
New Clocks, Optimal Line Formation and
Efficient Replication Population Protocols

(Making Population Protocols Alive)

Leszek Gąsieniec
Department of Computer Science, University of Liverpool, Ashton Street, L69 38X, U.K.

Paul Spirakis
Department of Computer Science, University of Liverpool, Ashton Street, L69 38X, U.K.

Grzegorz Stachowiak
Institute of Computer Science, University of Wrocław Joliot Curie 15, Wrocław, Poland

November 23, 2021

Abstract

We consider the model of population protocols permitting presence of
dynamically changing edges connecting agents. Our main contribution is a
new constant space phase clock allowing to count parallel time O(n logn)
whp in the adopted model. This clock admits confirmation of slow leader
election and in turn construction of a line (and a ring) comprising every
agent in the optimal parallel time Θ(n logn) and constant space. This
improves on the currently best known upper bound O(n2).

We also discuss a variant of the new clock in which utilisation of edges
is replaced by interaction of agents with a unique leader. This variant
provides a universal (for models with and without edges) synchronisa-
tion mechanism and is adopted in some of our efficient line replication
protocols.

1 Introduction
The model of population protocols originates from the seminal paper of Angluin
et al. [4]. This model provides tools for the formal analysis of pairwise in-
teractions between simple indistinguishable entities referred to as agents. The
agents are equipped with limited storage, communication and computation ca-
pabilities. When two agents engage in a direct interaction their memory content
is assessed and their states are modified according to the predefined transition
function that forms an integral part of the population protocol. In the proba-
bilistic variant of population protocols adopted in this paper, in each step the

1

ar
X

iv
:2

11
1.

10
82

2v
1

 [
cs

.D
C

]
 2

1
N

ov
 2

02
1

random scheduler selects a pair of agents uniformly at random. In this variant,
in addition to state utilisation one is also interested in the running time of the
proposed solutions. In more recent work on population protocols the focus is
on parallel time defined as the total number of pairwise interactions leading to
the solution divided by the size (in our case n) of the population. The parallel
time provides also a good estimation on the number of interactions each agent
was involved in throughout the computation process.

Unless stated otherwise we assume that any protocol starts in the initial con-
figuration where all agents are in the same predefined initial state. A population
protocol terminates with success if the whole population eventually stabilises,
i.e., it arrives at and stays indefinitely in the final configuration of states reflect-
ing the desired property of the solution.

1.1 Constructors
While in the standard population protocol model the population of agents re-
mains unstructured, in the model introduced in [18] and adopted in this paper
any two agents may become connected by establishing a physical (edge) con-
nections between them. The two connected agents may later choose to drop
their connection when they meet again. In this way the agents can self or-
ganize themselves into a desired temporary or more definite structures. Such
distributed and dynamically structured systems based on population protocols
are called network constructors or simply constructors [18].

Note that the expected number of interactions to fix (establish or modify)
a particular connection is Θ(n2) as each pair of agents is selected uniformly at
random. And this cost often dominates the time complexity of the constructors
protocols. But there are some exceptions where the focus is not on very specific
but more arbitrary connections randomly selected from a large group of avail-
able connections. A good example is the construction of almost balanced trees
from [11] requiring o(n2) interactions.
The model When possible we will use capital letters to denote states of the
agents. In order to accommodate management of edge connections we need to
extend the transition function in which every rule is of the following type

P +Q+ S −→ P ′ +Q′ + S′

The first two terms on both sides of the rule refer to the states P and Q of
interacting agents before and P ′ and Q′ after the interaction. The third term
S before and S′ after the interaction indicates the status of connection between
the two where 1 means the interacting agents are connected or not denoted by 0.
Note that the state of an agent can be more complex, e.g., represented as a tuple
with several components, where only some components may change during an
interaction. In such compound cases but also when the states are denoted by
longer terms or numbers we will use vector representation with <,> brackets.

One of the central problems in network constructors is formation of a stable
line (or ring) comprising all agents. When no leader is initially assumed, the

2

fastest known protocol for a stable line construction requires Θ(n3) interactions
in expectation, i.e. Θ(n2) parallel time, see [18]. Until now, no bounds were
known for efficient ring construction. In this paper we propose fastest possible
protocols for the line and ring construction, while preserving constant space
utilisation in agents.

Our clock, line and ring constructions are always correct and they stabilise
with high probability (whp) which we define as follows. Let η be a universal
constant referring to the reliability of our protocols. We say that an event
occurs with negligible probability if it occurs with probability at most n−η,
and an event occurs with high probability if it occurs with probability at least
1 − n−η. This estimate is of an asymptotic nature, i.e., we assume n is large
enough to validate the results. Similarly, we say that an algorithm succeeds with
high probability if it succeeds with probability at least 1− n−η. When we refer
to the probability of failure p different to n−η, we say directly with probability
at least 1 − p. Our protocols make heavy use of Chernoff bounds and the new
tail bounds for sums of geometric random variables derived in [17]. We refer to
this new bound as to Chernoff-Janson bound.

1.2 Related work
One of the main tools used in this paper refers to the central problem of leader
election. In this problem the final configuration comprises a single agent in
the leader state and all other agents in the follower state. The leader election
problem received in recent years greater attention in the context of population
protocols. In particular, the results from [10, 12] laid down the foundation for
the proof that leader election cannot be solved in a sublinear time with agents
utilising a fixed number of states [14]. In further work [3], Alistarh and Gelashvili
studied the relevant upper bound, where they proposed a new leader election
protocol stabilising in time O(log3 n) assuming O(log3 n) states per agent.

In a very recent work Alistarh et al. [1] consider a more general trade-off
between the number of states used by agents and the time complexity of stabil-
isation. In particular, the authors provide a separation argument distinguishing
between slowly stabilising population protocols which utilise o(log log n) states
and rapidly stabilising protocols with O(log n) states per agent. This result
nicely coincides with another fundamental observation by Chatzigiannakis et
al. [9] which states that population protocols utilizing o(log log n) states are
limited to semilinear predicates, while the availability of O(log n) states ad-
mits computation of symmetric predicates. Further developments include also
a protocol which elects the leader in time O(log2 n) w.h.p. and in expectation
utilizing O(log2 n) states [8]. The number of states was later reduced to O(log n)
by Alistarh et al. in [2] and by Berenbrink et al. in [7] through the application
of two types of synthetic coins.

In more recent work of Gąsieniec and Stachowiak reduce memory utilisation
to O(log log n) while preserving the time complexity O(log2 n) whp [15]. We
also know that the high probability can be traded for faster leader election in
the expected parallel time O(log n log log n), see [16]. This upper bound was

3

reduced to the optimal expected time O(log n) by Berenbrink et al. in [6]. In
fact the main open problem is to establish whether one can elect a single leader
in time o(log2n) whp while preserving the optimal number of states O(log log n).

The protocols and methods discussed in this paper are closely related to
the concept of phase clocks. The term and the first analysis of a leader based
O(1) space phase clock was given by Angluin et al. in [5]. Further extensions
including a junta based clock and nested clocks counting any time O(logc n)
whp, for any constant c, can be found in [15]. In very recent work [13] Doty et
al. propose and analyse constant resolution clocks utilising O(log n) states as
the main engine in the optimal majority computation protocols.

1.3 Our results
Our main contribution is a new constant space clock allowing (in the model
with edge connections) to count parallel time O(n log n) whp. This clock is
used to confirm the conclusion of the slow leader election protocol. The selected
a leader is used to construct a line and a ring of agents in the optimal parallel
time O(n log n) whp. We also propose and analyse the second clock based on
the selected leader which also operates in time O(n log n). Please note that this
clock is universal, i.e., it can be used in population protocols with and without
edges. Thanks to periodic application of the second clock one can monitor
efficient construction of lines (and rings due to lack of space discussed in the
Appendix). All our new protocols use the optimal constant space and operate
whp. With the exception of replication our protocols are also optimal wrt the
time complexity Θ(n log n). They are also always correct meaning that with a
negligible probability they may operate longer, however, they never terminate
with the wrong answer.

2 Two clocks and leader election
In order to compute a single leader in the population we are executing two
protocols simultaneously. We run the slow (naive) leader election protocol to
identify a unique leader in time O(n log n) whp, simultaneously with the new
matching based clock (discussed below) which counts time Θ(n log n) whp. When
this clock concludes the remaining leader progresses to further stages where we
compute the line, the ring and discuss the line replication protocol.

The transition rules of the considered protocols follow.
Slow leader election

L+ L→ L+ F

where L represents a (remaining) leader candidate, and F stands for a follower
or a free agent. It is known that such naive leader election protocol operates in
time O(n log n) whp.
Matching based clock The proposed matching based clock assumes the con-
structors model in which the transition function recognises whether to agents

4

are connected by an edge, indicated by 1, or not, indicated by 0. The agents
begin in the predefined state < start > . When two agents in state < start >
interact they get connected and they enter the counting stage in which their
counters are initially set to 0 and eventually reach the maximum value max.
Note that these counters can either go up or down depending on the rule (of the
transition function) is used during interaction. Note also that the number of
agents present in the counting stage is always even. The counting stage protocol
guaranties that the counters of all agents which enter this stage reach value max
in time Θ(n log n), see Theorem 1. And in the next interaction between the two
connected agents in state < max > the connection is removed and the states
are updated to < end > indicating the end of the counting stage.

The rules of the transition function used in the counting stage are as follows:
Initialisation

< start > + < start > + 0 −→ < 0 > + < 0 > + 1

Timid counting

• For all connected i ≤ j and i < max

< i > + < j > + 1 −→ < i+ 1 > + < i+ 1 > + 1

• For all disconnected i < j

< i > + < j > + 0 −→ < i > + < i+ 1 > + 0

Maximum level epidemic

< max > + < i > + 0 −→ < max > + < max > + 0

Conclude and disconnect

< max > + < max > + 1 −→ < end > + < end > + 0

< start > + < end > + 0 −→ < end > + < end > + 0

Leader based clock We allocate separate constant memory to host the states
of the leader based clock. This allows to run the actions of the two clocks
simultaneously and independently. The followers in the leader based clock start
with the counter set to 0 which is denoted by < 0 >, while L refers to the leader
state. Note that state < 0 > is initiated for the leader based clock as soon as
the agent reaches state < max > or < end > in the matching based clock. The
timid counting rules now refer to the interactions with the leader L.
Timid counting

• Leader interactions, where i < max

< i > + L −→ < i+ 1 > + L

5

• Non-leader interactions, where i < j

< i > + < j > −→ < i > + < i+ 1 >

One can show that the two clocks have the same asymptotic time perfor-
mance, see Section 3 for the relevant detail. Note that the leader based clock
can be used independently from presence of edges in the population. In partic-
ular, this clock can be used to count time required to remove all edges used in
the matching based clock as well as to count time needed to form the line and
the ring of all nodes.
Periodic leader based clock One can extend the functionality of the leader
based clock such that it paces multiple rounds, each operating in time Θ(n log n),
of some more complex process, e.g., line replication.

The extension uses three consecutive stages 0, 1 and 2, where each stage
corresponds to one full execution of the leader based clock, and all three stages
form a single round. Thus any round starts in stage 0 on which conclusion
maximum level epidemic signal is accompanied by the message that stage 0 is
concluded. Note that such message is distributed rapidly by one-way epidemic
in time O(log n) whp. And when this happens all agents proceed to stage 1.
Note that the signal to start stage 1 remains in the system throughout the whole
stage but it will be wiped out by the signal announcing the beginning of stage
2. Analogously, on the conclusion of stage 2 the signal announcing stage 0 (and
the new round) will wipe out the previous message. This way after at most
O(log n) time delay (caused by the time of the epidemic) all agents will always
run the clock in the same stage whp.

3 The analysis
In this section we analyse the time complexity the two clocks from Section 2.
We will prove the following theorem towards the end of this section, but we
need first a collection of lemmas.

Theorem 1. In either of the clocks the time in which state <max> appears
for the first time is Θ(n log n) whp.

We first focus on the matching based leaderless clock and later extend the
reasoning to the leader based clock.

Let us define the edge collector problem in which one is asked to collect all
edges of a given matching M of cardinality n′ > n

4 . This process concludes
when the random scheduler generates all edges of a given matching via pairwise
interactions of agents in the population.

Lemma 1. For any cardinality n′ ∈ [n/4, n/2], the time complexity of the edge
collector problem is O(n log n). In addition, the time needed to collect the last
0.05 · n edges (of the matching) is at least 0.4 · n lnn whp.

6

Proof. The probability of collecting an edge when i edges are still to be collected
is 2i

n(n−1) , and in turn the expected time needed to collect an edge is n−1
2i . Thus

the expected time to collect k − l edges, when k edges remain is

(n− 1)

k∑
i=l

1

2i
=
n− 1

2
(Hk −Hl) ∼

n− 1

2
ln
k

l
.

By Chernoff-Janson bound when k = n′, l = 1 this time is O(n lnn). Using the
same bound for k = 0.05n, l = n0.1 results in time exceeding 0.4n lnn whp.

Lemma 2. All matching edges are formed in the expected time Θ(n) and whp
O(n log n).

Proof. The probability of an interaction forming edge i + 1 when i edges are
already present is (n−2i)(n−2i−1)

n(n−1) . So the number of interactions forming edge

i + 1 has geometric distribution with the expected value n(n−1)
(n−2i)(n−2i−1) . Thus

the expected time of forming all edges is

1

n

n∑
i=1

n(n− 1)

(n− 2i)(n− 2i− 1)
≤ n.

By Chernoff-Janson bound this time is O(n log n) whp.

The following lemma refers to early interactions of the matching based clock.

Lemma 3. After time 0.51 at least n
2 agents are paired in edges whp.

Proof. Assume that so far we have formed i edges. The probability that in
an interaction edge i + 1 is formed is (n−2i)(n−2i−1)

n(n−1) . So the expected number

of interactions Ti of forming edge i + 1 is n(n−1)
(n−2i)(n−2i−1) . Thus the expected

number of interactions T of forming first n/4 edges satisfies

T = T0 + · · ·+ Tn/4 =

n/4∑
i=0

n(n− 1)

(n− 2i)(n− 2i− 1)
∼ n

∫ 1/4

0

dx

(1− 2x)2
=
n

2
.

By Chernoff-Janson bound (for large enough n) this process requires at most
0.51n interactions whp. This is equivalent to parallel time at most 0.51.

There exists a positive constant d for which the following lemma holds.

Lemma 4. In a time window of size na, where 0 < a < 1, any edge in the
matching is used in at most d interactions whp.

Proof. By Union bound the probability that an edge is a subject to at least d
interactions in time na does not exceed(

n1+a

d

)(
2

n(n− 1)

)d
≤
(

2na

n− 1

)d
.

and this value is smaller than n−η is for d big enough.

7

Lemma 5. In time window of size na, where 0.1 ≤ a < 1, there are at most
2.1na edge interactions whp.

Proof. The probability that a given interaction is an edge interaction is 2n′

n(n−1) .

Thus in the time window of size na, there are expected 2na n′

n−1 edge interactions.
By Chernoff Bound the number of edge interactions is at most 2.1na whp.

Depending on the context and for the clarity of the presentation in what
follows we will use the notions of a counter and a level interchangeably.

Lemma 6. Assume that integer k < max− d− 2. Since time t0 = 0.51 and for
as long as at least one level i < k is present in the clock, there is a subpopulation
of at least 0.1n agents residing on levels j ≤ k whp. Also during this time no
agent reaches level max whp.

Proof. As we proved in Lemma 3, during the initial time 0.51 at least n/2 agents
enter the clock with state (0) whp. Some of these agents could also relocate to
the higher levels. By Lemma 5 applied to the initial time period n0.2 there are
at most 2.1n0.2 of the latter whp. Thus in the time interval [0.51, n0.2] level 0
is the host of at least 0.4n < 0.5n − 2.1n0.2 agents constantly residing at this
level whp. Also by Lemma 4 no agent gets to level max whp.

The proof is done by induction on t. Assume before time t there are at least
0.1n agents on levels j ≤ k. We will prove that the thesis of the Lemma also
holds before time t′ = t+ n0.1 whp.

We notice first that during period [t − n0.1, t] all agents which entered the
clock are at least once on level l ≤ k+ 1 whp. And indeed during this period an
agent avoids interactions with agents on levels j ≤ k with probability at most

(1− 0.1/n)n
1.1

< e0.1n
0.1

Thus, in this period, any agent which entered the clock goes to level at most
k + 1 whp. And Lemma 4 guarantees that no agent reaches level max during
period [t, t+ n0.1].

In order to prove the first thesis of the lemma we consider two cases.
In the first case in time t there are at least 0.11n agents on levels not

exceeding k. Since by Lemma 5 in time period [t, t′] at most 2.1n0.1 such
agents can increase their level whp. And in turn, in time t′ there are at least
0.1n > 0.11n− 2.1n0.1 agents on levels j ≤ k.

In the second case in time t the number of agents on levels at most k is
between 0.1n and 0.11n.

Let Y be the set of agents belonging to the levels above k in time t. If in
time t the number of agents on levels smaller than k is bigger than 3n0.1, then
by Lemma 5 the probability that in time window [t, t′] this number drops below
0.9n0.1(= 3n0.1 − 2.1n0.1) is negligible. Consider any set X with 0.9n0.1 agents
residing at levels smaller than k and estimate how many agents from set Y
interact with them. For as long as 0.38n agents from Y do not interact with X,
the probability of interaction between an unused (not in contact with X agents)

8

agent in Y and some agent in X is at least 0.68n−0.9. Any such interaction
increases the number of agents on levels not exceeding k. Consider a sequence
of n1.1 zeroes and ones in which position ι is one (1) if and only if either

• interaction ι is between an unused agent in Y with some agent in X if
there are more than 0.38n unused agents in Y,

• if this number is smaller than 0.38n value 1 is drawn with a fixed proba-
bility 0.68n−0.9.

By Chernoff bound the probability that this sequence has less than 0.6n0.2 ones
is negligible. Since 0.12n < 0.11n + 0.6n0.2 this sequence has less than 0.6n0.2

ones only when the number of agents moved to levels not exceeding k is smaller
than 0.6n0.2. Also by Lemma 5 during period [t, t′] at most 2.1n0.1 other agents
may increase their level beyond k whp. So in this sub-case the number of agents
on levels not exceeding k increases in period [t, t′] by at least 0.6n0.2 − 2.1n0.1.

If in time t the number of agents on levels below k is smaller than 3n0.1,
then the probability of an interaction between such an agent and an agent in
Y is at most 6n−0.9. Any such an interaction increases the number of agents
on levels not exceeding k. By Chernoff bound the probability that this number
of interactions exceeds 7n0.2 in [t, t′] is negligible. Thus in this sub-case the
probability that the number of agents on levels at most k exceeds 0.12n >
0.11m+ 7n0.2 is negligible.

We need the following two claims.
Claim 1: During period [t, t′] there are at most 0.26n0.1 agents located at levels
j ≤ k which increment their level whp.

Indeed, for as long as there are at most 0.12n agents on levels not greater
than k, the probability that such agent interacts as the initiator with a clock
agent is at most 0.12/n. Such an interaction increments the level of this clock
agent with probability at most 0.12/n. We prove that the probability of at least
0.13n0.1 such incrementations is negligible. Consider a sequence of n1.1 zeroes
and ones in which position ι is one if and only if either

• interaction ι increments initiator’s level and there are at most 0.12n agents
on levels not greater than k

• if this number is greater than 0.38n value 1 is drawn with a fixed proba-
bility 0.12/n.

By Chernoff bound this sequence has less than 0.13n0.1 ones (1s) whp. On the
other hand we have at most 0.12n agents on levels at most k whp. Thus whp
at most 0.13n0.1 agents on levels not exceeding k can increment their levels in
[t, t′] acting as initiators. Analogously we can prove that whp at most 0.13n0.1

agents on levels not exceeding k can increment their levels in [t, t′] acting as
responders. So altogether at most 0.26n0.1 agents on levels j ≤ k increment
their levels during period [t, t′] whp.
Claim 2: During period [t, t′] there are at least 0.75n0.1 interactions between
agents on level i < k and those residing on levels higher than k whp.

9

For as long as there are at most 0.12n agents on levels at most k, at least
0.38n = n/2 − 0.12n agents are on levels higher than k. The probability of an
interaction of such agents with an agent on level i < k is at least 0.76/n =
2 · 0.38/n. Any such an interaction increases the number of agents on levels not
exceeding k. Consider a sequence of n1.1 zeroes and ones in which at position ι
is one (1) if and only if either

• there are at most 0.12n agents on levels not greater than k and interaction
ι increases the number of such agents

• the number of agents on levels not exceeding k is greater than 0.12n and
value 1 is drawn with a fixed probability 0.76/n.

By Chernoff bound this sequence has more than 0.75n0.1 ones (1s) whp. On the
other hand we have at most 0.12n agents on levels at most k whp. Thus whp
at least 0.75n0.1 agents on levels exceeding k can reduce their levels to at most
k during period [t, t′] while acting as initiators.

Because of both Claims 1 and 2 after time n0.1 there are at least 0.51n0.1(=
0.75n0.1 − 0.24n0.1) more agents with state < j >: j ≤ k than in time t. This
proves that in time t′ there are at least 0.1n agents with state < j >: j ≤ k.

Lemma 7. The time in which the first agent achieves level max is larger than
(max− d− 2) · 0.4n lnn whp.

Proof. Let ti be the time when for the first time there are no agents available
at levels lower than i. By Lemma 6 during period [0.51, ti], there are at least
0.1n agents on level i or lower. Let ni ∈ [n/4, n/2] be the number of edges in
time ti. Thus between time ti and ti+1 at least 0.1n agents have to increment
their levels to i+ 1. This is done by collecting (interacting via) edges adjacent
to them. By Lemma 1 this takes time at least 0.4n lnn. This process has to be
repeated for max− d− 2 levels when no agents reach state (max) whp.

Lemma 8. The first agent moves to level max in time O(n log n) whp.

Proof. The total time to initiate bn/2c edges is O(n log n) whp by Lemma 2. If
the first agent achieves level max earlier the lemma remains true. If this is not
the case, the time O(n log n) is determined by collection of all bn/2c edges which
needs to be repeated max times resulting in the total time O(n log n).

Now we are ready to prove the thesis of Theorem 1. The thesis for matching
based clock follows directly from Lemmas 7 and 8. The thesis for the leader
based clock can be proved by a sequence of lemmas almost identical to Lemmas
6, 7 and 8. In the analog of Lemma 6 we can take n − 2 followers instead
of n′ edges. This is because Lemma 2 assures that the time counted by the
matching based clock is long enough to form all edges whp. Note that n − 2
agents are initiated at level 0 of the leader based clock in time O(log n) whp by
the epidemic resulting in dismantling of the matching based clock. And in turn
we can use the initial time O(n log n) instead of 0.51 in the analog of Lemma 6.

10

4 Fast formation of lines
Line formation We define and analyse a new optimal line formation protocol
which operates in time Θ(n log n) whp. while utilising a constant number of
extra states (not mixed with other protocols including clocks). The protocol is
preceded by leader election confirmed by the matching based clock. And when
this happens, the periodic leader based clock starts running together with the
following line formation protocol based on two main rules defined below.
Form head and tail

L+ F + 0→ H + T + 1

This rule creates the initial head in state H and the tail in state T of the newly
formed line. Note that since the line formation process uses separate memory
the leader in the leader based clock remains in the leadership state, i.e., it is the
head state H is used solely in the line formation protocol.
Extend the line

H + F + 0→ R+H + 1

This rule extends the current line by addition of an extra agent from the head
end of the line.

Theorem 2. The line formation protocol operates in time O(n log n) whp.

Proof. The probability of an interaction adding agent i + 1 to the line when
i agents are already present is 2(n−i)

n(n−1) . So the number of interactions to add

agent i+1 has geometric distribution with the expected value n(n−1)
2(n−i) . Thus the

expected time of forming the line is

1

n

n∑
i=1

n(n− 1)

2(n− i)
∼ n

2

n∑
i=1

1

i
∼ n lnn

2
.

By Chernoff-Janson bound this time is O(n log n) whp.

In order to make the line formation protocol always correct we need some
backup rules for the unlikely case of desynchronisation when two or more leaders
survive to the line formation stage. In such case we need to continue leader
elimination.

L+ L+ 0 −→ L+ F + 0

Also when a leader meets already formed head.

L+H + 0→ F +H + 0

Finally we have to dismantle excessive lines if two or more lines are formed.
This is done using extra state D which dismantles the line edge by edge starting
from the head.

H +H + 0→ H +D + 0

D +R+ 1→ F +D + 0

D + T + 1→ F + F + 0

11

5 Fast formation of rings

Ring Formation After the line formation is completed we need one extra round
controlled by the periodic leader based clock to close the ring.
Close the ring

H + T + 0→ HR + TR + 1

Theorem 3. The ring formation protocol operates in time O(n log n) whp.

Proof. In the first round (clocked by the periodic leader based clock) the ring
formation protocol executes a line is formed and in the second it the head of the
line connects with the tail, where both rounds operate in time Θ(n log n).

In order to make the ring formation protocol always correct we need extra (on
the top of line formation) backup rules for the unlikely case of desynchronisation
when two or more leaders survive, and in turn two or more lines (possibly
already closed in rings or cross-connected) are formed. And indeed when two
heads closed in two different rings meet one of accepts dismantling role DR.

HR +HR + 0→ HR +DR + 0

And when it meets the tail in its ring forms a line to be dismantled.

DR + TR + 1→ D + T + 0

When the head on a ring meets the head of a line, the ring head goes to state
HD meaning that the ring has to be disconnected, and the line head starts
dismantling the line.

HR +H + 0→ HD +D + 0

When the head on a ring meets a leader or a free agent, the ring head goes to
state HD as before, and the other agent becomes or stays free.

HR + L|F + 0→ HD + F + 0

Finally, When the head on a ring in state HD meets the tail on the same ring
the ring is replaced by the line still open to accept new nodes until the end of
the round clocked by the periodic leader based clock.

HD + TR + 1→ H + T + 0

6 Line replication
In this section we consider a raw line replication mechanism allowing multiple
replication of one or more lines of agents. When the replication process starts
a small number of agents belong to some relatively short lines (sequences) of
agents. Each such line has the head (the first agent on the line) and the tail (the
last agent on the line). We refer to all agents between the head and the tail of

12

a line as regular agents. We also assume that each agent on a line carries one
bit (0 or 1) of information, so in fact one can interpret each line as a binary
sequence which carries one or more messages. In our presentation we focus on
replication of a single line, but our protocol can be simultaneously applied to
many lines of the same or different content.

The agents utilise a constant number of states organised in triplets

< Role,Bi, Buffer >,

where

Role is either the head of the line H, the tail of the line T, or a regular internal
agent R.

Bi refers to combined notation Bi for the bit of information stored at position i
on the line. Please note that this location is computed modulo 3 counting
from the head’s position 0. The second agent has position 1, the third
2, the forth 0 etc. Note that while this enumeration is limited it allows
an agent carrying Bi distinguish between the two neighbours on the line
carrying Bi−1 (on the way toH) and Bl+1 (towards T). Finally, by |Bi| we
denote the sole value of the bit without its location, i.e., Bi =< |Bi|, i > .

Buffer is used to carry either bit or control messages. When an agent is not
currently involved in any action its buffer is in the neutral state φ.

In the replicated (old) line, when the buffer is empty but the agent support
transfer towards H the buffer is in state φH . Similarly, when the buffer is
occupied by a bit |Bx| moving towards H the relevant value is |Bx|H .

In the newly formed (new) line, when the buffer is empty but the agent
support transfer towards T the buffer is in state ψT . Similarly, when the
buffer is occupied by a bit |Bx| moving towards T the relevant value is
|Bx|T . We also distinguish another value ψN which indicates that a new
node is expected at the current tail of the line.

For example when a regular (internal) agent at position i is neutral, i.e., it is
not currently involved in the replication process, it’s state is set to < R,Bi, φ > .

(R1) Start of the line replication The process begins when the head H
of a line in the neutral state meets a free agent in state F. This interaction is
governed by the following rule:

< H,B0, φ > + F + 0 −→

< H,B0, φ
H > + < H,B0, ψ > + 1

When this rule is applied, in the old line a signal φH (pipeline all bits to-
wards the head) is created, and in the new line signal ψ means await further
instructions, i.e., either to add a new agent or conclude the replication process.
In what follows, we first explain how the information (the sequence of bits) is

13

transferred from the old line onto the new one. We later discuss how the new
line is being built simultaneously.
(R2) Create |Bi|H or |BT |H messageWhen signal φH arrives at the (i− 1)

th

agent and the ith agent is neutral, message |Bi|H is placed in the buffer of the
latter.

< R,Bi, φ > + < R|H,Bi−1, φH > + 1 −→

< R,Bi, |Bi|H > + < R|H,Bi−1 + φH > + 1

A similar action is taken at the tail agent in neutral state < T,BT , φ >

< T,BT , φ > + < R|H,Bi−1, φH > + 1 −→

< T,BT , |BT |H > + < R|H,Bi−1, φH > + 1

The use of these two rules allows to propagate the request to pipeline all bit
messages towards the head H. The next two rules explain how the bit messages
are moved towards the head H.
(R3) Move a non-tail message |Bx|H towards H

< R,Bi, |Bx|H > + < R|H,Bi−1, φH > + 1 −→

< R,Bi, φ
H > + < R|H,Bi−1, |Bx|H > +1

Note that when the bit message |Bx| is moved the request φH for further bit
messages remains in the ith agent.
(R4) Move the tail message |BT |H towards H

< T |R,Bi, |BT |H > + < R|H,Bi−1, φH > + 1 −→

< T |R,Bi, φ > + < R|H,Bi−1, |BT |H > + 1

Note that when the tail message |BT |H is moved the neutrality of the tail
agent is restored. Eventually, thanks to the final transfer of the tail message
all buffers in the old line are reset to φ. And the role of the old line in the
replication process concludes when this message is moved to the new line.
The following two rules govern transfer of messages between the old and the
new line.
(R5) Transfer a non-tail message |Bx|H to the head of the new line

< H,B0, |Bx|H > + < H,B0, ψ
T > + 1 −→

< H,B0, φ
H > + < H,B0, |Bx|T > + 1

Note that during such transfer the direction of the message is changed to-
wards the tail of the new line.
(R6) Transfer the tail message |BT |H to the head of the new line

14

< H,B0, |BT |H > + < H,B0, ψ
T > + 1 −→

< H,B0, φ > + < H,B0, |BT |T > + 0

As indicated earlier, due to the transfer of the tail message the neutrality of
the new line is restored. In addition the two lines get disconnected and the old
line is now ready to replicate again.
Finally, we show how the new line is constructed with the help of bit messages
arriving from the old line. Recall that the buffer message ψ at the current end
of the new line indicates that the line can be still extended.
(R7) Move a non-tail message |Bx|T towards (non-existent) tail T

< H|R,Bi, |Bx|T > + < R,Bi+1, ψ
T > + 1 −→

< H|R,Bi, ψT > + < R,Bi+1, |Bx|T > + 1

After this move the buffer in the ith agent expects further messages.
(R8) Move the tail message |BT |T towards (non-existent) tail T

< H|R,Bi, |BT |T > + < R,Bi+1, ψ
T > + 1 −→

< H|R,Bi, φ > + < R,Bi+1, |Bx|T > + 1 >

In this case the neutrality of the ith agent is restored.
When there is no room for a message coming from the head of the new line
yet another agent has to be added. This is done in two stages. We first request
addition of a new agent using message ψN .
(R9) Request extension via message ψN (non-tail message |Bx|T)

< H|R,Bi, |Bx|T > + < R,Bi+1, ψ > + 1 −→

< H|R,Bi, |Bx|T > + < R,Bi+1, ψ
N > + 1

and a specific rule requesting extension beyond the head of the new line.

< H,B0, |B1|H > + < H|R,B0, ψ > + 1 −→

< H,Bi, |B1|H > + < H,B0, ψ
N > + 1

And when this message is already present the new agent is added from the
pool of free agents.
(R10) Extend the new line

< H|R,Bi, ψN > + F + 0 −→

< H|R,Bi, ψT > + < R, ∗, ψ > + 1

15

Note that after this rule is applied the newly added agent still awaits its bit
message which is denoted by ∗. The new bit message arrives with the help of
the following two rules.
(R11) Arrival of a non-tail bit message

< R,Bi, |Bx|T > + < R, ∗, ψ > + 1 −→
< R,Bi, ψ

T > + < R,Bx, ψ > + 1

As a non-tail bit arrived the line will be still extended which is denoted by
messages ψT (expect more bit messages) in the ith agent and ψ (expect further
extension). The situation is different when the tail bit message arrives.
(R12) Arrival of the tail bit message

< R,Bi, |BT |T > + < R, ∗, ψ > + 1 −→
< R,Bi, φ > + < T,BT , φ > + 1

After this rule is applied the neutrality at the tail end of the new line is
restored. Note, however, that since the neutrality of the agents closer to the head
of this line was restored earlier the front of the new line can be already involved
in the next line replication process. But since we use different messages for the
transfers in the old and the new lines, the two simultaneously run processes will
not interrupt one another.
We conclude with the following theorem.

Theorem 4. The population protocol based on rules R1-R12 is a correct line
replication protocol.

Proof. We argue first about correction of the replication protocol for the old
line, where

• The actions of the tail node are governed by rules R2 and R4. The first
rules creates the bit message |BT |H and the second moves this message
towards the head of the line restoring the neutrality of the tail agent T .

• The actions of a regular node require also rule R3 which support move-
ment of multiple non-tail bit messages towards H.

• The actions of the head H are more complex. The process begins with
application of rule R1 which encapsulates three different actions: adding
the head of the new line, replication of its bit in the newly created head.
Transfer of non-tail bit messages to the new line is managed by rules
R3 and R5 and the tail message by rules R4 and R6, when after the
application of the latter the old line concludes the replication process.

For the full cycles of rules used by agents see Figure 1.
The new line formation requires different organisation of states and transi-

tions. Note that all agents introduced to the line must originate from the state
F, see Figure 2.

16

𝑇 states and
transitions

< 𝑇, 𝐵𝑇, ф >

< 𝑇, 𝐵𝑇, |𝐵𝑇|
𝐻 >

𝑅 states and
transitions

< 𝑅, 𝐵𝑖, ф >

< 𝑅, 𝐵𝑖, |𝐵𝑗 ≥ 𝑖|
𝐻 >

< 𝑅,𝐵𝑖, ф
𝐻 >

< 𝑅,𝐵𝑖, |𝐵𝑇|
𝐻 >

𝐻 states and
transitions

< 𝐻,𝐵0, ф >

< 𝐻,𝐵0, ф
𝐻 >

< 𝐻,𝐵𝑇, |𝐵𝑗 ≥ 0|
𝐻 >

< 𝐻,𝐵0, |𝐵𝑇|
𝐻 >𝑅2 𝑅4

𝑅2
𝑅4

𝑅4

𝑅3
𝑅3

𝑅1

𝑅3

𝑅5

𝑅4

𝑅6

Figure 1: The old line states and transitions

• The formation of the tail agent requires only two rules: R10 to add new
agent and R12 to equip this agents with the bit BT .

• The situation with the regular nodes is more complex as they have to
accept their own bit Bi (rule R11) add additional agent (rules R9 and
R10) and keep pipelining non-tail bit messages (rule R7) until the tail
bit message arrives (rule R8) and finally establish the neutrality of the
agent (rule R8 or rule R12 when neighbour of the tail agent).

• Rule R1 creates the head of the new line, rules R9 and R10 add a new
agent, rules R5 and R7 pipeline non-tail bit messages in the direction
of the tail node until the tail bit message arrives (rule R6) when the
neutrality of the tail node is reached (rule R8).

With respect to the time complexity it is relatively easy to observe that the
proposed replication protocol requires at most O(k2 ·n) parallel time as transfer
of each bit message requires O(n·k) parallel time in expectation. As all transfers
are done (pipelined) simultaneously we would like to claim that this process
concludes faster in time O(n ·k) in expectation. However we can only prove the
bound O(kn log n) for which we need the following theorem.

Theorem 5. The aforementioned raw line replication protocol can be amended
to operate in parallel time O(n · k log n) whp.

Proof. We can amend the states of the agents such that two bit messages: the
main and the newly arrived, can be stored in the buffer simultaneously. Note
that this does not violate the assumed constant space limit. The bit messages
pipelining process works in synchronised rounds where each round lasts parallel

17

𝐻 states and transitions

< 𝐻,𝐵0, ψ
𝑇 >

< 𝐻,𝐵0, |𝐵𝑥|
𝑇 >

𝑅5

𝑅7

< 𝐹 >

< 𝐻,𝐵0, ψ >

< 𝐻,𝐵0, ψ
𝑁 >

< 𝐻,𝐵0, |𝐵𝑇|
𝑇 >

< 𝐻,𝐵0, ф >

𝑅1

𝑅9

𝑅10

𝑅6

𝑅8

< 𝑅,∗, ψ > < 𝑇, 𝐵𝑇, ф >

𝑇 states and transitions

𝑅10 𝑅12

< 𝑅, 𝐵𝑖 = 𝑥, ψ >

< 𝑅, 𝐵𝑖, ψ
𝑁 >

< 𝑅,𝐵𝑖, ψ
𝑇 >

< 𝑅,𝐵𝑖, |𝐵𝑥|
𝑇 >

< 𝑅,𝐵𝑖, ф >

𝑅 states and transitions

< 𝑅,𝐵𝑖, |𝐵𝑇|
𝑇 >

𝑅11

𝑅9
𝑅10

𝑅7

𝑅7𝑅8

𝑅8/R12

Figure 2: The new line states and transitions

time Θ(n log n) paced by the periodic leader based clock, see Section 2. The
pace of this clock is set to accommodate single addition of an agent to the new
line and a constant number of interactions along each edge of the line.

A round begins when the first stage of the clock is initiated. During this
stage a new agent is added towards the end of the new line, if such a need arises.
During the second stage the main bit message currently present in the buffer of
an agent moves to the neighbour agent (where it resides as newly arrived bit
message) on the line towards the destination (H in the old line or the current
tail in the new one). In the last third stage the newly arrived bit message
(if any) is rebranded as the main bit message to make it ready for further
transfer in the next round. Note that since all bit messages had enough time
O(n log n) (coupon collector problem argument) to move one position closer to
their destination such rebranding is safe. Finally, after O(k) rounds (the tail
bit message has to move across 2k− 1 edges) all bit messages originating in the
old line reach their destination, which translates to the parallel time O(kn log n)
with high probability.

One can further amend this protocol to obtain fully amended replication
protocol with buffers of size 1. In this protocol an agent restrains its actions
until two rounds after its neighbour (towards the destination) released its bit
message. And when this happens the message originating in this agent moves
along the line (towards its destination) by one position in each round. Since
all moving bit messages are always at distance two at the end of each round
no buffer conflicts are observed. And since the last bit message starts moving
after O(k) rounds and it moves to destination in O(k) rounds, the total time
complexity of fully amended replication protocol is O(kn log n) whp.

Theorem 6. The fully amended line replication protocol operates whp in time
O(n · k log n).

18

We conclude with the following corollary.

Corollary 1. The raw line replication protocol operates in time O(kn log n)
whp.

Proof. We say that configuration A dominates another configuration B (denoted
A ≥ B) iff configuration A can be obtained from B through a finite number of
steps (rule applications) of the raw replication protocol.

We first recall that fully amended replication protocol requires O(k) synchro-
nised rounds, see the proof of Theorem 6. Note also that application of a single
round preserves domination relationship between arbitrary configurations. I.e.,
if two configurations A ≥ B enter a round, the respective configurations on the
conclusion of the round A′ and B′ also satisfy A′ ≥ B′. We also observed earlier
that during each round of the (fully) amended protocol each message moves one
position closer to the destination. Thus since the configurations in the raw repli-
cation protocol are always dominating the configurations of the fully amended
one, and the time complexity of the latter is O(kn log n), we conclude that the
time complexity of the raw protocol is also O(kn log n).

References
[1] D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R.L. Rivest. Time-

space trade-offs in population protocols. In Proc. SODA 2017, pages 2560–
2579.

[2] D. Alistarh, J. Aspnes, and R. Gelashvili. Space-optimal majority in pop-
ulation protocols. In Proc. SODA 2018, pages 2221–2239.

[3] D. Alistarh and R. Gelashvili. Polylogarithmic-time leader election in pop-
ulation protocols. In Proc. ICALP 2015, pages 479–491.

[4] D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Compu-
tation in networks of passively mobile finite-state sensors. In Proc. PODC
2004, pages 290–299.

[5] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population
protocols with a leader. Distributed Comput., 21(3):183–199, 2008.

[6] P. Berenbrink, G. Giakkoupis, and P. Kling. Optimal time and space leader
election in population protocols. In Proc. STOC 2020, pages 119–129.

[7] P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach. Simple and efficient
leader election. In Proc. SOSA 2018, volume 61 of OASICS, pages 9:1–9:11.

[8] A. Bilke, C. Cooper, R. Elsässer, and T. Radzik. Brief announcement:
Population protocols for leader election and exact majority with O(log2

n) states and O(log2 n) convergence time. In Proc. PODC 2017, pages
451–453.

19

[9] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P.G. Spi-
rakis. Passively mobile communicating machines that use restricted space.
Theor. Comput. Sci., 412(46):6469–6483, 2011.

[10] H-L Chen, R. Cummings, D. Doty, and D. Soloveichik. Speed faults in
computation by chemical reaction networks. In Proc. DISC 2014, pages
16–30.

[11] M. Connor, O. Michail, and P. Spirakis. On the distributed construction of
stable networks in polylogarithmic parallel time. Information, 12(6):254–
266, 2021.

[12] D. Doty. Timing in chemical reaction networks. In Proc. SODA 2014, pages
772–784.

[13] D. Doty, M. Eftekhari, L. Gąsieniec, E.E. Severson, G. Stachowiak, and
P. Uznański. A time and space optimal stable population protocol solving
exact majority. CoRR, abs/2106.10201, 2021, to appear at FOCS 2021.

[14] D. Doty and D. Soloveichik. Stable leader election in population protocols
requires linear time. In Proc. DISC 2015, pages 602–616.

[15] L. Gąsieniec and G. Stachowiak. Enhanced phase clocks, population pro-
tocols, and fast space optimal leader election. J. ACM, 68(1):2:1–2:21,
2021.

[16] L. Gąsieniec, G. Stachowiak, and P. Uznański. Almost logarithmic-time
space optimal leader election in population protocols. In Proc. SPAA 2019,
pages 93–102.

[17] Svante Janson. Tail bounds for sums of geometric and exponential variables.
Satistics and Probability Letters, 135(1):1–6, 2018.

[18] O. Michail and P. Spirakis. Simple and efficient local codes for distributed
stable network construction. Distributed Computing, 29(3):207–237, 2016.

20

	1 Introduction
	1.1 Constructors
	1.2 Related work
	1.3 Our results

	2 Two clocks and leader election
	3 The analysis
	4 Fast formation of lines
	5 Fast formation of rings
	6 Line replication

