
Additive Manufacturing 49 (2022) 102510

Available online 1 December 2021
2214-8604/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research Paper

FLatt Pack: A research-focussed lattice design program

I. Maskery a,*, L.A. Parry a, D. Padrão a, R.J.M. Hague a, I.A. Ashcroft a

a Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK

A R T I C L E I N F O

Keywords:
Lattice design
Additive manufacturing
Triply periodic minimal surfaces (TPMS)
Matlab GUI

A B S T R A C T

Lattice structures are an important aspect of design for additive manufacturing (DfAM). They enable significant
component light-weighting and the tailoring of a wide range of physical responses; mechanical, thermal,
acoustic, etc. In turn, lattice design relies on fundamental research to uncover useful structure-property re
lationships, such as the influence of cell geometry and volume fraction. A number of commercial computer-
aided-design (CAD) programs exist that offer lattice generation, but these tend to prioritise product design.
This paper describes the FLatt Pack program (or Functional Lattice Package), which was created to address the
paucity of research-focussed lattice design software. It possesses a number of features with this in mind, including;
(i) it is free to use for research, (ii) it is standalone software with minimal, and also free, dependencies, and (iii) it
undergoes frequent and rapid development based on state of the art lattice information and modelling methods.
FLatt Pack includes twenty-three lattice cell types covering a broad range of pore connectivity, structural
anisotropy, and surface area; a clear GUI presenting the lattice design stages in a sequential manner; and the
option to export designs in appropriate formats for AM and finite element (FE) simulation. The program also
features conformal lattice generation in arbitrary shapes, arbitrary volume fraction grading, and resource-
efficient computation through an adaptive spatial resolution based on the user’s design choices. The most
recent version of FLatt Pack is freely available at: www.github.com/ian27ax/FLatt_Pack_dist.

1. Introduction

The emergence of additive manufacturing (AM), and the enhanced
manufacturing freedoms it represents, has led to a surge of interest in the
design of cellular, or lattice, structures. (Note that ‘lattice’ is typically
used to refer to cellular structures in an AM context, so will be used
throughout this paper.) The reason for this is clear if we consider the
processes traditionally used to produce such structures. Planar honey
combs and sandwich panels can be assembled from polymer, metal or
composite sheets [1,2], or through the corrugation [3,4] or expansion
[5,6] processes. And metal foams can be made using the gas injection
and gas-releasing particle decomposition methods, as well as by metal
deposition on pre-existing polymer foams [7]. With respect to the pro
duction of lattice structures, AM offers three main advantages over these
and other conventional processes:

1. Complete control over the cell geometry, and therefore the resulting
physical properties.

2. Complete control over the structure’s outer form; creating net shape
components without subsequent machining or assembly steps.

3. AM components are made according to a computer representation of
the design, enabling a range of simulation and optimisation methods
prior to manufacture.

These provide strong motivation for the incorporation of lattices in
AM components, as they mean that computer-aided-design (CAD) can be
used to create lattice structures with pre-defined properties (e.g., mass,
stiffness), therefore providing materially-efficient solutions for partic
ular applications. Consequently, a number of CAD programs have been
developed for lattice structure generation.

Among the commercial programs featuring lattice generation,
Autodesk offers a range of latticing modules for their Netfabb software
[8], with capabilities ranging from simple lattice infill to the simulation
of lattices under quasi-static loads. Materialise 3-matic and the Magics
Structures Module [9], and nTopology [10], provide considerable lattice
design freedom (in their range of available cell geometries, for example),
with emphases on optimisation and AM build preparation. The free
Meshmixer software from Autodesk [11] features some limited lattice
design capability, whilst providing many of the elementary tools for AM
build preparation; STL file repair, orientation optimisation, support

* Corresponding author.
E-mail address: ian.maskery@nottingham.ac.uk (I. Maskery).

Contents lists available at ScienceDirect

Additive Manufacturing

journal homepage: www.elsevier.com/locate/addma

https://doi.org/10.1016/j.addma.2021.102510
Received 11 September 2021; Received in revised form 20 November 2021; Accepted 21 November 2021

http://www.github.com/ian27ax/FLatt_Pack_dist
mailto:ian.maskery@nottingham.ac.uk
www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2021.102510
https://doi.org/10.1016/j.addma.2021.102510
https://doi.org/10.1016/j.addma.2021.102510
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2021.102510&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Additive Manufacturing 49 (2022) 102510

2

generation, etc.
Open-source lattice generation software include the Matlab-based

STL Lattice Generator [12] and the Rhino-based Crystallon [13]. Spe
cial attention should be given to MSLattice from Al-Ketan and Abu
Al-Rub [14] (free but not open-source), which provides good lattice
visualistion and has some overlap in functionality with the FLatt Pack
software presented here. It too focusses on the generation of
surface-based lattices and provides extensive control over their geome
try. And, like FLatt Pack, MSLattice facilitates fundamental lattice
structure research based on precise control of lattices at the cellular level.
This is an important distinction from the commercial packages listed
above, the main purpose of which is generally to offer lattice creation as
part of a product design work flow in a conventional CAD environment.
Though on this topic, it must also be noted that nToplogy’s design
software deviates from traditional CAD concepts in some key areas,
particularly in its use of mathematically defined fields for the control of
geometrical features [10]. NTopology also offers its software with a free
educational license for students and educators, so is not solely a ‘com
mercial’ package.

Concerning lattice structure research, one of the main objectives in
this area is the determination of structure-property relationships that
can be used to control the functionality of a structure or component. The
physical properties of lattices, typically mechanical but extending to
other domains such as fluid flow, thermal, electrical, chemical and
biological, are dictated chiefly by their volume fraction (the volume of
solid material as a fraction of the total volume of the structure), which is
reflected in the well known scaling laws of Gibson and Ashby [15]. The
volume fraction has therefore become the primary design variable for AM
lattices. But AM has enabled, and indeed necessitated, extensive in
vestigations into the influence of other design variables; in particular,
the lattice cell geometry. Among the useful findings from this broad field
of research are that cell geometry determines the mechanical anisotropy
of lattice structures [16–19], their deformation mechanisms and failure
modes under quasi-static loading [20–22], their vibration resonance and
transmissibility [23–25], their fluid permeability [26,27] and their
suitability as biological cell scaffolds for regenerative medicine [28,29].

These represent just some of the topics in which lattice structures
have provided new and useful results, and they highlight the need for
research-focussed lattice design software. To this end, FLatt Pack (short
for The Functional Lattice Package) provides complete control over the
main lattice design variables; cell type, cell size and volume fraction,

with a graphical user interface (GUI) that presents those variables in an
clear sequential manner. FLatt Pack also offers:

• Lattice generation within any defined geometrical surface based on
user-supplied CAD input.

• 2D and 3D volume fraction grading, again based on user input.
• Access to a new family of surface-based 2D honeycombs and ap

proximations to strut-based lattices.
• The option to directly export the lattice design in the form of an STL

file or finite element (FE) mesh.

The latter is extremely useful for lattice research, as it enables numerical
simulation of a wide array of physical properties using an FE solver,
therefore facilitating both comparison with experiment and the explo
ration of physical performance beyond that which can be easily
measured.

A further distinguishing feature of FLatt Pack is that the program
ming implementation aims to minimise its memory consumption and
run time through the use of an adaptive spatial resolution based on the
user’s lattice design choices (as described in A.2). This means FLatt Pack,
in its default mode of operation, removes the burden of resolution se
lection from the user, who in general will not be able to make an
informed choice on this matter because it requires specific knowledge of
the lattice generation method. This, combined with the clear GUI, makes
FLatt Pack both a user-friendly and computer resource-efficient lattice
design tool.

The main purpose of FLatt Pack is to be a free design tool to enable
advanced lattice research across a diverse range of scientific fields. The
program installer is available via a public Github repository (www.githu
b.com/ian27ax/FLatt_Pack_dist), which is frequently updated with bug
fixes and new features based on state of the art lattice information and
modelling methods. Should FLatt Pack users wish to discuss the program
or report bugs, they can contact the corresponding author by e-mail at:
ian.maskery@nottingham.ac.uk.

1.1. FLatt Pack research summary

Whilst this paper focuses on the development and capabilities of
FLatt Pack, the program has already contributed to several lattice studies
in the literature. Table 1 summarises these previous works.

The remainder of this paper is organised as follows. In Section 2 the
main theoretical principles of surface-based lattice design are intro
duced, while Section 3 provides several illustrated examples of FLatt
Pack’s use. Concluding remarks are given in Section 5. Two appendices
are attached, which together provide an extensive account of FLatt
Pack’s design and operation. In A close attention is paid to the imple
mentation and coding of the FLatt Pack program, while B describes the
organisation and operation of the its GUI.

2. Theory: surface-based lattice design

Surface-based lattice structures with arbitrary numbers of cells and
volume fractions can be constructed by determining isosurfaces from
their surface equations. In the field of differential geometry, minimal
surfaces are described using the Enneper-Weierstrass parameterisation
in the complex plane, but they may also be approximated using Fourier
series expansions of trigonometric terms [34–36]. For the purpose of
designing, simulating and fabricating lattice structures based on sur
faces, these approximations provide reasonable descriptions of their
shape (as demonstrated by Gandy et al [35]) and, being real functions
expressed in a Cartesian frame, are simpler to express and implement
programmatically.

A total of twenty-three lattice cell types are available in FLatt Pack.
These include those based on the primitive and diamond triply periodic
minimal surfaces (TPMSs) discovered by Schwarz [37], the gyroid, I-WP
and O,C-TO TPMSs of Schoen [38], and the neovius, lidinoid and split-P

Table 1
Summary of past results from FLatt Pack.

Publication
year

Summary

Ref
[30]

2017 Examined the role of cell size and post-manufacture heat
treatment on the failure modes and energy absorption of
gyroid lattice structures.

Ref
[20]

2018 Examined three surface-based lattice types (primitive,
gyroid and diamond) with a combination of compressive
mechanical testing and FE simulation.

Ref
[31]

2018 FE simulation of six surface-based lattice structures to
determine Gibson-Ashby scaling laws along high
symmetry loading directions. Also examined hybrid
structures comprising two cell types and developed a
density correction procedure for such structures.

Ref
[23]

2019 Examined phonon dispersion and resonant frequencies
in surface-based lattice structures, including the
influence of cell size and volume fraction.

Ref
[32]

2020 Examined the thermal conductivity of the gyroid lattice
using a specially developed thermal testing rig.

Ref
[16]

2020 Examined the deformation mode and anisotropy of a
new honeycomb structure based on the gyroid surface
equation.

Ref
[33]

2021 Examined a range of surface-based lattice structures to
determine their suitability for bone growth scaffolds,
including the influence of pore size on the rate biological
cell growth.

I. Maskery et al.

http://www.github.com/ian27ax/FLatt_Pack_dist
http://www.github.com/ian27ax/FLatt_Pack_dist
http://ian.maskery@nottingham.ac.uk

Additive Manufacturing 49 (2022) 102510

3

TPMSs of Hoffman et al [39]. Also included are approximations to simple
cubic [40] and body-centred cubic lattice structures, as well as several
2D honeycombs based on reduced-periodicity TPMS equations.

Of course, there are countless other, non-surface-based cell types
available for lattice design, with some of the most commonly studied
being the octet-truss [41,42] and the Kelvin cell [43]. The addition of
these cell types will be considered for future updates to FLatt Pack, in
order to broaden its appeal and relevance across the various fields of
lattice research. The interested reader is directed to the recent work of
Benedetti et al [44], which contains a good overview of the design and
mechanical properties of a broad range of lattice types.

To describe the surface-based lattice structures of FLatt Pack, some
basic nomenclature must be introduced. The lattice design space is a
simple Cartesian frame, with axes x, y and z. ki are the lattice function
periodicities, defined by

ki = 2πni, (1)

where i = x, y, z, and ni are the numbers of cell repetitions in those
directions.

Sine and cosine functions are defined with the shorthand notation

Si = sin
(

ki
i

Li

)

, (2a)

S2i = sin
(

2ki
i

Li

)

, (2b)

and

Ci = cos
(

ki
i

Li

)

, (3a)

C2i = cos
(

2ki
i

Li

)

, (3b)

again with i = x, y, z, and Li being the absolute sizes of the lattice
structure in those directions.

There are several sources for series approximations to TPMSs [35,36,
39,45], though they differ somewhat in the number of Fourier expansion

terms they include. The inclusion of more terms brings the generated
surface closer to the ideal TPMS with zero mean curvature. FLatt Pack
uses the level surface approximations given by Wohlgemuth et al [36]
and Hoffman et al [39]. These are:

UP =
(
Cx + Cy + Cz

)m
− tm, (4a)

UG =
(
SxCy + SyCz + SzCx

)m
− tm, (4b)

UD =
(
CxCyCz + SxSyCz + SxCySz + CxSySz

)m
− tm, (4c)

UI =
(
CxCy + CyCz + CzCx

)m
− tm, (4d)

UO =
(
4
(
CxCy + CyCz + CzCx

)

− 3
(
Cx + Cy + Cz

))m
− tm,

(4e)

UN =
(
3
(
Cx + Cy + Cz

)
+ 4CxCyCz

)m
− tm, (4f)

UL =
((

S2xCySz + S2yCzSx + S2zCxSy
)

−
(
C2xC2y + C2yC2z + C2zC2x

))m
− tm,

(4g)

USP =
(
1.1

(
S2xCySz + S2yCzSx + S2zCxSy

)

− 0.2
(
C2xC2y + C2yC2z + C2zC2x

)

− 0.4
(
C2x + C2y + C2z

))m
− tm,

(4h)

where Sx,y,z, etc., are defined in equations 2 and 2, and t is an arbitrary
parameter used to control the position of the U = 0 isosurface. The
subscripts P, G, D, etc., stand for; primitive (P), gyroid (G), diamond (D),
I-WP (I), O,C-TO (O), neovius (N), lidinoid (L) and split-P (SP).

In equation(s) (2) the exponent m can take the value of 1, identifying
the network phase lattice, or 2, the matrix phase (in the literature these
are also known as ‘skeleton’ and ‘sheet’, respectively). In the network
lattice, space is divided by the U = 0 boundary into two continuous
regions; one solid, one void. The matrix lattice contains three separate
regions; two of equal size and equivalent geometry divided by a third in
the form of a continuous solid wall. Examples of network and matrix
phase cells based on the same gyroid TPMS (equation Eq. (4b)) are
shown in Fig. 1.

Surface-based approximations to simple cubic (SC) [40] and
body-centred cubic (BCC) lattices are given by:

USC =
(
2
(
Cx + Cy + Cz

)

+
(
CxCy + CyCz + CzCx

))
− t, (5a)

UBCC =
((

C2x + C2y + C2z
)

− 2
(
CxCy + CyCz + CzCx

))
− t, (5b)

which produce structures similar to network phase TPMS lattices, in that
they comprise only one solid and one void domain, but they differ in that
they resemble strut-based lattices. For example, the surface approxi
mation of the BCC cell is shown in Fig. 2 beside a strut-based version
with equivalent volume fraction. The principle differences in geometry
are the slight tapering of the structural members and the smooth, filleted
intersection for the surface-based cell. Smooth fillets in additively
manufactured lattice structures have previously been shown to improve
the structure’s strength and energy absorption efficiency compared to
standard connected struts [46]. Savio et al similarly discovered that
fillets improve the fatigue life of lattice structures, by reducing their
stress concentration factor (Kt), and showed, with FE modelling, that Kt
is reduced by increasing the fillet radius [47]. This suggests that
user-defined fillet radius may be useful for further lattice investigations,
so this feature will be considered for inclusion in future updates to FLatt
Pack.

Lastly, several 2D honeycombs (honeycomb primitive (HP), honey
comb gyroid (HG), honeycomb diamond (HD), honeycomb I-WP (HI)
and honeycomb lidinoid (HL)) are given by:

Fig. 1. Network, matrix and honeycomb varieties of the gyroid lattice.
Reproduced from [16].

Fig. 2. The body-centred cubic (BCC) cell. In (a) is shown the traditional strut-
based cell, while the surface-based approximation available in FLatt Pack is
shown in (b).

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

4

UHP =
(
Cx + Cy

)2
− t2, (6a)

UHG =
(
SxCy + Sy + Cx

)2
− t2, (6b)

UHD =
(
CxCy + SxSy + SxCy + CxSy

)2
− t2, (6c)

UHI =
(
CxCy + Cy + Cx

)2
− t2, (6d)

UHL =
(
1.1

(
S2xCy + S2ySx + CxSy

)

−
(
C2xC2y + C2y + C2x

))2
− t2,

(6e)

which are based on the original TPMS approximations of Eq. (4), but
with the z-periodic terms omitted. Structures based on these equations
generally divide space into more than two volumes; one continuous solid
wall and a number of unconnected voids. This can be seen in the hon
eycomb gyroid in Fig. 1, which is based on Eq. (6b) and was previously
investigated by Maskery and Ashcroft [16].

For each of Eqs. (4)–(6), U = 0 is treated as a boundary separating
space into solid and void volumes, with the solid volume then repre
senting the lattice structure for the purposes of analysis (e.g., with FE
modelling) or manufacture. This is illustrated in Fig. 3, and is the main
principle of surface-based lattice design.

As a final point before the operation of FLatt Pack is described, we
should note that it is desirable, from the perspective of the lattice
designer, to be able to precisely control the volume of the solid phase of
a lattice, since this ultimately determines the mass of the structure, as
well as many of its physical properties. This is achieved by modification

of the t parameter of Eqs. (4)–(6), and thus it is necessary to know the
relationships between t and the solid volume for each cell type.

The volume fraction, ρ*, of a lattice is the fraction of the design space
composed of solid material; it takes values between 0 and 1, where 1
indicates an entirely solid volume and 0 entirely void. ρ*− t correlations
for each of the lattices available in FLatt Pack are shown in Fig. 4. (We
have provided a small number of them in [31] and [16], previously.)
The curves of Fig. 4 were obtained by generating high-resolution models
(150 × 150 × 150 voxels) of each cell over a range of one hundred t
values, then summing the solid voxels to determine the total solid vol
ume. The subsequent correlations were obtained through modified
Akima interpolation between the ρ*− t pairs and are included in FLatt
Pack, such that when the user designates a value of ρ * , or a distribution
of ρ* representing a functionally graded lattice, the appropriate t values
are looked up in a table and used to generate U. Thus, the FLatt Pack user
is able to directly control the lattice volume fraction without explicit
knowledge of Eqs. (4)–(6) or the associated ρ * − t correlations.

Inspection of Fig. 4 reveals that some ρ * − t curves exhibit discon
tinuities; for example, the matrix neovius structure at ρ * ~ 0.4, the
simple cubic structure at ρ * ~ 0.7, and the honeycomb I-WP structure at
ρ * ~ 0.8. These relate to fundamental changes in the cellular geometry
at those volume fractions, with the general cause being the closure of a
particular pore. It may be interesting, in future work, to examine the
different deformation mechanisms for lattices that possess such struc
tural transformations with increasing volume fraction.

A further consequence of volume fraction control is the implicit
control of the geometry of solid and void regions of the lattice. Thus, if
the lattice application requires struts or walls, or internal pores or
channels, of specific dimensions, to accommodate fluid flow for
example, FLatt Pack can be used to meet this demand too.

3. Results: lattice generation examples

This section provides several examples of the use of FLatt Pack for
lattice research. The relevant input and output files are available as
research data associated with this article, or can be requested directly
from the corresponding author.

3.1. Lattice specimen for mechanical testing

Here we look at the use of FLatt Pack to investigate the response of a
lattice structure under quasi-static compressive loading. For this
example, a network phase gyroid lattice is examined, comprising
5 × 5 × 5 cells with dimensions of 50 × 50 × 50 mm and volume frac
tion of 0.15. (Arrangements of 5 × 5 × 5 cells have previously been
shown to provide stiffness results reflective of homogeneous lattices,
unlike structures with fewer cells [31].)

The investigation comprises two parts; (i) AM fabrication and me
chanical testing, and (ii) numerical modelling with FE analysis, as
illustrated in Fig. 5. Both routes begin with the creation of appropriate
files in FLatt Pack. For manufacture an STL file is required (Fig. 5(a)),
while for FE analysis an Abaqus INP file is required (Fig. 5(d)).

The user proceeds through the ‘Geometry’ and ‘Dimensions and cell
repetitions’ windows of FLatt Pack, then arrives at the ‘Cell type’ win
dow. The ‘Modulus estimate’ subwindow is consulted (see Fig. B.22),
which indicates that aligning the cubic [111] direction of the lattice with
the applied load will provide the stiffest solution. This is achieved with
rotations of 35.26∘ and 45∘ around the x and y axes, respectively. A
uniform volume fraction of 0.15 is selected in the ‘Volume fraction’
window, and the user opts not to include an exterior skin, so that the
observed deformation, stiffness, etc., may be ascribed to the lattice type
in general, and may therefore be useful in making future design choices.

At the ‘Output files’ window, the user chooses to export STL and
Abaqus INP files. A triangle mesh reduction setting of 50% is chosen,
leading to an output STL file of 28 MB containing ~ 600, 000 surface
triangles. Following its generation in FLatt Pack, the surface mesh can be

Fig. 3. The main principle of surface-based lattice design; the U = 0 isosurface
separates the design space into solid and void domains.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

5

reduced further using dedicated AM build preparation software (e.g.,
Materialise Magics [9]), which is generally required anyway, to perform
minor STL repairs, as well as the slicing and hatching operations to
create an AM machine input file.

The specimen is fabricated by polymer laser sintering of PA2200
(Fig. 5(b)) before being subject to quasi-static compression using a
universal testing machine with a load transducer. The resulting stress-
strain curve (Fig. 5(c)) exhibits the typical features of low volume
fraction cellular structures under compression; an initial elastic region at
low strain, a long platic plateau, and a densification region at high
strain, in which the stress increases significantly due to the collapse and
subsequent contact of the cell struts. The elastic modulus can be
extracted from the low strain linear region; in this case it is
E = 39.7 ± 0.1 MPa.

On the matter of design and fabrication accuracy, the volume frac
tion of the FLatt Pack output STL file was checked and was found to
correspond to the value of 0.15, as designed, while weighing and mea
surement of three manufactured specimens yielded a volume fraction of
0.162 ± 0.003. This is ~ 8% larger than the target of 0.15, and is most
likely a consequence of partially-sintered powder adhered to the internal
lattice surfaces. Adhesion of partially-sintered powder on laser sintered
parts is common and its influence on the mass of lattice structures, like
here, can be significant because of their large surface area. This, and our
previous experience with FLatt Pack and its operation with a range of
AM processes, supports what is already widely understood in AM; that
the accuracy of the production process is a function of several parame
ters, including the design generation, the AM file preparation (slicing,
hatching, etc.), the material and the AM method. In the development of

Fig. 4. ρ * − t correlations for the surface-based cells available in FLatt Pack.

Fig. 5. The use of FLatt Pack to investigate the response of a lattice structure under quasi-static loading.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

6

FLatt Pack, we have endeavored to ensure the first of these is not a
contributor to production inaccuracy.

Pursuing the numerical modelling route, at the ‘Abaqus FEA job
creation’ window, the user selects the ‘Displacement load’ option and
provides the elastic modulus of the material used for manufacturing. In
this example, the modulus was given as 1.59 GPa, based on our previous
study of laser sintered PA2200 [20]. The displacement load is set to 1%
of the height of the specimen (i.e., 0.5 mm) and the load direction is set
as z, mirroring the load applied in physical testing. The output INP file is
92 MB in size, containing ~ 1.1 million nodes and ~ 830, 000 hex
ahedral elements. It is generated by FLatt Pack in around 25 s. The INP
file is run using the Abaqus/Standard solver (Dassault Systemes -

Vélizy-Villacoublay, France), providing an output database (ODB) file
with node and element information for the FE solution. As an example of
such information, the von Mises stress distribution for the network
gyroid lattice is shown in Fig. 5(e), in which it can be seen that the
greatest stress is found in those struts which are near-vertically aligned
or, more precisely, those which are closely aligned with the direction of
the applied load. The effective elastic modulus of the lattice obtained
from the FE analysis is 45.6 MPa, which is an overestimate compared to
the experimental result. This highlights an important and
under-investigated aspect of FE modelling for AM lattice structures; the
choice of material properties for the simulation. In the case above, we
chose a linear elastic material model with 1.59 GPa for the modulus,
based on our own uniaxial compression testing of laser sintered PA2200,
and a Poisson’s ratio of 0.4 [48]. But we have not yet determined if this
approach is appropriate, given that; (i) lattice struts and walls are
typically mm-scale, rather than the cm-scale of standard tensile and
compressive test geometries, so the possibility of a size effect cannot be
ignored as the feature sizes approach the manufacturing resolution, and
(ii) in all but the simplest cases, lattice struts do not undergo purely axial
deformation, but rather experience a complex load case including
bending and shear forces. The FE meshes provided by FLatt Pack may be
easily modified to include the user’s material model, to more accurately
replicate the behaviour of materials made via a range of AM processes.

3.2. Lattice infill for ease of manufacture

In this example, FLatt Pack is used to generate lattice infill for a solid
part, providing a design that can be manufactured quicker and with less
material than the original. This is the ubiquitous application of lattice
generation in AM, since it enables materially-efficient manufacture and
light weight products. The demonstration case here is a piston rod from
the popular digital design sharing website Thingiverse (www.thingi
verse.com), as shown in Fig. 6(a).

The original model STL was loaded into FLatt Pack using the
‘Custom’ option in the ‘Geometry’ window. The ‘Dimensions and cell
repetitions’ window then provides the dimensions of the part, which in
this case are approximately 33 × 11 × 68 mm. The user specifies cell
repetitions of 9.3 × 3 × 18.9, maintaining the aspect ratios of the part
dimensions, and therefore ensuring cubic lattice cells (see Fig. B.19).
The user selects the ‘Very fine’ input STL resolution option, to preserve
as much as possible the quality of the part’s outer form. In the following
windows the user selects the simple cubic cell type, a uniform volume
fraction of 0.2, and a solid skin of thickness 1 mm. At the ‘Triangle mesh
reduction’ window the user opts to export 100% of the surface triangles,
providing an output STL file 184 MB in size, containing ~3.8 million
triangles. The file is then post-processed with AM build preparation
software to make minor STL repairs, and for slicing and hatching. The
AM build preparation software may also be used to introduce a small
hole in the part skin for the removal of excess feedstock if necessitated
by the AM process. The final design, with the interior lattice exposed in
cross-section, is shown in Fig. 6(b).

3.3. Lattice generation based on an input volume fraction distribution

This last example demonstrates the use of FLatt Pack to generate a
lattice based on an arbitrary volume fraction distribution in an input file.
The part in question is a tensile test specimen (or ‘dog bone’), which the
user wishes to create with solid ends to facilitate better gripping during
the tensile test.

The user begins by selecting the ‘Custom’ option in the ‘Geometry’
window, then importing the file ‘ASTM_type_1_tensile_bar.stl’, which is
included with the FLatt Pack installation (Fig. 7(a)). The user selects the
‘Fine’ input STL resolution option and specifies cell repetitions of
25.8 × 2.95 × 0.5, maintaining the aspect ratio of the part dimensions,
as in the previous example.

In the following windows the user selects the honeycomb primitive

Fig. 6. The use of FLatt Pack to provide a supporting lattice infill.

Fig. 7. Lattice generation based on an input volume fraction distribution.

I. Maskery et al.

http://www.thingiverse.com
http://www.thingiverse.com

Additive Manufacturing 49 (2022) 102510

7

cell type and uses the ‘Import vol. frac. map’ button to import the file
‘Density_map_for_ASTM_tensile_bars.bmp’ (Fig. 7(b)). As described in
B.6, this bitmap image contains volume fraction values represented as
colours, where black (r g b = 0 0 0) corresponds to void in the lattice
design space, and white (r g b = 255 255 255) corresponds to solid. The
‘Density_map_for_ASTM_tensile_bars.bmp’ image has a central grey re
gion (r g b = 77 77 77) corresponding to ρ * = 77∕255 = 0.3, which
transitions to the white, or solid, end pieces. The bitmap was created
using the free and open-source vector graphics editor, Inkscape (www.
inkscape.org), though other image editors could just as easily be used.
At the ‘Triangle mesh reduction’ window the user opts to export 100% of
the surface triangles, providing an output STL file 55 MB in size, con
taining ~ 1.1 million triangles. The final design is shown in Fig. 7(c).

4. Software limitations and advantages

Here, we summarise what we see to be the main limitations and
advantages of the FLatt Pack program in its current form. The program is
under ongoing development, with bug reporting and suggestions from
users both encouraged and highly valued. FLatt Pack’s creators will
endeavor to tackle its main limitations in future updates.

Limitations:

1. The current visualistion of the lattice design and the effect of various
parameter choices (e.g., volume fraction, cell orientation), is not
ideal, and is below the standard of more established and intuitive
CAD environments. This is chiefly a consequence of the sequential
lattice design process, though is also influenced by the 3D rendering
capabilities of Matlab and the speed with which the large numerical
arrays underpinning FLatt Pack can be created and updated.

2. Volume fraction grading requires careful design of a 2D or 3D array,
which is not intuitive and may be beyond some users, while the
current inbuilt grading functions are limited to a small selection of
mathematical operations resolved in a Cartesian frame.

3. FE output files are represented only as non-conformal hexahedral
meshes, which are unsuitable for contact-analysis problems. Tetra
hedral meshes would be desirable, as would meshes of combined
solid and void domains for fluid dynamics problems, especially given
the motivation to use lattice structures in fluid-based devices like
heat exchangers and filters.

4. The method to apply a lattice to an arbitrary input geometry requires
the voxelisation of a user-supplied STL file. The STL format is
currently the only accepted input file type, which is limiting given
the number of more efficient CAD formats available. Additionally,
the voxelisation of the input STL file within FLatt Pack is, at present,
one of its most resource-intensive operations.

Advantages:

1. FLatt Pack provides control over the main lattice design variables in
a clear GUI. It has inbuilt correlations between the volume fractions
of many lattice types and their corresponding surface equations, as
well as an adaptive spatial resolution to minimise computational
demands whilst maintaining geometrical accuracy. These features
significantly reduce the challenge and time burden of lattice design.
The program may therefore facilitate future lattice research in a
diverse range of fields from users who do not possess the knowledge
or experience to create manufacturable lattices on their own.

2. Output formats include STL files and FE meshes. Thus, FLatt Pack
targets the main file types used for lattice research; those which
enable manufacture and computational modelling.

3. FLatt Pack undergoes frequent and rapid development based on state
of the art lattice information and modelling methods (e.g., new cell
types, quicker lattice generation from the surface equations, more
accurate geometry representation in FE meshes), with the newest
version being made freely available for researchers via a its Github
repository.

5. Conclusions

Here we have presented the FLatt Pack program, or The Functional
Lattice Package. It facilitates fundamental lattice research by providing
complete control over the main cellular design variables, with the
benefits of a clear GUI and the option to export lattice designs that are
readily manufacturable by AM processes and useful for FE simulation.
The program also features lattice generation in arbitrary shapes based
on user-supplied CAD input, and arbitrary 2D and 3D volume fraction
grading, again based on user input. The main principle of the program is
the generation of lattices from periodic surface equations. The imple
mentation of this in the Matlab programming language is covered here,
as is the organisation and operation of the FLatt Pack GUI.

FLatt Pack includes an automatic and adaptive spatial resolution
based on the user’s lattice design choices, which, to our knowledge, is
not present in other research-focussed lattice software (e.g., MSLattice
[14]). This reduces the size of numerical arrays stored in the host PC’s
memory during operation, making FLatt Pack a resource-efficient
research tool. Compared to MSLattice, FLatt Pack also provides a
broader choice of inbuilt cell designs, including novel 2D honeycombs
and approximations to strut-based cells, thus providing more flexibility
for the tailoring of mechanical, thermal and fluid-flow properties to
specific applications. Furthermore, FLatt pack offers lattice generation
in user-supplied CAD input geometries, while MSLattice does not. But
FLatt Pack’s reliance on discrete numerical arrays also leads to one of its
main shortcomings; the presence of staircase artifacts at the surface of
some output STL files, particularly those based on arbitrary input ge
ometries. Methods to eliminate this issue will be pursued for future
updates to the FLatt Pack program. Further planned updates include; (i)
the addition of more application-specific lattice information such as
pore diameter and tortuosity, to complement the existing surface area
and elastic modulus estimates, (ii) the option to export tetrahedral FE
meshes in addition to the hexahedral meshes already offered, and (iii) a
new mode of operation which bypasses the GUI, allowing the user to run
FLatt Pack with a text or data input (e.g., a CSV file) to generate lattices
automatically. This will enable quicker ‘batch’ generation of lattice
structures, which can be used in physical or numerical experiments to
investigate the impact of lattice design variables.

The FLatt Pack installer is available freely via a public Github re
pository (www.github.com/ian27ax/FLatt_Pack_dist), which is updated
periodically with new features and bug fixes. It is hoped that it will be
taken up in diverse fields as a useful tool for lattice research.

CRediT authorship contribution statement

Ian Maskery: Conceptualization, Methodology, Software, Valida
tion, writing. Luke Parry: Writing – review & editing. Daniel Padrao:
Writing – review & editing. Richard Hague: Project administration,
Supervision. Ian Ashcroft: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

I. Maskery et al.

http://www.inkscape.org
http://www.inkscape.org
http://www.github.com/ian27ax/FLatt_Pack_dist

Additive Manufacturing 49 (2022) 102510

8

Acknowledgments

This work was supported by the University of Nottingham (via

Nottingham Research Fellowship funding).

Appendix A. Methods: the operation of FLatt Pack

This section describes how the theoretical principles of Section 2 are implemented in the FLatt Pack program. The main aim is the efficient creation
of lattice output files for manufacture and analysis, with the minimal possible memory consumption. Where relevant, representative extracts of the
FLatt Pack code are presented (in the Matlab programming language).

A.1. Lattice design steps

FLatt Pack enables a user to create lattice structures based on the following design variables; geometry, size, number of repeating cells, cell type,
volume fraction, and the addition or omission of an external solid ‘skin’. Influenced by early user experience of the FLatt Pack GUI, as well as pro
gramming considerations regarding the order of mathematical operations for lattice generation, a sequential design process emerged as the best
option.

For any given lattice design, a critical interdependence exists between the cell type and volume fraction, and the spatial resolution required to
generate that lattice programmatically. Central to this is the fact that a high spatial resolution is required to accurately generate lattice cells with fine
struts or walls, whereas a lower spatial resolution, and therefore ultimately a smaller quantity of RAM, can be used when the cells have thicker
geometrical features. This means that, for the optimal use of computer resources, choosing cell type then volume fraction was established in FLatt Pack,
with the user’s choices of these variables determining the spatial resolution for lattice generation. The complete order of lattice design steps in FLatt
Pack is shown in Fig. A.8, with the implementation of these being described in the rest of this section.

Fig. A.8. The order of lattice design variable selection in FLatt Pack.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

9

A.2. The design space and mesh resolution

Several 3D numerical arrays are created during FLatt Pack’s operation. These include three arrays containing x, y and z coordinates for the lattice
design space, a material array designating which regions of the design space are inside (elements with value 1) and outside (0) the lattice domain, a
density array specifying the volume fraction at the level of individual elements, and the U array that results from the 3D surface equations of Section 2.
By way of illustration, and for ease of interpretation compared to 3D illustrations, Fig. A.9 shows 2D examples of these arrays and the resulting U array.

Each of the six numerical arrays mentioned above is of equivalent size. We may designate that size here as μnx × μny × μnz voxels, where nx, ny and
nz are the numbers of cell repetitions in each direction, and μ is the spatial discretisation, a constant across all directions. Thus, each lattice cell is
effectively generated in a cubic array with μ voxels along each edge, as illustrated in Fig. A.10.

μ is a key parameter in FLatt Pack. It determines the fineness of the lattice features (e.g., cell struts or walls) which may be accurately resolved with
a given spatial mesh, and plays the dominant role in determining the memory consumption and execution time of FLatt Pack, since these will in
general be proportional to μ3.

There is no single value for μ which would be suitable for all the cell types in FLatt Pack. This is because the lattice cells differ greatly in their

Fig. A.9. 2D illustrations of the numerical arrays generated during FLatt Pack’s
operation. The x and y arrays specify the spatial coordinates, while the material
array designates the extent of the lattice domain (highlighted here with a
shaded red circle). The density array contains the volume fraction at every
spatial element. The U array comprises positively (+) and negatively () valued
elements from which the solid-void boundary of the lattice is extracted. The
boundary is located at the U = 0 isosurface, with the negative values being in
the solid domain, as shown in the lowermost panel of the figure.

Fig. A.10. The spatial discretisation, μ, determines the total number of ele
ments in FLatt Pack’s arrays. Shown here is a gyroid unit cell (a) and a lattice
based on the same cell type (b). Note that these are voxel models, not the
smooth-featured boundary representations used to construct output STL files for
manufacture.

Table A.2
FLatt Pack peak RAM and run time for a selection of lattice designs, with a
volume fraction of 0.15.

Cell type Cell numbers Peak RAM usage STL file creation time

Network gyroid 5 × 5 × 5 0.8 GB 12 s
Network gyroid 10 × 10 × 10 3.1 GB 45 s
Matrix gyroid 5 × 5 × 5 2.6 GB 40 s
Matrix gyroid 10 × 10 × 10 13 GB 360 s

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

10

geometry; some cells possess long thin struts (e.g., the BCC and simple cubic cells), others comprise continuous walls of almost constant thickness (e.g.,
the matrix phase TPMS cells) and others have nodes and connecting regions of varying morphology and thickness (e.g., the network phases TPMS
cells). It is therefore a difficult task for the designer of a surface-based lattice to choose an appropriate spatial discretisation for its generation. Choosing
too low a value for μ will result in the lattice cell geometry being inaccurately reproduced, since the spatial discretisation will be insufficient to capture
fine geometrical features. Choosing too high a value for μ will result in a the generation of much larger numerical arrays than are necessary, leading to
greater RAM usage, longer execution time and larger output files.

Sensible default μ values are provided for each lattice type in FLatt Pack. This is implemented by first setting a default spatial discretisation value,
μ0, then modifying this according to the cell type chosen by the user. For example;

.
where μ0 = 40 is the default value, and μ for each cell type is simply μ0 multiplied by a scaling factor. Thus, for example, a lidinoid cell will be

generated with a finer spatial mesh than a gyroid cell. Inspection of their respective geometries reveals why this is necessary, as the lidnoid cell is far
more tortuous and possesses thinner solid struts than a gyroid cell of equivalent volume. The cell type μ scaling parameters (

̅̅̅̅̅̅̅
3.6

√
for the lidinoid cell,

etc.) emerged from an initial comparison of the surface-to-volume ratios of each lattice type, followed by iterative refinement to provide a balance
between geometrical accuracy and RAM usage.

Further scaling of μ is done with respect to the volume fraction, ρ * . This is implemented with;

.
where lattice_dens is the volume fraction chosen by the user and lower_limit is the lowest volume fraction accessible for the chosen lattice type.

lower_limit is pre-defined in FLatt Pack (it is not a parameter the user can modify); its main purpose is to ensure that generated lattices do not possess
struts or walls that diminish to zero thickness.

From the code extract above, the value of μ ultimately used to generate the user-chosen lattice is proportional to 1∕ ̅̅̅̅̅ρ∗√ . As with the cell type
scaling described above, this μ∝1∕ ̅̅̅̅̅ρ∗√ scaling was the result of iterative refinement, and has been found to provide good geometrical accuracy over a
wide range of volume fraction, without increasing the RAM demands beyond those generally available on a modern workstation or laptop computer (i.
e., around 16 GB).

In summary, the default spatial resolution in FLatt Pack is not single-valued across all lattice designs, but rather depends on both the chosen cell
type and volume fraction. This removes the burden of selecting the resolution from the user and helps minimise FLatt Pack’s computational demands
by limiting the size of numerical arrays stored in the RAM. One important consequence of this is that, for a given choice of lattice type and volume
fraction, FLatt Pack’s processing time and RAM usage are mainly dependent on the number of unit cells in the lattice. For example, Table A.2 below
provides some peak FLatt Pack RAM usage figures and run times for a selection of lattice designs, using default resolution settings and a volume
fraction of 0.15. These were obtained using a laptop computer with an Intel i7–6600 U CPU, 16 GB of RAM and a 64-bit Windows operating system.
The same tasks on a higher specification machine will of course require less time.

A.3. The 3D surface array, U

The 3D surface equations in Section 2 comprise sine and cosine functions of x, y and z. In FLatt Pack these are given the shorthand sx, etc., and are
pre-calculated prior to the generation of the 3D surface, U. For example;

.
where the notation is the same as given in Section 2 and x_offset, etc., are included to modify the lattice by spatial translation if requested. Pre-

calculation of sine and cosine functions in this manner reduces the code execution time and memory consumption, especially in cases such as the

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

11

I-WP cell type (Eq. (4d)), where the same trigonometric terms appear more than once.
Further memory and execution time gains are made by only pre-calculating trigonometric terms if they are required for the cell type chosen by the

user. For example, only the lidinoid, split P and BCC cell types require doubly periodic cosine terms, and only the lidinoid and split-P types require
doubly periodic sine terms. This is implemented as;

.
The same logic is applied for all the trigonometric terms expressed in Eqs. (4)–(6). The pre-calculated trigonometric terms are then called to

generate the 3D surface, U, using, for example;

.
The generation of the network, matrix or honeycomb phases of equivalently named cell types is achieved by setting the constant m = 1 or m = 2 (as

described in Section 2), thus reducing the number of separate function definitions for a more efficient representation in the FLatt Pack code.

A.4. Conformal skin generation

If requested by the FLatt Pack user, a solid conformal skin is added to the outside surface of the lattice. The skin is generated by performing a 3D
morphological binary erosion (the imerode Matlab function) on the material array, as shown here;

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

12

.
The result is an additional logical array, called the skin array, in which voxels of value 1 represent the conformal skin. This is then added to the 3D

surface array, U, in a boolean operation to yield the final array for surface mesh generation, as illustrated in 2D in Fig. A.11.
The requested skin thickness is provided by the user in units of mm, which must be converted in FLatt Pack to an integer number of voxels for the

binary erosion operation. This is done in the first line of the code extract above, where skin_mm is the user-specified skin thickness in mm, spatial_res is
the resolution of the underlying spatial mesh in units of mm/voxel and skin_vox is the resulting skin thickness expressed as an integer number of voxels.
Thus, the realised skin thickness is an approximation of the value requested by the user, with a maximum deviation of 1 voxel × spatial_res. For lattices
in the size range 1–30 cm, which spans the dimensions of most commercial AM platforms, this deviation could be up to around 0.5 mm, but on average
is only half of that; as is demonstrated in Fig. A.12. In Fig. A.12, the skin thickness requested by the user is 2 mm, while the average realised thickness is
1.76 mm. Requested conformal skin thicknesses for decimetre-scale lattices are typically > 2 mm, so an absolute deviation of ~ 0.25 mm represents a
relatively small fractional deviation from the requested design. More importantly, STL slicing and hatching operations and AM processes in general
introduce inherent manufacturing resolution restrictions, meaning that small skin thickness errors introduced by FLatt Pack at the STL stage are
unlikely to directly result in over- or under-thick lattice skins in manufactured parts.

A.5. Surface mesh creation

The lattice structure is defined by the U = 0 isosurface of the 3D surface array. If requested by the user, the lattice surface is discretised into a
triangular mesh, so that it may be exported in a useful format for manufacture (i.e., an STL file). This is done in FLatt Pack using the MarchingCubes
function from Matlab Central File Exchange [49], which is based on the Marching Cubes algorithm [50]. This is implemented with;

.
where faces and vertices are lists of the triangular surface elements and their connecting vertices which describe the solid-void boundary. The

number of triangles generated by the MarchingCubes function depends on the user’s selection of lattice type, volume fraction and, most critically, the
resolution of the 3D surface array. The MarchingCubes function is cell-centered, meaning the geometric accuracy of the surface element vertices is ±1

2 of
the size of the voxels in the 3D surface array.

Surface-based lattice structures possess high surface-to-volume ratio, so a representation of a lattice as a triangular surface mesh can result in large
files. To address this, FLatt Pack includes the option to reduce the number of surface triangles by replacing groups of small surface elements with larger
ones. This is achieved using the Matlab reducepatch function;

.
where triangle_reduction_factor is provided by the user in the FLatt Pack GUI. It is a number between 0 and 1 (or, as actually expressed in the GUI, 0%

and 100%) specifying the fraction of triangles originally generated by the MarchingCubes function to include in the output surface mesh. Further
information about how this mesh is stored as an output file is given in A.7.

A.6. Lattice generation from custom input geometries

As well as several ‘primitive’ geometries including tailorable cuboid, cylinder and spheroid (which are useful as lattice specimens for experimental
testing), FLatt Pack allows the user to generate a lattice based on a ‘Custom’ input geometry. This is provided by the user as an STL file, which is then
voxelised in FLatt Pack to define the lattice design space and material array. This is done using the READ_stl and VOXELISE functions from Matlab

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

13

Central File Exchange [51], courtesy of A. Aitkenhead. The VOXELISE function uses a ray intersection method in which rays are emitted in each
Cartesian direction (positive and negative x, y and z) from each point in space. Wherever these rays intersect the surface mesh, this is regarded as a
solid-void boundary, with the number of times the mesh is intersected determining whether the originating point of the rays is inside or outside the
solid space. This is done in FLatt Pack with;

.
where a, b and c are the numbers of elements in the material array in the x, y and z directions, respectively, and stl_vertices is a structured list of the

vertices in the input STL mesh. The output of this voxelisation is a material array with 0′s and 1′s in the void and solid domains, exactly as depicted in
Fig. A.9, which is then used to generate the 3D surface array, U.

It is worth noting that this method for processing user-supplied surface meshes can lead to ‘staircase’ features at the outer boundaries of subse
quently exported lattice designs, with the size of these features, and therefore the overall impact on part definition, being dictated by the spatial
resolution, μ, of the FLatt Pack arrays. This is an inevitable consequence of the voxelisation process, but nonetheless represents a drawback of the FLatt
Pack implementation. At present, a partial correction is achieved with a 3D Gaussian smoothing kernel, which is automatically applied whenever the
user opts for the ‘Custom’ input geometry route. The result is the reduction of surface staircase artifacts to levels unlikely to be observed in manu
factured parts, i.e., considering the effects of slicing and hatching operations for AM build preparation, as well as the resolution of the AM process
itself. A better solution, one which preserves the original boundaries of the user-supplied geometry as far as possible, will be implemented in future
versions of FLatt Pack.

A.7. Output file formats

FLatt Pack offers a small selection of output file types chosen to be useful for lattice structure research. They are based on either the triangular
surface mesh originating from the MarchingCubes algorithm (see A.5), or a binarised version of U in which 0′s and 1′s represent the void and solid
domains of the lattice, respectively. The former category includes the STL file format, which is used throughout AM, and the PLY (or Polygon) file
format [52], which is the same triangular mesh represented in a more compact form through the inclusion of shared vertices.

The PLY data is extracted from the original faces and vertices lists with;

Fig. A.11. 2D illustrations of the FLatt Pack skin generation method. (The (+)
and () symbols indicate positively and negatively valued elements of U, as
in Fig. A.9.).

Fig. A.12. Skin thickness measured in STL files from FLatt Pack, with a user-
requested value of 2 mm. The central shaded region indicates the range of
spatial resolution typically used when the user opts for FLatt Pack’s default
resolution settings (see A.2). Note that the maximum deviation between
requested and realised skin thickness depends on the spatial resolution, which
in turn is determined by the user’s choice of lattice dimensions, cell type and
volume fraction. Therefore, for a particular volume fraction and lattice size, the
results in this plot apply across all the available cell types in FLatt Pack.

Fig. A.13. Loading directions in which FLatt Pack provides estimated elastic
moduli for each cell type.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

14

.
and the resulting faces_ply and vertices_ply lists are then passed to;

.
which simply writes them in the correct structure, along with the required header information, in a file designated by filename_PLY.
Similarly, the STL file is written using;

.
where faces_vertices is a structure containing the face and vertex data, and the list of normals identifies which side of each triangular element is

inward- or outward-facing. The WRITE_stlbinary function is based on WRITE_stl from the Matlab Central File Exchange [53], again courtesy of A.
Aitkenhead. The FLatt Pack implementation of WRITE_stlbinary includes a modest speed-up modification using the Matlab typecast function to convert
the face, vertex and normal data to unsigned 16-bit integer arrays before writing the file.

With respect to the non-surface-mesh output file types, the MAT option is simply a 3D Matlab array with 0′s and 1′s representing the void and solid
domains of the lattice. This is useful to the lattice structure researcher as it enables further modification and analysis operations in Matlab, which
might include, for example, assessment of pore dimensions and connectivity. The BMP output option is a series, or ‘stack’, of bitmap images repre
senting each layer in the structure’s z direction, with black pixels being the solid domain and white pixels being void. Again, this output type lends
itself to structural analysis, but the bitmap format is also a suitable input for some AM platforms, most typically those based on discrete droplet
deposition. The VTK option produces a structured XML-based file output, where each layer in z is represented as a separate data array of void (0) and
solid (1) voxels. This file type is included as it is directly compatible with the popular open-source data analysis and visualisation software Paraview
[54].

Lastly, FLatt Pack provides the option to export a lattice structure in the form of an FE mesh. In this mesh, solid regions are represented as
hexahedral elements, which map directly to the binarised U array; i.e., each solid voxel in the lattice corresponds to a hexahedral element in the FE
mesh. This element transformation results in list of nodes (an ID number and set of x, y, z coordinates for each) and a list of elements which are defined
by those nodes. This could be exported in a number of file formats for use in various FE solvers; the specific file created by FLatt Pack is the Abaqus
input file, INP. In its simplest form, this is done with;

.
where element_ID and node_ID are integers labelling each element and node, and node_coords are the spatial coordinates of each node, expressed in

units of metres. This produces, for example;

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

15

.
which contains only the most elementary information required for an FE mesh. Further information may then be added to the INP file by the

researcher to create a processable job for the Abaqus FE solver.
FLatt Pack provides two complementary options for INP file creation, which extend its usefulness in lattice research by adding material properties,

boundary conditions and a history output request. For example;

.
which designates a uniaxial displacement load at the top surface of the lattice (TOP_PLANE), followed by a request to print the resulting z dis

placements (U3) and reaction forces (RF3) to an output file when the FE job is complete. The FLatt Pack user may specify a host of similar FE jobs based
on compressive or tensile loading along x, y or z, which is useful for the examination of lattice stiffness and stress distributions under different loading
conditions. The other FE job directly prescribable in FLatt Pack concerns thermal conductivity, in which the top and bottom surfaces of the lattice are
assigned different temperatures and the solver is requested to determine the temperature distribution through the solid region. A number of material
and loading parameters can be adjusted by the FLatt Pack user (see B.10), which are then written to the appropriate sections of the INP file. The user
can of course edit the resulting INP file before submitting it to the FE solver, which is useful for requesting different node and element output in
formation, and modifying the loading conditions or material properties.

A.8. Estimation of elastic modulus

At the same step in the FLatt Pack GUI in which the user is presented with a range of unit cells from which to construct the lattice, they are also able
to view an estimate of the resulting elastic modulus (see B.5 for illustrations). This takes the form of a separate GUI subwindow in which curves of
E * are plotted as a function of the volume fraction, ρ * , where E * is the relative modulus of the lattice. E * is simply the modulus of the lattice
normalised by the modulus of the solid material from which it is made, i.e., Elatt∕Esol, and it takes values between 0 and 1.

E * − ρ * correlations are a useful lattice design tool, as they aid the designer in their choice of cell type and volume fraction in the pursuit of a
particular structural stiffness. This is the motivation for the inclusion of such correlations in FLatt Pack. As the user selects between different cell types,
the appropriate E * − ρ * curves are displayed, thus enabling quick comparisons between the predicted moduli of lattice cells under consideration.

Furthermore, the moduli of regular ordered lattices, such as those in FLatt Pack, are generally not isotropic (unlike, for example, stochastic cellular
foams, which possess greater elastic isotropy), so it is necessary to give the user some indication of the elastic response under different loading
conditions. This is done by presenting E * − ρ * curves along the high symmetry [001], [111] and [110] directions, borrowing from crystallographic
notation for cubic lattices. These are illustrated in Fig. A.13 and are sufficient, thanks to the cubic symmetry of the lattices in FLatt Pack, to ensure that
the maximal and minimal moduli for each cell type is always provided.

The elastic moduli of the FLatt Pack cell types, for a range of volume fractions, were obtained using the finite element homogenisation method of
Dong et al [55] (which we have described previously in a study of anisotropy in the gyroid lattice [16]). Dong et al provided a Matlab implementation
of their method [56], which computes the homogenised stiffness matrix, CH, for a given lattice unit cell. Once CH is obtained, its inverse provides the
homogenised compliance matrix, SH. The elastic moduli of the lattice along the [001], [111] and [110] directions are then found from [57]:

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

16

E[001] =
1

SH
11
, (A.1a)

1
E[110]

= SH
11 −

1
2

[
(
SH

11 − SH
12

)
−

1
2

SH
44

]

, (A.1b)

1
E[111]

= SH
11 −

2
3

[
(
SH

11 − SH
12

)
−

1
2

SH
44

]

. (A.1c)

For Flatt Pack, E * [001], etc., for all cell types and a range of volume fractions, were pre-calculated using Dong et al’s code and fit with Gibson-Ashby
scaling laws of the form [15].

E ∗ (d) = C1(d) ρ∗q(d) + E∗0(d), (A2)

where d indicates that these properties are directionally dependent. The set of prefactors C1, exponents q and intercepts E * 0, are stored in a data file
and looked up whenever FLatt Pack is required to plot E * − ρ * curves for the modulus estimate subwindow.

A.9. Estimation of surface-to-volume ratio

In a similar fashion to that described above for elastic modulus estimation, FLatt Pack provides estimates of surface-to-volume ratio for each cell
type over a range of volume fractions and cell sizes. This can be a useful design aid when the intended application of the lattice involves the interaction
of its surface with the environment; for example, heat exchangers, the performance of which is governed by the transfer of heat across the surface to a
fluid medium, and biological scaffolds, where the quantity of surface (as well as properties such as local curvature, etc.) dictates the number of
biological cells that can attach and grow there. FLatt Pack provides graphical representations of surface-to-volume ratio, so the user can select the best
cell type for these applications (see B.5 for appropriate illustrations). The user can simultaneously examine the elastic modulus estimate curves,
allowing a design judgment based on both surface area and stiffness.

The lattice surface-to-volume ratios are pre-calculated using the Matlab stlVolume function;

.
and are stored in a data file and looked up whenever FLatt Pack is required to provide surface-to-volume plots. To enure the calculated surface-to-

volume ratios are not artificially increased through the inclusion of the planar edges which bound the lattice, the calculation in the code extract above
is performed on a 4 × 4 × 4 arrangement of lattice cells, rather than a single unit cell. In this 4 × 4 × 4 arrangement of cells, the relative contribution
of the planar edges to the total surface area is minimal, so the resulting surface-to-volume ratios can be seen as broadly representative of the chosen cell
type.

B. Methods: the FLatt Pack GUI

This section provides a guide to the use of FLatt Pack, beginning with program installation and ending with the creation of output files representing
a lattice structure. Where relevant, and where this aids the efficient use of FLatt Pack, explanations for the inclusion of certain GUI elements are given.

After installation (described in B.1) FLatt Pack presents the user with a sequence of windows corresponding to the lattice design steps. These
include:

1. Designating the lattice geometry.
2. Choosing the lattice dimensions and cell repetitions.
3. Choosing the cell type and orientation.
4. Specifying the lattice volume fraction (with options for volume fraction grading).
5. Choosing to add an exterior ‘skin’ to the lattice.
6. Specifying the output filename and file types.
7. Inspecting the lattice design with a 3D graphical preview.
8. Exporting the lattice geometry in the specified file types.

The FLatt Pack GUI windows relating to the above steps are illustrated and described in the following sections, as are several optional subwindows
and two preliminary windows which convey general information on the program’s operation. The user is able to move back and forth through these
windows, and therefore revise previous design choices, using the ‘< Back’ and ‘Next > ’ buttons found in the lower right of each window. Each
window also features a ‘Cancel’ button which, like the ‘ × ’ in the upper right corner of the window, closes the program.

B.1. Installation and system requirements

FLatt Pack is written in Matlab and compiled into a standalone application using the Matlab Compiler. As such, neither a Matlab installation, nor a
Matlab license, are required to run FLatt Pack on a host PC. Its only dependency is Matlab Runtime, a set of shared libraries which is automatically
installed by the FLatt Pack installer or can be obtained freely from the Mathworks website (www.mathworks.com/products/compiler/matlab-run
time.html).

The FLatt Pack installer is freely available via a public Github repository (www.github.com/ian27ax/FLatt_Pack_dist). This provides access to the

I. Maskery et al.

http://www.mathworks.com/products/compiler/matlab-runtime.html
http://www.mathworks.com/products/compiler/matlab-runtime.html
http://www.github.com/ian27ax/FLatt_Pack_dist

Additive Manufacturing 49 (2022) 102510

17

most recent version of the software, which is frequently updated with new features and bug fixes. Users may report issues and feature requests through
the Github tracker. The installer (Fig. B.14) guides the user through several steps (selecting the installation folder, etc.), including the installation of
Matlab Runtime if it is not detected on the host PC. An internet connection is therefore required for the installation of FLatt Pack; if this is not available,
the user can contact the corresponding author to obtain a copy of the FLatt Pack installer with Runtime included.

The host PC should have a 64-bit Windows operating system. There are no specific system requirements regarding memory, or CPU type or speed,
but the performance of FLatt Pack will be adversely affected if insufficient memory is available to store the numerical arrays generated during its
operation. It is recommended that the host PC has at least 16 GB of RAM.

B.2. User agreement and program outline

The first window of the FLatt Pack GUI is a user agreement notification (Fig. B.15), which the user should read before proceeding. The ‘User
agreement’ window also contains buttons to open a new email to the corresponding author, for general queries and bug reporting, and a browser
window to the corresponding author’s website, where publications related to lattice design are listed. There is also hover-over text which informs the
user how to cite the software, should it be used in future work.

FLatt Pack is usually distributed with a time-limited license. The end date of the license is given in the ‘User agreement’ window, after which FLatt
Pack will cease to work and the user will be prompted to contact the corresponding author or obtain a new version of the program from the Github
repository. This is principally to ensure that users have access to the most recent version of FLatt Pack, including any bug fixes or performance
improvements made since the user’s version was compiled.

Following the user agreement, the user is shown the FLatt Pack ‘Program outline’ (Fig. B.16), which provides a simple description of the lattice
design steps. These are broadly equivalent to those listed above, but with wording which emphasises the creation of STL files for AM.

B.3. Geometry selection

The user is next presented with the ‘Geometry’ window (Fig. B.17). Using either the clickable figures toward the bottom of the window, or the radio
buttons in the upper left, the user can select between three primitive geometries for the lattice; a cuboid, a cylinder or a spheroid, or can select the
‘Custom’ option to import a 3D geometry in the form of an STL file. This STL mesh will then define the design space in which the lattice is generated.

As the user selects between the ‘Cuboid’, ‘Cylinder’, ‘Spheroid’ and ‘Custom’ options, the relevant figure is highlighted and the others are dimmed
to illustrate the current choice. This feature is present in several of the FLatt Pack GUI windows, and is used to make the lattice design process as clear
as possible.

B.4. Dimensions and cell repetitions

After choosing the lattice geometry, the user is asked to specify the dimensions and cell repetitions along each direction. The ‘Dimensions and cell
repetitions’ window (Fig. B.18) provides editable text boxes for dimensions (in mm) along the x, y and z directions, as well as numbers of cells along
those directions. The user can ensure the generation of cubic lattice cells by maintaining an equivalent ratio between the dimension and cell numbers
in each direction; e.g., in Fig. B.18, 30:3 in x, 40:4 in y and 50:5 in z. However, lattice cells of any aspect ratio are permitted; these generally result in

Fig. B.15. FLatt Pack GUI - User agreement.

Fig. B.14. FLatt Pack Installer.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

18

cells which appear ‘stretched’ or ‘squashed’ compared to their conventional cubic forms; see Fig. B.19 for example.
If the user opted to import an STL mesh as the basis for the lattice geometry, the dimensions in the ‘Dimensions and cell repetitions’ window will be

non-editable; they will be determined directly from the coordinates of the input STL mesh vertices. However, the user still has control over the
numbers of lattice cells.

B.5. Cell type selection

In the ‘Cell type’ window (Fig. B.20), the user is presented in the upper left with a choice of four ‘classes’ (or ‘phases’). These represent distinct
types of lattice structure; selecting between them alters the range of cell types shown in the central section of the window. There are eight cell types
available for both the ‘Network’ and ‘Matrix’ class; these are the TPMS gyroid, lidinoid, O,C-TO, I-WP, diamond, primitive, neovius and split-P. Five
cell types are available for the ‘Honeycomb’ class; these are honeycomb versions of the gyroid, primitive, I-WP, lidinoid and diamond cell types. In the
‘Strut’ class there are two cell types; body-centred-cubic and simple cubic.

Once the class and cell type are chosen, the user may translate the unit cell in the x, y and z directions and rotate it about each axis (applied in the
order z, y, x) using the options in the upper right of the ‘Cell type’ window. The facility to orient the struts or walls of the cell is included so that the
designer may align the high-stiffness direction of a lattice with the direction of an applied load, resulting in minimal deformation.

The ‘Cell type’ window also contains ‘Reset’ buttons for cell translation and rotation. These set the editable text box values for translation and
rotation to ‘0′, thus restoring the unmodified version of the chosen cell type.

The effects of translation and rotation are best represented using the ‘Cell preview’ radio button in the lower left of the ‘Cell type’ window. This
opens the ‘Cell preview’ subwindow (Fig. B.21), featuring a 3D preview of the chosen cell type. The preview shows a small lattice of 2 or 4 cell
tessellations. Cell translations and rotations are applied in this subwindow in real-time, allowing the user to see the effect of their choices before
proceeding. Furthermore, the vertical slider to the right of this subwindow allows the user to see the effect of modifying the volume fraction of their
chosen cell type.

Three further elements of the ‘Cell type’ window merit attention. The first is the ‘Modulus estimate’ radio button, which opens a subwindow of the
same name (Fig. B.22). This provides a plot of relative elastic modulus against volume fraction for the currently selected cell type. Three curves are
given, corresponding to modulus estimates along the crystallographic [001], [111] and [110] directions. These are obtained using the numerical
homogenisation method outlined in A.8. The ‘Modulus estimate’ subwindow therefore provides an estimate of the lattice elastic modulus and
anisotropy, through comparison of the [001], [111] and [110] curves. This information allows the user to select the cell type, volume fraction and
orientation most suitable for the intended application of the lattice specimen or component.

Second, the user may select the ‘Surf-vol estimate’ radio button, which opens a separate subwindow with a contour plot of surface-to-volume ratio
for the currently selected cell type, across a range of cell sizes and volume fractions (Fig. B.23). This is designed to provide an easily interpretable guide
to how the surface-to-volume ratio is affected by the user’s lattice design choices. For example, the user can easily compare the contour plots of several
cell types, and proceed to choose the cell type with maximal or minimal surface area, according to the demands of the lattice application. The
calculation and design relevance of lattice surface-to-volume ratio is described in A.9.

The last element of note in the ‘Cell type’ window is the box situated below the cell illustrations which contains three ‘Resolution options’. These
define the resolution of the design space mesh, as described in A.2. Editable text boxes allow the user to specify the resolution, either in distance units
using the ‘Fixed res. (mm)’ option, or by prescribing the number of increments, μ, along each axis in a unit cell using the ‘Discretisation’ option. For
example, a discretisation setting of 40 means a single unit cell is generated in a numerical array of 40 × 40 × 40 elements; a lattice of nx × ny × nz cells
is generated in an array of size 40nx × 40ny × 40nz.

The ‘Fixed res. (mm)’ and ‘Discretisation’ options are included to allow the user to precisely control the resolution of voxel meshes and hexahedral
FE meshes made using FLatt Pack. For the creation of STL files, the user is encouraged to select the ‘Default for STL’ option, which provides a spatial
resolution sufficient to render the geometry of the chosen cell accurately in the output STL file, without the resolution being overspecified. The ‘Default
for STL’ option aims to avoid the generation of unnecessarily large numerical arrays representing the lattice design space, therefore reducing FLatt
Pack’s memory consumption and execution time compared to a ‘one resolution for all lattices’ approach. This is described in more detail in A.2.

B.6. Volume fraction selection

The ‘Volume fraction’ window (Fig. B.24) presents options to create a lattice of uniform volume fraction, graded volume fraction (with some
inbuilt mathematical functions for grading) or custom volume fraction, using an input file to describe the volume fraction distribution. The choice is
made using the ‘Uniform’ and ‘Graded’ radio buttons, as well as the ‘Import vol. frac. map’ button, in the lower left of the window. A box in the upper
right of the ‘Volume fraction’ window shows the user’s currently selected options.

Selecting the ‘Uniform’ option, a slider and editable text box are highlighted, allowing the user to specify a volume fraction for the whole lattice
structure. Volume fraction takes values between 0 and 1, representing an entirely void or solid design space, respectively. Internally in FLatt Pack, a
volume fraction threshold of 0.9 is used to prevent the creation of almost completely solid structures with separate enclosed voids. These should be
avoided in general due to the inability to remove trapped excess material following many AM processes.

A limit is also placed on the lowest accessible volume fraction for each cell type. This is done for two reasons:

1. Low volume fraction cells possess small geometrical features; i.e., thin walls or struts. This necessitates the generation of very large Matlab arrays in
order to render the cell geometry accurately. Therefore, limiting the lowest volume fraction available to the user helps minimise FLatt Pack’s
memory consumption and run time, whilst not overly restricting the user’s design choices.

2. Some cell types, for example the network phase primitive cell, cease to have structural connectivity below a certain volume fraction. Limiting the
lowest available volume fraction in these cases ensures that the lattice remains structurally intact, can be manufactured and is capable of sup
porting an applied load. (Pursuing a different approach to this problem in surface-based lattice design, Li et al proposed the use of a penalty
function which modifies the surface equation to ensure structural connectivity at low volume fraction [58].)

The ‘Graded’ volume fraction option activates a range of grading function radio buttons (‘Linear’, ‘Sine’, ‘Sine squared’, ‘Cosine’ and ‘Cosine
squared’) and the ‘Grading options’ box on the right of the window. These allow the user to choose between linear volume fraction grading, or grading

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

19

based on sine or cosine functions. The ‘Grading options’ box has editable text boxes to specify the minimum and maximum volume fractions. The user
must also specify in which direction, or directions, the grading should occur and, for the trigonometric functions, the number of oscillations (complete
sine or cosine waves) in each direction. At present, volume fraction grading using inbuilt mathematical operations in the FLatt Pack GUI is limited to
the Cartesian directions x, y and z (though this limitation does not apply when the user specifies the volume fraction distribution with an input file - see
below). For future versions of FLatt Pack, we will consider adding more grading options to the GUI; for example, along the radial direction in cy
lindrical geometries.

Fig. B.16. FLatt Pack GUI - Program outline.

Fig. B.17. FLatt Pack GUI - Geometry.

Fig. B.18. FLatt Pack GUI - Dimensions and cell repetitions.

Fig. B.19. A lattice of 1 × 1 × 2 body-centred-cubic cells is shown in (a), while
(b) shows a single unit cell with the same bounding dimensions. The result is a
modified cell geometry which is ‘stretched’ in the z direction compared to its
conventional form.

Fig. B.20. FLatt Pack GUI - Cell type.

Fig. B.21. FLatt Pack GUI - Cell preview.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

20

Figs. B.25 and B.26 illustrate FLatt Pack’s inbuilt volume fraction grading options. In Fig. B.25, the volume fraction is given by a linear gradient in
the z direction between values of 0.1 at the base of the lattice design space, and 0.9 at the top. In Fig. B.26, the grading is given by one complete sine
squared function in both the x and z directions, again between values of 0.1 and 0.9.

The ‘Import vol. frac. map’ button allows the user to specify the volume fraction in the lattice design space by importing a file. FLatt Pack currently
supports two input file types for this purpose:

1. A Matlab array (.mat) representing the 3D lattice design space, where each element is taken to represent a small volume of space and has a value
between 0 (void) and 1 (solid).

2. A 24-bit or monochrome bitmap image (.bmp), where each pixel has a colour between black (r g b = 0 0 0), corresponding to void in the lattice
design space, and white (r g b = 255 255 255), corresponding to solid. The bitmap is taken to represent the volume fraction distribution in the xy
plane, with the full 3D lattice design space then being constructed by replicating that plane throughout the z direction.

Finally, the ‘Volume fraction’ window contains a radio button in the lower left corner to provide a ‘3D volume fraction preview’. This opens a
subwindow (Fig. B.27) showing a 3D preview of the volume fraction distribution in the lattice design space, and is updated in real-time according to
the user’s choices.

Proceeding from the ‘Volume fraction’ window the user is given another opportunity to inspect the volume fraction distribution. The ‘Volume

Fig. B.22. FLatt Pack GUI - Modulus estimate.

Fig. B.23. FLatt Pack GUI - Surface-to-volume ratio estimate.

Fig. B.24. FLatt Pack GUI - Volume fraction.

Fig. B.25. Volume fraction preview (linear grading).

Fig. B.26. Volume fraction preview (sine squared grading).

Fig. B.27. FLatt Pack GUI - Volume fraction preview (custom volume frac
tion map).

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

21

fraction and geometry preview’ window (Fig. B.28) again shows the volume fraction distribution in the lattice design space, but this time it is modified
by the true lattice geometry, giving the user a clearer impression of their choices at this stage in the lattice design process. Note that Figs. B.27 and B.28
show the same volume fraction distribution, but the latter also reflects the geometry of the component, in this case a tensile test specimen with solid
end pieces.

B.7. Solid skin inclusion

The ‘Lattice skin’ window (Fig. B.29) provides three skin options. Selecting between them changes the figure on the right of the window, which
illustrates their effect on the lattice design. The ‘No skin’ option will leave the lattice structure unmodified. Depending on the chosen geometry and cell
type, this may lead to exposed cell walls or struts which could be vulnerable to damage. If the user’s objective is to determine some bulk property of a
lattice (e.g., mechanical, thermal or acoustic performance) through manufacture and testing or simulation, it is recommended not to include an
exterior skin, because the skin tends to alter the performance through additional mass, material connectivity and stiffness. However, it must be
acknowledged in such studies that a lattice without a solid exterior skin will also exhibit edge effects where the periodicity and connectivity of the
structure is terminated. For this reason, it is important to use appropriate boundary conditions in simulations and ensure sufficient numbers of
repeating cells to approximate a homogeneous material distribution (as we briefly covered previously [31]).

The ‘Solid skin’ option is used to completely enclose the lattice with a conformal skin, which provides protection for the cell walls or struts as well
as additional structural stiffness. The skin thickness is designated in an editable text box on the left of the window. The user must note that the in
clusion of a solid skin will lead to completely enclosed voids. Such structures are not recommended for some AM processes, such as powder bed fusion
and vat polymerisation, because they do not permit the removal of feedstock (powder, photopolymer resin, etc.) after manufacture. AM processes such
as material extrusion and jetting do not have the same manufacturing restriction.

Lastly, the ‘Side skin’ option allows the user to add a solid skin to one opposing pair of faces of a cuboid lattice (e.g., the top and bottom faces), or to
the ends or circumference of a cylindrical lattice. This option exists principally for the design of compressive test specimens, which are commonly used
for the determination of structure-property relationships for AM lattices. For these specimens, it is sometimes preferable to apply loading to solid, flat
surfaces rather than directly to the cell walls or struts.

B.8. Filename and output file selection

Following the addition or omission of a lattice skin, the user proceeds to the ‘Output files’ window (Fig. B.30). Using the ‘Save As …’ button in the
lower left of the window, the user can specify the filename and folder for their files. The default filename consists of the user’s lattice design choices;
the class, cell type, dimensions, volume fraction, etc., for convenient referencing.

On the right of the ‘Output files’ window are checkboxes corresponding to a range of output file types. These are:

• ‘STereoLithography (.stl)’ - The format used extensively throughout AM and 3D printing. The binary version of the STL file, rather than the ASCII, is
generated.

• ‘Polygon file format (.ply)’ - Like the STL, this provides a boundary representation of the 3D geometry, but with smaller file sizes. The binary
version is generated.

• ‘3D 1/0 Matlab array (.mat)’ - A Matlab logical array. The solid and void domains of the lattice are represented by ‘1′ and ‘0′ elements, respectively.
• ‘Stack of bitmaps (.bmp)’ - A folder containing a set of bitmap images. These are ‘slices’ of the lattice structure in the xy plane, with each image

filename appended with a number according to its position in the z direction. In each bitmap image, the solid and void domains of the lattice are
designated with black and white pixels, respectively.

• ‘Abaqus FEA input (.inp)’ - A hexahedral finite element mesh composed of hexahedral elements written in the Abaqus input file format. More
information on this output option is given in B.10.

• ‘Visualisation toolkit (.vtk)’ - A structured dataset representing the lattice with VTK’s XML syntax. The solid and void domains of the lattice are
designated with ‘1′ and ‘0′, respectively.

Both the STL and PLY output formats are boundary representations. These are meshes of connected triangles marking the boundary between the
solid lattice domain and the surrounding void space. The other output formats (MAT, BMP, INP and VTK) are based on a binarised version of the 3D
surface array; elements or pixels in these files directly represent solid or void regions of the discretised lattice design space. The ‘Advanced’ button in
the lower left of the ‘Output files’ window allows the user to specify the element or pixel size in each of the MAT, BMP, INP and VTK output formats.

B.9. Triangle mesh reduction

If the user chooses to export an STL or PLY file, they will next be presented with the ‘Triangle mesh reduction’ window (Fig. B.31). Using the slider
or editable text box, the user specifies the degree of triangle reduction applied to the boundary mesh, which can significantly reduce the size of the
output file. A value of 100% indicates that no reduction should be applied; the output mesh will comprise a relatively large number of small triangles.
Values lower than 100% apply triangle reduction by replacing groups of small triangles with fewer larger ones. An ‘Information’ box on the right of the
window provides notes to help the user make their choice.

B.10. FEA input file selection

If the user chooses to export an Abaqus FEA input (.inp) file, they will next encounter the ‘Abaqus FEA job creation’ window (Fig. B.32). Radio

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

22

buttons on the left allow the user to select between exporting the just the hexahedral mesh or an analysis input file, which additionally contains
material properties, boundary conditions and a history output request.

The first option exports the lattice geometry as a ‘Hexahedral mesh only’, where the output file contains just the node coordinates and element
information. The second option, ‘Displacement load’, is used to define a simulation with displacement loading. The elements are assigned a linear
elastic material model, with the elastic modulus specified by the user on the right of the window. The elements are of type C3D8R (3D eight-node linear
isoparametric element with reduced integration). The boundary conditions include a tensile or compressive displacement applied at the nodes of one
side of the lattice structure, chosen using the ‘Load direction’ x, y or z radio buttons, while the nodes of the other side are fixed with either the XSYMM,
YSYMM or ZSYMM condition. The magnitude of the applied displacement is specified as a percentage of the lattice structure size along the chosen
loading direction. For example, if the user specifies a 2% magnitude for the displacement and the lattice has dimensions 40 × 40 × 40 mm, the applied
displacement will be 0.8 mm. The ‘Displacement load’ Abaqus FEA job is suited to simulating a compression or tension test, which can be used to
determine the stiffness of the lattice structure and examine the stress distribution in the lattice walls or struts.

The third option, ‘Thermal gradient for conductivity assessment’, is used to define a steady-state heat transfer analysis. The temperatures of two
opposing sides of the lattice (again, in x, y or z) are set by the user, as are the relevant material properties; mass density (in g/cm3) and thermal
conductivity (in W/mK). The elements are of type DC3D8 (similar to C3D8R, but used for heat transfer and without reduced integration). This Abaqus

Fig. B.28. FLatt Pack GUI - Volume fraction and geometry preview.

Fig. B.29. FLatt Pack GUI - Lattice skin.

Fig. B.30. FLatt Pack GUI - Output files.

Fig. B.31. FLatt Pack GUI - Triangle mesh reduction.

Fig. B.32. FLatt Pack GUI - Abaqus FEA job creation.

Fig. B.33. FLatt Pack GUI - Lattice preview.

I. Maskery et al.

Additive Manufacturing 49 (2022) 102510

23

FEA job allows the user to examine the local heat flux and temperature distributions resulting from the thermal gradient across the lattice.
B.11. Lattice preview and finish screen

If the user chooses to export an STL or PLY file, they are given the option to inspect a 3D preview of the entire lattice structure before the file is
exported. This is presented in the ‘Lattice preview’ subwindow (Fig. B.33), along with some information about the structure, including a note of the
lattice design choices (cell type, dimensions, etc.) as well as the volume and surface area. This preview and structural information are intended to give
the user a final opportunity to revise their design choices if the lattice does not correspond to their initial concept. This is done by closing the ‘Lattice
preview’ subwindow and returning to the relevant section of the FLatt Pack GUI with the ‘< Back’ buttons in each window.

Once the user’s specified files are saved, they are shown the ‘File creation complete’ window (Fig. B.34), which simply allows them to close FLatt
Pack with the ‘Finish’ button or restart the lattice design process to create another structure.

Appendix C. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.colsurfa.2021.126523.

References

[1] F. Côté, V.S. Deshpande, N.A. Fleck, A.G. Evans, The compressive and shear
responses of corrugated and diamond lattice materials, Int. J. Solids Struct. 43 (20)
(2006) 6220–6242 ([Online]. Available:), 〈https://www.sciencedirect.com/scien
ce/article/pii/S0020768305004919〉.

[2] S. Park, B.P. Russell, V.S. Deshpande, N.A. Fleck, Dynamic compressive response of
composite square honeycombs, Compos. Part A Appl. Sci. Manuf. 43 (3) (2012)
527–536 ([Online]. Available:), 〈https://www.sciencedirect.com/science/article/
pii/S1359835×11003939〉.

[3] M.R.M. Rejab, W.J. Cantwell, The mechanical behaviour of corrugated-core
sandwich panels, Compos. Part B Eng. 47 (2013) 267–277 ([Online]. Available:),
〈https://www.sciencedirect.com/science/article/pii/S1359836812007305〉.

[4] C. Kílíaslan, M. Güden, I. Kutlay Odací, A. Taşdemirci, Experimental and numerical
studies on the quasi-static and dynamic crushing responses of multi-layer
trapezoidal aluminum corrugated sandwiches, Thin Walled Struct. 78 (2014)
70–78 ([Online]. Available:), 〈https://www.sciencedirect.com/science/article/pii/
S0263823114000275〉.

[5] W.-Y. Jang, S. Kyriakides, On the buckling and crushing of expanded honeycomb,
Int. J. Mech. Sci. 91 (2015) 81–90, mechanics of Solids & Structures. [Online].
Available: 〈https://www.sciencedirect.com/science/article/pii/S002074031
4000484〉.

[6] T.N. Bitzer. Honeycomb Technology: Materials, Design, Manufacturing,
Applications and Testing, Springer Science & Business Media, 1997.

[7] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, L.W. Hutchinson, H.G. Wadley.
Metal Foam: A Design Guide, Butterworth-Heinemann,, 2000.

[8] (2020) Netfabb lattice modules. [Online]. Available: 〈https://www.autodesk.co.uk
/〉.

[9] (2020) Materialise 3-matic. [Online]. Available: 〈https://www.materialise.com/en
/software/3-matic/modules/lattice-module〉.

[10] (2020) nTopology. [Online]. Available: 〈https://ntopology.com/〉.
[11] (2020) Meshmixer. [Online]. Available: 〈https://www.meshmixer.com/〉.
[12] Marten.(2021) STL Lattice Generator. [Online]. Available: 〈https://uk.mathworks.

com/matlabcentral/fileexchange/48373-stl-lattice-generator〉.
[13] A. Porterfield.(2020) Crystallon. [Online]. Available: 〈http://fequalsf.blogspot.co

m/p/crystallon.html〉.
[14] O. Al-Ketan, R.K. Abu Al-Rub, MSLattice: a free software for generating uniform

and graded lattices based on triply periodic minimal surfaces, Material Design &
Processing Communications, vol. n/a, no. n/a, p. e205, 2021. [Online]. Available:
〈https://onlinelibrary.wiley.com/doi/abs/10.1002/mdp2.205〉.

[15] L.J. Gibson, M.J. Ashby. Cellular Solids: Structure and Properties, Cambridge
University Press, 1997.

[16] I. Maskery, I.A. Ashcroft, The deformation and elastic anisotropy of a new gyroid-
based honeycomb made by laser sintering, Addit. Manuf. 36 (2020), 101548
([Online]. Available:), 〈http://www.sciencedirect.com/science/article/pii/S22
14860420309209〉.

[17] Y. Lu, W. Zhao, Z. Cui, H. Zhu, C. Wu, The anisotropic elastic behavior of the
widely-used triply-periodic minimal surface based scaffolds, J. Mech. Behav.
Biomed. Mater. 99 (2019) 56–65 ([Online]. Available:), 〈https://www.sciencedir
ect.com/science/article/pii/S1751616119301456〉.

[18] C. Soyarslan, V. Blümer, S. Bargmann, Tunable auxeticity and elastomechanical
symmetry in a class of very low density core-shell cubic crystals, Acta Mater. 177
(2019) 280–292 ([Online]. Available:), 〈https://www.sciencedirect.com/science/
article/pii/S1359645419304537〉.

[19] S. Xu, J. Shen, S. Zhou, X. Huang, Y.-.M. Xie, Design of lattice structures with
controlled anisotropy, Mater. Des. 93 (2016) 443–447 ([Online]. Available:), 〈htt
ps://www.sciencedirect.com/science/article/pii/S0264127516300120〉.

[20] I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.
D. Wildman, I.A. Ashcroft, R.J.M. Hague, Insights into the mechanical properties of
several triply periodic minimal surface lattice structures made by polymer additive
manufacturing, Polymer (2017) ([Online]. Available:), 〈http://www.sciencedirect.
com/science/article/pii/S0032386117311175〉.

[21] M. Afshar, A.P. Anaraki, H. Montazerian, J. Kadkhodapour, Additive
manufacturing and mechanical characterization of graded porosity scaffolds
designed based on triply periodic minimal surface architectures, J. Mech. Behav.
Biomed. Mater. 62 (2016) 481–494 ([Online]. Available:), 〈https://www.scienced
irect.com/science/article/pii/S1751616116301552〉.

[22] N. Novak, O. Al-Ketan, L. Krstulović-Opara, R. Rowshan, R.K. Abu Al-Rub,
M. Vesenjak, Z. Ren, Quasi-static and dynamic compressive behaviour of sheet
TPMS cellular structures, Compos. Struct. 266 (2021), 113801 ([Online].
Available:), 〈https://www.sciencedirect.com/science/article/pii/S026382232
1002622〉.

[23] W. Elmadih, W.P. Syam, I. Maskery, D. Chronopoulos, R. Leach, Mechanical
vibration bandgaps in surface-based lattices, Addit. Manuf. 25 (2019) 421–429
([Online]. Available:), 〈https://www.sciencedirect.com/science/article/pii/S221
4860418302781〉.

[24] W. Jiang, M. Yin, Q. Liao, L. Xie, G. Yin, Three-dimensional single-phase elastic
metamaterial for low-frequency and broadband vibration mitigation, Int. J. Mech.
Sci. 190 (2021), 106023 ([Online]. Available:), 〈https://www.sciencedirect.com/
science/article/pii/S0020740320324280〉.

[25] O. McGee, H. Jiang, F. Qian, Z. Jia, L. Wang, H. Meng, D. Chronopoulos, Y. Chen,
L. Zuo, 3D printed architected hollow sphere foams with low-frequency phononic
band gaps, Addit. Manuf. 30 (2019), 100842 ([Online]. Available:), 〈https://www.
sciencedirect.com/science/article/pii/S221486041931098X〉.

[26] Y. Lu, L. Cheng, Z. Yang, J. Li, H. Zhu, Relationship between the morphological,
mechanical and permeability properties of porous bone scaffolds and the
underlying microstructure, PLoS One 15 (9) (2020) 1–19 (09) ([Online]. Available:
), 〈https://doi.org/10.1371/journal.pone.0238471〉.

[27] T. Santos, J. Pires, B.P. Gouveia, A.P.G. Castro, P.R. Fernandes, On the
permeability of TPMS scaffolds, J. Mech. Behav. Biomed. Mater. 110 (2020),
103932 ([Online]. Available:), 〈https://www.sciencedirect.com/science/article/
pii/S1751616120304860〉.

[28] A. Gregor, E. Filová, M. Novák, J. Kronek, H. Chlup, M. Buzgo, V. Blahnová,
V. Lukáová, M. Bartoš, A. Nečas, J. Hošek, Designing of PLA scaffolds for bone
tissue replacement fabricated by ordinary commercial 3D printer, J. Biol. Eng. 11
(31) (2017) ([Online]. Available:), 〈https://doi.org/10.1186/s13036-017-0074-3〉.

[29] A. Seyedsalehi, L. Daneshmandi, M. Barajaa, J. Riordan, C.T. Laurencin,
Fabrication and characterization of mechanically competent 3D printed
polycaprolactone-reduced graphene oxide scaffolds, Sci. Rep. 10 (22210) (2020)
([Online]. Available:), 〈https://doi.org/10.1038/s41598-020-78977-w〉.

[30] I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, Compressive
failure modes and energy absorption in additively manufactured double gyroid
lattices, Addit. Manuf. 16 (2017) 24–29 ([Online]. Available:), 〈http://www.scien
cedirect.com/science/article/pii/S2214860417301203〉.

[31] I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, I.A. Ashcroft, Effective
design and simulation of surface-based lattice structures featuring volume fraction
and cell type grading, Mater. Des. 155 (2018) 220–232 ([Online]. Available:), 〈htt
ps://www.sciencedirect.com/science/article/pii/S026412751830443X〉.

Fig. B.34. FLatt Pack GUI - File creation complete.

I. Maskery et al.

https://doi.org/10.1016/j.colsurfa.2021.126523
https://www.sciencedirect.com/science/article/pii/S0020768305004919
https://www.sciencedirect.com/science/article/pii/S0020768305004919
https://www.sciencedirect.com/science/article/pii/S1359835X11003939
https://www.sciencedirect.com/science/article/pii/S1359835X11003939
https://www.sciencedirect.com/science/article/pii/S1359836812007305
https://www.sciencedirect.com/science/article/pii/S0263823114000275
https://www.sciencedirect.com/science/article/pii/S0263823114000275
https://www.sciencedirect.com/science/article/pii/S0020740314000484
https://www.sciencedirect.com/science/article/pii/S0020740314000484
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref6
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref6
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref7
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref7
https://www.autodesk.co.uk/
https://www.autodesk.co.uk/
https://www.materialise.com/en/software/3-matic/modules/lattice-module
https://www.materialise.com/en/software/3-matic/modules/lattice-module
https://ntopology.com/
https://www.meshmixer.com/
https://uk.mathworks.com/matlabcentral/fileexchange/48373-stl-lattice-generator
https://uk.mathworks.com/matlabcentral/fileexchange/48373-stl-lattice-generator
http://fequalsf.blogspot.com/p/crystallon.html
http://fequalsf.blogspot.com/p/crystallon.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/mdp2.205
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref8
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref8
http://www.sciencedirect.com/science/article/pii/S2214860420309209
http://www.sciencedirect.com/science/article/pii/S2214860420309209
https://www.sciencedirect.com/science/article/pii/S1751616119301456
https://www.sciencedirect.com/science/article/pii/S1751616119301456
https://www.sciencedirect.com/science/article/pii/S1359645419304537
https://www.sciencedirect.com/science/article/pii/S1359645419304537
https://www.sciencedirect.com/science/article/pii/S0264127516300120
https://www.sciencedirect.com/science/article/pii/S0264127516300120
http://www.sciencedirect.com/science/article/pii/S0032386117311175
http://www.sciencedirect.com/science/article/pii/S0032386117311175
https://www.sciencedirect.com/science/article/pii/S1751616116301552
https://www.sciencedirect.com/science/article/pii/S1751616116301552
https://www.sciencedirect.com/science/article/pii/S0263822321002622
https://www.sciencedirect.com/science/article/pii/S0263822321002622
https://www.sciencedirect.com/science/article/pii/S2214860418302781
https://www.sciencedirect.com/science/article/pii/S2214860418302781
https://www.sciencedirect.com/science/article/pii/S0020740320324280
https://www.sciencedirect.com/science/article/pii/S0020740320324280
https://www.sciencedirect.com/science/article/pii/S221486041931098X
https://www.sciencedirect.com/science/article/pii/S221486041931098X
https://doi.org/10.1371/journal.pone.0238471
https://www.sciencedirect.com/science/article/pii/S1751616120304860
https://www.sciencedirect.com/science/article/pii/S1751616120304860
https://doi.org/10.1186/s13036-017-0074-3
https://doi.org/10.1038/s41598-020-78977-w
http://www.sciencedirect.com/science/article/pii/S2214860417301203
http://www.sciencedirect.com/science/article/pii/S2214860417301203
https://www.sciencedirect.com/science/article/pii/S026412751830443X
https://www.sciencedirect.com/science/article/pii/S026412751830443X

Additive Manufacturing 49 (2022) 102510

24

[32] R.R.J. Sélo, S. Catchpole-Smith, I. Maskery, I. Ashcroft, C. Tuck, On the thermal
conductivity of alsi10mg and lattice structures made by laser powder bed fusion,
Addit. Manuf. 34 (2020), 101214 ([Online]. Available:), 〈https://www.sciencedir
ect.com/science/article/pii/S2214860420305868〉.

[33] E.F. Lehder, I.A. Ashcroft, R.D. Wildman, L.A. Ruiz-Cantu, I. Maskery, A multiscale
optimisation method for bone growth scaffolds based on triply periodic minimal
surfaces, Biomech. Model. Mechanobiol. (2021) ([Online]. Available:), 〈https://lin
k.springer.com/article/10.1007/s10237-021-01496-8#citeas〉.

[34] J. Klinowski, A. Mackay, H. Terrones, Curved surfaces in chemical structure,
Philos. Trans. R. Soc. Lond. A 354 (1715) (1996) 1975–1987 ([Online]. Available:),
〈http://rsta.royalsocietypublishing.org/content/354/1715/1975〉.

[35] P.J.F. Gandy, S. Bardhan, A.L. Mackay, J. Klinowski, Nodal surface approximations
to the P, G, D and I-WP triply periodic minimal surfaces, Chem. Phys. Lett. 336 (3)
(2001) 187–195 ([Online]. Available:), 〈http://www.sciencedirect.com/science/ar
ticle/pii/S0009261400014184〉.

[36] M. Wohlgemuth, N. Yufa, J. Hoffman, E.L. Thomas, Triply periodic bicontinuous
cubic microdomain morphologies by symmetries, Macromolecules 34 (17) (2001)
6083–6089 ([Online]. Available:), 〈https://doi.org/10.1021/ma0019499〉.

[37] H. Schwarz, Gesammelte Mathematische Abhandlungen, 1 & 2, Berlin: Springer,
1885.

[38] A.H. Schoen, Infinite periodic minimal surfaces without self-intersections. NASA
technical report TN D-5541, NASA, Washington, D.C., Tech. Rep., (1970).

[39] D. Hoffman, J. Hoffman, M. Weber, M. Trazet, M. Wohlgemuth, E. Boix,
M. Callahan, E. Thayer, F. Wei, Table Surf. (2005) (Jan.) ([Online]. Available:),
〈http://www.msri.org/publications/sgp/jim/papers/morphbysymmetry/table/ind
ex.html〉.

[40] M. Maldovan, C.K. Ullal, J.-H. Jang, E.L. Thomas, Sub-micrometer scale periodic
porous cellular structures: microframes prepared by holographic interference
lithography, Adv. Mater. 19 (22) (2007) 3809–3813 ([Online]. Available:), 〈https
://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200700811〉.

[41] V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss
lattice material, J. Mech. Phys. Sol. 49 (8) (2001) 1747–1769 ([Online]. Available:
), 〈http://www.sciencedirect.com/science/article/pii/S0022509601000102〉.

[42] C. Ling, A. Cernicchi, M.D. Gilchrist, P. Cardiff, Mechanical behaviour of
additively-manufactured polymeric octet-truss lattice structures under quasi-static
and dynamic compressive loading, Mater. Des. 162 (2019) 106–118 ([Online].
Available:), 〈https://www.sciencedirect.com/science/article/pii/S026412751
8308426〉.

[43] J.A. Hawreliak, J. Lind, B. Maddox, M. Barham, M. Messner, N. Barton, B.J. Jensen,
M. Kumar, Dynamic behavior of engineered lattice materials, Sci. Rep. 6 (28094)
(2016) ([Online]. Available:), 〈https://www.nature.
com/articles/srep28094#citeas〉.

[44] M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto,
Architected cellular materials: a review on their mechanical properties towards
fatigue-tolerant design and fabrication, Mater. Sci. Eng.: R: Rep. 144 (100606)

(2021) ([Online]. Available:), 〈https://www-sciencedirect-com.nottingham.idm.oc
lc.org/science/article/pii/S0927796×21000012〉.

[45] D.-J. Yoo, Computer-aided porous scaffold design for tissue engineering using
triply periodic minimal surfaces, Int. J. Precis. Eng. Mater. 12 (1) (2011) 61–71
(Feb) ([Online]. Available:), 〈https://doi.org/10.1007/s12541-011-0008-9〉.

[46] A. Arshad, A. Nazir, J.-Y. Jeng, The effect of fillets and crossbars on mechanical
properties of latticestructures fabricated using additive manufacturing, Int J. Adv.
Manuf. Technol. 111 (2020) 931–943 ([Online]. Available:), 〈https://link.springer.
com/content/pdf/10.1007/s00170-020-06034-x.pdf〉.

[47] G. Savio, S. Rosso, A. Curtarello, R. Meneghello, G. Concheri, Implications of
modeling approaches on the fatigue behavior of cellular solids, Addit. Manuf. 25
(2019) 50–58 ([Online]. Available:), 〈https://www-sciencedirect-com.nottingham.
idm.oclc.org/science/article/pii/S2214860418305517?via=ihub〉.

[48] D.I. Stoia, E. Linul, L. Marsavina, Influence of manufacturing parameters on
mechanical properties of porous materials by selective laser sintering, Materials 12
(2019) ([Online]. Available:), 〈https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6
471919/〉.

[49] P. Hammer, Marching cubes (2020) ([Online]. Available:), 〈https://uk.mathworks.
com/matlabcentral/fileexchange/32506-marching-cubes〉.

[50] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface
construction algorithm, ACM SIGGRAPH Comput. Graph. 21 (4) (1987) 163–169
(aug) ([Online]. Available:), 〈http://portal.acm.org/citation.cfm?doid=37402.
37422〉.

[51] A. Aitkenhead, Mesh voxelisation (2020) ([Online]. Available:), 〈https://uk.mat
hworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation〉.

[52] Matlab. (2021) The PLY file format. [Online]. Available: 〈https://www.math
works.com/help/vision/ug/the-ply-format.html〉.

[53] A. Aitkenhead, Write stl (2021) ([Online]. Available:), 〈https://uk.mathworks.
com/matlabcentral/fileexchange/29585-compute-mesh-normals?focused=43c5
d28a-9a0c-15f0-0618-d60ccf8d36ac&tab=function〉.

[54] Paraview. (2021) Paraview. [Online]. Available: 〈https://www.paraview.org/〉.
[55] G. Dong, Y. Tang, Y.F. Zhao, A 149 line homogenization code for three-dimensional

cellular materials written in matlab, J. Eng. Mater. Technol. ASME 141 (1) (2018),
011005.

[56] Z.Y. Dong G, Y. Tang, A 149 line homogenization code for three-dimensional
cellular materials written in matlab, (2021). [Online]. Available: 〈https://github.
com/GuoyingDong/homogenization〉.

[57] Z. Chen, Y.M. Xie, X. Wu, Z. Wang, Q. Li, S. Zhou, On hybrid cellular materials
based on triply periodic minimal surfaces with extreme mechanical properties,
Mater. Des. 183 (2019), 108109 ([Online]. Available:), 〈http://www.sciencedirect.
com/science/article/pii/S0264127519305477〉.

[58] D. Li, W. Liao, N. Dai, G. Dong, Y. Tang, Y.M. Xie, Optimal design and modeling of
gyroid-based functionally graded cellular structures for additive manufacturing,
Comput. Aided Des. 104 (2018) 87–99 ([Online]. Available:), 〈https://www.scien
cedirect.com/science/article/pii/S0010448518300381〉.

I. Maskery et al.

https://www.sciencedirect.com/science/article/pii/S2214860420305868
https://www.sciencedirect.com/science/article/pii/S2214860420305868
https://link.springer.com/article/10.1007/s10237-021-01496-8#citeas
https://link.springer.com/article/10.1007/s10237-021-01496-8#citeas
http://rsta.royalsocietypublishing.org/content/354/1715/1975
http://www.sciencedirect.com/science/article/pii/S0009261400014184
http://www.sciencedirect.com/science/article/pii/S0009261400014184
https://doi.org/10.1021/ma0019499
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref30
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref30
http://www.msri.org/publications/sgp/jim/papers/morphbysymmetry/table/index.html
http://www.msri.org/publications/sgp/jim/papers/morphbysymmetry/table/index.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200700811
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200700811
http://www.sciencedirect.com/science/article/pii/S0022509601000102
https://www.sciencedirect.com/science/article/pii/S0264127518308426
https://www.sciencedirect.com/science/article/pii/S0264127518308426
https://www.nature.com/articles/srep28094#citeas
https://www.nature.com/articles/srep28094#citeas
https://www-sciencedirect-com.nottingham.idm.oclc.org/science/article/pii/S0927796X21000012
https://www-sciencedirect-com.nottingham.idm.oclc.org/science/article/pii/S0927796X21000012
https://doi.org/10.1007/s12541-011-0008-9
https://link.springer.com/content/pdf/10.1007/s00170-020-06034-x.pdf
https://link.springer.com/content/pdf/10.1007/s00170-020-06034-x.pdf
https://www-sciencedirect-com.nottingham.idm.oclc.org/science/article/pii/S2214860418305517?via=ihub
https://www-sciencedirect-com.nottingham.idm.oclc.org/science/article/pii/S2214860418305517?via=ihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471919/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471919/
https://uk.mathworks.com/matlabcentral/fileexchange/32506-marching-cubes
https://uk.mathworks.com/matlabcentral/fileexchange/32506-marching-cubes
http://portal.acm.org/citation.cfm?doid=37402.37422
http://portal.acm.org/citation.cfm?doid=37402.37422
https://uk.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation
https://uk.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation
https://www.mathworks.com/help/vision/ug/the-ply-format.html
https://www.mathworks.com/help/vision/ug/the-ply-format.html
https://uk.mathworks.com/matlabcentral/fileexchange/29585-compute-mesh-normals?focused=43c5d28a-9a0c-15f0-0618-d60ccf8d36ac&tab=function
https://uk.mathworks.com/matlabcentral/fileexchange/29585-compute-mesh-normals?focused=43c5d28a-9a0c-15f0-0618-d60ccf8d36ac&tab=function
https://uk.mathworks.com/matlabcentral/fileexchange/29585-compute-mesh-normals?focused=43c5d28a-9a0c-15f0-0618-d60ccf8d36ac&tab=function
https://www.paraview.org/
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref45
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref45
http://refhub.elsevier.com/S2214-8604(21)00657-6/sbref45
https://github.com/GuoyingDong/homogenization
https://github.com/GuoyingDong/homogenization
http://www.sciencedirect.com/science/article/pii/S0264127519305477
http://www.sciencedirect.com/science/article/pii/S0264127519305477
https://www.sciencedirect.com/science/article/pii/S0010448518300381
https://www.sciencedirect.com/science/article/pii/S0010448518300381

	FLatt Pack: A research-focussed lattice design program
	1 Introduction
	1.1 FLatt Pack research summary

	2 Theory: surface-based lattice design
	3 Results: lattice generation examples
	3.1 Lattice specimen for mechanical testing
	3.2 Lattice infill for ease of manufacture
	3.3 Lattice generation based on an input volume fraction distribution

	4 Software limitations and advantages
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Methods: the operation of FLatt Pack
	A.1 Lattice design steps
	A.2 The design space and mesh resolution
	A.3 The 3D surface array, U
	A.4 Conformal skin generation
	A.5 Surface mesh creation
	A.6 Lattice generation from custom input geometries
	A.7 Output file formats
	A.8 Estimation of elastic modulus
	A.9 Estimation of surface-to-volume ratio

	B Methods: the FLatt Pack GUI
	B.1 Installation and system requirements
	B.2 User agreement and program outline
	B.3 Geometry selection
	B.4 Dimensions and cell repetitions
	B.5 Cell type selection
	B.6 Volume fraction selection
	B.7 Solid skin inclusion
	B.8 Filename and output file selection
	B.9 Triangle mesh reduction
	B.10 FEA input file selection
	B.11 Lattice preview and finish screen

	Appendix C Supporting information
	References

