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Abstract  

White matter (WM) alterations have been observed early in Huntington’s disease (HD) 

progression but their role in the disease-pathophysiology remains unknown. We exploited 

ultra-strong-gradient MRI to tease apart contributions of myelin (with the magnetization 

transfer ratio), and axon density (with the restricted volume fraction from the Composite 

Hindered and Restricted Model of Diffusion) to WM differences between premanifest HD 

patients and age- and sex-matched controls. Diffusion tensor MRI (DT-MRI) measures were 

also assessed. We used tractometry to investigate region-specific changes across callosal 

segments with well-characterized early- and late-myelinating axonal populations, while brain-

wise alterations were explored with tract-based cluster analysis (TBCA). Behavioural measures 

were included to explore disease-associated brain-function relationships. We detected lower 

myelin in the rostrum of patients (tractometry: p = 0.0343; TBCA: p = 0.030), but higher 

myelin in their splenium (p = 0.016). Importantly, patients’ myelin and mutation size were 

positively associated (all p-values < 0.01), indicating that increased myelination might be a 

direct result of the mutation. Finally, myelin was higher than controls in younger patients but 

lower in older patients (p = 0.003), suggesting detrimental effects of increased myelination 

later in the course of the disease. Higher FR in patients’ left cortico-spinal tract (CST) (p = 

0.03) was detected, and was found to be positively associated with MTR in the posterior 

callosum (p = 0.033), possibly suggesting compensation to myelin alterations. This 

comprehensive, ultra-strong gradient MRI investigation provides novel evidence of CAG-

driven myelin alterations in premanifest HD which may reflect neurodevelopmental, rather 

than neurodegenerative disease-associated changes. 
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= family wise error; FWF = free-water fraction; HTT = huntingtin; ICV = intracranial volume; 

KMO = Kaiser=Meyer-Olkin; MD = mean diffusivity; mHTT = mutant huntingtin; MoCA = 

Montreal Cognitive Assessment; MPRAGE = magnetization prepared – rapid gradient echo; 

MT = magnetization transfer; MT-w = MT-weighted; MTI = magnetization transfer imaging; 

MTR = magnetization transfer ratio; OPC = oligodendrocyte precursor cells; PCA = principal 

component analysis; PEBL = Psychology Experiment Building Language; RD = radial 

diffusivity; ROI = region of interest; SD = standard deviation; TBCA = tract-based cluster 

analysis; TFC = total functional score; TMS = total motor score; TOPF-UK = Test of 

Premorbid Functioning – UK Version; TOPF-UK FSIQ = TOPF-UK full scale IQ; UHDRS = 

Unified Huntington’s Disease Rating Scale; WAIS-R = Wechsler Adult Intelligence Scale-

Revised; WM = white matter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.469517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.469517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction  

Huntington’s disease (HD), a neurodegenerative disorder leading to devastating cognitive, 

psychiatric and motor symptoms, cannot currently be cured, and a research priority is to 

increase understanding of its pathogenesis. Subtle and progressive white matter (WM) 

alterations have been observed early in HD progression 1–7, but their aetiology and role remain 

unclear. Therefore, with the present study we aimed to disentangle the contribution of changes 

in axon microstructure versus changes in myelin to WM pathology in premanifest HD. 

Crucially, we exploited the very latest-in ultra-strong magnetic field gradient technology 8,9 to 

achieve high-b-values and increased restriction of water diffusion. In turn, this afforded an 

enhanced differential attenuation of intra- and extra-axonal MRI signals, while maintaining 

sufficient signal-to-noise ratio (SNR), and thus allowed to better tease apart the contribution of 

different sub-compartments of WM microstructure 10–12.  

More specifically, we assessed WM microstructure in premanifest patients by combining 

fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) from diffusion 

tensor (DT)-MRI 13, with the magnetization transfer ratio (MTR) from magnetization transfer 

imaging (MTI) as a proxy measure of myelin, and the restricted diffusion signal fraction (FR) 

from the Composite Hindered and Restricted Model of Diffusion (CHARMED) 14 as a proxy 

measure of axon density 15. Alterations in microstructural metrics were assessed using two 

analytical pipelines: i. a tractometry approach 16–18 to assess tract-specific changes across the 

corpus callosum (CC), and ii. a whole-brain approach 19 to further explore abnormalities 

associated with the premanifest disease stage. 

The CC is the brain’s largest WM tract and its fibres vary in size and age of myelination, with 

larger, early myelinating fibres seen in posterior portions, and smaller, later-myelinating fibres 

found in anterior callosal regions 20. Thus, characterising WM microstructure across this tract 

might provide insight into regional differences in the impact of HD on WM, and elucidate 

disease-related pathological processes in the context of the Demyelination Hypothesis 21. This  

suggests that mutant huntingtin (mHTT) leads to premature myelin breakdown and has been 

given support by several studies demonstrating alteration in myelin-associated biological 

processes at the cellular and molecular level in the HD brain 7,22–28. Specifically, the 

Demyelination Hypothesis proposes myelin impairment to begin from early-myelinating 

caudate and putamen striatum structures and then spread in a bilateral and symmetric pattern 

to other early-myelinating regions. Thus, in the context of the present study, the Demyelination 
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Hypothesis would predict more dominant microstructural changes in posterior relative to 

anterior callosal subregions, as the former myelinate earlier. 

Following evidence that WM volume loss in HD extends beyond the CC 2,29–35, and the concept 

of compensatory networks in response to neurodegeneration 36, we supplemented the 

tractometry analysis with a novel exploratory, whole-brain analysis, called Tract-Based Cluster 

Analysis (TBCA)19 to assess brain-wise group microstructural differences. TBCA uses the rich 

anatomical information from whole-brain tractography reconstructions, to inform the cluster-

level inference analysis of voxel-based images, and provides the anatomical specificity 

required to disentangle distinct clusters belonging to different anatomical tracts 19.  

Finally, the evidence of cognitive and behavioral impairments in premanifest patients 2,35,37 

across attention, working memory, processing speed, psychomotor functions, episodic 

memory, emotion processing, sensory-perceptual functions, and executive functions 2,38–43, and 

their significant impact on everyday functional decline 44–46, stress the importance of 

understanding how these symptoms may relate to pathological neural changes, such as 

alterations in WM microstructure. For this purpose, we derived a composite cognitive score 

using principal component analysis (PCA) to capture variability in patients’ cognitive 

performance, and used it for the analysis of correlations between differences in cognition and 

WM microstructure.   

 

Materials and methods  

Participants 

25 individuals with premanifest HD and 25 age- and sex-matched healthy controls were 

recruited, with ethical approval from the local National Health Service (NHS) Research Ethics 

Committee (Wales REC 5 18/WA/0172) and by the Cardiff University School of Psychology 

Ethics Committee. All participants provided written informed consent prior to taking part in 

the study. 

Patients were recruited from the Cardiff HD Research and Management clinic, Bristol Brain 

Centre at Southmead Hospital, and the HD clinic at the Birmingham and Solihull NHS Trust. 

Healthy controls were recruited from Cardiff University and the School of Psychology 
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community panel. Participants were recruited if eligible for MRI scanning. Control participants 

were excluded if they had a history of neurological or psychiatric conditions, and patients if 

they had a history of any other neurological condition.  

22 of the HD patients had pen-and-paper cognitive task data available from their most recent 

participation in the ENROLL-HD study (NCT01574053, https://enroll-hd.org). The 

progression of symptoms in ENROLL-HD participants is monitored longitudinally, and one of 

the optional components within the study is the giving of permission by participants for their 

coded data to be accessed by researchers in the field. As such, a full clinical dataset including 

full medical and medication history is available for each research participant and some of these 

data were used in this study.  

One control subject was excluded from the tractometry analysis because of poor callosal 

segmentation. Therefore, data from 25 patients and 24 healthy controls were used for callosal 

tractometry analysis. As this did not impact TBCA, a sample of 25 patients and 25 controls 

was analysed. Table 1 provides a summary of participants’ demographic and clinical 

background information. Performance in the Montreal Cognitive Assessment (MoCA) 47 and 

in the Test of Premorbid Functioning - UK Version (TOPF-UK) 48 is reported for patients and 

controls. The Unified Huntington Disease Rating Scale (UHDRS) total motor score (TMS), 

total functional capacity (TFC), diagnostic confidence level (DCL) and CAG repeat size 

obtained from the ENROLL-HD database are also reported for patients.  

 

 

Table 1. Summary of participants’ demographic and clinical background information. 

 HD patients 
 

Controls 
 

p-value 

Gender 
male/female (%) 
 

15(60)/ 10(40) 
 

14(56)/ 11(44) 
 

p > 0.05 

Mean age (years) 
(SD, range) 
 

42.04  
(12.7, 21-70) 

43.19  
(12.6, 27-71) 

p > 0.05 

Mean TOPFUK IQ 
(SD, range) 
 

116.16  
(10.2, 98-137.4) 

124.96  
(6.9, 109-135.4)  

p = 0.003 

Mean MoCA score 
(SD, range) 
 

27.92  
(2.1, 24-30) 

28.2 
(1.8, 26-30) 

p > 0.05 

Mean CAG 
(SD, range) 

41.4  
(2.1, 37-45) 

- - 
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Mean DBS 
(SD, range) 
 

235.94  
(84.5, 61.5-450) 

- - 

Mean TFC  
(SD, range) 
 

12.863 
(0.4, 12-13 

- - 

Mean TMS            
(SD, range) 
 

3.3 
(4.8, 0-18) 

- - 

Mean DCL 
(SD, range) 
 

0.91 
(1.3, 0-3) 
 

- - 

 
TOPFUK FSIQ = verbal IQ estimate based on the Test of Premorbid Functioning, UK version. There 
was a significant difference between patients and controls in TOPFUK FSIQ, with patients presenting 
significantly lower premorbid IQ. MoCA = Montreal Cognitive Assessment out of 30 (the higher the 
score the better the performance). MoCA scores for patients and controls ranged between 23 and 30. 
A score of 26 or over is generally considered to be normal, while an average score of 22.1 has been 
reported in people with mild cognitive impairment 47. There was no significant difference in this test 
between the two groups. Two individuals with CAG repeats of 38 were included in the current study. 
Although these individuals can be considered “affected”, they may have a lower risk of becoming 
symptomatic within their life span; DBS = Disease Burden Score, calculated as follows: DBS = age × 
(CAG‐35.5); TMS = Total Motor Score out of 124 from “UHDRS Motor Diagnostic Confidence 
(Motor) – the higher the score, the more impaired the performance. Based on TMS scores, all patients 
were at the premanifest disease stage. DCL = Diagnostic Confidence Level (normal/no abnormalities 
= 0, non-specific motor abnormalities = 1, motor abnormalities that may be signs of HD = 2, motor 
abnormalities that are likely signs of HD = 3, motor abnormalities that are unequivocal signs of HD = 
4). Only participants with diagnostic confidence level ratings < 4 were included in the current report. 
However, based on DCL scores, some of the patients (n = 4) presented with some motor abnormalities. 
 

Data acquisition 

Assessment of disease-related brain-function relationships 

A composite cognitive score was computed by combining cognitive data available for patients 

on the ENROLL-HD database (providing these had been obtained within a 3-month time 

window from their participation in the present study), with data acquired during the study. This 

was done in order to reduce patient burden associated with study participation. Table 2 provides 

details on the administered tests, the cognitive domains they assess, and the outcome variables 

measured. 

Briefly, data from the ENROLL-HD database concerned performance in the Phonetic Verbal 

Fluency Test, the Categorical Verbal Fluency Test, the Symbol Digit Modality Test, the Stroop 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.469517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.469517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Colour Reading and Word Reading Test, the Stroop Interference Test and the Trail Making 

Test 49–51– please see http://www.enroll-hd.org for the detailed study protocol. 

On the other hand, performance in the N-back Task 52, the Forward Digit Span Test adapted 

from the Wechsler Adult Intelligence Scale-Revised (WAIS-R) 53, the Visual Patterns Test 54 

and the Speeded Finger Tapping Task 55 was assessed as part of the present study. Cognitive 

testing was performed prior to MRI scanning and lasted approximately 60 minutes. Tasks were 

administered either as paper and pencil tests or by using a computerized version provided by 

the Psychology Experiment Building Language (PEBL) test battery 56.  

As each task yields several outcome variables, the following strategy was employed: (1) for 

standardized clinical tests, metrics known to have the best sensitivity and measurement 

characteristic were selected, e.g. correctly-generated responses instead of error scores 57; (2) 

for tests with multiple conceptually distinct outcome measures, variables that represented each 

component were included, e.g., for the N-back Task, the number of correct responses from the 

1-back and the 2-back condition; and (3) where necessary, variables were excluded from the 

assessment, e.g. when these presented lots of missing cases. This approach led to 13 cognitive 

outcome measures (Table 2). 

 

 
Table 2. Cognitive outcome variables employed to create a composite cognitive score to assess 
disease-related brain-function relationships. Tasks descriptions are provided, outcome variables and 
cognitive domains assessed are summarized. 
 
 1 
Task Computerized/paper 

& pencil 
Description Outcome 

variable  
Cognitive 
domain 
assessed 

N-back 
52 

Computerized Participants were presented 
with a series of letters, three 
seconds apart, and asked to 
judge whether the current letter 
matched the previous letter (1-
back condition) or the letter 
presented 2 letters back (2-
back condition). The 1-back 
and 2-back conditions were 
presented separately in 20 
randomly ordered trials. 
Participants made responses 
manually by pressing on the 
letter “A” on the keyboard. No 

Percentage 
of correct 
responses 
in the 1-
back and 
2-back 
condition 

Encoding, 
temporary 
storage and 
updating of 
stored 
information 
with new 
upcoming 
information, 
inhibition of 
irrelevant 
items 
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responses were required for 
non-targets. 
 

Digit Span 
Test from 
the WAIS-R 
53 
 
 

Computerized Participants were presented 
with a series of numbers that 
appeared on the screen one 
after another. They were 
required to recall the sequence 
of numbers by entering them 
on the keyboard. If the 
participant could successfully 
reproduce the series of 
numbers, they were then 
presented with a longer series 
of numbers. Participants 
continued to receive longer 
series of numbers until they 
could no longer repeat them 
back correctly. The starting list 
length was 3, and the longest 
list length possible was 10. The 
discontinuation criterion was 2 
wrong responses. 
 

Maximum 
span of 
digits 
recalled 

Verbal 
working 
memory 
capacity 
 

Visual 
Patterns 
Test 54 
 
 

Paper and pencil Participants were shown a 
checkerboard-like grid, with 
the squares in the grid each 
randomly coloured. This 
pattern was displayed for 3 
seconds and is then removed. 
Subjects were then shown a 
blank grid and were asked to 
reproduce each grid. The 
number of items was 
sequentially increased. 
Participants were given 
unlimited time to reproduce the 
shapes being viewed. 
 

Maximum 
grid size 
recalled 
correctly 

Spatial 
working 
memory 
capacity 
 

Speeded 
Finger 
Tapping 
Task 
55   
 
 

Computerized Participants were instructed to 
form a fist shape with their 
dominant hand, with their 
fingernails touching down in 
front of the keyboard space 
bar. They were then instructed 
to extend their index finger in 
order to contact the “space” bar 
on the keyboard, and to move 
only their index finger to tap 
the space bar as quickly as 
possible. 
 

Mean 
number of 
taps over 
3 trials 

Motor speed 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.469517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.469517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stroop 
Interference, 
Word 
Reading and 
Colour 
Naming 49–51 
 

Paper and pencil For the Stroop Reading and 
Colour Naming, participants 
had to name colours (e.g., red, 
green, blue) and read the words 
for colours in black ink. For the 
Stroop Interference, 
participants had to read words 
of colours (e.g. red, green blue) 
where the word colour was 
written in a different colour ink 
(Stroop Interference). 
 

Number of 
correct 
responses 

Ability to 
inhibit 
cognitive 
interference, 
selective 
attention 
capacity and 
skills, 
processing 
speed, 
motor 
control 

Phonetic 
and 
Category 
Verbal 
Fluency 49–51 

Paper and pencil In the Phonetic Verbal Fluency 
task participants had to 
spontaneously produce words 
orally within a fixed time span 
(60 seconds), beginning with a 
certain letter. In the Category 
Verbal Fluency, words had to 
be produced according to 
semantic constraints (e.g. 
animals, fruits, vegetables). 

Number of 
correctly 
generated 
words 
within 60 
seconds 
 

Working 
memory, 
cognitive 
inhibition, 
switching 
ability and 
language 
ability 
including 
lexical 
knowledge 
and lexical 
retrieval 
ability 
 

Trail 
Making 
(part A & 
part B) 49–51 
 

Paper and pencil In part A, participants were 
asked to connect 25 randomly 
arrayed dots in numerical 
order, whereas in part B they 
were asked to connect dots 
alternating between numbers 
and letters in alphabetical 
order. 

Time 
needed to 
complete 
the task 
 

Visual 
attention, 
task 
switching, 
speed of 
processing, 
mental 
flexibility 

Symbol 
Digit 
Modality   
49–51 

Paper and pencil Using a reference key, 
participant had 90 seconds to 
pair specific numbers with 
given geometric figures. 

Number of 
correct 
responses 
achieved 
in 90 
seconds 
 

Attention, 
perceptual 
speed, 
motor 
speed, and 
visual 
scanning 

2 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.469517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.469517
http://creativecommons.org/licenses/by-nc-nd/4.0/


MRI data acquisition 

MRI data were acquired on a 3 Tesla Siemens Connectom system with ultra-strong (300 mT/m) 

gradients. Each MRI session lasted 1 hour, and comprised: a T1-weighted MPRAGE; a multi-

shell dMRI acquisition [δ/Δ: 7/24 ms; b-values: 0 (14 volumes, interleaved), 500 (30 

directions), 1200 (30 directions), 2400 (60 directions), 4000 (60 directions), and 6000 (60 

directions) s/mm2 59. Data were acquired in an anterior-posterior phase-encoding direction, 

with one additional posterior-to-anterior volume]; and a magnetization transfer  acquisition 

[turbo factor: 4; radial reordering; non-selective excitation; MT contrast was achieved by the 

application of a 15.36 ms radio-frequency saturation pulse, with an equivalent flip angle of 

333° applied at a frequency of 1.2 kHz below the water resonance. Two identical sets of images 

with different contrasts (one acquired with and one acquired without MT saturation pulses) 

were obtained]. Table 3 provides more details on the acquisition parameters. 

 

 

Table 3. Scan parameters. 

  
T1-w DTI CHARMED MT 

Pulse sequence MPRAGE SE\EPI SE\EPI Turbo FLASH  

Matrix size 256×256 495×495 495×495 128 × 128 ×104  

FoV  
(mm)  

256 990 990 220 × 220 × 179 

Slice thickness 
(mm)  

1 2 2 1.72 

TE,TR  
(ms) 
 

2, 2300 59, 3000 59, 3000 2.1, 60 

Off-resonance 
pulses  
(Hz/°)  

- - - 1200/333 

Flip angles (°) 9 9 9 5 

All sequences were acquired at 3 Tesla with ultra-strong gradients. For each of the sequences, the main 
acquisition parameters are provided. T1-w: T1-weighted; MT: magnetization transfer; MPRAGE: 
Magnetization prepared - rapid gradient echo; SE: spin‐echo; EPI: echo‐planar imaging; FoV: field 
of view; TE: echo time; TR: repetition time. 
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Image processing 

All images were skull‐stripped in native space using FSL BET 60. 

Diffusion data: FA, RD, AD, MD and FR maps  

Pre-processing of diffusion data was carried out using FMRIB Sofware Library (FSL) 60, 

MRtrix3 61, and Advanced Normalization Tools (ANTs) 62. These steps included: denoising 63, 

slice-wise outlier detection (SOLID) 64, and correction for drift 65; motion, eddy, and 

susceptibility-induced distortions 66,67; Gibbs ringing 68; bias field 69; and gradient non-

linearities 70,71.  

Diffusion tensors were estimated using linearly-weighted least squares regression (for 

b < 1200 s/mm2 data) providing the following quantitative scalar measures: FA, AD and RD. 

The diffusion tensor was fitted to data between b = 500 s/mm2 and b = 1200 s/mm2 in order to 

reduce cerebrospinal fluid based partial volume artefacts in the DTI metrics. The CHARMED 

data were corrected for motion and distortion artefacts 72, before computing FR maps 14 using 

in-house software coded in MATLAB (The MathWorks, Natick, MA). 

Magnetization transfer: MTR maps 

MT- and non-MT-weighted images were corrected for Gibbs ringing 68. ANTS 62 was first used 

to nonlinearly register the MPRAGE images to the b = 0 s/mm2 images. Then MT- and non-

MT weighted images were linearly warped to the registered MPRAGE images using an affine 

(12 degrees of freedom) technique based on mutual information, with the FMRIB's Linear 

Image Registration Tool (FLIRT)73. All registrations were visually inspected for accuracy. 

Finally, MTR maps were calculated according to: MTR = [(S0‐S MT)/S0] × 100, whereby 

S0 represents the signal without the off‐resonance pulse and SMT represents the signal with the 

off‐resonance pulse.  

Tractography of the CC 

Automated WM tract segmentation of the CC was performed using TractSeg 74 and multi-shell 

constrained spherical deconvolution (MSMT-CSD) 75. Specifically, seven portions of the CC 

were delineated [1=rostrum, 2=genu, 3=rostral body, 4=anterior midbody, 5=posterior 

midbody; 6=isthmus, 7=splenium] (Fig. 1). For each segment, 2000 streamlines were 

generated. 
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Figure 1. Callosal segmentation. 

For each segment, the corresponding anatomical label is reported, together with the cortical area it 
connects to.  

 

Statistical analysis 

Analyses were performed in RStudio 76, MATLAB (The MathWorks, Natick, MA), SPSS 77, 

the PROCESS computational tool for mediation analysis 78, FSL 60, and the Statistical Non-

Parametric Mapping (SnPM) software 79. Outliers were first identified by examining box-and-

whisker plots for each dependent variable, for controls and patients separately. Outliers that 

were ± 3 standard deviations from the mean were removed.  
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Assessment of disease-related brain-function relationships 

PCA of the cognitive data was performed on the slopes from patients, to best capture 

heterogeneity within this population. The first principal component (PC) only was extracted, 

to increase experimental power and reduce the number of multiple comparisons 80.  

First, the Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) test were used to 

confirm that the data were suited for PCA [KMO = 0.54, c2 (78) = 156.5, p <0 .001]. The PCA 

was run using centred, standardized versions of the patients’ cognitive outcome scores. 

Orthogonal Varimax rotation was used to maximize the factor loadings. Regression values 

from each component were used as composite cognitive scores for each patient.  

Tractometry of the CC 

Microstructure differences were assessed in the seven callosal segments. By taking each 

quantitative metric map, samples of each metric were obtained at each vertex of the 

reconstructed segments, and segment-specific medians were derived for FA, AD, RD, FR and 

MTR in MRtrix3 61. Next, the overall mean was calculated, so that each dataset comprised 

m = 5 MRI-derived measures, mapped along s = 7 callosal segments.  

Reduction of MRI data dimensionality with PCA 

PCA was also employed to reduce the complexity of the callosal microstructure data 81. 

Centred, standardized versions of MRI measures on both groups combined were used 82. 

Specifically, the PCA was calculated for FA, FR, RD, AD and MTR, after checking that the 

data was suited for this analysis [KMO = 0.65, c2 (6) = 1077.231, p < 0.001]. PCA was applied 

to the concatenated set of segments across subjects 83,84. The number of principal components 

was extracted based on: 1) their interpretability 85; 2) the Kaiser criterion of including all 

components with an eigenvalue greater than 1. Regression values from each component for 

each participant were used in the following analyses. 

 

Investigation of group differences in callosal microstructure 

To assess group differences in callosal microstructure, analyses of covariance (ANCOVAs) 

were run on the extracted regression values from each component for each participant. Group 

and segment were used as independent variables because of a particular interest in 
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understanding the interaction between group effects on different callosal segments. The 

correlation of microstructure outcome measures across patients and controls, with age, ICV 

and TOPF-UK FSIQ was tested to decide if these variables should be included as covariates in 

the analysis. Pearson’s correlation coefficients greater than 0.3 were treated as indicative of a 

moderate relationship. For every ANCOVA, analysis assumptions were first tested.  

Assessment of disease-related brain-function relationships 

Spearman correlations were run in the patient group for: 

i. WM components showing a significant group effect and composite cognitive 

scores; 

ii. WM components showing a significant group effect and CAG repeat length; 

iii. WM components showing a significant group effect and disease burden score 

(DBS), calculated as follows: DBS = age × (CAG‐35.5). 

Within each group of correlations, multiple comparison correction was carried out with 

Bonferroni with a family-wise alpha level of 5% (two-tailed). Whenever a significant 

association was detected, this was further explored with partial correlations, partialling out ICV 

and DBS. The latter was done to assess associations independently of disease progression. 

TBCA assessment of brain-wise group differences in WM microstructure  

TBCA 19 was applied to assess group differences in FA, RD, AD, FR and MTR. This method 

is based on the novel concept of ‘hypervoxel’, which extends standard 3D voxels with extra 

dimensions to encode geometrical and topological information about the streamlines that 

intersect each voxel.  

All images were first non-linearly normalised to the FMRIB58_FA template (1 × 1 × 1 mm 

isotropic) using the tbss_2_reg script 86. Next, statistics maps were produced based on the 

voxel-level analysis of the data by using a non-parametric approach based on a permutation 

test strategy 87. The statistic maps were then thresholded by a value of p = 0.01, and the 

suprathreshold voxel-level statistic results were projected onto an hypervoxel template built on 

whole-brain tractography data from 20 healthy subjects. Two hypervoxels were defined as 

belonging to the same cluster if they were either adjacent or connected within the hypervoxel 

template (i.e. if they shared a common streamline) 19. Finally, the mass of each cluster 88 was 

computed and their corresponding statistical significance calculated based on the same 
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permutation tests used for the voxel-level inference. Explanatory variables (EVs) in the 

permutation tests included age and gender and the effect of group was explored whilst 

regressing the other EVs. Clusters with a family-wise error (FWE)-corrected 79 p-value  below 

0.05 were considered statistically significant. A schematic representation of the TBCA pipeline 

can be found in Fig. 2.  

Whenever significant clusters were detected for a specific metric, these were extracted, 

summed and binarized to form an ROI mask. The mask was then projected onto each map in 

MNI space. The mean value for that metric was calculated in the ROI with FSL 60, and used to 

run Spearman correlations between the WM metrics showing significant clusters. Multiple 

comparison correction was carried out with the Bonferroni correction with a family-wise alpha 

level of 5% (two-tailed).  
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Figure 2. The TBCA analysis pipeline.  

After all images have been normalized to a common anatomical space, statistics maps are produced 
based on the voxel-level analysis of the data; this is done by using a non-parametric approach based 
on a permutation test strategy 87. The statistic maps are thresholded by a value of p = 0.01. Next, the 
significant voxel level statistic results are projected on a hypervoxel template. Finally, significant 
clusters of hypervoxels are identified.  
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Results 

Composite cognitive score in the patient sample  

As shown in Fig. 3, the first principal component (PC) accounted for 38.7% of the total variance 

in the cognitive data. Component loadings of >= 0.5 were considered as significant 89. Thus, 

this component reflected general executive functioning with loadings on distractor suppression 

(Stroop task), attention switching (Trail Making), updating (N-back), category fluency and 

motor speed.  
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Figure 3. PCA of the cognitive data with varimax rotation. 

Plot summarizing how each variable is accounted for in the extracted PC. The absolute correlation 
coefficient is plotted. Color intensity and the size of the circles are proportional to the loading. This PC 
accounted for 38.7% of the total variance and included measures from all test domains, except for the 
digit span. Four patients were excluded from the PCA because of missing data. The final sample size 
for the PCA was n=21 patients. 
 

Reduction of MRI data dimensionality with PCA 

Over 80% of the variability in the microstructure data was accounted for by the first two PCs 

(PC1, 58.1%, λ = 2.90; PC2, 22.6%, λ = 1.13). As shown in Fig. 4, the first PC loaded positively 

on FA, FR, and AD, and negatively on RD, measuring restriction or hindrance perpendicular 
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to the main axis of the bundle, and  was therefore summarized as “axon density” component. 

The second component loaded mostly on MTR, and was thus summarized as “apparent myelin” 

component. 

 

 

Figure 4. PCA of the microstructure metrics with varimax rotation.  

Left: Plot summarizing how each variable is accounted for in every principal component. The absolute 
correlation coefficient is plotted. Color intensity and the size of the circles are proportional to the 
loading. The final sample size for the PCA was n=25 for the HD group and n=24 for the control group. 
Right: Segment clustering based on PC1 and PC2. The horizontal axis shows increasing restriction or 
hindrance perpendicular to the main axis of the bundles. The vertical axis represents an increase in 
apparent myelin. Each point represents one subject. Concentration ellipsoids cover 95% confidence 
around the mean. Segment 7 appears to encompass most of the data variability.
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Premanifest patients present alterations in callosal apparent 

myelin but not axon density 

Assessment of group differences in axon density  

Age was negatively associated with axon density scores (r = -0.301, p < 0.001), and included 

in the final model assessing the effect of group and segment on axon density scores, with age 

as covariate. 

The effect of group was not significant [F(1, 312) = 1.677, p = 0.196], however a main effect 

of segment was detected [F(6, 312) = 84.671, p < 0.001] (Fig. 4), together with a main effect 

of age [F(1, 312) = 34.116, p < 0.001] (Fig. 4). The Group ´ Segment interaction was not 

significant [F(6, 312) = 0.531, p = 0.784]. Overall, age was negatively associated with scores 

on this component; additionally, microstructure in the posterior segments of the CC was 

associated with higher axon density scores, compared to anterior ones [adjusted means: CC1 = 

-0.270; CC2 = -0.822; CC3 = -0.546; CC4 = -0.001; CC5 = -0.144; CC6 = 0.083; CC7 = 1.753]. 

Assessment of group differences in the apparent myelin 

Age and ICV were correlated with scores on the apparent myelin component (age: r = -0.301, 

p < 0.001; ICV: r = -0.332, p < 0.001), thus the final model assessed the main effects of group 

and segment, and age-by-group and a group-by-segment interactions, with age as covariate. 

There were no main effects of group [F(1, 312) = 2.353, p = 0.126] or ICV [F(1, 312) = 1.875, 

p = 0.172]. However, significant main effects of age [F(1,312) = 45.07, p < 0.001] and segment 

[F(1, 312) = 19.899, p < 0.001] were detected. Overall, scores on this component were lower 

in segment 7 of the CC and in older participants (Fig. 4). 

Crucially, a significant interaction was detected between segment and group [F(6, 312) = 2.238, 

p = 0.040], indicating that the effect of group was different for different callosal segments. 

Therefore, slopes of the effect of group on apparent myelin scores for each segment, while 

controlling for the effect of age, were investigated with a simple moderation analysis using the 

PROCESS toolbox for SPSS 78, to better understand this interaction.  

This analysis revealed that patients presented significantly higher apparent myelin compared 

to controls in segment 1 (p = 0.016), and significantly lower scores in segment 7 (p = 0.0343). 

Overall, scores on the apparent myelin component for the patient group were higher than 
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controls in the more anterior portions of the CC but lower in the posterior portions (segment1: 

b = 0.56, t = 2.41, p = 0.016; segment 2: b = 0.25, t = 1.08, p = 0.27; segment 3: b = 0.014, t = 

0.06, p = 0.95; segment 4: b = 0.2098, t = 0.90, p = 0.36; segment 5: b = 0.44, t = 1.89, p = 

0.058; segment 6: b = -0.028, t = -0.12, p = 0.899; b = -0.5, t = -2.12, p = 0.034) (Fig. 5). 

As a post-hoc, exploratory analysis, the impact of partial volume artifacts on apparent myelin 

differences between patients and controls was assessed. The fractional volume of free water in 

each voxel was estimated from the diffusion data to produce a free-water signal fraction (FWF) 

map. The overall mean FWF was then calculated, as described above for the other metrics 

assessed. Finally, an ANCOVA was run to assess group differences in apparent myelin across 

the different segments, controlling for FWF. Specifically, the main effects of group and 

segment and their interaction effect were examined, with age, ICV and FWF as covariates. 

Age-by-group and group-by-FWF interactions were included in the model because of violation 

of the homogeneity of regression slopes assumption.  

Consistent with the main analysis, a significant main effect of age [F(1, 300) = 56.08, p < 

0.001] and segment [F(1, 300) = 22.89, p < 0.001] and a significant interaction effect between 

segment and group [F(1,300) = 3.2, p = 0.005] were detected. The interaction between group 

and age [F(1, 300) = 8.736, p = 0.003] was now significant, indicating that while scores on this 

component are lower than age-matched controls in older patients, the opposite was true for 

younger patients. Finally, a significant main effect of group [F(1, 300) = 13.042, p < 0.001], 

and FWF [F(1, 300) = 13.32, p < 0.001], and a significant interaction effect between group and 

FWF [F(1, 300) = 19.262, p < 0.001], were detected.  
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Figure 5. Callosal apparent myelin: patient-control differences across callosal segments (top), and 
relationship between age and inter-individual variability in apparent myelin (bottom).  

A group-by-segment interaction effect (p = 0.04) was observed for callosal apparent myelin, indicating 
that the effect of group was different for different callosal segments. Patients presented significantly 
higher apparent myelin compared to controls in segment 1 (p = 0.016), and significantly lower in 
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segment 7 (p = 0.034). Overall, scores on the apparent myelin component for the patient group were 
higher than controls in the more anterior portions of the CC but lower in posterior portions. 
Additionally, a significant interaction effect between group and age indicated that, while older HD 
patients presented significantly lower apparent myelin than age-matched controls, the opposite was  
true for younger HD patients. * p < 0.05, ** p < 0.01, *** p < 0.001, Bonferroni-corrected. 
 

Apparent callosal myelin is associated with CAG repeat length but not with 

cognitive performance or disease burden 

Spearman correlation coefficients and associated p-values for the correlations of apparent 

callosal myelin with composite cognitive scores, CAG repeat length and DBS are reported in 

Table 4. Trends for positive associations were detected between composite cognitive scores 

and apparent myelin in all segments, except for segment 7. However, these associations were 

no longer significant after multiple comparison correction. Apparent myelin was positively 

correlated with CAG repeat length in segment 1 (r = 0.641, p = 0.002), segment 2 (r = 0.717, 

p = 0.001), segment 3 (r = 0.549, p = 0.012), segment 4 (r = 0.549, p = 0.012), segment 5 (r = 

0.525, p = 0.018),  and segment 6 (r = 0.513, p = 0.021). After Bonferroni correction the 

relationship remained significant in segments 1 (p = 0.014), 2 (p = 0.007) and 4 (p = 0.007) 

(Fig. 6). Partial correlations were carried out to explore the relationships between apparent 

myelin and CAG repeat length independently of ICV and disease burden. Even stronger 

positive associations were now detected; interestingly, the association was now significant also 

in segment 7, before correction (segment 1: r = 0.763, p = 0.001, corrected p = 0.007; segment 

2: r = 0.879, p < 0.001, corrected p < 0.001; segment 3: r = 0.841, p < 0.001, corrected p < 

0.001; segment 4: r = 0.83, p < 0.001, corrected p < 0.001; segment 5: r = 0.745, p = 0.001, 

corrected p = 0.007; segment 6: r = 0.864, p < 0.001, corrected p < 0.001; segment 7: r = 0.5, 

p = 0.048, corrected p = 0.336) (Fig. 5). No significant associations were detected between 

apparent myelin scores in each of the 7 callosal segments and DBS.  
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Figure 6. Relationship between apparent myelin in each callosal segment and CAG repeat length 
in patients. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.469517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.469517
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Table 4. Correlations of apparent myelin scores with cognitive component scores, CAG repeat-
length and DBS. 

 
Apparent myelin 
 

Composite cognitive scores 

Segment 1 r = 0.527 (p = 0.032, corrected p = 0.211) 

Segment 2 r = 0.559 (p = 0.023, corrected p = 0.141) 

Segment 3 r = 0.491 (p = 0.042, corrected p = 0.282) 

Segment 4 r = 0.494 (p = 0.054, corrected p = 0.351) 

Segment 5 r = 0.451 (p = 0.073, corrected p = 0.049) 

Segment 6 r = 0.323 (p = 0.03, corrected p = 0.213) 

Segment 7  r = -0.098 (p = 0.71, corrected p = 1) 

 CAG repeat length 
 

Segment 1 r = 0.641 (p = 0.002, corrected p = 0.014), partial correlation: r = 0.763 (p 
= 0.001, corrected p = 0.007) 
 

Segment 2 r = 0.717 (p = 0.001, corrected p = 0.007), partial correlation: r = 0.879 (p 
< 0.001, corrected p < 0.001) 
 

Segment 3 r = 0.549 (p = 0.012, corrected p = 0.084), partial correlation: r = 0.841 (p < 
0.001, corrected p < 0.001) 
 

Segment 4 r = 0.71  (p = 0.001, corrected p = 0.007), partial correlation: r = 0.831 (p < 
0.001, corrected p < 0.001) 
 

Segment 5 r = 0.525 (p = 0.018, corrected p = 0.126), partial correlation: r = 0.745 (p = 
0.001, corrected p = 0.007) 
 

Segment 6 r = 0.513 (p = 0.021, corrected p =0.147), partial correlation: r = 0.864 (p < 
0.001, corrected p < 0.001) 
 

Segment 7 r = 0.107 (p = 0.663, corrected p = 1), partial correlation: r = 0.5 (p = 0.048, 
corrected p = 0.336) 
 

 
 

DBS 

Segment 1 r = -0.04 (p = 0.853, corrected p = 1) 

Segment 2 r = 0.08 (p = 0.697, corrected p = 1) 

Segment 3 r = 0.003 (p = 0.986, corrected p = 1) 

Segment 4 r = 0.071  (p = 0.739, corrected p = 1) 

Segment 5 r = 0.048 (p = 0.824, corrected p =1) 
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Segment 6 r = -0.12 (p = 0.642, corrected p = 1) 

Segment 7 r = -0.09 (p = 0.662, corrected p = 1) 

 
Correlation coefficients that were significant after Bonferroni correction are highlighted in bold. 
Trends, defined as correlations significant at the uncorrected level, are highlighted in italics. 
 

 

Whole-brain analysis with TBCA reveals WM microstructure alterations in 

the posterior CC, the left CST and the right fronto-striatal projections 

Fig. 7A shows the TBCA results. Consistent with the PCA results, a significant reduction in 

MTR in the patient group was detected, compared to controls, in the posterior portion of the 

CC [cluster mass (å t-score) = 1530, p < 0.001 (uncorrected), p = 0.030 (FWE-corrected)]. 

Furthermore, a significant increase in FR along most of the left CST was found in patients 

[cluster mass (å t-score) = 1004, p < 0.001 (uncorrected), p = 0.030 (FWE-corrected)]. Finally, 

right-lateralized clusters of significantly higher FA in the patient group were identified in the 

fronto-striatal projections [cluster mass (å t-score) = 956, p < 0.001 (uncorrected), p = 0.03 

(FWE-corrected)]. 

Fig. 7B plots the relationship between significant microstructure clusters as detected with 

TBCA for patients. FR in the CST was significantly associated with MTR in the posterior CC 

(r = 0.498, p = 0.011, corrected p = 0.033), but not with FA in the right fronto-striatal 

projections (r = 0.328, p = 0.110, corrected p = 0.327). Additionally, MTR was not associated 

with FA (r = -0.218, p = 0.294, corrected p = 0.882).  
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Figure 7. Results of the cluster-analysis obtained with TBCA between patients and controls (A)  
and Spearman correlations between significant TBCA clusters in patients (B).* p < 0.05, ** p < 
0.01, *** p < 0.001, Bonferroni-corrected. 

 

 
Discussion 

We carried out a comprehensive tractometry analysis 16–18 of regional changes across the CC 

in premanifest HD. By exploiting the ultra-strong magnetic field gradients of the Connectom 

scanner 8,9, it was possible to better tease apart alterations in myelin content from alterations in 

axon microstructure 10.  

Lower apparent myelin, but not axon density, was detected in the callosal isthmus in patients 

with both analytical approaches. Previous DTI studies have reported microstructure changes in 

this callosal region in premanifest patients 82,90. Here, the combination of standard DTI metrics 

with MTR and FR afforded a more biologically meaningful interpretation of microstructural 

changes. These results replicate evidence from a previous study carried out by our group at 7 

Tesla 7 and are in accord with the Demyelination Hypothesis, which argues that early 

myelinated fibres are more susceptible to myelin disorder in the disease 21.  

Interestingly, patients presented significantly higher apparent myelin than controls in the 

callosal rostrum and, overall, apparent myelin was higher in patients than controls in the more 

anterior portions of the CC. Additionally, a positive association was detected between apparent 
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myelin and CAG size in patients, indicating that myelin alterations are directly linked to the 

disease mutation. Finally, a significant interaction effect was detected between group and age 

on apparent myelin, suggesting that while myelin content in this tract is higher in younger 

patients, the opposite is true for older patients, which likely present increased disease burden. 

Based on these findings, it is possible that, at least early on in disease progression, the HD 

mutation is associated with excessive, rather than reduced, myelin production. This might be 

caused by a pathological increase in myelin-producing, iron-rich oligodendrocytes. In accord 

with this proposal, previous evidence has suggested that HD gene expression may influence 

brain cell densities from early in the life of gene carriers 22. Additionally, this explanation 

agrees with findings from neuropathology showing increased density of oligodendrocytes in 

the brain of premanifest patients 23; furthermore, mHTT directly alters the proliferation property 

of cultured oligodendrocyte precursor cells (OPCs), with the degree of cell proliferation of 

OPCs increasing with pathological severity and increasing CAG repeat length 25. Finally, 

recent evidence from the cross-sectional HD Young Adult Study demonstrated increased R1 

and R2* values, suggestive of either increased iron or increased myelin, in the putamen, globus 

pallidum and external capsule of HD patients more than 20 years away from clinical onset 91. 

While earlier in disease progression the disease mutation may be associated with increased 

myelin, such increases in myelin content may lead to detrimental effects later in the disease 

due to oxidative stress 21,92,93. Critically, lower apparent myelin in the most posterior areas, 

through which fibres from the visual system transverse, suggests that these regions may be the 

first to be affected, in agreement with previous evidence 21,33,94. The visual system is 

functionally critical early in life, with myelination occurring early and progressing rapidly 95. 

Additionally, this system is highly dynamic and is associated with big energetic demands. As 

metabolic dysfunction and alterations in energetics play important mechanistic roles in HD 
96,97, these changes may contribute to early myelin impairment in this callosal portion. 

Overall, we demonstrate measurable and significant differences in callosal apparent myelin 

before changes in proxy metrics of axon density can be detected. These changes may reflect 

early neuronal dysfunction 98 or a CAG-driven neurodevelopmental component to the 

pathogenesis of HD, as a precursor to the more global neurodegeneration process 25,99–101.  

Accordingly, there is increasing evidence that neurodevelopment is affected in HD 99,102 and 

that such developmental elements of HD are independent of ongoing neurodegeneration 91. 

Nevertheless, as the present study was not designed to detect HD-associated developmental 
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changes, future studies following young premanifest subjects longitudinally should address the 

possibility of toxic myelin levels because of pathological CAG repeats size. 

With TBCA, clusters of significantly higher FA were detected in the patient group in the right 

fronto-striatal projections. Though neurodegenerative disorders have normally been associated 

with lower FA in major WM pathways, attributed to WM degeneration, demyelination, reduced 

gliosis or axonal damage as a result of GM loss 103,104, it is possible that selective degeneration 

of specific WM tracts resulted here in higher anisotropy values and a paradoxical increase in 

microstructural organization105. This suggests that WM degeneration in this area is already 

present at the premanifest stage of the disease. 

Importantly, significantly higher FR along most of the left CST was also detected with TBCA. 

This tract is composed of descending WM fibres, with half of them arising from the primary 

motor cortex, and is anatomically linked to the basal ganglia 106,107. From a functional point of 

view, the CST conducts motor impulses from the brain to the spinal cord, and plays an essential 

role in voluntary movement 106,107. Though the hallmark symptom of HD concerns involuntary 

choreic movements 108, alterations in voluntary movement are also present in premanifest 

patients 109, thus suggesting that alterations in this tract may play an important role in the 

disease. Crucially, this is the first time that alterations in this measure have been detected in 

premanifest patients, pointing to the potential of FR as in-vivo MRI marker of premanifest 

neural changes. 

Previous studies have demonstrated lower WM volume in the internal capsule of manifest 

patients 110,111. Accordingly, the elevated FR detected in this study might reflect the loss of 

non-neuronal cells, in turn leading to axons being pushed together 112. Alternatively, such a 

result might reflect axonal swelling 113. Consistent with this suggestion, previous evidence 

demonstrated higher iron levels in the left CST of premanifest patients 91,114, interpreted as 

indicating an homeostatic increase in oligodendrocytes to repair myelin damage. In turn, 

myelin damage leads to axon swelling 115. It might also be that fibre bundles develop differently 

because of the genetic mutation, and this is consistent with evidence of morphological 

alterations in the neurons of HD mice, which present smaller diameter dendritic shafts, smaller 

somatic cross-sectional areas, and decreased diameter of the dendritic fields 116. Finally, higher 

FR might reflect the presence of a process of reorganization and compensatory pruning of 

axons in WM, such as pathologically-driven reduced collateral branching or morphological 

alterations of individual axons. Consistent with this suggestion, evidence has shown increased 
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coherence of axonal organization in premanifest patients, as suggested by a smaller orientation 

dispersion index (OD), in tracts surrounding the basal ganglia and in the internal and external 

capsule 117. 

The finding of higher FR in the left CST is consistent with the leftward-biased GM loss 

demonstrated in the striatum of patients 118 and with the leftward asymmetry of brain iron in 

aging and motor disorders 119,120. Nevertheless, future studies are needed to determine whether 

this is an important finding to understand disease pathology. For example, future studies could 

investigate the longitudinal evolution of changes in FR in patients.  

To date, only one other study has used extensive microstructural measures in premanifest HD 
91. Nevertheless, such measurements are essential for understanding the trajectory of myelin 

alterations across the disease course, which is expected to vary as disease processes change 
91,121. Notably, though much of our understanding of HD pathology will increasingly rely on 

advanced neuroimaging techniques, it is important to remember and address the shortcomings 

of these approaches. For example, MTR is influenced by a complex combination of biological 

factors (including T1), making it difficult to separate the effects of reduced macromolecular 

density because of demyelination and/or axonal loss, or increased water because of oedema 

and/or inflammation 122–125. Future investigations may benefit from utilising quantitative 

magnetization transfer imaging techniques 126 to assess myelin alterations in the premanifest 

disease stage. Additionally, because of the way FR is computed, a change in T2 relaxation (for 

example because of altered tissue water or myelin content) may be erroneously interpreted as 

a difference in FR. Thus, future studies are needed to clarify the neurobiological underpinning 

of our finding, for example by investigating disease-associated changes in volume and axon 

diameter distribution in the CST. 

Notwithstanding the above limitations, findings from this work highlight the fundamental 

importance of gaining an enhanced understanding of the mechanisms underlying WM 

abnormalities in HD. Crucially, our results suggest that myelin alterations in the disease may 

reflect CAG-driven neurodevelopmental, rather than neurodegenerative, changes and that 

expanding intervention strategies to include oligodendroglial targets 28 directly targeting WM 

pathology may be beneficial for HD.  
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