
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

1

Energy-efficient Deployment of IoT Applications in
Edge-based Infrastructures: A Software Product

Line Approach
Angel Cañete, Mercedes Amor, and Lidia Fuentes

Abstract—In order to lower latency and reduce energy con-
sumption, Edge Computing proposes offloading some compu-
tation intensive tasks usually performed in the Cloud onto
nearby devices in the frontier/Edge of the access networks.
However, current task offloading approaches are often quite
simple. They neither consider the high diversity of hardware
and software technologies present in edge network devices, nor
take into account that some tasks may require some specific
software and hardware infrastructure to be executed. This
paper proposes a task offloading process that leans on Software
Product Line technologies, which are a very good option to
model the variability of software and hardware present in edge
environments. Firstly, our approach automates the separation
of application tasks, considering the data and operation needs
and restrictions among them, and identifying the hardware and
software resources required by each task. Secondly, our approach
models and manages separately the infrastructure available for
task offloading, as a set of nodes that provide certain hardware
and software resources. This separation allows to reason about al-
ternative offloading of tasks with different hardware and software
resource requirements, in heterogeneous nodes and minimizing
energy consumption. In addition, the offloading process considers
alternative implementations of tasks to choose the one that best
fits the hardware and software characteristics of available edge
network infrastructure. The experimental results shows that our
approach reduces the energy consumption in the user node by
approximately 41%-62%, and the energy consumption of the
devices involved in a task offloading solution by 34%–48%.

Index Terms—edge computing; energy efficiency; Software
Product Lines; Internet of Things.

I. INTRODUCTION

THE popularity of the Internet of Things (IoT) [1] and
cyber-physical systems [2] is non-stop growing. This

kind of systems demands high performance computational
resources capable of processing a large amount of data pro-
duced by a myriad of devices, ranging from smartphones and
sensors to home appliances and all kind of wearables. To
reduce the impact that the proliferation of IoT devices has
in the global warming, international initiatives are promoting
resource-efficient solutions. During the last years, Cloud com-
puting has been the most popular infrastructure to provide a
centralized solution capable of supporting the massive data
storage, and with the high computational capabilities required

A. Cañete, M. Amor, and L. Fuentes are with the Grupo CAOSD,
Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain. E-mail:
{angelcv, pinilla, lff}@lcc.uma.es

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

to process IoT devices data [3]. The large capacity of cloud
data centers has allowed this model to work properly during
the last years, but paying a heavy cost in terms of energy and
latency.

This led to the emergence of novel technologies and new
paradigms based on Edge Computing (EC) [4][5], which shift
the provision of computing services from the cloud, in the
core of the Internet, to the edge of the Internet, proposing a
more sustainable solution. The aim of the EC paradigm is to
take advantage of the inactive computational cycles and unused
storage space of edge devices placed at the Internet’s frontier
(e.g. routers or switches). With the goal of reducing the latency
and resources demanded by the cloud, EC proposes to offload
some computation intensive tasks from the cloud servers onto
nearby edge devices located in a range of one or two hops.
This means that part of the data processing and storage will
be displaced to devices closer to where data and services are
produced and consumed.

But taking advantage of EC is not an easy issue [6]. Firstly,
IoT applications developers must deal with the decomposition
of application functionality into a set of tasks and find out
which of them could be allocated inside the Edge nodes [7][8]
in an optimal way, and this is a challenging process. In
existing EC approaches, the identification and separation of
tasks are usually done manually, and are performed for a
specific application [9][10][11][4]. However, it is noticeable
that many of the tasks resultant from decomposing a IoT
application are often common and recurrent.

After this, the developer has to match the tasks’ require-
ments with the software and hardware features of available
devices to decide how these tasks can be allocated in an
IoT/Edge/Cloud environment. This decision should consider
the task latency and also the computational and communi-
cation power consumption, and find different task offloading
solutions depending on their resource demand and delay
sensitivity [9][8][7].

However, when making the task offloading decision, it
should also be considered that some tasks may require some
specific software and hardware infrastructure (e.g. a video
camera). Thus, the task offloading constrained to the selec-
tion of a specific node with specific software and hardware
resources is more complicated.

To address the challenges implied by the deployment of IoT
applications in an heterogeneous edge-based infrastructure, we
propose a task offloading process that focuses on answering
the following two Research Questions (RQs):

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

2

• RQ1. How to model a variable set of (re)usable tasks
resulting from the decomposition of IoT applications,
including the definition of resources demand and de-
pendencies on the hardware and software of Edge-based
infrastructures.

• RQ2. How to automate the optimization of task offloading
in a heterogeneous edge-based infrastructure to reach a
certain Quality of Service (QoS) (e.g., minimize power
consumption).

To address both research questions applying a Software
Product Line (SPL) [12] approach would make a lot of sense,
since it has been successfully applied to different domains to
explicitly model variability. The variability model is the central
artifact for SPLs, as it allows to specify the commonalities
and variabilities shared by a set of products. The Feature
Model (FM) [12] is the most widely used variability model
and defines variability in terms of features and tree and
cross-tree constraints. Considering that IoT applications and
infrastructures share a large set of common functionalities, we
use FMs to represent the decomposition of an application’s
functionalities into services and tasks, including the amount
of resources required by them at runtime, addressing RQ1.
Also, two FMs are defined to model the variability of hardware
and software characteristics of the deployment infrastructure
devices (e.g. mobile phone, WiFi, Android). The constraints
of these models will be used to express relationships among
features, just as a mobile phone can use WiFi and/or Blue-
tooth as communication technologies and uses the Android
operating system. Therefore, RQ1 is addressed defining FMs
to specify families of IoT applications that can be deployed in
a variable set of devices present in a edge-based infrastructure
represented by others FMs.

Once the decomposition of the application functionality
into tasks is done, developers have to face the allocation
of the resulting tasks preserving certain QoS (e.g. minimum
energy consumption while maintaining a good QoS). This
addresses RQ2. Currently, there are different task offloading
solutions that reduce energy consumption, even in edge-
based environments [13][14][7]. These algorithms address task
allocation as an optimization problem: they accept as input a
list of tasks tagged with costs (such as energy consumption,
latency or computation resources) and constraints and generate
an allocation of tasks to devices following a task offloading
scheme. However, these offloading algorithms make some
simplifications of the problem, by considering a closed set of
devices, being all them of the same type, and with a fix amount
of resources and also a predefined configuration [15][16][17].
Therefore, the information about devices managed by these
algorithms does not fit well with most of real Edge computing
scenarios, which are characterized by a high diversity of
devices with different software infrastructure configurations.
The software infrastructure variability is derived from the exis-
tence of different operating systems and middleware, including
recent lightweight virtualization technologies [18]. In addition,
since most of edge devices are shared by several applications,
it is not realistic to consider a fix amount of resources [14][15].

On the contrary, the task allocation algorithm we present
in this paper, used to deploy and re-deploy application tasks,

properly deals with the different types of variability of hard-
ware and software infrastructure installed in IoT devices. Also,
since the infrastructure of IoT systems, including edge devices,
are shared by several applications, our algorithm tracks the
successive offloading of tasks in order to update the amount of
available resources in each IoT device (usually load balancing
manages the distribution of tasks of a single application [13]).
In addition, our deployment algorithm finds the most suitable
task offloading, while meeting some constraints such as low
energy consumption, and considers the task dependencies,
such as for example, input/output data or resource needed.

The automation of the assignment of tasks to devices is
supported by two modules that assist developers in (a) the
selection of the most appropriate set of tasks to carry out
each application’s functionality according to the features of the
deployment infrastructure; and (b) the assignment of tasks and
resources among the deployment infrastructure according to
the current status of the devices. These modules use constraint
programming, concretely a SMT (Satisfiability Modulo Theo-
ries) solver to provide an optimal solution to the task offload-
ing problem. We have evaluated our proposal by configuring
a real scenario of an edge-based infrastructure installed at the
University of Málaga and comparing the energy consumption
of the application with and without taking advantage of edge
computing through our approach. The results of the evaluation
show that up to 62% of reduction in the energy consumption
in the user device can be obtained and up to 48% when
the consumption of all nodes are considered (contemplating
edge devices too) for our case study. The execution time of
our modules is also evaluated for different problem sizes,
obtaining that our system is capable of returning a solution
in a reasonable amount of time.

II. RELATED WORK

This section discusses the state of the art in existing task
offloading approaches. The use of SPL for modelling infras-
tructure is introduced.

The task offloading approaches found in the literature
differ in the number of users supported and the type of
edge nodes considered for offloading. In addition, many ap-
proaches contemplate only one edge node (or a group of
them with homogeneous characteristics), being focused on
systems formed by one mobile user (single user) or multiple
mobile nodes (multiuser approaches) [9][8][7]. Considering
only homogeneous nodes, as these approaches make, reduces
significantly the complexity of the problem, since only the
code or certain task offloading decision (i.e., execute a specific
computational load locally or remotely) are considered. A
more realistic but complex scenario involves a heterogeneous
set of edge nodes (in hardware and with different resource type
available), shared among multiple users. In this scenario, other
approaches consider, at least, tasks allocation. Task allocation
involves deciding not only whether to execute a computational
load locally or remotely (code offloading decisions), but also
which node is the most adequate to offload it. Consequently,
task allocation comprises resource management, and involves
modelling the nodes’ resources and perform the task offloading
to provide a solution.

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

3

TABLE I
COMPARISON OF TASK OFFLOADING APPROACHES FOR HETEROGENEOUS DEVICES

Approach Design
objective(s)

Optimization
focus Techniquesa Task

model
Granularity

level
Devices’ characteristics

considered
Solution

mechanism

[7] Overall energy and
latency User, data flow TA Binary offloading Task Hardware Heuristic algorithm

[19] Energy and
latency User TA, DVFS Partial offloading Service Hardware Relaxation-based algorithm

[20] Successful offloading
probability User TA Partial offloading Task Hardware Heuristic algorithm

[21] Energy User + Edge TA Partial offloading Task Hardware Distributed algorithm admitting
the Nash equilibrium

[22] Latency User TA, CC Binary offloading Task Hardware Distributed matching algorithm
[23] Cost User + Edge TA, CM Binary offloading Application Hardware Markov decision problem
[24] Energy and latency User TA, CM Binary offloading Task Hardware Heuristic two-stage algorithm
Our approach Energy Customized TA, AA Partial offloading Task Hardware and software SMT based algorithms

a TA: Tasks Allocation; DVFS: Dynamic Voltage and Frequency Scaling; CC: Computation Caching; CM: Computation Migration; AA: App Adaptation

Table I overviews a comparison of approaches for task
offloading. Concretely, Table I compares these approaches
in terms of: the objective or objectives that drive the task
allocation (second column); the type of node(s) for which the
optimization is intended (user, user and edge, or customized by
the developer; third column); the edge computing techniques
applied (fourth column); the task model used (fifth column),
which is mainly characterized by a binary or partial offloading
scheme [9]. While the binary offloading does not allow the
partition of tasks, a partial offloading task model allows
splitting tasks into simpler components, providing much more
flexible solutions; the sixth column indicates the granular-
ity level supported by each approach, i.e., the size of the
computational load that is considered for offloading (tasks,
services, or applications); the seventh column refers to the
nodes characteristics that are considered by the tasks allocation
algorithm; and, finally, the eighth column shows the method
used to find a solution for the task allocation problem.

Table I details the characteristics of the following works: In
[7] (first row), an IoT-mobile edge computing task offloading
service orchestration scheme is proposed. The objective is
to reduce the network transmission. A heuristic algorithm
solves the differentiated cloud-edge binary offloading deci-
sions, using an optimization function based on communication
energy consumption, computation energy consumption, and
task delay models. The evaluation shows that the total energy
consumption of MEC servers is 20% smaller than the cloud
server for big data-based applications. Dinh et al. [19] (second
row) propose to set up the CPU frequency of the edge nodes
according to the computational demands of the offloaded tasks,
using Dynamic Voltage and Frequency Scaling techniques.
Tasks are grouped according to the service they provide, being
offloaded onto the same edge node. In [20], authors design a
task scheduling policy that satisfies latency requirements of
different users. The proposed mechanism uses task buffering
and a heuristic algorithm to decide if the task is executed
either locally on the mobile device or remotely offloaded
onto a cloud server by calculating the probability of tasks’
restrictions accomplishment (third row). In [21] (fourth row),
authors formulate the system energy minimization problem
as a class of games called congestion games, in which each
mobile node is a player and his strategy is to select one of
the available nodes to offload its computation. With the aim of

minimizing the combined mobile and servers energy consump-
tion, authors prove that the Nash equilibrium always exists in
this congestion game formulation. In [22], authors propose a
distributed matching algorithm to group tasks from spatially
proximate user nodes with mutual task popularity, allowing
to cache the tasks’ computations to minimize the computation
latency (fifth row). Urgaonkar et al. [23] (described in the sixth
row of Table I), propose an online workload scheduling using
Lyapunov optimization techniques for applications allocation
and computation migration, with the aim of minimizing the
operational network costs. In [24] (seventh row), authors
consider a system formed by one edge computing point and a
cloud server to use a two-stage heuristic algorithm based on
semidefinite relaxation for tasks allocation and computation
migration. The aims of this work are to minimize the energy
consumption (focused on the user’s mobile) and execution
latency.

As Table I shows, none of the existing works (except ours,
characterized in the last row of Table I) consider software
characteristics of the infrastructure (such as operating system,
support for software virtualization, or third party libraries)
when deciding the tasks allocation. Additionally, our approach
allows more fine-grained computation offloading than binary
offloading, supporting parallel execution between the user
mobile and the edge nodes. When possible, our approach is
able to adapt the applications’ tasks according to the existing
edge infrastructure, with heterogeneous nodes, and with the
objective of minimizing the energy consumption according to
the user/infrastructure necessities.

There is proved evidence that SPLs provide benefits to
IoT systems regarding the management and modelling of
variability. Indeed, there are several works that use a SPL
approach to model cyber-physical systems, as we comment
below. In most of approaches, variability is managed by
FMs [25]. Traditionally, SPLs use single layer FMs [26], in
which only application features are contemplated and not the
variability of the infrastructure. This forces to assume the
specifications of the devices in which the software will be
deployed.

However, although the IoT functionalities are typically
conditioned by the hardware and software characteristics of the
devices in which they are deployed, the infrastructure is often
neglected in the SPL models. Typically, when included, the

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

4

modelling of infrastructure-specific features is intermingled
with the rest of application-specific features. Little, incipient
and very specific work [27][28] has been done to model
separately those application features that are platform de-
pendent, with the aim of reflecting the possible independent
evolution and the restrictions that the infrastructure imposes
on the deployment of software applications. Although the
separated modelling of infrastructure features promotes its
independence and reusability across different application do-
mains, these approaches just allow the configuration of a single
device, preventing its application to infrastructures composed
of multiple nodes. Consequently, they are not suitable for
being applied to edge computing environments. This neglect
in relation to modelling platform dependencies also limits
software infrastructure optimization, as many features (e.g.,
performance, energy consumption) depend on the devices in
which applications run [29][30]. In addition, paradigms such
as edge computing have changed the way in which applications
are deployed, requiring to manage the devices heterogeneity,
something that is not always considered in these approaches.

In contrast, our approach supports the explicit modelling of
heterogeneous edge nodes, IoT devices and cloud machines,
which differ in both software and hardware resources. This
model, which can be extended and reused, allows reasoning
about the constraints and interrelationships among application
requirements, software infrastructure and hardware. Our ap-
proach also allows the management of alternative implemen-
tations for the same task interface. The possibility of having
more than one implementation of a task allows finding out
the best tasks’ implementation for the different nodes of the
infrastructure, considering a certain quality of service (e.g.
low energy consumption). We also consider the real scenario
in which the deployment nodes (i.e. the infrastructure) are
often shared among a set of applications, so both software
infrastructure and resources available are variable and not fixed
as in many other proposals. Finally, our approach provides a
customizable optimizer of edge-based application deployments
with the goal of minimizing energy consumption, which allows
considering the energy in both, the whole application and
isolated nodes (customizable according to the necessities of the
developer/infrastructure). In this way, we provide very flexible
task allocation solutions.

III. OUR APPROACH

Figure 1 shows a general overview of our approach, which
encompasses everything from the production of software to
its optimal deployment in edge-based infrastructures in four
steps. Roughly, in step (1) the developer selects the features
of the application’s FM that represent the desired application
functionality, and this is the configured application FM. It
also uses the infrastructure FMs (software and hardware) to
configure the characteristics of the nodes that compose the
edge environment, and this is the configured infrastructure
model. The FMs used in this step are detailed in section
IV. Secondly, the Task Mapping module uses the configured
application FM to map the selected application features to the
tasks interfaces defined to provide such functionalities. The
mapping is represented as a task-call graph.

This task-call graph, along with the deployment infrastruc-
ture configuration, are the inputs for the Tasks Implementation
Selector (TIS, tagged with (3) in Figure 1). Each node of the
task-call graph obtained in step (2) can be mapped to different
task’s implementations. Also in (3), each configuration is
evaluated (using the module widely explained in Section
VI), checking if the application requirements are met, and
estimating the energy consumption of the overall set of tasks.
This is used to find the task implementation that requires
less energy for each application functionality, according to
the infrastructure’s nodes features. This module also checks
the feasibility of the deployment for a given number of users,
regarding the initial status of the nodes configured in (1).
Note that this status (e.g., available devices, workload, etc.)
can change over time, so monitoring the infrastructure is
necessary once the tasks are deployed (as depicted in step
4 in Figure 1). As a result, the Tasks Implementation Selector
(step 3) returns a second task-call graph of the application
using specific tasks’ implementations instead of interfaces.
The first three steps allow addressing RQ1. In the last step
(tagged with (4) in Figure 1), the Optimal Task Assignment
Framework (OTAF, Section VII) assigns each application task
to the most suitable edge node for its execution minimizing
the energy consumption and assuring the application QoS,
addressing RQ2.

IV. FEATURE MODELLING

The first step towards the deployment of an IoT application
requires configuring the application and the devices of the
infrastructure using FM. Firstly, the software engineer is
concerned with the definition of FMs. A FM represents, in
terms of features, which elements of a family of products
(either a family of applications or a family of systems) are
common, which are variable and the relationship between
them. FMs are represented as a set of hierarchically ordered
features, composed of parent-child relationships and a set of
constraints (called cross-tree constraints) which represents the
relationships among features. In our case, the SPL engineer
specifies three different FMs: two of them for modelling
the infrastructure (one containing the hardware and another
with the software characteristics) and a third one with the
features of a family of applications of a certain domain (e.g.,
augmented reality apps). An example of the FM of a family of
augmented reality applications is shown on top left corner of
Figure 4 and will be explained in Section VIII. Note that all
these models are defined only once by the domain engineer,
and are reused to deploy different applications of the same
family or domain.

As stated in Section II, the separated modelling of the
infrastructure from application features is a contribution of our
work. Although applications are typically conditioned by the
hardware and software characteristics of the devices in which
they are deployed, the infrastructure is often neglected in the
SPL models, which map the application’s features selected
from the FM to pieces of software in a 1:1 relation. Instead of
this, we propose using two additional FMs (for the hardware
and software characteristics respectively, apart from the appli-
cation one, so three in total) to fully adapt the application to

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

5

Tasks MappingFeature Modelling

Optimal Task
Assignment
Framework

Energy
consumption
optimization

Optimal
resources
allocation

Time restriction
24ms

Tasks deployment

Node 1
(user)

Node 2 Node 3

Unikernel/
Containers/VM

Task1 Task2 Task17 Task12 Task7

Task1's
interface

Task2's
interface

Task4's
interface

Task7's
interface

Task11's
interface

Task17's
interface

Task12's
interface

Task14's
interface

Task1's
interface

Task2's
interface

Task4's
interface

Task7's
interface

Task11's
interface

Task17's
interface

Task12's
interface

Task14's
interface

Parallel
tasks

Current status
of the

infrastructure

Feedbacking

Application

Deployment
infrastructure

(hardware)

Deployment
infrastructure

(software) Configured
infrastructure

(hardware)

Configured
infrastructure

(software)

Configured
by the

developer

App Task-call graph
1 2

4
Information of the

optimal deployment

Configured
Application

Tasks Implementation
Selector

Selection of the
most energy-

efficient
implementations

3
Configured infrastructure and

Task-call Graph (interfaces)

Configured infrastructure
and Task-call Graph
(implementations)

Cross-
models

contraints

Node N

Fig. 1. General overview and capabilities of our approach: (1) configuration of feature models (FMs) with the characteristics of the infrastructure and
application; (2) mapping of application’s features onto tasks’ interfaces; (3) selection of the optimal task implementation for each application interface; (4)
optimal task assignment decision minimizing energy consumption.

the infrastructure. The use of multi layer feature models [31]
allows us to distinguish between the hardware and software
characteristics to reuse and facilitate the configuration of the
infrastructure FMs. To avoid developing software products not
supported by the infrastructure, the constraints between layers
(cross-models constraints) are applied to maintain consistency
between models [32][27].

Unlike the application FM, which depends on a specific
application domain, the infrastructure FMs are extensible
and reusable for any IoT applications deployed in the same
infrastructure. In this section we focus on the description of
these two extensible and reusable FMs for IoT infrastructures.

Nodes are characterized by a set of hardware and soft-
ware features: type of device, computing capacity, amount of
memory, sensing units, network capabilities, operating system,
virtualization technologies supported, etc. These features are
directly related to the type of tasks that can be deployed on
them, that is, the execution requirements of the applications’
tasks must meet the node’s hardware and software features.
Since our FMs contain features that can appear more than
once, we use feature models with cardinality [33]. FMs with
cardinality allow instantiating the same feature multiple times
([1...*] in Figure 2, e.g., communication capabilities of nodes).
Numerical features contain non discrete numerical character-
istics of the nodes [34] (e.g., CPU frequency), whose value
is included manually by the developer. The FMs presented
contain relevant information that will be used to predict the
latency and energy consumption behaviour of nodes during
the application deployment.

A. Feature model of the hardware infrastructure

Computers, mobile devices, Raspberry type computers, IoT
Gateways (routers with processing capacity), home appliances,
and smart home accessories located on the edge–such as Alexa
and Google Home–are some examples of nodes that can be
part of a deployment infrastructure. The behaviour of nodes
is defined by their role: computing nodes (capable to receive
tasks offloaded from other nodes) and interactive nodes (used
directly by the users). For instance, depending on the role
of an Alexa device, its function will be to receive instruc-
tions from the user (interactive node) and/or execute tasks
offloaded from other users/applications (computing node). The
user interactions supported by devices are represented by
the feature Capabilities, which models their data input/output
physical channels, such as keyboard, microphone, speakers,
camera, and so on.The RAM (Random Access Memory) and
HDD (Hard Disk Drive) define the amount of memory and
storage of nodes. The computation power is defined by their
CPU (Central Processing Unit), and optionally, GPU (Graphics
Processing Unit). Technically speaking, CPUs are defined by
their number of cores and their frequency (Hz) and GPUs
by their RAM and frequency. To be candidates for offloading,
devices need at least one network connection, modelled by the
typical networking layers (Figure 2); since devices may have
several connectivity capabilities, they are modelled as a feature
with cardinality. Network connections are also characterized
by their upload and download transmission rates (RTx and
RRx respectively, bits/sec) and PTx and PRx (W), that are
the upload/download transmission powers (assumed like con-
stants [9][19]), involved in the latency and energy consumption
of communications. In case of multihop networks, nHops
represents the maximal minimal number of hops between

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

6

Deployment
Infrastructure
(physical info)

Node

[1…*]

Interactive

Sensing
units

Network
Connectivity

[1…*]

Mote

Humidity

Smoke

Presence

RAMHD

Camera

Pressure

Type

WiFi
2.4GHz

Microphone

CPU
GHz

GPU

Core Clocks
(MHz)

RAM

N Cores

Temperature

Power supply

Proximity

L1-2 protocol L3 protocol

L4-up protocol

BLE

IEEE
802.15.4

Bluetooth

WiFi
5GHz

Ethernet

6LoWPAN

IPv4IPSec

ICMP

Zigbee IPv6

RPL

Zigbee
app

MQTT
Computing

IoT
Gateway

Home
appliance

Cloud

Alexa

Smartwatch

Google
Home

Raspberry

Mobile
Phone

Computer

Deployment
Infrastructure
(software info)

[1…*]

Node

Operating
System

User node
OS

Android iOS

Generic OS

LinuxWindows

CPS
node OS

IoT Object
OS

Own
microOS

TinyOS RTOS LiteOS

AndroidThings

Contiki

FreeRTOSSafeRTOS

Inbed/
Win

Virtualization

SDN NFV

Lightweigh
Virtualization

Containers

[1…*]

Docker CoreOS rkt

Hardware/OS
Virtualization

VMWare

QEMU

BLE

HTTP2

Deployment
Infrastructure
(physical info)

Orchestation
system Control

mechanism

Layered
model

Abstract
function

Load
balancing

Path
calculation

[1…*]

Cisco

Cumulus
Networks

VMWare

Big Switch
Networks

VirtualBox

Platform

Network
virtualization

Cloud IoT

AWS

Communication
type

AWS IoT
Core

Azure

Cisco
IoTFirewall

...

...
...

...

...
SSH

FTP

MQTT

HTTP

WebSockets
N Cores

RAM

ID physical/
virtual node

Virtual
ID physical

node

Operating
system

Orchestrated
Nodes’ ID

Bluetooth
multihop

ew

𝜅
ID

Capabilities

Tactile
Multitouch

Text
introduction

Speaker Tactile
Singletouch

Voice
recognition

Screen
visioning

N Hops

Mandatory Optional XOR ORMandatory Optional XOR ORMandatory Optional XOR OR

Numerical feature

Link to other
feature

Legend:

Mandatory Optional XOR OR

Numerical feature

Link to other
feature

Legend:

Third-party
libraries

Java C++

PythonDirectx

...

3.8

3.6

...

Thermal
camera

Proximity

Dendrometer

Luminosity

Gyroscope

3.7

Role
Battery

Electrical
network

Capacity

Location

Latitude Longitude

Fig. 2. Infrastructure feature models: physical layer (up) and software layer (bottom)-defined in the step 1 of Figure 1)

nodes. The location of the devices is determined by their
latitude and longitude. Optionally, devices may have a set
of sensing units associated: temperature, proximity sensors,
microphones, or cameras are some examples. Other remark-
able features contained in the model are κ, ew and the power
supply. κ is the effective switched capacitance depending on
the chip architecture in the hardware that directly influences
the energy consumption of computing tasks [35][36]. For its
part, ew (with a value between 0 and 1) allows to manually
set the importance of saving energy in the node. Finally, the
power supply determines if the device works plugged into the
electrical power or is battery-operated.

B. Feature model of the software infrastructure

Software characteristics of nodes include the operating
system and third-party libraries, and optionally, the offloading
enabling technology (i.e., virtualization and containment tech-
nologies supported) and the platform configuration (for cloud
devices). Regarding virtualization, we distinguish between
hardware/OS virtualization [37] and lightweight virtualization
based on containers [38]. In the first case, software appli-
cations run on virtual hardware, allowing to define several
machines inside the same device, which are considered as
infrastructure’s nodes (these are modelled using a link between
these features and the hardware FM [39]). These virtual nodes
are constrained by the resources of the physical device where
they are instantiated. This is managed by adding the identifier
of the physical node to the hardware feature model with
the physical information. This virtualization feature allows to
select the technology used for virtualization with the aim of

deploying virtual machines on demand. For its part, container
based virtualization emulates an operating system rather than
the underlying hardware. As before, we use links to create
a relationship between features to configure the operating
system of containers, which avoid repeating parts of the FMs.
It is possible to define runtime options related to memory,
CPUs, and GPUs, limiting its usage. Once again, knowing
their technology allows launching new containers on demand.
Container technologies (e.g., Docker) allow managing the
resources among containers instantiated in the same node
according to the containers’ workload. Nevertheless, they do
not permit workload sharing among containers running on
different nodes. This is the aim of orchestration systems for
distributed architectures, which are modelled by adding the
ID of the nodes subscribed to the orchestration. As for the
network connectivity, nodes may have one or more virtual
networks associated [40]. The deployment infrastructure may
include cloud nodes, that will be described by the platform
and communication type in order to adapt the communication
of the application tasks to them. This type of nodes can
model both services in datacenters in the core of the Internet,
and small datacenters in the edge of the Internet (cloudlets),
differing in latency and computation characteristics.

V. TASK MAPPING

Once the application and the infrastructure are configured,
the Tasks Mapping process starts.

In this step, the configuration of the application’s feature
model obtained in the previous step is mapped with the tasks’
interfaces of the application. Each feature of the application’s
feature model is related to one or more task application’s

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

7

Module 1 Tasks Implementation Selector (TIS)
Data: Nodes; possibleConfigurations; timeRestrictions; nUsersToSupport
Result: Min(configurationsConsumption)

1 foreach configuration ∈ possibleConfigurations do
2 Tasks ← configuration;
3 opt = Optimize();
4 opt.add(foreach task ∈ Tasks{

assignedNode(task) 6= null });
5 opt.add(foreach task ∈ Tasks {

Sum(assignedRAM(task,assignedNode(task))<nodeRAM*nUsersToSupport}});
6 opt.add(foreach task ∈ Tasks {

assignedRAM(task, assignedNode(task)) ≥ taskRAM });
7 opt.add(foreach taski ∈ Tasks {

foreach taskj ∈ Tasks {
if (hasToSendData(taski,taskj) & assignedNode(taski) 6=

assignedNode(taskj)) then {
connectionUsed(taski) 6= null }}});

8 opt.add(foreach taski ∈ Tasks {
foreach taskj ∈ Tasks {
if (hasToSendData(taski,taskj) & assignedNode(taski) 6=

assignedNode(taskj)) then {
connectionUsed(taski) ∈ assignedNode(taski).connections ∩

assignedNode(taskj).connections} else {
connectionUsed(task) = Internet }}});

9 foreach tr ∈ timeRestrictions do
10 opt.add(Sum[foreach taski ∈ tr {

foreach taskj ∈ tr {
timeComputation(taski, assignedNode(taski)) + tCommunication(
taski, taskj , assignedNode(taski), assignedNode(taskj),
connectionUsed(taski) }}] ≤ tr.time);

11 end
12 opt.add(foreach task ∈ Tasks {

taskrequirements ⊆ assignedNode(task)features });
13 opt.add(communicationEnergyCost = Sum [

foreach taskj ∈ Tasks {
foreach taski ∈ Tasks {
EnergyCommunication(taski,taskj ,assignedNode(taski),
assignedNode(taskj), connectionUsed(taski))) }}]);

14 opt.add(computationEnergyCost = Sum [
foreach task ∈ Tasks {
energyComputation(task, assignedNode(task)) }]);

15 opt.minimize(communicationEnergyCost + computationEnergyCost);
16 sat = opt.check(); // Checking the satisfacibility
17 if sat then
18 result = opt.solve();
19 configurationsConsumption.add(configuration.id,

result.communicationEnergyCost + result.computationEnergyCost);
20 end
21 end
22 return(Min(configurationsConsumption));

interfaces. At the same time, each application’s interface is
included into a task-call graph, which is typically a finite
directed graph with no directed cycles. The set of vertices
represents the application tasks and the edges represent their
dependencies. This representation allows to detect tasks whose
beginning of execution depends on a previous task (sequential
dependency) and the existence of parallel tasks (see top right
corner of Figure 1).

Typically, applications have functionalities with time re-
strictions –e.g., the tasks in charge of screen refreshing in a
game respecting its FPS (Frames Per Second). Corresponding
interfaces are grouped into sets with sequential dependency,
tr, where trtime is the maximum time to be completed, being
all of these dependencies grouped in the set timeRestrictions
(Figure 1). These restrictions are specific to the application
and must be fulfilled by all users. As a result, this process
returns a task-call graph of the application, where the nodes
are tasks’ interfaces.

VI. TASKS IMPLEMENTATION SELECTOR

At this point, the tasks’ interfaces and their timeline are
determined. The tasks’ interfaces obtained from the previous

step can have alternative implementations, which may differ in
the requirement of certain hardware (e.g., a device with key-
board) and/or software characteristics (e.g., Java for Android
as a third party library), and in the resources consumed or
demanded. The aim of the Tasks Implementation Selector is
to evaluate each implementation alternative for the interfaces,
returning the most adequate according to the infrastructure.
Managing different implementations of the same task allows:
(1) to execute applications regardless of the deployment in-
frastructure, as it enables adapting the software product’s com-
ponents to available infrastructure; (2) to use implementation
optimized to the resources of the target node (e.g., lighter
versions of software for battery-powered devices); and, in case
of infrastructures composed of several devices, (3) to take
advantage of edge computing by selecting the most appropriate
device to offload each application’s task implementation.

We address the implementation decision problem as a
constraint-satisfaction problem that is resolved with a SMT-
based approach. SMT (Satisfiability Modulo Theories) is a
formalized approach to constraint programming. Formalized as
a form of the constraint satisfaction problem, (1) the algorithm
of the solver always returns a solution, which guarantees that
the deployment is feasible or the impossibility to deploy the
application if no solution is found (addressing RQ2); and (2) a
large number of constraints (required to solve the problem at
hand) help SMT-solvers to reduce the search space and to find
the optimal solution faster [41][42]. However, the flexibility
of our approach allows to use other mathematical models for
optimization.

The characteristics of the nodes modelled in Section 2,
along with the ones of the tasks, are used to predict their
latency and the energy consumption associated [19][36][9].
The first expression of Equation 1 shows the expression used
to calculate the computation time (sec) of a task i by node
n (Tcompi,n), given by the relationship between the number
of CPU cycles associated to the task i (wi)–which value can
be estimated [11]–and the CPU power of node n (cycles per
second, Fn). The communication time (sec) of the output data
that task i sends to task j is given by the sum of the relationship
between the amount of bits to send (ci,j) and the minimum
between the upload transmission rate (RTx

n) of the sender
node (n) and the download transmission rate (RRx

z) of the
receiver node (z), plus the propagation delay (s) between n
and z (tpropn,z)–assumed as 0 between edge devices [9][19]–as
seen in the second expression of Equation 1:

Tcompi,n = xi,n
wi

Fn

Tcommi,j,n,z = xi,nhi,j

(
ci,j

Min(RTx
n , RRx

z)
+ tpropn,z

)
(1)

where xi,n is 1 if task i is assigned to node n, 0 otherwise; hi,j
is 1 if node n and z are not the same. The propagation delay
is set as the half of the mean round trip time (RTT) obtained
by pinging from n to z, and considered like constant [19].

The energy consumption in the nodes is influenced by
several factors, such as the usage of CPU, storage, and RAM,
being the CPU usage the most influential [43] and the one
in which EC approaches typically base their models [9]. The

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

8

first expression of Equation 2 shows the expression used in
this work to predict the computation energy consumption
(J) required by node n to compute task i (Ecompi,n). The
energy consumption to make task i communicate with task
j (using WLAN or the Internet) is given by the sum of the
energy consumption in the sender and receiver nodes (n and
z, respectively), as shown in the second expression of Equation
2 [9]:

Ecompi,n = xi,nκnwiF
2
newn

Ecommi,j,n,z = xi,nhi,jP
Tx
n

ci,j
RTx

n

ewn + xj,zhi,jP
Rx
z

ci,j
RRx

z

ewz

(2)
For the sake of simplicity, we define several functions:
• timeCommunication (taski, taskj , noden, nodez , CON-

NECTION TYPE): time required (s) in nodes n (sender)
and z (receiver) to send/receive the output/input data of
tasks i and j using CONNECTION TYPE;

• timeComputation (task, node): execution time (s) to com-
pute task in node;

• energyCommnunication (taski, taskj , noden, nodez
CONNECTION TYPE): energy consumption (J) in
nodes n (sender) and z (receiver) to send/receive the
output/input data of tasks i and j using CONNEC-
TION TYPE;

• energyComputation (task, node): energy consumption (J)
in node to compute task;

• hasToSendData (taski, taskj): true if taski transmits
data to taskj ;

• assignedNode(task): returns the node assigned to task;
• assignedRAM(task, node): RAM (Mb) allocated in node

to task;
• connectionUsed(task): returns the connection used to

send the data of task.
Module 1 shows the pseudo-code of the Tasks Implemen-

tation Selector. The module receives as input the information
of the nodes (modelled as explained in Section V), the task-
call graph of interfaces (with the time restrictions) and the
number of users to support (nUsersToSupport). From lines
1 up to 21, it iterates with each configuration possibility.
Concretely, Module 1 does the following: for each set of
tasks, line 4 assures that tasks are assigned to an unique
node, while lines 5 and 6 check that nodes allocate sufficient
RAM to execute each task and have enough resources to
support them (nUsersToSupports). Line 7 guarantees that tasks
that need to send data have a connection associated, while
line 8 assures that for interconnected tasks, the sending and
receiver nodes have the selected connection among their
connectivity’s capacities. Lines 9 to 11 check that the time
restrictions of the application are accomplished, while line
12 guarantees that nodes meet the tasks requirements. Lines
13 and 14 determine the energy consumption associated to
tasks computation and communication. Line 15 asks for the
solution that reduces the energy consumption the most. Lines
16 to 20 check the satisfiability of the problem and include
the energy consumption in a dictionary with pairs <id, energy
consumption> if positive. Finally, at the end of the loop
(once all the configuration possibilities have been checked),

Module 2 Optimal Task Assignment Framework (OTAF)
Data: Nodes; Tasks; timeRestrictions; nUsersToSupport
Result: assignedNode(Tasks); RAMassigned(Tasks, Nodes); connectionUsed(Tasks)

1 Nodes ← currentStatus;
// Parameters to optimize:

2 assignedNode(task);// Optimal node to execute task
3 assignedRAM(task, node);// RAM allocated in node to task
4 connectionUsed(task)// connection used to send the data of task
5 opt = Optimize();
6 opt.add(foreach task ∈ Tasks{

assignedNode(task) 6= null });
7 opt.add(foreach task ∈ Tasks {

Sum(assignedRAM(task,assignedNode(task))<nodeRAM*nUsersToSupport}});
8 opt.add(foreach task ∈ Tasks {

assignedRAM(task, assignedNode(task)) ≥ taskRAM });
9 opt.add(foreach taski ∈ Tasks {

foreach taskj ∈ Tasks {
if (hasToSendData(taski,taskj) & assignedNode(taski) 6=

assignedNode(taskj)) then {
connectionUsed(taski) 6= null }}});

10 opt.add(foreach taski ∈ Tasks {
foreach taskj ∈ Tasks {
if (hasToSendData(taski,taskj) & assignedNode(taski) 6=

assignedNode(taskj)) then {
connectionUsed(taski) ∈ assignedNode(taski).connections ∩

assignedNode(taskj).connections} else {
connectionUsed(task) = Internet }}});

11 foreach tr ∈ timeRestrictions do
12 opt.add(Sum[foreach taski ∈ tr {

foreach taskj ∈ tr {
timeComputation(taski, assignedNode(taski)) + tCommunication(
taski, taskj , assignedNode(taski), assignedNode(taskj),
connectionUsed(taski) }}] ≤ tr.time);

13 end
14 opt.add(foreach task ∈ Tasks {

taskrequirements ⊆ assignedNode(task)features });
15 opt.add(communicationEnergyCost = Sum [

foreach taskj ∈ Tasks {
foreach taski ∈ Tasks {
EnergyCommunication(taski,taskj ,assignedNode(taski),
assignedNode(taskj), connectionUsed(taski))) }}]);

16 opt.add(computationEnergyCost = Sum [
foreach task ∈ Tasks {
energyComputation(task, assignedNode(task)) }]);

17 opt.minimize(communicationEnergyCost + computationEnergyCost);
18 sat = opt.check(); // Checking the satisfacibility
19 if sat then
20 solution = opt.solve();
21 end
22 return(solution);

Module 1 returns the configuration with the minimal energy
consumption.

VII. OPTIMAL TASK ASSIGNMENT FRAMEWORK

This module takes as input the output of the Tasks’ Imple-
mentation Selector to select the device that best fit the exe-
cution of each task (addressing RQ2). This decision considers
the current status of each node of the infrastructure.

As in the previous section, we use a SMT solver (for the
same reasons) to obtain the solution for the decision problem
of Module 2. The pseudo-code of this component is quite
similar to Module 1, as the constraints to meet are the same.
Concretely, instructions presented from lines 5-18 in Module 2
coincide with the ones contained in Module 1 from lines 3-16–
if nUsersToSupport is not received as an input, it is considered
as 1 and the OTAF will be launched each time a new user
joins to the service. Considering their coincidences, this time
we focus on the node assigned to each task, RAM allocated,
and the connection used. Additionally, Module 2 checks the
current status of the nodes at the beginning of its execution in
order to evaluate the feasibility of the deployment (line 1). As
Module 2 shows, unlike in Module 1, the body of the problem

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

9

N5

N3

N6

N7

N2

N4

N10
N11 N12

33

11

11

11
11

55

11
55

11

66

33

22

99

11
11

11

11

33

11

33

11ETSII CloudletETSII Cloudlet

Cloud ServerN8

Legend:
IoT Gateways (6)

Computers (3)
Cloudlet (1)

Cloud (1)
Sensor(s)

11
11

N8

N9

Fig. 3. Geographical location of the devices in the School of Computer
Science Engineering buildings

is executed only once. Finally, the solution of the OTAF is used
to deploy the application in the infrastructure.

Edge nodes can provide computation services for multiple
tasks from multiple users simultaneously using processor
sharing. We assume that the computing capacity of the nodes
do not change during the processing of one task but can change
across tasks [16]. The same occurs with the transmission
rates [19]. Note that although in this paper we focus on
the OTAF taking advantage of EC to minimize the energy
consumption, it can be used to minimize the latency or even
to return a trade-off between both (multi objective optimiza-
tions) [44], as we manage enough information to do so.

VIII. EVALUATION

This section evaluates our approach, studying the reduction
of power consumption obtained by task offloading and mea-
suring the execution time to find a task offloading solution for
different problem sizes.

A. Reduction of energy consumption

To evaluate the reduction in energy consumption, we apply
our approach to a real IoT infrastructure installed at the
School of Computer Science Engineering of the Universidad
de Málaga. The goal is to study to what extent our approach
reduces energy consumption by distributing the computational
load among edge/cloud nodes in a real IoT scenario, con-
sidering this infrastructure is shared by several applications
at the same time. This infrastructure has a large number of
physical sensor motes distributed throughout the four buildings
of the school, which send sensing measures’ information to
six Meshlium IoT gateways. The IoT gateways periodically
send the information collected from the sensors to a cloudlet,
which updates its databases with up-to-date measures. The
infrastructure also contains 3 computers acting as edge nodes,
and a cloud server. Figure 3 shows the geographical location
of the devices on a map of the School of Computer Science
Engineering buildings. Our approach benefits from the spare
computational power of these devices. The deployed mobile
application (app for short) is named ‘La Universidad Aumen-
tada’. This app, developed by the Universidad de Málaga, uses
augmented reality to show motivational messages from suc-
cessful students. These messages are visible by scanning QR

(Quick Response) codes spread over the university. This app
gathers the measurement data from the environment collected
by the aforementioned IoT sensors distributed throughout the
physical campus. These data allow the augmented reality app
to enrich the information presented to the user considering
their location. Then, depending on the user location deter-
mined by the GPS (Global Positioning System) of the user
mobile device, the app generates perceptual information with
data from the nearby IoT sensors (e.g., temperature, humidity,
presence, etc). Augmented reality applications are widely used
in EC approaches due to their inherent collaborative properties
in terms of data collection in the uplink, computing at the edge,
and data delivery in the downlink. In addition, augmented
reality apps are computational-intensive and delay-sensitive,
and processing all the information on mobile devices is gen-
erally prohibitive because it would impact users’ expectations
in terms of battery lifetime [45].

A simplified version of the application’s feature model is
shown at the top left corner of Figure 4, while the configured
FM for ‘La Universidad Aumentada’ application is on top right
corner of the same figure. Depending on the characteristics
selected, the application will have different QoS requirements.
For instance, the characteristic FPS determines the maximum
time to complete the tasks in charge of processing and
refreshing images (30 per second selected, i.e., 34 ms per
execution–time restriction 1 in Figure 4). The resulting task-
call graph of implementations (once processed by the Tasks
Implementation Selector, composed by 10 different tasks) is
shown at the bottom of Figure 4. In this computing model,
the functionality of the app is separated into tasks related to
data processing and storage capability. The workload of mobile
devices can be reduced by offloading the computation intensive
tasks that deal with the generation of augmented information
to near nodes in the edge network.

For our experiments, the characteristics of the 12 nodes
(the user node, 10 edge nodes and 1 cloud node) have
been randomly generated. Concretely, the CPU speed of IoT
gateways ranges from 1 to 1.6 GHz, the cloud server from 2.4
to 4 GHz, the cloudlet from 2 to 2.4 GHz, and the rest of edge
devices from 1.6 to 2 GHz.
RTx and RRx have been set between 100 and 150 Mbps for

edge devices and from 8 to 10 Mbps for cloud devices. The
propagation delay between the cloud device and the rest of
nodes has been set from 0.02 to 0.1 s. κ has a value between
1 · 10−9 and 1 · 10−11 [46][19]. PTx and PRx have values
between 1 and 1.5 W in all cases [19]. Finally, ew has been
set to 1 for all nodes. To avoid the mobility problem in edge
computing [47], the task offloading process relies on WLAN
and the Internet for data transmission.

Experiments consider two scenarios. In the first one (Sce-
nario 1), the nodes reserve a fixed amount of resources (2
GB of RAM and one CPU core) dedicated to computation
of offloaded tasks. In the second one (Scenario 2), the nodes
do not reserve specific resources for offloaded tasks, so the
feasibility of the task offloading process and the reduction
in energy consumption will depend on the current nodes
workload (randomized in each experiment from 0 to their
maximal capabilities). Each test is performed 30 times.

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

10

Augmented
Reality Application

Video

Based on...

Resolution FPS

High

60

30

Location Visual
Elements

Sensor
Based

Camera
Based

Beacons

Markers Natural
Elements

QR code
Visible Light

Communicator

Screen

Vibration

Low
Inertial

GPS NFC

Sensors
Information

Periodical
On

Demand

120

60

30

Interactions
with the User

Model
Based

SLAM

Speaker

WiFi
Medium

Application
Feature Model

45

Augmented
Reality

Application

Video

Based
on...

Resolution FPS

High 30

Visual
Elements

Markers

Interactions
with the User

Screen

QR
code

Sensors
Information

On
Demand

requestFrame captureFrame0.03k
9k

0
0.05k

0.25k

0
w = 2 * 102 w = 4 * 103

m = 5 m = 15
t2

t3

Time Restriction 1 = {t1,t2,t3,t4,t5,t6,t7,t10} Max time = 34 ms

Time Restriction 2 = {t4,t8,t9,t10} Max time = 340 ms

Time Restriction 1 = {t1,t2,t3,t4,t5,t6,t7,t10} Max time = 34 ms

Time Restriction 2 = {t4,t8,t9,t10} Max time = 340 ms

overlayContent
w = 4 * 104

m = 100
getFeatures
w = 5.5 * 108

m = 70

t4

getGPSPosition
w = 3 * 104

m = 10
getGPSPosition

w = 3 * 104

m = 10
consultObjectsInPosition

w = 3 * 102

m = 15
consultObjectsInPosition

w = 3 * 102

m = 15

detectMarker
w = 4 * 108

m = 70
identifyMarker

w = 5 * 108

m = 70
getMarkerInfo

w = 2 * 102

m = 53k
0.15k 0.15k

t6 t7

t8

t10cameraCalibration
w = 3 * 103

m = 10 t1

t9

0.25k

Task-call graph of implementations t5

Configured by
the Developer

Tasks Implementation Selector Task Mapping and Validation

Mandatory Optional XOR OR

Delegable task Non delegable task

Along with the
configuration of

the infrastructure
(Fig. 3)

Configured
Application

Location

Sensor
Based

GPS

Fig. 4. Feature model of the application (top left corner), application configuration (top right corner), and task-call graph of tasks’ implementations (bottom)

Table II shows the reduction of energy consumption (REC)
obtained in the experiments performed for the case study
described in Figure 4 for both scenarios. For Scenario 1, three
rows detail the task offloading solutions (distribution of tasks
in the different nodes, in columns N1 to N12, and RAM
used) and the reduction of energy consumption (REC) for
three different states of workload in the infrastructure, which
depends on the number of users: users ≤ 13; 14 ≤ users ≤
26; 27 ≤ users ≤ 39.

These results allow to compare the energy consumption
of distributing the application according to the assignment
solution obtained by our approach with the energy consump-
tion of running the entire application on the user device.
This reduction in the energy consumption (columns REC in
Table II) is given as a percentage (%). The reduction is
calculated considering the energy consumption of all nodes
of the infrastructure (including the user one) and considering
just the energy consumed in the user node–columns named
REC (all nodes) and REC (user node) respectively.

The aim of the first scenario is to illustrate how the reduction
in energy consumption can be affected by the nodes avail-
ability, and how our solution adapts consequently. The first
scenario considers three different states of node availability.
Firstly, all nodes are fully available, so the OTAF assigns
tasks to the nodes which consume less energy and are capable
of running the tasks while satisfying the QoS, assigning the
tasks t2, t5, t6, and t7 to node N9 and t9 to N11. This tasks
assignment achieves a 48% reduction in power consumption
considering all nodes (column 16 of Table II). After attending
the offloading requirements of 13 users, N9 cannot allocate
more tasks and the infrastructure goes to State 2, being N9
unavailable to allocate tasks. This time, N12 is the selected
node to deploy the tasks previously assigned to N9, while
N11 continues having task t9 assigned, obtaining a 43.5%
reduction in the energy consumption (considering all nodes).

Once again, after serving another 13 users (26 users in total),
N12 cannot run more offloaded tasks, and the infrastructure
goes to State 3. This time, both nodes N9 and N12 are busy,
and the most suitable node to run t2, t5, t6, and t7 is now
N7. The reduction in the energy consumption, considering the
consumption of all nodes, is 37.3%. Despite the difference in
the number of available nodes and tasks allocation, for the
three states the user node runs the same tasks and consumes
the same amount of energy, reducing its energy consumption
by 62.2% compared to an offline execution (last column of
Table II).

The second scenario refers to a deployment infrastructure
shared by many users and applications in which resources
can not be reserved for the execution of specific applications.
The results are provided in row Non-fixed resource allocation
in Table II. In this case, the CPU workload and the free
RAM of each node are also randomly set in each experiment.
For this scenario, the results show the reduction of energy
consumption obtained, instead of the assignment itself. Last
row of Table II shows the average, minimum, maximum, and
standard deviation of the reduction in the energy consumption
obtained, both considering all nodes and taking into account
only the user node. Notice that, for a randomly generated
nodes status, the average reduction obtained in the energy
consumption when all nodes are considered is 41.1%, being
55.2% the maximum value obtained and 33.6% the minimum,
with a standard deviation of 9.3%. When only the energy
consumption in the user node is considered, we obtain an
average reduction of 56.5%, 65.1% as maximum and 41.2% as
minimum, being the standard deviation of 8.8%. The reduction
in energy consumption obtained in the second scenario has
decreased as compared to the reduction observed in the first
one. The reason is that some infrastructure’s nodes may not
be available for task offloading, so the OTAF adapts the
solution to the available resources, and, as a result, some tasks

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

11

TABLE II
REDUCTION IN THE ENERGY CONSUMPTION (%) OF OUR TASK ASSIGNMENT SOLUTION VS RUNNING THE ENTIRE APPLICATION IN THE USER DEVICE,

FOR THE CASE OF FIGURE 4

Nodes: N1
(user node) N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 RECa

(all nodes)
REC

(user node)

Scenario 1:
Fixed resources

allocation

users ≤ 13
(State 1)

Tasks assigned t1,t2,t3,t8,t10 - - - - - - - t2,t5,t6,t7 - t9 - 48.0% 62.2%RAM (Mb) 205 - - - - - - - 150 - 15 -

14 ≤ users ≤ 26
(State 2)

Tasks assigned t1,t2,t3,t8,t10 - - - - - - - busy - t9 t2,t5,t6,t7 43.5% 62.2%RAM (Mb) 205 - - - - - - - - - 15 150

27 ≤ users ≤ 39
(State 3)

Tasks assigned t1,t2,t3,t8,t10 - - - - - t2,t5,t6,t7 - busy - t9 busy 37.3% 62.2%RAM (Mb) 205 - - - - - 150 - - - 15 -

Scenario 2: Non-fixed
resources allocation

REC considering all nodes(Avg/Max/Min/Std) 41.1 / 55.2 / 33.6 / 9.3 %
REC in the user node (Avg/Max/Min/Std) 56.5 / 65.1 / 41.2 / 8.8 %

a REC: Reduction in the energy consumption

cannot be offloaded. Although this can be considered the worst
scenario for deployment, even in this case the OTAF finds an
offloading solution that satisfies the user node.

B. Scalability

The time needed by our modules to provide a solution
varies according to the size of the problem [48]. This section
evaluates their execution time for different problem sizes.
With this purpose, we develop a Benchmark1 version of the
modules, which allows setting the number of devices, tasks and
configuration in the case of Module 1 and devices and tasks in
the case of Module 2. The characteristics of the devices (CPU,
RAM, workload, etc.) and tasks (connections, computational
load, hardware and software requirements, time restrictions,
etc.) have been randomly generated in each experiment, and
each experiment has been performed 30 times on one thread
of an AMD Ryzen 7 1700X processor.

Table III shows the average, maximum, minimum, and
standard deviation of the time (s) taken by our modules to
return a solution for different problem sizes. The average time
is graphically represented in Figure 5. The execution time
values of Module 1 (TIS, grouped in the first row of Table
III) are shown in the left graph of figure 5. The number of
tasks and nodes has been set in 20, while the number of
configurations has been incremented up to 45. Experiments
show that Module 1 requires around 85 seconds to find the
most suitable set of implementations to deploy an application
with 10 different configurations. This time increments up to
430 seconds (i.e., 7 minutes and 10 seconds) in case of
45 alternatives of configuration. Note that Module 1 is only
executed once, unless changes in the infrastructure affect the
deployment feasibility (in this case, Module 2 will not be able
to find a solution).

In case of the OTAF (Module 2, grouped in the second row
of Table III), the number of nodes has been set in 20, while the
number of tasks has been incremented up to 90. The execution
time values of Module 2 (OTAF) are shown in the right graph
of Figure 5. As expected, the required average time increases
in relation to the number of tasks (see Table III). Nevertheless,
the difference between maximum and minimum values, as
well as the standard deviations, shows that factors like tasks
constraints and characteristics of the devices and tasks may
affect the problem complexity, increasing the execution time.
Results show that, for applications formed by 10 tasks and

1Source code available at: https://doi.org/10.5281/zenodo.4068123

a heterogeneous infrastructure composed by 20 different de-
vices, the OTAF requires around 2 seconds to obtain a solution,
while applications formed by 20 tasks take around 10 seconds
and applications formed by 30 take 25 seconds (it is feasible
to run the OTAF when the user launches the application,
adapting its behaviour once the OTAF returns the solution
in consequence [49]). In the worst case of a very granulated
application of 90 tasks and 20 devices (1.23 ·10117 assignment
possibilities) the OTAF has required about 280 seconds (i.e.
4 minutes and 40 seconds). For very partitioned applications,
an infrastructure with a fixed amount of resources for task
offloading (first scenario of Section VIII) allows having a task
offloading solution before launching the application (by setting
the value of the number of users to support, which the OTAF
receives as an input). Taking all this into consideration, we
conclude that the OTAF is capable of providing a solution in
a reasonable amount of time.

IX. CONCLUSIONS AND FUTURE WORK

Edge computing expands the deployment infrastructure of
mobile IoT applications, providing more sustainable solutions
by means of offloading computation tasks to nearby devices.
However, the heterogeneity of the devices, the requirements
of applications, and the sharing of software and hardware
infrastructure can difficult this process.

In this paper, we propose an offloading process that applies
SPL to cope with variability of applications and infrastructures
in the task offloading decision, considering hardware and
software (typically disregarded in code offloading approaches)
nodes characteristics. Task offloading is supported by two
modules, which firstly adapt the application task implemen-
tations to the infrastructure capabilities and secondly assign
application tasks to nodes in order to minimize the energy
consumption while assuring the QoS. Experiments show that
our approach reduces by approximately 41%-62% the energy
consumption in the user node, and by 34%-48% the energy
consumption of the devices involved in a task offloading
solution. The execution time of our modules for different
problem sizes has been also evaluated using a Benchmark,
and the conclusion is that our proposal returns a solution in a
reasonable amount of time.

As future work, we are planning to assign computational
power to each task, controlling this parameter in practice
using dynamic voltage and frequency scaling (DVFS) tech-
niques [50].

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.4068123

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

12

0

50

100

150

200

250

300

350

400

450

500
Ti

m
e

(s
)

Nodes/Tasks/Configurations

Tasks Implementation Selector (Module 1)

0

50

100

150

200

250

300

20/10 20/20 20/30 20/40 20/50 20/60 20/70 20/80 20/90

Ti
m

e
(s

)

Nodes/Tasks

Optimal Task Assignment Framework (Module 2)

Fig. 5. Graphical representation of the mean values of Table III

TABLE III
EXECUTION TIME FOR MODULES 1 AND 2

N/T/C
N/Ta

20/20/5
20/10

20/20/10
20/20

20/20/15
20/30

20/20/20
20/40

20/20/25
20/50

20/20/30
20/60

20/20/35
20/70

20/20/40
20/80

20/20/45
20/90

TISb

Mean (s) 48.51 85.24 140.33 189.50 215.46 258.86 275.46 350.09 433.59
Max (s) 53.84 91.37 152.92 220.06 243.72 294.36 304.22 393.54 472.68
Min (s) 37.41 72.11 123.94 164.67 184.04 242.31 256.52 327.58 409.90
Std 6.44 7.56 13.14 23.73 25.83 20.48 18.28 25.89 23.86

OTAFc

Mean (s) 2.03 10.04 25.04 38.71 74.57 138.07 140.65 216.98 279.96
Max (s) 2.31 11.03 27.12 44.39 88.61 156.25 150.44 258.04 301.53
Min (s) 1.83 8.68 20.04 33.51 60.54 110.50 132.11 175.93 257.96
Std 0.21 1.01 3.37 5.45 19.84 19.45 9.23 18.05 21.78

a N: Nodes. T: Tasks. C: Configurations.
b Tasks Implementation Selector - Module 1
c Optimal Task Assignment Framework - Module 2

ACKNOWLEDGMENTS

This work is supported by the projects TASOVA MCIU-
AEI TIN2017-90644-REDT, MEDEA RTI2018-099213-B-I00
(co-funded by FEDER funds), LEIA UMA18-FEDERJA-
157 (co-funded by FEDER funds) and RHEA P18-FR-1081
(MCI/AEI/FEDER, UE).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), May 2008, pp. 363–369.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan 2017.

[4] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the Internet of Things: A case study,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1275–1284, April 2018.

[5] H. Elazhary, “Internet of Things (IoT), mobile cloud, cloudlet, mo-
bile iot, iot cloud, fog, mobile edge, and edge emerging computing
paradigms: Disambiguation and research directions,” Journal of Network
and Computer Applications, vol. 128, pp. 105–140, Nov 2018.

[6] S. Bagchi, M.-B. Siddiqui, P. Wood, and H. Zhang, “Dependability in
edge computing,” Commun. ACM, vol. 63, no. 1, p. 58–66, Dec. 2020.
[Online]. Available: https://doi.org/10.1145/3362068

[7] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A cloud–MEC
collaborative task offloading scheme with service orchestration,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 5792–5805, 2020.

[8] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on
edge computing systems and tools,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1537–1562, 2019.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, Fourth
Quarter 2017.

[10] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things real-
ization,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp.
2961–2991, 2018.

[11] S. Melendez and M. P. McGarry, “Computation offloading decisions
for reducing completion time,” in 2017 14th IEEE Annual Consumer
Communications Networking Conference (CCNC), Jan 2017, pp. 160–
164.

[12] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line
engineering: foundations, principles and techniques. Springer Science
& Business Media, 2005.

[13] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Comput. Surv., vol. 52, no. 1, pp. 2:1–2:23, Feb. 2019. [Online].
Available: http://doi.acm.org/10.1145/3284387

[14] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing
for IoT: Review, enabling technologies, and research opportunities,”
Future Generation Computer Systems, vol. 87, pp. 278 – 289,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X18301973

[15] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[16] Y. Sun, S. Zhou, and J. Xu, “Emm: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646, Nov
2017.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, Oct 2015.

[18] L. Fuentes, “Variability variations in cyber-physical systems (keynote),”
in Software Architecture-13th European Conference, ECSA 2019, Paris,
France, September 9-13, 2019, Proceedings. Springer, 2019, pp. xvi–
xvii. [Online]. Available: https://doi.org/10.1007/978-3-030-29983-5

[19] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
Aug 2017.

[20] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative
scheduling scheme of local cloud and internet cloud for delay-aware
mobile cloud computing,” in IEEE Globecom Workshops (GC Wkshps).
IEEE, 2015, pp. 1–6.

[21] Y. Ge, Y. Zhang, Q. Qiu, and Y. Lu, “A game theoretic resource
allocation for overall energy minimization in mobile cloud computing
system,” in ISLPED’12-Proceedings of the International Symposium on
Low Power Electronics and Design, Sep. 2012, pp. 279–284.

[22] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge computing

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3362068
http://doi.acm.org/10.1145/3284387
http://www.sciencedirect.com/science/article/pii/S0167739X18301973
http://www.sciencedirect.com/science/article/pii/S0167739X18301973
https://doi.org/10.1007/978-3-030-29983-5

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030197, IEEE Internet of
Things Journal

13

in latency-constrained fog networks,” in 2017 European Conference on
Networks and Communications (EuCNC), 2017, pp. 1–6.

[23] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205–228, 2015, special Issue:
Performance 2015.

[24] M. Chen, M. Dong, and B. Liang, “Joint offloading decision and
resource allocation for mobile cloud with computing access point,” in
2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), March 2016, pp. 3516–3520.

[25] R. T. Geraldi, S. Reinehr, and A. Malucelli, “Software product
line applied to the Internet of Things: A systematic literature
review,” Information and Software Technology, vol. 124, p. 106293,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584920300434

[26] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[27] M. Lettner, J. Rodas, J. A. Galindo, and D. Benavides, “Automated
analysis of two-layered feature models with feature attributes,” Journal
of Computer Languages, vol. 51, pp. 154–172, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1045926X18302362

[28] E. Farahani and J. Habibi, “Feature model configuration based on two-
layer modelling in software product lines,” International Journal of
Electrical and Computer Engineering, vol. 9, pp. 1–11, March 2019.

[29] A. Abbas, I. Farah Siddiqui, S. U. Lee, A. Kashif Bashir, W. Ejaz,
and N. M. F. Qureshi, “Multi-objective optimum solutions for IoT-
based feature models of software product line,” IEEE Access, vol. 6,
pp. 12 228–12 239, 2018.

[30] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, “A genetic
algorithm for optimized feature selection with resource constraints
in software product lines,” Journal of Systems and Software,
vol. 84, no. 12, pp. 2208–2221, 2011. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121211001518

[31] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form: A
feature-oriented reuse method with domain-specific reference architec-
tures,” Annals of Software Engineering, vol. 5, pp. 143–168, 1998.

[32] J. A. Galindo, D. Dhungana, R. Rabiser, D. Benavides,
G. Botterweck, and P. Grünbacher, “Supporting distributed
product configuration by integrating heterogeneous variability
modeling approaches,” Information and Software Technology,
vol. 62, pp. 78 – 100, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584915000312

[33] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software Process: Im-
provement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[34] R. Capilla and J. C. Dueñas, “Modelling variability with features
in distributed architectures,” in Software Product-Family Engineering,
F. van der Linden, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 319–329.

[35] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing,” in 2013 Pro-
ceedings IEEE INFOCOM, April 2013, pp. 190–194.

[36] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks,” IEEE Access, vol. 4, pp.
5896–5907, 2016.

[37] J. Smith and R. Nair, Virtual machines: versatile platforms for systems
and processes. Elsevier, 2005.

[38] A. Mouat, Using Docker: Developing and Deploying Software with
Containers. O’Reilly Media, Inc., 2015.

[39] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration using
feature models,” in Software Product Lines, R. L. Nord, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 266–283.

[40] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[41] A. Niewiadomski, J. Skaruz, W. Penczek, M. Szreter, and M. Jarocki,
“SMT versus genetic and OpenOpt algorithms: Concrete planning in the
PlanICS framework,” Fundamenta Informaticae, vol. 135, pp. 451–466,
01 2014.

[42] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz - an optimizing SMT
solver,” in Tools and Algorithms for the Construction and Analysis of
Systems, C. Baier and C. Tinelli, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 194–199.

[43] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, Jan 2019.

[44] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the Theory and Practice of Software, 14th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems,
ser. TACAS’08/ETAPS’08. Springer-Verlag, 2008, pp. 337–340.

[45] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,” IEEE
Wireless Communications Letters, vol. 6, no. 3, pp. 398–401, June 2017.

[46] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, 2013.

[47] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[48] C. Sundermann, T. Thüm, and I. Schaefer, “Evaluating #SAT solvers on
industrial feature models,” in Proceedings of the 14th Int. Working Conf.
on Variability Modelling of Software-Intensive Systems, ser. VAMOS’20,
2020. [Online]. Available: https://doi.org/10.1145/3377024.3377025

[49] A. Cañete, J.-M. Horcas, I. Ayala, and L. Fuentes, “Energy
efficient adaptation engines for android applications,” Information and
Software Technology, vol. 118, p. 106220, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584919302307

[50] V. Hanumaiah, S. Vrudhula, and K. S. Chatha, “Performance optimal
online DVFS and task migration techniques for thermally constrained
multi-core processors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 30, no. 11, pp. 1677–1690, 2011.

Angel Cañete received his MSc degree in Computer
Science from the Universidad de Málaga (Spain)
in 2017. He is a member of the CAOSD research
group, where he participates in several international
and national research projects. His research topics
include Edge Computing, IoT, Software Product
Lines, self-adaptive software and energy efficiency.

Mercedes Amor received her MSc and PhD de-
grees in Computer Science from the Universidad de
Málaga (Spain) in 2005, where she is an Associated
Professor (previously, Lecturer from 2001). She is
a member of the CAOSD research group. Her re-
search interest mainly deals with self-adaptation of
future Internet applications, software architectures,
Software Product Lines, Agent-Oriented Software
Engineering and Aspect-Oriented Software Devel-
opment.

Lidia Fuentes received her MSc degree and a
PhD in Computer Science, from the Universidad
de Málaga. She has done all her teaching work at
the Department Lenguajes y Ciencias de la Com-
putación since 1993, being the first female Full
Professor of this department. She is the head of
the CAOSD research group (http://caosd.lcc.uma.es),
and co-authored more than two hundred publications
in software engineering techniques applied to IoT
and cyber-physical systems. She has an important
international profile leading European projects and

as a member of program committees of prestigious international conferences.
Examples are ECOOP, SPLC, Modularity/AOSD and OOPSLA. She is
currently the most cited female scientific of the University of Málaga.

Authorized licensed use limited to: Universidad de Malaga. Downloaded on October 05,2021 at 18:39:55 UTC from IEEE Xplore. Restrictions apply.

http://www.sciencedirect.com/science/article/pii/S0950584920300434
http://www.sciencedirect.com/science/article/pii/S0950584920300434
http://www.sciencedirect.com/science/article/pii/S1045926X18302362
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.sciencedirect.com/science/article/pii/S0164121211001518
http://www.sciencedirect.com/science/article/pii/S0950584915000312
https://doi.org/10.1145/3377024.3377025
http://www.sciencedirect.com/science/article/pii/S0950584919302307

