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Discovery of noncoding RNAs continues to provide new insights into some of the key
molecular drivers of musculoskeletal diseases. Among these, microRNAs have received
widespread attention for their roles in osteoarthritis and rheumatoid arthritis. With
evidence to suggest that long noncoding RNAs and circular RNAs function as
competing endogenous RNAs to sponge microRNAs, the net effect on gene
expression in specific disease contexts can be elusive. Studies to date have focused
on elucidating individual long noncoding-microRNA-gene target axes and circular RNA-
microRNA-gene target axes, with a paucity of data integrating experimentally validated
effects of noncoding RNAs. To address this gap, we curated recent studies reporting
noncoding RNA axes in chondrocytes from human osteoarthritis and in fibroblast-like
synoviocytes from human rheumatoid arthritis. Using an integrative computational biology
approach, we then combined the findings into cell- and disease-specific networks for in-
depth interpretation. We highlight some challenges to data integration, including non-
existent naming conventions and out-of-date databases for noncoding RNAs, and some
successes exemplified by the International Molecular Exchange Consortium for protein
interactions. In this perspective article, we suggest that data integration is a useful in silico
approach for creating noncoding RNA networks in arthritis and prioritizing interactions for
further in vitro and in vivo experimentation in translational research.
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been experimentally validated. In building these networks, we
encountered key challenges, including inconsistency in
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INTRODUCTION

Noncoding RNAs are key regulators of gene expression in the
musculoskeletal system. These RNA molecules are transcribed
from DNA but not translated into protein (1). Among the many
types of noncoding RNAs, the most characterized to date are
microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and
circular RNAs (circRNAs). Through seed-sequence binding,
miRNAs target specific genes and prevent their translation,
effectively inhibiting expression. Because lncRNAs and
circRNAs are both capable of ‘sponging’ miRNAs, or
competitively binding to miRNAs, they are considered
competing endogenous RNAs (ceRNAs) (2). LncRNAs function
by binding to miRNAs through miRNA Response Elements
(MRE) present at their 3’ ends (3). Therefore, lncRNAs act as
molecular decoys, sequestering miRNAs and preventing their
interaction with gene targets. As with circRNAs, lncRNAs
regulate diverse biological processes through their crosstalk with
miRNAs (4). This ceRNA activity is one of many factors
contributing to the net effect of miRNAs in a specific
biological context.

There are multiple factors governing miRNA expression,
from the level of the cell to the organism. MiRNA biogenesis
involves several post-transcriptional processing steps and is

under both temporal and spatial control that can introduce
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tissue- and disease-specific effects. For example in RA, miR-
140 has been reported to suppress synovial inflammation (9),
again suggesting a beneficial role, but in a different tissue and
through a different mechanism than for OA, thereby precluding
direct comparison of this miRNA across diseases.

To improve our understanding of the biological and clinical
context of noncoding RNA regulation in arthritis, there is an
outstanding need for methods to identify the interactions among
noncoding RNAs and their gene targets in specific cell types.
Computational biology approaches to predict ceRNA activity
among noncoding RNAs, as well as gene targets and pathways, is
a useful in silico strategy that can be tailored to cells, diseases, and
other factors of interest. To illustrate this, we present two
examples that integrate the recent literature on noncoding
RNAs in OA and RA, focusing on chondrocytes and
fibroblast-like synoviocytes (FLS), respectively. These examples
are proof-of-concept of the relationships (or biological networks)
that can be constructed using noncoding RNA axes that have
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annotation of noncoding RNAs. These challenges are discussed
along with our perspectives on future directions needed to
advance the noncoding RNA field.

METHODS

To curate relevant literature reporting noncoding RNA axes in
OA chondrocytes and RA FLS, we searched PubMed using
combinations of key words including osteoarthritis,
rheumatoid arthritis, microRNA, long noncoding RNA, and
circular RNA. Articles were filtered for those with an
experimentally validated lncRNA-miRNA-mRNA or circRNA-
miRNA-mRNA axis in chondrocytes from OA subjects or FLS
from RA subjects. We included 36 studies for OA and 10 studies
for RA published between October 2019 and December 2020.
The lncRNA/circRNA, miRNA, and mRNA targets were
extracted from individual papers. Common groups of genes
were fed into a network prepared in NAViGaTOR v3.0.14
(10), connecting them using physical protein-protein
interactions to visualize potential signaling relationships. The
network figure was finalized with legend from an exported SVG
file in Adobe Illustrator v25.3.1. Network source files are
available upon request. Physical protein interactions among
gene targets were obtained from Integrated Interactions
Database (IID) v2021-05, using the entire set of IID
interactions (11). Proteins were annotated with Gene Ontology
(GO) biological processes using NAViGaTOR plugin to UniProt.
The GO biological processes are represented in the figures by
node color and are listed in the figure legends.
228
variability (5). Once processed, mature miRNAs may decay, be
degraded, be exported, or be ‘sponged’ as described above. As a
result, the miRNAs present in a given cell can vary according to
these regulatory factors, but also multiple biological factors,
including age, sex, and body mass index (6). It is therefore not
surprising that miRNA profiles are dysregulated in several
disease contexts and contribute to disease onset and
progression. For highly prevalent musculoskeletal diseases like
osteoarthritis (OA) and rheumatoid arthritis (RA), multiple
tissues in the joint compartment can show pathology that is
driven by tissue-specific miRNA patterns. This multi-level
regulation of miRNA expression presents a challenge when
attempting to elucidate the function of a particular miRNA
in disease.

MiRNAs play both protective and destructive roles in the
musculoskeletal system (7). Since a miRNA can have hundreds
of gene targets, its specific effect can be obscure. Studies to date
have tended to focus on elucidating a single axis involving one or
two noncoding RNAs, often a lncRNA or circRNA, and its effects
on a miRNA and one or two downstream gene targets. While
these studies are necessary to demonstrate direct interactions,
they may be missing the broader biological context. In fact, the
same miRNAs are often reported as having important functions
through completely different pathways that involve unique
upstream regulators and downstream effectors. Taking miR-
140 as an example, independent studies have investigated its
effects on at least 17 different gene targets in various cell types
within the musculoskeletal system (8). Though it is now
generally accepted that miR-140 plays a beneficial role in OA,
promoting cartilage anabolism and inhibiting catabolism, this
information was acquired over a decade of research from
multiple groups, and remains under investigation due to its
Month 2021 | Volume 12 | Article 744747
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NONCODING RNA NETWORK IN OA
CHONDROCYTES

OA is a degenerative disease of the joints, causing pain and
disability in 7% of the global population (12). Pathology is most
commonly observed in the cartilage, synovium, and bone, but
OA research has by far focused on cartilage, including
exploration of the role of noncoding RNAs (7). Dysregulation
of miRNAs, lncRNAs, and circRNAs has been reported in OA,
with one molecule having effects on multiple downstream
molecules (e.g., mRNAs), including other noncoding RNAs
(2). These noncoding RNA-based regulatory networks
represent a molecular mechanism underlying OA that remains
poorly understood. The majority of studies we identified
explored a single noncoding RNA axis in OA chondrocytes,
with several studies reporting on the same noncoding RNAs, but
in different axes, making it difficult to ascertain the net effect of a
particular molecule. To gain a better understanding of the
networks in which noncoding RNAs function in OA, we used
a computational biology approach to integrate these individual
axes (Figure 1A; Supplementary Table 1).

As shown in Figure 1A, individual miRNAs, lncRNAs, and
circRNAs in OA chondrocytes have multiple and interconnected
effects in regulating downstreammolecules. For example, a single
lncRNA can affect multiple miRNAs as shown by lncRNA
MALAT1 via miR-146a and miR-145 (Figure 1B). In
lipopolysaccharide-treated chondrocytes, MALAT1/miR-146a
modulates extracellular matrix catabolism, inflammation, and
apoptosis through PI3K/Akt/mTOR, impacting OA progression
(13). In addition, in interleukin (IL)-1b-treated chondrocytes,

A

FIGURE 1 | Noncoding RNA network in OA chondrocytes. (A) Literature curated
brown arrows) complemented by physical protein interactions (blue nondirectiona
noncoding RNAs in human OA chondrocytes. Node shape represents different m
(as indicated in the legend). (B) The largest connected subgraph from panel A co

undirected protein interaction connections among the pertinent gene targets.
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MALAT1/miR-145 increases extracellular matrix degradation by
targeting a disintegrin and metal loproteinase with
thrombospondin motifs 5 (ADAMTS5) (14). Furthermore,
lncRNA NKILA may compete for miR-145 and thus alter
ADAMTS5, while also inhibiting SP1 transcription factor
activity and regulating nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) in chondrocytes. These
factors are orchestrated to promote inflammation and apoptosis
but inhibit proliferation in a fine-tuned manner (15). Notably,
the targets of miR-145 (SP1 and NF-kB) and miR-146a (PI3K/
Akt/mTOR) interact to form an almost complete clique
(Figure 1B), suggesting a connection between the molecular
functions regulated by lncRNA MALAT1 that would not have
been identified without integrating the curated data. Aside from
MALAT1, lncRNAs SNHG15 (16, 17), PVT1 (18, 19), XIST (20,
21), PART1 (22, 23), and NEAT1 (24, 25) are each shown to have
two miRNA targets, which in turn regulate multiple genes with
annotated protein-protein interactions (Figure 1A). This
network illustrates noncoding RNA function in human OA
chondrocytes, the complexities of which are not readily
apparent when interpreting studies separately.

NONCODING RNA NETWORK IN RA FLS

RA is a chronic systemic autoimmune disease that causes
inflammation in synovial joints. It affects 0.5% of the global
population (26). Like OA, RA can cause cartilage and bone
damage, but the major pathological changes in RA are within the
synovium. This includes infiltration of immune cells and wildly

B

RNA-miRNA-gene and circRNA-miRNA-gene axes (green, turquoise, and
es connecting gene products) showing an interconnected regulatory network of
ule types, while gene target color signifies Gene Ontology biological process
ering only literature curated noncoding, directed interactions and including
342
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leading to increased expression of multiple direct targets
including IL-15 and dickkopf WNT signaling pathway

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

Ali et al. Tissue-Specific Noncoding RNA Networks
proliferating invasive FLS exhibiting impaired apoptosis and
proinflammatory cytokine production (27). Noncoding RNAs are
known to play important roles in RA FLS. Early studies found a
dysregulation of miR-155 andmiR-146a influenced the proliferative,
invasive, and proinflammatory phenotype of RA FLS (28–31).
Recent studies suggest a more complex picture of noncoding
RNAs within RA FLS (Figure 2 and Supplementary Table 2).

Interactions between lncRNAs, circRNAs, and miRNAs
contribute to FLS abnormalities typical of RA (Figure 2). For

example, lncRNA NEAT1 affects several miRNAs as a significant
driver of RA joint pathology. NEAT1 is increased in RA versus

409

410

411

412

413

414
control subject synovial tissue (32) and peripheral blood
mononuclear cell exosomes (33). These exosomes can deliver
additional NEAT1 to FLS (33). NEAT1 sponges miR-410-3p
leading to increased YY1 transcription factor which promotes

FLS proliferation, impaired apoptosis, and increased tumour
necrosis factor alpha (TNF-a) and matrix metallopeptidase 9

415

416

417

418

419

420

421

422

423

424
(MMP-9) expression (32). NEAT1 also causes increased FLS
proliferation and inflammation through sponging miR-23a,
leading to an increase in murine double minute-2 (MDM2)
(33). This demonstrates that lncRNA NEAT1 can function
through different miRNAs to alter expression of unique targets
that are further connected by protein-protein interactions as
shown for YY1 and MDM2 in Figure 2.
biological process (as indicated in the legend).
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Other key lncRNA axes have been reported in RA. For
example, excess lncRNA H19 in FLS sponges miR-103a,
inhibitor 1 (DKK1), promoting inflammation and joint
destruction in RA (34). Downregulated lncRNAs LINC-PINT,
LINC01197, and OIP5-AS1 in RA synovial tissue lead to
increased levels of their respective targets miR-155, miR-150,
and miR-448 in RA FLS, which in turn lead to cell proliferation,
invasion, and inflammatory responses (35–37). Upregulated
lncRNAs PVT1 and uc.477 lead to sponging of miR-543 (38)
and miR-19b (39), respectively, also contributing to RA FLS
pathology. While fewer circRNA axes have been elucidated, one
study found excess circ0088036 could sponge miR-140-3p to
promote proliferation and migration in FLS via sirtuin 1 (SIRT1)
(40). As in OA chondrocytes, these studies demonstrate the
importance of interconnectivity of noncoding RNAs and their
gene targets in human RA FLS.
425
DISCUSSION

We hold the perspective that noncoding RNAs function in tissue-
specific networks that can be elucidated using computational
biology to integrate experimentally validated data from

individual studies. Taking OA chondrocytes and RA FLS as two
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FIGURE 2 | Noncoding RNA network in RA FLS. Literature curated lncRNA-
miRNA-gene and circRNA-miRNA-gene axes (green, turquoise, and brown
arrows) complemented by physical protein interactions (blue nondirectional
lines connecting gene products) showing an interconnected regulatory
network of noncoding RNAs in human RA FLS. Node shape represents
different molecule types, while gene target color signifies Gene Ontology
examples, we integrated noncoding RNA axes by connecting
common molecules and produced networks highlighting
connections that may have otherwise been unknown. In
particular, miRNAs are shown to orchestrate the effects of
lncRNAs and circRNAs on gene expression, which has
implications for downstream signaling, including protein-
protein interactions and regulation of biological processes.
While we did not explore upstream factors regulating the
expression of lncRNAs and circRNAs, nor the direct effects of
lncRNAs and circRNAs on gene expression, these are equally
important considerations for understanding the fine-tuning that
noncoding RNAs drive in disease. Since noncoding RNAs are
highly stable in circulation, they can be used as diagnostic
biomarkers for patients with OA, RA, and other musculoskeletal
diseases (41–43). Additionally, we demonstrate that as ceRNAs,
lncRNAs and circRNAs can regulate one or more miRNAs,
suggesting that miRNAs are important coordinating signals and
therefore potential therapeutic targets (44). Targeting noncoding
RNAs with antisense oligonucleotides (ASOs) and small
interfering RNAs (siRNAs) to selectively modulate their
expression in specific tissue types could have therapeutic benefit
for OA and RA (45).

To note limitations, our restricted literature search may have
missed other reports on the molecules included in the networks,
and therefore these are not exhaustive networks. Based on the
high number of studies reporting noncoding RNA axes in OA
chondrocytes and RA FLS, we focused on these cell types and
excluded articles reporting noncoding RNA axes in other cells or
biofluids for these diseases. Similarly, to maximize physiological
relevance, we chose to exclude studies that used only animal
456
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models or cell lines, instead focusing on studies that used
primary human chondrocytes or FLS (often in addition to cell
lines). By applying these criteria, our intention was to capture
axes that were established in comparable biological contexts in
order to justify integration across studies. While experimental
validation of the networks shown in Figures 1, 2 is required, we
have pruned the specific species, cell (chondrocytes and FLS,
respectively), and disease (OA and RA, respectively) contexts in
which these studies should be conducted. This represents a
possible workflow in which computational biology methods
can inform experimental approaches in noncoding
RNA research.

In constructing these noncoding RNA networks, we
encountered key challenges pertaining to naming conventions,
database maintenance, and target predictions. Assigning names to
new molecules has historically led to non-standard nomenclature.
The most appropriate approach to limit inconsistent naming is to
create standard rules, as evidenced by improved gene naming after
the HUGO Gene Nomenclature Committee (HGNC) released
guidelines (https://www.genenames.org/about/guidelines/) (46).
Unfortunately, noncoding RNAs suffer from naming
conventions that are either out-of-date or absent altogether (47,
48). The miRBase reference database has been used for miRNAs
since 2004 (49), and this led to fairly accurate miRNA
nomenclature in the subsequent 10 years. However, miRbase
releases are becoming sparser (the latest being in 2018) and
include a small percentage of all the novel miRNAs identified in
the literature using sequencing techniques, leading to novel
miRNAs being named inconsistently. While irregular and
infrequent database updates create a challenge (50), miRNA
nomenclature is still better defined than that of other
noncoding RNAs.

HGNC provides naming rules for lncRNAs (derived from
lncRNAdb, which is no longer active), but not for circRNAs,
though some suggestions are provided (48). LNCipedia (https://
lncipedia.org) provides consistent nomenclature and links to
alternative names, a feature that is useful for mapping different
publications to the same molecule (51). Unfortunately, the most
recent update was in 2018. CIRCpedia (https://www.picb.ac.cn/
rnomics/circpedia/), a reference database for circRNAs, had a
similar fate, with no up-to-date curations (52). This lack of
nomenclature standards for lncRNAs and circRNAs leads to
considerable variability in naming as shown in our networks, and
represents a major roadblock to comprehensive data integration
from the literature and across databases (53). RNAcentral
(https://rnacentral.org/) is a database that is attempting to
overcome such roadblocks, integrating data from multiple
reference databases (54). However, many of the databases lack
updates, and the type of multiple mapping provided for the
molecules is not conducive to high-throughput workflows or
computational analyses.

With respect to target predictions, miRNA-target predictions
have been the focus of several tools and databases over the past
20 years. Among the pitfalls, many of these databases are not
being updated, some for more than 10 years (55). This leads to a
lack of interactions for more recent miRNAs, including both
Frontiers in Endocrinology | www.frontiersin.org 5
novel miRNAs and miRNAs in miRbase updates, creating a bias
for computational analyses. For lncRNAs and circRNAs, very
few databases curate or predict interactions, and of the few that
were created in the past decade, many are already no longer
available. The largest lncRNA database is LncRNA2Target
(http://123.59.132.21/lncrna2target/index.jsp), with 2,189
lncRNA-target interactions derived from low-throughput
experiments and 203,500 from high-throughput experiments,
and with a recent update in 2021 (56). CircATLAS (http://
circatlas.biols.ac.cn/) has annotated 421,501 predicted human
circRNAs and provides predicted RNA-binding proteins and
miRNA interactions with circRNAs (57). While circATLAS is
well organized and provides tissue annotation for circRNAs, one
limitation is that it lacks literature curated data.

Although data curation is a lengthy process that requires
human expertise and dedicated funds, it is necessary to enable
trustable and useful computational biology predictions. A pre-
selection of the candidate papers to be curated is necessary to
reduce the burden of manual curation. To do this, some databases
[e.g., IMEx and GrainGenes (58)] prioritize papers from topic-
specific journals. Many databases allow researchers to submit
papers to be curated, or to curate the data themselves; however,
that may result in inconsistencies or varying level of detail for
included information. Multiple efforts using artificial intelligence
and text mining have been used over the years to aid the curation
process to either pre-filter information to be curated, or automate
its annotation [e.g., Wormbase (59)]. However, as already
highlighted, naming and other inconsistencies create challenges
that must be handled manually.

Since database infrastructure and curation funding are
becoming more difficult to obtain, this in part explains the lack
of database maintenance and availability, and even data source
availability. One approach to promote accurate and up-to-date
curation is to create consortia among the groups behind the
many databases [as proven by the International Molecular
Exchange (IMEx) Consortium for protein interactions, for
example (60, 61)]. The scientific community could contribute
to this effort by following naming rules and providing links to
databases when describing already curated molecules; in turn,
databases should agree on one nomenclature and not create
multiple unique ones, and should provide mapping for molecules
already described using several different identifiers. Again, the
protein interaction field provides a successful example of this
(62–64). As noncoding RNA research continues to grow, this
strategy is expected to support data integration across studies,
and in turn increase the value of biological data for translational
research by improving reproducibility and interpretability.

While overcoming data integration challenges is not trivial, the
networks achieved can provide more complete and more precise
insight into the molecular background of a disease of interest. We
demonstrate this using an integrative computational biology
approach, constructing lncRNA/circRNA-miRNA-mRNA
networks in OA chondrocytes and RA FLS. Given the recent
surge in studies exploring noncoding RNA axes in various
diseases, placing findings of individual studies into a broader
biological context while maintaining key parameters (e.g., cell
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types) is expected to advance our understanding of the net effect of
manipulating a single noncoding RNA. From larger networks,
sub-networks may be selected for future investigation based on a
specific hypothesis, or simply based on the number or nature of
connections. Moving forward, concerted efforts to unify
nomenclature, maintain databases, and improve context-specific
target predictions is expected to support integrative approaches
that expedite prioritization of the most promising candidates for
experimental exploration in specific biological contexts.
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