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Summary: A solution technique using sequential sequential second-order cone programming to
solve the optimum power flow problem in low voltage (LV) distribution networks with distributed
generation is developed. A novel bound tightening method is suggested to get exact solutions with
few iterations. A novel approximation method is suggested to increase exactness by approximating
phase angle dependant components. The performance of the suggested solution method is
compared with linear programming, semidefinite programming, genetic algorithm, particle swarm,
sequential quadratic programming with multiple start points, and global search-based optimization
methods. The exactness of the generated solutions is validated after comparison with a load flow.
The proposed algorithm provides better performance in optimality, execution time, and exactness

compared to other methods.
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List of Symbols and Abbreviations:

U,,,, Complex voltage at node m of phase A; I, Complex current of phase A of line m-n;

Da,,,» Active powers flowing from node m to n in phase A; q4,_, Reactive powers flowing from
; . pC . . NC .

node m to n in phase A; Py, Real power consumption at phase A of node n; Q4 , Reactive power

consumption at phase A of node n; Pf\}n, Real power generation from the PV inverters at phase A

ofnode n; an, Reactive power generation from the PV inverters at phase A of node n; PAcurn, Real

power curtailment from the PV inverters at phase A of node n; I/{"m, Real part of I, ;
I/’lmm, Imaginary part of I, . U}fm, Real part of Uy, U};mm, Imaginary part of Uy, ;
W,,., Squared magnitude of Uy, ; L, ., Squared magnitude of I, ; LVDN, Low Voltage

Distribution Networks; DG, distributed generation; PV, Photovoltaic; OLTC, On Load Tap
Changing; OPF, Optimum Power Flow; SOCP, Second Order Cone Programming

1. INTRODUCTION

Optimum power flow (OPF) is used as a tool to optimally control controllable devices such as
smart inverters, batteries, tap changing transformers, and static var compensators in LV networks.
OPF for transmission networks is widely discussed in the literature, and they are used in day-to-
day operations in transmission system control centres.> With the increased penetration of
renewable energy in low voltage distribution systems, the use of OPF for controlling power flows
in distribution systems is considered. There are several techniques to solve the optimum power

flow problem in distribution systems.

Some researchers use evolutionary computation techniques like genetic algorithms and particle
swarm optimization in their centralized control schemes. Grey wolf optimizer is used by Mahmoud
et al® to prevent voltage violation in medium voltage distribution systems by minimizing PV power

curtailments and tap movement rate. A genetic algorithm-based method is used by Senjyu et al*



for the centralized cooperation control of sending voltage, and static voltage regulators (SVR),
shunt capacitor (SC), and static var compensators (SVC). Evolutionary computation techniques
could be time-consuming because of the extensive solution space available with different

controllable devices.

Local optimization methods are used to obtain a local solution to OPF. The predictor-corrector
interior-point algorithm is used by Nguyen et al® to obtain exact local solutions to OPF for an
unbalanced MV distribution system with high PV penetration. There is a tendency of converging

to the local optimum closer to the start point in local optimization methods.

Considering the slow convergence and local optimality of the OPF techniques discussed above,
the convex optimization techniques for solving OPF are introduced. This technique is widely used
in 3 phase unbalanced OPE.*’ Since the OPF problem is non-convex, convex relaxations or
approximations are used in these studies to make the OPF problem convex. Linear programming
(LP), second-order cone programming (SOCP), and semidefinite programming (SDP) are widely

used convex optimization techniques for solving OPF.

A linear program is used by Richardson et al® to determine the optimal charging rate of electric
vehicles connected to the LV distribution system. Voltage sensitivity to real power is used to
linearize the power flow equations. A residential energy consumption scheduling algorithm for
areas with high penetration of rooftop PV units is proposed by Yao et al.’ Equations with voltage
sensitivities to the active and reactive powers are used instead of load flow equations. OPF for an
unbalanced three-phase distribution network is represented as a convex quadratic program in
Robbins et al.!® Due to the nonlinear nature of power flow equations, linearization assumptions

considered in the above studies can generate inaccurate solutions.

Semidefinite programming (SDP) model to minimize power loss and generation cost in
unbalanced distribution systems is proposed by Dall’ Anese et al® based on the bus injection model

(BIM). SDP model to minimize generation cost is proposed by Gan et al'!

based on bus injection
model (BIM) and branch flow model (BFM). However, obtaining exact solutions is impossible for
some practical three-phase distribution systems due to the assumptions considered in relaxations
and approximations.'>!3 According to Louca et al,'? in practice, many instances of OPF yield
semidefinite relaxations with optimal solutions of high rank, which are not exact. Limits of the

SDP approach are highlighted by Lesieutre et al'® by providing transmission system test cases that



fail to give a physically meaningful solution with a non-zero duality gap. To improve semidefinite

1'12

relaxation, a rank minimization algorithm is suggested by Louca et al.’~ The objective function is

modified using a heuristic method to extract rank-1 solutions from low-rank solutions by Somayeh

et al.'

The above methods represent OPF as an SDP and computing time of SDP increases rapidly
with the number of variables compared to the second-order cone programming (SOCP)

approach.!>161718 Also, SDP solvers are still not numerically robust.”

Global optimization techniques which rely on the iterative use of convex optimization are used to
obtain the global optimality of OPF. Sequential quadratic programming (SQP) is used by Su et al'°
to solve OPF in unbalanced four-wire distribution systems for improving voltage profile while
minimizing line losses and generation costs. A branch and bound-based global optimization
method is suggested by Gopalakrishnan et al?® to solve OPF in unbalanced distribution systems.
Despite having the global optimum, branch and bound based methods are time-consuming.?!

Second-order cone programming (SOCP) is widely used to solve the balanced 3 phase OPF.?*!

SOCP is used by Farivar?? for optimum inverter VAR control in balanced three-phase distribution
systems. SOCP is used to solve the OPF problem to determine the optimal dispatch of deterministic
inverter-interfaced energy storage in an unbalanced distribution feeder with significant solar PV
penetration by Nazir et al.” The solution of the SOCP is used to initialize a nonlinear program
(NLP) to ensure a physically realizable solution. SOCP relaxation also provides infeasible
solutions to OPF in some conditions.>*** Proofs are provided by Low?* for balanced SOCP OPF
relaxation to be exact when both constraints on real and reactive power injections are not binding
at both ends of a line, upper bounds on voltage magnitudes are not binding, and voltage angles
across each line are sufficiently close. However, these conditions cannot be satisfied in many
practical networks. Increasingly tightening cutting planes are used in !> to extract physically
meaningful solutions to balanced OPF after applying second-order cone (SOC) relaxation. A
higher computation time taken for several iterations can be considered as a drawback in these
methods. A heuristic method is suggested by Yuan et al'® to extract feasible solutions from relaxed
solutions. SOCP is used in?® to provide a warm start to solve the OPF in unbalanced distribution

systems using a non-linear program (NLP). Solving NLP is time-consuming for larger networks.



In this paper, a sequential SOCP methodology is suggested by modifying the rectangular voltage-

current formulation of a three-phase branch flow model with approximations and relaxations, thus

making the problem convex. The proposed methodology enables to achieve exact solutions by

gradually limiting the solutions space to load flow solutions and solving load flow, including the

previous SOCP outputs. Currents from load flow with gradually decreasing constants are used as

cutting planes for second-order cone relaxations. Sufficiently exact solutions are obtained under

ten iterations of the optimization program resulting in lesser computation time.

The performance of the proposed algorithm is compared with the methods suggested in

10,11,19

global search, particle swarm, and genetic algorithms.

The contributions of the paper are:

1.

A sequential SOCP based optimization-based technique is introduced for obtaining accurate
solutions for OPF problems in unbalanced low and medium voltage distribution systems with

voltage rise above permissible limits.

As discussed in the literature, solutions obtained from convex relaxations are not exact for
practical unbalance distribution systems. Sequential convex optimization techniques are
introduced in the litreture!®® to address this issue in balanced three-phase systems. The
Sequential SOCP technique proposed in this paper is designed to use in unbalanced

distribution networks.

Constraints on phase angle difference are missing on many unbalanced OPF solving
methods.?’” Requirement for a bound on voltage angles is mitigated due to the use of novel
approximation technique to approximate angle-dependent components in power flow
equations. Due to that sufficiently exact solutions are provided for both low (R/X<1) and
medium voltage networks (R/X>1). Heuristic optimisation methods are used in previous
studies to control voltage in distribution grids with DG.?®?° For the first time to our
knowledge faster convex optimization based OPF solving method is tested for unbalanced
distribution systems with voltage rise above permissible limits (PV penetration greater than

500%) in this paper.



2. Faster execution time due to fewer iterations of SOCP

The operational cost of distribution systems is significantly lower than transmission systems.
Also with high solar penetration and varying consumption, operational status should be
determined dynamically. Therefore achieving a feasible operating point quickly is more
important than obtaining global optimum. SOC relaxation is tightened gradually using
outputs from load-flow. SOC tightening constraints is simpler, and the computational burden

is low in the proposed method compared to other cutting plane methods.

3. Seven optimization techniques are used to solve the same OPF problem, and their

performances are compared.

Outputs of many convex optimization methods differ depending on loads and network
conditions. Infeasibility is reported for some time instances when simulated over a time
frame.’® Recently, several convex optimization techniques are tested for two balanced
networks in 3°. Several heuristic optimization techniques are compared in ' without PV
generation. For the first time to our knowledge, different optimization techniques are

compared for a wide range of unbalanced networks with high PV penetration in this paper.

Compared to convex optimization-based OPF solving methods, the suggested algorithm
provides accurate (exact) solutions. As observed in the case studies, the inaccuracies of
methods suggested in the previous literature increase with the size of the distribution network

and the reverse power flow.

Compared to heuristic (genetic and particle swarm) and global optimization methods, the
execution time of the proposed algorithm is considerably shorter. The optimality of the
proposed algorithm is close to the global optimum for some simulated test cases. Simulation
of heuristic optimizations and global optimization provides the ability to compare the
simulation results of convex optimization methods with possible global optimums. Optimum
setpoints are generated randomly in heuristic optimization methods. Therefore, there is a
chance to obtain global optimum or more optimum setpoints using heuristic optimization

methods.



2. METHODOLOGY

2.1 Representative equations for the optimization problem
Kron reduction technique was used to reduce the four-wire distribution system to a three-wire
system.?® It was assumed that neutral was grounded at multiple points. The radial power flow

equations were represented by DistFlow equations.?’
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Figure 1 - Diagram of m-n line segment

For the m-n line segment shown in Figure 1, from the power balance of the three-phase lines,
equation (1) was derived.!*!” Power flown to node m equals the summation of power flown out of

node n, line loss, and power generation/consumption at node n.

SAmn Sank Zsmn men men IAmn IAmn An
SBmn| = Zk:(j,k)EE SBnk | + dlag men Zsmn men Ian Ian + SBn (1)
sCmn ank men men Zsmn ICmn Icmn Cn

where,

SAmn = PAmn T JQAmn

San = PA PA + P+ ](QA +Q4)

H denotes the Hermitian transpose.

The power flow equations of phases A, B, and C were obtained from expanding the first, second,

and third rows. By considering the real parts of the first row to represent the active power flow of

phase A, equation (2) was obtained.
Pamn = Zk:(j,k)EE Pan, + l:)tgn - P‘En + PCuT + Re{IAmn* X (RsmnIAmn + RmmnIan +

RmmnICmn)} (2)



By considering the imaginary parts of the first row to represent phase A's reactive power flow,

equation (3) was obtained.

Qamn = Zk:(j,k)EE Qany + an * an + Im{IAmn* X (RsmnIAmn + RmmnIan + Rmmnlcmn)}
(3)

where,

Iy, s DA Qam,are the complex current, active and reactive powers flowing from node m to n

in phase A.

Plfn and Q%n are the real and reactive power consumption of phase A of node n.

PAGn, Qf{n and PACWn are the real and reactive power generation and active power curtailment from
the PVs and inverters in phase A of node n.

: 2 2 . .
Two new variables, w, =|U,, | and L, =|I4,,| . for every bus and every line were introduced.

m IIm

wla ) of equations (1) and (2) were

Then variables in non-convex terms (Uf ,If U,

replaced by values obtained from load flow. The exact equations used are given in Appendix A as

equations Al and A2.

Equations for apparent power flow at node m to n were derived from Equation (4)."

H
SAmn UAm IAmn
SBumn| = diag | |UBm | |[IBmn 4)
SCmn UCm ICmn
By expanding the first row,
Samn = UAmIAmn* &)

where Uy, and Uy, are the complex voltage at node m and n of phase A and are given by

Uy, = U,{fm +jUs" and Uy, = U}fn + U™

Similarly, current flown from m to n of phase A, I, = ijm +jI"
After the multiplication of both sides of (5) by s4,,,."

Samn X Samn = Unpdamn X Samn

x __ * *
SAmn X SAmn = UAmIAmn X UAm IAmn



Pa,,, tT74,,) X ®a,, ti94,,)" =UanUam X Lamn Tamn

After simplifying the above equation, equation (6) was obtained.

2 , 2 2
Phn + U= U] [Tt (6)
Then with substitutions, equation (6) was rewritten as:

Wopn LA™ Pl + Tty (7)

Using Ohm’s law, the equation for the relationship between phase A voltage magnitudes was

expressed as in (8).

To keep the variables in the optimization program independent of angle and to make equations
linear, the square of equation (8) was used for optimization after some substitutions. Variables in

IIm

non-convex terms (U}fn, I}fmn, Uflmn, I ) of square equation (8) were replaced by values

mn

obtained from load flow. The exact equation used is given in Appendix A as equation (A4).

2.2 Constraints
2.2.1 Voltage constraints
In Sri Lanka® statutory limit for voltage variation is +6%. Therefore, the L-N voltage was

maintained within +6% of the nominal value. These limits were maintained as constants in the

optimization algorithm.

2162 < |U, | < 244 )

2.2.2 Inverter active power curtailment constraints
Capability to curtail entire active power generation is provided to inverters. However, the

curtailment of active power was minimized using the objective function.

0 <P < Pg (10)



2.3 Cost functions
The minimization of the line losses and the inverter active power curtailment were considered to

minimize the overall cost incurred for maintaining the voltage within the permissible range.

2.3.1 Cost of line losses
Line losses include the cost of Ohmic losses incurred in three-phase cables and neutral. Here, with

the available variables, only the losses in three-phase lines were considered for the objective as:

2viee(Rg) X |IA,-|2 + 2viee(Rs,) X |IB,-|2 + 2viee(Rs,) X |Icl-|2

With Lypc, = |IA,B,Ci|2

ZViEE(RSi) XLy, + ZViEE(Rsi) X Lg; + ZViEE(RSi) X Lc; (11)

2.3.2 Cost of power curtailment

This term includes the power curtailment of every single-phase inverter, and it is expressed as in

(12).

ZviENA nguri + ZViENB Pgurl' + ZViEN(; Pguri (12)

2.4 Convex optimization problem
The nonlinear equality constraint in (7) is non-convex, and it is relaxed as in equation (13).

2 2
> PAmn + 94mn (13)

L =
Amn Wan, = Way,

Relaxed constraint (13) represents a second-order cone. Then additional linear inequality
constraint as defined by equation (14) was used to add linear cuts to SOC relaxation from the
second iteration onwards. Solutions are converged to a more optimum value in the first iteration,
and the constants of equations in the second iteration were calculated from solutions generated in
the first iteration. This upper bound was reduced in each iteration, gradually increasing the
exactness of solutions. Squared current magnitude generated from a load flow using previous

iteration’s data was used as a part of the upper bound.

L <y 2 1000 14
Amn = |"Amn (Load flow) + 10iteration ( )



2

Here, |14, (Load flow) is the squared magnitude of the current value generated from load flow

in (14) is a constant for a particular

o . : 1000
from the previous iteration using OpenDSS. The term Totteration
iteration. It reduces to 100 in the third iteration. This constant was chosen empirically to gradually

reduce search space. Additional search space from I, (Load flow) W3 reduced ten times for

subsequent iteration using term. This acts as an increasingly tightening cutting planes to

10iteration
SOC relaxations in each phase. Because of this upper bound, sufficiently exact solutions that can
be used to control the voltage of distribution networks were obtained after the third iteration of the

optimization program. Equations (13) and (14) were repeated for the other two phases.

Then the optimization problem was represented by the sum of cost functions (11) and (12) as below

subjected to the constraints given by (2), (3), (9), (10), (13), (14), A1, A2, and A4 for all 3 phases.

minimize {Tviep(Rs;) X La; + Zvier(Rs;) X Lp; + Yviee(Rs;) X Loy} + {Zvien, PA™ +

ZViENB Plguri + ZViENC Pguri} (15)

2.5 Solution method
Three or fewer runs of the optimization program based on SOCP (equation (15)) were executed

while reducing the upper bound of squared current (equation (14)). The optimization is performed

for much larger convex terms with variables (Wy, ., La,... Papn QAmn Qﬁn, PAC“Tn) while variables

in non-convex terms (U, }fn, I mn U, ol /Ilmmn) acting as constants for the considered iteration of

o
the optimization program. When the number of iterations increases, updating terms become closer
to the solution generated by solving the optimization problem. The flow chart of the algorithm is
provided in Figure 2. First, a load flow was performed using OpenDSS with zero active power
curtailment. Then the optimization problem implemented using CVX?! was solved after updating

UR IR uim ™ terms in equations Al, A2, and A4 from the values obtained from the
Ap ' Amn’ “A w'A mn

PCur cur

previous load flow. Then, P{*", PS¥", and P$*" were updated with the optimum curtailment values

generated by solving the optimization problem. Next, a new load flow was performed with updated

Im

wla g, terms m

curtailment values. Then after updating equation (14) and Uf ,If  UA™
equations A1, A2, and A4 and using the values obtained from the last load flow, the optimization

problem was solved. The repetition of 3 iterations of this process was sufficient to obtain



sufficiently exact solutions. This solution approach closely relates to the sequential convex
programing.’? Three iterations were chosen to reduce the cutting plane to 100 A from the square
of load flow current in the final iteration. The first iteration is performed without a cutting plane.
The second iteration is performed with the |74, ;o4 fiow) *+1000 A cutting plane. Further increase
of iterations increases the execution time without improving the exactness. Since the objective of
this study is to obtain exact solutions faster, the proposed algorithm is designed to terminate with
three iterations. Forward-backwards method based power flow iterations is used in load-flow to

obtain required values for load currents that are used in the cutting plane.

This algorithm was implemented in Matlab with CVX optimization toolbox®! and SDPT3 as the

solver. OpenDSS was used to run the load flow and update variables in non-convex terms.

Start

v

Load flow with
Utran:furmer =230V and
P[gur PBCur 1;,CCur= 0

Updating parameters

R R Im im :
WUa 14 g Ua™" 0 1 mn)lnnon—

convex terms of eﬂuations Al, A2, Running the optimization
and A4 from load-flow and - program
. 10000 )
updating Totteration term in (14) l
Updating

Cur pCur pCur
Py, PgtT, P

Load flow with

Terminate if c c c
ur ur ur
Py, PEY, P

number of
iterations is 3.

End

Figure 2 - Flow chart of the OPF solving algorithm



3. COMPARISON

The following optimization techniques are implemented and compared with the methodology
suggested in this paper. The flow chart shown in Figure 3 was used for most of the methods

described in subsequent sections.

Start
A 4
Objective (line losses + Genetic algorithm / Particle
curtailment + penalties for » swarm algorithm/ SQP with
constraint violations) multiple start points/ Global
Y search
Load flow from OpenDSS ¢
with provided curtailment
Iteration/Generation

4 limit reached/

Converged

Curtailment amounts

End

Figure 3 - Flow chart of other optimization algorithms

3.1 Linear programming-based technique

The methodology suggested by Robbins et al'® was implemented and used for the comparison. In
this method, the nonlinear terms in load flow equations have been replaced with first-order Taylor
approximations, and it was assumed that voltage magnitudes of 3 phases of the same node are
nearly similar. One load flow was performed using OpenDSS to provide operating points for

linearization. The method was implemented using CVX in Matlab.

3.2 Semidefinite programming-based technique
The semidefinite programming-based method suggested by Gan et al'® using branch flow model
(BFM) was also implemented for comparison. The rank constraint was removed to make the

problem convex. In this study, Gan’s method was implemented using CVX in Matlab.



3.3 Sequence quadratic programming with multiple starting points

This method is used by Su et al?®

to solve the OPF in a low voltage four-wire distribution system.
OpenDSS based load flow solving and penalty functions for voltage constraint violation were
implemented as a black-box function. Matlab Multi-Start gradient-based solver was used to

implement this algorithm. Uniformly distributed 20 start points were used.

3.4 Global Search

OpenDSS based load flow solving and penalty functions for voltage constraint violation were
implemented as a black-box function. Matlab global search gradient-based solver was used to
implement this algorithm. Unlike the multiple start point method, a scatter-search mechanism was
used for generating start points.>* Since gradient and hessian are not provided in both global search
and SQP with multiple start points, and those are considerably slower than sequential SOCP and
LP. However, the results of these two methods were used to compare the optimality of the proposed

method.

3.5 Genetic Algorithm Optimization

Genetic algorithm-based OPFs were implemented using Matlab functions. Default values of
Matlab built-in function were used for reproduction, mutation, cross-over, and migration options.
Voltage constraints were added as penalty functions to the objective function. 30 generations were

simulated for test case 1. 50 generations were simulated for test cases 2,3, and 4

3.6 Particle Swarm Optimization
Particle swarm optimization algorithm-based OPFs were implemented using Matlab functions.
Default values of the Matlab built-in function were used. 30 iterations were simulated for test case

1. 50 iterations were simulated for test cases 2,3, and 4.



4. CASE STUDIES AND RESULTS
4.1 Test case 1

An underground European network given in®* was selected as the second test case. The network
diagram is presented in Figure 4. The network is a low voltage network with transposed lines. R/X
ratio is higher than one in all line segments. Nodes with loads at phases A, B, and C are marked
with red, green, and blue colours, respectively, and the load profile at 12 a.m. was selected.
Randomly selected single-phase inverter capacities from 1 kVA to 7 kVA were placed in randomly
selected 45 consumers from available 55 single-phase consumers. The PV generation profile
(Figure 5) resulting in a voltage rise was selected for the case study. Irrespective of the vector
group of the transformer, the angle of phase A of the low voltage side transformer bus is considered
as zero. Angles of other phases were derived with reference to the angle of phase A voltage.

The details of the transformer are provided in Table 1.

b s Table 1 - Details of transformer for test case 1
5 Y
z 8 20
& ’ N 0 . Primary voltage (L-L) 11kV
7 16 018 21
AN R Secondary voltage (L-L) | 416V
2] 34
- o 5 & i 66 :
( 3 ® i Capacity 0.8 MVA
19\ % "o K Vector group AY
26 31 59
58 )]
* AN 5 oo Reactance (%) 4
38 54 5
e B agos Resistance (%) 0.4
n® 44 # s 112
L 106 11 -
2, % A\ A b For modelling the transformer, the reactance
68 5 3 e ? L2 10
A X 3 8 wa¥ and resistance of the distribution transformer
4 . P 100 "
72 & T4
W pns K e ¥ were added to the positive sequence
%7 87 =96
76 VS X reactance and resistance values of the first
78
8 Ll . . .
REN line section from bus 1 to 2. An ideal voltage

source was connected to bus 1. Details of the

Figure 4 - Network diagram of test case 1 34

cables provided in’® were used for the
simulation of two test cases. Simulations were performed in a PC with an Intel Core 17 @ 1.8 GHz
processor and 8 GB RAM. Generation is 206.44 kW. The percentage of generation to load is 570%.

Line loss without optimization is 9.15 kW.



A comparison of the simulation results of test case 1 is provided in Table 2. The comparison of
voltage profiles of each simulation is provided in Appendix B.
The average voltage difference was calculated according to equation (16). This parameter is used

as a measurement of the exactness of convex optimization-based methods.

Z|Voptimization_vload flowl (16)
number of nodes

Average voltage difference (V) =

Table 2 - Simulation results comparison (test case 1)

Proposed Linear Genetic Particle swarm
method program (LP) algorithm (PS)
(GA)
Execution time (s) 227.34 25.31 106,645.11 78,263.03
Objective (W) 22,266.1 108,016 33879 27,969
Line losses + curtailment
Line losses (W) 6,251.1 1,816.0
Curtailment (W) 16,015 106,200 27791 21,610.8
Average voltage difference (%) 0.0041 4.30 0 0

As shown in Table 2, the execution time of the proposed method is the second-lowest and next to
the linear program (LP)-based method.!” The value of the objective function is lesser in the
proposed method compared to other accurate methods. The accuracy of the proposed method is
significantly higher than the linear program-based method. As shown in Appendix B, voltage
values of the linear programming-based method deviate from actual voltages by 14 V (6%) in
some locations. This can lead to problems in voltage regulation. Therefore, the accuracy of the
linear programming method is not sufficient for some practical applications. After 30 generations
of GA and 30 iterations of PS, the proposed method is more optimum than GA and PS with
acceptable average voltage difference for voltage control. The unique advantage of providing
sufficiently exact solutions for voltage rise prevention in a shorter execution time using the
proposed method is highlighted in this test case. Increase of accuracy with each iteration can be

observed in Figure 6. SQP with multiple start points and global search algorithms were not



converged within 8 hours for this test case. For other methods, a comparison of phase C (phase

with highest voltage rise) voltage profile is shown in Figure 7.
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Figure 5 - PV generation data of test case 1
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4.4 Test case 2

IEEE 123 bus network is selected as the second case study. This network is a medium voltage
(4.16 kV L-L) network with untransposed lines. R/X ratio is lower than one in most of the line
segments. All the loads are considered as PQ loads. Loads of 4.16:0.48 kV transformer is added
to the high voltage side and transformer is neglected in the simulation. The details of the

transformer are provided in Table 3. Network diagram is provided in Figure 8.
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Figure 8 - Network diagram of test case 2

Table 3 — Details of the transformer for test case 2

Primary voltage (L-L) 115kV
Secondary voltage (L-L) | 4.16 kV
Capacity 5 MVA
Vector group AY
Reactance (%) 8

Resistance (%) 1
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Voltage regulators are neglected and voltage is kept within allowable range using distributed
generators and active power curtailment. Generation is 18150 kW. The percentage of generation
to load is 520%. Line loss without optimization is 1394.6kW.

Generation profile can be observed in Figure 10. Increase of accuracy with each iteration can be
observed in Figure 9. As shown in Table 4, even though the execution time is lowest in LP, the
average voltage difference is significantly higher than the proposed method. Voltage profile
comparison for proposed method and LP against voltage profile of load-flow is provided in
appendix B. The solutions provided by GA is more optimum than the proposed method while
having a significantly higher execution time. SQP with multiple start points and global search
algorithms were not converged within 8 hours for this test case. For other methods, a comparison

of phase C (phase with highest voltage rise) voltage profile is shown in Figure 11.



Table 4 - Simulation results comparison (test case 2)

Proposed Linear program Genetic Particle swarm
method (LP) algorithm (Matlab built-in
(Matlab built-in | function)
function)
Execution time 66.67 10.38 21167.17 13968.27
(s)
Objective (W) 1.75%10° 1.45*%10° 1.51*10° 1.90*10°
[Line losses +
curtailment]
Line losses (W) 1.3216 *10° 1.44617 *10° 1.37%10° 1.3199%10°
Curtailment (W) 4.2626*10° 0 1.36%10° 5.8397*%10°
Average voltage 0.8195 4.02 0 0
difference (%)
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1
69 g7 65

63 6159 >

45
47

41
43

5149 Radila axis — Voltage (pu)

Angular axis - Bus number

Radial axis — Voltage (pu)

Figure 11 - Test case 3 phase C voltage compari: Ay y1ar axis — Bus No.




4.5 Test case 3

IEEE 33 bus network is selected as the fourth case study. This network is a balanced medium
voltage (12.66 kV L-L) network with balanced three-phase loads. Test case 3 is used to analyze
the performance of the optimization methods for balanced networks. R/X ratio is higher than one
in all the line segments. All the loads are considered as PQ loads. Network diagram is shown in
Figure 13. Generation is 16000kW. Four 4000 kW generators are placed as indicated in the
network diagram. The percentage of generation to load is 430.68%. Line loss without optimization
is 1670.8 kW.

Increase of accuracy with each iteration can be observed in Figure 12. Even though the execution
time is lowest in LP, the average voltage difference is significantly higher than the proposed
method. The solutions provided by GA, PS, SQP with multiple start points and Global search
methods are more optimum than the proposed method while having significantly higher execution
time. A comparison of phase C (phase with highest voltage rise) voltage profile of different

optimization methods is shown in Figure 14.
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Table S - Simulation results comparison (test case 3)

Proposed Linear Genetic Particle SQP with Global
method program algorithm swarm multiple Search
(Matlab (Matlab start point (Matlab
built-in built-in (Matlab built-in
function) function) built-in function)
function)
Execution time 20.09 4.02 586.49 695.94 1414.67 6279.24
(s)
Objective (W) 2.66*10° 1.35*%107 7.48%10° 1.78*10° 5.16%10° 1.88*10°
[Line losses +
curtailment]
Line losses (W) | 1.7341*10° | 1.0104*10° | 5.4859*10° | 1.0273*10° | 5.1333*10° | 9.5337*10°
Curtailment (W) | 9.2807*10° | 1.3492*107 | 1.9938*10° | 7.567*10° | 3.0211*10* | 926.52*10°
Average voltage 0.90 670.70 0 0 0 0
difference (%)
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Figure 14 - Test case 4 phase C voltage comparison (pu)




5. CONCLUSION

The convex optimization-based OPF solving methods provide a faster execution time while
compromising the exactness. To overcome this limitation, an optimum power flow algorithm
based on the sequential second-order cone programming is proposed in this paper. The algorithm
is utilized to maintain the voltage profile of unbalanced low and medium voltage distribution
networks with distributed generators. Line losses and PV curtailments are used as the objective
function with voltage and inverter active power curtailment constraints. A performance
comparison was carried out in terms of optimality, exactness, and execution time for three test
cases; test case 1 is an unbalanced LV network, test case 2 is an unbalanced MV network, and test

case 3 is a balanced three-phase network.

The most optimum solution is provided by the proposed method for test case 1. It is 25% more
optimum than the next best PS method while being 343% faster. For test case 2, the objective of
the proposed method is within 15% of the most optimum solution provided by GA. However, the
proposed method is 31 649% faster than the GA. For test case 3 most optimum solution is provided
by the proposed method. It is 25% more optimum than the next best Global search while being
473 10°% faster. The proposed method is 343% to 31 649% faster than the best performing
evolutionary computation techniques depending on the complexity of the test case. In terms of
execution time, the proposed method is only second to the linear programming method while being
3.1 _10*%to 1.05 10°% more accurate.
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APPENDIX A

The equations (A1) and (A2) were obtained by expanding equations (2) and (3). Variables in non-

convex terms (UR IR ulm [Im ) ere replaced from respective values obtained from the
n mn n mn

load flow. Then, w, = |u, |* and L, =|I,, |* substitutions were made to make the equations

linear.



Pamn = Zk:(j,k)eE Pay + PAC - Plg; + RSanAmn + anmn (Itfmn Igmn + I/Ilmmn Iémmn) -
Xmmn (Iffmn Iémmn II‘Ilm Ig m) + Rmmn (IA mn IC mn + Immn Iémmn) o

Xmmn (Iifmn Iémmn - IA m I m) (AD)

Qamn = Zk:(j,k)eE Qank + an + an + XSanAmn + Xmmn (Itfmn Igmn + Ilflmmn Il{?mmn) +

Rmmn (Iffmn Ié II‘Ilm IB m) + Xmmn (IA mn IC mn + Immn Iémmn) +
Runn (I8 i Ié’"mn - L, 1E) (A2)

Derivation of equation A4:

After separating real and imaginary parts equation (8) was expressed as follows.

U - UAn + UA ] - (Iﬁmn + jlll‘lmmn) (RSmn + ]XSmn) (Ian + ]IB mn) (Rmmn + ijmn)
- (ICmn + ]Iémmn) (Rmmn + ]Xmmn)

After multiplications between current and resistance terms following equation was obtained.
ug +Um j=UR +jUui —{Rs, IR +jXs IR +jRs L™ - —Xs L™}
{RmmnIB ma T ]XmmnIB mn T ]RmmnIB mn Xmmnlémmn}

. 1 1
- {Rmmnlc mn + ]XmmnIC mn + ]RmmnICmmn Xmmnlcmmn}

Squared magnitude of complex number is obtained after summation of squares of real and

imaginary parts.

2 _ (1R R m R Im R
|UAm| - (UA n_ RSmnIA mn + XsmnlA mn RmmnIB mn + XmmnIB mn RmmnIC mn +
mmnlémmn) + ( - XSmnlfmn - Rsmnll‘l1 - XmmnIB mn Rmmnllé - XmmnIC mn
mmnlémmn)z (A3)

After expanding above A3, simplification and substituting from equation (7), equation A4 was

obtained.



_ 2 2 2 2 2
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m
2 R R R I
Xmmn LCmn — 2 Pmny — 2 Qmny — 2Vy anmnIB mn T 2V nXmmnIBmmn -

R R R I 1 R 1 I
2V anmnIC mn + 2V, nXmmnICmmn - 2Vt‘lmnxmmnlB mn 2Vt‘lmnRmmnIBmmn

1 R I 1 R R
2Vl‘lmnxmmnlc mn ZVAmnR ICmmn + ZRSmnIA manmnIB mn

Mmn

R 1 R R R 1
ZRSmnIA mnXmmnIBmmn + ZRSmnIA manmnIC mn ZRSmnIA mnXmmnICmmn

1 R I I I R
ZXSmnIAmmanmnIB mn + 2XSmnIAmmnXmmnIBmmn - ZXSmnIAmmanmnIC mn

2Xs, I X

Im R R R Im
mn mmnIC mn + ZRmmnIB manmnIC mn ZRmmnIB mnX I +

mmn“C mn

2X Iy X o+ ZXSmnIfIEmnXmmnIgmn + ZXSmnI}fmnR ™+

Mmn'B mn™Mmn'C mn Mmn'B mn

R R R Im Im R
ZXSmnIA mnXmmnIC mn + ZXSmnIA manmnIC mn + ZRSmnIA mnXmmnIB mn +

2Rg, I™ Ry IE™ 420" X IR 4+ 2Rg I Ry I+
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APPENDIX B

Figure B1 and B2 shows the voltage profile of the linear programming and the proposed method
for test case 1. The voltage difference between linear program and load flow executed using
curtailment values obtained from the linear program is highlighted using curly brackets in figure
B2. Voltage differences around 14 V were observed in some nodes. These types of deviations can
generate voltage variations above or below the permissible +6% voltage margin. Compared to the
linear program, average voltage deviations are lower by 1.048%10°% in the proposed method.

Vy, Vg,V are voltage values generated from the optimization program (linear program or proposed

215 : : : : : 215

Node Node




method) when determining optimum curtailment. 0,4, Og, O are voltage values generated from the

load flow executed using curtailment values generated from the optimization program.

Figure B3 and B4 shows the voltage profile of the proposed method and the linear programming
for test case 3. The voltage difference between linear program and load flow executed using
curtailment values obtained from the linear program is highlighted using curly brackets in figure
B4. Voltage differences around 200 V were observed in some nodes. These types of deviations
can generate voltage variations above or below the permissible +10% voltage margin. Compared
to the linear program, average voltage deviations are lower by 7.45*10*% in the proposed method.

Figure B1 — Voltage profile test case 1 (Proposed Figure B2 — Voltage profile test case 1 (Linear
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