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Abstract: In recent decades, unsustainable urban development stemming from uncontrolled
changes in land cover and the accumulation of population and activities have given rise to adverse
environmental consequences, such as the formation of urban heat islands (UHIs) and changes in
urban microclimates. The formation and intensity of UHIs can be influenced not only by the type of
land cover, but also by other factors, such as the spatial patterns of thermal clusters (e.g.,
dimensions, contiguity, and integration). By emphasising the differences between semi-arid and
cold-and-humid climates in terms of the thermal-spatial behaviours of various types of land cover
in these climates, this paper aims to assess the behavioural patterns of thermal clusters in Tehran,
Iran. To this end, the relationship between the land surface temperature (LST) and the types of land
cover is first demonstrated using combined multispectral satellite images taken by Operational
Land Imager (OLI), Thermal Infrared Sensor (TIRS) of the Landsat8 and MODIS, and Sentinel
satellites to determine LST and land cover. The effects of different behavioural patterns of thermal
clusters on the formation of daytime urban heat islands are then analysed through spatial cross-
correlation analysis. Lastly, the thermal behaviours of each cluster are separately examined to reveal
how their spatial patterns, such as contiguity, affect the intensity and formation of UHI, with the
assumption that each point in a contiguous surface may exhibit different thermal behaviours,
depending on its distance from the edge or centre. The results of this study show that the daytime
UHIs do not occur in the central parts of Tehran, and instead they are created in the surrounding
layer, which mostly consists of barren cover. This finding contrasts with previous research
conducted regarding cities located in cold-and-humid climates. Our research also finds that the
more compact the hot and cool clusters are, the more contiguous they become, which leads to an
increase in UHIs. The results suggest that for every 100 pix/km? increase, the cluster temperature
increases by approximately 0.7-1 °C. Additionally, placing cool clusters near or in combination with
hot clusters interrupts the effect of the hot clusters, leading to a significant temperature reduction.
The paper concludes with recommendations for potential sustainable and context-based solutions
to UHI problems in semi-arid climates that relate to the determination of the optimal contiguity
distance and land use integration patterns for thermal clusters.

Keywords: urban heat island; land cover; thermal-spatial pattern; hot and dry climates; Tehran

1. Introduction

Changes in land cover have profound impacts on the formation and size of urban
heat islands (UHISs) [1], i.e., areas that are measurably warmer than their surroundings
[2,3]. This is because many man-made land covers store solar energy and release it into
the urban canopy at different times of the day. Furthermore, owing to the complexity and
compactness of urban structures, sun radiation gets trapped in the urban canopy, which

Sustainability 2021, 13, 13824. https://doi.org/10.3390/su132413824

www.mdpi.com/journal/sustainability



Sustainability 2021, 13, 13824

2 of 24

leads to increased air temperature [4]. Vegetation, however, has a cooling effect on urban
environments [5,6], as it reduces the heat applied to urban surfaces by providing shade
[7] and through evaporation [8]. Human causes of increased temperature in urban
environments include the blockage of wind corridors with urban canyons, the
concentration of industrial activities and population in certain places, and extensive use
of vehicles for transportation. Unsustainable development in urban areas also has adverse
impacts, such as the formation of urban microclimates [9,10]. Within the context of urban
climates, these microclimates primarily refer to UHIs. Having a higher temperature in the
central parts of a city than in the peripheral areas raises the thermal discomfort of citizens,
with negative consequences such as increased energy demands [11], air pollution [12],
and mortality [13].

Studies on UHIs have focused on two main areas: (1) land cover and land use [14-
19]; (2) urban spatial structures and spatial development plans [20-22]. Urban vegetation
can play a critical role in reducing UHIs [23]. In a study conducted by Gao et al. [24], where
Aster and IKONOS satellite images were used to gather information about 92 parks in
Nagoya, analyses showed that the characteristics of the park (e.g., tree density, park
shape, and surrounding land uses) affect the formation of the park’s cool island. Greene
and Kedron [25] also found out that the inner part of a forest is not significantly cooler
than its edges, from which it was concluded that linear parks are the best solution to
reduce the UHI effect [26]. Delgado, Arroyo, Arévalo, and Ferndndez-Palacios [27]
investigated the effects of road networks on microclimate and canopy structure in pine
forests of Teneri. In this study, temperature measurements were made in the soil, tree
litter, and air (at heights of 5 and 130 cm above ground) along lines running from asphalt
roads and dust trails into the forests. This study concluded that the temperature changes
around roads were significant for about 10 m. Greene and Kedron [25] used QuickBird
and Landsat5 satellite images to examine the relationship between temperature and
canopy area in Toronto, with an emphasis on the scale of land uses, especially green
spaces. They reported that the local-scale green spaces and surrounding land uses have
the greatest impact on temperature.

Most studies on UHIs have been conducted in cities located in cold and humid
climates in North America and Europe. A review of the existing literature shows that the
thermal behaviour of land cover types varies in different climates [28-30]. Therefore, the
results of studies conducted in cities located in cold and humid climates are not
generalisable to UHISs in cities such as Tehran that are located in semi-arid climates. Alj,
Marsh, and Smith [28], for example, used satellite images to compare the surface
temperatures of two cities with different climates. They explained that the effects of
materials on surface temperature vary from case to case and depend on the climate. While
the soil cover increases the surface temperatures in arid and semi-arid climates such as in
Baghdad, the soil cover in cold and humid climates such as in London has a lower
temperature than other covers. In a study by Bokaie et al. [29], they used Landsat5 images
to study the relationship between the land cover and land surface temperature (LST) in
Tehran. In this study, barren soil surfaces were identified as the main cause of the heat
island effect in Tehran. It was also reported that most heat islands in Tehran can be found
in its western parts, which are mainly covered by large barren land areas. Mathew et al.
[30] used MODIS satellite images to study UHI behaviour in two Indian cities in
comparison to rural surrounding areas in an arid climate. The study indicated that higher
temperatures were observed during the daytime, although the urban heat island
phenomenon was prevalent only during the night-time. They argued that soil surfaces
have dramatically different temperatures during day and night, since these surfaces more
rapidly heat up or cool down compared to anthropogenic materials such as roads and
concrete. In arid and semi-arid climates, the peak soil temperature (at 14:00 or 15:00) is
several times higher than that of other surfaces. Similarly, the soil temperature is reported
to be up to twenty times higher than vegetation temperature. In autumn and rainy
seasons, during both days and nights, the soil is warmer than vegetation cover and cooler
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than other urban surfaces [31]. Zhou et al. [4] presented a method for predicting the
recorded sidewalk pavement temperatures. This study reported that a 0.1 unit increase in
albedo decreases the maximum sidewalk pavement temperature by about 3.3 °C.

Existing studies on UHIs provide various solutions to reduce this effect at different
scales. At the building scale, Akbari and Kolokotsa [32] attempted to reduce the effects of
materials by modifying roof and sidewalk surfaces and replacing dark urban materials
with urban plants. At the neighbourhood scale, Farhadi et al. [33] showed that the best
way to reduce UHIs in a studied neighbourhood is to change the direction of a street,
aiming to create a channel for the wind to flow across the neighbourhood. According to
Oke [34], who investigated how building design can affect exposure to sunlight and wind
flow, the height-to-width ratio should be between 0.4 and 0.65. At the city level,
Khamchiangta and Dhakal [35] examined the relationship between the physical structure
of different building zones and temperature in Bangkok. They recommended the
following strategies: (a) increasing urban green spaces, i.e., urban parks and green belts;
(b) changing the urban structure from single-centre to multi-centre in order to create space
for the development of new central business districts (CBDs) in and around the suburbs;
(c) modifying the building code; (d) incentivising green and innovative buildings; (e)
ameliorating urban public transport by building a fast rail system. A study by Shojaei et
al. [36] on UHIs in Isfahan showed that green spaces are the primary urban components
that alleviate the effects of UHIs in arid and semi-arid climates. Yue et al. [37] used
Landsate8 and MODIS satellite images to study seasonal land surface temperatures and
land covers in 36 cities in China. The study concluded that contiguity is a key index with
a direct relationship with land surface temperature, as more contiguous lines of buildings
are more likely to cause UHIs. Debbage and Shepherd [38] used the PRISM model to
estimate the land surface temperatures of 50 cities and found that the contiguity of urban
development increases the intensity of UHIs. The strategy recommended was to build a
network of small parks rather than fewer large parks.

UHI studies have used various methods for data collection, including vehicle
surveying [34,39], remote sensing [6,7,35,40—44], modelling of data from meteorological
stations [33,45], and Weather Research and Forecasting (WRF) modelling [46,47]. The
intensity of a UHI is often determined based on the data from meteorological stations
through measuring the canopy air temperature or land surface temperature estimations
based on satellite images [19,48]. The most commonly utilised method for studying UHIs
is to use land surface temperature measurements, as they give researchers extensive
information about the land cover and space temperatures over different time periods. The
practice of using high-quality satellite images to study UHIs started with Landsat5, which
is a popular source for collecting land surface temperature information [3,49,50]. This
approach does not have the spatial and temporal limitations of the traditional approach
of gathering data from meteorological stations [40,51]. Satellite images commonly used in
this field of research are often from Landsat or MODIS [52,53]. Some studies use both
groups of satellite images simultaneously [37].

This paper aims to assess the effects of thermal-spatial behaviours of land covers on
UHlIs in the semi-arid climate of Tehran, Iran. The main contributions of this paper are
threefold: (1) Having acknowledged the limitations of generalising the findings of UHI
studies on cities in cold-and-humid climates, which have dominated the literature on
UHlIs, to other climates, we analyse the effects of thermal-spatial behaviours of different
land covers on UHI in the semi-arid climate of Tehran, Iran. This is important because the
recommendations provided by studies of cities in cold-and-humid climates are not
necessarily generalisable to cities located in a semi-arid climate and they can mislead
policymakers. (2) We conduct our study of UHIs at the inner-city scale, using high-
resolution Landsat8 images. Previous studies carried out on UHIs in semi-arid climates
have used lower resolution MODIS images (e.g., Matthew et al. [30]), meaning they were
unable to investigate UHIs at the inner-city scale and instead focused on rural-urban
differences. (3) In addition to assessing the effects of different land covers on the formation
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of UHIs, we investigate the influences of different spatial patterns of thermal clusters on
reducing or increasing the effects of UHI in the context of a city located in a semi-arid
climate. This paper provides decision-makers with recommendations, which are
specifically formulated for cities located in a semi-arid climate, for reducing the intensity
of UHIs. While developing large-scale green spaces might not be a feasible intervention
in such cities due to water shortages, considerations surrounding the type and location of
land uses and land surfaces can help to address the problem of UHI. To this end, the paper
first provides an overview of the utilised methodology and presents the methodological
steps that were undertaken in investigating UHISs in the semi-arid climate of Tehran. The
paper goes on to analyse the collected data in the results section. The paper then presents
the discussion, followed by the conclusions.

2. Methodology

There are three approaches to studying UHIs [54]: the surface UHI approach
(UHI-surface), the canopy UHI approach (UHI-canopy), and the boundary layer UHI
approach (UHI-boundary). While air temperature is used to measure for UHI-canopy
and UHI-boundary approaches, the land surface temperature is the key parameter for the
UHI-surface approach. UHI-canopy and UHI-boundary approaches can be effective in
studying UHIs when high-resolution urban meteorological networks (UMN) are available
and the scope of the study is at the micro-scale. This study uses the UHI-surface approach
because the scope of the research is the entire city of Tehran and high-resolution UMN are
not available. In addition, the UHI-surface approach is suitable for this research due to its
effectiveness in analysing the thermal behaviours of land covers. The UHI-surface
approach is more strongly linked with land covers than the other approaches. In line with
most studies using the UHI-surface approach, this research uses remote sensing
techniques that provide a consistent and repeatable methodology [55] to achieve the
research objectives.

To identify the behavioural patterns of different land covers and land uses (which in
this study are called thermal clusters) with different spatial structures, such as different
dimensions and contiguity, and to determine the optimal dimensions for land use plots
so as to reduce the intensity of UHIs, this study was conducted in three phases. In the first
phase, an attempt was made to identify the UHIs and land cover types in the Tehran
metropolitan area by analysing their spatial cross-correlations. In the second phase, the
impacts of land cover types on UHIs were analysed according to the identified
relationship, so that land covers with similar thermal behaviour could be classified as
clusters. In the third phase, the thermal behaviour of each cluster was examined separately
to determine how the spatial structure and pattern affect the intensity and formation of
UHIs and to identify the best thermal cluster pattern to minimise the intensity of UHI for
each type of land cover. A detailed description of each phase is provided below (Figure
1).
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Figure 1. Research design and methodology.

Phase 1: Identifying UHIs and the correlation between land cover and land surface
temperature

The land surface temperature (LST) map of Tehran in summer and winter was
produced using satellite images. Many studies on UHIs use the images taken by the
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) systems of Landsat8
to determine LST and land cover values [53,56-58]. OLI and TIRS images are multispectral
with a resolution of 30 m and in the infrared thermal band with a resolution of 100 m,
respectively [51]. This study uses a combination of data extracted from MODIS and
Landsat8. Landsat8 provides moderate-resolution (15-100 m, depending on the spectral
frequency) images, which are valuable resources for land use and urban research.
However, it only offers images of Tehran during a specific time of day and does not
provide any image of Tehran at night. To compensate for this, we used data from MODIS,
which offers a wider range of images throughout both day and night. Although MODIS
images are of lower resolution compared to Landsat8, they provide images of Tehran at
night. Therefore, combining data from MODIS and Landsat8 was necessary for our
research to cover a wider range of times and places, whilst increasing the accuracy [51,59].
Landsat8 images taken on 28 July 2018 and 5 February 2019 were obtained from the
website of the United States Geological Survey (USGS). Given the trajectory of the
Landsat8 satellite, these images were taken at 07:15. Considering that the Landsat satellite
passes over Tehran only at 07:15, to obtain LST images at night-time, following the
approach of studies such as [53], this study used the images taken by the MODIS sensor
of the Terra multi-national NASA scientific research satellite on the 25 June 2018, which
have a 1 x 1 km? resolution. Satellite images were analysed using ArcGIS 10.2.1, SPSS, and
ENVI 5.3.1. ArcGIS 10.2.1 was used at one stage to prepare LST maps using the single-
channel algorithm and at another stage to create the cluster maps. ENVI 5.3.1 was used
for supervised classification and to determine the accuracy and kappa coefficient values
of each class:

1-1- The land cover map of Tehran included six categories (asphalt, built-up areas,

grasslands, forests, water, and barren surfaces);

1-2-  Cross-correlation was performed between the LST map and the land cover

map. SPSS was used to analyse the GIS outputs and check for Pearson and linear

correlations in order to detect the relationships between the contiguity of hot surfaces

and the LST map. A more detailed description of the aforementioned steps is

provided in the following section.

Phase 2: Investigating the effects of clusters on the formation of UHIs
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2-1- Using the correlation identified in the previous stage, the land cover was
divided into three general clusters based on the degree of impact on the LST: hot
clusters, temperate clusters, and cool clusters. In other words, each land cover type
was grouped in a cluster with similar behaviour in terms of temperature changes.
Temperate clusters were ignored as they have a neutral effect:

¢  The main cool (Cc = 350) and hot (Cc = 700) clusters in Tehran were identified
based on the formulated coefficient. The higher the coefficient, the more
contiguous the cluster. Ultimately, clusters with higher coefficients were selected
for analysis;

e To optimally reduce the impact and intensity of UHISs, the effects of the LST in
different parts of each cluster were investigated.

Phase 3: Investigating the spatial structure and pattern of each land cover and its effect on
LST

e It was assumed that each point in a contiguous surface may exhibit different
thermal behaviour depending on its distance from the edge or centre, and that
recognising these behavioural patterns will help determine the optimal size of
the surface. It was also assumed that as the surface radius increases, the thermal
behaviour of the cluster intensifies;

e  After identifying the behavioural patterns of land cover types in the previous
sub-stage, the optimal distance and size were determined, or in other words the
optimal boundary for breaking the contiguity of hot and cool clusters. Applying
this size or boundary on each cluster was expected to decrease the intensity of
the associated UHI. This could prove highly useful for mitigating the effects of
urban microclimates through urban planning, especially in water-scarce areas
where it is difficult to build and maintain green spaces.

2.1. Landsat Outputs

Since it is time-consuming and expensive to make temperature measurements over
large urban areas, satellite images have become the main sources for obtaining LST data
with sufficient accuracy to identify UHIs. Many studies in this field [6,28,60] use Landsat8
images for this purpose, as they have sufficient accuracy and resolution for city-level
examination. In this study, the LST map was also created based on Landsat8 satellite
images. These images were obtained from the earth explorer website of the United States
Geological Survey. The LST map was prepared using bands 10 and 11 of these images
through the following steps.

First, the ToA spectral radiance (A) was calculated using the following equation:

La= ML x QCAL + Ar 1)

where Larepresents the ToA spectral radiance (w/ (m? x sr x um)); ML represents the
radiance additive scaling factor for the band; QCAL represents the quantified calibrated
pixel value in digital numbers (DN); Arrepresents the radiance additive scaling factor for
the band.

Next, the following equation was used to transform the obtained ToA spectral
radiance (A) into the At-satellite brightness temperature (BT) [26]:

BT = Kzo/(In (Ko/La + 1)) @)

where BT represents the At-satellite brightness temperature in Kelvin (k); K1, K2represent
the thermal conversion constants in Landsat8 (for band 10, Ki = 774.8853 and K. =
1321.0739; for band 11, K1 = 480.8883 and Kz = 1201.1442)

Finally, the LST was calculated using the following equation:

LST = BT/1 + (A x BT/a)Ine ®)
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where LST represents the land surface temperature (K); A represents the wave length of
emitted radiance (A = 10.8 for band 10 and A = 12 for band 11 in Landsat8); A represents
HC/K (1.438 = 10-2mk) [26].

Here, € represents the surface emissivity (the emissivity is difference for every
material, including the vegetation (0.973), water body (0.991), soil (0.966), wetland (0.983),
asphalt surface (0.963), and concrete surface (0.957) classes) [61].

The parameter € (one of the LST variables) was obtained from the following equation:

£=0.004 x Py +0.986 )

where Pv represents the proportion of vegetation.

Pv was calculated using the following equation [61]:

Py = (NDVI = NDVImin)/(NDVImax = NDVImin)) (5)

where NDVI, which denotes the normalised difference vegetation index, was obtained as
follows:

NDVI = ((band 5 - band 4)/(band 5 + band 4)) (6)

where NDVI represents the normalised difference vegetation index; band 4 = visible red;
band 5 = near-infrared.
The NDVI value ranges between -1 and +1 [62].

2.2. MODIS Outputs

Given its regular and uniform trajectory, the Landsat8 satellite passes over Tehran at
07:15, meaning it does not provide night-time LST data for this city. MODIS, however,
provides images for every location 24 h a day, which makes it suitable for constructing
night-time LST maps [53,63,64]. This system consists of two main satellites, Terra and
Aqua, each offering products known as MOP11-A2 and MID11-A2, respectively, which
are available through NASA’s earth data website [64,65]. The images given by MODIS
contain 36 bands, of which bands 31 and 32 are thermal and can be used to collect LST
data for any hour of the day [65,66]. The thermal band of this satellite has a resolution of
1 x 1 km?, which makes it more suitable for regional and trans-regional analyses, although
some studies have used it to prepare LST maps for metropolises [66—68].

In this study, MOD11-A2 products of the Terra platform were used to create the
night-time LST map of Tehran. The images used for this purpose were taken at 22:30 on
28 July 2018 (summer) and approximately 22:30 on 5 February 2019 (winter).

2.3. Urban Contiguity Coefficient

While several previous studies have used the concept of surface contiguity for
contiguous lines of buildings [37,38], in this study this concept was used for land cover
and thermal clusters in semi-arid areas. This study uses the urban surface contiguity
coefficient to investigate the effects of land cover size and shape variables on the formation
of UHIs or in their reduction. It is assumed that having surfaces with higher contiguity
coefficients results in the formation or intensification of UHIs, while on the contrary the
disruption of contiguity by other covers at certain intervals reduces the likelihood of the
UHI effect. The optimal distance x has an extensive impact on UHIs (Figure 2). This could
be especially beneficial for water-scarce areas where it is difficult to build the green spaces
[69] needed to mitigate urban microclimates.
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Figure 2. Divided surfaces based on heat intensity.

Surface contiguity can be measured by measuring the proximity and density of pixels
of hot surfaces. The closer this coefficient is to 11.1111 (for Landsat8 images), the more
contiguous the hot surfaces are within the studied domain. Therefore, the contiguity of
urban surfaces was quantified using the following equation:

C=3y" Pc/1km? @)

where C represents the contiguity of an urban surface; Y;¥ Pc represents the number of
pixel centres in the image (pix/km?).

For Landsat images, C varies between 0 and 11.1111, although for other satellites, it
may vary in different ranges depending on the pixel size of the images. The following
equation can be used to calculate the area of hot surfaces based on the surface contiguity
coefficient:

C.=C x Ps ®)

where Ca represents the contiguity surface area; Ps represents the pixel size.

To compare images from different satellites with different pixel sizes, one has to have
a single coefficient. Since C varies from satellite to satellite depending on the pixel size,
the contiguity can be calculated using the following formula:

C=3V Pc/(1km?/Ps) )

where C. represents the surface contiguity coefficient.

There are several methods used to check the correlation between two indicators with
the help of software. The most common way to do so is to use the Pearson correlation
coefficient:

R=YV, (X - X i = O/VZE X - X)2QL, (7 — ¥))? (10)

where X and Y represent the means of variables x and y; Xi and Y: represent the variable
values with =1, ..., n.

The Pearson correlation coefficient varies between -1 and +1. The closer this
coefficient is to zero, the lower the correlation, while the closer it is to -1 or 1, the higher
the correlation. A correlation coefficient of +1 indicates a direct correlation and -1
indicates an inverse correlation [70].

2.4. Classification of Land Cover Types in Satellite Images

The impacts of different land covers on LST can be distinguished based on their
differences in albedo [43,71] effect and evapotranspiration rate [49,72,73]. In this study,
land cover types were classified using Sentinel satellite images because of their better
resolution. The selected images were taken on 25 June 2018. Such classifications can be
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performed using supervised or unsupervised methods. In scientific research, it is common
to use supervised methods equipped with learning algorithms. In such methods, the user
provides a sample for each material and surface belonging to each class (e.g., forest cover),
then the software detects the rest of the surfaces automatically based on the provided
samples [74].

Previous studies have utilised various categories for the classification of land covers
in satellite images depending on the scale of study area and dominant vegetation types
[19,26,28,30,48,60,62]. These classifications often involve between 4 and 6 categories. In
this paper, the maximum likelihood classification method was used due to the
geographical scale and diversity of vegetation and ecosystems in Tehran. This method is
one of the most commonly used methods for classification in remote sensing and provides
a consistent approach to parameter estimation problems. Based on the maximum
likelihood classification method, the land covers in Tehran were classified into six
categories.

After classifying land covers in the satellite images, the accuracy and kappa
coefficient values were calculated. The accuracy was measured by randomly selecting 100
points from each land cover category and checking whether the classifications matched
the Google earth images. The higher the match between the classification map and these
images, the closer the accuracy was to 100%. The Kappa coefficient was calculated using
the following equation [75]:

K= [N X Dij — Xt Ry X G/IN? Xita Ry X G (11)
Jj=1 Jj=1 Jj=1
where N represents the total number of pixels; m represents the number of classes; } D
represents the total diagonal elements of an error matrix (the sum of correctly classified
pixels in all images); Ri represents the total number of pixels in row i; C;j represents the
total number of pixels in column ;.

In this study, the accuracy and kappa coefficient were calculated as 88.17% and 0.91,
respectively. Both the user’s accuracy and producer’s accuracy were checked for each of
the six types of land cover, i.e., built-up areas, asphalt, forest, grassland, water, and barren
surfaces. For these six types of land cover, the user’s accuracy rates were calculated as
89.71, 81.25, 91.24, 87.13, 91.18, and 89.42% and the producer’s accuracy rates were
calculated as 83.49, 79.48, 88.39, 89.94, 92.11, and 90.56%, respectively.

3. Results

This section presents the results obtained by following the procedures described in
the methodology section to identify the impacts of the form and size of different types of
land covers on the intensity of UHISs.

3.1. Identification of Tehran’s UHIs Based on Land Cover Differences

This paper covers a case study from Tehran, Iran. Tehran is surrounded by
mountains in the north, foothills in the centre, and desert in the south. Its altitude ranges
from 900 to 1800 m above the mean sea level and increases from south to north [76]. It is
located in a semi-arid climate zone [77].

To identify the microclimates of Tehran with an emphasis on detecting UHIS, first a
land cover map of this city was created. As the land cover map in Figure 3 shows, Tehran’s
area consists of 64.28% built-up lands, 3.07% urban forests, 4.65% green lands, 14.48%
asphalt, 1.26% water, and12.24% barren soil. Then, the LST maps of the city for different
times were created and the land covers that intensify the city’s UHIs were identified. Next,
the relationships between these variables were investigated and the average temperature
of each land cover type was calculated. The results, which are presented in Figure 4, show
how much each land cover affects the intensity of UHIs.
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Figure 3. Tehran land cover (June 2018, Sentinel satellite). Retrieved from:
https://scihub.copernicus.eu/dhus/#/home (accessed on 12 March 2020).
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Figure 4. Land surface temperature (LST) values from different weather conditions at day and night, during summer and
winter: (A) winter day, 07:15, 5 February 2019, Landsat8; (B) summer day, 07:15, 28 July 2018, Landsat8; (C) 22:30, 5
February 2019, Modis; (D) 22:30, July 28, 2018, Modis. Retrieved from: (A,B) https://earthexplorer.usgs.gov/(accessed on);
(C,D) https://search.earthdata.nasa.gov/search?ac=true(accessed on 12 March 2020).

Distribution of UHIs in Tehran

Urban surfaces generally absorb sunlight energy at short wavelengths and release it
into the environment at long wavelengths, causing differences in ambient temperature
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[78]. As the maps in Figure 4 illustrate, the surface temperature ranges in Tehran in
summer are 26.53-46.19 °C during the day and 17.35-23.17 °C at night, while in winter the
ranges are -5.71-18.72 °C during the day and -4.35-2.66 °C at night. Therefore, the
behaviour of urban heat islands in summer is almost similar to winter, although it
increases in intensity so that the temperature increases sharply on the outskirts of the city

The 22 municipal districts in Tehran have different dominant land cover types. The
built-up areas are mostly concentrated in the central part of the city, including districts 10,
11, and 12, where on average 86.67% of the land is built-up. Forest cover is more
concentrated in districts 1, 2, and 4 and in north, northwest, and eastern parts of the city.
Grassland cover has no distinct concentration but can be found more in the northern and
southern parts of the city. A large portion of asphalt cover in Tehran (32.06%) is in the
city’s western part in district 21, which is known as Tehran’s industrial zone. The urban
water bodies in Tehran do not have a specific concentration or pattern. About 30.01% of
Tehran’s barren lands are concentrated in the eastern and western peripheries of the city,
including districts 4, 9, 13, 14, 21, and 22. In general, Tehran’s microclimate in the northern
part of this city is mostly affected by forests and urban green spaces, in the central part it
is mostly affected by compact built-up areas, and in eastern and western parts and to some
extent the southern part it is mostly affected by barren soil and asphalt covers.

Additionally, the temperature differences of land cover types vary from district to
district, although they appear to follow certain patterns (Figure 5). The results of this
diagram show that in all districts, barren soil (highlighted by yellow line) has the highest
temperatures among land cover types for summer daytime samples, while the next
highest temperatures are for asphalt cover, built-up areas, grasslands, forests, and water,
in that order.
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Figure 5. Average temperatures by land cover type in different districts in Tehran for a sample summer day at 07:30 on 28
July 2018.

Figure 6 also shows the different effects of land cover types on urban heat island
formation under different time conditions. Since Tehran has a hot and dry climate, the
surfaces with the highest heat production rates during summer days are barren areas,
followed by asphalt, built-up areas, grasslands, forests, and water, respectively, which
produce lower temperatures than others. During summer nights, however, built-up areas
have the highest temperatures, followed by asphalt, grasslands, barren lands, water, and
forests. This paradoxical behaviour of barren cover areas is due to the cooling rate of soil,
which is higher compared to other materials. When sunlight falls over arid and semi-arid
regions predominantly containing soil cover, the soil quickly heats up, thereby making
the barren parts warm. At night-time, however, the UHI is dominated by two factors: (1)
the ability of materials to store solar radiation during the day; (2) the rate at which this
energy is released at night. Barren cover, for example, which has heating effects during
the day, shows cooling effects during the night. In winter, the thermal behaviours of
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different types of land cover are also different. During the daytime in winter, barren,
asphalt, and grassland areas have highest surface temperatures, while at night-time in
winter, the built-up areas give the highest surface temperatures.
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Figure 6. Land cover effects on surface temperature (LST) values and urban heat island formation
under different weather conditions (summer and winter day- and night-time land cover spatial
average LST values in Tehran).

The spatial growth and urban sprawl of Tehran over the last few decades are also
pertinent factors. The peripheral areas of Tehran used to be dominated by farmland.
However, the fast-paced growth of the city in the last few decades has led to considerable
land use changes and the conversion of agricultural land covers to man-made land covers,
as well as barren and soil cover types [29,79]. Such man-made and barren covers in the
peripheral areas of Tehran are the main cause of the formation of UHIs during the
daytime. Therefore, in order to reduce the effects of UHIs in Tehran, the development of
greenbelts in the peripheral areas is of considerable importance.

3.2. Effects of Thermal Clusters’ Spatial Structures and Patterns on LST and UHI Values in
Tehran

The formation and intensity of UHIs can be influenced not only by the type of land
cover (which was discussed earlier) but also by other factors, including (a) the spatial
structure, arrangement, or integration of thermal clusters and land covers (such as the
placement of multiple smaller hot surfaces beside each other) and (b) the characteristics
of land cover clusters, such as the dimensions, contiguity, and integration. Hence, a new
land cover classification was made with the purpose of investigating the impacts of spatial
patterns of land covers on UHIs. In this classification, land covers with relatively similar
effects on UHIs temperature were put in the same groups, which here are called clusters.
Three clusters were defined for this classification: hot (including asphalt and barren), cool
(including water body and forest), and temperate (including built-up and grasslands).

Hot clusters represent the close placement or concentration of land covers that result
in increased temperatures, such as asphalt and soil (Figure 7B), while cool clusters
represent the close placement or concentration of land covers that keep temperatures low,
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such as water and green spaces (Figure 7A). In identifying cool and hot clusters, we
utilised the kernel density estimation (KDE) method using GIS. Based on this method, we
produced cluster-based density surfaces from point features, i.e., land cover data. Each
cluster received a score according to its land covers, which then formed cool and hot
clusters. Overall, 206.4 km? of the area of this city is classified as hot surface areas (about
27% of the city is covered by barren soil and asphalt); about half of these hot surfaces have
a high cluster contiguity, which results in more intensive heat generation.
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Figure 7. Main contiguity coefficients for cool and hot clusters in Tehran (pix/km?): hot clusters (A); cool clusters (B).

These clusters characterise different thermal behaviours:

e  Thermal behaviour of hot clusters: During the daytime, upon exposure to direct
sunlight, hot surfaces quickly absorb solar energy, which rapidly raises their
temperature. Most notably, the soil heats up quickly and releases this heat into the
environment; asphalt also heats up quickly because of its dark colour. After sunset,
these surfaces release their stored heat almost as quickly as they gain heat during the
day;

. Thermal behaviour of temperate clusters: Given their high heat capacity, temperate
surfaces such as buildings and grass patches gradually absorb heat after sunrise and
gradually release it into the environment after sunset. Thus, these clusters intensify
UHls at night-time and become the hottest clusters during these hours;

e Thermal behaviour of cool clusters: The evaporation mechanism prevents cool
surfaces from absorbing heat, which makes them cooler than other surfaces, both at
night and during the day.

It should be noted that dissimilar land covers behave differently in different climates.
In a city such as Tehran, which has a relatively dry climate, the outer parts of the city
experience a quick temperature drop after sunset, which results in the formation of a UHI
in the central part of the city. This is because in hot and dry climates, barren soil is the
hottest land cover and built-up areas have moderate temperatures. On the contrary, in
temperate climates, built-up areas tend to be much hotter than the soil cover.

As shown in Figure 8, during the daytime Tehran’s peripheral areas (which are
mostly shown on the right side of the graph, including districts 21, 22, 18, 19, 14, 15, and
9) have higher average temperatures than other areas, although during night-time, these
areas rapidly lose heat and become cooler than the central parts of the city. During the
daytime, the outer parts of the city are 2-3 °C warmer than the inner parts but at night-
time the inner parts are 4-5 °C warmer than the outer parts.
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Figure 8. Average temperatures for hot and cool clusters in 22 districts (for a sample summer day on 28 July 2018 at 07:15).

In other words, as shown in Figure 9, there is a close relationship between the average
surface temperature of each district and the presence of hot and cool surfaces (clusters) in
that place. As the area of hot clusters in a district increases the UHI becomes more intense,
then as the area of cool clusters increases the intensity of the UHI decreases.
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Figure 9. The relationship between the percentages of hot and cool clusters and the average temperatures in the districts

of Tehran.

3.2.1. Identification of the Effects of Land and Thermal Cover Spatial Characteristics
(Contiguity) and Cluster Dimensions on the Intensity of UHIs

Although the above-described analysis showed that the intensity of UHIs in a district
generally depends on how much of it consists of hot and cool clusters, there were some
exceptions to this rule, as some districts with small hot clusters (determined using
Equation (7)) had high temperatures. On this basis, it was hypothesised that the intensity
of UHISs is also a function of other factors such as the size and contiguity of clusters. This
effect is represented by the surface contiguity coefficient (Equation (8)). The larger and
more contiguous the hot cluster is, the greater the intensity of the associated UHI. This
hypothesis was proven by the regression illustrated in Figure 10, which shows that the
higher the average contiguity of hot clusters, the higher the average temperature and the
greater the intensity of UHIs (R? = 0.944) in a sample summer day.
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Figure 10. Hot cluster contiguity effects on land surface temperatures in Tehran for a sample summer day (28 July 2018 at
07:15). (R? linear = 0.944; Pearson correlation = 0.972).

The cluster contiguity coefficient has a more pronounced effect in the peripheral
parts of the city, which experiences increased intensity of UHIs. This is because of the
presence of vast uninterrupted and undeveloped areas in these parts, which have a barren
soil cover. As Figure 10 shows, the Cc does not have a dominant effect on hot and cool
surfaces in the inner parts of the city because these parts have a mix of different land
covers. However, for the peripheral parts of the city, including districts M2, M4, M5, M9,
M13, M14, M15, M16, M18, M19, M21, and M22, which have vast continuous urban
clusters, the Cc of hot clusters is more than 300. The Cc of cool clusters can also affect the
intensity of UHIs. For districts M4, M5, M13, and M22, the Cc of cool clusters is more than
200, showing that these districts have good clustering.

3.2.2. Identification of the Effects of Cluster Colocation and Integration Patterns on the
Intensity of UHIs

Another cause of behavioural differences between thermal clusters is the pattern of
colocation of land cover clusters, which in this study is represented by the cluster mixing
coefficient (cluster mixing is defined based on the percentage of the sides of a cluster that
border another cluster). As shown in Table 1, the presence of hot and cool clusters in one
area in the vicinity of each other affects the intensity of UHIs (Figure 11). In districts M4,
M13, and M22, the copresence and partial mixing of two hot and cool clusters (see Table
1) has decreased the average LST of hot clusters by approximately 1.5-2.5 °C. On the
contrary, in district M5, because of the separation of hot and cool clusters, the Cc has
decreased the cooling effect of the cool cluster by 1 °C.
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Figure 11. Cluster mixing effect on temperature reduction (R2 linear = 0.659).

The higher the Cc of the hot clusters, the higher the intensity of the UHIs. The
presence of cool clusters is highly effective in preventing the formation of UHIs from hot
clusters. For example, while districts 4 and 5 have the same percentage of hot clusters, the
hot clusters in district 4 are more fragmented by cool clusters, which has resulted in a
lower LST in this district than in district M21. Additionally, although districts M9, M18,
and M19 have lower percentages of hot clusters than M22, they have higher LSTs, as their
hot clusters are less mixed with cool clusters.

Table 1. The average temperature, density, and mixing coefficient values for hot and cool clusters in Tehran on a sample

summer day.

Hot clusters Hot surface Density

Cool clusters

Cool surface
Hot clusters average average  Mixing coefficient (side

Districts percentage (pix/ km?) temieg;ture Denls(l tyz(plx/ temperature connection percentage)
(LST) m?) (LST)
M2 25.2 3135 37.38 87.76 33.94 7.2
M4 31.8 408.77 37.88 271.49 35.09 63.65
M5 30.8 388.55 38.55 209.49 31.71 14.6
M9 50.5 651.99 41.59 10.93 36.07 -
MI13 47.5 647.63 39.02 235.58 35.40 69.38
M14 36.9 535.84 40.04 62.14 36.56 -
MI15 25.0 301.7 39.75 59.45 34.74 -
M16 25.2 319.88 39.25 57.63 34.78 -
M18 33.8 423.14 40.17 9.85 35.83 -
M19 353 385.26 40.52 10.66 36.47 -
M21 56.8 631.28 41.04 32.56 37.63 -
M22 55.4 594 40.09 264.88 32.84 100

3.3. Investigation of the Effects of Form Characteristics of Land Covers on the Formation of UHIs

The previous sections explained firstly how the colocation or placement of hot
surfaces next to each other results in the creation of larger contiguous hot clusters, leading
to increased contiguity coefficient and ultimately intensified UHI, and secondly how the
mixing of hot and cool clusters reduces the UHI effect. This section discusses the effects
of form characteristics of land cover clusters, including their dimensions and size, on the
formation and intensification of UHIs. For this discussion, the main hot and cool clusters
of Tehran were analysed in order to determine the minimum cluster size and dimensions
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that prevent the intensification of UHI; that is, this section presents a quantitative
investigation of why the cluster contiguity affects the intensification of UHIs. For this
purpose, it is first necessary to define the concept of optimal distance.

Determination of Optimal Contiguity Distance for Thermal Clusters

To determine the optimal distance of land covers in Tehran, covers were grouped
into a few clusters with similar thermal conditions. This approach was chosen as the
greater size and contiguity of the resulting clusters compared to individual covers makes
it easier to analyse their effects on UHIs. The main hot and cool clusters of Tehran were
identified by grouping the points whose Cc values fell in the last category into these
clusters. Therefore, the main hot clusters were areas with Cc > 700 and the main cool
clusters were areas with Cc > 350. As shown in Figure 8, nine main hot clusters (B) and
three main cool clusters (A) were found to be affecting the micro-climates of Tehran.

To investigate the effects of cluster size and contiguity on the formation of UHIs in
Tehran, the Pearson correlation formula was used to identify correlations between
temperature and distance from the centres of clusters (Figure 12). The correlation
coefficients obtained for the main hot clusters of Tehran, which are mostly located in the
peripheral parts of this city, were as follows: Doshan hill (-0.636), Westlands (-0.441),
Ghalemorghi (-565), Gomrok (-0.648), Larak (—0.5), Mehrabad airport (-0.562), Army
lands (-0.717), Northern Sayad (—0.509), and Pardisan park (-0.741).

In the three main cool clusters of Tehran, which are mostly located in the northern
part of this city, temperature increases as we move away from the centre and toward the
edges (Figure 13). This is the opposite of what occurs in hot clusters. For the three main
cool clusters, which are Larak, Darake, and Dehkade Olampic, the Pearson correlation
coefficient values for the relationship between temperature and distance from the edges
were calculated as 0.724, 0.578, and 0.690, respectively.

The present study shows that the contiguity of land cover surfaces has an intensifying
effect on UHIs, and this effect becomes particularly dominant when the surface is vast and
continuous. The thermal effect of a cover, whether hot or cool, intensifies as we move
away from the edges and get closer to the centre of the surface. Hence, interrupting the
continuity of large land cover surfaces can reduce their thermal effect. However, hot and
cool covers respond differently to such interruptions. For cool covers such as wooded
areas and forests, the thermal effect is decreasing, meaning that temperature decreases as
we move away from the edge and closer to the centre, while the rate of temperature
change is contingent upon the distance between the edge and the centre. Therefore, for
these clusters, the greater the distance from the edge to the centre, the lower the
temperature. However, for hot clusters, the temperature increases as you move away from
the edges and closer to the centre. Thus, for both hot and cool clusters, the thermal effect
intensifies towards the centre. Under this assumption, for the clusters shown in Figure 12,
the thermal behaviour is constant up to the distance x but intensifies thereafter (i.e., at the
radius n - x). Therefore, after identifying this optimal distance for each type of cover, it
will be possible to break the continuity of hot covers through measures such as planting
trees or building water corridors at these distances. This could be an especially effective
measure for hot and dry areas, where water scarcity makes it difficult and expensive to
build and maintain large green spaces.
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Figure 12. The effects of cluster size and contiguity on the formation of UHIs in Tehran (showing the Pearson
correlations between Tehran’s main hot and cool clusters temperatures and distances from the centres of
clusters).

The optimal distance x has an extensive impact on UHIs. As shown in Figure 13, the
spatial structures of the six land covers considered in this study have different optimal
distances from the edge, which are distinguished by natural breaks in the data charts.
Because of the heterogeneity of materials used in buildings, the optimal distance for
“built-up areas” varies from place to place and does not follow any specific pattern. This
means that this distance can only be estimated by accurate analysis and modelling of
buildings in a specific domain. For other covers, however, this distance can be accurately
estimated. The optimal distance is 150 m for forest cover, 550 m for grasslands, 100 m for
asphalt, 200 m for water bodies, and 220 m for barren soil. To reduce UHISs, it is more
important to estimate this distance for hot clusters than for cool clusters. This is because
in cool clusters the temperature decreases from 1.5 to 2.5 °C at the optimal distance and
decreases at a much lower rate over longer distances (n — x). However, in hot clusters, the
temperature increases by about 0.5 °C at the optimal distance and very rapidly over long
distances, so much so that it rises by 2.5-4 °C at a distance of 2x.
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Figure 13. Temperature profile of land cover types in Tehran.
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4. Discussion

The type and distribution of land covers play key roles in the formation of UHIs due
to their direct impact on LSTs and changes in urban microclimates. The effects of land
covers on UHIs has been extensively investigated in the UHI literature. However, since
different land covers can have different impacts on UHIs depending on the local climate,
this study investigated the effects of land covers in the semi-arid climate of the Tehran
metropolitan area, which is an under-researched climate in this regard. We used the
concept of contiguity to analyse how the thermal behaviour and effects of different
clusters change depending on the pattern of spatial development. Analysing the thermal
behaviour of land covers in the Tehran metropolitan area yielded the following results.
First, the contributions of the six categories of land covers to the LSTs in summer were as
follows: soil > asphalt > built-up areas > grassland > forest > water; therefore, soil cover in
semi-arid climates has the highest contribution to the LST. Although it is worth
mentioning that the thermal behaviours identified for these cover types are true for semi-
arid climates in summer but not necessarily for other seasons or other climates. The
highest temperature in the studied area was related to barren soil and asphalt cover types,
while the lowest was related to water bodies and forest.

Second, almost 17% of the total land cover in Tehran is barren soil and only 4% of the
land is covered with forests and urban green spaces. Tehran is located in a hot and dry
region with severe water scarcity, which makes the existing solutions and strategies
presented in the international literature ineffective in dealing with UHI and undesirable
microclimates. Strategies that rely on developing large-scale green spaces or water bodies
only work in countries with high water resources that can develop and maintain green
spaces. Therefore, this study attempted to find sustainable and ecological solutions that
are specific and relevant for cities in semi-arid climates. Analysis of the optimal sizes of
land covers and their combined effects on each other showed that mixing land uses to
interrupt the continuity effects of large cool and hot surfaces (breaking them into smaller
surfaces) and also combining them with each other is the most suitable and sustainable
solution for reducing UHIs in the studied hot and dry climate of Tehran.

Third, in this study, a coefficient called surface contiguity was used to determine the
optimal size of land covers and clusters. This is in line with previous studies that utilised
this concept in the analysis of continuity of specific sites. The authors measured the effect
of contiguity in land cover on the formation of UHIs. The results showed that increasing
the contiguity of hot land covers (e.g., barren soil and asphalt) intensifies the growth of
UHIs, while on the contrary increasing the contiguity of cool land covers reduces their
cooling effect. Determining the optimal size of each specific land cover type helps Tehran’s
city planners and decision-makers to determine what land uses to mix and where to place
certain activities and zones in order to maximise the impact on the city’s microclimate.
This study found that contiguity seems to have a great impact on UHIs both at micro and
macro levels. To investigate this impact, land covers were divided into three clusters: hot,
cool, and temperate. The more compact the hot and cool clusters are, the more contiguous
they become, which leads to an increase in UHIs. The results of this study suggest that for
every 100 pix/km? increase, the cluster temperature increases by approximately 0.7-1 °C.
Additionally, placing cool clusters near or in combination with hot clusters interrupts the
effects of hot clusters, leading to significant temperature reductions. The temperature
differences between the peripheral parts of the Tehran metropolitan area, where hot
clusters are more contiguous, and the central part of this city, where land covers are more
mixed, reach as much as 4-5 °C. These results suggest that urban areas with more mixed
land uses tend to experience less intense UHIs, and vice versa.

Land cover types and sizes, contiguity, and distribution are among the most
important determinants of the formation and intensity of UHIs. Because of the
environmental—climatic limitations of Tehran, the common solutions recommended in the
UHI literature, which mostly involve building more green spaces, cannot be applied to
this city on a large scale. To determine the optimal distance for breaking (interrupting) the
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continuity of hot surfaces in this city, 9 hot clusters and 3 cool clusters in the area were
identified and carefully investigated using appropriate metrics. The results of this
investigation showed that in hot clusters, temperature decreases as we move away from
the centre of the cluster and toward its edges, but in cool clusters, the same movement
decreases the intensity of the cooling effect. Therefore, one can determine for each cluster
the optimal distance at which the intervention has maximal effect. For example, the
temperature increased by about 0.5 °C at the optimal distance x from the edge of a hot
cluster, but it increased by 2.5—4 °C at the distance of 2x. Therefore, the temperature of the
centre of a hot cluster depends on its distance from the edge of the cluster. Next, the
optimal dimensions of each land cover for making optimal sustainable use of urban lands
to deal with the UHI problem were determined. The optimal distances were calculated as
250 m (from the edge) for barren soil and 150 m (from the edge) for forests. These figures
help urban planners and decision-makers to prepare more effective plans and strategies
for reducing UHIs through the mixing of different land covers. Overall, planning
interventions such as developing linear parks instead of large-scale continuous green
spaces, mixing hot and cool land uses to interrupt the thermal effects of hot land covers,
and ensuring a proportionate distribution of small parks in affected neighbourhoods are
expected to be effective in reducing UHIs.

5. Conclusions

This research assessed the effects of thermal-spatial behaviours of land covers on
UHIs in the semi-arid climate of Tehran and made three main contributions to the UHI
literature. First, acknowledging that different land covers can have different impacts on
UHls, depending on the local climate, this study investigated the effects of land covers in
the semi-arid climate of the Tehran metropolitan area, which is an under-researched
climate in this regard. The majority of UHI studies are conducted in the cold-and-humid
climates of Europe and North America and the solutions and strategies presented in these
studies are not applicable to cities such as Tehran, which has different condition in terms
of climate and land cover. Generalising the findings of European and North American
studies and applying them to cities located in a semi-arid climate cannot solve the problem
of UHISs in these cities. This is particularly important as time and financial resources are
limited and adapting incorrect strategies can lead to wasted resources without achieving
considerable positive outcomes. Second, unlike existing studies on the UHIs in semi-arid
climates, such as the study by Mathew et al. [80] that compared urban and rural areas, we
conducted our investigation at the inner-city scale, which required higher resolution
images such as those offered by Landsat8. However, Landsat8 only offers images of
Tehran at a specific day time and does not provide any images of Tehran at night. To
compensate for this, we used data from MODIS, which offers a wider range of images
throughout day and night. Although MODIS images are of lower resolution compared to
Landsat8, they provide images of Tehran at night. Therefore, we combined data from
MODIS and Landsat8 to cover a wider range of times and places whilst increasing the
accuracy. Third, in addition to assessing the effects of land covers on the formation of
UHlIs, we took account of the influences of different spatial patterns of thermal clusters on
UHlIs in our analysis. Consideration of the spatial patterns of thermal clusters enabled us
to provide planners and decision makers with practical recommendations that are specific
and relevant to the context of cities located in a semi-arid climate. We highlighted the
importance of considerations concerning the type and location of land uses and land
surfaces in reducing the effects of UHIs when developing large-scale green spaces is not
feasible due to water shortages. Further research is required to investigate the diurnal
surface temperature variations of different land covers at different times of day and night
throughout the year and their effects on UHIs in cities located in semi-arid climates.
Additionally, consideration of the differences between central cities and their peripheral
areas in terms of UHIs at the regional scale would be a fruitful area for further work.
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