
 1

Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB 
transcription factors 

 
 

Vinay Shukla1, Jian-Pu Han1, Fabienne Cléard1, Linnka Lefebvre- Legendre1, Kay Gully2, 
Paulina Flis3, Alice Berhin2,¥, Tonni Grube Andersen2,$, David E Salt3, Christiane Nawrath2, 

Marie Barberon1* 
 
1 Department of Botany and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 
Geneva, Switzerland 
2 Department of Molecular Plant Biology, University of Lausanne, Unil-Sorge, Lausanne, 
Switzerland 
3 Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, 
United Kingdom 
¥ Current address: UCLouvain, Louvain Institute of Biomolecular Science and Technology, 
Université Catholique de Louvain, Louvain-la-Neuve, Belgium 
$ Current address: MPI for Plant Breeding Research, Carl-von-Linné-weg 10, 50829, Köln, 
Germany 
 
 
 
Abstract 
 
Suberin is a hydrophobic biopolymer that can be deposited at the periphery of cells, forming 
protective barriers against biotic and abiotic stress. In roots, suberin forms lamellae at the 
periphery of endodermal cells where it plays crucial roles in the control of water and mineral 
transport. Suberin formation is highly regulated by developmental and environmental cues. 
However, the mechanisms controlling its spatiotemporal regulation are poorly understood. 
Here, we show that endodermal suberin is regulated independently by developmental and 
exogenous signals to fine tune suberin deposition in roots. We found a set of four MYB 
transcription factors (MYB41, MYB53, MYB92 and MYB93), that are regulated by these two 
signals, and are sufficient to promote endodermal suberin. Mutation of these four transcription 
factors simultaneously through genome editing, lead to a dramatic reduction of suberin 
formation in response to both developmental and environmental signals. Most suberin 
mutants analyzed at physiological levels are also affected in another endodermal barrier made 
of lignin (Casparian strips), through a compensatory mechanism. Through the functional 
analysis of these four MYBs we generated plants allowing unbiased investigations of 
endodermal suberin function without accounting for confounding effects due to Casparian 
strip defects, and could unravel specific roles of suberin in nutrient homeostasis. 
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Main text 
 
Introduction 

Plant roots form an inverted epithelium responsible for the selective acquisition of water and 

nutrients present in the soil. When entering the root, water and nutrients need to be radially 

transported from the root periphery to the central vasculature in order to be loaded to the 

xylem vessels and distributed to the plant organs. This can be achieved through three different 

transport scenarios: symplastic, apoplastic or transcellular (1, 2). The endodermis, the 

innermost cortical cell layer surrounding the central vasculature, plays a particularly 

important role in these transport routes as it forms barriers for the free diffusion of water and 

nutrients. These barriers are formed in two sequential differentiation stages with first, the 

formation of Casparian strips (CS), ring-like structures made of lignin forming an apoplastic 

barrier (3-5), and then suberin lamellae deposited as secondary cell walls around endodermal 

cells forming a diffusion barrier for the transcellular pathway (5-7). Recent efforts studying 

mutants and lines affected for CS and/or endodermal suberin in Arabidopsis thaliana and in 

rice allowed to demonstrate that both barriers play crucial roles in nutrient acquisition and 

homeostasis (6, 8-13). Yet, the role of suberin in nutrient transport is still poorly understood 

and, in the absence of mutants with constitutive strong reduction in suberization, is mainly 

corroborated by the analysis of a synthetic suberin-deficient line (artificially expressing in the 

endodermis the cutinase CDEF1, CUTICLE DESTRUCTING FACTOR1, to degrade 

suberin) (6, 11, 14). To complicate matters, most known enhanced suberin mutants are 

actually Casparian strip defective mutants, with ectopic endodermal lignification and 

suberization acting as compensation (9-11). This syndrome occurs in response to Casparian 

strip defects and is triggered through the endodermal integrity control system consisting of the 

Leucine-rich-repeat Receptor-like Kinase, SGN3/GSO1 (SCHENGEN3/GASSHO1) and its 

ligands CIF1/2 (CASPARIAN STRIP INTEGRITY FACTORS 1/2) (12, 15-19). Suberin, 

however, is not only regulated by endogenous developmental factors surveilling Casparian 

strip integrity. Pointing towards a very central role of suberin in plant adaptation to their 

environment, endodermal suberization is also highly regulated by nutrient availability and the 

hormones ethylene and ABA (abscisic acid) (6, 14, 20-25), as well as during biotic 

interactions (25-28). How suberin is regulated in response to developmental and exogenous 

clues remains poorly understood. Recently, several transcription factors were shown to be 

sufficient to induce ectopic suberin formation when ectopically overexpressed and for some to 

directly activate the expression of suberin biosynthesis genes (29-33). Suggesting a potential 
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role in controlling endodermal suberization the transcription factors MYB39, MYB93 

(MYeloBlastosis family of transcription factors) and ANAC046 (Arabidopsis thaliana 

NAM/ATAF/CUC protein) were shown to be constitutively expressed in the endodermis and 

MYB41 to be expressed in the endodermis in response to ABA or salt, two conditions known 

to induce suberization (29, 31, 32, 34). However, in the absence of clear suberin phenotypes 

associated with loss of function, their actual role in endodermal suberin formation and its 

regulation remains unclear.  

 

Here by combining epistasis and pharmacological experiments, we demonstrated that suberin 

is regulated independently by the SGN3/CIFs pathway and ABA (previously shown to control 

suberin induction in response to nutritional stresses). We next undertook a systematic gene 

expression analysis and identified four endodermal MYB transcription factors (MYB41, 

MYB53, MYB92 and MYB93) acting downstream of SGN3/CIFs and ABA signaling, in the 

endodermis. These transcription factors are sufficient to induce suberin biosynthesis in the 

endodermis. Moreover, we generated a quadruple mutant by CRISPR/Cas9 and could show 

that these transcription factors are necessary to form endodermal suberin and to induce 

suberization in response to developmental and exogenous signaling. Our work developed 

plants specifically and strongly impaired in endodermal suberin allowing us not only to probe 

the regulatory mechanisms of suberin formation but also to characterize the specific function 

of suberin in nutrient homeostasis. 

 
 
Results 
 
Suberin is induced by ABA and SGN3/CIFs independently 

Suberin formation can be induced in response to nutrient availability through ABA and in 

response to Casparian strip defects through the receptor SGN3/GSO1 and its ligands CIF1/2 

(6, 12, 16, 17). In order to investigate the underlying molecular mechanism controlling 

ectopic suberization it was important to establish if ABA and SGN3/CIFs have a similar 

effect on suberin formation. We compared the effects of exogenous applications of the 

hormone ABA and the peptide CIF2 on root suberization. To this end we used the suberin 

biosynthesis reporter line GPAT5::mCitrine-SYP122 (driving the expression of a 

fluorescently tagged plasma membrane anchor protein under the control of the promoter of 

the suberin biosynthesis gene Glycerol-3-Phosphate Acyl Transferase5) and whole-mount 

suberin staining using Fluorol Yellow (FY) (Fig. 1A-C). In untreated roots, we observed a 
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typical pattern of suberin formation (5, 6, 35) with a non-suberized zone (state I of 

endodermal differentiation with Casparian strips) followed by a suberizing zone where only 

patches of endodermal cells are suberized (patchy zone) and finally a fully suberized zone 

(Fig. 1A-C). Exogenous treatments with ABA or CIF2 peptide led to ectopic suberin 

formation at the proximity of the root tip, without a patchy zone between non-suberized and 

fully suberized zones (Fig. 1A-C) with ABA additionally inducing further suberization in the 

fully differentiated endodermis and in cortical cells, as described before (6). Both treatments 

had the same effect on the onset of endodermal suberization, which begs the question whether 

these two signals are converging on the same mechanism. This has been addressed before and 

independent works on this suggest either an interaction between ABA and developmental 

signals (36), or, on the contrary, an independence (14). In light of these contradictions, we 

decided to clarify the relation between ABA and SGN/CIFs as signals controlling endodermal 

suberization. We first tested if the CIF1/2 receptor SGN3/GSO1 was needed for ABA-

dependent suberization. We used the CIF-insensitive mutant sgn3 and observed no difference 

between ABA induced ectopic endodermal suberization in WT plants and in sgn3 mutants 

(Fig. 1C,D). This hints to ABA signaling being active either downstream or independent of 

the SGN3/CIFs pathway. To elucidate this further, we assessed if exogenous CIF2 application 

can induce suberization in absence of active ABA signaling. We used the previously 

described ELTP::abi1-1 line, where ABA signaling is inhibited in the endodermis by 

expressing the dominant-negative abi1-1 (aba insensitive 1) allele specifically in the 

endodermis using the ELTP/EDA4 promoter (Endodermal Lipid Transfer Protein / EMBRYO 

SAC DEVELOPMENT ARREST 4) (6). As previously reported for ELTP::abi1-1 plants, 

endodermal suberization was severely delayed in non-stressed conditions (6, 35), but CIF2 

application was able to induce suberin formation similarly to the response observed in WT 

plants (Fig. 1E). This indicates that ABA signaling is not acting downstream of SGN3/CIFs 

and that both pathways control suberization independently. To strengthen this conclusion, we 

tested the role of ABA signaling in the SGN3/CIFs-dependent enhanced suberin phenotype 

observed in the Casparian strip defective mutant esb1 (enhanced suberin 1) (9, 12). We first 

expressed ELTP::abi1-1 in esb1 mutant background and observed an enhanced suberin 

phenotype independent of endodermal ABA signaling (Fig. S1A), confirming previous 

analysis (14). Next, we confirmed this observation by pharmacological interference with 

ABA biosynthesis using fluridone (an herbicide blocking the carotenoid biosynthesis 

indirectly and thus lowering the amount of ABA), widely used as an ABA biosynthesis 

inhibitor (37-39). In presence of fluridone, suberin is highly reduced in WT plants but the 
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esb1 mutant still displays its enhanced suberin phenotype (Fig. S1B). Altogether these data 

demonstrate that ABA and SGN3/CIFs pathways can induce ectopic endodermal suberization 

independently.  

 

MYB41 is a primary response factor to suberin inducing signals 

Next, we aimed to identify transcription factors controlling endodermal suberization 

downstream of ABA and SGN3/CIFs. Several MYB transcription factors - MYB9, MYB39, 

MYB41, MYB53, MYB92, MYB93 and MYB107 - have been shown in transient assays in 

Nicotiana benthamiana leaves, ectopic overexpression in whole plant and/or yeast one-hybrid 

experiments to be able to activate suberin biosynthesis (29-33). Among them, MYB9 and 

MYB107 were shown to control suberin deposition in seed coats (40, 41). Very recently, 

MYB39 has been proposed as a regulator of endodermal suberization (31). However, the 

myb39 mutant showed only a partial delay in endodermal suberization suggesting the 

involvement of other transcriptional regulators. Moreover, the primary factors regulating 

suberin biosynthesis in response to exogenous and developmental cues were still unknown. 

To identify such factors, we narrowed our search to the MYBs whose expression was induced 

by both ABA and the SGN3/CIFs pathway. We mined publicly available transcriptomes in 

seedlings treated with ABA for 1h and 3h (42) and roots treated with CIF2 peptide for 2h and 

8h (17) and found a moderate response of all the selected MYBs (i.e. MYB39, 53, 92 and 93), 

with the exception of MYB41 whose expression responded the fastest and strongest to either 

stimuli (Fig. S2A). To validate this observation, we performed a time-course experiment for 

transcript profiling of roots after 3h and 6h of ABA or CIF2 applications in our growth 

conditions (Fig. 2A). We confirmed that MYB41 was indeed the primary responsive factor for 

either stimuli. The other factors MYB53, MYB92 and MYB93 were also induced by both 

stimuli but at a lower level while MYB39 expression was reduced after ABA and CIF2 

applications in our conditions and was therefore not investigated further in this study (Fig. 

2A).  

 

Since MYB41 reacted most prominently of all MYBs from transcript profiling, we focused on 

this factor as the primary candidate for controlling endodermal suberization and its induction 

by ABA and SGN3/CIFs. To test the spatiotemporal response of MYB41 upon ABA and CIF2 

applications, we developed a transcriptional reporter line, MYB41::NLS-3xmVenus for live 

imaging in roots. We found that MYB41 was specifically expressed in the differentiated 

endodermis, matching the tissue-specificity of the suberin biosynthesis reporter GPAT5 (Fig. 
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2B). Applications of ABA and CIF2 further validated the transcriptional response observed in 

previous experiments of mRNA profiling as we observed a strong activation of MYB41 

promoter activity in the endodermis with an ectopic expression close to the root tip (Fig. S2B, 

C). We combined this reporter with GPAT5::NLS-3xmScarlet-I to generate a dual-reporter for 

MYB41 and GPAT5 promoter activity and observed in untreated conditions, that MYB41 

expression preceded the expression of GPAT5 in the endodermis, positioning MYB41 in 

spatio-temporal context for regulating endodermal suberization (Fig. 2C). Upon ABA and 

CIF2 applications, MYB41 expression was strongly induced, and its expression pattern 

extended to the proximity of the root tip. Since MYB41 expression always preceded GPAT5 

spatiotemporal expression (Fig. 2C, Fig. S2D-F), this could be indicative of MYB41 

controlling the suberin biosynthesis machinery in the endodermis.  

 

We then tested if MYB41 activity was sufficient to induce endodermal suberization. To this 

end, we used the endodermis-specific promoter CASP1 (expressed in the differentiating 

endodermis before suberization) to drive MYB41 expression. FY staining of CASP1::MYB41 

transgenic lines showed ectopic endodermal suberization closer to the root tip, demonstrating 

that MYB41 expression was sufficient for induction of endodermal suberization (Fig. 2D). We 

confirmed this observation by performing chemical analysis of suberin content in the roots of 

WT and two independent CASP1::MYB41 lines. We found that both CASP1::MYB41 lines 

displayed excess of suberin monomers with an increase of ~140% for line #3 and ~170% for 

line #7 compared to WT roots (Fig. 2E). We simultaneously tested the same in rather 

synthetic manner by expressing a functional MYB41-mVenus under a chemically inducible 

endodermal promoter, CASP1xve in WT (Fig. S2G) and GPAT5::NLS-RFP reporter 

backgrounds. Importantly after estradiol induction, we could observe a transient accumulation 

of MYB41-mVenus in endodermal cells followed by the induction of GPAT5 promoter 

activity, corroborating our supposition that MYB41 can induced suberin biosynthesis in the 

endodermis (Fig. 2F, Fig. S2H, J). In order to verify if this conditional induction of MYB41 

was able to induce the rest of the suberin biosynthetic pathway, we measured the transcript 

levels of suberin biosynthesis genes and the other MYBs of interest. A short treatment of 3h 

with estradiol was enough to strongly induce MYB41 expression as well as nearly all the 

genes involved in suberin biosynthesis, including the recently characterized GELPs (GDSL-

type Esterase/Lipases) (43) coding for enzymes involved in the polymerization of suberin 

monomers in the cell wall (Fig. 2G). Surprisingly we could also observe an increased 

expression for ASFT, PAL1, PAL2,  PAL4 and C4H while no significant increase in ferulate 
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content was detected (Fig. 2E,G).  In addition, we observed that MYB41 did not induce the 

expression of most other MYBs studied with only a transient induction of MYB93 expression 

and a reduction of the expression of MYB39, MYB53 and MYB92 after 6h estradiol induction  

(Fig. 2G). This reduction of MYB39, MYB53 and MYB92 expression being observed only after 

6h while the expression of genes involved in suberin biosynthesis was already induced after 

3h likely reflects a compensatory effect. 

  
A set of four MYBs control suberin biosynthesis and regulation 

After establishing that MYB41 was sufficient to induce endodermal suberization, we 

wondered whether it was also required to establish the endodermal suberin pattern observed 

under unstressed conditions in wildtype plants. We generated two CRISPR alleles of MYB41. 

The CRISPR mutants, myb41_c1 was obtained by a nearly full deletion of the MYB41 coding 

region and myb41_c2 was obtained by introducing a one-base-pair frame shift in the 

beginning of the third and longest exon of MYB41 gene (Fig. S3A). To confirm the protein 

inactivity from the point mutation generated in myb41_c2, the mutated MYB41_c2 cDNA was 

cloned and expressed in plants using the CASP1 promoter and, unlike the unmutated MYB41 

cDNA, was unable to induce suberization (Fig. S3B). Unexpectedly, FY staining showed that 

suberin deposition in the endodermis was unaffected in these two CRISPR mutants (Fig. 3A). 

Moreover, ABA or CIF2 treatment induced ectopic suberization in myb41_c1 and myb41_c2 

mutants virtually indistinguishable from WT plants (Fig. 3A). These observations led us to 

consider that though MYB41 was the primary responsive factor to ABA and CIF2 and is 

sufficient to induce suberization, other functionally redundant MYBs are probably 

compensating in its absence.  

 

To identify other MYBs that might be active in the myb41 mutants, we compared the 

transcript levels of the other MYB candidates in WT and myb41_c1 mutant backgrounds and 

found that the mRNA levels of MYB39, MYB53, MYB92, and MYB93 were slightly higher in 

myb41_c1 compared to the WT in untreated conditions (Fig. S3C). Upon ABA and CIF 

applications, all the MYBs except MYB39, were further induced in both backgrounds. 

Therefore, we decided to additionally characterize MYB53, MYB92 and MYB93 in 

endodermal suberization. Similarly to MYB41, the selected MYB candidates, MYB53, 

MYB92 and MYB93, are able to induce ectopic endodermal suberization. FY staining of the 

lines CASP1::MYB53, CASP1::MYB92 and CASP1::MYB93 along with CASP1::MYB41, 

clearly showed that endodermis specific precocious expression of any of these MYBs was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.01.27.428267doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428267
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

sufficient to induce suberization close to the root tip similarly to MYB41 (Fig. 3B). Next, we 

wondered which one of these MYBs were expressed in the endodermis and generated 

promoter-reporter lines for MYB53, MYB92 and MYB93 driving the expression of NLS-

3xmVenus. We found that, similarly to MYB41, MYB53, MYB92 and MYB93 were also 

expressed in unstressed conditions in the endodermis with MYB53 and MYB92 expressed 

from the differentiated zone (Fig. 3C-E). However, MYB93 expression was observed only in 

few cells, most likely in the endodermis above the lateral root primordia (Fig. 3E) as it was 

previously described (34). Additionally, MYB53 and MYB92 were also expressed in few 

isolated cortical and epidermal cells in unstressed conditions (Fig. 3C-D). Importantly, all 

these promoters promptly responded to ABA and CIF2 resulting in a higher expression, with 

the expression of MYB93 extending to the endodermal cells close to the root tip as observed 

for MYB41 (Fig. 3C-D, Fig. S3D-F). Taken together, we concluded that not a single MYB, 

but rather a group of MYB transcription factors are likely controlling suberin biosynthesis and 

regulation in the endodermis. To test this hypothesis we characterized with FY staining the 

pattern of suberin deposition in myb53, myb92 and myb93 mutants in unstressed condition and 

in response to ABA and CIF2 treatments (Fig. 3F). While myb53 and myb93 displayed no 

suberin phenotype in all conditions tested, myb92 showed a significant delay in suberin 

deposition in unstressed condition with suberin deposited later from the root tip and only as 

patches of suberized cells (Fig. 3F). However, even in myb92 mutant ABA or CIF2 treatment 

induced ectopic suberization similarly to the effect observed in WT plants (Fig. 3F). We 

therefore decided to mutate all these 4 MYBs simultaneously by using multiplexed CRISPR 

technology (44) introducing frame shifts leading to loss of function in MYB53, MYB92 and 

MYB93 in the mutant background, myb41_c2 (Fig. S4A-B). After FY staining of the resulting 

quadruple mutant – myb41-myb53-myb92-myb93 (quad-myb) we observed nearly a total 

absence of suberin in roots (Fig. 4A). Importantly, suberin induction by ABA and CIF2 

treatments was also severely compromised in the quad-myb mutant where almost no induction 

was observed after 3 or 6 h and only a weak effect was observed after 16h (Fig. 4A, Fig. 

S4C). We confirmed this observation by performing chemical analysis of the suberin content 

in the roots of the quad-myb mutant compared to WT roots and found a strong reduction of 

both aliphatic and aromatic monomers (Fig. 4B). Dicarboxylic acids and ω-hydroxy acids 

were nearly absent with ~90% reductions, while reductions in fatty alcohols ranged from 20 

to 80%. Ferulate was reduced by ~80% and coumarate showed ~50% reduction compared to 

WT. On average, the quadruple mutant showed an overall ~78% decrease in suberin 

monomers compared to WT (Fig. 4B). We also quantified the mRNA levels of suberin 
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biosynthesis and polymerization genes and found that most were accumulating at lower 

levels, especially the genes involved in fatty acid pathway and polymerization (Fig. 4C). The 

expression of genes involved in the phenylpropanoid biosynthesis were also affected with 

PAL2 and PAL4 expressed at higher levels but without leading to an increase of aromatic 

suberin components (Fig. 4B-C). These genes being also expressed at higher levels in 

CASP1xve::MYB41 after estradiol induction, their change in expression (Fig. 2G) is not 

directly affected by changes in MYBs expression. Altogether, this strongly supports a central 

role of the 4 transcription factors MYB41, MYB53, MYB92 and MYB93 in the control of 

suberin biosynthesis but also for its regulation by the two main signals inducing endodermal 

suberization.  

 
 
MYB-dependent suberization reveals specific roles of suberin in nutrient homeostasis 

Having identified a set of four MYB transcription factors playing a central role in controlling 

suberin biosynthesis and regulation we set out to use these MYBs as tools to manipulate 

endodermal suberin specifically. Indeed, although suberin is known to play important roles 

for nutrient homeostasis we often cannot distinguish its role from Casparian strips. Previous 

efforts relied on mutants such as esb1, casp1casp3, or myb36 with pleiotropic endodermal 

defects in Casparian strips formation (9, 10, 14). Here we generated MYB41 overexpressing 

plants as potentially interesting tools to specifically enhance endodermal suberin in plants. To 

our surprise, plants overexpressing MYB41 under the CASP1 promoter displayed interrupted 

Casparian strips accompanied by a delay in the establishment of their apoplastic barrier (Fig. 

S4D-E) similar to the defects observed in esb1 or casp1casp3 mutants (9, 12). This may 

indicate that a precocious suberin formation (concomitant with Casparian strip formation) 

interferes with Casparian strip formation. Using the ELTP promoter, whose endodermal 

expression is much weaker than CASP1 and is not affected by ABA and CIF2 (Fig. S4F-G), 

to trigger MYB41 expression, we observed ectopic suberin formation close to the root tip in 

the corresponding plants (Fig. S4H) yet, importantly, without affecting Casparian strips and 

the establishment of the apoplastic barrier (Fig. S4D-E). We therefore have now access to 

dominant genetic tools to either enhance suberin specifically (ELTP::MYB41), or together 

with Casparian strip defects (CASP1::MYB41). In parallel we have generated in this study a 

novel mutant, quad-myb, with a dramatic reduction of suberin and observed no Casparian 

strip defects and no delay in the establishment of the apoplastic barrier (Fig. S4D-E). We 

therefore studied and compared the suberin-only affected plants ELTP::MYB41, with the non-
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suberized quad-myb mutant as well as with the suberin and Casparian strip affected 

CASP1::MYB41 in order to understand better the consequences of reduced or enhanced 

endodermal suberin, independent or coinciding with Casparian strip defects. All plants 

generated were carefully studied for their growth and development in plates and in soil 

conditions. The corresponding seedlings were indistinguishable at early stages of 

development, where most of histological, chemical, expression and ionomic analysis where 

performed (Fig. S5C). At later stages we observed minor changes in the primary root length, 

although the number and length of lateral roots was highly reduced in both ELTP::MYB41 

and CASP1::MYB41 lines and increased in the ELTP::CDEF1 line (Fig. S5A). The quad-myb 

mutant was slightly affected in primary root length but not for lateral roots in our conditions 

(Fig. S5A). These changes in root architecture could be associated with enhanced or reduced 

suberization affecting directly root development, as it was previously suggested (11), or 

indirectly as a consequence of changes in nutrient acquisition. In soil, after 2 to 3 weeks of 

growth we could observe that all genotypes were comparable (Fig. S5B). Therefore, specific 

manipulation of endodermal suberin had no dramatic consequences on plant growth and 

development allowing further physiological characterization of the corresponding plants. 

 

To study the consequences of endodermal suberin manipulation for nutrient homeostasis, we 

performed inductively coupled plasma-mass spectrometry (ICP-MS) for elemental profiling 

in leaves (Fig. 4D, Fig. S5D, Table S4). Confirming previous analysis in independent growth 

conditions (6), ELTP::CDEF1 leaves accumulated arsenic, lithium, magnesium and sodium at 

higher levels and potassium and rubidium at lower levels compared to WT plants. We 

observed additional ionomic changes in our growth conditions with a higher accumulation of 

boron, calcium, manganese, strontium and molybdenum and a lower accumulation of 

phosphorous, iron, zinc and cadmium in ELTP::CDEF1 compared to WT. The quad-myb 

mutant displayed also multiple ionomic changes compared to WT plants with similarities to 

several changes observed in ELTP::CDEF1 although more moderately (Fig. 4D, Fig. S5D, 

Table S4). Among all these ionomic changes the levels of lithium, boron, sodium, calcium, 

manganese, arsenic and strontium were found higher and the levels of phosphorous, nickel 

and cadmium were found lower in both genotypes and could therefore be directly associated 

with an absence of endodermal suberin. On the other hand, ELTP::MYB41 and 

CASP1::MYB41 lines displayed more differences, with manganese, cobalt, nickel, copper, 

and cadmium accumulating in opposite manners (Fig. 4D). However, lithium and zinc 

accumulated at higher levels and boron, sodium, magnesium, phosphorous, potassium, 
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calcium, iron, arsenic, rubidium, and strontium accumulated at lower levels in both 

ELTP::MYB41 and CASP1::MYB41 lines. To identify elements potentially directly affected 

by suberin among all these changes we selected the elements commonly affected in the 

suberin deficient quad-myb and ELTP::CDEF1 plants and oppositely, but commonly, affected 

in the enhanced suberin ELTP::MYB41 and CASP1::MYB41 plants. Following this rational 

we found only few elements following this trend with boron, sodium, calcium, arsenic and 

strontium accumulating at higher levels in suberin deficient plants and at lower levels in 

enhanced suberin plants (Fig. 4D). Importantly these ionomic changes were not explained by 

compensations in the expression of genes encoding transporters (Fig. S5E). Among these 

elements, calcium and sodium were previously proposed to be directly affected by 

endodermal suberin and plants with reduced suberization were shown to accumulate these 

elements at higher levels  (6, 11, 22, 45-47). In the context of sodium, endodermal suberin 

induction in response to salt stress  was proposed to represents a protective mechanism 

against sodium entrance in plants. We set out to further test this hypothesis with the quad-myb 

mutant by studying its response to salt. First, we performed suberin staining on quad-myb 

treated with NaCl and observed that while this treatment induced suberization close to the 

root tip in WT plants like previously described (6), the quad-myb mutant was almost not 

responding (Fig. 4E). Next, we tested the tolerance of the quad-myb mutant to a mild salt 

treatment. When considering shoot weight and root length, quad-myb plants were 

significantly more reduced compared to WT plants when growing in presence of salt  (Fig. 

4F) to degrees similar to what was described before for ELTP::CDEF1 and the quintuple 

gelp22-38-49-51-96 mutant (6, 43). Combined, our results further support the central role of 

suberin in plant adaptation to the presence of salt. 

 
 

 
Discussion 
 
Suberin is a hydrophobic polymer deposited as a secondary cell wall, that can be found in 

many plant organs such as potato periderm, seed coat, cork, root periderm and endodermis. 

The past two decades have seen extensive efforts to elucidate its biosynthesis from 

intracellular production of monomers to extracellular polymerization and deposition in 

suberin lamellae (48-52). Suberin plasticity in response to abiotic stresses such as drought, 

salt, waterlogging or cadmium, while observed in roots in many species, (20, 46, 47, 53), only 

recently started to be characterized at the molecular level. This topic gained increasing 
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interest in the past few years after observing that endodermal suberin is even more plastic 

than previously thought, and not only overproduced in toxic environments but also tightly 

modulated in response to mineral deficiencies (6, 14, 21-25), to Casparian strip defects (9, 10, 

12, 14, 16, 17) and during biotic interactions (25-28). In light of the plethora of signals 

controlling suberization, understanding the interaction between these pathways is critical. The 

potential interaction between ABA and SGN3/CIFs signaling has been previously 

interrogated (14, 36), suggesting complex coordination between root development and ABA-

mediated responses as well as between roots and shoots to control suberization. Here, we 

demonstrate by pharmaco-genetic approaches that both pathways induce endodermal 

suberization independently (Fig. 1 and Fig. S1). Corroborating our conclusion, a recent large-

scale approach (combining microbiome, ionome, and suberin analysis, and genetics) revealed 

that the plant microbiome influences suberization through suppression of ABA-mediated 

signaling but independent of the SGN3/CIFs pathway (25).  

 

In our attempt to identify transcription factors that are involved in ABA- and/or SGN3/CIFs-

mediated suberization, we expected to identify specific factors downstream of at least one of 

these two pathways. We benefited from the impressive work performed by the community in 

identifying MYB transcription factors sufficient to induce suberization (29-33) and found 4 

MYB transcription factors (MYB41, MYB53, MYB92 and MYB93) to be expressed in the 

endodermis at different degrees under unstressed conditions (Fig. 2B, Fig. 2C and Fig. 3C-E). 

To our surprise all of them are induced in the endodermis in response to both ABA and CIF2 

application with MYB41 and MYB93 being expressed close to the root tip after both treatment  

(Fig. 2C, Fig. S2B-F, Fig. 3C-E, Fig. S3D-F). This suggests that these 4 MYBs form a point 

of convergence between ABA and SGN3/CIFs signaling in the endodermis, with the signal 

specificity being established upstream of MYB41, MYB53, MYB92 and MYB93.  

 

Confirming previous work in heterologous systems or whole-plant overexpression we found 

that these four MYBs are sufficient to induce ectopic suberization when strongly expressed 

one by one in the endodermis prior to suberization (state I of endodermal differentiation) (Fig. 

2D-G, Fig S2G and Fig. 3B). Previous works showed in vitro that MYB41 can directly bind 

to the LTP20 promoter (LIPID TRANSFER PROTEIN20; associated with functions in cutin 

and suberin export) (54) and MYB92 to the BCCP2 promoter (BIOTIN CARBOXYL 

CARRIER PROTEIN2, involved in fatty acid synthesis) (33). Moreover, MYB53, MYB92 

and MYB93 (as well as MYB9, MYB39 and MYB107) were shown in yeast one-hybrid and 
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heterologous expression in tobacco leaves to activate the expression of BCCP2 (33). In 

addition, MYB92 was shown to activate the expression of two other genes involved in fatty 

acid biosynthesis, ACP1 (ACYL CARRIER PROTEIN1) and LPD1 (LIPOAMIDE 

DEHYDROGENASE1) (33). Our analysis of conditional endodermal expression of MYB41 

showed that the expression of genes involved in suberin biosynthesis and polymerization is 

induced in roots shortly after MYB41 production (Fig 2G). Additionally, we showed that 

endodermal accumulation of MYB41 protein can trigger the expression of the suberin 

biosynthesis gene GPAT5 shortly after (Fig. 2F, Fig. S2H-I). Unfortunately, despite multiple 

attempts we were unable to immunodetect MYB41 protein from roots (either using the 

MYB41-Venus version  described in this study or by attempts to raise an anti-MYB41 

antibody), that would have allowed us to identify its direct targets in planta. This is probably 

due to working in its endogenous tissue (the late differentiated endodermis) which represent 

comparatively few cells of a whole root combined with a low abundance of MYB41, the 

protein accumulating only transiently in few endodermal cells (Fig. 2F and Fig. S2I) . 

However, considering the high number of evidence from in vitro, yeast one-hybrid or 

transactivation assays in tobacco, we can hypothesize that most suberin-inducing MYBs, 

including the four MYBs of interest in this study (MYB41, MYB53, MYB92 and MYB93), 

could directly activate the expression not only of genes involved in the primary fatty acid 

biosynthesis but also suberin biosynthesis genes in planta.  

 

Loss of function of single suberin-inducing MYBs was rarely undertaken. Phenotypes were 

described only for myb9 and myb107 mutants, whose seed coats display a reduction in suberin 

monomers and an increased permeability, and for myb39 mutant displaying a reduction of 

suberin monomers in whole roots but only a minor delay of a few cells in endodermal 

suberization (31, 40, 41). The mutants myb41, myb53 and myb93  presented in this study, are 

not affected for suberin deposition in unstressed condition or in the presence of ABA or CIF2 

(Fig. 3A,F). Interestingly the single mutant myb92 displayed a significant delay in suberin 

deposition in unstressed condition but its suberin was still strongly induced in response to 

ABA and CIF2 to level similar to WT plants (Fig. 3F). We therefore took advantage of 

CRISPR/Cas9 gene editing to generate a quadruple myb41-53-92-93 mutant (quad-myb). In 

non-stressed condition this quad-myb displayed a dramatic reduction of endodermal suberin 

with no suberin staining observed in endodermal cells and a reduction by 78% of suberin 

monomers detected in its roots (Fig. 4A, B, Fig. S4C). Mutants with such low amounts of 

endodermal suberin are extremely rare and most suberin biosynthesis mutants only 
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moderately affect suberin amounts or its monomeric composition. For example, the gpat5 

mutant lacking a key enzyme for suberin biosynthesis displays only a 30% reduction of 

suberin monomer accumulating in its roots (55). To our knowledge, the only genotypes 

displaying a range of reduction comparable to the quad-myb is the quintuple gelp22-38-49-

51-96 mutant (affected in suberin polymerization in the cell wall), and the ELTP::MYB4 line 

(where inhibition of the phenylpropanoid pathway in the endodermis leads to suberin 

detachment), both displaying an 85% reduction of suberin monomers in roots (43, 56). We are 

therefore confident that MYB41, MYB53, MYB92 and MYB93 form the core regulating 

machinery controlling suberization in the endodermis. However the slight differences in their 

expression territories with only MYB41, MYB53 and MYB92 expressed all along the 

suberizing zone and the suberin reduction observed in myb92 but not in other single mutants 

suggest a certain level of specificity among these four MYBs in unstressed conditions (Fig. 

2C, Fig. S2B, Fig. 3C-F). Importantly, in response to ABA or CIF2 the expression of all these 

MYBs were induced at different degrees resulting in all of them being highly expressed close 

to the root tip and all along the endodermis (Fig. 2C, Fig. S2B-C, Fig. 3C-E, Fig. S3D-F).  

Moreover, testing the effect of ABA, salt stress (previously shown to be ABA-dependent (6)), 

and CIF2, we found that suberin is virtually non-affected by these three treatments in quad-

myb (Fig. 4A,E and Fig. S4C). MYB41, MYB53, MYB92 and MYB93 are therefore playing 

a central role in suberin induction by at least two independent signaling pathways. Yet, the 

fact that we could still observe in quad-myb a weak response (with few patches of suberized 

endodermal cells after ABA, salt or CIF2 treatment) (Fig. 4A and Fig. S4C), suggest that even 

more factors are either needed to fully regulate suberization or are not involved in 

suberization per se but capable to weakly compensate for the quad-myb defects. Such factors 

could be other endodermal MYBs with an endodermal expression induced by ABA and/or 

CIF2. Additionally, we could envision that other transcription factors such as bHLH 

transcription factor (basic Helix-Loop-Helix) and/or a WD40-repeat protein (WD, tryptophan-

aspartic acid) could influence endodermal suberization. It is known that MYB-bHLH-WD40 

protein complexes play central roles in controlling multiple cell fates such as root hair and 

trichome formation, anthocyanin biosynthesis, seed coat mucilage or pigmentation (57-59).  

 

As outlined in the introduction, suberin function for plant nutrition has recently benefited 

from the identification of mutants and lines affected in endodermal suberization and the wide 

application of ionomic analysis (6, 8-11, 13, 25, 31). However, even though all these studies 

are of fundamental interest to unravel suberin function and its physiological relevance they 
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are presently limited by the mutants and lines available at that time. In fact, plants with 

enhanced endodermal suberin, often characterized for their ionomic and physiological defects, 

are not specifically affected for this barrier. This is particularly the case for the enhanced 

suberin phenotypes being the consequence of Casparian strip defects, which activate 

SGN3/CIFs signaling and in turn lead to ectopic lignin and suberin deposition in the 

endodermis (9-12, 14, 16). In other words, the nutritional effect described in currently 

available analyses likely represent the consequence of multilevel defects in the endodermal 

barriers and of the activation of SGN3/CIF signaling. Because of these tissue-specific 

pleiotropic defects, the specific role played by suberin has remained unclear. On the other 

hand, mutants with a strong reduction of endodermal suberization were previously not 

available and studying a lack of suberin had been based on a synthetic line, artificially 

expressing a cutinase in the endodermis to degrade suberin (5, 6, 11, 14). While these lines 

showed a dramatic suberin reduction and were extremely important to distinguish between 

Casparian strip and suberin defects, we cannot exclude that artificially expressing the cutinase 

CDEF1 in the endodermis would not lead to additional defects. Moreover, being highly 

plastic in response to nutrient availability (6, 14, 21-25), suberin defects described in non-

stressed conditions can in some case be exacerbated or absent in stressed conditions (25). To 

fully understand suberin function in the endodermis we crucially need better and more 

specific mutants and lines with constitutively enhanced and reduced endodermal suberization. 

The lines presented here (ELTP::MYB41 with constitutively enhanced suberization without 

any Casparian strip defects, and the quad-myb mutant with strongly reduced endodermal 

suberization and largely lacking regulation by ABA and salt stress) (Fig. 4A,B,E and Fig. 

S4C-E) provide such highly specific phenotypes. Their usefulness is highlighted by our 

ionomic analyses, which show clear differences between the enhanced suberin line 

ELTP::MYB41, a line combining enhanced suberin with Casparian strip defects 

(CASP1::MYB41 line) (Fig. 4 D) and between the quad-myb and ELTP::CDEF1 line (Fig. 

4D). Importantly, the root development or expression of key genes involved in the acquisition 

of these elements being comparable between these lines these parameters are unlikely 

explaining the ionomic phenotypes observed (Fig. S5).  In summary our results suggest that, 

in accordance with previous reports, suberin plays crucial roles for nutrient homeostasis, 

likely affecting directly transport through the endodermis. But its role might be more specific 

than initially thought, affecting mainly the acquisition of boron, sodium, calcium, arsenic and 

strontium in our experiments (Fig. 4D). We are therefore convinced that the tools generated in 

this study, especially the quad-myb and ELTP::MYB41 plants will be of tremendous interest 
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for the community in order to better understand suberin function in relation to nutrient 

availability as well as for its role in root development and biotic interactions. Given the 

increasing interest beyond fundamental research in manipulating suberin, extending the 

genetic tool box to specifically manipulate and fine-tune suberization is highly relevant for 

applied plant biology in crop improvement or carbon capture to combat climate change. 
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Material and methods 

Plant material 

All experiments were performed in Columbia-0 (Col-0) background. Previously published 

mutants and transgenic plants used in this study: casp1-1 casp3-1; CASP1::NLS-GFP (60); 

esb1-1 (8); sgn3-3, sgn3-4 (12); ELTP::CDEF1; ELTP::NLS-3xmVenus (6). The mutants 

myb53 (SALK_076713), myb92 (SM_3.41690) and myb93 (SALK_131752) were obtained 

from NASC. Primers used for genotyping are presented Table S1. Transgenic lines previously 

described and slightly modified in this study ELTP::abi1-1 (based on (4), here with a FastRed 

selection) GPAT5::NLS-RFP (based on GPAT5::NLS-GFP from (5)) and GPAT5::mCitrine-

SYP122 (6). The following mutants were generated for this study using CRISPR-Cas9 

technology: myb41_c1, myb41_c2 and myb41_c2-myb53-myb92-myb93 (quad-myb, see 

constructs part for more details). The following transgenic lines were generated for this study: 

MYB41::NLS-3xmVenus, MYB53::NLS-3xmVenus, MYB92::NLS-3xmVenus, MYB93::NLS-

3xmVenus, GPAT5::NLS-3xmScarlet, CASP1xve::MYB41-mVenus, CASP1::MYB41, 

CASP1::MYB53, CASP1::MYB92, CASP1::MYB93, CASP1::myb41_c2, ELTP::MYB41, 

CASP1::myb53_c1, CASP1::myb92_c1 and CASP1::myb93_c1. The corresponding gene 

numbers are as follow: CASP1, At2g36100; CASP3, At2g27370; ESB1, At2g28670; SGN3, 

At4g20140; CDEF1, At4g30140; ELTP, At2g48140; ABI1, At4g26080; GPAT5, At3g11430; 

SYP122, At3g52400, MYB41, At4g28110; MYB53, At5g65230; MYB92, At5g10280; MYB93, 

At1g34670.  

 

Constructs 

Plasmids were constructed using Multisite Gateway cloning (Thermo Fisher Scientific). The 

list of primers used for cloning are presented in Table S1. MYB promoter sequences upstream 

of ATG - MYB41 (2167bp), MYB53 (4117bp), MYB92 (4098bp), MYB93 (2873bp) were 

amplified from Col-0 genomic DNA and cloned into pDONRP4-P1R (Thermo Fisher 

Scientific). For promoter-reporter expression clones, PROMOTER::NLS-3xmVenus or 

PROMOTER::NLS-3xmScarlet, the entry plasmids containing the promoter region, along with 

pDONRL1-NLS-3xmVenus-L2 (61) or pDONRL1-NLS-3xmScarlet-L2 and the pEN-R2-tNOS-

L3 containing the terminator tNOS (62) were recombined into the destination vectors 

pFR7m34GW or pFG7m34GW. The destination vectors pFR7m34GW or pFG7m34GW were 

obtained by substitution of the Hygromycin sequence in pH7m34GW by the FastRed and 

FastGreen sequences respectively (63). For endodermal specific expression of MYBs using 

CASP1 and ELTP promoters (60, 64), MYB coding sequences were amplified from wild-type 
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Arabidopsis cDNA and cloned into pDONR221_L1-ORF-L2 vector were recombined with 

pDONR-P3-tNOS-P2R in the destination plasmid pFR7m34GW. Except for MYB41cDNA 

that was obtained from (29) and recloned into pDONR221_L1-CDDB-CAM-L2. For 

endodermal specific estradiol inducible MYB41 expression (CASP1xve::MYB41-mVenus), the 

entry vectors containing the inducible CASP1 promoter pEN-L4-CASP1xve-R1 (65) was 

recombined with pDONR221_L1-MYB41nostop-L2 and pEN-R2-mVenus +stop-L3 into the 

destination vector pFG7m34GW. Cloning of vectors for CRISPR/Cas9 was done as 

previously described in (43, 44, 66). sgRNA for spCas9 were designed using webtools – 

CRISPR-P 2.0 design tool (http://crispr.hzau.edu.cn/CRISPR2/) (67) and Benchling 

(https://www.benchling.com). Pairs of annealed oligos of the sgRNA were cloned into the 

Bbs-I linearized entry vector (66) and recombined into the destination vector containing Cas9 

expression cassette and a FastRed or FastGreen selection marker cassette. For large deletion 

of genomic regions in myb41_c1 or multiplex targeting of MYB53, MYB92 and MYB93, 

multiple entry vectors were used to clone different sgRNAs. Thereafter, recombined into the 

destination vector containing Cas9 expression cassette and FastRed or FastGreen selection 

marker cassette. After fluorescent seed selection in T1, non-fluorescent seeds in the T2 

generation (indicating a segregation of the vector backbone containing the Cas9 cassette) 

were used to identify the mutations. Primary screening of mutants was done using High-

Resolution Melting (HRM) curve analysis as previously described in (43). Candidates from 

HRM analysis were further confirmed for the mutations by sequencing of PCR-amplified 

genomic regions. Absence of off-target effects were controlled by sequencing the closest 

MYB homologues in the final mutant. To test the loss of function for myb41_c2, myb53_c1, 

myb92_c1 and myb93_c1,  the corresponding cDNA were cloned from the mutated plants into 

pDONR221 and recombined with pEN-L4-CASP1-R1 and pDONR-P3-tNOS-P2R in the 

destination plasmid pFRm34GW. All constructs were transformed into Agrobacterium strain 

GV3101 by electroporation and used for transformation of Arabidopsis plants by the floral-

dip method (68).  

 

Growth conditions 

Seedlings for staining and live-imagine were grown vertically on square plates containing 

half-strength MS with 0.8% agar (Duchefa), without sucrose. Seeds were surface sterilized 

before sowing on plates and were incubated 2 to 4 days at 4°C and put to grow in growth 

chambers under continuous light (~100 µE) at 22 °C. All histological and live-microscopy 

analysis were performed on 5-day old seedlings. For other experiments the age of the plant is 
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specified in the figure legends. In soil, for amplifications and experiments in pots, plants were 

grown in long-day conditions (16 h day, 8 h night) with light intensity of 150-180 µE with 60-

70% humidity and at 20 ± 2 °C.  

 

Pharmacological treatments 

ABA hormone was stored  at -20 °C in 50 mM stock solution, dissolved in methanol. For 16 h 

treatments, seedlings were transferred on solid half-MS media containing 1 µM ABA. For 

shorter treatments such as 3 h/6 h for staining, microscopy or gene expression analysis, stock 

solution of ABA was diluted to 1µM in liquid half-MS media applied directly on roots 

without transfer of seedlings. The peptide CIF2 described in (16, 19) 

(DY(sulfated)GHSSPKPKLVRPPFKLIPN) was stored as 1mM stock solution and the 

treatments with 1 µM were performed as described for the ABA treatment for short (3 h/6 h) 

and long (16 h) treatments. For 48 h fluridone treatments, 3-day seedlings were transferred on 

the half-MS containing 10 µM fluridone. Estradiol treatments were performed by diluting 

5mM stock of estradiol to 5 µM in solid or liquid half-MS for long (16 h) short (3 h/6 h) 

respectively.  

 

Suberin staining 

Whole mount suberin staining was performed as previously described in (6). Five-day old 

seedlings were incubated in Fluorol Yellow 088 (FY 088) (0.01% w/v, lactic acid) for 30 min 

at 70°C, washed twice with water and then counter-stained with Aniline Blue (0.5% w/v, 

water) for 30 min, washed with water and mounted on glass slide to be observed with an 

epifluorescence stereomicroscope- ZEISS Axio Zoom.V16 with a GFP filter ex: 450-490 nm, 

em: 500-550 nm. Samples were kept in the dark during the whole procedure. For subsequent 

suberin pattern quantifications, tiled images covering the whole seedlings in single images 

were captured. For imaging of the large field of view with high-resolution, multiple smaller 

images were captured as tiles and stitched. Region of interest of the root was defined by 

marking the ‘tile-region’ after a quick scan of the sample at lower resolution. Adequate 

number of focus points were used to adjust the focus of the sample along the region of 

interest. 10% area of overlap was defined for alignment and stitching of tiles. Fiji 

(http://fiji.sc/Fiji) (69) was used on Zen2.3 blue exported stitched tile images for 

quantification of suberin patterns (in mm) along the root: suberized for the fully suberized 

zone, patchy for the partially suberized zone and non-suberized –for the zone prior to 

suberization. Results are presented as percentage of the root as previously done (6, 12). 
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Lignin staining 

CearSee‐adapted cell wall staining was performed as described (70). Briefly, 5‐day‐old 

seedlings were fixed in 1 × PBS containing 4% paraformaldehyde, 1 h at room temperature 

and washed twice with 1 × PBS. Following fixation, the seedlings were cleared overnight in 

ClearSee solution after which the solution was exchanged to 0.2% Basic Fuchsin in ClearSee 

solution lignin staining. After overnight staining, the dye solution was removed and rinsed 

once with ClearSee solution, the seedlings were subsequently washed in ClearSee solution for 

30 min and washed again in another ClearSee solution for at least one overnight before 

observation with a Leica SP8 confocal. All clearing, staining and washing steps were 

performed in 12 well plates, covered with aluminum foil and under gentle agitation. 

 

Propidium iodide test 

Propidium iodide (PI) was used as an apoplastic tracer to assess Casparian strip functionality 

as previously described (5, 65). Seedlings were live-stained with 15 µM PI; kept in the dark 

for 10 min and then rinsed twice with water. The apoplastic barrier was determined under a 

fluorescent Leica DM6 B microscope with I3 filter and 20x magnification, as the number of 

endodermal cells after the onset of elongation where PI uptake is blocked at the endodermis. 

The onset of elongation was defined as the first endodermal cell for which the length was at 

least three times its width. 

 

Confocal microscopy  

Confocal laser scanning microscopy experiments were performed either on a Zeiss LSM 780, 

a Zeiss LSM 800 or a Leica SP8 microscopes. Excitation and detection windows were set as 

follows: Zeiss LSM 780: mVenus ex: 488 nm, em: 519-559 nm; RFP/mScarlet ex: 543 nm, 

em: 591-637 nm ; Zeiss LSM 800: mCITRINE/mVenus ex: 488 nm, em: 500-546 nm; 

RFP/mScarlet ex: 561 nm, em: 585-617 nm; PI ex: 561 nm, em: 592-617 nm ; Leica SP8: 

Basic Fuchsin ex: 561 nm, em: 600-650 nm. For imaging of the large field of view with high-

resolution, multiple smaller images were captured as tiles and stitched together for a larger 

view of roots. Region of interest of the root was defined by marking the ‘tile-region’ after a 

quick scan of the sample at lower resolution. Adequate number of focus points were used to 

adjust the focus of the sample along the region of interest. Acquisition of tiled images was 

combined with Z-stacking and in certain cases with time series as well. 10% area of overlap 

was defined for alignment and stitching of tiles and tiled Z-stacks were used for orthogonal 
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projection and subsequently exported. For time-course experiments, 25-30 min time interval 

in between the scans was defined for 10-12 cycles. Scanner and detector settings were kept 

unchanged for every experiment. Images were analyzed with Zen2.3 blue (LSM 800) or 

Zen2.3 black (LSM 780) software and Fiji (http://fiji.sc/Fiji) (69). Fluorescence intensities 

were calculated nucleus by nucleus along one cell file from the onset of nuclear signal, 

considering the maximum intensity detected in each individual nucleus as an estimate the 

difference of intensity between nuclei. 

 

Q-RT-PCR  

For gene expression analysis, 25-30 roots of 7d-ay-old seedlings were harvested and pooled 

together to form one biological replicate. RNA extractions were performed by Trizol-adapted 

RNeasy MinElute Cleanup Kit (Qiagen). RNA was reverse-transcribed using Thermo 

Scientific Maxima First Strand cDNA Synthesis Kit following the manufacturer’s protocol. 

Real-time PCR was performed on Applied Biosystems QuantStudio5 thermocycler using 

Applied Biosystems SYBR Green master mix. ACTIN-2 (At3g18780) was used as the 

housekeeping gene and relative expression of each gene was calculated using the 2-∆∆Ct 

method (71). The list of primer used for Q-RT-PCR are presented in Table S2. 

 

 Chemical suberin analysis  

We used the protocol as described by (72) for the analysis of ester-bound lipids, which likely 

only belong suberin in the described organ and developmental stage. In brief, 200 mg of seeds 

were grown and after five days, the roots (between 200 and 300 per replicate) were shaved off 

after flash freezing and extracted in isopropanol/0.01% butylated hydroxytoluene (BHT). 

They were then delipidized two times (16h, 8h) in each of the following solvents, i.e., 

chloroform-methanol (2:1), chloroform-methanol (1:1), methanol each with 0.01% BHT, 

under agitation before being dried for 3 days under vacuum. Depolymerization was performed 

by base catalysis (73). Briefly, dried plant samples were trans-esterified in 2 mL of reaction 

medium. 20 mL reaction medium was composed of 3 mL methyl acetate, 5 mL of 25% 

sodium methoxide in dry methanol and 12 mL dry methanol. The equivalents of 5 mg of 

methyl heptadecanoate and 10 mg of ω-pentadeca-lactone/sample were added as internal 

standards. After incubation of the samples at 60°C for 2h 3.5 mL dichloromethane, 0.7 mL 

glacial acetic acid and 1 mL 0.9% NaCl (w/v) /100 mM Tris-HCl (pH 8.0) were added to each 

sample and subsequently vortexed for 20 s. After centrifugation (1500g for 2 min), the 

organic phase was collected, washed with 2 mL of 0.9% NaCl, and dried over sodium sulfate. 
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The organic phase was then recovered and concentrated under a stream of nitrogen. The 

resulting suberin monomer fraction was derivatized with BFTSA/pyridine (1:1) at 70°C for 1 

h and injected out of hexane on a HP-5MS column (J&W Scientific) in a gas chromatograph 

coupled to a mass spectrometer and a flame ionization detector (Agilent 6890N GC Network 

systems). The temperature cycle of the oven was the following: 2 min at 50°C, increment of 

20°C/min to 160°C, of 2°C/min to 250°C and 10°C/min to 310°C, held for 15 min. 3 

independent experiments were performed with 4 replicates for each genotype, respectively, 

and a representative dataset is presented. The amounts of unsubstituted C16 and C18 fatty 

acids were not evaluated because of their omnipresence in the plant and in the environment. 

 

Ionomic analysis 

Leaf elemental content was measured using ICP-MS as previously described (74). Briefly, 

dried leaves were transferred into the Pyrex test tubes, weighted, and digested with 1 ml of 

concentrated trace metal grade nitric acid Primar Plus (Fisher Chemicals) containing an 

indium internal standard, in the dry block heaters (SCP Science; QMX Laboratories) at 115˚C 

for 4 h. After cooling, digested samples were diluted to 10mL with 18.2 MΩcm Milli-Q 

Direct water (Merck Millipore) and elemental analysis was performed using an ICP-MS 

(PerkinElmer NexION 2000 equipped with Elemental Scientific Inc autosampler) in the 

collision mode (He). Twenty-three elements were monitored (Li, B, Na, Mg, P, S, K, Ca, Mn, 

Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo and Cd). A matrix-matched liquid reference material 

composed of pooled digested samples was prepared before the beginning of the sample run 

and used every ninth sample to correct for variation within ICP-MS analysis runs. The 

calibration standards were prepared from single element standards solutions (Inorganic 

Ventures; Essex Scientific Laboratory Supplies Ltd, Essex, UK). Samples concentrations 

were calculated using external calibration method within the instrument software. The final 

concentrations were obtained by normalizing the element concentrations to the sample dry 

weight.  

 

Statistical analysis 

Statistical analyses were done with the GraphPad Prism 8.0 software 

(https://www.graphpad.com/) or with the R environment (75). For statistical analysis of 

multiple transgenic lines, genotypes or treatments parametric or nonparametric One-way or 

Two-way ANOVA, and Tukey’s test were used as a multiple comparison procedures. Binary 

comparisons were performed using Student’s t-test. Statistical representation for specific 
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experiment are described in figure legends. The data are presented as mean ± standard 

deviation, and “n” represents number of biological replicates.   
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