cash APR:Large3 -10.446 -13.325 -7.567 1.469 -7.112 0.00000 ***
Cash APR:Large4 -10.741 -13.636 -7.847 1.477 -7.273 0.00000 ***
Cash APR:Full -9.331 -11.957 -6.705 1.340 -6.965 0.00000 ***
Charged-off Rate:Minimum -7.368 -8.863 -5.874 0.763 -9.661 0.00000 ***
Charged-off Rate:Large1 -10.884 -12.546 -9.221 0.848 -12.833 0.00000 ***
Charged-off Rate:Large2 -19.373 -24.033 -14.714 2.377 -8.149 0.00000 ***
Charged-off Rate:Large3 -22.373 -29.545 -15.201 3.659 -6.114 0.00000 ***
Charged-off Rate:Large4 -15.499 -20.838 -10.161 2.724 -5.690 0.00000 ***
Charged-off Rate:Full -32.797 -39.086 -26.507 3.209 -10.220 0.00000 ***
Post-Switch:Minimum 2.980 2.830 3.130 0.077 38.943 0.00000 ***
Post-Switch:Large1 0.979 0.831 1.127 0.076 12.952 0.00000 ***
Post-Switch:Large2 1.397 1.213 1.581 0.094 14.875 0.00000 ***
Post-Switch:Large3 1.529 1.339 1.719 0.097 15.786 0.00000 ***
Post-Switch:Large4 1.631 1.376 1.887 0.130 12.528 0.00000 ***
Post-Switch:Full 1.607 1.437 1.778 0.087 18.452 0.00000 ***
Log-Likelihood -223,613.80
Num. of Observations 186,661

Note. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The standard errors were corrected by clustering by card and month.

8

Page 58 of 76

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

Appendix C LOGIT MODEL OF MANUAL REPAYMENTS AFTER SWITCHING
TO A MINIMUM AUTOMATIC REPAYMENT

We examine how the probability of card holders repaying in full changes in months with a
manual repayment (i.e., months in which card holders paid attention to a repayment) before
and after switching to a minimum automatic repayment. We conducted a logistic regression
(Equation W2). The dependent variable is a dichotomous indicator variable taking the value
of 1 if the card i was repaid in full at time t (i.e., fraction equal to or greater than 1) and 0
otherwise. Balance, Credit Limit, Utilization, Spending Amount, Merchant APR, Cash APR,
and Charge-off Rate were included as continuous control variables. The independent variable
of interest is Post-Switch which is a dichotomous variable having a value of 1 if a card had
started using a minimum automatic repayment, otherwise having a value of 0. The data were
restricted to repayments above the minimum (i.e., card months with manual repayments above
the minimum before switch and card months with an additional manual repayment over and
above the automatic repayment of the minimum after switch).

log
(

P(Full Repaymenti,t+1)
1 – P(Full Repaymenti,t+1)

)
=β0 + β1Balancei,t + β2Credit Limiti,t + β3Utilizationi,t+

β4Spending Amounti,t + β5Merchant APRi,t + β6Cash APRi,t+

β7Charge-off Ratei,t + β8Post-Switchi,t

(W2)

Figure W4 shows the model prediction for the probability of a full repayment, conditional
that a manual repayment is made. The results show that, when card holders make a manual
repayment over a minimum automatic repayment, they are more likely to repay in full than
before they switch, indicating that the absence of prominent number repayments after switch is
unlikely to be due to financial difficulty and is more consistent with the inattention account.
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Figure W4: Using only repayments above the minimum, the probability of a full repayment
before and after cards switch to a minimum automatic repayment. The probabilities are from a
logistic model. Error bars are 95% confidence intervals. The standard errors were corrected by
clustering by card and month.
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Table W3: Coefficients for Equation W2
Estimate LL UL Clustered SE z-value p-value

Intercept 1.689 1.443 1.934 0.125 13.495 0.00000 ***
Balance -0.001 -0.001 0.000 0.000 -13.693 0.00000 ***
Credit Limit 0.000 0.000 0.000 0.000 -6.006 0.00000 ***
Utilization -2.917 -3.120 -2.714 0.103 -28.189 0.00000 ***
Spending Amount 0.001 0.001 0.001 0.000 24.144 0.00000 ***
Merchant APR -4.183 -5.244 -3.123 0.541 -7.731 0.00000 ***
Cash APR -0.422 -1.447 0.602 0.523 -0.808 0.41896
Charge-off Rate -6.636 -8.773 -4.499 1.090 -6.087 0.00000 ***
Post-Switch 0.444 0.388 0.501 0.029 15.447 0.00000 ***
Log-Likelihood -51,205.73
Num. of Observations 103,668

Note. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The standard errors were corrected by clustering by
card and month.
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Appendix D SUPPLEMENTAL MATERIALS FOR MATCHING ANALYSIS

Table W4: Matching Validation on Socio-Economic Variables
Switcher Synthetic Control p-value

Mean house price (GBP) 216,829 221,613 0.866
Jobless claimants (%) 2.44 2.39 0.879
Mean weekly income (GBP) 758.89 784.41 0.629
Education level 4+ (%) 29.11 29.77 0.820
Mean Acorn category 3.17 3.02 0.289
Free-school meal (%) 12.25 10.29 0.130

Note. p-values were taken from t-test.

Figure W5: Notched box-plot on median balances before (synthetic) switch. The notches
extends to approximately 95% confidence intervals around the median. The boxes show
interquartile ranges.
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Appendix E SUPPLEMENTAL MATERIALS FOR LENDER-INDUCED
SWITCHING SAMPLE

The difference-in-differences estimates based upon the synthetic control group suggest that
the reduction in repayments after switching to minimum automatic repayments is unlikely to
be due to an intention of the part of card holders to pay only the minimum (or close to only
the minimum) in future months. While we cannot test this assumption further, for example
through a randomized-control trial of minimum automatic repayments in which card holders
are exogenously assigned to switching, a feature of lenders’ account management practices
introduces a degree of exogeneity in switching for a subset of accounts.

Specifically, we focus on a subsample of accounts where lenders are more likely to have
played a role in setting-up minimum automatic repayments. In the data, many card holders
received refunds of missed payment fees in return for switching to minimum automatic repayments.
This occurs when card holders contact their credit card company about the fee (often to raise a
complaint) and are induced by their card provider to set up the automatic repayment to avoid
forgetting a repayment in future, in return for a fee refund. Consequently, some of the refunded
cards switched to the automatic repayment while others did not. Those switchers were likely
to set up the automatic repayment due to an arguably exogenous inducement by card providers
rather than ongoing intention to repay only the minimum.

Adopting this, we extracted cards setting up a minimum automatic repayment after the
refund of a late payment fee (within two months after a refund) and matched them to a synthetic
control group. In the matching, each switcher is matched to a card which received the refund
in the same calendar month but did not switch. In addition, the matching balances covariate
values between refund-triggered switchers and the control cards. Using this matched sample,
we replicated our main analysis including the single-hurdle difference-in-differences model.
As we restrict to cards receiving a refund only, the sample in this analysis is much smaller
(6,870 observations, 9.4% of observations from the single-hurdle selection model sample).

Results are shown in Web Appendix H. Table W7 indicates that the pre-switch profile of
card holders in the switcher and synthetic control group are closely matched. In addition, the
pre-switch repayment distributions are similar between the switchers and the synthetic control
group (panels A and C of Figure W9). A plot of the pre- and post-switch distributions of
repayments for the switchers (panels A and B of Figure W9) resembles that seen in panels
A and B of Figure W2 in the illustrative results (i.e., the sharp increase of the proportion of
minimum repayments after switch, eliminating payments at prominent values). On the other
hand the pre- and post-switch distributions are similar to the synthetic control group (panels C
and B of Figure W9).

A regression with the single-hurdle selection model was conducted on the refund-triggered
synthetic matched sample. Figure W6 shows the model predictions for the probability of
forgetting a repayment with mean covariate values. The probability of forgetting a repayment
jumps at two months before (synthetic) switch for both groups because we matched switchers
with non-switchers receiving a refund of the late payment fee in the same calendar month.
After (synthetic) switch, the probability is nearly zero for switchers while the synthetic control
group keeps 3-4% level even after synthetic switch.

The coefficient estimates from the regression show that, similar to the results of the main
regression, the Switcher × Months from Switch interaction terms indicate that the switch
reduces repayments of refund-triggered switchers but does not impact repayments of the synthetic
control group (see Table W8 and Figure W10). This suggests that the effect of a minimum
automatic repayment is unlikely to be due to card holders’ intentions to make small repayments
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Figure W6: Predictions for the probability of forgetting a repayment from the single-hurdle
selection model (refund-triggered cards). The shadowed areas represent 95% confidence
intervals obtained by repeating the regression with bootstrapped samples. The iteration is
continued until 1,000 regressions successfully converged. Matched pairs were resampled in
the bootstrap.
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Appendix F CONDITIONAL ESTIMATION

We conducted an OLS with Equation W3 on the sample consisting of positive repayments (i.e.,
conditional on not-missing the repayment).

log(Repaymenti,t) = β0 + β1Switcheri + βT2 Di,t + βT3 Switheri × Di,t + βT4 xi,t + εi,t (W3)

where Switcheri is a dichotomous variable having a value of 1 if the card i switches to a
minimum automatic repayment, otherwise 0. Di,t is a vector of dummies specifying months-from-switch
(11 levels from 5 to 5). xi,t is a vector of covariates including balance, utilization, spending
amount, merchant APR, cash APR, and charge-off rate (all are month-card level variables).
The error term, εi,t, is assumed to be normally distributed. β0, β1, β2, β3, and β4 are a vector of
coefficients with the length of 1, 1, 11, 11, and 6, respectively.

Figure W7 shows the coefficient estimates and corresponding 95% confidence intervals for
Switcher × Months from Switch interactions. The full regression table is shown in Table W5.
The results confirm those in the main analysis shown in Figure 2 and Table 6.
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Figure W7: Coefficient estimates and confidence intervals for the effect of switchers switching
to a minimum automatic repayment. Error bars are 95% confidence intervals. The coefficients
were estimated by OLS with Equation W3 on the sample conditional on positive payments.
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Table W5: Coefficient Estimates from OLS model on Conditional Sample
Estimate Std. Error t-value p-value

(Intercept) 5.4320 0.0388 140.0362 0.0000 ***
Balance 0.0002 0.0000 73.5639 0.0000 ***
Utilization -0.6998 0.0184 -38.1146 0.0000 ***
Spending Amount 0.0008 0.0000 130.2210 0.0000 ***
Merchant APR -1.0630 0.1349 -7.8784 0.0000 ***
Cash APR -1.9281 0.1321 -14.5934 0.0000 ***
Charge-off Rate -0.2424 0.1241 -1.9531 0.0508
Switcher 0.0183 0.0341 0.5379 0.5907
Months fr Switch : –5 -0.0056 0.0335 -0.1659 0.8683
Months fr Switch : –4 0.0443 0.0335 1.3217 0.1863
Months fr Switch : –3 0.0103 0.0335 0.3080 0.7581
Months fr Switch : –2 0.0192 0.0334 0.5756 0.5649
Months fr Switch : –1 0.0141 0.0333 0.4241 0.6715
Months fr Switch : 0 -0.0073 0.0333 -0.2200 0.8258
Months fr Switch : 1 0.0200 0.0333 0.6001 0.5484
Months fr Switch : 2 -0.0219 0.0334 -0.6572 0.5110
Months fr Switch : 3 -0.0256 0.0335 -0.7649 0.4444
Months fr Switch : 4 -0.0158 0.0336 -0.4703 0.6382
Months fr Switch : 5 0.0224 0.0336 0.6655 0.5057
Switcher × Months fr Switch : –5 -0.0134 0.0482 -0.2782 0.7808
Switcher × Months fr Switch : –4 -0.0677 0.0482 -1.4025 0.1608
Switcher × Months fr Switch : –3 0.0113 0.0483 0.2338 0.8151
Switcher × Months fr Switch : –2 0.0074 0.0496 0.1481 0.8823
Switcher × Months fr Switch : –1 0.0685 0.0476 1.4400 0.1499
Switcher × Months fr Switch : 0 -0.6746 0.0468 -14.4213 0.0000 ***
Switcher × Months fr Switch : 1 -0.4218 0.0469 -8.9923 0.0000 ***
Switcher × Months fr Switch : 2 -0.4465 0.0471 -9.4831 0.0000 ***
Switcher × Months fr Switch : 3 -0.4057 0.0473 -8.5802 0.0000 ***
Switcher × Months fr Switch : 4 -0.3798 0.0473 -8.0243 0.0000 ***
Switcher × Months fr Switch : 5 -0.4587 0.0474 -9.6681 0.0000 ***
Num. Observations 67,475
Adjusted R2 0.3296

Note. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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Appendix G TYPE II TOBIT MODEL

As a robustness check, we conducted an exponential type II Tobit estimation. The sample used
is identical to that in the main analysis.

Figure W8 shows the coefficient estimates and corresponding 95% confidence intervals for
Switcher×Months from Switch interactions taken from the exponential type II Tobit estimation.
The full regression table is shown in Table W6. The results confirm those in the main analysis
shown in Figure 2 and Table 6.
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Figure W8: Coefficient estimates and confidence intervals for the effect of switchers switching
to a minimum automatic repayment. Error bars are 95% confidence intervals. The coefficients
were estimated by the exponential type II Tobit model.
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Table W6: Coefficient Estimates from Type II Tobit Model
Estimate Std. Error t-value p-value

h1.(Intercept) 1.4501 0.0365 39.7755 0.0000 ***
h1.Tenure 0.0069 0.0014 5.1283 0.0000 ***
h1.Switcher -0.0985 0.0482 -2.0445 0.0409 *
h1.Months fr Switch : –5 -0.0322 0.0493 -0.6536 0.5134
h1.Months fr Switch : –4 -0.0555 0.0492 -1.1278 0.2594
h1.Months fr Switch : –3 -0.0318 0.0493 -0.6446 0.5192
h1.Months fr Switch : –2 -0.0039 0.0497 -0.0781 0.9378
h1.Months fr Switch : –1 0.0310 0.0500 0.6189 0.5360
h1.Months fr Switch : 0 0.0279 0.0511 0.5466 0.5846
h1.Months fr Switch : 1 0.1037 0.0518 2.0028 0.0452 *
h1.Months fr Switch : 2 0.0590 0.0516 1.1427 0.2531
h1.Months fr Switch : 3 0.0388 0.0518 0.7490 0.4538
h1.Months fr Switch : 4 0.0659 0.0519 1.2696 0.2042
h1.Months fr Switch : 5 -0.0062 0.0510 -0.1218 0.9031
h1.Switcher × Months fr Switch : –5 -0.0274 0.0672 -0.4078 0.6834
h1.Switcher × Months fr Switch : –4 -0.0724 0.0666 -1.0873 0.2769
h1.Switcher × Months fr Switch : –3 -0.1468 0.0661 -2.2211 0.0263 *
h1.Switcher × Months fr Switch : –2 -0.7186 0.0641 -11.2066 0.0000 ***
h1.Switcher × Months fr Switch : –1 0.1282 0.0699 1.8324 0.0669
h1.Switcher × Months fr Switch : 0 1.2425 0.1041 11.9337 0.0000 ***
h1.Switcher × Months fr Switch : 1 1.1992 0.1061 11.3005 0.0000 ***
h1.Switcher × Months fr Switch : 2 1.2742 0.1026 12.4221 0.0000 ***
h1.Switcher × Months fr Switch : 3 1.1265 0.0938 12.0160 0.0000 ***
h1.Switcher × Months fr Switch : 4 1.0553 0.0936 11.2694 0.0000 ***
h1.Switcher × Months fr Switch : 5 1.0774 0.0907 11.8728 0.0000 ***
h2.(Intercept) 0.4945 0.0403 12.2588 0.0000 ***
h2.Balance 0.0002 0.0000 75.6853 0.0000 ***
h2.Utilization -0.7125 0.0195 -36.5670 0.0000 ***
h2.Spending Amount 0.0008 0.0000 240.0921 0.0000 ***
h2.Merchant APR -1.0104 0.1382 -7.3110 0.0000 ***
h2.Cash APR -1.8762 0.1268 -14.8002 0.0000 ***
h2.Charge-off Rate -0.4347 0.1104 -3.9387 0.0001 ***
h2.Switcher 0.0477 0.0362 1.3173 0.1878
h2.Months fr Switch : –5 0.0046 0.0360 0.1281 0.8981
h2.Months fr Switch : –4 0.0561 0.0368 1.5229 0.1278
h2.Months fr Switch : –3 0.0177 0.0364 0.4859 0.6270
h2.Months fr Switch : –2 0.0218 0.0364 0.5982 0.5497
h2.Months fr Switch : –1 0.0125 0.0364 0.3434 0.7313
h2.Months fr Switch : 0 -0.0220 0.0367 -0.5996 0.5488
h2.Months fr Switch : 1 -0.0016 0.0365 -0.0428 0.9659
h2.Months fr Switch : 2 -0.0362 0.0367 -0.9869 0.3237
h2.Months fr Switch : 3 -0.0385 0.0372 -1.0362 0.3001
h2.Months fr Switch : 4 -0.0308 0.0368 -0.8368 0.4027
h2.Months fr Switch : 5 0.0171 0.0372 0.4595 0.6459
h2.Switcher × Months fr Switch : –5 -0.0151 0.0506 -0.2989 0.7650
h2.Switcher × Months fr Switch : –4 -0.0537 0.0512 -1.0500 0.2937
h2.Switcher × Months fr Switch : –3 0.0376 0.0508 0.7402 0.4592
h2.Switcher × Months fr Switch : –2 0.2146 0.0509 4.2170 0.0000 ***
h2.Switcher × Months fr Switch : –1 0.0195 0.0508 0.3839 0.7010
h2.Switcher × Months fr Switch : 0 -0.7810 0.0488 -16.0212 0.0000 ***
h2.Switcher × Months fr Switch : 1 -0.5283 0.0496 -10.6488 0.0000 ***
h2.Switcher × Months fr Switch : 2 -0.5592 0.0493 -11.3322 0.0000 ***
h2.Switcher × Months fr Switch : 3 -0.5130 0.0498 -10.3022 0.0000 ***
h2.Switcher × Months fr Switch : 4 -0.4856 0.0496 -9.7870 0.0000 ***
h2.Switcher × Months fr Switch : 5 -0.5702 0.0499 -11.4186 0.0000 ***
Num. Observations 73,250
Log Likelihood -127,487.52

Note. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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Appendix H LENDER-INDUCED SWITCHING SAMPLE

In addition to the main analysis with the matched synthetic control group, this section further
addresses a particular endogeneity concern that the decision to adopt automatic repayments
might coincide with a decision to reduce future payments. If card holders switch with ongoing
intention to reduce future repayments, we might falsely attribute the reduction in future payments
as arising due to the switch to automatic repayments. In order to account for this concern,
we exploit a feature of the data, where there is a (likely exogenous) inducement to set up a
minimum automatic repayment. In the data many consumers receive a late payment fee after
forgetting to pay their credit card bill. We see that 6.5% of late payment fees are refunded in our
sample, and this occurs when card holders contact their credit card company to complain about
the fee. Of those card holders who receive a refunded late payment fee, we see that about 10.5%
go on to set up a minimum automatic repayment. These consumers are likely to have been
prompted by their card provider to set up the automatic repayment to avoid the chance of further
late payment fees rather than because of an ongoing intention to repay only the minimum. This
is an arguably exogenous inducement to set up a minimum automatic repayment. Adopting this,
we further restricted the sample to card holders setting up a minimum automatic repayment
after the refund of a late payment fee (within two months) and matched them to a synthetic
control group.

The method to create the synthetic control group is as follows. For each switching card,
we extracted all non-switching cards which received a refund of the late payment fee in the
same calendar month where the switching card received a refund (candidate cards). For the
candidate cards, we set a synthetic switch month at one month later from the refund. Covariate
values for six months before the (synthetic) switch month were averaged within the switcher
and each of candidate cards. Then, one-to-one nearest neighbor matching was done based on
the Mahalanobis distance in the averaged covariates. Finally, six card-month observations after
the (synthetic) switch month were combined to the matched pre-switch data.

Table W7 shows balanced covariate values. Covariate values are well-balanced between
refund-triggered switchers and the synthetic control group, except the charge-off rate. Figure
W9 compares the distribution of repayments before and after (synthetic) switch between the
refund-triggered switchers and the synthetic control group. The distribution is similar between
two groups before (synthetic) switch (Panels A and C). However, the proportion of minimum
repayments jumps from 20% to 60%, eliminating repayments at higher prominent values, after
refund-triggered cards switch to a minimum automatic repayment, while the distribution is
nearly unchanged from before to after synthetic switch for the synthetic control group (except
the large proportion of missed payment in pre-switch distribution caused by the way of constructing
the sample).

18

Page 68 of 76

Journal of Marketing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Version

Table W7: Comparison of Pre-Switch Average Card Profile (Refund-Triggered Cards)
Switcher Synthetic Control p-value

Ave. Balance 1,846.13 1,736.60 0.267
Ave. Credit Limit 5,720.44 5,639.04 0.800
Ave. Utilization 0.39 0.37 0.366
Ave. Spending 344.17 350.44 0.979
Ave. Merchant APR 0.19 0.19 0.945
Ave. Cash APR 0.25 0.25 0.616
Ave. Charge-off Rate 0.03 0.02 0.000
Card Tenure 8.33 8.27 0.709

Note. p-values are taken from the bootstrap Kolmogorov-Smirnov test
(1,000 resamples).

Figure W9: Change in repayments before and after cards switch to a minimum automatic
repayment (refund-triggered cards). For the absolute amounts, each bar is a 1-penny-wide bin.
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Figure W10: Coefficient estimates and confidence intervals for the effect of refund-triggered
switchers switching to a minimum automatic repayment. Error bars are 95% confidence
intervals.
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Table W8: Coefficient Estimates from Single-Hurdle Selection Model (Refund-Triggered
Cards)

Estimate Std. Error t-value p-value
h1.(Intercept) 1.6182 0.1298 12.4673 0.0000 ***
h1.Tenure 0.0047 0.0039 1.1976 0.2311
h1.Switcher -0.2404 0.1706 -1.4089 0.1589
h1.Months fr Switch : –5 0.1167 0.1856 0.6289 0.5294
h1.Months fr Switch : –4 -0.3280 0.1624 -2.0199 0.0434 *
h1.Months fr Switch : –3 -0.4393 0.1587 -2.7685 0.0056 **
h1.Months fr Switch : –2 -1.6700 0.1451 -11.5076 0.0000 ***
h1.Months fr Switch : –1 0.2333 0.1917 1.2167 0.2237
h1.Months fr Switch : 0 0.0748 0.1829 0.4090 0.6825
h1.Months fr Switch : 1 0.5463 0.2319 2.3557 0.0185 *
h1.Months fr Switch : 2 0.0978 0.1861 0.5257 0.5991
h1.Months fr Switch : 3 0.1369 0.1894 0.7227 0.4698
h1.Months fr Switch : 4 0.2336 0.1983 1.1779 0.2388
h1.Months fr Switch : 5 0.0740 0.1869 0.3959 0.6922
h1.Switcher × Months fr Switch : –5 -0.0937 0.2463 -0.3804 0.7036
h1.Switcher × Months fr Switch : –4 0.0177 0.2210 0.0800 0.9362
h1.Switcher × Months fr Switch : –3 -0.0122 0.2152 -0.0568 0.9547
h1.Switcher × Months fr Switch : –2 0.1684 0.1990 0.8464 0.3973
h1.Switcher × Months fr Switch : –1 0.1825 0.2637 0.6920 0.4890
h1.Switcher × Months fr Switch : 0 4.0858 55.5345 0.0736 0.9414
h1.Switcher × Months fr Switch : 1 0.7497 0.4195 1.7871 0.0739
h1.Switcher × Months fr Switch : 2 0.9581 0.3343 2.8662 0.0042 **
h1.Switcher × Months fr Switch : 3 1.1433 0.3988 2.8670 0.0041 **
h1.Switcher × Months fr Switch : 4 1.0463 0.4049 2.5841 0.0098 **
h1.Switcher × Months fr Switch : 5 1.2024 0.3997 3.0082 0.0026 **
h2.(Intercept) 0.1823 0.1313 1.3889 0.1649
h2.Balance 0.0002 0.0000 20.6059 0.0000 ***
h2.Utilization -0.5986 0.0621 -9.6473 0.0000 ***
h2.Spending Amount 0.0010 0.0000 43.7406 0.0000 ***
h2.Merchant APR -2.2604 0.4858 -4.6526 0.0000 ***
h2.Cash APR -0.1602 0.4430 -0.3617 0.7176
h2.Charge-off Rate -0.8459 0.3827 -2.2103 0.0271 *
h2.Switcher -0.1136 0.1058 -1.0738 0.2829
h2.Months fr Switch : –5 -0.0331 0.1014 -0.3262 0.7443
h2.Months fr Switch : –4 0.0180 0.1024 0.1759 0.8604
h2.Months fr Switch : –3 0.0721 0.1027 0.7020 0.4827
h2.Months fr Switch : –2 0.0727 0.1206 0.6033 0.5463
h2.Months fr Switch : –1 0.3329 0.0999 3.3326 0.0009 ***
h2.Months fr Switch : 0 0.0699 0.1016 0.6880 0.4915
h2.Months fr Switch : 1 -0.0702 0.1006 -0.6976 0.4854
h2.Months fr Switch : 2 -0.1162 0.1022 -1.1370 0.2555
h2.Months fr Switch : 3 -0.0642 0.1024 -0.6275 0.5304
h2.Months fr Switch : 4 0.0675 0.1024 0.6590 0.5099
h2.Months fr Switch : 5 -0.0746 0.1035 -0.7202 0.4714
h2.Switcher × Months fr Switch : –5 0.0118 0.1483 0.0798 0.9364
h2.Switcher × Months fr Switch : –4 -0.1395 0.1502 -0.9288 0.3530
h2.Switcher × Months fr Switch : –3 -0.1202 0.1502 -0.7999 0.4237
h2.Switcher × Months fr Switch : –2 -0.1776 0.1753 -1.0130 0.3111
h2.Switcher × Months fr Switch : –1 -0.1564 0.1443 -1.0837 0.2785
h2.Switcher × Months fr Switch : 0 -0.7588 0.1446 -5.2483 0.0000 ***
h2.Switcher × Months fr Switch : 1 -0.3825 0.1443 -2.6508 0.0080 **
h2.Switcher × Months fr Switch : 2 -0.3677 0.1457 -2.5240 0.0116 *
h2.Switcher × Months fr Switch : 3 -0.3593 0.1463 -2.4560 0.0141 *
h2.Switcher × Months fr Switch : 4 -0.5600 0.1465 -3.8237 0.0001 ***
h2.Switcher × Months fr Switch : 5 -0.4150 0.1475 -2.8145 0.0049 **
Num. Observations 6,870
Log Likelihood -11418.08

Note. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The prefix of h1 indicates the estimation of
the probability of not-forgetting a repayment (the first component of the model). The prefix of h2
indicates the estimation of latent repayment given not forgetting a repayment (the second component
of the model).
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Appendix I DETAILS OF EXCESS INTEREST COST SIMULATION

We conducted Monte Carlo simulations to estimate the financial cost from lower repayments
among card holders switching to a minimum automatic repayment. We simulate two types of
agents. The first type of agents never switch to automatic repayment (Remaining as Non-Auto
Cards) while the second type of agents switch to a minimum automatic repayment (Switching
to Min-Auto Cards). To resemble real-life use of credit cards, the simulation assumes a steady
continuation of purchases and repayments. We use a sample of cards switching to a minimum
automatic repayment.

For both types of agents, we simulate their monthly card usages and repayments, using
card-month observations of cards switching to minimum automatic repayments during the data
period. At each time-step in the simulations, a repayment category is drawn from their actual
distributions in card-months with similar card profiles. (Card-months with zero balance was
excluded.) The categories include ”missed”, ”minimum” (with £10 buffer for rounding-up),
and ”full”. Repayments in the actual distribution which are neither missed, minimum, nor full
category were categorized as their own absolute value (e.g., 50.00, 100.00, 200.00). In the
simulation, repayments are not allowed to be greater than a corresponding full balance at the
time-step. In drawing the repayment category, we use card-months before switch for Remaining
as Non-Auto Cards while we use card-months after switch for Switching to Min-Auto Cards.
Thus, in the simulations, Remaining as Non-Auto Cards are repaid as if card holders had not
switched to a minimum automatic repayment. In addition, the total purchase amount and the
total cash advance amount in card-months with similar card profiles were also drawn from the
actual distribution. (Card-months with zero balance was included.). For the purchase and the
cash advance amounts, post-switch distribution was used for the both types of agents. A card
profile for sampling consists of balance, utilization, and purchase amount in the month. The
credit limit, the merchant APR, and the cash APR for initializing the agents were the mean
values in the month where card holders in our sample set up minimum automatic repayments
(£5,700, 19.5%, and 24.6%, respectively) and were assumed to be constant throughout the
simulation. If an agent missed a repayment, a £12 late payment fee was incurred in the next
month. If an agent made a cash advance or the utilization rate exceeded 1, a cash advance fee,
which is £3 or 3% of the cash advance amount (whichever is greater) and a £12 over-limit fee
were also incurred. (The regulated fee levels in the UK were used.)

Each time step, the balance was updated reflecting a repayment, interest based on the
merchant APR and the cash APR, new purchases, new cash advance amount, late payment fees,
cash advance fee, and over-limit fee. A repayment made in a given month was first allocated to
the balance for the cash advance, and then any remaining part was used to repay the balance on
purchases. Interest on purchase and cash advances were separately calculated in each month
with the merchant APR and the cash APR, respectively. The simulation continued for 24
months. We ran simulations with the mean balance in the month where card holders switched
to minimum automatic repayments (£1,330.34). We assumed that the whole initial balance was
on purchases. The simulated results were averaged and the corresponding confidence intervals
were calculated with the bootstrap method (1,000 resamples).

Simulation results are in the main paper section ‘FIELD DATA STUDY: AUTOMATIC
MINIMUM PAYMENTS’, subsection ‘Excess Interest Cost Simulations’.
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Appendix J DETAILS OF SIMULATION FOR TOTAL COST ESTIMATE

We also conducted a final simulation estimating what proportion of total interest and fees
incurred by all cards is due to minimum automatic repayment. We randomly sampled 10,000
cards from the whole data (excluding cards with a balance transfer but including cards with
a zero merchant APR) and extracted 1,943 cards which were repaid by minimum automatic
repayment at least once (Some-Min-Auto Cards). In the simulation the Some-Min-Auto Cards
were counterfactually repaid over time as if the cards were not switched to minimum automatic
repayment: At each time-step in the simulation, the spending amount was drawn from the
whole data period of Some-Min-Auto Cards but repayment categories and amounts were drawn
from card-months before Some-Min-Auto Cards had a first minimum automatic repayment.
The sampling methods are identical to those used in the excess interest cost simulation (see
Appendix I). The balance, interest, and fees were then calculated for the month. The simulation
continued up to the number of observations of the card in the data.

The simulation results showed that Some-Min-Auto cards could save about 19.8%, 95%
CI [10.6%, 27.8%] of total interest and fees if they were repaid as if they did not switch to
a minimum automatic repayment. Considering that the proportion of interest and fees for
Some-Min-Auto Cards among total interest and fees for all 10,000 cards is about 43%, we
estimate that 8.4%, 95% CI [4.5%, 11.8%] of the total interest and fees for all cards is due to
minimum automatic repayment.
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Appendix K SUPPLEMENTARY ANALYSIS FOR THE EXPERIMENT

Balance Tests. Table W9 gives the proportion of participants who reported they were card
users and the proportion who reported paying last month’s credit card bill in full. Proportions
were similar across conditions, showing that these measures were balanced over experimental
conditions. Logistic regressions show no significant effect of omitting the minimum payment,
including the full repayment prompt, or an interaction between (all ps > .20).

Table W9: Experiment Balance Tests
Condition Proportion Card Users Proportion Full Repayers
Control 0.71 [0.64–0.78] 0.52 [0.44–0.61]
Omit Minimum 0.72 [0.65–0.79] 0.51 [0.43–0.60]
Include Prompt 0.71 [0.64–0.77] 0.60 [0.51–0.67]
Omit and Prompt 0.77 [0.70–0.82] 0.62 [0.53–0.69]

Numbers are proportions of participants with 95% confidence intervals.

The proportion of card users and the proportion of full repayers was also balanced over
those included and excluded from the experiment. The fraction of card users was 0.73 for both
included and excluded participants. The fraction of full repayers was 0.59 for those excluded
and 0.56 for those included in the experiments. (ps > .50.)

Repayment distributions. Figure W11 shows the raw distribution of repayments, contrasting
the minimum payment information and full repayment prompt conditions. For the minimum
payment information inclusion contrast, the cumulative density function of repayments for
exclusion is below that for inclusion, indicating that repayments are higher when the minimum
payment information is omitted (Figure W11a). A similar pattern is seen when contrasting full
repayment prompt conditions. The cumulative density function of repayments for prompting
with a full repayment is below that for not prompting, indicating that repayments are higher
when people are prompted to pay in full (Figure W11b).
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(a) Contrasting the minimum payment inclusion conditions
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(b) Contrasting the full repayment prompt conditions
Figure W11: Cumulative density functions showing the distribution of repayments. The y-axis
is the probability of making at least the repayment on the x axis. Ghosted histograms are
the corresponding distributions. Dotted lines are the minimum payment amount and the full
repayment amount.

Probability of full and minimum repayments. Because the distribution of payments had
mass close to the minimum and at the full amount, we also ran analyses of the probability of
making a full payment and the probability of making a payment at or below the minimum. We
present the results from linear probability models for ease of interpretation, again without the
non-significant interaction between minimum payment information and full repayment prompt.
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Logistic regressions lead to the same conclusion.
The effect of omitting minimum payment information is to reduce the probability of paying

at or below the minimum from .143, 95% CI [.114, .172] to .031, 95% CI [.002, .060]. This can
be seen in Figure W11a as the difference in the step in the cumulative density function at the
minimum payment amount. This is a significant absolute decrease of .112, 95% CI [.071, .153],
t(695) = 5.34, p < .001. The effect of omitting minimum payment information increased the
probability of paying in full from .374, 95% CI [.324, .425] to .427, 95% CI [.376, .479]. This
is a non-significant absolute increase of .053, 95% CI [-.019, .125], t(696) = 1.444, p = .149.
This can be seen in Figure W11a as the difference in the step in the cumulative density function
at the full repayment amount.

The effect of including the full payment prompt is to decrease the probability of a minimum
payment from .117, 95% CI [.087, .146] to .057, 95% CI [.028, .087]. This is a significant
decrease of an absolute .059, 95% CI [.018, .010], t(695) = 2.81, p < .005. The effect
of including the full payment prompt is to increase the probability of a full payment from
.337, 95% CI [.286, .387] to .465, 95% CI [.414, .517]. This is a significant increase of an
absolute .129, 95% CI [.057, .201], t(696) = 3.502, p < .001. These differences can be seen in
Figure W11b. The effects of including this full payment prompt is additive to that of omitting
minimum payment information: one treatment did not crowd out the other.
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