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Abstract

Ellipses are among the most frequently used geometric models in visual pattern

recognition and digital image analysis. This work aims to combine the outputs

of an ensemble of ellipse fitting methods, so that the deleterious effect of sub-

optimal fits is alleviated. Therefore, the accuracy of the combined ellipse fit is

higher than the accuracy of the individual methods. Three characterizations of

the ellipse have been considered by different researchers: algebraic, geometric,

and natural. In this paper, the natural characterization has been employed in

our method due to its superior performance. Furthermore, five ellipse fitting

methods have been chosen to be combined by the proposed consensus method.

The experiments include comparisons of our proposal with the original methods

and additional ones. Several tests with synthetic and bitmap image datasets

demonstrate its great potential with noisy data and the presence of occlusion.

The proposed consensus algorithm is the only one that ranks among the first po-

sitions for all the tests that were carried out. This demonstrates the suitability

of our proposal for practical applications with high occlusion or noise.
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median consensus

1. Introduction1

Nowadays, it is well known that fitting geometric primitive models is a fun-2

damental task in pattern recognition, computer vision, and even in digital im-3

age analysis. There is a wide range of geometric primitives available, including4

piecewise polynomial curves and surfaces [2, 44], and analytic curves such as5

the circle, the parabola, or the ellipse [28]. This last one has a great significance6

in computer graphics, metrology, industrial procedures, and other applications7

[45, 48]. Some illustrations of the ellipse fitting methods importance have been8

researched. One example is eye localization that it is needed for face recogni-9

tion, device interaction, or face alignment. Regarding industrial environments,10

another subject is camera calibration based on ellipses fitting since the projec-11

tion of cylinders are used to determine the camera position and orientation. In12

other application fields such as biology, chemistry, and nanotechnology, ellipses13

fitting is also used. Li [26] shows a reliable, effective, and accurate approach14

to this type of problems, for instance, on the subject of handprints identifica-15

tion. As an example of the variety of applications, Islam et al. [20] introduce16

an ellipse fitting method in vascular permeability images used for non-invasive17

procedures, which are relevant for monitoring cancer solid tumors based on the18

use of ultrasound poroelastography.19

Two categories of fitting problems could be distinguished, depending on20

whether they are based on algebraic or geometric fitting [14, 33]. Both are21

differentiated by their error distance definition.22

Thus, in an algebraic fitting, the curve is given by a constrained implicit23

equation of a conic. This fitting has implementation and computational cost24

advantages [33], but also some drawbacks such as accuracy, physical interpreta-25

tion of the fitting parameters, errors, and sensitivity to outliers. Although the26

algorithms are efficient, the solution is not always an ellipse.27

Nevertheless, several kinds of research have been working on least-squares28
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problems based upon the square of the sum of algebraic distances or its varia-29

tions, [14, 21, 41]. As reported by Ahn et al. [1], there were some fit drawbacks30

that have been resolved by other authors. Therefore, the Direct Least Square31

method was one of the significant advances in algebraic procedures suggested32

by Fitzgibbon et al. [14]. A new computationally efficient constraint was their33

contribution, which guaranteed that an ellipse was the optimal solution. On the34

other hand, Ahn et al. [1] used the Orthogonal Least Squares Fitting, introduc-35

ing some enhancements that overcame the weak points of this fitting scheme.36

They try to minimize the sum of the orthogonal distances. This criterion has a37

clear geometric understanding because the Euclidean distance from the points38

is used as an error measure to solve the issue. However, it must be solved39

iteratively.40

The geometric distance is employed by many researchers using a function of41

elliptical parameters; in other words, the “Sampson error” [33, 41]. Kanatani [21]42

proposed a renormalization, while Chojnacki et al. [9] a Fundamental Numerical43

Scheme (FNS) or Leedan and Meer [25] and Matei and Meer [29] Heteroscedastic44

Errors in Variable (HEIV). Kanatani and Sugaya [22] have proved that the45

Sampson error shows an excellent estimation of the geometric distance, and its46

minimization outcome is close to the true geometric fit. Meanwhile, Calafiore47

[8] presents a fitting solution for a set of points in reference to the difference of48

squares geometric error model. The proposed algorithms are based on a closed-49

form solution that guarantees a global minimum is reached in a limited amount50

of iterations.51

Genetic algorithms have been used by Fraga et al. [10] and Ray et al. [37]52

to solve optimization problems of ellipse fitting. The purpose is to minimize the53

sum of orthogonal Euclidean distances from the given points. Roth and Levine54

[39] applied the Least Median of Squares as a robust estimator, and it has been55

contrasted to other robust processes such as Rosin [38]. On the other hand, Yu56

et al. [47] determined a new geometric objective function considering that the57

sum of the distances from the point to the foci is constant. Finally, Muñoz et58

al. [33] used the criteria in reliance on the least mean absolute geometric error59
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considering that the optimum value of the sum of distances from the points60

to the foci is computed by using the median, a robust estimator. This method61

detects the presence of outliers [30]. Consequently, other methods like RANSAC62

[7] shown by Fischler and Bolles were not necessary.63

Ellipse fitting is a challenging task because outlying input samples can easily64

undermine the quality of the fit. Robustness is often achieved in other estimation65

tasks by averaging several fits. However, ellipse fits are difficult to merge because66

simple averaging schemes for the ellipse parameters yield poor results. This67

means that the development of specific and adequate averaging methods for68

ellipse fitting is crucial to the success of ensemble strategies. In this work, a69

proposal of this kind is presented.70

Our proposed method tries to combine the best ellipse fitting algorithms71

using a consensus criterion. This is done by converting the outputs of the72

original methods to a natural parametrization that is amenable to averaging.73

After that, the spatial median (also called L1 median) is employed to obtain74

accurate estimates of the true ellipse. This way, the defects of the outputs of the75

individual methods for specific input datasets are smoothed out by the spatial76

median calculation. Therefore, the main contributions of this work are:77

• The proposal of the natural parametrization of the ellipse to combine78

different ellipse fits, since the natural parametrization attains a better79

quality of the combined fits.80

• The selection of five ellipse fitting methods to serve as the basis of a81

consensus.82

• The usage of the spatial median in order to combine the natural parame-83

ters of the ellipse fits coming from the five base methods.84

The rest of the paper has the following structure. Firstly, Section 2 summa-85

rizes previous ellipse fitting techniques used in the applied consensus. Secondly,86

the mathematical background of our proposal is described in Section 3. Then,87

the results of the different experiments carried out are reported in Section 4. To88
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conclude, the findings of this work are related in Section 5.89

2. Previous work90

Some decision-making problems can be solved by using the consensus pro-91

cedure [27, 35, 46]. It is important to clarify that a logical consensus method is92

not only a set or collection of viewpoints, but a way where rational consensus93

changes are due to individual preferences. The consensus word is described as an94

interactive and constant decision change procedure managed by a coordinator95

or moderator. This person performs several tasks such as having a main role96

in the decision making, supplying back information, and making suggestions97

to the decision-makers in order to advance to a determined consensus level.98

The moderator establishes the most appropriate consensus model and decides99

a set of parameters for the selected model. A review of fuzzy consensus mod-100

els has been provided by Cabrerizo et al. [5] and Herrera-Viedma et al. [18].101

Lately, researchers have introduced new models founded on iterations based102

approaches [3] and on optimizations based approaches [13]. Previously to the103

consensus procedures, only a low number of decision-makers were considered.104

Nevertheless, the economy and technology evolution has enhanced the organiza-105

tions’ demand, i.e., e-democracy and social networks, emergency management,106

and teacher appointment reformation system at universities. Currently, in the107

wide-scale collective decision-maker problems, the number of decision-makers108

has raised from a few to thousands. Due to the vast diversity of backgrounds109

and diverse resources and information, it is even more challenging to reach an110

agreement among the participators for common group decision problems.111

Ensemble classifiers [4, 32] combine individual opinions from homogeneous112

and heterogeneous models; thereby, the generalization ability is improved, and113

the overfitting risk is reduced [24]. Dietterich [11] ensures that a single classifier114

is worse than an ensemble for the following reasons. First, accounting on a115

single classifier is not ideal, as it could be badly chosen. Secondly, local search116

is used by some learning algorithms, so it might not find the optimal model.117
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In this case, running the learning algorithm several times and combining the118

achieved models concludes that this approximation as an optimal classifier is119

better than any single one. Eventually, the optimal model may be obtained by120

combining different classifiers since the optimal function is not usually reached121

by machine learning problems. In fields as medicine, bioinformatics, finance,122

recommender systems, and image retrieval, the ensemble classifiers have been123

successfully used.124

The following ellipse fitting methods have been considered in this work:125

• Taubin method [43]: a non-iterative curve fitting method based on its126

implicit representation to a dataset minimizing the approach mean square127

distance, which is a non-linear least squares problem. It could fit different128

types of curves: hyperbola, ellipse, parabola, and others. This method was129

derived by Taubin (1991) heuristically without considering the statistical130

properties of the noise.131

• Szpak method [42]: an ellipse estimation procedure is introduced, sup-132

ported on optimization of the Sampson distance as a quality measure133

between the estimated ellipse and the dataset. This Sampson distance134

optimization is achieved with a particular alternative to the Levenberg-135

Marquardt algorithm.136

• Fitzgibbon method [15, 47]: an efficient method that minimizes the alge-137

braic distance and incorporates the ellipticity constraint into the normal-138

ization factor to fit an ellipse. This constraint guarantees that the result139

is a real ellipse rather than a general conic feature and also avoids the140

parameter-free scaling problem.141

• PARE method: it is a geometric ellipse fit loop that computes the best142

fit ellipse in parameter form to a group of given points. The procedure143

is tested among the following optimization techniques as Gauss-Newton144

with Marquardt, Newton with Marquardt, Marquardt and Gauss-Newton.145

• Muñoz method [33]: it is a robust multicriteria algorithm that considers146
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the eccentricity and the geometric features of the data points to fit an147

ellipse based on the mean absolute error.148

• Halir&Flusser method [17]: a numerically stable non-iterative approach149

based on a least squares minimization. It is a simple and direct fitting150

method that always provides a fit even for very noisy data, making it151

useful for an initial robust ellipse estimation that can be fed into a more152

complex ellipse fitting method.153

• Rosin method (A+C = 1) [38]: the least median of squares method is used154

as the most appropriate procedure in terms of robustness and accuracy.155

The geometric parameters are estimated as the median of the parameters156

of the speculated ellipses.157

• Prasad method [36]: this work proposes a least squares ellipse fitting158

method without the requirement of any constrained optimization. This159

method uses the ellipses actual parameters in a non-linear manner. There-160

fore, the proposed non-iterative technique is numerically and computation-161

ally efficient, being very stable against high levels of noise.162

In the next section, our proposed ensemble ellipse fitting method is presented.163

3. The method164

Our aim is to combine several ellipse fitting methods in a reliable way, so165

that large deviations from the correct solution by some methods of the ensemble166

do not substantially affect the consensus solution, provided that the majority167

of the combined methods still produce acceptable solutions.168

Let θ ∈ RD be a characterization of the ellipse, where D is the number of169

characterization parameters. For an ellipse D ≥ 5, since the ellipse has five170

degrees of freedom. Also, let N be the number of training samples available for171

the ellipse fitting methods, and T the training set:172

T =
{

(xi, yi) ∈ R2 | i ∈ {1, ..., N}
}

(1)



8

where (xi, yi) are the coordinates of the i-th training sample in the two dimen-173

sional plane.174

Finally, let M be the number of ellipse fitting methods in the ensemble, so175

that the j-th method in the ensemble generates a solution θ̃j ∈ RD for a given176

training set T , where j ∈ {1, ...,M}.177

In order to combine the solutions generated by multiple methods, the correct178

solution can be approximated by the expectation θ̂ of those solutions:179

θ̂ = E
[
θ̃
]

(2)

where E stands for the mathematical expectation operator. One could try to180

estimate θ̂ by the sample mean:181

θ̄L2 =
1

M

M∑
j=1

θ̃j (3)

This strategy would minimize the sum of L2-norms of the residuals, i.e. the182

squared Euclidean distances:183

θ̄L2 = arg min
θ∈RD

M∑
j=1

∥∥∥θ − θ̃j

∥∥∥2 (4)

where ‖·‖ stands for the Euclidean distance.184

Minimization of L2-norms might lead to a poor estimation of the ellipse,185

since any single sample θ̃j with a large error with respect to the true solution186

will completely ruin the estimation. Therefore we propose to minimize the sum187

of the Euclidean distances:188

θ̄L1 = arg min
θ∈RD

M∑
j=1

∥∥∥θ − θ̃j

∥∥∥ (5)

This is also known as the spatial median or L1 median [23, 31, 34] of the189

solution set S:190

S =
{
θ̃j ∈ RD | j ∈ {1, ...,M}

}
(6)

There are several algorithms to compute the L1 median of a set. Here, the191

method described in [19] has been selected due to its accuracy and speed.192
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In order to fully specify the proposed method, a characterization of the ellipse193

must be chosen. Three characterizations of the ellipse have been considered:194

algebraic, geometric and natural. Next, their suitability for our purposes is195

analyzed.196

The algebraic characterization of the ellipse is given by a vector of six alge-197

braic parameters:198

θalgebraic = (A,B,C,D,E, F ) (7)

The six algebraic parameters are associated to the general equation of a199

conic section:200

Ax2 +Bxy + Cy2 + 2Dx+ 2Ey + F = 0 (8)

The algebraic characterization of the ellipse is not amenable to our purposes201

for two reasons. First of all, it is not normalized, i.e. there can be many algebraic202

parameter vectors which correspond to the same ellipse. This can be fixed by203

fixing A + C = 1, for example. However, there is a more serious inconvenient,204

namely the fact that the consensus of several ellipses by (5) might not correspond205

to an ellipse, since the algebraic parametrization can also represent other conic206

sections. Therefore, the algebraic parametrization is not adequate to ensure207

that the consensus result is an ellipse.208

The geometric characterization considers the following parameter vector:209

θgeometric = (x̄, ȳ, a, b, ϕ) (9)

where (x̄, ȳ) ∈ R2 is the center of the ellipse, a is the half length of the major210

axis, b is the half length of the minor axis, a ≥ b > 0, and ϕ ∈ [0, π] is the angle211

of tilt. The main difficulty of this parametrization is that averaging the angles212

ϕ might lead to extraneous solutions, in particular for values of the angle close213

to the interval limits 0 and π.214

A different kind of geometric parametrization, hereafter called the natural215

parametrization, is defined as follows:216

θnatural = (fx1, fy1, fx2, fy2, s) (10)
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where (fx1, fy1) ∈ R2 is the first focus of the ellipse, (fx2, fy2) ∈ R2 is the second217

focus of the ellipse, and s > 0 is the sum of distances to both foci of the points218

that lie in the ellipse, s = 2a. The natural parametrization has some crucial219

advantages over the previous ones:220

• As opposed to the algebraic parametrization, the consensus by (5) of any221

number of solutions always results in an ellipse.222

• As opposed to the geometric parametrization, there is no angle averaging,223

so extraneous consensus solutions are avoided.224

• The five parameters are distances measured on the plane where the sam-225

ples lie, so that the scales of the parameters are the same. Furthermore,226

Eq. (5) can be interpreted as the computation of the L1 median of a set of227

points in R5, where all five dimensions have the same importance because228

their scales are the same.229

Given the above considerations, the natural parametrization is proposed to be230

used for our method.231

So as to establish the consensus algorithm, the following M = 5 methods232

of ellipse fitting from the literature were selected: Taubin, Fitzgibbon, PARE,233

Muñoz, and Szpak. When some of the previous algorithms are not able to234

achieve a fit of the ellipse, then they are not considered into the consensus. As235

an emergency backup solution whenever the consensus cannot be computed,236

Muñoz method is employed as our algorithm’s solution because it is the most237

stable.238

4. Experimental Results and Discussion239

This section collects a set of experiments applied to different kinds of datasets.240

In Subsection 4.1, the performance measures used for comparisons are described.241

Secondly, the description and results of experiments with synthetic data are re-242

ported in Subsection 4.2. Finally, Subsection 4.3 depicts examples of applying243

the method with bitmap image data.244
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The proposed method1 have been compared to the five methods that are245

combined in our consensus algorithm, i.e., Taubin, Szpak, Fitzgibbon, PARE,246

and Muñoz. In addition to this, it has been compared with Halir&Flusser,247

Rosin, and Prasad, methods described in Section 2. The recommended default248

parameters for each method were used to carry out a fair comparison among249

all of them. The PARE method was used with Gauss-Newton and Marquardt250

fitting algorithm and parameter initialization by Fitzgibbon. Prasad method251

needed a rescale of the dataset to work well, so a scale-up value of 100 was used,252

and the geometric parameters of the fitted ellipse were scaled down then.253

4.1. Evaluation metrics254

Firstly, the evaluation of the results was carried out using four different255

measures:256

• The error of the natural parameters of the ellipse (ParNError. When the257

algorithm fits an ellipse, the natural parameters (10) are computed and258

they are compared with the parameters of the true ellipse (if it is available)259

as260

ParNError =

√√√√ 5∑
i=1

(θi
true_natural − θi

est_natural)
2 (11)

• The Root Mean Square Orthogonal error (RMSOError). It is a geometric261

error that measures the orthogonal distance di [49] between the estimated262

ellipse and points lying on the true ellipse. A test set of T true points263

are computed from the true ellipse and then the RMS error using those264

orthogonal distances is calculated as265

RMSOError =

√√√√ 1

T

T∑
i=1

d2i (12)

Five points on the true ellipse are manually selected on the image for266

the purpose of generating the test set. Thus, Eq. (8) is used to solve a267

1The source code and demos of the proposed method will be published in case of acceptance.
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linear system and find the general form of the true ellipse. After that, the268

geometric parameters are computed in order to generate T points of the269

true ellipse varying the angle ϕ.270

• The error of the algebraic parameters of the ellipse (ParAError). When271

the algorithm fits an ellipse, the algebraic parameters (8) are computed272

and normalized, so they can be compared with the true parameters as273

follows:274

ParAError =

√√√√ 5∑
i=1

(
θi
true_algebraic

||θtrue_algebraic||
−

θi
est_algebraic

||θest_algebraic||

)2

(13)

• The Euclidean Ellipse Comparison Metric (ECCM). It is a more complex275

geometric measure, where the average distance between two ellipses is276

computed using the minimum distance d between a point of one ellipse’s277

contour to another, and vice versa [6], for a set of n points.278

ECCM =
1

2n

n∑
i=1

(
d(pE1

i , E2) + d(pE2
i , E1)

)
(14)

279

In addition to these metrics, the performance evaluation is completed building280

performance profiles [12] of the set of methodsM on a test set P. If |M| = nm281

and |P| = np, for each problem p and solver method m, we define:282

ep,m = error obtained when problem p is solved with method m

where ep,m ∈ {ParNErrorp,m, RMSOErrorp,m, ParAErrorp,m, ECCMp,m}.283

Then, the performance on problem p by method m is compared with the best284

performance achieved by any solver on this problem defining the ratio:285

rp,m =
ep,m

min{ep,m : m ∈M}
(15)

For those problems where there are methods that cannot fit an ellipse, the286

correspondent ratio is established to the greatest value of all ratios:287

rMAX = max{rp,m : p ∈ P,m ∈M} (16)



4.2 Synthetic data 13

Finally, a probability cumulative distribution is defined to obtain an overall288

assessment of the performance of each method:289

ρm(τ) =
1

np
|{p ∈ P : rp,m ≤ τ}| (17)

Thus, ρm(τ) is the probability that a performance ratio rp,m is within a290

factor τ ∈ R of the best possible ratio, for a chosen method m. Summarizing,291

the method that first achieves the maximum probability is the one that solves292

the highest number of ellipse fitting problems with the smallest error.293

4.2. Synthetic data294

Firstly, artificially generated data was used in order to evaluate the perfor-295

mance of the method from a quantitative point of view. For each experiment,296

the center, the major and minor axes and the tilt angle of an ellipse are chosen297

at random uniformly:298

cx, cy ∼ U (0, 1) (18)
299

a ∼ U (0.2, 1) (19)
300

b ∼ U (0.1, 1) (20)
301

φ ∼ U
(
−π
2
,
π

2

)
(21)

where U represents the uniform distribution. The major and minor axes (a, b)302

are selected inside the unit square but in different ranges in order to avoid303

degenerated ellipses.304

Then, sample points s ∈ R2 are uniformly generated on the canonical coor-305

dinate system:306

s = (a b) ·

 cosθ 0

0 sinθ

 (22)

where θ is an angle randomly selected from the uniform distribution U(θs, θe),307

and θs, θe ∼ U (−π, π) are the starting and ending angle of the unit canonical308

system. In order to avoid datasets with too small curvature which lead to309
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Figure 1: Graphical comparison of the tested methods performance using synthetic data

generation. Four different initializations and their solutions are shown. The black points are

the training samples. The yellow thick curve represents the true ellipse, while the narrow

curves show the outcome of each method.
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degenerate solutions, points that are enclosed into an arc larger that 1 radian310

are chosen, i.e., angles which satisfy that:311

θe − θs > 1 (23)

In the end, 1% of normally distributed Gaussian noise was added to the312

samples. A total of N = 50 input samples were created in order to feed the313

ellipse fitting methods. For the quantitative comparisons, T = 1000 test samples314

of the true ellipse were generated (without the presence of noise).315

Next, Figure 1 presents four different examples of the execution of our con-316

sensus method. The true ellipse is plotted with a thick yellow edge. The first317

example shows a dataset with approximately 50% of occlusion. Our proposal318

and Rosin methods achieved the best fit, while the rest of the methods only319

fitted a smaller ellipse, except for Taubin method. Figure 1b exhibits an eccen-320

tric ellipse. Although the dataset is very rectilinear, all the algorithms achieve321

a good adjustment on the samples. There is not a clear winner, but the most322

accurate method seems to be the proposed one. In the adjustments shown in323

Figures 1c and 1d more disparity between the methods can be observed. The324

higher level of occlusion produces ellipses with different orientations in the first325

case. However, as our method is based on the spatial median computation of326

the foci and three of the best methods were included in the consensus, it has327

hardly been affected by wrong fits. Something similar happened in the last case,328

where there are diverse types of ellipses with different sizes. The median value329

of the sum of distances to both foci corrects the ellipse and provides an accurate330

fit.331

Figure 2 shows the performance profiles for the 1000 executions. As ex-332

plained in Subsection 4.1, these graphics show how better one method is with333

respect to the best one. Hence, the method which first achieves probability one334

is considered more efficient than the others. For the ParN error, our proposal335

solves almost 95% of the executions with a better error ratio. The completion336

of the rest of the executions was reached only by Muñoz and Halir&Flusser337

methods, along with our proposal, being the best methods in solving all the338
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Figure 2: Performance profiles of the synthetic experiments (the closer to the upper left

corner, the better) with 1% of Gaussian noise added. ParNError and RMSOError metrics are

analyzed. X axis shows the factor of the best possible ratio in a logarithmic scale and Y axis

represents the probability cumulative distribution.

fittings. However, Prasad, PARE, and Taubin fail in 10-20% of the fittings,339

which means that there are several cases where those methods cannot compute340

an ellipse and generate a different kind of estimations. In terms of RMSO error,341

Szpak method is the best one followed by our consensus method, with similar342

behavior until ∼ 92% of executions. Considering both measures, we can see that343

the best methods for the ParN error are now clearly below the performance of344

the best methods for the RMSO error, except our proposal, which is stable in345

the first positions for both error metrics.346

4.2.1. Noise analysis347

In this subsection the behavior of our method with the presence of higher348

levels of noise is studied. Gaussian noise of levels 2%, 3%, 4% and 5% was349

added to the synthetic data and 1000 executions were carried out. Performance350

profiles for all error measures were computed and results are displayed in Figure351

3. Logarithmic scale is used on behalf of clarity.352

In terms of the ParN error (first row of Figure 3), our method clearly out-353

performs all the competing methods, achieving the lowest error ratio for almost354

all executions. Rosin, PARE, Prasad, and Taubin methods are affected by the355

noise increment, as they can not solve all the problems, but only between 60-356

90% of them. Szpak also does not fit all the ellipses appropriately when the357
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noise level rises. However, for its successful fittings (log2(τ) < 2) the ratio error358

is one of the best ones, something that contributes to the good performance of359

our consensus method.360

Analyzing the RMSO error in the second row of Figure 3, the excellent per-361

formance of Szpak explained above is well represented. This method achieves362

the best error ratios for almost all the executions, followed by our proposal.363

Muñoz and Halir&Flusser methods have a similar tendency for all the noise364

levels; they perform better as the noise is increased, which means that they are365

also resilient to noise. In the previous figure, the good performance of these366

algorithms is also shown. However, when τ <
√

2 they misbehave, they are367

closer to the worst methods’ results, meaning that they are unstable for some368

fitting problems.369

The outcomes of the ParA error, which are shown in the third row of Figure 3,370

allow us to have a third point of view of the performance of each method. In371

this case, the PARE method yields good results (especially for 2-3% of noise),372

although it is not able to complete all the fits. Opposite to what happens with373

the other measures, the Szpak method generates considerably worse algebraic374

parameters. Muñoz method has the same tendency as in the previous analysis.375

All in all, our proposal remains stable, being the best method when the level of376

noise is higher.377

Finally, the ECCM results are presented in the fourth row of Figure 3.378

Halir&Flusser method obtained outstanding results compared with the other379

metrics, and together with our proposal, they are the best methods. Also,380

Muñoz method worked well with lower levels of noise. This measure reflects the381

geometrical accuracy of the fit, but as it is an average of distances, it does not382

distinguish between solutions that are very eccentric with both large semiaxes.383

The good performance of our method in terms of ECCM combined with the384

other measures reflects that it is more accurate than its competitors for any385

scenario.386

Figure 4 shows a concrete example of the evolution of the fitting for each387

method. Sample points of a half ellipse are depicted with the addition of 2%, 3%,388
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Figure 3: Noise analysis by the performance profiles of synthetic experiments (the closer to

the upper left corner, the better). The four error measures are analyzed with 2%, 3%, 4% and

5% of Gaussian noise added. X axis shows the factor of the best possible ratio in a logarithmic

scale and Y axis represents the probability cumulative distribution.
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4%, and 5% of noise. For the first test shown in Figure 4a, Rosin, Halir&Flusser,389

and Prasad are the methods that do not achieve the ellipse fitting. The rest of390

the algorithms obtain a good result. When the noise is lightly increased, Muñoz391

method also fails in the fitting. In Figures 4c and 4d these methods perform even392

worse. Focusing on the best ones, we can see that the presence of higher levels393

of noise also affects the performance of Szpak and Taubin. However, PARE and394

ours, which are almost overlapped, generate the best ellipse according to the395

ground truth.396

For the sake of clarity, Figure 5 depicts the boxplots of the 1000 runs, with397

the mean and the median values. As a penalization term, twice the maximum398

error found was assigned to those uncompleted fits. This procedure is equivalent399

to the one used by the performance profiles. The methods with the smallest400

dispersion are Muñoz, PARE, Halir&Flusser, Szpak, and Ours, although the401

last three seem to be the most competitive in terms of mean and median values.402

Szpak gives a lot of bad executions, which is noticeable in the ECCM boxplot403

in the gray dots coming out above its box (the samples that have a substantial404

error). It must be emphasized that it is a very unreliable estimator. On the405

other hand, the fact that the mean for the PARE method is worse in most error406

measures indicates that some PARE executions are very bad, which implies407

that it is not as reliable as our algorithm. The boxplots medians ignore these408

awful results, that is why PARE is better than ours in the median. In general,409

our method does not have flawed executions, and the error is relatively small,410

therefore demonstrating great effectiveness.411

4.2.2. Occlusion analysis412

Next, the method’s performances are compared with high levels of occlusion,413

from 50% to 80%. Lower levels output similar fits since most of the consensus414

methods yield the same ellipse fitting. Thus, in order to carry out this compar-415

ison, 1000 runs were computed, and their respective performance profiles were416

built. The occluded points were generated by the definition of a starting angle417

θs ∼ U (−π, π), and an ending angle computed as θe = θs + Ol · 2π, being Ol418
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Figure 4: Noise analysis example: outcomes for a particular synthetic dataset modified with

2%, 3% ,4% and 5% of Gaussian noise. The black points are the training samples. The yellow

thick curve represents the true ellipse, while the narrow curves show the outcome of each

method.
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Figure 5: Boxplots of the 1000 runs varying the level of noise. The four error measures are

analyzed with 1%, 3%, and 5% of Gaussian noise. Results are shown in a logarithmic scale.

Those uncompleted fits were assigned an error equal to twice the maximum error found in the

whole set of experiments.
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the occlusion level in the range [0, 1]. 1% of Gaussian noise was added to the419

points as explained in previous experiments.420

Figure 6 shows the results of the analysis. First, the increase of the level of421

occlusion generates a larger error, which is normal behavior. If only half of the422

samples are present, or even at 60% of occlusion, the performance of all methods423

is quite similar. Specifically, PARE, Szpak, and Taubin methods became very424

competitive. Furthermore, others like Muñoz and Halir&Flusser yielded bad425

fits. Recall that Muñoz method was one of the best ellipse fitting methods, as426

the previous experiments showed, but its bad performance now has not affected427

the final output of our proposal. That is to say, the proposed method is valid428

in different fitting problems.429

On the other hand, when the level of occlusion is quite high, Muñoz and430

Szpak methods are the most competitive, raising the performance of our method,431

as the algebraic, natural, and ECCM error measures have shown while there were432

more fitting problems that could not be solved. The RMSOError revealed that433

Ours is the second best, which may be caused by the PARE method’s worse434

performance. Nevertheless, our method is the first one that achieved the best435

fits of all the runs.436

4.3. Bitmap image data437

In addition to the synthetic experiments, the performance of our method was438

assessed evaluating some bitmap image dataset examples. We have selected a439

total of 12 images: 4 from the Caltech 256 dataset [16], numbered as 137_0008,440

169_0015, 177_0029 and 216_0011, other 5 images of wheels that we have441

captured ourselves, the image of a plate (Hda_obj93 ) from the LabelMe dataset442

[40], and 2 images of Saturn extracted from the ESA (Saturn) and the NASA443

Voyager (Saturn rings) webpages2. A total of 20 or 50 points (the latter are for444

2https://www.esa.int/Science_Exploration/Space_Science/Cassini-Huygens/

The_temperature_of_Saturn_s_rings, https://voyager.jpl.nasa.gov/galleries/

images-voyager-took/saturn/ (accessed on 30/12/2020)
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Figure 6: Performance profiles of the 1000 runs varying the level of noise. The four error

measures (rows) are analyzed with 50%, 60%, 70%, and 80% of occlusion (columns). Results

are shown in a logarithmic scale.
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Saturn rings and wheels) were extracted around the ellipse of the figure using445

the Canny edge detector algorithm, varying its threshold parameter. A single446

channel image was used, either computing the mean value of the RGB channels447

or using the Hue channel of the HSV color model, and after the edge detection,448

the images were refined using morphological functions such as binarizing, filling,449

border cleaning, and perimeter delimitation. Then, the 20 (or 50) points were450

selected randomly for each one of the processed images and marked in yellow451

in the following examples. The point extraction procedure could be replaced by452

another one since it is not a part of our ellipse fitting method.453

In Figure 7 four examples of the execution of the ellipse fitting algorithms are454

presented. First, a satellite dish in perspective is shown along with its associated455

fits obtained using all the methods. Here, the major axis and one of the foci are456

the varying parameters of the resulting fits. Nevertheless, there are no significant457

differences among algorithms, i.e. all of them fit the ellipse appropriately. One458

of the five car wheels is also presented. In this case, the edge detection did459

not achieve a perfect result of the hubcap border, so some outliers are present460

in the sample dataset. These anomalous points have provoked some disparity461

among methods. Muñoz and Szpak methods yield a good outcome since they462

pass through most of the sample points. Our proposal is also one of the best463

ones, while the others fail in terms of orientation due to the three points that464

belong to the wheel border. The Saturn image contains three outlying points in465

the inferior part of the arc, which destabilizes most of the fitting methods (three466

of them did not give an output). Nevertheless, the spatial median computed467

by our method maintained the shape of the ring very well. The fourth image468

corresponds to the Hda_obj93 image, whose extraction of points was very noisy.469

Muñoz, which typically is one of the best methods, and Szpak, failed in the fit470

but Ours was not affected, being the closer fit to the shape of the plate.471

A final example is shown in 8a, where the fitted ellipse was placed overlap-472

ping the image for the sake of clarity. This point set is wider and forms two473

separated noisy groups. The intention was to extract points from the border of474

the two yellow tones. The fitting methods yield good ellipses, although the clos-475



4.3 Bitmap image data 25

Satellite dish Wheel Saturn Plate

0 100 200 300 400

x

0

100

200

300

y

0 500 1000 1500 2000

0

500

1000

1500

2000

2500
0 500 1000 1500

x

0

500

1000

1500

2000

y

0 100 200

x

0

50

100

150

200

250

y

0 2 4 6 8 10 12 14 16 18 20

log
2
( )    (ParNError)

0

0.2

0.4

0.6

0.8

1

P
(r

p,
m

 : 
1

 m
 n

m
)

Ours Muñoz Fitzgibbon Taubin Halir&Flusser PARE Rosin Szpak Prasad

Figure 7: Example of the outcomes for a satellite dish (image 169_0015 ), a wheel, the planet

Saturn, and a dish plate (image Hda_obj93 ). Points (shown in yellow) were automatically

selected using Canny edge detector algorithm. For the sake of clarity, the Y scale of the results

was reversed in order to match the original image.

est approximation to the mentioned border are Taubin and Ours, respectively.476

Finally, in order to have a general overview of our proposal performance com-477

pared with the other methods, a rank adjusted for ties to classify each method478

using the twelve bitmap images was computed. First of all, five true points479

were manually selected on the shape of the ground truth figure. This was done480

using the Ellipse Labeling Tool3. Then, the validity of these point samples was481

ensured by solving Eq. (8) and overlaying the ellipse on the ground truth image.482

After that, the same T = 1000 test points were generated to compute the RMSO483

error for each method. Finally, this procedure was repeated for each image and484

measures were taken to calculate the ranking. The best method achieves one485

point, the second best method 2 points, and so. For those methods who do486

not achieve to fit an ellipse, the mean value of the remaining rank points is487

calculated and assigned to them.488

The results of this analysis is depicted in Figure 8b. There are two different489

3https://sites.google.com/site/dilipprasad/Source-codes (accessed on 04/12/2018)
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Figure 8: (a) Fitting results for a an image of the Saturn rings (image ’169_0015’). Points

(shown in yellow) were automatically selected using Canny edge detector algorithm. (b)

Ranking of the tested methods using the bitmap image data. Nine images were feeded to

each algorithm and they were ordered based on the RMSOError in order to assign the points

(lower is better).

groups of methods. Ours, Muñoz, Taubin, PARE and Szpak methods achieve490

better performance than Fitzgibbon, Halir&Flusser, Rosin and Prasad methods.491

Our method achieves 45 points, followed by Szpak with 52 and Taubin with492

54. Small differences are caused because some methods work better with some493

images than with others and vice versa. This fact can be analyzed in Table 1494

that contains the RMSO error produced for each bitmap image processed by all495

the fitting methods. It is clear that our proposal does not always yield the best496

outcome, but for most cases it is very similar to the desired ellipse, such as the497

Hda_obj93 image (Ours is the best), or the Wheels 1, and 3 (the second best).498

There are methods, like Muñoz or Taubin, that generate very good outputs but499

fail in other examples (137_0008 and 169_0015 ). However, Ours is the one500

with the smallest standard deviation, which means that the procedure is stable501

and works well with a large diversity of images.502

4.4. Discussion503

A set of synthetic and bitmap image experiments have been carried out and504

its outcomes were analyzed with different measures.505
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Image Ours Muñoz Fitzgibbon Taubin H&F PARE Rosin Szpak Prasad

137_0008 1.329 1.436 1.384 1.319 1.384 1.328 1.385 1.329 1.413

169_0015 1.997 2.136 2.168 2.000 2.168 1.794 2.061 1.834 2.035

177_0029 5.448 5.272 5.467 5.344 5.467 5.463 5.496 5.452 5.570

216_0011 4.493 3.624 3.270 — 3.270 — 3.515 4.064 —

Wheel 1 2.546 2.188 2.555 2.562 2.555 2.550 2.561 2.559 2.568

Wheel 2 7.579 2.103 9.326 9.569 9.326 5.603 9.329 3.470 9.565

Wheel 3 3.241 3.608 3.231 3.220 3.231 3.243 3.229 3.280 3.217

Wheel 4 1.612 1.798 1.598 1.596 1.598 1.612 1.597 1.619 1.594

Wheel 5 4.862 3.073 7.500 6.423 7.500 4.862 6.833 4.073 7.642

Hda_obj93 3.969 5.010 3.973 4.029 3.973 4.109 4.077 4.376 4.155

Saturn rings 24.580 41.517 41.588 7.558 41.588 24.581 36.238 24.083 31.240

Saturn 18.860 18.860 25.765 — 25.765 — 14.402 15.288 —

Rank mean 3.750 5.167 5.500 4.500 5.333 4.750 5.167 4.333 6.500

Rank std 1.689 3.387 2.327 2.901 1.886 2.203 2.075 2.461 2.784

Table 1: RMSOError of each bitmap image. Also, mean and standard deviations of the rank

points assigned for each method using the bitmap image data is computed. Best results are

marked in bold (lower is better).

Regarding synthetic data results, the proposed method is not severely af-506

fected by high levels of occlusion, while the other methods yield ellipses with507

wrong sizes or orientations. First, in terms of the ParN error, our method solves508

almost 95% of the executions with better error ratio together with Muñoz and509

Halir&Flusser methods whereas Prasad, PARE, and Taubin fail in 10-20% of510

the fitting tests. Second, considering the RMSO error, our method follows the511

Szpak method achieving the second-best place. Therefore, those methods that512

attain the highest positions for the ParN error do not present good results for513

the RMSO error and vice versa, except for our proposal, which performs nicely514

with respect to both performance metrics. In addition, the obtained ParA errors515

reveal a similar tendency. Here, the PARE method becomes very competitive,516

although 10% of the fits are not solved and our proposal shares the first position517

with him. Thus, it remains stable among the first positions in all cases, being518

the only method that is able to solve all the fits with the lowest error among519

the three measures.520
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Consequently, the consensus is more precise than any of the other meth-521

ods applied separately. In addition, after studying the behavior of our method522

under a certain level of noise (2%), it clearly outperforms all competing meth-523

ods in terms of the ParN and ECCM error, while for the RMSO error presents524

the second-best error ratio for almost all executions, only after Szpak method.525

Moreover, under higher noise levels (4-5%) Szpak method does not work ap-526

propriately even with the ParA error, thus, generating PARE and the proposed527

method the best ellipses. Also, it is important to remark the good contribution528

of Muñoz method to the consensus, since it is the most stable algorithm among529

the rest, also reaching the 100% of the fits. This guarantees that our method530

is always able to find a solution that is improved by the incorporation of the531

information generated by the others.532

The occlusion experiments also demonstrated the effectiveness of our pro-533

posal. In these runs the performance of methods like Muñoz, which worked534

well before, decreased considerably. Nevertheless, others like PARE, Szpak,535

or Taubin, supported the spatial median calculation, making our outputs very536

competitive. Specially when the level of occlusion increased, as the ECCM,537

ParAError and ParNError reflects.538

Finally, as to bitmap image data, our method achieves the smallest standard539

deviation. Once again, this reveals that the proposed method is the most stable540

and works well with a wide range of bitmap images. The depicted examples541

show the difference in performances when higher levels of noise are present in542

the samples. If the shape of the ellipse is clearly distinguishable, that is, low543

level of noise is present (e.g., the satellite dish)), the outcomes of all methods are544

similar. However, when the samples are disturbed considerably, that is, there545

is a higher level of noise (e.g., the wheel), our method is able to get the best of546

the fitted parameters of the consensus methods.547

From the preceding, it follows that our proposal exhibits a consistently higher548

performance and lower variability according to the range of tested performance549

measures across a wide variety of situations. This robustness is due to the550

appropriate combination of several state-of-art ellipse fitting methods.551
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5. Conclusions552

A consensus method has been developed to fit an elliptical feature to a set553

of points by combining the estimations obtained by several algorithms. The554

combination is carried out by computing the L1 median of several components555

of a natural parametrization of the ellipse, which is particularly suited to this556

kind of averaging. The rationale of our approach is that if a few methods break557

down due to the deleterious effect of noise, but the majority of the methods still558

produce adequate fits, then the computation of the L1 median of the natural559

parametrizations of the solutions leads to a reasonable fit of the ellipse.560

Therefore, our proposal is based on the consensus of many alternative ellipse561

fits obtained by a base method. It has the novelty that the alternative fits are562

averaged in a specifically chosen ellipse parameter space where averaging yields563

more accurate consensus fits, namely the natural parameter space. Moreover,564

the L1 median has been proposed in order to enhance the performance of the565

consensus when defective ellipse fits arise. All of these are novel strategies,566

which have not been considered before in the literature.567

The experimental design which has been developed to test the proposal in-568

volves the comparison of the competitors to the parameters of the true ellipse569

with respect to the Root Mean Square Orthogonal error on one side, and build-570

ing performance profiles of the set of methods on a test set to compare them571

with the best performance achieved by any of the solvers on this issue on the572

other side. The synthetic and bitmap image results indicate that our consensus573

methodology provides great results for all error measures and at any level of574

noise.575

All in all, after the considerations made and the analysis performed, the576

proposed consensus method is more accurate than the methods which are com-577

bined for the consensus. That is, the L1 median calculation over the natural578

parametrization of the ellipse has been found to be suitable for the aggrega-579

tion of the results of several ellipse fitting methods. The main strength of our580

approach is that it compensates any large errors committed by a minority of581
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methods, provided that the majority of the methods still produce acceptable582

fits. Therefore, the shortcomings of the combined methods for specific input583

datasets are averaged out in a reliable way.584

The ensemble strategy that is advocated in this work has consistently demon-585

strated that it boosts the performance of the combined methods. This novel586

strategy has the potential to further enhance the performance of other ellipse587

fitting methods because it can be applied to any methods developed in the588

future.589

The proposed approach could be extended to other tasks such as parabola or590

ellipsoid fitting, which are common problems in several applications in medicine591

or architecture. In these cases, the algorithms to be combined should be chosen592

carefully so that they usually produce good approximations to the shape to be593

estimated. However, the theoretical framework of our proposed method should594

be similar.595
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