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Abstract. Waveguide Bragg gratings are expected to play goitant role in diverse applications of
photonic integrated circuits. Here, we present latest progress in implementing Bragg filters with a
customized spectral response in the silicon-onkéttsu platform. Our filter comprises a silicon wawide

with an array of Bragg segments placed aside. Theeguade core is designed to have a reduced mode
confinement, which enables an accurate contrdh@frating strength via modulation of the Bragg segm
separation distance and allows for minimum feasizes compatible with deep-UV lithography (>100 nm)
Our design strategy is experimentally validateddeynonstrating a filter with 20 non-uniformly spaced
notches in the transmittance spectrum.

1. Introduction development of Bragg filters with arbitrary spetstaape
in the SOI platform [9].

With the advantages of well-established CMOS

manufacturing processes, silicon photonics hakededs . .

a leading technology to implement low-cost small- 2- Geometry and filter design

footprint photonic integrated circuits (PICs) [Bmong

typical building blocks in PICs, waveguide specfilgdrs

are important components demanded in many

applications [2, 3].

The development of waveguide Bragg filters has
attracted significant attention owing to their higrectral
flexibility and selectivity. Typically, a waveguid@ragg
grating is formed by implementing a periodic modola
in the waveguide sidewalls [4]. The filter bandvids
mainly determined by the strength of the pertudrati
However, in the silicon-on-insulator (SOI) platfqrthe
filter performance becomes very sensitive to small
variations of the corrugation width due to the higtiex
contrast between silicon and silicon dioxide, which
hinders the practical implementation of the filters

An alternative to implementing Bragg filters in SiSI
to place the periodic perturbation near the wawdgui
core, in the lateral cladding region [5]. By desimgnthe
waveguide core to have a reduced mode confineritént,
possible to control the filter bandwidth in a widege
(from a few hundreds of pm to several nm) whilegieg
the structural dimensions compatible with stanabeep-
UV lithography [6]. More recently, this geometrysha
been used to design other optical components ssch a
delay lines [7] and millimetre-long optical antesr{8].

In this talk, we present our latest results on the

Figure 1 shows the proposed Bragg filter geomettes
structure comprises a waveguide core (yellow) amd a
array of silicon segments at both sides formingBreggg
grating (red). The key strategy of our design is to
delocalize the waveguide mode, thereby enabling a
precise control of the grating strength (and the
corresponding spectral shape) via modulation of the
lateral separation,, wherek is the period humber. We
have studied two filter implementations: (i) a
homogeneous Si-wire core with reduced width [F{@)[L
and (i) an SWG metamaterial core with reduced
equivalent index [Fig. 1(b)]. Both structures aesigned

Fig. 1. Bragg grating geometries fifters with a customize
spectral response, with: (a) Bire waveguide core and
SWG waveguide cort
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to operate with TM light, which has a lower mode
confinement compared to TE light.

The overall design strategy can be summarizeden th
following steps:

(1) The dimensions of the waveguide core and the gize o
the lateral segments are chosen. The waveguide cor
is designed to increase mode delocalization. I'sthe
wire design, this is done by controlling the wavidgu
width w. In the SWG design, which can achieve a
higher mode delocalization, we also adjust the duty
cycleDC = a/Agw While the SWG periodgy is
kept small enough to suppress diffraction and
reflection. The dimensions of the lateral segmargs
chosen to be large enough to meet minimum feature
size constraints.
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(2) Taking the target reflection spectrum as an input ()

specification, we use the layer-peeling algorithm
(LPA) [10]. This method provides the required
modulation profile of the grating in terms of the
complex, local reflection coefficientp, to be
synthesized at each Bragg period.

Finally, the obtained local reflection coefficiempt,

are mapped onto the key filter geometrical
parameters,s, and A,. The varying separation
distancesy, is used to adjust the grating strength along
the filter length. The Bragg period modulatidn
allows to achieve spectral responses requiring a
complex impulse response, as well as to correct for
small deviations of the effective index due to the
modulation of the separation paramatgr

3)

3. Experimental results

Fig.
filters: (a) Si-wire-based filter and (b) SW&sed filter. Th
original target spectrum is shown in blac
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2. Experimental results of the designed astropho

4. Conclusions

We have proposed and investigated a novel georteetry
implement Bragg filters with arbitrary spectral pease
in SOI. Our design approach is advantageous teaehi
flexible filter designs while keeping structurahdinsions
large enough for ease of fabrication. The proposed
strategy has been experimentally tested by dernaimgjr
a complex filter with 20 non-uniformly spaced nagshin
the transmittance spectral response.
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